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Introduction

Let S smooth projective surface
Hilbert scheme of points:

S[n] = Hilbn(S) = {zero dim. subschemes of degree n on S}

S[n] is smooth projective, of dimension 2n

Universal subscheme:

Zn(S) =
{
(x , [Z ])

∣∣ x ∈ Z
}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections
Fibre p−1([Z ]) = Z .
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Introduction

Zn(S) =
{
(x , [Z ])

∣∣ x ∈ Z
}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Line bundles on S[n]: Pic(S[n]) = µ(Pic(S))⊕ ZE with E = det(O[n]
S ).

We have

det(V [n]) = µ(det(V ))⊗ E⊗ rk(V ), V ∈ K (S)

Want formulas for

χ(S[n], µ(L)⊗ E⊗r ) Verlinde formula∫
S[n]

c2n(V [n]) =

∫
S[n]

s2n(−V [n]) Segre formula



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Introduction

Zn(S) =
{
(x , [Z ])

∣∣ x ∈ Z
}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Line bundles on S[n]: Pic(S[n]) = µ(Pic(S))⊕ ZE with E = det(O[n]
S ).

We have

det(V [n]) = µ(det(V ))⊗ E⊗ rk(V ), V ∈ K (S)

Want formulas for

χ(S[n], µ(L)⊗ E⊗r ) Verlinde formula∫
S[n]

c2n(V [n]) =

∫
S[n]

s2n(−V [n]) Segre formula



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Introduction

Zn(S) =
{
(x , [Z ])

∣∣ x ∈ Z
}
⊂ S × S[n]

p : Zn(S)→ S[n], q : Zn(S)→ S projections

Tautological sheaves: V vector bundle of rank r on S
V [n] := p∗q∗(V ) vector bundle of rank rn on S[n]

V [n]([Z ]) = H0(V |Z ), in particular O[n]
S ([Z ]) = H0(OZ )

Line bundles on S[n]: Pic(S[n]) = µ(Pic(S))⊕ ZE with E = det(O[n]
S ).

We have

det(V [n]) = µ(det(V ))⊗ E⊗ rk(V ), V ∈ K (S)

Want formulas for

χ(S[n], µ(L)⊗ E⊗r ) Verlinde formula∫
S[n]

c2n(V [n]) =

∫
S[n]

s2n(−V [n]) Segre formula



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Cobordism invariance

Theorem (Ellingsrud-G-Lehn)
Let P(x1, . . . , x2n, y1, . . . , yn) polynomial. Put

P[S[n],L] :=
∫

S[n]
P(c1(S[n]), ..., c2n(S[n]), c1(L[n]), . . . , cn(L[n]))

There is a polynomial P̃(x , y , z,w), such that for all surfaces S,
all line bundles L on S we have

P[S[n],L] = P̃(K 2
S , χ(OS),LKS,K 2

S).

Usually look sequence of polynomials
Pn(x1, ...x2n, y1, . . . , yn), n ≥ 0, "compatible", then∑

n≥0

Pn[S[n],L]xn = A1(x)L2
A2(x)LKS A3(x)K 2

S A4(x)χ(OS)

for universal power series A1, . . . ,A4 ∈ Q[[x ]]
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Lehn’s conjecture

For L a line bundle on S consider the top Segre class∫
S[n]

s2n(L[n]) =

∫
S[n]

c2n(−L[n])

Conjecture (Lehn 1999)
∞∑

n=0

∫
S[n]

s2n(L[n])zn =
(1− w)a(1− 2w)b

(1− 6w + 6w2)c ,

with the change of variable

z =
w(1− w)(1− 2w)4

(1− 6w + 6w2)3 ,

with a = LKS − 2K 2
S , b = (L− KS)

2 + 3χ(OS),
c = χ(S,L) = 1

2 L(L− KS) + χ(OS)

Theorem (Marian-Oprea-Pandharipande, Voisin)
Lehn’s conjecture is true.
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Lehn’s conjecture

Marian-Oprea-Pandharipande consider a generalized Segre formula:
a formula for

∑
n≥0

∫
S[n] c2n(α

[n])zn, α ∈ K (S)

Theorem (Marian-Oprea-Pandharipande)

For any s ∈ Z, there exist Vs, Ws, Xs, Ys, Zs ∈ Q[[z]] s.th. for any
α ∈ K (S) of rank s on S, we have

∞∑
n=0

zn
∫

S[n]
c2n(α

[n]) = V c2(α)
s W c1(α)

2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s .

