Verlinde Series on Hirzebruch Surfaces

Ian Cavey
University of Illinois UC

May 13, 2024

Verlinde series are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface.

Verlinde series are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface.

1. Background on Hilbert schemes and Verlinde series

Verlinde series are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface.

1. Background on Hilbert schemes and Verlinde series
2. New combinatorial formulas for Verlinde series

Verlinde series are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface.

1. Background on Hilbert schemes and Verlinde series
2. New combinatorial formulas for Verlinde series

Please ask questions!

Background

The Hilbert scheme of n points on a smooth (quasi-) projective surface X (defined over \mathbb{C}) is

$$
X^{[n]}=\left\{\begin{array}{l}
0 \text {-dimensional closed subschemes } Z \subseteq X \\
\text { such that length }(Z):=\sum_{p} \operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, p}\right)=n
\end{array}\right\}
$$

Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X (defined over \mathbb{C}) is

$$
X^{[n]}=\left\{\begin{array}{l}
0 \text {-dimensional closed subschemes } Z \subseteq X \\
\text { such that length }(Z):=\sum_{p} \operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, p}\right)=n
\end{array}\right\}
$$

Such $Z \subseteq X$ are either:

Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X (defined over \mathbb{C}) is

$$
X^{[n]}=\left\{\begin{array}{l}
0 \text {-dimensional closed subschemes } Z \subseteq X \\
\text { such that length }(Z):=\sum_{p} \operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, p}\right)=n
\end{array}\right\}
$$

Such $Z \subseteq X$ are either:

1. reduced, supported at n points

Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X (defined over \mathbb{C}) is

$$
X^{[n]}=\left\{\begin{array}{l}
0 \text {-dimensional closed subschemes } Z \subseteq X \\
\text { such that length }(Z):=\sum_{p} \operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{Z, p}\right)=n
\end{array}\right\} .
$$

Such $Z \subseteq X$ are either:

1. reduced, supported at n points

2. not reduced, supported at $<n$ points with some multiplicities

Background

We are looking at a smooth (quasi-)projective surface X because then...

Background

We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

$X^{[n]}$ is a smooth (quasi-)projective variety of dimension $2 n$.

Background

We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

$X^{[n]}$ is a smooth (quasi-)projective variety of dimension $2 n$.

The set of all reduced schemes is
a dense open subset in $X^{[n]}$.

Background

We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

$X^{[n]}$ is a smooth (quasi-)projective variety of dimension $2 n$.

The set of all reduced schemes is a dense open subset in $X^{[n]}$.

The set of all nonreduced schemes is an irreducible divisor in $X^{[n]}$ (when $n \geq 2$).

Background

We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

$X^{[n]}$ is a smooth (quasi-)projective variety of dimension $2 n$.

The set of all reduced schemes is a dense open subset in $X^{[n]}$.

The set of all nonreduced schemes is an irreducible divisor in $X^{[n]}$ (when $n \geq 2$).

All of this fails dramatically if $\operatorname{dim}(X)>2$.

Background

There is an embedding $\operatorname{Pic}(X) \hookrightarrow \operatorname{Pic}\left(X^{[n]}\right)$, denoted $L \mapsto L_{n}$

Background

There is an embedding $\operatorname{Pic}(X) \hookrightarrow \operatorname{Pic}\left(X^{[n]}\right)$, denoted $L \mapsto L_{n}$, extending

$\mathcal{O}(C)$ for an irreducible curve

$$
C \subseteq X
$$

$\mathcal{O}(D)$ where $D \subseteq X^{[n]}$ is the locus of schemes Z whose support meets C.

Background

There is an embedding $\operatorname{Pic}(X) \hookrightarrow \operatorname{Pic}\left(X^{[n]}\right)$, denoted $L \mapsto L_{n}$, extending

$\mathcal{O}(C)$ for an irreducible curve

$$
C \subseteq X
$$

$\mathcal{O}(D)$ where $D \subseteq X^{[n]}$ is the locus of schemes Z whose support meets C.

Theorem (Fogarty ('73))
For $n \geq 2, \quad \operatorname{Pic}\left(X^{[n]}\right) \simeq \operatorname{Pic}(X)_{n} \times \mathbb{Z} E$
where $c_{1}(E)$ is $-1 / 2$ times the divisor of nonreduced schemes.

Verlinde Series

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

$$
\chi(Y, \mathscr{L})=\sum_{i=0}^{\operatorname{dim} Y}(-1)^{i} \operatorname{dim}_{\mathbb{C}} H^{i}(Y, \mathscr{L})
$$

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+\underset{\lambda}{6 z}+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

$$
\chi\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,2)\right)
$$

Verlinde Series

...are generating functions of Euler characteristics of line bundles on the Hilbert schemes of points on a surface,

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

depending on a smooth projective surface $X, L \in \operatorname{Pic}(X)$, and $r \in \mathbb{Z}$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\begin{aligned}
& \mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots \\
& \chi\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,2)\right) \quad \checkmark \quad \chi\left(\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)^{[4]}, \mathcal{O}(1,2)_{4} \otimes E^{5}\right)
\end{aligned}
$$

Verlinde Series

Why Verlinde series?

Verlinde Series

Why Verlinde series?

- The numbers $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ are fundamental invariants of $X^{[n]}$ encoding information, in particular, about embeddings $X^{[n]} \hookrightarrow \mathbb{P}^{M}$.

Verlinde Series

Why Verlinde series?

