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Verlinde series are generating functions of Euler characteristics of line
bundles on the Hilbert schemes of points on a surface.

1. Background on Hilbert schemes and Verlinde series
2. New combinatorial formulas for Verlinde series

Please ask questions!
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Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X
(defined over C) is

Il _ 0-dimensional closed subschemes Z C X
~ | such that length(Z) := }_ dimc(Ozp) =nf -
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Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X
(defined over C) is

such that length(Z) := >~ dimc(Oz,,) = n
Such Z C X are either:

{O—dimensional closed subschemes Z C X }
xInl — .
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Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X
(defined over C) is

Il _ 0-dimensional closed subschemes Z C X
~ | such that length(Z) := }_ dimc(Ozp) =nf -

Such Z C X are either:

1. reduced, supported at n points
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Background

The Hilbert scheme of n points on a smooth (quasi-)projective surface X
(defined over C) is

such that length(Z) := >~ dimc(Oz,,) = n
Such Z C X are either:

{O—dimensional closed subschemes Z C X }
xInl — .

. 2. not reduced, supported at < n
1. reduced, supported at n points . . pported & .<
points with some multiplicities
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Background

We are looking at a smooth (quasi-)projective surface X because then...
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Theorem (Fogarty ('68))

X[ is a smooth (quasi- )projective variety of dimension 2n.
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We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

X[ is a smooth (quasi- )projective variety of dimension 2n.

The set of all reduced schemes is
a dense open subset in X[,

The set of all nonreduced schemes is
an irreducible divisor in X[
(when n > 2).
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Background

We are looking at a smooth (quasi-)projective surface X because then...

Theorem (Fogarty ('68))

X[ is a smooth (quasi- )projective variety of dimension 2n.

The set of all reduced schemes is
a dense open subset in X[,

The set of all nonreduced schemes is
an irreducible divisor in X[
(when n > 2).

All of this fails dramatically if dim(X) > 2.
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Background

There is an embedding Pic(X) < Pic(X["), denoted L ~ L,
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Background

There is an embedding Pic(X) — Pic(X["), denoted L — L,, extending

O(C) for an irreducible curve ) where D C X[ is the
ccX Iocus of schemes Z whose
support meets C.
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Background

There is an embedding Pic(X) — Pic(X["), denoted L — L,, extending

O(C) for an irreducible curve ) where D C X[ is the
cCcXx Iocus of schemes Z whose
support meets C.

Theorem (Fogarty ('73))
Forn > 2, Pic(X!") ~ Pic(X), x ZE }

where ¢;(E) is —1/2 times the divisor of nonreduced schemes.
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,

VX,L,r(Z ZZ X[n 5 n & Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,

VX,L,r(Z ZZ X[n 5 n & Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.

dimY

= > (-1)/dimc H'(Y,.2)
i=0
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,

VX,L,r(Z ZZ X[n 5 n & Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.

Example
X =P xP! L=0(1,2), r=5,
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,

VX’L’,(Z ZZ X[n 5 n ® Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.

Example
X =P xP! L=0(1,2), r=5,

Vx ((2) =1+ 6z+212% — 107423 + 48962z* + - - -
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Hilbert schemes of points on a surface,

VX’L’,(Z ZZ X[n 5 n ® Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.

Example
X =P xP! L=0(1,2), r=5,

Vx,(2) =1+6z+212% — 107423 + 48962z* + - - -
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Verlinde Series

...are generating functions of Euler characteristics of line bundles on the
Hilbert schemes of points on a surface,

VX,L,r(Z ZZ X[n, n®Er),

depending on a smooth projective surface X, L € Pic(X), and r € Z.

Example
X =P xP! L=0(1,2), r=5,

Vx 1,(2) =1+6z+212% — 107423 + 48962z* + - - -

x(P! x PL,0(1,2)) v x((P! x P14, O(1,2)4 ® ES)
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Verlinde Series

Why Verlinde series?
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Verlinde Series

Why Verlinde series?

@ The numbers (X" L, ® E") are fundamental invariants of X"
encoding information, in particular, about embeddings X"} — PM.
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Verlinde Series

Why Verlinde series?

@ The numbers (X" L, ® E") are fundamental invariants of X"
encoding information, in particular, about embeddings X"} — PM.

@ The Segre-Verlinde correspondence:
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Verlinde Series

Why Verlinde series?

@ The numbers (X" L, ® E") are fundamental invariants of X"
encoding information, in particular, about embeddings X"} — PM.

@ The Segre-Verlinde correspondence:
rank s vector bundle V on X — rank ns vector bundle VI on X[

Sx.v(w) = / (Vi)
XIn]

n>0
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Verlinde Series

Why Verlinde series?

o The numbers (X" L, ® E") are fundamental invariants of X"
encoding information, in particular, about embeddings X"} — PM.

