Lothar Göttsche based on joint work with Martijn Kool in part joint work with Anton Mellit

Intercontinental Moduli and Algebraic Geometry Zoominar

Zürich/Vancouver 17.1.2022

Let *S* smooth projective surface **Hilbert scheme of points**:

 $S^{[n]} = Hilb^n(S) = \{$ zero dim. subschemes of degree n on $S\}$

 $S^{[n]}$ is smooth projective, of dimension 2n

Let *S* smooth projective surface **Hilbert scheme of points**:

 $S^{[n]} = Hilb^n(S) = \{$ zero dim. subschemes of degree n on $S\}$

 $S^{[n]}$ is smooth projective, of dimension 2n

Universal subscheme:

$$Z_n(S) = ig\{(x, [Z]) \mid x \in Zig\} \subset S imes S^{[n]}$$

 $p: Z_n(S) o S^{[n]}, \quad q: Z_n(S) o S$ projections Fibre $p^{-1}([Z]) = Z.$

Hilbert schemes ○●○○○○○○	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Introduction					
7 (0)					

$$egin{aligned} & Z_n(S) = ig\{(x,[Z]) \mid x \in Z ig\} \subset S imes S^{[n]} \ p : Z_n(S) o S^{[n]}, \quad q : Z_n(S) o S ext{ projections} \end{aligned}$$

Tautological sheaves: *V* vector bundle of rank *r* on *S* $V^{[n]} := p_*q^*(V)$ vector bundle of rank *rn* on $S^{[n]}$ $V^{[n]}([Z]) = H^0(V|_Z)$, in particular $\mathcal{O}_S^{[n]}([Z]) = H^0(\mathcal{O}_Z)$

Hilbert schemes o●○○○○○○	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Introduction					
- (-)		-> -			

$$egin{aligned} & Z_n(S) = ig\{(x,[Z]) \mid x \in Z ig\} \subset S imes S^{[n]} \ p : Z_n(S) o S^{[n]}, \quad q : Z_n(S) o S ext{ projections} \end{aligned}$$

Tautological sheaves: *V* vector bundle of rank *r* on *S* $V^{[n]} := p_*q^*(V)$ vector bundle of rank *rn* on $S^{[n]}$ $V^{[n]}([Z]) = H^0(V|_Z)$, in particular $\mathcal{O}_S^{[n]}([Z]) = H^0(\mathcal{O}_Z)$

Line bundles on $S^{[n]}$: Pic $(S^{[n]}) = \mu(\text{Pic}(S)) \oplus \mathbb{Z}E$ with $E = \det(\mathcal{O}_S^{[n]})$. We have

$$\det(V^{[n]}) = \mu(\det(V)) \otimes E^{\otimes \operatorname{rk}(V)}, \quad V \in K(S)$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Introduction					
_ / _ /		-) -			

$$egin{aligned} & Z_n(S) = ig\{(x,[Z]) \mid x \in Z ig\} \subset S imes S^{[n]} \ p : Z_n(S) o S^{[n]}, \quad q : Z_n(S) o S ext{ projections} \end{aligned}$$

Tautological sheaves: *V* vector bundle of rank *r* on *S* $V^{[n]} := p_*q^*(V)$ vector bundle of rank *rn* on $S^{[n]}$ $V^{[n]}([Z]) = H^0(V|_Z)$, in particular $\mathcal{O}_S^{[n]}([Z]) = H^0(\mathcal{O}_Z)$

Line bundles on $S^{[n]}$: Pic $(S^{[n]}) = \mu(\text{Pic}(S)) \oplus \mathbb{Z}E$ with $E = \det(\mathcal{O}_S^{[n]})$. We have

$$\det(V^{[n]}) = \mu(\det(V)) \otimes E^{\otimes \operatorname{rk}(V)}, \quad V \in K(S)$$

Want formulas for

 $\chi(S^{[n]}, \mu(L) \otimes E^{\otimes r})$ Verlinde formula $\int_{S^{[n]}} c_{2n}(V^{[n]}) = \int_{S^{[n]}} s_{2n}(-V^{[n]})$ Segre formula

Hilbert schemes ○○●○○○○○○	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Cobordism invariance	e				

Theorem (Ellingsrud-G-Lehn)

Let $P(x_1, \ldots, x_{2n}, y_1, \ldots, y_n)$ polynomial. Put

$$P[S^{[n]}, L] := \int_{S^{[n]}} P(c_1(S^{[n]}), ..., c_{2n}(S^{[n]}), c_1(L^{[n]}), ..., c_n(L^{[n]}))$$

There is a polynomial $\tilde{P}(x, y, z, w)$, such that for all surfaces *S*, all line bundles *L* on *S* we have

$$\boldsymbol{P}[\boldsymbol{S}^{[n]}, \boldsymbol{L}] = \widetilde{\boldsymbol{P}}(\boldsymbol{K}_{\mathcal{S}}^{2}, \boldsymbol{\chi}(\mathcal{O}_{\mathcal{S}}), \boldsymbol{L}\boldsymbol{K}_{\mathcal{S}}, \boldsymbol{K}_{\mathcal{S}}^{2}).$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
00000000					
Cobordism invariance	9				

Theorem (Ellingsrud-G-Lehn)

Let $P(x_1, \ldots, x_{2n}, y_1, \ldots, y_n)$ polynomial. Put

$$P[S^{[n]}, L] := \int_{S^{[n]}} P(c_1(S^{[n]}), ..., c_{2n}(S^{[n]}), c_1(L^{[n]}), ..., c_n(L^{[n]}))$$

There is a polynomial $\tilde{P}(x, y, z, w)$, such that for all surfaces *S*, all line bundles *L* on *S* we have

$$P[S^{[n]}, L] = \widetilde{P}(K_{S}^{2}, \chi(\mathcal{O}_{S}), LK_{S}, K_{S}^{2}).$$

Usually look sequence of polynomials $P_n(x_1, ..., x_{2n}, y_1, ..., y_n), n \ge 0$, "compatible", then

$$\sum_{n\geq 0} P_n[S^{[n]}, L] x^n = A_1(x)^{L^2} A_2(x)^{LK_S} A_3(x)^{K_S^2} A_4(x)^{\chi(O_S)}$$

for universal power series $A_1, \ldots, A_4 \in \mathbb{Q}[[x]]$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
00000000					

Lehn's conjecture

For L a line bundle on S consider the top Segre class

$$\int_{S^{[n]}} s_{2n}(L^{[n]}) = \int_{S^{[n]}} c_{2n}(-L^{[n]})$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
00000000	00000000	00	000000	000	000

Lehn's conjecture

For L a line bundle on S consider the top Segre class

$$\int_{S^{[n]}} s_{2n}(L^{[n]}) = \int_{S^{[n]}} c_{2n}(-L^{[n]})$$

Conjecture (Lehn 1999)

$$\sum_{n=0}^{\infty} \int_{S^{[n]}} s_{2n}(L^{[n]}) z^n = \frac{(1-w)^a (1-2w)^b}{(1-6w+6w^2)^c},$$

with the change of variable

$$z = rac{w(1-w)(1-2w)^4}{(1-6w+6w^2)^3},$$

with
$$a = LK_S - 2K_S^2$$
, $b = (L - K_S)^2 + 3\chi(\mathcal{O}_S)$,
 $c = \chi(S, L) = \frac{1}{2}L(L - K_S) + \chi(\mathcal{O}_S)$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Labola applaatuva					

Lehn's conjecture

For L a line bundle on S consider the top Segre class

$$\int_{S^{[n]}} s_{2n}(L^{[n]}) = \int_{S^{[n]}} c_{2n}(-L^{[n]})$$

Conjecture (Lehn 1999)

$$\sum_{n=0}^{\infty} \int_{S^{[n]}} s_{2n}(L^{[n]}) z^n = \frac{(1-w)^a (1-2w)^b}{(1-6w+6w^2)^c},$$

with the change of variable

$$z = rac{w(1-w)(1-2w)^4}{(1-6w+6w^2)^3},$$

with
$$a = LK_S - 2K_S^2$$
, $b = (L - K_S)^2 + 3\chi(\mathcal{O}_S)$,
 $c = \chi(S, L) = \frac{1}{2}L(L - K_S) + \chi(\mathcal{O}_S)$

Theorem (Marian-Oprea-Pandharipande, Voisin)

Lehn's conjecture is true.

Hilbert schemes ○○○○●○○○○	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Lehn's conjecture					
Marian- a formul	Oprea-Pandha a for $\sum_{n\geq 0} \int_{\mathcal{S}^{[r]}}$	ripande consi $c_{2n}(\alpha^{[n]})z^n$,	der a generalize $lpha \in \mathcal{K}(\mathcal{S})$	d Segre form	ıula:

Theorem (Marian-Oprea-Pandharipande)

For any $s \in \mathbb{Z}$, there exist V_s , W_s , X_s , Y_s , $Z_s \in \mathbb{Q}[[z]]$ s.th. for any $\alpha \in K(S)$ of rank s on S, we have

$$\sum_{n=0}^{\infty} z^n \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}$$

Hilbert schemes
coordModuli of sheaves
coordBlowup formulas
coordRelations for $\rho \geq |r|$ Strange duality
coordHilbert scheme
coordLehn's conjectureMarian-Oprea-Pandharipande consider a generalized Segre formula:
a formula for $\sum_{n\geq 0} \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) z^n$, $\alpha \in K(S)$ Hilbert scheme
coordTheorem (Marian-Oprea-Pandharipande)

For any $s \in \mathbb{Z}$, there exist V_s , W_s , X_s , Y_s , $Z_s \in \mathbb{Q}[[z]]$ s.th. for any $\alpha \in K(S)$ of rank s on S, we have

$$\sum_{n=0}^{\infty} z^n \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}.$$

With the change of variables $z = t(1 + (1 - s)t)^{1-s}$, one has

$$V_{s}(z) = (1 + (1 - s)t)^{1 - s}(1 + (2 - s)t)^{s},$$

$$W_{s}(z) = (1 + (1 - s)t)^{\frac{1}{2}s - 1}(1 + (2 - s)t)^{\frac{1}{2}(1 - s)},$$

$$X_{s}(z) = (1 + (1 - s)t)^{\frac{1}{2}s^{2} - s}(1 + (2 - s)t)^{-\frac{1}{2}s^{2} + \frac{1}{2}}(1 + (2 - s)(1 - s)t)^{-\frac{1}{2}}$$

They showed explicit expressions for Y_s , Z_s for $s \in \{-2, -1, 0, 1, 2\}$, and conjecture that Y_s , Z_s are algebraic functions for all $s \in \mathbb{Z}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Verlinde formula for	Hilbert schemes				

Consider the generating series $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r})$.