- The numbers $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ are fundamental invariants of $X^{[n]}$ encoding information, in particular, about embeddings $X^{[n]} \hookrightarrow \mathbb{P}^{M}$.
- The Segre-Verlinde correspondence:

Verlinde Series

Why Verlinde series?

- The numbers $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ are fundamental invariants of $X^{[n]}$ encoding information, in particular, about embeddings $X^{[n]} \hookrightarrow \mathbb{P}^{M}$.
- The Segre-Verlinde correspondence:
rank s vector bundle V on $X \rightarrow$ rank $n s$ vector bundle $V^{[n]}$ on $X^{[n]}$.

$$
\mathbf{S}_{X, V}(w)=\sum_{n \geq 0} w^{n} \int_{X[n]} s\left(V^{[n]}\right)
$$

Verlinde Series

Why Verlinde series?

- The numbers $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ are fundamental invariants of $X^{[n]}$ encoding information, in particular, about embeddings $X^{[n]} \hookrightarrow \mathbb{P}^{M}$.
- The Segre-Verlinde correspondence:
rank s vector bundle V on $X \rightarrow$ rank $n s$ vector bundle $V^{[n]}$ on $X^{[n]}$.

$$
\mathbf{S}_{X, V}(w)=\sum_{n \geq 0} w^{n} \int_{X[n]} s\left(V^{[n]}\right)
$$

Segre and Verlinde series are related by a change of variables (J, MOP, GM).

Verlinde Series

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

The coefficients depend "polynomially" on L and r, but there are relations among these series as X varies

Verlinde Series

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

The coefficients depend "polynomially" on L and r, but there are relations among these series as X varies (!!!)

Verlinde Series

$$
\mathbf{V}_{X, L, r}(z)=\sum_{n=0}^{\infty} z^{n} \cdot \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)
$$

The coefficients depend "polynomially" on L and r, but there are relations among these series as X varies (!!!)

Theorem (Ellingsrud, Göttsche, Lehn ('99))
There exist universal power series $A_{r}, B_{r}, C_{r}, D_{r} \in \mathbb{Q}[[z]]$ for each $r \in \mathbb{Z}$ such that

$$
\mathbf{V}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}}
$$

for all X and L.

Verlinde Series

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

Verlinde Series

Example

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5,
$$

$$
\begin{aligned}
& A_{5}(z)=1+z-24 z^{2}+876 z^{3}+\cdots \\
& B_{5}(z)=1+150 z^{2}-9800 z^{3}+\cdots \\
& C_{5}(z)=1-20 z^{2}+1251 z^{3}+\cdots \\
& D_{5}(z)=1-25 z^{2}+3945 / 2 z^{3}+\cdots
\end{aligned}
$$

Verlinde Series

Example

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5,
$$

$$
\begin{aligned}
& A_{5}(z)=1+z-24 z^{2}+876 z^{3}+\cdots \\
& B_{5}(z)=1+150 z^{2}-9800 z^{3}+\cdots \\
& C_{5}(z)=1-20 z^{2}+1251 z^{3}+\cdots \\
& D_{5}(z)=1-25 z^{2}+3945 / 2 z^{3}+\cdots
\end{aligned}
$$

$\mathbf{V}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{x}-\frac{1}{2} K_{x}^{2}} \cdot D_{r}(z)^{K_{x}^{2}}$

Verlinde Series

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\begin{aligned}
& A_{5}(z)=1+z-24 z^{2}+876 z^{3}+\cdots \\
& B_{5}(z)=1+150 z^{2}-9800 z^{3}+\cdots \\
& C_{5}(z)=1-20 z^{2}+1251 z^{3}+\cdots \\
& D_{5}(z)=1-25 z^{2}+3945 / 2 z^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{x}-\frac{1}{2} K_{x}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{5}(z)^{6} \cdot B_{5}(z) \cdot C_{5}(z)^{-10} \cdot D_{5}(z)^{8}
\end{aligned}
$$

Verlinde Series

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\begin{aligned}
& A_{5}(z)=1+z-24 z^{2}+876 z^{3}+\cdots \\
& B_{5}(z)=1+150 z^{2}-9800 z^{3}+\cdots \\
& C_{5}(z)=1-20 z^{2}+1251 z^{3}+\cdots \\
& D_{5}(z)=1-25 z^{2}+3945 / 2 z^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{x}-\frac{1}{2} K_{x}^{2}} \cdot D_{r}(z)^{K_{x}^{2}} \\
& =A_{5}(z)^{6} \cdot B_{5}(z) \cdot C_{5}(z)^{-10} \cdot D_{5}(z)^{8} \\
& =1+6 z+21 z^{2}-1074 z^{3}+\cdots
\end{aligned}
$$

Verlinde Series

What do we know about the universal series?

Verlinde Series

What do we know about the universal series?
Can take $r \geq 0$, thanks to the relations

$$
A_{-r}(z)=A_{r}(z), \quad B_{-r}(z)=B_{r}(z), \quad C_{-r}(z)=\frac{1}{C_{r}(z)}, \quad D_{-r}(z)=D_{r}(z)
$$

Verlinde Series

What do we know about the universal series?
Can take $r \geq 0$, thanks to the relations

$$
A_{-r}(z)=A_{r}(z), \quad B_{-r}(z)=B_{r}(z), \quad C_{-r}(z)=\frac{1}{C_{r}(z)}, \quad D_{-r}(z)=D_{r}(z)
$$

For $r=0,1$ we have general formulas due to Ellingsrud, Göttsche, and Lehn:

Verlinde Series

What do we know about the universal series?
Can take $r \geq 0$, thanks to the relations

$$
A_{-r}(z)=A_{r}(z), \quad B_{-r}(z)=B_{r}(z), \quad C_{-r}(z)=\frac{1}{C_{r}(z)}, \quad D_{-r}(z)=D_{r}(z)
$$

For $r=0,1$ we have general formulas due to Ellingsrud, Göttsche, and Lehn:

$$
\chi\left(X^{[n]}, L_{n}\right)=\binom{\chi(X, L)+n-1}{n} \quad \chi\left(X^{[n]}, L_{n} \otimes E\right)=\binom{\chi(L)}{n}
$$

Verlinde Series

What do we know about the universal series?
Can take $r \geq 0$, thanks to the relations

$$
A_{-r}(z)=A_{r}(z), \quad B_{-r}(z)=B_{r}(z), \quad C_{-r}(z)=\frac{1}{C_{r}(z)}, \quad D_{-r}(z)=D_{r}(z)
$$

For $r=0,1$ we have general formulas due to Ellingsrud, Göttsche, and Lehn:

$$
\begin{array}{cc}
\chi\left(X^{[n]}, L_{n}\right)=\binom{\chi(X, L)+n-1}{n} & \chi\left(X^{[n]}, L_{n} \otimes E\right)=\binom{\chi(L)}{n} \\
\mathbf{V}_{X, L, 0}(z)=\left(\frac{1}{1-z}\right)^{\chi(L)} & \mathbf{V}_{X, L, 1}(z)=(1+z)^{\chi(L)}
\end{array}
$$

Verlinde Series

What do we know about the universal series?
Can take $r \geq 0$, thanks to the relations

$$
A_{-r}(z)=A_{r}(z), \quad B_{-r}(z)=B_{r}(z), \quad C_{-r}(z)=\frac{1}{C_{r}(z)}, \quad D_{-r}(z)=D_{r}(z)
$$

For $r=0,1$ we have general formulas due to Ellingsrud, Göttsche, and Lehn:

$$
\begin{array}{cc}
\chi\left(X^{[n]}, L_{n}\right)=\binom{\chi(X, L)+n-1}{n} & \chi\left(X^{[n]}, L_{n} \otimes E\right)=\binom{\chi(L)}{n} \\
\mathbf{V}_{X, L, 0}(z)=\left(\frac{1}{1-z}\right)^{\chi(L)} & \mathbf{v}_{X, L, 1}(z)=(1+z)^{\chi(L)}
\end{array}
$$

There are no such simple formulas for $r>1$.

Verlinde Series

What do we know about the universal series?

Verlinde Series

What do we know about the universal series?

Idea:

Compute $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ in special cases, and extract the universal series.

Verlinde Series

What do we know about the universal series?

Idea:

Compute $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ in special cases, and extract the universal series.
Theorem (Ellingsrud, Göttsche, Lehn ('99))
If X is a K3 surface, then for any L and r,

$$
\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\binom{\chi(L)-\left(r^{2}-1\right)(n-1)}{n}
$$

Verlinde Series

What do we know about the universal series?

Idea:

Compute $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ in special cases, and extract the universal series.
Theorem (Ellingsrud, Göttsche, Lehn ('99))
If X is a $K 3$ surface, then for any L and r,

$$
\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\binom{\chi(L)-\left(r^{2}-1\right)(n-1)}{n}
$$

For such X, L,

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{2} .
\end{aligned}
$$

Verlinde Series

What do we know about the universal series?

Idea:

Compute $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ in special cases, and extract the universal series.
Theorem (Ellingsrud, Göttsche, Lehn ('99))
If X is a K3 surface, then for any L and r,

$$
\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\binom{\chi(L)-\left(r^{2}-1\right)(n-1)}{n}
$$

For such X, L,

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{2} .
\end{aligned}
$$

This determines $A_{r}(z)$ and $B_{r}(z)$ for all r.

Verlinde Series

Corollary

$$
\begin{gathered}
A_{r}\left(t(1+t)^{r^{2}-1}\right)=1+t \\
B_{r}\left(t(1+t)^{r^{2}-1}\right)=\frac{(1+t)^{r^{2} / 2}}{\left(1+r^{2} t\right)^{1 / 2}}
\end{gathered}
$$

Verlinde Series

Corollary

$$
\begin{gathered}
A_{r}\left(t(1+t)^{r^{2}-1}\right)=1+t \\
B_{r}\left(t(1+t)^{r^{2}-1}\right)=\frac{(1+t)^{r^{2} / 2}}{\left(1+r^{2} t\right)^{1 / 2}}
\end{gathered}
$$

i.e. $A_{r}(z)$ and $B_{r}(z)$ are expressed in terms of the inverse power series to $z=t(1+t)^{r^{2}-1}$ near $t=0$:

$$
t=z-\left(r^{2}-1\right) z^{2}+\left(\frac{3}{2} r^{4}-\frac{5}{2} r^{2}+1\right) z^{3}+\cdots
$$

Verlinde Series

Corollary

$$
\begin{gathered}
A_{r}\left(t(1+t)^{r^{2}-1}\right)=1+t \\
B_{r}\left(t(1+t)^{r^{2}-1}\right)=\frac{(1+t)^{r^{2} / 2}}{\left(1+r^{2} t\right)^{1 / 2}}
\end{gathered}
$$

i.e. $A_{r}(z)$ and $B_{r}(z)$ are expressed in terms of the inverse power series to $z=t(1+t)^{r^{2}-1}$ near $t=0$:

$$
t=z-\left(r^{2}-1\right) z^{2}+\left(\frac{3}{2} r^{4}-\frac{5}{2} r^{2}+1\right) z^{3}+\cdots
$$

Key takeaway:

This determines the Verlinde series for all surfaces X with $K_{X}=0$.