With the change of variables z = t(1 + (1− s)t)1−s, one has

Vs(z)=(1 + (1− s)t)1−s(1 + (2− s)t)s,

Ws(z)=(1 + (1− s)t)
1
2 s−1(1 + (2− s)t)

1
2 (1−s),

Xs(z)=(1 + (1− s)t)
1
2 s2−s(1 + (2− s)t)−

1
2 s2+ 1

2 (1 + (2− s)(1− s)t)−
1
2 .

They showed explicit expressions for Ys, Zs for s ∈ {−2,−1,0,1,2},
and conjecture that Ys,Zs are algebraic functions for all s ∈ Z
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Verlinde formula for Hilbert schemes

Consider the generating series
∑∞

n=0 wn χ(S[n], µ(L)⊗ E⊗r ).

Theorem (Ellingsrud-G-Lehn)
For any r ∈ Z, there exist gr , fr ,Ar ,Br ∈ Q[[w ]] such that for any
L ∈ Pic(S), we have

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r B

K 2
S

r .

With the change of variables w = v(1 + v)r2−1, we have

gr (w) = 1 + v , fr (w) =
(1 + v)r2

1 + r2v
.

Serre duality implies Ar = B−r/Br for all r . Furthermore,
Ar = Br = 1 for r = 0,±1. In general the Ar , Br are unknown.
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Segre-Verlinde correspondence

We have seen
∞∑

n=0

zn
∫

S[n]
c2n(α

[n]) = V c2(α)
s W c1(α)

2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s , s = rk(α)

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r ,

with Vs, Ws, Xs ∈ Q[[z]], fr , gr ∈ Q[[w ]] known algebraic functions,
and Ys, Zs ∈ Q[[z]], Ar , Br ∈ Q[[w ]] unknown

Based on strange duality there is a conjectural relation between these
two generating functions

Conjecture (Johnson, Marian-Oprea-Pandharipande)
For any r ∈ Z, we have

Ar (w) = Ws(z)Ys(z), Br (w) = Zs(z),

where s = 1 + r and w = v(1 + v)r2−1, z = t(1 + (1− s)t)1−s, and
v = t(1− rt)−1.
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Hilbert schemes: A-series

With Mellit get (and partially prove) complete Verlinde (and Segre)
formula

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r

gr (w) = 1 + v , fr (w) =
(1 + v)r2

1 + r2v
, w = v(1 + v)r2−1

Theorem

Ar (w)=(1 + v)−
r
2 exp

(∑
i>0

(−1)i+1v i

2i
Coeffx0

[(x r − x−r

x − x−1

)2i])
equivalently if Ai,r (w)

1
2 are the r − 1 solutions of y−1+(−1)r y

y−r−y r = v
1
2 , then

Ar (w) = 1

v
1
2 (1+v)

r
2
∏r−1

i=1 A
1
2
i,r
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Hilbert schemes: B-series

We can conjecturally also determine the B-series.

Conjecture

Br (w)8 =
(∏r−1

i=1 Ai,r

v

)4r+2
(1 + v)r2+2r (1 + r2v)3

·
r−1∏
i,j=1

(1− Ai,r Aj,r )
2

r−1∏
i,j=1
i 6=j

(1− Ar
i,r A

r
j,r )

2

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r

∞∑
n=0

zn
∫

S[n]
c2n(α

[n]) = V c2(α)
s W c1(α)

2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s .