Theorem (Ellingsrud-G-Lehn)

For any $r \in \mathbb{Z}$, there exist $g_r, f_r, A_r, B_r \in \mathbb{Q}[[w]]$ such that for any $L \in Pic(S)$, we have

$$\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes

Consider the generating series $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r})$.

Theorem (Ellingsrud-G-Lehn)

For any $r \in \mathbb{Z}$, there exist $g_r, f_r, A_r, B_r \in \mathbb{Q}[[w]]$ such that for any $L \in Pic(S)$, we have

$$\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$$

With the change of variables $w = v(1 + v)^{r^2-1}$, we have

$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1 + v)^{r^2}}{1 + r^2 v}.$$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes
 Verlinde formula for Hilbert schemes

Consider the generating series $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r})$.

Theorem (Ellingsrud-G-Lehn)

For any $r \in \mathbb{Z}$, there exist $g_r, f_r, A_r, B_r \in \mathbb{Q}[[w]]$ such that for any $L \in Pic(S)$, we have

$$\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$$

With the change of variables $w = v(1 + v)^{r^2-1}$, we have

$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1 + v)^{r^2}}{1 + r^2 v}.$$

Serre duality implies $A_r = B_{-r}/B_r$ for all *r*. Furthermore, $A_r = B_r = 1$ for $r = 0, \pm 1$. In general the A_r , B_r are unknown.

 $\begin{array}{c|c} \mbox{Hilbert schemes}\\ \hline \mbox{Occessor} \bullet \circ \circ & \mbox{Occessor} \bullet \circ & \mbox{Occessor} \bullet & \$

with V_s , W_s , $X_s \in \mathbb{Q}[[z]]$, f_r , $g_r \in \mathbb{Q}[[w]]$ known algebraic functions, and Y_s , $Z_s \in \mathbb{Q}[[z]]$, A_r , $B_r \in \mathbb{Q}[[w]]$ unknown

n = 0

Hilbert schemes Moduli of sheaves Blowup formulas Relations for $\rho > |r|$ Strange duality Hilbert scheme 000000000 Segre-Verlinde correspondence We have seen ∞

$$\sum_{n=0}^{\infty} z^n \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}, \quad s = \mathsf{rk}(\alpha)$$
$$\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2},$$

with V_s , W_s , $X_s \in \mathbb{Q}[[z]]$, f_r , $g_r \in \mathbb{Q}[[w]]$ known algebraic functions, and $Y_s, Z_s \in \mathbb{Q}[[z]], A_r, B_r \in \mathbb{Q}[[w]]$ unknown Based on strange duality there is a conjectural relation between these two generating functions

Conjecture (Johnson, Marian-Oprea-Pandharipande)

For any $r \in \mathbb{Z}$, we have

$$A_r(w) = W_s(z) Y_s(z), \quad B_r(w) = Z_s(z),$$

where s = 1 + r and $w = v(1 + v)^{r^2 - 1}$, $z = t(1 + (1 - s)t)^{1 - s}$, and $v = t(1 - rt)^{-1}$.

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
000000000					
Hilbert schemes: A-	series				

With Mellit get (and partially prove) complete Verlinde (and Segre) formula

With Mellit get (and partially prove) complete Verlinde (and Segre) formula

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, A_r^{LK_S} \, B_r^{K_S^2}$$
$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1+v)^{r^2}}{1+r^2v}, \quad w = v(1+v)^{r^2-1}$$

With Mellit get (and partially prove) complete Verlinde (and Segre) formula

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, A_r^{LK_S} \, B_r^{K_S^2}$$
$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1+v)^{r^2}}{1+r^2v}, \quad w = v(1+v)^{r^2-1}$$

Theorem

$$A_{r}(w) = (1+v)^{-\frac{r}{2}} \exp\left(\sum_{i>0} \frac{(-1)^{i+1}v^{i}}{2i} \operatorname{Coeff}_{x^{0}}\left[\left(\frac{x^{r}-x^{-r}}{x-x^{-1}}\right)^{2i}\right]\right)$$

equivalently if $A_{i,r}(w)^{\frac{1}{2}}$ are the r-1 solutions of $\frac{y^{-1}+(-1)^r y}{y^{-r}-y^r} = v^{\frac{1}{2}}$, then $A_r(w) = \frac{1}{v^{\frac{1}{2}}(1+v)^{\frac{r}{2}}\prod_{i=1}^{r-1}A_{i,r}^{\frac{1}{2}}}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
00000000					

Hilbert schemes: B-series

We can conjecturally also determine the *B*-series.

Conjecture

$$B_{r}(w)^{8} = \left(\frac{\prod_{i=1}^{r-1} A_{i,r}}{v}\right)^{4r+2} (1+v)^{r^{2}+2r} (1+r^{2}v)^{3}$$
$$\cdot \prod_{i,j=1}^{r-1} (1-A_{i,r}A_{j,r})^{2} \prod_{\substack{i,j=1\\i\neq j}}^{r-1} (1-A_{i,r}^{r}A_{j,r}^{r})^{2}$$

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, \mathcal{A}_r^{L\mathcal{K}_S} \, \mathcal{B}_r^{\mathcal{K}_S^2}$$

$$\sum_{n=0}^{\infty} Z^n \int_{S^{[n]}} C_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}.$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
00000000					

Hilbert schemes: B-series

We can conjecturally also determine the *B*-series.

Conjecture

$$B_{r}(w)^{8} = \left(\frac{\prod_{i=1}^{r-1} A_{i,r}}{v}\right)^{4r+2} (1+v)^{r^{2}+2r} (1+r^{2}v)^{3}$$
$$\cdot \prod_{i,j=1}^{r-1} (1-A_{i,r}A_{j,r})^{2} \prod_{\substack{i,j=1\\i\neq j}}^{r-1} (1-A_{i,r}^{r}A_{j,r}^{r})^{2}$$

$$\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$$

$$\sum_{n=0}^{\infty} Z^n \int_{\mathcal{S}^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}.$$

Theorem

The Verlinde-Segre correspondence is true: $A_r(w) = W_{r+1}(z) Y_{r+1}(z), \quad B_r(w) = Z_{r+1}(z)$ with $w = v(1 + v)^{r^2 - 1}, z = t(1 + (1 - s)t)^{1 - s}, and v = t(1 - rt)^{-1}$

Aim: Extend invariants to higher rank moduli spaces, and also use insights from there to shed new light on Hilbert schemes

Aim: Extend invariants to higher rank moduli spaces, and also use insights from there to shed new light on Hilbert schemes

Let (S, H) polarized surface.

Assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ For $\rho \in \mathbb{Z}_{>0}$, $c_1 \in H^2(S, \mathbb{Z})$, and $c_2 \in H^4(S, \mathbb{Z})$, let $M := M_S^H(\rho, c_1, c_2)$ moduli space of rank ρ *H*-semistable sheaves on *S* with Chern classes c_1, c_2

Aim: Extend invariants to higher rank moduli spaces, and also use insights from there to shed new light on Hilbert schemes

Let (S, H) polarized surface.

Assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ For $\rho \in \mathbb{Z}_{>0}$, $c_1 \in H^2(S, \mathbb{Z})$, and $c_2 \in H^4(S, \mathbb{Z})$, let $M := M_S^H(\rho, c_1, c_2)$ moduli space of rank ρ *H*-semistable sheaves on *S* with Chern classes c_1, c_2

Note: via $Z \mapsto I_Z$, we have $S^{[n]} = M_S^H(1, 0, n)$.