Verlinde Series

Corollary

$$
\begin{gathered}
A_{r}\left(t(1+t)^{r^{2}-1}\right)=1+t \\
B_{r}\left(t(1+t)^{r^{2}-1}\right)=\frac{(1+t)^{r^{2} / 2}}{\left(1+r^{2} t\right)^{1 / 2}}
\end{gathered}
$$

i.e. $A_{r}(z)$ and $B_{r}(z)$ are expressed in terms of the inverse power series to $z=t(1+t)^{r^{2}-1}$ near $t=0$:

$$
t=z-\left(r^{2}-1\right) z^{2}+\left(\frac{3}{2} r^{4}-\frac{5}{2} r^{2}+1\right) z^{3}+\cdots
$$

Key takeaway:

This determines the Verlinde series for all surfaces X with $K_{X}=0$.

$$
\mathbf{v}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{x}-\frac{1}{2} K_{x}^{2}} \cdot D_{r}(z)^{K_{x}^{2}}
$$

Verlinde Series

Corollary

$$
\begin{gathered}
A_{r}\left(t(1+t)^{r^{2}-1}\right)=1+t \\
B_{r}\left(t(1+t)^{r^{2}-1}\right)=\frac{(1+t)^{r^{2} / 2}}{\left(1+r^{2} t\right)^{1 / 2}}
\end{gathered}
$$

i.e. $A_{r}(z)$ and $B_{r}(z)$ are expressed in terms of the inverse power series to $z=t(1+t)^{r^{2}-1}$ near $t=0$:

$$
t=z-\left(r^{2}-1\right) z^{2}+\left(\frac{3}{2} r^{4}-\frac{5}{2} r^{2}+1\right) z^{3}+\cdots
$$

Key takeaway:

This determines the Verlinde series for all surfaces X with $K_{X}=0$.

$$
\mathbf{v}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot \overline{C_{r}(z)^{C_{1}(L)} \cdot K^{-\frac{1}{2} K_{x}^{2}} \cdot \overline{D_{r}(z)^{K_{x}^{2}}}}
$$

Verlinde Series

The series C_{r} and D_{r} are more mysterious.

Verlinde Series

The series C_{r} and D_{r} are more mysterious.
It's enough to consider toric surface X, where χ 's can be computed equivariantly.

Verlinde Series

The series C_{r} and D_{r} are more mysterious.
It's enough to consider toric surface X, where χ 's can be computed equivariantly.

Göttsche and Mellit ('22) determined C_{r} and gave a conjectural formula for D_{r} (using identities of Macdonald polynomials).

Verlinde Series

The series C_{r} and D_{r} are more mysterious.
It's enough to consider toric surface X, where χ 's can be computed equivariantly.

Göttsche and Mellit ('22) determined C_{r} and gave a conjectural formula for D_{r} (using identities of Macdonald polynomials).
This determines Verlinde series for surfaces with $K_{X}^{2}=0$.

$$
\mathbf{V}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{x}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{x}-\frac{1}{2} K_{x}^{2}} \cdot D_{r}(z)^{K_{X}^{2}}
$$

Results Overview

Results Overview

2. Enumerative interpretation for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for X any Hirzebruch surface and $L_{n} \otimes E^{r}$ ample.

Results Overview

2. Enumerative interpretation for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for X any Hirzebruch surface and $L_{n} \otimes E^{r}$ ample.

$$
\Uparrow
$$

3. New formula for T-equivariant Euler characteristic of line bundles on $\left(\mathbb{C}^{2}\right)^{[n]}$ (analogue of area/bounce formula for higher q, t-Catalan numbers).

Results Overview

1. Explicit formula for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, any $L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r>0$.
2. Enumerative interpretation for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for X any Hirzebruch surface and $L_{n} \otimes E^{r}$ ample.
3. New formula for T-equivariant Euler characteristic of line bundles on $\left(\mathbb{C}^{2}\right)^{[n]}$ (analogue of area/bounce formula for higher q, t-Catalan numbers).

Results Overview

0 . Determine D_{r} for all r, and therefore Verlinde series for all X, L, r.

$$
\Uparrow
$$

1. Explicit formula for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, any
$L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r>0$.
\Uparrow
2. Enumerative interpretation for $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for X any Hirzebruch surface and $L_{n} \otimes E^{r}$ ample.

$$
\Uparrow
$$

3. New formula for T-equivariant Euler characteristic of line bundles on $\left(\mathbb{C}^{2}\right)^{[n]}$ (analogue of area/bounce formula for higher q, t-Catalan numbers).

Enumerative interpretation

For X toric, and L sufficiently ample,

- $\chi(X, L)=\#\left(P_{L} \cap \mathbb{Z}^{2}\right)$

Enumerative interpretation

For X toric, and L sufficiently ample,

- $\chi(X, L)=\#\left(P_{L} \cap \mathbb{Z}^{2}\right)$
- $\chi\left(X^{[n]}, L_{n}\right)=\#$ unordered n-tuples of integer points in P_{L}.

Enumerative interpretation

For X toric, and L sufficiently ample,

- $\chi(X, L)=\#\left(P_{L} \cap \mathbb{Z}^{2}\right)$
- $\chi\left(X^{[n]}, L_{n}\right)=\#$ unordered n-tuples of integer points in P_{L}.
- $\chi\left(X^{[n]}, L_{n} \otimes E\right)=\#$ unordered n-tuples of distinct integer points in P_{L}.