@ The Segre-Verlinde correspondence:
rank s vector bundle V on X — rank ns vector bundle V[l on X[,

Sx,v(w)=> w" /X[n] s(vIih

n>0

Segre and Verlinde series are related by a change of variables (J,
MOP, GM).
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Verlinde Series

Vx1(z) = Zz x(X" L, @ EN,

The coefficients depend “polynomially” on L and r, but there are relations
among these series as X varies
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The coefficients depend “polynomially” on L and r, but there are relations
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Verlinde Series

Vx1(z) = Zz x(X" L, @ EN,

The coefficients depend “polynomially” on L and r, but there are relations
among these series as X varies (!!!)

Theorem (Ellingsrud, Gottsche, Lehn ('99))

There exist universal power series A;, B;, Cr, D, € Q[z]] for each r € Z
such that

Vx.1.,(2) = A (z)XE) . B, (z)X(Ox). Cr(z)cl(L)Kx—%Ki -Dy(z )K2

for all X and L.
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Verlinde Series

Example

X=P'xP!, L=0(1,2), r=5,
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Verlinde Series

Example

X=P'xP!, L=0(1,2), r=5,

As(z) =1+ 2z — 242> +8762° 4 - -
Bs(z) = 1+ 15022 — 980023 + - - -
Cs(z) =1 — 2022 + 125123 + -
Ds(z) = 1 — 2522 4 3945/22% + -
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Verlinde Series

Example

X=P'xP!, L=0(1,2), r=5,

As(z) =1+ 2z — 242> +8762° 4 - -
Bs(z) = 1+ 150z% — 98002° + - - -
Cs(z) =1 — 2022 + 125123 + -
Ds(z) = 1 — 2522 +3945/227° + -

Vi L.(2) = A2 - B2 - C ()1 D 2Kk D (2)/
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Verlinde Series

Example

X=P'xP!, L=0(1,2), r=5,

As(z) =1+ 2z — 242> +8762° 4 - -
Bs(z) = 1+ 150z% — 98002° + - - -
Cs(z) =1—2022 + 125123 + - -
Ds(z) =1 — 2522 +3945/22% 4 ...

Vi L(2) = A2 - B(2)OX) - C ()1 Ho2 K% D (2)/
= As(2)° - Bs(2) - Cs(2)7° - Ds(2)°
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Verlinde Series

Example

X=P'xP!, L=0(1,2), r=5,

As(z) =1+ 2z — 242> +8762° 4 - -
Bs(z) = 1+ 150z% — 98002° + - - -
Cs(z) =1—2022 + 125123 + - -
Ds(z) =1 — 2522 +3945/22% 4 ...

V.o (2) = A(2)D) - B (2)X(O9 - € ()2 #5245 D (2)/%
= As(2)° - Bs(2) - Gs(2) 1% - Ds(2)®
=1+46z+2122 —10742° + - .. 7
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Verlinde Series

What do we know about the universal series?
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Verlinde Series

What do we know about the universal series?

Can take r > 0, thanks to the relations

A-r(2) = A(2), B-(2) = Bi(2), C-i(2) = C,tz)’

lan Cavey (University of lllinois UC) Verlinde Series on Hirzebruch Surfaces

D_.(z) = D,(2).

May 13, 2024

10/27



Verlinde Series

What do we know about the universal series?

Can take r > 0, thanks to the relations
1
A_(2) = A(2), B_,(2) =B(2), C_/(z) = ——, D_.(z) = D,(2).
C(z)

For r = 0,1 we have general formulas due to Ellingsrud, Gottsche, and
Lehn:
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Verlinde Series

What do we know about the universal series?

Can take r > 0, thanks to the relations
1
A_(2) = A(2), B_,(2) =B(2), C_/(z) = ——, D_.(z) = D,(2).
C(z)

For r = 0,1 we have general formulas due to Ellingsrud, Gottsche, and
Lehn:

(XU L) = (x(x, L)+n— 1) WXL, s E) = <x(L))

n n
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Verlinde Series

What do we know about the universal series?

Can take r > 0, thanks to the relations
1
A_(2) = A(2), B_,(2) =B(2), C_/(z) = ——, D_.(z) = D,(2).
C(z)

For r = 0,1 we have general formulas due to Ellingsrud, Gottsche, and
Lehn:

(XU L) = (x(x, L)+n— 1) WXL, s E) = <x(L))

n n

1 x(L) L
VX,L,O(Z) = <1 — z) VX,[_yl(Z) = (1 + Z)X( ).
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Verlinde Series

What do we know about the universal series?

Can take r > 0, thanks to the relations
1
A_(z) = A(z), B_(2) =B/(z), C_/(2)= C@) D_,(z) = D,(z).

For r = 0,1 we have general formulas due to Ellingsrud, Gottsche, and
Lehn:

(XU L) = (x(x, L)+n— 1) WXL, s E) = <X(L))

n n

1 x(L) N
VX,L,O(Z) = 11— 2 vX,L,l(Z) = (]_ -+ Z) .

There are no such simple formulas for r > 1.
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Verlinde Series

What do we know about the universal series?
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Verlinde Series

What do we know about the universal series?
Idea:

Compute x (X", L, ® E") in special cases, and extract the universal series.
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Verlinde Series

What do we know about the universal series?

