The decomposition theorem for 2-Calabi-Yau categories

Ben Davison University of Edinburgh

Mixed Hodge structures and BM homology

For X a complex variety, we define $\mathsf{H}^{\mathsf{BM}}(X,\mathbb{Q}) \coloneqq s_* \mathbb{D}\mathbb{Q}_X$, where

- \mathbb{Q}_X is the constant sheaf on X
- \mathbb{D} is the Verdier duality functor
- s_* is the derived global sections functor for the structure map $X \xrightarrow{s} pt$.
- If X is smooth, this is (up to a shift) the usual cohomology, since DQ_X ≅ Q_X[2 dim_C(X)].
- **2** If $U \subset X$ is open, have long exact sequence

 $\rightarrow \mathsf{H}^{\mathsf{BM}}_{-i}(X \setminus U, \mathbb{Q}) \rightarrow \mathsf{H}^{\mathsf{BM}}_{-i}(X, \mathbb{Q}) \rightarrow \mathsf{H}^{\mathsf{BM}}_{-i}(U, \mathbb{Q}) \rightarrow \mathsf{H}^{\mathsf{BM}}_{-(i+1)}(X \setminus U, \mathbb{Q}) \rightarrow .$

Can *define* the mixed Hodge structure on $H^{BM}(X, \mathbb{Q})$ by decreeing that this is a long exact sequence in MHS, and taking standard pure Hodge structure on each $H^{BM}(X, \mathbb{Q})$ if X is smooth projective.

[●] There is an essentially unique functorial way to extend H^{BM} : Var → D(MHS) to global quotient stacks.

(2) says that H^{BM} is "motivic", so this cohomology theory connects well with point-counting over \mathbb{F}_q as well as DT theory.

The BBDG decomposition theorem Theorem (Beilinson-Bernstein-Deligne-Gabber)

Let $p: X \rightarrow Y$ be a projective morphism of complex algebraic varieties, with X smooth. Then

$$p_*\mathbb{Q}_X\cong\bigoplus_{i\in\mathbb{Z}}{}^{\mathfrak{p}}\mathcal{H}^i(p_*\mathbb{Q}_X)[-i]$$

and each perverse sheaf ${}^{\mathfrak{p}}\mathcal{H}^{i}(p_{*}\mathbb{Q}_{X})$ is semisimple.

- If X is singular variety, same theorem remains true, but with Q_X replaced everywhere by *IC_X*, the intersection complex, i.e. the intermediate extension of the constant perverse sheaf Q[dim(X)]|_{Xsm}.
- For X smooth, defining

$$\mathfrak{P}^i\mathsf{H}(X,\mathbb{Q})\coloneqq\mathsf{H}(Y,\mathfrak{p}_{ au^{\leq i}}p_*\mathbb{Q}_X)\subset\mathsf{H}(X,\mathbb{Q})$$

gives the perverse filtration of X with respect to q, with subquotients

$$\mathfrak{P}^{i}\mathsf{H}(X,\mathbb{Q})/\mathfrak{P}^{i-1}\mathsf{H}(X,\mathbb{Q})\cong\mathsf{H}(Y,^{\mathfrak{p}}\mathcal{H}^{i}(p_{*}\mathbb{Q}_{X})).$$

Saito's version

Given X a complex variety, Saito defines the category MHM(X) of mixed Hodge modules on X, along with faithful functor $MHM(X) \rightarrow Perv(X)$;

- So a MHM on X is a perverse sheaf \mathcal{F} on X along with some extra data. Most important part (for us) is the *weight filtration* $W_{\bullet}\mathcal{F}$.
- A MHM \mathcal{F} is pure of weight *i* if $\operatorname{Gr}_{j}^{W}\mathcal{F} = 0$ for $i \neq j$.
- A complex *F* ∈ *D^b*(MHM(*X*)) is called *pure* if each *Hⁱ*(*F*) is pure of weight *i*.
- The perverse sheaves $\mathbb{Q}_X[\dim(X)]$ on a smooth variety X (or \mathcal{IC}_X on a general variety) have lifts to simple pure weight zero MHMs (at least if dim(X) even).