Assume *M* contains no strictly semistable sheaves For simplicity also assume there exists a universal sheaf \mathcal{E} on $S \times M$, (i.e. $\mathcal{E}|_{S \times \{[E]\}} = E$)

 $M = M_S^H(\rho, c_1, c_2)$ has a perfect obstruction theory of expected dimension

$$\operatorname{vd}(M) := 2\rho c_2 - (\rho - 1)c_1^2 - (\rho^2 - 1)\chi(\mathcal{O}_S)$$

 $M = M_S^H(\rho, c_1, c_2)$ has a perfect obstruction theory of expected dimension

$$\operatorname{vd}(M) := 2\rho c_2 - (\rho - 1)c_1^2 - (\rho^2 - 1)\chi(\mathcal{O}_S)$$

In particular

- it carries a virtual class $[M]^{\text{vir}} \in H_{2\text{vd}(M)}(M)$
- has a virtual Tangent bundle $T_M^{\text{vir}} \in K^0(M)$
- has a virtual structure sheaf O^{vir}_M ∈ K₀(S) For any V ∈ K⁰(M) the virtual holomorphic Euler characteristic of V is χ^{vir}(M, V) := χ(M, V ⊗ O^{vir}_M)

Virtual Verlinde formula

Determinant bundles: Let $c \in K(S)$ be the class of $E \in M = M_S^H(\rho, c_1, c_2)$ and $K_c := \{v \in K(S) : \chi(S, c \otimes v) = 0\}$ For $\alpha \in K_c$ put with $\pi_S : S \times M \to S, \pi_M : S \times M \to M$ projections

$$\lambda(\alpha) := \det \left(\pi_{\mathcal{M}!} \left(\pi_{\mathcal{S}}^* \alpha \cdot [\mathcal{E}] \right) \right)^{-1} \in \operatorname{Pic}(\mathcal{M})$$

Hilbert schemes

Moduli of sheaves

Blowup formulas

Relations for $\rho \ge |r|$

Strange duality

Hilbert scheme

Virtual Verlinde formula

Determinant bundles: Let $c \in K(S)$ be the class of $E \in M = M_S^H(\rho, c_1, c_2)$ and $K_c := \{v \in K(S) : \chi(S, c \otimes v) = 0\}$ For $\alpha \in K_c$ put with $\pi_S : S \times M \to S, \pi_M : S \times M \to M$ projections

$$\lambda(\alpha) := \det \left(\pi_{M!} \left(\pi_{\mathcal{S}}^* \alpha \cdot [\mathcal{E}] \right) \right)^{-1} \in \operatorname{Pic}(\mathcal{M})$$

Fix $r \in \mathbb{Z}$, $L \in \operatorname{Pic}(S) \otimes \mathbb{Q}$ with $\mathcal{L} := L \otimes \det(c)^{-\frac{r}{\rho}} \in \operatorname{Pic}(S)$ take $v \in K_c$ such that $\operatorname{rk}(v) = r$ and $c_1(v) = \mathcal{L}$, put

$$\mu(L)\otimes E^{\otimes r}:=\lambda(v)\in \operatorname{Pic}(M).$$

On $M_S^H(1,0,n) \cong S^{[n]}$ this is previous definition of $\mu(L) \otimes E^{\otimes r}$

Hilbert schemes

Moduli of sheaves

Blowup formulas

Relations for $\rho \ge |r|$

Strange duality

Hilbert scheme

Virtual Verlinde formula

Determinant bundles: Let $c \in K(S)$ be the class of $E \in M = M_S^H(\rho, c_1, c_2)$ and $K_c := \{v \in K(S) : \chi(S, c \otimes v) = 0\}$ For $\alpha \in K_c$ put with $\pi_S : S \times M \to S, \pi_M : S \times M \to M$ projections

$$\lambda(\alpha) := \det \left(\pi_{\boldsymbol{M}!} \left(\pi_{\boldsymbol{\mathcal{S}}}^* \alpha \cdot [\boldsymbol{\mathcal{E}}] \right) \right)^{-1} \in \operatorname{Pic}(\boldsymbol{\mathcal{M}})$$

Fix $r \in \mathbb{Z}$, $L \in \operatorname{Pic}(S) \otimes \mathbb{Q}$ with $\mathcal{L} := L \otimes \det(c)^{-\frac{r}{\rho}} \in \operatorname{Pic}(S)$ take $v \in K_c$ such that $\operatorname{rk}(v) = r$ and $c_1(v) = \mathcal{L}$, put

$$\mu(L)\otimes E^{\otimes r}:=\lambda(\nu)\in \operatorname{Pic}(M).$$

On $M_S^H(1,0,n) \cong S^{[n]}$ this is previous definition of $\mu(L) \otimes E^{\otimes r}$ Denote by $\mathcal{O}_M^{\text{vir}}$ the virtual structure sheaf of MThe *virtual Verlinde numbers* of S are the virtual holomorphic Euler characteristics

$$\chi^{\mathrm{vir}}(M,\mu(L)\otimes E^{\otimes r}):=\chi(M,\mu(L)\otimes E^{\otimes r}\otimes \mathcal{O}_M^{\mathrm{vir}})$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual Verlinde formula					

For simplicity we assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ and S has a smooth connected canonical divisor Write $\varepsilon_{\rho} := \exp(2\pi i/\rho)$ and $[n] := \{1, \ldots, n\}$. For any $J \subset [n]$, write |J|for its cardinality and $||J|| := \sum_{i \in J} j$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 virtual Verlinde formula
 Virtual Verlinde formula
 Virtual Verlinde formula
 Virtual Verlinde formula
 Virtual Verlinde formula

For simplicity we assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ and S has a smooth connected canonical divisor Write $\varepsilon_{\rho} := \exp(2\pi i/\rho)$ and $[n] := \{1, \ldots, n\}$. For any $J \subset [n]$, write |J|for its cardinality and $||J|| := \sum_{j \in J} j$

Conjecture (GK)

Let $\rho \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}$. There exist $A_{J,r} = A_{J,r}^{(\rho)}$, $B_{J,r} = B_{J,r}^{(\rho)} \in \mathbb{C}[[w^{\frac{1}{2}}]]$ for all $J \subset [\rho - 1]$ such that $\chi^{\text{vir}}(M_S^H(\rho, c_1, c_2), \mu(L) \otimes E^{\otimes r})$ equals the coefficient of $w^{\frac{1}{2}\text{vd}(M)}$ of

$$\rho^{2-\chi(\mathcal{O}_{\mathcal{S}})+K_{\mathcal{S}}^{2}} G_{r}^{\chi(L)} F_{r}^{\frac{1}{2}\chi(\mathcal{O}_{\mathcal{S}})} \sum_{J \subset [\rho-1]} (-1)^{|J|\chi(\mathcal{O}_{\mathcal{S}})} \varepsilon_{\rho}^{\|J\|K_{\mathcal{S}}c_{1}} A_{J,r}^{K_{\mathcal{S}}L} B_{J,r}^{K_{\mathcal{S}}^{2}}$$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 volume
 volum
 <

For simplicity we assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ and S has a smooth connected canonical divisor Write $\varepsilon_{\rho} := \exp(2\pi i/\rho)$ and $[n] := \{1, \ldots, n\}$. For any $J \subset [n]$, write |J|for its cardinality and $||J|| := \sum_{j \in J} j$

Conjecture (GK)

Let $\rho \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}$. There exist $A_{J,r} = A_{J,r}^{(\rho)}$, $B_{J,r} = B_{J,r}^{(\rho)} \in \mathbb{C}[[w^{\frac{1}{2}}]]$ for all $J \subset [\rho - 1]$ such that $\chi^{\text{vir}}(M_S^H(\rho, c_1, c_2), \mu(L) \otimes E^{\otimes r})$ equals the coefficient of $w^{\frac{1}{2}\text{vd}(M)}$ of

$$\rho^{2-\chi(\mathcal{O}_{S})+K_{S}^{2}} G_{r}^{\chi(L)} F_{r}^{\frac{1}{2}\chi(\mathcal{O}_{S})} \sum_{J \subset [\rho-1]} (-1)^{|J|\chi(\mathcal{O}_{S})} \varepsilon_{\rho}^{\|J\|K_{S}c_{1}} A_{J,r}^{K_{S}L} B_{J,r}^{K_{S}^{2}}$$

Here $G_r(w) = 1 + v$, $F_r(w) = \frac{(1+v)^{\frac{r^2}{\rho^2}}}{1+\frac{r^2}{\rho^2}v}$ with $w = v(1+v)^{\frac{r^2}{\rho^2}-1}$ Furthermore, $A_{J,r}$, $B_{J,r}$ are all algebraic functions.

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme	
Virtual Verlinde formula						

In general one gets the following (which we will need later)

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme	
Virtual Verlinde formula						

In general one gets the following (which we will need later)

Conjecture (GK)

Let $\rho \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}$ There exist A_r , B_r , $A_{i,r}$, $B_{ij,r} \in \mathbb{C}[[w^{\frac{1}{2}}]]$ for all $1 \le i \le j \le \rho - 1$ sth. $\chi^{\text{vir}}(M_S^H(\rho, c_1, c_2), \mu(L) \otimes E^{\otimes r})$ is the coefficient of $w^{\frac{1}{2}\text{vd}(M)}$ of

$$\rho^{2-\chi(s)} G_r^{\chi(L)} F_r^{\frac{1}{2}\chi(s)} A_r^{LK_S} B_r^{K_S^2} \sum_{(a_1,...,a_{\rho-1})} \prod_{j=1}^{\rho-1} \varepsilon_{\rho}^{ja_j c_1} SW(a_i) A_{j,r}^{a_j L} \prod_{1 \le j \le k \le \rho-1} B_{jk,r}^{a_j a_k}.$$
Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual Verlinde form	nula				

In general one gets the following (which we will need later)

Conjecture (GK)

Let $\rho \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}$ There exist A_r , B_r , $A_{i,r}$, $B_{ij,r} \in \mathbb{C}[[w^{\frac{1}{2}}]]$ for all $1 \le i \le j \le \rho - 1$ sth. $\chi^{\text{vir}}(M_S^H(\rho, c_1, c_2), \mu(L) \otimes E^{\otimes r})$ is the coefficient of $w^{\frac{1}{2}\text{vd}(M)}$ of

$$\rho^{2-\chi(s)} G_r^{\chi(L)} F_r^{\frac{1}{2}\chi(s)} A_r^{LK_S} B_r^{K_S^2} \sum_{(a_1,\ldots,a_{\rho-1})} \prod_{j=1}^{\rho-1} \varepsilon_{\rho}^{ja_j c_1} SW(a_i) A_{j,r}^{a_j L} \prod_{1 \le j \le k \le \rho-1} B_{jk,r}^{a_j a_k}.$$