Enumerative interpretation

For X toric, and L sufficiently ample,

- $\chi(X, L)=\#\left(P_{L} \cap \mathbb{Z}^{2}\right)$
- $\chi\left(X^{[n]}, L_{n}\right)=\#$ unordered n-tuples of integer points in P_{L}.
- $\chi\left(X^{[n]}, L_{n} \otimes E\right)=\#$ unordered n-tuples of distinct integer points in P_{L}.
- What about $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for $r>1$?

Enumerative interpretation

For X toric, and L sufficiently ample,

- $\chi(X, L)=\#\left(P_{L} \cap \mathbb{Z}^{2}\right)$
- $\chi\left(X^{[n]}, L_{n}\right)=\#$ unordered n-tuples of integer points in P_{L}.
- $\chi\left(X^{[n]}, L_{n} \otimes E\right)=\#$ unordered n-tuples of distinct integer points in P_{L}.
- What about $\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ for $r>1$?
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right) \leftrightarrow \# \mathbf{r}$-separated n-tuples of integer points in P_{L}

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}
(example with $r=3$)

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$
3. $b_{j} \leq d_{2}-\sum_{k=j+1}^{n} \max \left\{r-\left(a_{k}-a_{j}\right), 0\right\}$
(example with $r=3$)

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$
3. $b_{j} \leq d_{2}-\sum_{k=j+1}^{n} \max \left\{r-\left(a_{k}-a_{j}\right), 0\right\}$
(example with $r=3$)

Enumerative interpretation for ample line bundles

$$
X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right), \text { and } r \geq 0
$$

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is \mathbf{r}-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$
3. $b_{j} \leq d_{2}-\sum_{k=j+1}^{n} \max \left\{r-\left(a_{k}-a_{j}\right), 0\right\}$
(example with $r=3$)

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$
3. $b_{j} \leq d_{2}-\sum_{k=j+1}^{n} \max \left\{r-\left(a_{k}-a_{j}\right), 0\right\}$
(example with $r=3$)

Enumerative interpretation for ample line bundles

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$, and $r \geq 0$.

P_{L}

What is the r-separation condition?
Label points $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ in nondecreasing lex order.

The n-tuple in P_{L} is r-separated if:

1. vertical distance between points in the same column is $\geq r$.
2. $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$
3. $b_{j} \leq d_{2}-\sum_{k=j+1}^{n} \max \left\{r-\left(a_{k}-a_{j}\right), 0\right\}$
(example with $r=3$)

Enumerative interpretation for ample line bundles

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

Enumerative interpretation for ample line bundles

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- The ample cone of $X^{[n]}$ is known: e.g. for $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right), L_{n} \otimes E^{r}$ is ample iff $r>0$ and $d_{1}, d_{2}>r(n-1)$.

Enumerative interpretation for ample line bundles

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- The ample cone of $X^{[n]}$ is known: e.g. for $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right), L_{n} \otimes E^{r}$ is ample iff $r>0$ and $d_{1}, d_{2}>r(n-1)$.
- The n-tuples index a basis of global sections of $L_{n} \otimes E^{r}$.

Enumerative interpretation for ample line bundles

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- The ample cone of $X^{[n]}$ is known: e.g. for $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right), L_{n} \otimes E^{r}$ is ample iff $r>0$ and $d_{1}, d_{2}>r(n-1)$.
- The n-tuples index a basis of global sections of $L_{n} \otimes E^{r}$.
- Same formula gives the T-equivariant refinement of Euler characteristic.

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?
For any toric X, have

$$
H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right) \hookrightarrow \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right] .
$$

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?
For any toric X, have

$$
H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right) \hookrightarrow \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right] .
$$

Choose $\mathbb{C}^{2} \simeq U_{\sigma} \subseteq X$ and pull back via
$\left(\mathbb{C}^{2}\right)^{n} \backslash\{$ large diagonal $\} \xrightarrow{n!\text { to } 1} U_{\sigma}^{[n]} \backslash\{$ reduced schemes $\} \subseteq X^{[n]}$.

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?
For any toric X, have

$$
H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right) \hookrightarrow \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]
$$

Choose $\mathbb{C}^{2} \simeq U_{\sigma} \subseteq X$ and pull back via

$$
\left(\mathbb{C}^{2}\right)^{n} \backslash\{\text { large diagonal }\} \xrightarrow{n!\text { to } 1} U_{\sigma}^{[n]} \backslash\{\text { reduced schemes }\} \subseteq X^{[n]} .
$$

A description of the corresponding polynomials is known for all toric X, line bundles L, and $r \in \mathbb{Z}$ (Haiman for case $X=\mathbb{C}^{2}, C$. for projective X).

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?
For any toric X, have

$$
H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right) \hookrightarrow \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]
$$

Choose $\mathbb{C}^{2} \simeq U_{\sigma} \subseteq X$ and pull back via

$$
\left(\mathbb{C}^{2}\right)^{n} \backslash\{\text { large diagonal }\} \xrightarrow{n!\text { to } 1} U_{\sigma}^{[n]} \backslash\{\text { reduced schemes }\} \subseteq X^{[n]}
$$

A description of the corresponding polynomials is known for all toric X, line bundles L, and $r \in \mathbb{Z}$ (Haiman for case $X=\mathbb{C}^{2}, C$. for projective X). Equip $\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]$ with lex term order, $x_{1}>\cdots>x_{n}>y_{1}>\cdots y_{n}$.