Idea:

Compute x(X[", L, ® E") in special cases, and extract the universal series

Theorem (Ellingsrud, Gottsche, Lehn ('99))
If X is a K3 surface, then for any L and r,

X, 1,0 £7) (X0 (2= 1)(n— )

n
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Verlinde Series
What do we know about the universal series?
Idea:

Compute x (X", L, ® E") in special cases, and extract the universal series.

Theorem (Ellingsrud, Gottsche, Lehn ('99))
If X is a K3 surface, then for any L and r,

X, 1,0 £7) (X0 (2= 1)(n— )

n

For such X, L,

V.1 (2) = A2 - B (2)X(O%) . C,(2)a (D Kx=3K% . D, (2)
= A (z)XD) . B,(2)2.
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Verlinde Series
What do we know about the universal series?
Idea:

Compute x (X", L, ® E") in special cases, and extract the universal series.

Theorem (Ellingsrud, Gottsche, Lehn ('99))
If X is a K3 surface, then for any L and r,

X, 1,0 £7) (X0 (2= 1)(n— )

n

For such X, L,
V.1 (2) = A2 - B (2)X(O%) . C,(2)a (D Kx=3K% . D, (2)
= A (z)XD) . B,(2)2.
This determines A,(z) and B,(z) for all r.
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Verlinde Series

Corollary

A1+ )" =1+t

B.(t(1+1t)" ") =

@+

(1 o r2t)1/2
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Verlinde Series

Corollary
Atl+ )" =1+t

(1+1)7/?

B (t(1+ )" 1) = 1307

i.e. A(z) and B,(z) are expressed in terms of the inverse power series to
2
z=t(1+1t)" ! near t =0:

t:z—(r2—1)22+(gr4—gr2—|—1)z3+---
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Verlinde Series

Corollary
Atl+ )" =1+t

(1+1t)7°/2

B (t(1+ )" 1) = 1307

i.e. A(z) and B,(z) are expressed in terms of the inverse power series to
2
z=t(1+1t)" ! near t =0:

t:z—(r2—1)22+(gr4—gr2—|—1>z3+---

Key takeaway:
This determines the Verlinde series for all surfaces X with Kx = 0.
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Verlinde Series

Corollary
A(tl+6)" =1+t

(14 1)~/

B (t(14t)" 1) = T

i.e. A(z) and B,(z) are expressed in terms of the inverse power series to
2
z=1t(1+t)" ! near t = 0:

3 5
t:z—(r2—1)22—|—<2r4—2r2+1>z3+~~

Key takeaway:
This determines the Verlinde series for all surfaces X with Kx = 0.

Vx1.(2) = A(2)XD) . B (2)X(©Ox). C,(2)a(D-Kx=2K% . D, (7)K%
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Verlinde Series
Corollary
AL+t =1+t

(14 1)"/2

B(t(1+ ") = T g

i.e. A(z) and B,(z) are expressed in terms of the inverse power series to
z=1t(1+1t)""1 near t = 0:
3 5
t=z—(r*-1)2%+ <2r4—2r2+1>z3+---

Key takeaway:
This determines the Verlinde series for all surfaces X with Kx = 0.

V., (2) = Ap(2)XD) . B, (2)X(Ox) M
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Verlinde Series

The series C, and D, are more mysterious.
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Verlinde Series

The series C, and D, are more mysterious.

It’s enough to consider toric surface X, where x's can be computed
equivariantly.
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Verlinde Series

The series C, and D, are more mysterious.

It’s enough to consider toric surface X, where x's can be computed
equivariantly.

Gottsche and Mellit ('22) determined C, and gave a conjectural formula
for D, (using identities of Macdonald polynomials).
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Verlinde Series

The series C, and D, are more mysterious.

It's enough to consider toric surface X, where x's can be computed
equivariantly.

Gottsche and Mellit ('22) determined C, and gave a conjectural formula
for D, (using identities of Macdonald polynomials).

This determines Verlinde series for surfaces with K2 = 0.

Vx1.(2) = A(2)XD) . B (2)X(©x).. Co(2)2(D-Kx =2 K% . Doyt
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Results Overview

2. Enumerative interpretation for X(X["], L, ® E") for X any Hirzebruch
surface and L, ® E" ample.
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Results Overview

2. Enumerative interpretation for X(X["], L, ® E") for X any Hirzebruch
surface and L, ® E" ample.

T

3. New formula for T-equivariant Euler characteristic of line bundles on
(C?)[" (analogue of area/bounce formula for higher g, t-Catalan numbers).
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Results Overview

1. Explicit formula for x(X[", L, ® E") for X = P! x P!, any
L = O(dy,d2), and r > 0.

)

2. Enumerative interpretation for x(X!", L, ® E") for X any Hirzebruch
surface and L, ® E" ample.

T

3. New formula for T-equivariant Euler characteristic of line bundles on
(C?)[" (analogue of area/bounce formula for higher g, t-Catalan numbers).
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Results Overview

0. Determine D, for all r, and therefore Verlinde series for all X, L, r.

i)
1. Explicit formula for x(X[", L, ® E") for X = P! x P!, any
L = O(dy,d2), and r > 0.

i)

2. Enumerative interpretation for x(X!", L, ® E") for X any Hirzebruch
surface and L, ® E" ample.

T

3. New formula for T-equivariant Euler characteristic of line bundles on
(C?)[" (analogue of area/bounce formula for higher g, t-Catalan numbers).
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Enumerative interpretation

For X toric, and L sufficiently ample,

o x(X,L)=#(PL.NZ?)