Here $SW : H^2(S, \mathbb{Z}) \to \mathbb{Z}$ are the Seiberg-Witten invariants If *S* has a smooth connected canonical divisor only nonzero SW invariants are SW(0) = 1, $SW(K_S) = (-1)^{\chi(\mathcal{O}_S)}$ This gives previous version with

$$A_{J,r} := A_r \prod_{j \in J} A_{j,r}, \quad B_{J,r} := B_r \prod_{i \leq j \in J} B_{ij,r}$$

For any class $\alpha \in K^0(S)$, we define with $\pi_M : S \times M \to M$, $\pi_S : S \times M \to S$,

$$lpha_{\mathcal{M}} := -\pi_{\mathcal{M}!}(\pi_{\mathcal{S}}^* lpha \cdot \mathcal{E} \cdot \det(\mathcal{E})^{-rac{1}{
ho}})$$

On $M := M_S^H(1, 0, n) \cong S^{[n]}$, we have $\alpha_M = \alpha^{[n]}$

1

For any class $\alpha \in K^0(S)$, we define with $\pi_M : S \times M \to M$, $\pi_S : S \times M \to S$,

$$lpha_{\mathcal{M}} := -\pi_{\mathcal{M}!} (\pi_{\mathcal{S}}^* lpha \cdot \mathcal{E} \cdot \mathsf{det}(\mathcal{E})^{-rac{1}{
ho}})$$

On $M := M_S^H(1, 0, n) \cong S^{[n]}$, we have $\alpha_M = \alpha^{[n]}$ For $\alpha \in K^0(S)$, the virtual Segre number of M is

$$\int_{[M]^{\mathrm{vir}}} \boldsymbol{c}_{\mathrm{vd}}(\alpha_M) \in \mathbb{Z}$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual Segre number	ers of moduli spaces				

For simplicity we assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ and S has a smooth connected canonical divisor Write $\varepsilon_{\rho} := \exp(2\pi i/\rho)$ and $[n] := \{1, \ldots, n\}$. For any $J \subset [n]$, write |J|for its cardinality and $||J|| := \sum_{j \in J} j$

For simplicity we assume in the following that $p_g(S) > 0$, $b_1(S) = 0$ and *S* has a smooth connected canonical divisor Write $\varepsilon_{\rho} := \exp(2\pi i/\rho)$ and $[n] := \{1, \ldots, n\}$. For any $J \subset [n]$, write |J|for its cardinality and $||J|| := \sum_{i \in J} j$

Conjecture (GK)

Let $\rho \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}$. There exist V_s , W_s , $X_s \in \mathbb{C}[[z]]$, $Y_{J,s}$, $Z_{J,s} \in \mathbb{C}[[z^{\frac{1}{2}}]]$, for all $J \subset [\rho - 1]$ s.th. for all S as above, any $\alpha \in K^0(S)$ with $\mathrm{rk}(\alpha) = s$ we have that

$$\int_{[M_{S}^{H}(\rho,c_{1},c_{2})]^{\mathrm{vir}}} \boldsymbol{c}_{\mathrm{vd}}(\alpha_{M})$$

is the coefficient of $z^{\frac{1}{2}vd(M)}$ of

$$\begin{split} \rho^{2-\chi(\mathcal{O}_{\mathcal{S}})+\mathcal{K}_{\mathcal{S}}^{2}} \, V_{\mathcal{S}}^{c_{2}(\alpha)} \, W_{\mathcal{S}}^{c_{1}(\alpha)^{2}} \, X_{\mathcal{S}}^{\chi(\mathcal{O}_{\mathcal{S}})} \\ \sum_{J \subset [\rho-1]} (-1)^{|J|\chi(\mathcal{O}_{\mathcal{S}})} \, \varepsilon_{\rho}^{\|J\||\mathcal{K}_{\mathcal{S}}c_{1}} \, Y_{J,s}^{c_{1}(\alpha)\mathcal{K}_{\mathcal{S}}} \, Z_{J,s}^{\mathcal{K}_{\mathcal{S}}^{2}} \end{split}$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual Segre number	ers of moduli spaces				

Conjecture (GK)

 $\int_{[M]^{\text{vir}}} c(\alpha_M) \text{ is the coefficient of } z^{\frac{1}{2}\text{vd}(M)} \text{ of}$ $\rho^{2-\chi(\mathcal{O}_S)+K_S^2} V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} \sum_{J \subset [\rho-1]} (-1)^{|J|\chi(\mathcal{O}_S)} \varepsilon_{\rho}^{\|J\|K_Sc_1} Y_{J,s}^{c_1(\alpha)K_S} Z_{J,s}^{K_S^2}$

Hilbert schemes	Moduli of sheaves ○○○○○○●○	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual Segre numbe	rs of moduli spaces				

Conjecture (GK)

$$\begin{split} &\int_{[M]^{vir}} c(\alpha_M) \text{ is the coefficient of } z^{\frac{1}{2}vd(M)} \text{ of} \\ &\rho^{2-\chi(\mathcal{O}_S)+K_S^2} \, V_S^{c_2(\alpha)} \, W_S^{c_1(\alpha)^2} \, X_S^{\chi(\mathcal{O}_S)} \sum_{J \subset [\rho-1]} (-1)^{|J|\chi(\mathcal{O}_S)} \varepsilon_{\rho}^{||J||K_Sc_1} \, Y_{J,s}^{c_1(\alpha)K_S} \, Z_{J,s}^{K_S^2}. \\ & \text{With } z = t(1+(1-\frac{s}{\rho})t)^{1-\frac{s}{\rho}}, \text{ we have} \\ &V_s(z) = (1+(1-\frac{s}{\rho})t)^{\rho-s}(1+(2-\frac{s}{\rho})t)^s, \\ &W_s(z) = (1+(1-\frac{s}{\rho})t)^{\frac{1}{2}(s-1-\rho)}(1+(2-\frac{s}{\rho})t)^{\frac{1}{2}(1-s)}, \\ &X_s(z) = (1+(1-\frac{s}{\rho})t)^{\frac{1}{2}(s^2-(\rho+\frac{1}{\rho})s)}(1+(2-\frac{s}{\rho})t)^{-\frac{1}{2}s^2+\frac{1}{2}}(1+(1-\frac{s}{\rho})(2-\frac{s}{\rho})t)^{-\frac{1}{2}}. \\ & Furthermore, \, Y_{J,s}, \, Z_{J,s} \text{ are all algebraic functions} \end{split}$$

Theorem (Oberdieck 2022)

This conjecture is true for K3 surfaces

We get the following analogue of the Segre-Verlinde correspondence for Hilbert schemes

Conjecture (GK)

For any $\rho \in \mathbb{Z}_{>0}$ and $r \in \mathbb{Z}$, for all $J \subset [\rho - 1]$, we have

$$A_{J,r}(w) = W_{\rho+r}(z) Y_{J,\rho+r}(z), \quad B_{J,r}(w) = Z_{J,\rho+r}(z),$$

with

$$w = v(1+v)^{\frac{r^2}{\rho^2}-1}, \quad z = t(1+(1-\frac{s}{\rho})t)^{1-\frac{s}{\rho}}, \quad v = t(1-\frac{r}{\rho}t)^{-1}.$$

Hilbert schemes	Moduli of sheaves	Blowup formulas ●○	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Let $\pi:\widehat{m{S}} ightarrow m{S}$ blowup of $m{S}$ in a point with exceptional divisor $m{D}$

Hilbert schemes	Moduli of sheaves	Blowup formulas ●○	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Let $\pi: \widehat{S} \to S$ blowup of *S* in a point with exceptional divisor *D* For many invariants (Donaldson invariants, GW-invariants, ...) blowup formula gives important structural information

Hilbert schemes	Moduli of sheaves	Blowup formulas ●○	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Let $\pi: \widehat{S} \to S$ blowup of *S* in a point with exceptional divisor *D* For many invariants (Donaldson invariants, GW-invariants, ...) blowup formula gives important structural information

Conjecture

Let $L \in Pic(S)$, let $c \in K^0(S)$ be a class of rank ρ . Let $|r| \leq \rho$. Then

$$\chi^{\mathrm{vir}}(\boldsymbol{M}_{\widehat{\boldsymbol{\mathcal{S}}}}(\pi^{*}\boldsymbol{c}),\mu(\pi^{*}\boldsymbol{L}+\boldsymbol{k}\boldsymbol{D})\otimes\boldsymbol{E}^{\otimes r})=\chi^{\mathrm{vir}}(\boldsymbol{M}_{\mathcal{S}}(\boldsymbol{c}),\mu(\boldsymbol{L})\otimes\boldsymbol{E}^{\otimes r}), \ \boldsymbol{k}=0,\ldots,\rho$$

$$\chi^{\mathrm{vir}}(M_{\widehat{S}}(\pi^*c - \ell \mathcal{O}_D), \mu(\pi^*L + (k + r - \frac{\ell}{\rho})D) \otimes E^{\otimes r}) = 0, \ k, \ell = 1, \dots, \rho - 1$$

There are similar s formulas for the Segre invariants

Hilbert schemes	Moduli of sheaves	Blowup formulas ●○	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Let $\pi: \widehat{S} \to S$ blowup of *S* in a point with exceptional divisor *D* For many invariants (Donaldson invariants, GW-invariants, ...) blowup formula gives important structural information