Theorem (Saito)

The category of pure weight n MHMs on a variety is semisimple. If $f: X \to Y$ is projective, $f_*: D^b(MHM(X)) \to D^b(MHM(Y))$ preserves pure objects. If $\mathcal{F} \in D^b(MHM(Y))$ is pure, then $\mathcal{F} \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{H}^i(\mathcal{F})[-i]$. \therefore If $\mathcal{G} \in D^b(MHM(X))$ is pure, then $f_*\mathcal{G} \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{H}^i(f_*\mathcal{G})[-i]$.

Coherent sheaves on K3 surfaces

Let (S, H) be a polarized K3 surface, or a pair of a smooth complex algebraic surface S with trivial ω_S , along with an ample class on \overline{S} .

We denote by $\mathfrak{M}^{H}_{\alpha}(S)$ the moduli stack of *H*-Geiseker semistable coherent sheaves on *S* with projective support and with Chern character α , and by $\mathcal{M}^{H}_{\alpha}(S)$ the coarse moduli space.

- Via the standard quot scheme construction, $\mathfrak{M}^{H}_{\alpha}(S)$ is a global quotient stack.
- The canonical morphism $p: \mathfrak{M}^{H}_{\alpha}(S) \to \mathcal{M}^{H}_{\alpha}(S)$ is a good moduli space in the sense of Alper.

One of the motivations of this project was to prove

Conjecture (Halpern-Leistner)

Assume that S is a K3 surface, then the mixed Hodge structure on $\mathrm{H}^{\mathrm{BM}}(\mathfrak{M}^{H}_{\alpha}(S),\mathbb{Q})$ is pure.

(We'll prove the conjecture under *weaker* assumptions on S.)

Formal and étale neighbourhoods (after Alper–Hall–Rydh) Formal neighbourhoods

Fix a finite length category Abelian subcategory \mathcal{C} of $\mathcal{H}(\mathcal{D})$ for \mathcal{D} a "nice" dg category, with a good moduli space $p \colon \mathfrak{M}_{\mathcal{C}} \to \mathcal{M}_{\mathcal{C}}$. Formal completion of p at x representing the semisimple object $\mathcal{F} = \bigoplus_{i \in I} \mathcal{F}_i^{\oplus d_i}$ is determined by the dg algebra $\mathsf{RHom}_{\mathcal{D}}(\mathcal{F}, \mathcal{F})$, which is determined by $\{\mathcal{F}_i\}_{i \in I}$, the full dg subcategory of \mathcal{D} containing the \mathfrak{F}_i .

Let \mathcal{F}'_i be objects of a finite length Abelian subcategory $\mathcal{C}' \subset \mathcal{H}(\mathcal{D}')$ such that there is a dg equivalence $\{\mathcal{F}'_i\} \simeq \{\mathcal{F}_i\}$, and there is a good moduli space $\mathfrak{M}_{\mathcal{C}'} \to \mathcal{M}_{\mathcal{C}'}$ of objects in \mathcal{C}' . Let x' represent $\bigoplus_{i \in I} \mathcal{F}'^{\oplus d_i}$. Then there is a commutative diagram with Cartesian squares and étale horizontal morphisms

$$(\mathfrak{M}_{\mathbb{C}'}, x') \longleftrightarrow (\mathfrak{U}, u) \hookrightarrow (\mathfrak{M}_{\mathbb{C}}, x)$$

$$\downarrow^{p'} \qquad q \qquad p \qquad \downarrow$$

$$(\mathcal{M}_{\mathbb{C}'}, x') \longleftrightarrow (\mathcal{U}, q(u)) \hookrightarrow (\mathcal{M}_{\mathbb{C}}, x)$$

Formality

Let ${\mathfrak C}\in {\sf H}({\mathfrak D})$ be a finite length Abelian category with ${\mathfrak D}$ 2CY, e.g.

- Semistable coherent sheaves of fixed slope on smooth S satisfying $\mathbb{O}_S \cong \omega_S$
- Semistable Higgs bundles of fixed slope on a smooth projective curve.
- Representations of a (usual/deformed/multiplicative) preprojective algebra Π_Q .
- Bridgeland semistable objects of fixed slope in Kuznetsov component.
- Representations of $\pi_1(\Sigma_g)$ for Σ_g a compact Riemann surface.