P
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Enumerative interpretation

For X toric, and L sufficiently ample,

o X(X,L) =#(PL.NZ?)
o x(X!" L) = # unordered n-tuples of integer
points in P;.

P
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Enumerative interpretation

For X toric, and L sufficiently ample,

o X(X,L) =#(PL.NZ?)

o x(X!" L) = # unordered n-tuples of integer
points in P;.

o x(XI" L, ® E) = # unordered n-tuples of
distinct integer points in P;.

P
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Enumerative interpretation

For X toric, and L sufficiently ample,

P

lan Cavey (University of lllinois UC)

o X(X,L)=#(P.NZ?)

o x(X!" L) = # unordered n-tuples of integer
points in P;.

o x(XI" L, ® E) = # unordered n-tuples of
distinct integer points in P;.

o What about x(XI", L, ® E") for r > 17
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Enumerative interpretation

For X toric, and L sufficiently ample,

o X(X,L)=#(P.NZ?)

o x(X!" L) = # unordered n-tuples of integer
points in P;.

o x(XI" L, ® E) = # unordered n-tuples of
distinct integer points in P;.

o What about x(XI", L, ® E") for r > 17

P

X(X[”], L, ® E") +» #r-separated n-tuples of integer points in P,
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Enumerative interpretation for ample line bundles
X =Pl x P!, L =O(dy,ds), and r > 0.

d> ) What is the r-separation condition?
O O @ O ©°
O O O O 0O @
O 0O O @ ©°
® @ 0 0 0O ©
O O O O 0O @
® 0 0 O O ©°
O O @ O O
O @ O O O @
I O 0O O O O
0%
0 d
PL

(example with r = 3)
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Enumerative interpretation for ample line bundles
X =Pl x P!, L =O(dy,ds), and r > 0.

d> ) What is the r-separation condition?
O O @ O ©°
0000 0 @ Label points (a1, b1), ..., (an, by) in non-
00 o0 @ o decreasing lex order.
® @ 0 0 0O ©
O O O O 0O @
® 0 0 O O ©°
O O @ O O
O @ O O O @
I O 0O O O O
0-%
0 d1
PL
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o 0o o o o @11 Label points (a1, b1), ..., (an, by) in non-
0o 0 08@ o decreasing lex order.
34 o o o o
o o o o o @10
2@ 0 O O O O
o 0H@® O O
oh® o o o @9
1I O 0 0O O O
0-¢
0 di
PL

(example with r = 3)
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o o o o o @11 Label points (a1, b1), ..., (an, by) in non-
0 0o 0o8@ O decreasing lex order.
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o 0o o o 19  Thentuplein P is r-separated if:
2@ 0 0O O O ©
o 0H@® O O
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o 0o o o o @11 Label points (a1, b1), ..., (an, by) in non-
3@ 0 0 08@ O decreasing lex order.
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o 0o o o o @11 Label points (a1, b1), ..., (an, by) in non-
3@ 0 0 08@ O decreasing lex order.
4@ O O O O
o 0o o o 19  Thentuplein P is r-separated if:
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o 0o o o o @11 Label points (a1, b1), ..., (an, by) in non-
3@ 0 0 08@ O decreasing lex order.
4@ O O O O
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
O O7@®@ O O
o o o o o @l1 Label points (a1, b1), .., (an, bp) in non-
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oh@® o o o @9 same column is > r.
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d> ) What is the r-separation condition?
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Enumerative interpretation for ample line bundles
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X=P'xP! = O(d1,dz), and r > 0.
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o 0o o o o @11 Label points (a1, b1), ..., (an, by) in non-
3@ 0 0 08@ O decreasing lex order.
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o o o o o @9 same column is > r.
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d2 %
O O7@®@ O O
o o o o o @l1
3@ o o 08@ O
4@ O O O O
ohe o o o @10
2@ 0 O O O O
o 0H@® O O
o o o o o @9
1 O 0 0O O O
n!
0 d1
PL

(example with r = 3)

lan Cavey (University of lllinois UC)

What is the r-separation condition?

Label points (a1, b1), ..., (an, by) in non-
decreasing lex order.

The n-tuple in P, is r-separated if:

1. vertical distance between points in the
same column is > r.

j—1
2. by > Y7  max{r — (a; — a;),0}

3.b; < do—3 7y iy max{r—(ax—a;),0}
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.
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What is the r-separation condition?

Label points (a1, b1), ..., (an, by) in non-
decreasing lex order.