Conjecture

Let $L \in Pic(S)$, let $c \in K^0(S)$ be a class of rank ρ . Let $|r| \leq \rho$. Then

$$\chi^{\mathrm{vir}}(M_{\widehat{\mathcal{S}}}(\pi^{*}c),\mu(\pi^{*}L+kD)\otimes E^{\otimes r}) = \chi^{\mathrm{vir}}(M_{\mathcal{S}}(c),\mu(L)\otimes E^{\otimes r}), \ k = 0,\ldots,\rho$$

$$\chi^{\mathrm{vir}}(\boldsymbol{M}_{\widehat{\boldsymbol{S}}}(\pi^{*}\boldsymbol{c} - \ell\mathcal{O}_{D}), \mu(\pi^{*}\boldsymbol{L} + (\boldsymbol{k} + \boldsymbol{r} - \frac{\ell}{\rho})\boldsymbol{D}) \otimes \boldsymbol{E}^{\otimes \boldsymbol{r}}) = \boldsymbol{0}, \ \boldsymbol{k}, \ell = 1, \dots, \rho - \boldsymbol{1}$$

There are similar s formulas for the Segre invariants Based on computations with Mochizuki's formula Note: similar formulas shown earlier by Nakajima-Yoshioka for eq. sheaves on \mathbb{A}^2 vs $\widehat{\mathbb{A}}^2$. Tannaka-Kuhn showed this generalizes to virtual invariants of moduli spaces of sheaves use this: working on a proof

Blowup formulae					
Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme

Using the structure conjecture this gives

Conjecture

6

Let
$$|r| \le \rho$$
. Recall $[\rho - 1] = \{1, ..., \rho - 1\}$ and $||J|| = \sum_{j \in J} j$

) For a
$$= -
ho, \ldots, 0$$
 we have

$$\sum_{J \subset [\rho-1]} A_{J,r}(w)^a B_{J,r}(w)^{-1} = (1+v)^{\binom{a+1}{2}}, \qquad w = v(1+v)^{\frac{J}{\rho^2}-1}$$

_2

Hilbert schemes	Moduli of sheaves	Blowup formulas ○●	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Using the structure conjecture this gives

Conjecture

6

Let
$$|r| \le \rho$$
. Recall $[\rho - 1] = \{1, ..., \rho - 1\}$ and $||J|| = \sum_{j \in J} j$

) For a
$$= -
ho, \ldots,$$
 0 we have

$$\sum_{J \subset [\rho-1]} A_{J,r}(w)^a B_{J,r}(w)^{-1} = (1+v)^{\binom{a+1}{2}}, \qquad w = v(1+v)^{\frac{J}{\rho^2}-1}$$

_2

2 For
$$\ell = -1, ..., \rho - 1$$
, $a = i - r + \frac{\ell}{\rho}$ with $i = -\rho - 1, ..., -1$ we have

$$\sum_{J \subset [\rho-1]} \epsilon_{\rho}^{\ell ||J||} A_{J,r}^{a} B_{J,r}^{-1} = 0$$

Hilbert schemes	Moduli of sheaves	Blowup formulas ○●	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Blowup formulas					

Using the structure conjecture this gives

Conjecture

Let
$$|r| \le \rho$$
. Recall $[\rho - 1] = \{1, ..., \rho - 1\}$ and $||J|| = \sum_{j \in J} j$

For
$$a=-
ho,\ldots,0$$
 we have

$$\sum_{J \subset [\rho-1]} A_{J,r}(w)^a B_{J,r}(w)^{-1} = (1+v)^{\binom{a+1}{2}}, \qquad w = v(1+v)^{\frac{J}{\rho^2}-1}$$

2

2 For
$$\ell = -1, ..., \rho - 1$$
, $a = i - r + \frac{\ell}{\rho}$ with $i = -\rho - 1, ..., -1$ we have

$$\sum_{J \subset [\rho - 1]} \epsilon_{\rho}^{\ell ||J||} A_{J,r}^{a} B_{J,r}^{-1} = 0$$

There are similar formulas for the Segre invariants related to the formulas for the Verlinde invariants by the Verlinde-Segre correspondence

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Case $s = 0$ and Dor	aldson invariants				

Making suitable assumptions, the blowup formulas allow computation of coefficients of $A_{J,r}$, $B_{J,r}$, $Y_{J,s}$, $Z_{J,s}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Case $s = 0$ and Dor	aldson invariants				

Making suitable assumptions, the blowup formulas allow computation of coefficients of $A_{J,r}, B_{J,r}, Y_{J,s}, Z_{J,s}$ In case s = 0 we can consider the case $\alpha = 0$, thus $\int_{[M^{vir}]} c(\alpha_M) = \int_{[M^{vir}]} 1$, and $\int_{[M^{vir}]} 1 = 0$ unless vd(M) = 0Thus $Z_{J,0}(z) = B_{J,-\rho}(w)$ are constant (independent of w and z)

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme					
Case $s = 0$ and Dor	Case $s = 0$ and Donaldson invariants									

Making suitable assumptions, the blowup formulas allow computation of coefficients of $A_{J,r}$, $B_{J,r}$, $Y_{J,s}$, $Z_{J,s}$ In case s = 0 we can consider the case $\alpha = 0$, thus $\int_{[M^{vir}]} c(\alpha_M) = \int_{[M^{vir}]} 1$, and $\int_{[M^{vir}]} 1 = 0$ unless vd(M) = 0Thus $Z_{J,0}(z) = B_{J,-\rho}(w)$ are constant (independent of w and z) Using blowup formulas and extensive computations for $\rho \leq 10$ we find

Conjecture

Let ξ primitive 4ρ -th root of unity. For $i, j \leq \rho - 1$ let $\beta_{ij} = \frac{\xi^{|i+j|} - \xi^{-|i+j|}}{\xi^{|i-j|} - \xi^{-|i-j|}}$. For $J \subset [\rho - 1]$ put

$$\beta_J = \prod_{\substack{i \in J \\ j \in [\rho-1] \setminus J}} \beta_{ij}, \qquad B_I = \sum_{J \in [\rho-1]} \frac{\beta_J}{\beta_I}.$$

Then $B_{l,-\rho} = Z_{l,0} = B_l$.

OOOOOOOOOO		00	Relations for $\rho \ge r $ 00000	ooo	OOO			
Case $c = 0$ and Depaldeen invariante								

Application: Donaldson invariants in arbitrary rank

Application: Donaldson invariants in arbitrary rank

For any $\gamma \in H^k(S, \mathbb{Q})$ let $\mu(\gamma) := \left(c_2(\mathcal{E}) - \frac{\rho-1}{2\rho}c_1(\mathcal{E})^2\right) / PD(\gamma) \in H^k(M, \mathbb{Q}).$ Let $L \in H^2(S, \mathbb{Q}).$ The rank ρ Donaldson invariants of S with respect to H, c_1 are

$$D^{S,H}_{
ho,c_1,c_2}(L+u\,\mathrm{pt}) = \int_{[M^H_S(
ho,c_1,c_2)]^{\mathrm{vir}}} \exp(\mu(L) + \mu(\mathrm{pt})u).$$

Application: Donaldson invariants in arbitrary rank

For any $\gamma \in H^k(S, \mathbb{Q})$ let $\mu(\gamma) := \left(c_2(\mathcal{E}) - \frac{\rho-1}{2\rho}c_1(\mathcal{E})^2\right)/\text{PD}(\gamma) \in H^k(M, \mathbb{Q}).$ Let $L \in H^2(S, \mathbb{Q}).$ The rank ρ Donaldson invariants of S with respect to H, c_1 are

$$D^{\mathcal{S},H}_{\rho,c_1,c_2}(L+u\operatorname{pt}) = \int_{[M^H_{\mathcal{S}}(\rho,c_1,c_2)]^{\operatorname{vir}}} \exp(\mu(L) + \mu(\operatorname{pt})u).$$

Conjecture

$$D_{\rho,c_{1},c_{2}}^{S,H}(L+u\,\mathrm{pt}) \text{ is the coefficient of } z^{\mathrm{vd}} \text{ of}$$

$$\rho^{2-\chi(\mathcal{O}_{S})}B_{\emptyset}^{K_{S}^{2}}e^{(\frac{1}{2}L^{2}+\rho u)z^{2}}\sum_{(a_{1},\ldots,a_{\rho-1})}\prod_{j=1}^{\rho-1}\varepsilon_{\rho}^{j\cdot(a_{j},c_{1})}\widetilde{SW}(\widetilde{a}_{j})e^{-\sin(\pi\frac{j}{\rho})(\widetilde{a}_{j}L)z}\prod_{1\leq i< j\leq \rho-1}\beta_{ij}^{\frac{1}{2}\widetilde{a}_{i}(\widetilde{a}_{j}-\widetilde{a}_{j})}$$

Application: Donaldson invariants in arbitrary rank

For any $\gamma \in H^k(S, \mathbb{Q})$ let $\mu(\gamma) := \left(c_2(\mathcal{E}) - \frac{\rho - 1}{2\rho}c_1(\mathcal{E})^2\right) / PD(\gamma) \in H^k(M, \mathbb{Q}).$ Let $L \in H^2(S, \mathbb{Q}).$ The rank ρ Donaldson invariants of S with respect to H, c_1 are

$$D^{S,H}_{\rho,c_1,c_2}(L+u\operatorname{pt}) = \int_{[M^H_S(\rho,c_1,c_2)]^{\operatorname{vir}}} \exp(\mu(L) + \mu(\operatorname{pt})u).$$