Enumerative interpretation for ample line bundles

Where do the n-tuples come from?
For any toric X, have

$$
H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right) \hookrightarrow \mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]
$$

Choose $\mathbb{C}^{2} \simeq U_{\sigma} \subseteq X$ and pull back via

$$
\left(\mathbb{C}^{2}\right)^{n} \backslash\{\text { large diagonal }\} \xrightarrow{n!\text { to } 1} U_{\sigma}^{[n]} \backslash\{\text { reduced schemes }\} \subseteq X^{[n]}
$$

A description of the corresponding polynomials is known for all toric X, line bundles L, and $r \in \mathbb{Z}$ (Haiman for case $X=\mathbb{C}^{2}, C$. for projective X). Equip $\mathbb{C}\left[x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right]$ with lex term order, $x_{1}>\cdots>x_{n}>y_{1}>\cdots y_{n}$.

Corollary

For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$, there is a section $s \in H^{0}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{a_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ is an r-separated n-tuple in P_{L}.

Proof Outline

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

Proof Outline

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- $\left(\mathbb{C}^{*}\right)^{2} \simeq T$-action on X induces T-action on $X^{[n]}$, so we have a refined invariant

$$
\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\sum_{i=0}^{2 n}(-1)^{i} \sum_{(a, b) \in \mathbb{Z}^{2}} t^{a} q^{b} \cdot \operatorname{dim}_{\mathbb{C}} H^{i}\left(X^{[n]}, L_{n} \otimes E^{r}\right)_{(a, b)} .
$$

Proof Outline

Theorem (C. ('24))
For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- $\left(\mathbb{C}^{*}\right)^{2} \simeq T$-action on X induces T-action on $X^{[n]}$, so we have a refined invariant

$$
\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\sum_{i=0}^{2 n}(-1)^{i} \sum_{(a, b) \in \mathbb{Z}^{2}} t^{a} q^{b} \cdot \operatorname{dim}_{\mathbb{C}} H^{i}\left(X^{[n]}, L_{n} \otimes E^{r}\right)_{(a, b)} .
$$

- $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ can be computed by localization,

Proof Outline

Theorem (C. ('24))

For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ or any Hirzebruch surface and any ample line bundle $L_{n} \otimes E^{r}$ on $X^{[n]}$,
$\chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\# r$-separated n-tuples of integer points in P_{L}.

- $\left(\mathbb{C}^{*}\right)^{2} \simeq T$-action on X induces T-action on $X^{[n]}$, so we have a refined invariant

$$
\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)=\sum_{i=0}^{2 n}(-1)^{i} \sum_{(a, b) \in \mathbb{Z}^{2}} t^{a} q^{b} \cdot \operatorname{dim}_{\mathbb{C}} H^{i}\left(X^{[n]}, L_{n} \otimes E^{r}\right)_{(a, b)} .
$$

- $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ can be computed by localization, or expressed in terms of $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)+$ combinatorics of P_{L}.

Proof Outline

New formula for $\chi^{\top}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:
Theorem (C. '23)
For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:
Theorem (C. '23)
For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.
$P_{n} \subseteq \mathbb{R}^{2 n}$ is the convex hull of the set of nonnegative integer n-tuples $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{n}, b_{n}\right)$ in lex order.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Theorem (C. '23)

For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.
$P_{n} \subseteq \mathbb{R}^{2 n}$ is the convex hull of the set of nonnegative integer n-tuples $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{n}, b_{n}\right)$ in lex order.
$\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$ iff

- $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Theorem (C. '23)

For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.
$P_{n} \subseteq \mathbb{R}^{2 n}$ is the convex hull of the set of nonnegative integer n-tuples $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{n}, b_{n}\right)$ in lex order.
$\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$ iff

- $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- if $a_{j}=a_{j+1}$ then $b_{j+1} \geq b_{j}+r$, and

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Theorem (C. '23)

For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.
$P_{n} \subseteq \mathbb{R}^{2 n}$ is the convex hull of the set of nonnegative integer n-tuples $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{n}, b_{n}\right)$ in lex order.
$\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$ iff

- $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- if $a_{j}=a_{j+1}$ then $b_{j+1} \geq b_{j}+r$, and
- $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Theorem (C. '23)

For $r>0$, there exists a polynomial $f \in H^{0}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ with trailing term $x_{1}^{a_{1}} y_{1}^{b_{1}} \cdots x_{n}^{a_{n}} y_{n}^{b_{n}}$ iff $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$.
$P_{n} \subseteq \mathbb{R}^{2 n}$ is the convex hull of the set of nonnegative integer n-tuples $\left(a_{1}, b_{1}\right)<\cdots<\left(a_{n}, b_{n}\right)$ in lex order.
$\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right) \in r \cdot P_{n}$ iff

- $0 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- if $a_{j}=a_{j+1}$ then $b_{j+1} \geq b_{j}+r$, and
- $b_{j} \geq \sum_{i=1}^{j-1} \max \left\{r-\left(a_{j}-a_{i}\right), 0\right\}$.

Proof of this result is direct.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

- For any toric X, can express $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ as a sum of these generating functions of integer points in polyhedra.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

- For any toric X, can express $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ as a sum of these generating functions of integer points in polyhedra.
- Manipulate generating functions to write the expression in a closed form.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

- For any toric X, can express $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ as a sum of these generating functions of integer points in polyhedra.
- Manipulate generating functions to write the expression in a closed form. Powerful tool: Brion's formula.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

- For any toric X, can express $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ as a sum of these generating functions of integer points in polyhedra.
- Manipulate generating functions to write the expression in a closed form. Powerful tool: Brion's formula.