The n-tuple in P, is r-separated if:

1. vertical distance between points in the
same column is > r.

j—1
2. by > Y7  max{r — (a; — a;),0}

3.b; < do—3 7y iy max{r—(ax—a;),0}
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.

d pis O
O O7/® O o©
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3@ o o o8@ o
4@ O O O O
ohe o o o @10
2@ 0 O O O O
o 0H@® O O
o o o o o @9
1 O 0 0O O O
o
0 d1
PL

(example with r = 3)
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What is the r-separation condition?

Label points (a1, b1), ..., (an, by) in non-
decreasing lex order.

The n-tuple in P, is r-separated if:

1. vertical distance between points in the
same column is > r.

j—1
2. by > Y7  max{r — (a; — a;),0}

3.b; < do—3 7y iy max{r—(ax—a;),0}
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.
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1 O 0 0O O O
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0 d1
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What is the r-separation condition?

Label points (a1, b1), ..., (an, by) in non-
decreasing lex order.

The n-tuple in P, is r-separated if:

1. vertical distance between points in the
same column is > r.

j—1
2. by > Y7  max{r — (a; — a;),0}

3.b; < do—3 7y iy max{r—(ax—a;),0}
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Enumerative interpretation for ample line bundles
X=P'xP! = O(d1,dz), and r > 0.
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o 0H@® O O
o o o o o @9
1 O 0 0O O O
n!
0 d1
P

(example with r = 3)
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What is the r-separation condition?

Label points (a1, b1), ..., (an, by) in non-
decreasing lex order.

The n-tuple in P, is r-separated if:

1. vertical distance between points in the
same column is > r.

j—1
2. by > Y7  max{r — (a; — a;),0}

3.b; < do—3 7y iy max{r—(ax—a;),0}
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Enumerative interpretation for ample line bundles

Theorem (C. ('24))

For X = P! x P! or any Hirzebruch surface and any ample line bundle
L, ® E" on X

x(X 1, ®E ") = #r-separated n-tuples of integer points in Py.
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Enumerative interpretation for ample line bundles

Theorem (C. ('24))

For X = P! x P! or any Hirzebruch surface and any ample line bundle
L, ® E" on X

x(X 1, ®E" ) = #r-separated n-tuples of integer points in Py.

@ The ample cone of X" is known: e.g. for X = P! x P! and
L=0(d1,d), L,® E" is ample iff r > 0 and di,d> > r(n—1).
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Enumerative interpretation for ample line bundles

Theorem (C. ('24))

For X = P! x P! or any Hirzebruch surface and any ample line bundle
L, ® E" on X

x(X 1, ®E" ) = #r-separated n-tuples of integer points in Py.

@ The ample cone of X" is known: e.g. for X = P! x P! and
L=0(d1,d), L,® E" is ample iff r > 0 and di,d> > r(n—1).
@ The n-tuples index a basis of global sections of L, ® E".
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Enumerative interpretation for ample line bundles

Theorem (C. ('24))

For X = P! x P! or any Hirzebruch surface and any ample line bundle
L, ® E" on X

x(X 1, ®E" ) = #r-separated n-tuples of integer points in Py.

@ The ample cone of X! is known: e.g. for X = P! x P! and
L=0(d1,d), L,® E" is ample iff r > 0 and di,d> > r(n—1).
@ The n-tuples index a basis of global sections of L, ® E".

@ Same formula gives the T-equivariant refinement of Euler
characteristic.
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?

For any toric X, have

HO(XIML L, @ ETY < C[x1, y1, - - - s Xn, Ynl-
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?

For any toric X, have

HO(XIML L, @ ETY < C[x1, y1, - - - s Xn, Ynl-

Choose C? ~ U, C X and pull back via

(C?)™\ {large diagonal} ntol, U([,"] \ {reduced schemes} C XUl
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?

For any toric X, have

HO(XIML L, @ ETY < C[x1, y1, - - - s Xn, Ynl-
Choose C? ~ U, C X and pull back via

nlto1l

(C?)™\ {large diagonal} === U([,"] \ {reduced schemes} C XUl

A description of the corresponding polynomials is known for all toric X,
line bundles L, and r € Z (Haiman for case X = C2, C. for projective X).
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?

For any toric X, have
HO(XIML L, @ ETY < C[x1, y1, - - - s Xn, Ynl-

Choose C? ~ U, C X and pull back via

nlto1l

(C?)"\ {large diagonal} === UI"\ {reduced schemes} C X!,

A description of the corresponding polynomials is known for all toric X,
line bundles L, and r € Z (Haiman for case X = C2, C. for projective X).
Equip C[x1, y1, ..., Xn, ¥n] with lex term order, x; > -+ > x, > y1 > -+ y,.
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Enumerative interpretation for ample line bundles
Where do the n-tuples come from?

For any toric X, have
HO(XIML L, @ ETY < C[x1, y1, - - - s Xn, Ynl-

Choose C? ~ U, C X and pull back via

(C?)™\ {large diagonal} Mol Ul {reduced schemes} C X"
A description of the corresponding polynomials is known for all toric X,
line bundles L, and r € Z (Haiman for case X = C2, C. for projective X).
Equip C[x1, y1, ..., Xn, ¥n] with lex term order, x; > -+ > x, > y1 > -+ y,.