Conjecture

$$D_{\rho,c_{1},c_{2}}^{S,H}(L+u\,\mathrm{pt}) \text{ is the coefficient of } z^{\mathrm{vd}} \text{ of}$$

$$\rho^{2-\chi(\mathcal{O}_{S})} B_{\emptyset}^{K_{S}^{2}} e^{(\frac{1}{2}L^{2}+\rho u)z^{2}} \sum_{(a_{1},...,a_{\rho-1})} \prod_{j=1}^{\rho-1} \varepsilon_{\rho}^{j\cdot(a_{j},c_{1})} \widetilde{SW}(\widetilde{a}_{j}) e^{-\sin(\pi\frac{j}{\rho})(\widetilde{a}_{j}L)z} \prod_{1 \le i < j \le \rho-1} \beta_{ij}^{\frac{1}{2}\widetilde{a}_{i}(\widetilde{a}_{j}-\widetilde{a}_{i})} \sum_{1 \le i < j \le \rho-1} \beta_{ij}^{\frac{1}{2}} \widetilde{SW}(\widetilde{a}_{j}) e^{-\sin(\pi\frac{j}{\rho})(\widetilde{a}_{j}L)z} \prod_{1 \le i < j \le \rho-1} \beta_{ij}^{\frac{1}{2}} \widetilde{s}_{i}(\widetilde{a}_{j}-\widetilde{a}_{i})$$

Here $\tilde{a} := 2a - K_S$ for $a \in H^2(S, \mathbb{Z})$, and $\widetilde{SW}(\tilde{a}) := SW(a)$ are the Seiberg Witten invariants in differential/algebraic geometry

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
			00000		

Computation of the the coefficients of $A_{I,r}$, $B_{I,r}$

In joint work with Kool, we had observed the following:

Conjecture (GK)

For all $\rho > 0$, $r \in \mathbb{Z}$, $A_{l,r}$ starts with 1, and the coefficient of $v^{\frac{n}{2}}$ of $A_{l,r}$, $B_{l,r}$ is a polynomial of degree $\leq n$ in r

Hilbert schemes

Moduli of sheaves

Blowup formulas

Relations for $\rho \ge |r|$

Strange duality

Hilbert scheme

Computation of the the coefficients of $A_{I,r}$, $B_{I,r}$

In joint work with Kool, we had observed the following:

Conjecture (GK)

For all $\rho > 0$, $r \in \mathbb{Z}$, $A_{l,r}$ starts with 1, and the coefficient of $v^{\frac{n}{2}}$ of $A_{l,r}$, $B_{l,r}$ is a polynomial of degree $\leq n$ in r

In case $\rho > |r|$, knowing the constant terms of the $A_{l,r}$, $B_{l,r}$ gives us starting point. Then blowup formulas give successively degree by degree in $v^{\frac{1}{2}}$ linear equations for the coefficients of $A_{l,r}$, $B_{l,r}$ With computer determine $A_{l,r}$, $B_{l,r}$ for $|r| \le \rho \le 6$ modulo v^{70}

Hilbert schemes

Moduli of sheaves

Blowup formulas

Relations for $\rho \ge |r|$

Strange duality

Hilbert scheme

Computation of the the coefficients of $A_{I,r}$, $B_{I,r}$

In joint work with Kool, we had observed the following:

Conjecture (GK)

For all $\rho > 0$, $r \in \mathbb{Z}$, $A_{l,r}$ starts with 1, and the coefficient of $v^{\frac{n}{2}}$ of $A_{l,r}$, $B_{l,r}$ is a polynomial of degree $\leq n$ in r

In case $\rho > |r|$, knowing the constant terms of the $A_{l,r}$, $B_{l,r}$ gives us starting point. Then blowup formulas give successively degree by degree in $v^{\frac{1}{2}}$ linear equations for the coefficients of $A_{l,r}$, $B_{l,r}$ With computer determine $A_{l,r}$, $B_{l,r}$ for $|r| \le \rho \le 6$ modulo v^{70}

Satisfy alg. equations of degree $2^{\rho-1}$ (recall $[\rho - 1] = \{1, \dots, \rho - 1\}$)

Conjecture

Let $\rho \geq |\mathbf{r}|$, then

$$\prod_{J \subset [\rho-1]} (y - A_{J,r}) \in \mathbb{Q}(\nu)[y], \qquad \prod_{J \subset [\rho-1]} (y - B_{J,r}) \in \mathbb{Q}(\nu)[y].$$

Hilbert schemes

Moduli of sheaves

Blowup formulas

Relations for $\rho \ge |r|$

Strange duality

Hilbert scheme

Computation of the the coefficients of $A_{I,r}$, $B_{I,r}$

In joint work with Kool, we had observed the following:

Conjecture (GK)

For all $\rho > 0$, $r \in \mathbb{Z}$, $A_{l,r}$ starts with 1, and the coefficient of $v^{\frac{n}{2}}$ of $A_{l,r}$, $B_{l,r}$ is a polynomial of degree $\leq n$ in r

In case $\rho > |r|$, knowing the constant terms of the $A_{l,r}$, $B_{l,r}$ gives us starting point. Then blowup formulas give successively degree by degree in $v^{\frac{1}{2}}$ linear equations for the coefficients of $A_{l,r}$, $B_{l,r}$ With computer determine $A_{l,r}$, $B_{l,r}$ for $|r| \le \rho \le 6$ modulo v^{70}

Satisfy alg. equations of degree $2^{\rho-1}$ (recall $[\rho-1] = \{1, \dots, \rho-1\}$)

Conjecture

J

Let $\rho \ge |\mathbf{r}|$, then

$$\prod_{\sub[\rho-1]} (y - A_{J,r}) \in \mathbb{Q}(v)[y], \qquad \prod_{J \sub[\rho-1]} (y - B_{J,r}) \in \mathbb{Q}(v)[y].$$

We determined these polynomials for $|r| \le \rho \le 6$ this gives conjectural Segre and Verlinde formula for $|r| \le \rho \le 6$

These relations are complicated and difficult to generalize e.g. rank 4, r = 1

$$\begin{split} &\prod_{J \subset [3]} (y - A_{J,1}^{(4)}) = y^8 - \frac{8 + 8v + v^2}{(1 + v)^2} y^7 + \frac{28 + 20v}{(1 + v)^3} y^6 \\ &- \frac{56 + 120v + 71v^2 + 8v^3}{(1 + v)^6} y^5 + \frac{70 + 160v + 104v^2 + 16v^3 + v^4}{(1 + v)^4} y^4 \\ &- \frac{56 + 120v + 71v^2 + 8v^3}{(1 + v)^{10}} y^3 + \frac{28 + 20v}{(1 + v)^{11}} y^2 - \frac{8 + 8v + v^2}{(1 + v)^{14}} y + \frac{1}{(1 + v)^{16}} \end{split}$$

There is one hint, that something good happens

~

These relations are complicated and difficult to generalize e.g. rank 4, r = 1

$$\begin{split} &\prod_{J \subset [3]} (y - A_{J,1}^{(4)}) = y^8 - \frac{8 + 8v + v^2}{(1+v)^2} y^7 + \frac{28 + 20v}{(1+v)^3} y^6 \\ &- \frac{56 + 120v + 71v^2 + 8v^3}{(1+v)^6} y^5 + \frac{70 + 160v + 104v^2 + 16v^3 + v^4}{(1+v)^4} y^4 \\ &- \frac{56 + 120v + 71v^2 + 8v^3}{(1+v)^{10}} y^3 + \frac{28 + 20v}{(1+v)^{11}} y^2 - \frac{8 + 8v + v^2}{(1+v)^{14}} y + \frac{1}{(1+v)^{16}} \end{split}$$

There is one hint, that something good happens This polynomial is essentially palindromic

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations for	factors				

$$A_{J,r} := A_r \prod_{j \in J} A_{j,r}, \quad B_{J,r} := B_r \prod_{i \leq j \in J} B_{ij,r}$$

Proceed as follows:

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme				
Simpler relations for	Simpler relations for factors								

$$A_{J,r} := A_r \prod_{j \in J} A_{j,r}, \quad B_{J,r} := B_r \prod_{i \leq j \in J} B_{ij,r}$$

Proceed as follows:

() Express A_r and thus all $A_{J,r}$ in terms of the $A_{i,r}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations for	factors				

$$A_{J,r} := A_r \prod_{j \in J} A_{j,r}, \quad B_{J,r} := B_r \prod_{i \leq j \in J} B_{ij,r}$$

Proceed as follows:

- **()** Express A_r and thus all $A_{J,r}$ in terms of the $A_{i,r}$
- 2 find simpler relations for the $A_{i,r}$

(and similar for B; work in progress, only discuss the A case)

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme				
Simpler relations for	Simpler relations for factors								

$$A_{J,r} := A_r \prod_{j \in J} A_{j,r}, \quad B_{J,r} := B_r \prod_{i \leq j \in J} B_{ij,i}$$

Proceed as follows:

() Express A_r and thus all $A_{J,r}$ in terms of the $A_{i,r}$

2 find simpler relations for the $A_{i,r}$

(and similar for *B*; work in progress, only discuss the *A* case) **Step 1:** the equation for the $A_{J,r}$ is essentially palindromic.