Proof Outline

New formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$:

Corollary

For $r>0$,

$$
\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)=\sum_{\left(a_{1}, \ldots, b_{n}\right) \in r P_{n} \cap \mathbb{Z}^{2 n}} t^{a_{1}+\cdots+a_{n}} q^{b_{1}+\cdots+b_{n}}
$$

- For any toric X, can express $\chi^{T}\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ as a sum of these generating functions of integer points in polyhedra.
- Manipulate generating functions to write the expression in a closed form. Powerful tool: Brion's formula.

This is an "area/bounce" formula for $\chi^{T}\left(\left(\mathbb{C}^{2}\right)^{[n]}, E^{r}\right)$ (picture at the end).

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Can we count the number of r-separated n-tuples in P_{L} ?

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Can we count the number of r-separated n-tuples in P_{L} ?
Fix $\delta_{i}:=a_{i+1}-a_{i}$ as $0,1, \ldots, r-1$, or $\geq r$ and count the number of such n-tuples. For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, each is the set of integer points in a product of simplices.

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Can we count the number of r-separated n-tuples in P_{L} ?
Fix $\delta_{i}:=a_{i+1}-a_{i}$ as $0,1, \ldots, r-1$, or $\geq r$ and count the number of such n-tuples. For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, each is the set of integer points in a product of simplices.

Corollary

For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0, \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ is equal to

$$
\sum_{\delta \in\{0,1, \ldots, r\}^{n-1}}\binom{d_{1}-|\delta|+\ell(\delta)}{\ell(\delta)} \prod_{k=1}^{c(\delta)}\binom{d_{2}-w_{k}(\delta)+r+n_{k}(\delta)}{n_{k}(\delta)}
$$

(see preprint for precise definitions of statistics)

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Can we count the number of r-separated n-tuples in P_{L} ?
Fix $\delta_{i}:=a_{i+1}-a_{i}$ as $0,1, \ldots, r-1$, or $\geq r$ and count the number of such n-tuples. For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, each is the set of integer points in a product of simplices.

Corollary

For $X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0, \chi\left(X^{[n]}, L_{n} \otimes E^{r}\right)$ is equal to

$$
\sum_{\delta \in\{0,1, \ldots, r\}^{n-1}}\binom{d_{1}-|\delta|+\ell(\delta)}{\ell(\delta)} \prod_{k=1}^{c(\delta)}\binom{d_{2}-w_{k}(\delta)+r+n_{k}(\delta)}{n_{k}(\delta)}
$$

For $d_{1}, d_{2} \gg n, r$, \#choices of a-coordinates
\#choices of b-coordinates in k th nonempty column
(see preprint for precise definitions of statistics)

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

i.e., this is a formula for Verlinde series coefficients for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, any $L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0$.

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

i.e., this is a formula for Verlinde series coefficients for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, any
$L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

i.e., this is a formula for Verlinde series coefficients for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, any $L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

For $L=\mathcal{O}\left(d_{1}, d_{2}\right)$, the previous formula for the z^{2}-coefficient is

$$
\begin{aligned}
& \left(d_{1}+1\right)\binom{d_{2}-3}{2}+d_{1}\left(d_{2}-3\right)^{2}+\left(d_{1}-1\right)\left(d_{2}-2\right)^{2}+ \\
& \quad\left(d_{1}-2\right)\left(d_{2}-1\right)^{2}+\left(d_{1}-3\right) d_{2}^{2}+\binom{d_{1}-3}{2}\left(d_{2}+1\right)^{2}
\end{aligned}
$$

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

i.e., this is a formula for Verlinde series coefficients for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, any $L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

For $L=\mathcal{O}\left(d_{1}, d_{2}\right)$, the previous formula for the z^{2}-coefficient is

$$
\begin{aligned}
& \left(d_{1}+1\right)\binom{d_{2}-3}{2}+d_{1}\left(d_{2}-3\right)^{2}+\left(d_{1}-1\right)\left(d_{2}-2\right)^{2}+ \\
& \quad\left(d_{1}-2\right)\left(d_{2}-1\right)^{2}+\left(d_{1}-3\right) d_{2}^{2}+\binom{d_{1}-3}{2}\left(d_{2}+1\right)^{2} \\
& =6+\frac{33}{2}\left(d_{1}+d_{2}\right)+\frac{1}{2}\left(d_{1}^{2}+d_{2}^{2}\right)-\frac{45}{2} d_{1} d_{2}+\left(d_{1}^{2} d_{2}+d_{1} d_{2}^{2}\right)+\frac{1}{2} d_{1}^{2} d_{2}^{2}
\end{aligned}
$$

Explicit Formula for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

i.e., this is a formula for Verlinde series coefficients for $\mathbb{P}^{1} \times \mathbb{P}^{1}$, any $L=\mathcal{O}\left(d_{1}, d_{2}\right)$ and $r>0$.