Corollary

For X = P! x P! or any Hirzebruch surface and any ample line bundle
L,® E" on XN, there is a section s € HO(XI"), L, ® E") with trailing term
Xyt x3ny b iff (a1, b1), ..., (an, bn) is an r-separated n-tuple in Py.

™ = Sl
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Proof Outline
Theorem (C. ('24))
For X = P* x P! or any Hirzebruch surface and any ample line bundle

L, ® E" on X[

x(XI"L L, @ ET) = #r-separated n-tuples of integer points in Py.

lan Cavey (University of lllinois UC) Verlinde Series on Hirzebruch Surfaces May 13, 2024 19 /27



Proof Outline
Theorem (C. ('24))
For X = P* x P! or any Hirzebruch surface and any ample line bundle

L, ® E" on X[

x(XI"L L, @ ET) = #r-separated n-tuples of integer points in Py.

@ (C*)? ~ T-action on X induces T-action on XI"l, so we have a
refined invariant

2n

XX LE) = (-1)) > t°qP-dime HI(XI, L,@ E) (5 1)
i=0 (a,b)ez?
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Proof Outline
Theorem (C. ('24))
For X = P* x P! or any Hirzebruch surface and any ample line bundle

L, ® E" on X[

x(XI"L L, @ ET) = #r-separated n-tuples of integer points in Py.

@ (C*)? ~ T-action on X induces T-action on XI"l, so we have a
refined invariant

2n

XX LE) = (-1)) > t°qP-dime HI(XI, L,@ E) (5 1)
i=0 (a,b)ez?

o xT(XIN L, ® E") can be computed by localization,
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Proof Outline
Theorem (C. ('24))
For X = P* x P! or any Hirzebruch surface and any ample line bundle

L, ® E" on X[

x(XI"L L, @ ET) = #r-separated n-tuples of integer points in Py.

@ (C*)? ~ T-action on X induces T-action on XI"l, so we have a
refined invariant

2n

XX LE) = (-1)) > t°qP-dime HI(XI, L,@ E) (5 1)
i=0 (a,b)ez?

° XT(X[”]7 L, ® E") can be computed by localization, or expressed in
terms of X7 ((CA)I"] E") + combinatorics of P;.

lan Cavey (University of lllinois UC) Verlinde Series on Hirzebruch Surfaces May 13, 2024 19 /27



Proof Outline

New formula for xT((C?)I"l, E"):
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Proof Outline
New formula for xT((C?)I"l, E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["), E") with trailing term
XBlyPr. . xanybo iff (ay, by, ..., ap by) € r- Py,
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Proof Outline
New formula for xT((C?)I"l, E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["} ET) with trailing term
Xyt x@anyboiff (ay, by, ... an, bn) € 1 Py,

P, C R?" is the convex hull of the set of nonnegative integer n-tuples
(a1, b1) < -+ < (an, bn) in lex order.
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Proof Outline
New formula for xT((C?)I"l, E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["} ET) with trailing term
Xyt x@anyboiff (ay, by, ... an, bn) € 1 Py,

P, C R?" is the convex hull of the set of nonnegative integer n-tuples
(a1, b1) < -+ < (an, bn) in lex order.

(al,bl,...,a,,,b,,)er-P,, iff
e 0<a << ---<a,
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Proof Outline
New formula for xT((C?)I"l, E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["} ET) with trailing term
Xyt x@anyboiff (ay, by, ... an, bn) € 1 Py,

P, C R?" is the convex hull of the set of nonnegative integer n-tuples
(a1, b1) < -+ < (an, bn) in lex order.
(al,bl,...,a,,,b,,) € r- P, iff

e0<ag<a<---<a,

o if aj = aj;1 then bj 11 > b; + r, and
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Proof Outline
New formula for xT((C?)I"l, E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["} ET) with trailing term
Xyt x@anyboiff (ay, by, ... an, bn) € 1 Py,

P, C R?" is the convex hull of the set of nonnegative integer n-tuples
(a1, b1) < -+ < (an, bn) in lex order.
(al,bl,...,a,,,b,,) er-P,iff

e 0<a << ---<a,

e if aj = aj 1 then bj 1 > bj + r, and

° b > Z’,;} max{r — (aj — a;), 0}.
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Proof Outline
New formula for x T ((C?)"], E"):
Theorem (C. '23)

For r > 0, there exists a polynomial f € HO((C?)["} ET) with trailing term
XYL xgry g iff (a1, bi,. ., an, bn) € r - P,

P, C R?" is the convex hull of the set of nonnegative integer n-tuples
(a1, b1) < -+ < (an, bn) in lex order.