Conjecture

$$\overline{p}_{\rho,r}(y,v) := \prod_{J \subset [\rho-1]} (y - (1+v)^{\frac{\rho+r-1}{2}} A_{J,r})$$

satisfies $y^{2^{\rho-1}}\overline{p}_{\rho,r}(\frac{1}{y},v) = \overline{p}_{\rho,r}(y,v)$; equiv. $A_{J,r} = \frac{\prod_{i \in J} A_{i,r}^{\frac{1}{2}}}{(1+v)^{\frac{\rho+r-1}{2}} \prod_{j \notin J} A_{j,r}^{\frac{1}{2}}}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations fo	r factors				
	п	∆ ¹ /2			

Step 1:
$$A_{l,r} = \frac{\prod_{i \in I} n_{i,r}}{(1+v)^{\frac{\rho+r-1}{2}} \prod_{j \notin I} A_{j,r}^{\frac{1}{2}}}$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations fo	r factors				
	. П	$[A_{i}^{\frac{1}{2}}]$			
Step 1	$A_{lr} =$	$r \in I$, r			

Step 1. $A_{l,r} = \frac{1}{(1+v)^{\frac{\rho+r-1}{2}}\prod_{j \notin l} A_{j,r}^{\frac{1}{2}}}$ Step 2: The $A_{i,r}$ satisfy a very simple algebraic equation

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations for	factors				
Step 1:	$A_{l,r} = \frac{\prod}{(1+\nu)^{\frac{\rho+1}{2}}}$	$\frac{1}{2} \prod_{j \notin I} A_{j,r}^{\frac{1}{2}}$			

Step 2: The $A_{i,r}$ satisfy a very simple algebraic equation

Conjecture

Let $i \in [\rho - 1]$, $r < \rho$, let ξ primitive 4ρ -th root of unity $(A_{i,r})^{\frac{1}{2\rho}}$ satisfies the equation $\frac{\gamma^{\rho} - \gamma^{-\rho}}{\xi^{2i-\rho}y^r + \xi^{\rho-2i}y^r} = v^{\frac{1}{2}}$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Simpler relations fo	r factors				
		. 1			

Step 1:
$$A_{l,r} = \frac{\prod_{i \in I} A_{i,r}^2}{(1+v)^{\frac{\rho+r-1}{2}} \prod_{j \notin I} A_{j,r}^{\frac{1}{2}}}$$

Step 2: The $A_{i,r}$ satisfy a very simple algebraic equation

Conjecture

Let
$$i \in [\rho - 1]$$
, $r < \rho$, let ξ primitive 4ρ -th root of unity $(A_{i,r})^{\frac{1}{2\rho}}$ satisfies the equation $\frac{\gamma^{\rho} - \gamma^{-\rho}}{\xi^{2i-\rho}y^r + \xi^{\rho-2i}y^r} = v^{\frac{1}{2}}$

$$(A_{i,r})^{\frac{1}{2\rho}} = \exp\left(\left(\frac{\exp(\rho v^{\frac{1}{2}}) - \exp(-\rho v^{\frac{1}{2}})}{\xi^{2i-\rho}\exp(rv^{\frac{1}{2}}) + \xi^{\rho-2i}\exp(-rv^{\frac{1}{2}})}\right)^{-1}\right)$$

(compositional inverse)

Result: Assume $0 \leq |r| \leq \rho$. Get Conjectural Verlinde formula for $\chi^{\text{vir}}(M_{S}^{H}(\rho, c_{1}, c_{2}), \mu(L) \otimes E^{\otimes r})$ for $p_{g}(S) > 0$ q(S) = 0 and $K_{S}^{2} = 0$ (resp. formula for $\int_{[M]^{\text{vir}}} c(\alpha_{M})$ for $0 \leq s = \text{rk}(\alpha) \leq 2\rho$) Working on the case $K_{S}^{2} \neq 0$.
Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Virtual strange duality
 Virtua

How to remove the condition $|r| \le \rho$? We have no blowup formulas in this case

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality ●○○	Hilbert scheme	
Virtual strange duality						

How to remove the condition $|r| \le \rho$? We have no blowup formulas in this case Use a virtual version of strange duality

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality

How to remove the condition $|r| \le \rho$? We have no blowup formulas in this case

Use a virtual version of strange duality

Determinant bdls: $c \in K(S)$ class of $E \in M(c) = M_S^H(\rho, c_1, c_2)$ For $\alpha \in K_c := \{ v \in K(S) : \chi(S, c \otimes v) = 0 \}$

$$\lambda(\alpha) := \det \left(\pi_{\boldsymbol{M}(\boldsymbol{c})!} \big(\pi_{\boldsymbol{S}}^* \alpha \cdot [\mathcal{E}] \big) \right)^{-1} \in \operatorname{Pic}(\boldsymbol{M}(\boldsymbol{c}))$$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality

How to remove the condition $|r| \le \rho$? We have no blowup formulas in this case

Use a virtual version of strange duality

Determinant bdls: $c \in K(S)$ class of $E \in M(c) = M_S^H(\rho, c_1, c_2)$ For $\alpha \in K_c := \{ v \in K(S) : \chi(S, c \otimes v) = 0 \}$

$$\lambda(\alpha) := \det \left(\pi_{\mathcal{M}(\mathcal{C})!} \left(\pi_{\mathcal{S}}^* \alpha \cdot [\mathcal{E}] \right) \right)^{-1} \in \operatorname{Pic}(\mathcal{M}(\mathcal{C}))$$

Conjecture (Strange duality)

If $\lambda(\alpha)$ is sufficiently positive (can be made precise) on M(c)and $\lambda(c)$ is sufficiently positive on $M(\alpha)$, then

 $\chi^{\mathrm{vir}}(\boldsymbol{M}(\boldsymbol{c}),\lambda(\alpha)) = \chi^{\mathrm{vir}}(\boldsymbol{M}(\alpha),\lambda(\boldsymbol{c})).$

 Hilbert schemes
 Moduli of sheaves
 Blowup formulas
 Relations for $\rho \ge |r|$ Strange duality
 Hilbert scheme

 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality
 Virtual strange duality

How to remove the condition $|r| \le \rho$? We have no blowup formulas in this case

Use a virtual version of strange duality

Determinant bdls: $c \in K(S)$ class of $E \in M(c) = M_S^H(\rho, c_1, c_2)$ For $\alpha \in K_c := \{ v \in K(S) : \chi(S, c \otimes v) = 0 \}$

$$\lambda(\alpha) := \det \left(\pi_{\mathcal{M}(\mathcal{C})!} \left(\pi_{\mathcal{S}}^* \alpha \cdot [\mathcal{E}] \right) \right)^{-1} \in \operatorname{Pic}(\mathcal{M}(\mathcal{C}))$$

Conjecture (Strange duality)

If $\lambda(\alpha)$ is sufficiently positive (can be made precise) on M(c)and $\lambda(c)$ is sufficiently positive on $M(\alpha)$, then

$$\chi^{\mathrm{vir}}(\boldsymbol{M}(\boldsymbol{c}),\lambda(\alpha)) = \chi^{\mathrm{vir}}(\boldsymbol{M}(\alpha),\lambda(\boldsymbol{c})).$$

Note that *c* has rank ρ and α has rank *r*, then $\lambda(\alpha) = \mu(L) \otimes E^{\otimes r}$ and $\lambda(c) = \mu(L') \otimes E^{\otimes \rho}$, so strange duality exchanges *r* and ρ .

Hilbert schemes
cocococoModuli of sheaves
cococococoBlowup formulas
cocococoRelations for $\rho \ge |r|$
cococococoStrange duality
cococococoHilbert scheme
cocococoVirtual strange dualityUse virtual strange duality and the algebraic equations for $A_{l,r}^{(\rho)}$,
 $B_{l,r}^{(\rho)}$ to order by order determine the coefficients and thus also
algebraic equations for the $A_{l,\rho}^{(r)}$, $B_{l,\rho}^{(r)}$

Hilbert schemes
cocococoModuli of sheaves
cococococoBlowup formulas
cocRelations for $\rho \ge |r|$
cocococoStrange duality
ooHilbert scheme
cocoVirtual strange dualityUse virtual strange duality and the algebraic equations for $A_{l,r}^{(\rho)}$,
 $B_{l,r}^{(\rho)}$ to order by order determine the coefficients and thus also
algebraic equations for the $A_{l,\rho}^{(r)}$, $B_{l,\rho}^{(r)}$
We find the following

Conjecture

Assume $\rho > r > 0$ *.*

- Write $p_{\rho,r}(v, y) = \prod_{l \in [\rho-1]} (y A_{l,r}^{(\rho)}) \in \mathbb{Q}(v)[y]$ Then for $J \subset [r-1]$, $(A_{J,\rho}^{(r)})^{\frac{\rho}{r}}$, $J \subset [r-1]$ is a zero of $p_{\rho,r}(\frac{1}{v}, y)$
- 2 Write $q_{\rho,r}(v, y) = \prod_{l \in [\rho-1]} (y B_{l,r}^{(\rho)}) \in \mathbb{Q}(v)[y]$ Then for $J \in [r-1]$, $B_{J,\rho}^{(r)}$, is a zero of $q_{\rho,r}(\frac{1}{v}, y)$.

Conjecture

Assume $\rho > r > 0$ *.*

- Write $p_{\rho,r}(v, y) = \prod_{l \in [\rho-1]} (y A_{l,r}^{(\rho)}) \in \mathbb{Q}(v)[y]$ Then for $J \subset [r-1]$, $(A_{J,\rho}^{(r)})^{\frac{\rho}{r}}$, $J \subset [r-1]$ is a zero of $p_{\rho,r}(\frac{1}{v}, y)$
- 2 Write $q_{\rho,r}(v, y) = \prod_{l \in [\rho-1]} (y B_{l,r}^{(\rho)}) \in \mathbb{Q}(v)[y]$ Then for $J \subset [r-1]$, $B_{J,\rho}^{(r)}$, is a zero of $q_{\rho,r}(\frac{1}{v}, y)$.

Thus if we know equations for the $A_{l,r}^{(\rho)}$, $B_{l,r}^{(\rho)}$ for $\rho > r > 0$, we also know them for $r > \rho$.