Example

$X=\mathbb{P}^{1} \times \mathbb{P}^{1}, L=\mathcal{O}(1,2), r=5$,

$$
\mathbf{V}_{X, L, r}(z)=1+6 z+21 z^{2}-1074 z^{3}+4896 z^{4}+\cdots
$$

For $L=\mathcal{O}\left(d_{1}, d_{2}\right)$, the previous formula for the z^{2}-coefficient is

$$
\begin{aligned}
& \left(d_{1}+1\right)\binom{d_{2}-3}{2}+d_{1}\left(d_{2}-3\right)^{2}+\left(d_{1}-1\right)\left(d_{2}-2\right)^{2}+ \\
& \quad\left(d_{1}-2\right)\left(d_{2}-1\right)^{2}+\left(d_{1}-3\right) d_{2}^{2}+\binom{d_{1}-3}{2}\left(d_{2}+1\right)^{2} \\
& =6+\frac{33}{2}\left(d_{1}+d_{2}\right)+\frac{1}{2}\left(d_{1}^{2}+d_{2}^{2}\right)-\frac{45}{2} d_{1} d_{2}+\left(d_{1}^{2} d_{2}+d_{1} d_{2}^{2}\right)+\frac{1}{2} d_{1}^{2} d_{2}^{2} \\
& = \\
& \left.21 \text { (when } d_{1}=1 \text { and } d_{2}=2\right) .
\end{aligned}
$$

Universal Series

Take $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right)$.
We now have, for each $r>0$, a formula of the following form:

Universal Series

Take $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right)$.
We now have, for each $r>0$, a formula of the following form:

$$
\mathbf{V}_{X, L, r}(z)=A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}}
$$

Universal Series

Take $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right)$.
We now have, for each $r>0$, a formula of the following form:

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{r}(z)^{\left(d_{1}+1\right)\left(d_{2}+1\right)} \cdot B_{r}(z) \cdot C_{r}(z)^{-2 d_{1}-2 d_{2}-4} \cdot D_{r}(z)^{8}
\end{aligned}
$$

Universal Series

Take $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right)$.
We now have, for each $r>0$, a formula of the following form:

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{r}(z)^{\left(d_{1}+1\right)\left(d_{2}+1\right)} \cdot B_{r}(z) \cdot C_{r}(z)^{-2 d_{1}-2 d_{2}-4} \cdot D_{r}(z)^{8} \\
& =1+\sum_{n \geq 1} z^{n} \sum_{\delta \in\{0, \ldots, r\}^{n-1}}\binom{d_{1}+\cdots}{\cdots} \prod_{\ldots}\binom{d_{2}+\cdots}{\cdots} .
\end{aligned}
$$

Universal Series

Take $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and $L=\mathcal{O}\left(d_{1}, d_{2}\right)$.
We now have, for each $r>0$, a formula of the following form:

$$
\begin{aligned}
\mathbf{V}_{X, L, r}(z) & =A_{r}(z)^{\chi(L)} \cdot B_{r}(z)^{\chi\left(\mathcal{O}_{X}\right)} \cdot C_{r}(z)^{c_{1}(L) \cdot K_{X}-\frac{1}{2} K_{X}^{2}} \cdot D_{r}(z)^{K_{X}^{2}} \\
& =A_{r}(z)^{\left(d_{1}+1\right)\left(d_{2}+1\right)} \cdot B_{r}(z) \cdot C_{r}(z)^{-2 d_{1}-2 d_{2}-4} \cdot D_{r}(z)^{8} \\
& =1+\sum_{n \geq 1} z^{n} \sum_{\delta \in\{0, \ldots, r\}^{n-1}}\binom{d_{1}+\cdots}{\cdots} \prod_{\ldots}\binom{d_{2}+\cdots}{\cdots} .
\end{aligned}
$$

This formula determines D_{r}, and therefore the Verlinde series for all X, L, r. e.g. take $d_{1}=d_{2}=-1$ to get $B_{r}(z) \cdot D_{r}(z)^{8}$, solve for $D_{r}(z)$.

Further Problems/Questions

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit.

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit. Are these series algebraic?

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit. Are these series algebraic?
- Use Segre-Verlinde correspondence to give formulas for Segre series.

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit. Are these series algebraic?
- Use Segre-Verlinde correspondence to give formulas for Segre series.
- What about more general Quot schemes?

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit. Are these series algebraic?
- Use Segre-Verlinde correspondence to give formulas for Segre series.
- What about more general Quot schemes?
- Direct proof of polynomial/term order interpretation? Sections of non-ample line bundles?

Further Problems/Questions

- Extract closed formulas for the universal series and/or show compatibility with those given by Göttsche and Mellit. Are these series algebraic?
- Use Segre-Verlinde correspondence to give formulas for Segre series.
- What about more general Quot schemes?
- Direct proof of polynomial/term order interpretation? Sections of non-ample line bundles?
- Direct proof of symmetries?

Thank you!

For each $\delta \in\{0,1, \ldots, r\}^{n-1}$ there is a "minimal" such choice of r-separated points and an r-bounce path. The sum of horizontal positions of points is the bounce statistic of the path, and the sum of the vertical positions is the area.

For each $\delta \in\{0,1, \ldots, r\}^{n-1}$ there is a "minimal" such choice of r-separated points and an r-bounce path. The sum of horizontal positions of points is the bounce statistic of the path, and the sum of the vertical positions is the area.
E.g. $r=3, \delta=(0,1,0,1,3,1)$

For each $\delta \in\{0,1, \ldots, r\}^{n-1}$ there is a "minimal" such choice of r-separated points and an r-bounce path. The sum of horizontal positions of points is the bounce statistic of the path, and the sum of the vertical positions is the area.
E.g. $r=3, \delta=(0,1,0,1,3,1)$

For each $\delta \in\{0,1, \ldots, r\}^{n-1}$ there is a "minimal" such choice of r-separated points and an r-bounce path. The sum of horizontal positions of points is the bounce statistic of the path, and the sum of the vertical positions is the area.
E.g. $r=3, \delta=(0,1,0,1,3,1)$