(a1, b1,...,an, bp) € r- Py iff
e0<ag<a<---<a,
o if aj = aj;1 then bj 11 > b; + r, and
o b2 3 max{r - (3 - 2.0}

Proof of this result is direct.
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Proof Outline

New formula for x T ((C?)"], E"):
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Proof Outline

New formula for x T ((C?)"], E"):

Corollary
Forr >0,
T 2\[n ry a1+---+an bi+-+b
xT (A Ery = Z 71 nght "
(a1,..-,bn) EFPRNZ2"
o = = Ha e
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Proof Outline

New formula for x T ((C?)"], E"):
Corollary
For r >0,

XT(((C2)[n]7 Er) _ Z t31+“‘+3nqb1+'“+bn.
(a1,--.,bn)ErP,NZ2"

e For any toric X, can express x T (X["l, L, ® E") as a sum of these
generating functions of integer points in polyhedra.
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Proof Outline

New formula for x T ((C?)"], E"):
Corollary
For r >0,

X" (), En = > gartan gbitetbn,
(a1,--.,bn)ErP,NZ2"

e For any toric X, can express x T (X["l, L, ® E") as a sum of these
generating functions of integer points in polyhedra.

@ Manipulate generating functions to write the expression in a closed
form.
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Proof Outline

New formula for x T ((C?)"], E"):
Corollary

Forr >0,

X" (), En = > gartan gbitetbn,
(a1,--.,bn)ErP,NZ2"

e For any toric X, can express x T (X["l, L, ® E") as a sum of these
generating functions of integer points in polyhedra.

@ Manipulate generating functions to write the expression in a closed
form. Powerful tool: Brion's formula.
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Proof Outline

New formula for x T ((C?)"], E"):
Corollary

Forr >0,

X" (), En = > gartan gbitetbn,
(a1,--.,bn)ErP,NZ2"

e For any toric X, can express x T (X["l, L, ® E") as a sum of these
generating functions of integer points in polyhedra.

@ Manipulate generating functions to write the expression in a closed
form. Powerful tool: Brion's formula.

i D ”
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Proof Outline

New formula for x 7 ((CH)I"), E7):
Corollary

Forr >0,

X" (), En = > gartan gbitetbn,
(a1,--.,bn)ErP,NZ2"

@ For any toric X, can express XT(X["], L, ® E") as a sum of these
generating functions of integer points in polyhedra.

@ Manipulate generating functions to write the expression in a closed
form. Powerful tool: Brion's formula.

IADYY
This is an “area/bounce” formula for x 7 ((C?)["l, E") (picture at the end).
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Explicit Formula for P x P!

Can we count the number of r-separated n-tuples in P;?
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Explicit Formula for P! x P!
Can we count the number of r-separated n-tuples in P;?

Fix §; := ajy1 —a;as 0,1,...,r—1, or > r and count the number of such

n-tuples. For X = P! x P!, each is the set of integer points in a product
of simplices.
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Explicit Formula for P! x P!

Can we count the number of r-separated n-tuples in P ?

Fix §; := ajy1 —a;as 0,1,...,r—1, or > r and count the number of such
n-tuples. For X = P! x P!, each is the set of integer points in a product
of simplices.

Corollary

For X =P' x P!, L = O(dy,d>) and r > 0, x(X!"], L, ® E") is equal to

di — 16| + 60\ S/ dy — wi(8) + £ + ni(6)
56{0’§,}n—1 ( 6(5) ) kI:Il ( nk((s) )

(see preprint for precise definitions of statistics)
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Explicit Formula for P! x P!

Can we count the number of r-separated n-tuples in P ?

Fix §; := ajy1 —a;as 0,1,...,r—1, or > r and count the number of such
n-tuples. For X = P! x P!, each is the set of integer points in a product
of simplices.

Corollary

For X =P' x P!, L = O(dy,d>) and r > 0, x(X!"], L, ® E") is equal to

(OO

5€{0,1,...,r}n—1 k=1

—_——
##choices of a-coordinates ##choices of b-coordinates
For d17 dr > n,r, in kth nonempty column

(see preprint for precise definitions of statistics)
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Explicit Formula for P! x P!

i.e., this is a formula for Verlinde series coefficients for P! x P!, any
L=0(d1,d>) and r > 0.
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Explicit Formula for P! x P!

i.e., this is a formula for Verlinde series coefficients for P! x P!, any
L= 0O(d1,d») and r > 0.

Example

X =P xP! L=0(1,2), r=5,

Vx1,(2) =1+6z+212% — 10742° + 48962* + - - -

= = et
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Explicit Formula for P! x P!

i.e., this is a formula for Verlinde series coefficients for P! x P!, any
L=0(d1,d>) and r > 0.

Example
X =P xP! L=0(1,2), r=5,
V.1, (z) =1+6z+21z% — 10742° + 48962* + - -

For L = O(d1, d), the previous formula for the z>-coefficient is

(ch + 1)("22‘ 3) T h(ch— 3 + (dh — 1)(dh — 22+

(ch —2)(co = 1)° + (i = 3)d5 + (dlz_ 3)(0/2 +1)°

= — Tyt
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Explicit Formula for P! x P!

i.e., this is a formula for Verlinde series coefficients for P! x P!, any
L=0(d1,d>) and r > 0.