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme
Virtual strange dualit	у				
In case Now as The (<i>A</i> ⁽	$ ho > r$ have $p_{ ho,r}$ sume $r > ho$ $r^{ ho)} r^{rac{r}{ ho}}$ with $I \subset [ho)$	$r(\mathbf{v}, \mathbf{y}) = \prod_{l \in [n]} r_l$	$_{[ho-1]}(oldsymbol{y}-oldsymbol{A}_{I,r}^{(ho)})\in ^{1}$ of the 2 $^{r-1}$ zero	$\mathbb{Q}(m{v})[m{y}]$ os of $p_{ ho,r}(rac{1}{m{v}}, rac{1}{m{v}})$	y)

Hilbert schemes
cocococoModuli of sheaves
cococococoBlowup formulas
cocRelations for $\rho \ge |r|$
cococococoStrange duality
ocoHilbert scheme
cocoVirtual strange dualityIn case $\rho > r$ have $p_{\rho,r}(v, y) = \prod_{l \in [\rho-1]} (y - A_{l,r}^{(\rho)}) \in \mathbb{Q}(v)[y]$
Now assume $r > \rho$
The $(A_{l,r}^{(\rho)})^{\frac{r}{\rho}}$ with $l \in [\rho-1]$ are $2^{\rho-1}$ of the 2^{r-1} zeros of $p_{\rho,r}(\frac{1}{v}, y)$
Define $(A_{J,r}^{(\rho)})^{\frac{r}{\rho}}$ for $J \in [r-1] \setminus [\rho-1]$ as the other solutions
Define $A_{j,r}^{(\rho)} = \frac{A_{(j),r}^{(\rho)}}{A_{0,r}^{(\rho)}}$ for $j = \rho, \dots, r-1$

Conjecture

$$A_{J,r} = \frac{\prod_{i \in J} A_{i,r}^{\frac{1}{2}}}{v^{\frac{\rho}{2}} (1+v)^{\frac{\rho+r-1}{2}} \prod_{j \in [r-1] \setminus J} A_{j,r}^{\frac{1}{2}}}, \quad J \subset [r-1]$$

Step 2 (in progress): We find that $A_{i,r}$ satisfy equations similar to case $|r| < \rho$ (worked out until now for $gcd(r, \rho) = 1$, or $\rho|r$) **Step 3 (in progress):** Extend this to the $B_{l,r}$: expect to find complete Verlinde and Segre conjecture for surfaces with $p_q > 0$, q = 0

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \ge r $	Strange duality	Hilbert scheme ●○○	
Hilbert schemes: A-series						

Finally for Hilbert schemes of points we can get (and partially prove) the complete Verlinde (and Segre) formula

Hilbert schemes
coccoccoModuli of sheaves
coccoccoccoBlowup formulas
coccoccoccoRelations for $\rho \ge |r|$
coccoccoccoStrange duality
coccoccoccoHilbert scheme
e
occHilbert schemes:
Hilbert schemes:
A seriesFinally for Hilbert schemes of points we can get (and partially prove)
the complete Verlinde (and Segre) formulaFinally for Hilbert schemes of points we can get (and partially prove)
formula $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$

$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1 + v)^{r^2}}{1 + r^2 v}, \quad w = v(1 + v)^{r^2 - 1}$$

Hilbert schemes
coccoccoModuli of sheaves
coccoccoccoBlowup formulas
occoccoccoRelations for $\rho \ge |r|$
coccoccoccoStrange duality
coccoccoccoHilbert scheme
occoccoccoHilbert schemes:
Hilbert schemes:
AseriesFinally for Hilbert schemes of points we can get (and partially prove)
the complete Verlinde (and Segre) formula $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$
 $g_r(w) = 1 + v, \quad f_r(w) = \frac{(1 + v)^{r^2}}{1 + r^2 v}, \quad w = v(1 + v)^{r^2 - 1}$ Theorem

$$A_{r}(w) = (1+v)^{-\frac{r}{2}} \exp\left(\sum_{i>0} \frac{(-1)^{i+1}v^{i}}{2i} \operatorname{Coeff}_{x^{0}}\left[\left(\frac{x^{r}-x^{-r}}{x-x^{-1}}\right)^{2i}\right]\right)$$

equivalently the $A_{i,r}(w)^{\frac{1}{2}}$ are the solutions of $\frac{y^{-1}+(-1)^r y}{y^{-r}-y^r} = v^{\frac{1}{2}}$, and $A_r(w) = \frac{1}{v^{\frac{1}{2}}(1+v)^{\frac{r}{2}}\prod_{i \in [r-1]}A_{i,r}^{\frac{1}{2}}}$

Hilbert schemes
occoccoccoModuli of sheaves
occoccoccoBlowup formulas
occoccoccoRelations for $\rho \ge |r|$
occoccoccoStrange duality
occoccoccoHilbert scheme
occoccoccoHilbert schemes: A seriesFinally for Hilbert schemes of points we can get (and partially prove)
the complete Verlinde (and Segre) formula $\sum_{n=0}^{\infty} w^n \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} A_r^{LK_S} B_r^{K_S^2}$
 $g_r(w) = 1 + v, \quad f_r(w) = \frac{(1 + v)^{r^2}}{1 + r^2 v}, \quad w = v(1 + v)^{r^2 - 1}$

Theorem

$$A_{r}(w) = (1+v)^{-\frac{r}{2}} \exp\left(\sum_{i>0} \frac{(-1)^{i+1}v^{i}}{2i} \operatorname{Coeff}_{x^{0}}\left[\left(\frac{x^{r}-x^{-r}}{x-x^{-1}}\right)^{2i}\right]\right)$$

equivalently the $A_{i,r}(w)^{\frac{1}{2}}$ are the solutions of $\frac{y^{-1}+(-1)^r y}{y^{-r}-y^r} = v^{\frac{1}{2}}$, and $A_r(w) = \frac{1}{v^{\frac{1}{2}}(1+v)^{\frac{r}{2}}\prod_{i\in[r-1]}A_{i,r}^{\frac{1}{2}}}$

Method of proof: by cobordism invariance can assume S is toric, use localization. This expresses answer in terms of combinatorics of partitions. Use results and methods of Anton Mellit on symmetric functions to study generating functions (would be talk by itself)

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
					000

Hilbert schemes: B-series

We can conjecturally also determine the *B*-series.

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, A_r^{LK_S} \, B_r^{K_S^2}$$
$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1+v)^{r^2}}{1+r^2 v}, \quad w = v(1+v)^{r^2-1}$$

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
					000

Hilbert schemes: B-series

We can conjecturally also determine the *B*-series.

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, A_r^{LK_S} \, B_r^{K_S^2}$$
$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1+v)^{r^2}}{1+r^2 v}, \quad w = v(1+v)^{r^2-1}$$

Conjecture

$$B_{r}(w)^{8} = \left(\frac{\prod_{i=1}^{r-1} A_{i,r}}{v}\right)^{4r+2} (1+v)^{r^{2}+2r} (1+r^{2}v)^{5}$$
$$\cdot \prod_{i,j=1}^{r-1} (1-A_{i,r}A_{j,r})^{2} \prod_{\substack{i,j=1\\i\neq j}}^{r-1} (1-A_{i,r}^{r}A_{j,r}^{r})^{2}$$

There is also closed formula in terms of binomial coefficients

Hilbert schemes	Moduli of sheaves	Blowup formulas	Relations for $\rho \geq r $	Strange duality	Hilbert scheme
					000

Hilbert schemes: B-series

We can conjecturally also determine the *B*-series.

$$\sum_{n=0}^{\infty} w^n \, \chi(S^{[n]}, \mu(L) \otimes E^{\otimes r}) = g_r^{\chi(L)} \, f_r^{\frac{1}{2}\chi(\mathcal{O}_S)} \, A_r^{LK_S} \, B_r^{K_S^2}$$
$$g_r(w) = 1 + v, \quad f_r(w) = \frac{(1+v)^{r^2}}{1+r^2 v}, \quad w = v(1+v)^{r^2-1}$$

Conjecture

$$B_{r}(w)^{8} = \left(\frac{\prod_{i=1}^{r-1} A_{i,r}}{v}\right)^{4r+2} (1+v)^{r^{2}+2r} (1+r^{2}v)^{5}$$
$$\cdot \prod_{i,j=1}^{r-1} (1-A_{i,r}A_{j,r})^{2} \prod_{\substack{i,j=1\\i\neq j}}^{r-1} (1-A_{i,r}^{r}A_{j,r}^{r})^{2}$$

There is also closed formula in terms of binomial coefficients Expect that for all ρ , *r*, the $B_{l,r}^{(\rho)}$ can be expressed in terms of the $A_{l,r}^{(\rho)}$

$$\sum_{n=0}^{\infty} z^n \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}.$$

with V_s , W_s , X_s known.

Hilbert schemes: Verlinde-Segre correspondence

$$\sum_{n=0}^{\infty} z^n \int_{S^{[n]}} c_{2n}(\alpha^{[n]}) = V_s^{c_2(\alpha)} W_s^{c_1(\alpha)^2} X_s^{\chi(\mathcal{O}_S)} Y_s^{c_1(\alpha)K_S} Z_s^{K_S^2}$$

with V_s , W_s , X_s known.

Conjecture (Johnson, Marian-Oprea-Pandharipande)

For any $r \in \mathbb{Z}$, we have

$$A_r(w) = W_s(z) Y_s(z), \quad B_r(w) = Z_s(z),$$

where s = 1 + r and $w = v(1 + v)^{r^2 - 1}$, $z = t(1 + (1 - s)t)^{1 - s}$, and $v = t(1 - rt)^{-1}$.

Theorem

This conjecture is true.

The methods for now are not strong enough to prove formula for B and Z series, but enough to show they become the same after change of variables