Theorem

The dg category $\{\mathcal{F}_i\}_{i \in I}$ is formal for any collection of simple objects in \mathcal{C} . *I.e.* there is a quasi-equivalence of A_{∞} -algebras

 $\mathsf{RHom}^{ullet}_{\mathbb{D}}(\mathcal{F},\mathcal{F})\simeq\mathsf{Ext}^{ullet}_{\mathbb{D}}(\mathcal{F},\mathcal{F}).$

:. The étale neighbourhood of $p: \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$ around x representing $\bigoplus_i \mathcal{F}_i^{\oplus d_i}$ is entirely determined by the dimensions of the $\operatorname{Ext}^1(\mathcal{F}_i, \mathcal{F}_j)$.

Preprojective algebras

- Let Q be a quiver with vertices Q_0 and arrows Q_1 .
- Define Q
 to be the doubled quiver formed by adjoining an arrow a* with opposite orientation to a for each arrow a ∈ Q₁.

• Define
$$\Pi_Q = \mathbb{C}\overline{Q}/\langle \sum_{a\in Q_1} [a,a^*]
angle$$

E.g. if Q is the Jordan quiver with one vertex and one loop, $\Pi_Q \cong \mathbb{C}[x, y]$.

- The category \mathcal{C} of finite-dimensional Π_Q -modules is an Abelian subcategory of a 2CY dg category \mathcal{D} (outside of ADE type \mathcal{D} is just the dg category of Π_Q -modules).
- Let S_i be the one-dimensional nilpotent Π_Q -module with dimension vector 1_i . Then

$$\operatorname{Ext}^{1}(S_{i}, S_{j}) = \begin{cases} a_{ij} & \text{if } i \neq j \\ 2a_{ii} & \text{if } i = j. \end{cases}$$

where (a_{ij}) is the adjacency matrix of the underlying graph of Q.

Local structure of stacks of objects in 2CY categories Theorem

let $p: \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$ be a good moduli space of objects in \mathbb{C} , a finite length Abelian subcategory of $\mathcal{H}(\mathbb{D})$, for \mathbb{D} a 2CY dg category. Let $x \in \mathcal{M}_{\mathbb{C}}$ represent the semisimple object $\mathcal{F} = \bigoplus_{i \in I} \mathcal{F}_i^{\oplus d_i}$, and pick Q so that the Ext quiver of $\{\mathcal{F}_i\}_{i \in I}$ is \overline{Q} . Then there is a commutative diagram

with Cartesian squares, and étale horizontal maps, where JH is the morphism from the stack of d-dimensional Π_Q -modules to the coarse moduli space.

Purity for $p_* \mathbb{DQ}_{\mathfrak{M}}$ around x then follows from purity for $JH_* \mathbb{DQ}_{\mathfrak{M}_d(\Pi_Q)}$, for which we turn to cohomological DT theory.

Ben Davison

Dimensional reduction I

Theorem

Let X be a smooth variety, $\overline{X} = X \times \mathbb{A}^m$. Let $f \in \Gamma(X \times \mathbb{A}^m)$ be a weight one function for the scaling action of \mathbb{A}^m , i.e. we can write $f = \sum_{i \leq m} x_i f_i$ for x_i coordinates on \mathbb{A}^m and f_i functions on X. Let $Z = V(f_1, \ldots, f_m) \subset X$. Then the natural morphism

 $\pi_!\phi_f\mathbb{Q}_{\overline{X}}\to\pi_!\mathbb{Q}_{Z\times\mathbb{A}^m}$

is an isomorphism. Taking Verdier duals, and derived global sections, yields

$$\mathsf{H}^{\mathsf{BM}}(Z \times \mathbb{A}^m, \mathbb{Q}) \xrightarrow{\cong} \mathsf{H}(\overline{X}, \phi_f \mathbb{Q}).$$

Example

Take function $\operatorname{Tr}(W) = \operatorname{Tr}([A, B]C)$ on $\overline{X} = \operatorname{Mat}_{n \times n}(\mathbb{C})^{\times 2} \times \operatorname{Mat}_{n \times n}(\mathbb{C})$. Then $\pi_* \phi_{\operatorname{Tr}(W)} \mathbb{Q}_{\overline{X}} \cong \mathbb{D}\mathbb{Q}_{\mathcal{C}_m} \otimes \mathbb{L}^?$, where \mathcal{C}_m is the variety of pairs of commuting matrices, and $\mathbb{L} = \operatorname{H}_c(\mathbb{A}^1, \mathbb{Q})$ is the pure Tate twist.