Example

X=P'xP!, L=0(1,2), r=5,

V.1, (z) =1+6z+21z% — 10742° + 48962* + - -

For L = O(d1, d), the previous formula for the z>-coefficient is
d2 - 3 2 2
(di+1) 5 + di(d> — 3)° + (di — 1)(d2 — 2)+
2 2 =3 2
(di —2)(d2 —1)° + (d1 — 3)d5 + 5 (da+1)

33 1 45 1
=6+ 2 (di+ )+ 5(df + ) — - chda + (dfp + ) + S

v
™ =

= =yt
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Explicit Formula for P! x P!

i.e., this is a formula for Verlinde series coefficients for P! x P!, any
L=0(d1,d>) and r > 0.

Example
X=P'xP!, L=0(1,2), r=5,
V.1, (z) =1+6z+21z% — 10742° + 48962* + - -

For L = O(d1, d), the previous formula for the z>-coefficient is
d2 - 3 2 2
(di+1) 5 + di(d> — 3)° + (di — 1)(d2 — 2)+

(ch —2)(co = 1)° + (i = 3)d5 + (dlz_ 3)(0/2 +1)°

33 1 45 1
=6+ —(di +d2) + 5(d12 +d3) - o dida + (dZd> + did3) + 5"126/22
=21 (when d; =1 and d» = 2).

v
™ =

= =yt
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Universal Series

Take X = P! x P! and L = O(d1, o).
We now have, for each r > 0, a formula of the following form:
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Universal Series

Take X = P! x P! and L = O(d1, o).
We now have, for each r > 0, a formula of the following form:

Vx.1.(z) = Ar(z)X(L) . B,(z)X(OX) i Cr(z)q(L)-Kx—%K)% i Dr(z)K>2<
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Universal Series

Take X = P! x P! and L = O(d1, o).
We now have, for each r > 0, a formula of the following form:

Vi1.(2) = A(2)XD) - B,(2)XO0) . € (2)a(D-Kx=3K5 . p, (2)K%
:A,(Z)(d1+1)(d2+1) Br( ) Cr( ) 2d1—2dr,—4 D( )
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Universal Series

Take X = P! x P! and L = O(d1, o).
We now have, for each r > 0, a formula of the following form:

Vx.1.(z) = Ar(z)X(L) . B,(z)X(OX) ) Cr(z)q(L)-Kx—%K)% . Dr(z)K>2<
_ A,(z)(d1+1)(d2+1) . Br(Z) . Cr(Z)_2d1_2d2_4 . D,(Z)S

=1+Zzn Z <d1+)H(d2+>

n>1  §e{0,. rjn1
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Universal Series

Take X = P! x P! and L = O(d, do).
We now have, for each r > 0, a formula of the following form:

Vx1(2) = A(2)XD) . B (2)X(O%) . C,(2)2 D Kx—3K% . D, (2)K%
= A(2)TED . B (2) . C(2) 242474 Di(2)°
:1+Zzn Z <d1+...)H<d2+...>.

n>1  5e{0,..,r}n-1 o T

This formula determines D,, and therefore the Verlinde series for all X, L, r.

e.g. take d; = d» = —1 to get B,(z) - D,(2)8, solve for D,(z).
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Further Problems/Questions
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit.
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit. Are these
series algebraic?
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit. Are these

series algebraic?
@ Use Segre-Verlinde correspondence to give formulas for Segre series.
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit. Are these
series algebraic?

@ Use Segre-Verlinde correspondence to give formulas for Segre series.

@ What about more general Quot schemes?
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit. Are these
series algebraic?

@ Use Segre-Verlinde correspondence to give formulas for Segre series.
@ What about more general Quot schemes?

@ Direct proof of polynomial/term order interpretation? Sections of
non-ample line bundles?
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Further Problems/Questions

e Extract closed formulas for the universal series and/or show
compatibility with those given by Gottsche and Mellit. Are these
series algebraic?

@ Use Segre-Verlinde correspondence to give formulas for Segre series.
@ What about more general Quot schemes?

@ Direct proof of polynomial/term order interpretation? Sections of
non-ample line bundles?

@ Direct proof of symmetries?
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lan Cavey (University of lllinois UC)

Thank you!
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For each 6 € {0,1,...,r}"! there is a "minimal” such choice of
r-separated points and an r-bounce path. The sum of horizontal positions
of points is the bounce statistic of the path, and the sum of the vertical
positions is the area.
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For each 6 € {0,1,...,r}"! there is a "minimal” such choice of
r-separated points and an r-bounce path. The sum of horizontal positions
of points is the bounce statistic of the path, and the sum of the vertical

positions is the area.
Eg r=3,6=(0,1,0,1,3,1)
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For each 6 € {0,1,...,r}"! there is a "minimal” such choice of
r-separated points and an r-bounce path. The sum of horizontal positions
of points is the bounce statistic of the path, and the sum of the vertical

positions is the area.
Eg r=3,6=(0,1,0,1,3,1)
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