Dimensional reduction II

Fix a quiver Q, and define \tilde{Q} by adding a loop ω_i to \overline{Q} at each vertex Q_0 . Define

$$ilde{\mathcal{N}} = \sum_{\pmb{a} \in \mathcal{Q}_1} [\pmb{a}, \pmb{a}^*] \sum_{i \in \mathcal{Q}_0} \omega_i$$

Define $\pi: \mathfrak{M}(\tilde{Q}) \to \mathfrak{M}(\overline{Q})$ to be the forgetful morphism. Then there is an isomorphism

$$\pi_*\phi_{\mathsf{Tr}(\tilde{W})}\mathbb{Q}\cong\mathbb{DQ}_{\mathfrak{M}(\mathsf{\Pi}_Q)}\otimes\mathbb{L}^?.$$

Proof strategy

In the diagram

prove purity of $JH_* \mathbb{DQ}_{\mathfrak{M}(\Pi_Q)}$ via purity of (isomorphic) $\pi'_* JH_* \phi_{\mathsf{Tr}(\tilde{W})} \mathbb{Q}$.

Integrality and BPS sheaves for $ilde{Q}, ilde{W}$

Tensor structure

There is a finite morphism $\mu \colon \mathcal{M}(\tilde{Q}) \times \mathcal{M}(\tilde{Q}) \to \mathcal{M}(\tilde{Q})$ taking a pair of modules to their direct sum. This induces a symmetric tensor structure on $\mathcal{D}^+(\mathsf{MHM}(\mathcal{M}(\tilde{Q})))$:

$$\mathcal{F} \otimes_{\oplus} \mathcal{G} \coloneqq \mu_*(\mathcal{F} \boxtimes \mathcal{G}).$$

 $\pi'_* \colon \mathcal{D}^+(\mathsf{MHM}(\mathcal{M}(\tilde{Q}))) \to \mathcal{D}^+(\mathsf{MHM}(\mathcal{M}(\overline{Q})))$ is a tensor functor.

For \mathfrak{M} a stack with virtual dimension d, we set $\mathbb{Q}_{\mathfrak{M}, \text{vir}} \coloneqq \mathbb{Q}_{\mathfrak{M}} \otimes \mathbb{L}^{-d/2}$.

Theorem (-,Meinhardt)

There is a canonical isomorphism

$$\tilde{\mathrm{JH}}_*\phi_{\mathsf{Tr}(\tilde{W})}\mathbb{Q}_{\mathsf{vir}}\cong\mathsf{Sym}\left(\bigoplus_{\mathsf{d}\neq 0}\mathcal{BPS}_{\tilde{Q},\tilde{W},\mathsf{d}}\otimes\mathsf{H}(\mathsf{pt}/\mathbb{C}^*,\mathbb{Q}_{\mathsf{vir}})\right)$$

where $\mathcal{BPS}_{\tilde{Q},\tilde{W},\mathsf{d}} = \phi_{\mathsf{Tr}(\tilde{W})} \mathcal{IC}_{\mathcal{M}_{\mathsf{d}}(\tilde{Q})} \in \mathsf{MHM}(\mathcal{M}_{\mathsf{d}}(\tilde{Q}))$ is Verdier self dual.

Finishing the proof

$$\begin{aligned} \mathsf{JH}_* \, \mathbb{D}\mathbb{Q}_{\mathfrak{M}(\Pi_Q), \mathsf{vir}} &\cong (\mathcal{M}(\tilde{Q}) \xrightarrow{\pi'} \mathcal{M}(\overline{Q}))_* \tilde{\mathsf{JH}}_* \phi_{\mathsf{Tr}(\tilde{W})} \mathbb{Q}_{\mathfrak{M}(\tilde{Q}), \mathsf{vir}} \\ &\cong \mathsf{Sym} \left(\bigoplus_{\mathsf{d} \in \mathbb{N}^{Q_0}} \pi'_* \mathcal{BPS}_{\tilde{Q}, \tilde{W}, \mathsf{d}} \otimes \mathsf{H}(\mathsf{pt} / \mathbb{C}^*, \mathbb{Q}_{\mathsf{vir}}) \right) \end{aligned}$$

So we need to prove purity of the direct image $\pi'_*\mathcal{BPS}_{\tilde{Q},\tilde{W},d}$ of the BPS sheaf. This follows from

JH_{*} DQ_{M(ΠQ),vir} can only be "impure above":

 $W_i(\mathcal{H}^{i+1}(\mathrm{JH}_* \mathbb{DQ}_{\mathfrak{M}(\Pi_Q),\mathrm{vir}})) = 0.$

So same is true of summand $\pi'_* \mathcal{BPS}_{\tilde{\mathcal{O}}, \tilde{\mathcal{W}}, \mathsf{d}}$

- **②** Verdier self-duality of $\mathcal{BPS}_{\tilde{Q},\tilde{W},d}$ implies that it is impure above iff it is impure below.
- The "support lemma": $\mathcal{BPS}_{\tilde{Q},\tilde{W},d}$ is entirely supported on locus where all of the eigenvalues of the loops ω_i are the same.

Ben Davison

The decomposition theorem

Theorem

Let $\mathcal{C} \subset \mathcal{H}(\mathcal{D})$ be finite length Abelian category, with \mathcal{D} a 2CY dg category. Let $p \colon \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$ be a good moduli space of objects in \mathbb{C} , with $\mathfrak{M}_{\mathbb{C}}$ a global quotient stack. Then $p_* \mathbb{DQ}_{\mathfrak{M}_{\mathbb{C}}, \text{vir}}$ is pure, and

$$p_*\mathbb{DQ}_{\mathfrak{M}_{\mathfrak{C}},\mathsf{vir}} \cong \bigoplus_{i\in 2\cdot\mathbb{Z}_{\geq 0}} \mathcal{H}^i(p_*\mathbb{DQ}_{\mathfrak{M}_{\mathfrak{C}},\mathsf{vir}})[-i].$$

Corollary

For S a K3 or Abelian surface, H a polarization, the mixed Hodge structure $\mathrm{H}^{\mathrm{BM}}(\mathfrak{M}^{H}_{\alpha}(S), \mathbb{Q}) \cong \mathrm{H}(\mathcal{M}^{H}_{\alpha}(S), p_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}^{H}_{\alpha}(S)})$ is pure.

Corollary

If there is a stable object in $\mathfrak{M}^{H}_{\alpha}(S)$, there is a canonical inclusion $\mathsf{IC}_{\mathcal{M}^{H}_{\alpha}(S)} \subset \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{H}_{\alpha}(S), \mathbb{Q}_{\mathsf{vir}})$ as a cuspidal summand of the zeroth piece of the perverse filtration with respect to p.

Corollaries in nonabelian Hodge theory Corollary

For C a smooth projective curve, and h: $\mathcal{M}_{r,d}^{\mathsf{Dol}}(C) \to \Lambda_r$ the Hitchin map from the moduli space of semistable Higgs bundles, the complex $(h \circ p)_* \mathbb{DQ}_{\mathfrak{M}_{r,d}^{\mathsf{Dol}}(C), \text{vir}}$ is pure. So the Borel–Moore homology of $\mathbb{DQ}_{\mathfrak{M}_{r,d}^{\mathsf{Dol}}(C), \text{vir}}$ carries a perverse filtration, generalising the case (r, d) = 1.

Corollary

For C a smooth complex projective curve, the mixed Hodge structure $\mathrm{H}^{\mathrm{BM}}(\mathfrak{M}_{r,d}^{\mathrm{Dol}}(C), \mathbb{Q}) \cong \mathrm{H}(\Lambda, (\mathfrak{h} \circ p)_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}_{r,d}^{\mathrm{Dol}}(C)})$ is pure.

Finally: can formulate stacky P = W conjecture, that implies IP = IW conjecture, and is conjecturally equivalent to it, along with P = W conjecture (via χ -independence conjectures for BPS cohomology).

Theorem

SP=SW true in genus 0,1.