Theorem
The Verlinde-Segre correspondence is true:
Ar (w) = Wr+1(z)Yr+1(z), Br (w) = Zr+1(z)
with w = v(1 + v)r2−1, z = t(1 + (1− s)t)1−s, and v = t(1− rt)−1
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Moduli spaces of sheaves

Aim: Extend invariants to higher rank moduli spaces, and also
use insights from there to shed new light on Hilbert schemes

Let (S,H) polarized surface.
Assume in the following that pg(S) > 0, b1(S) = 0
For ρ ∈ Z>0, c1 ∈ H2(S,Z), and c2 ∈ H4(S,Z), let
M := MH

S (ρ, c1, c2) moduli space of rank ρ H-semistable
sheaves on S with Chern classes c1, c2

Note: via Z 7→ IZ , we have S[n] = MH
S (1,0,n).

Assume M contains no strictly semistable sheaves
For simplicity also assume there exists a universal sheaf E on
S ×M, (i.e. E|S×{[E ]} = E)
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Moduli spaces of sheaves

M = MH
S (ρ, c1, c2) has a perfect obstruction theory of expected

dimension

vd(M) := 2ρc2 − (ρ− 1)c2
1 − (ρ2 − 1)χ(OS)

In particular
it carries a virtual class [M]vir ∈ H2vd(M)(M)

has a virtual Tangent bundle T vir
M ∈ K 0(M)

has a virtual structure sheaf Ovir
M ∈ K0(S)

For any V ∈ K 0(M) the virtual holomorphic Euler
characteristic of V is χvir(M,V ) := χ(M,V ⊗Ovir

M )
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Virtual Verlinde formula

Determinant bundles: Let c ∈ K (S) be the class of
E ∈ M = MH

S (ρ, c1, c2) and Kc := {v ∈ K (S) : χ(S, c ⊗ v) = 0}
For α ∈ Kc put with πS : S ×M → S, πM : S ×M → M
projections

λ(α) := det
(
πM!

(
π∗Sα · [E ]

))−1 ∈ Pic(M)

Fix r ∈ Z, L ∈ Pic(S)⊗Q with L := L⊗ det(c)−
r
ρ ∈ Pic(S)

take v ∈ Kc such that rk(v) = r and c1(v) = L, put

µ(L)⊗ E⊗r := λ(v) ∈ Pic(M).

On MH
S (1,0,n) ∼= S[n] this is previous definition of µ(L)⊗ E⊗r

Denote by Ovir
M the virtual structure sheaf of M

The virtual Verlinde numbers of S are the virtual holomorphic
Euler characteristics

χvir(M, µ(L)⊗ E⊗r ) := χ(M, µ(L)⊗ E⊗r ⊗Ovir
M )
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Virtual Verlinde formula

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture (GK)

Let ρ ∈ Z>0 and r ∈ Z. There exist AJ,r = A(ρ)
J,r , BJ,r = B(ρ)

J,r ∈ C[[w 1
2 ]]

for all J ⊂ [ρ− 1] such that χvir(MH
S (ρ, c1, c2), µ(L)⊗ E⊗r ) equals the

coefficient of w
1
2 vd(M) of

ρ2−χ(OS)+K 2
S Gχ(L)

r F
1
2χ(OS)

r

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ AKSL

J,r BK 2
S

J,r .

Here Gr (w) = 1 + v , Fr (w) =
(1 + v)

r2

ρ2

1 + r2

ρ2 v
with w = v(1 + v)

r2

ρ2−1

Furthermore, AJ,r , BJ,r are all algebraic functions.
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Virtual Verlinde formula

In general one gets the following (which we will need later)

Conjecture (GK)
Let ρ ∈ Z>0 and r ∈ Z
There exist Ar , Br , Ai,r ,Bij,r ∈ C[[w 1

2 ]] for all 1 ≤ i ≤ j ≤ ρ− 1
sth. χvir(MH

S (ρ, c1, c2), µ(L)⊗ E⊗r ) is the coefficient of w
1
2 vd(M) of

ρ2−χ(S)Gχ(L)
r F

1
2χ(S)

r ALKS
r BK 2

S
r

∑
(a1,...,aρ−1)

ρ−1∏
j=1

ε
jaj c1
ρ SW (ai)Aaj L

j,r

∏
1≤j≤k≤ρ−1

Baj ak
jk,r .

Here SW : H2(S,Z)→ Z are the Seiberg-Witten invariants
If S has a smooth connected canonical divisor only nonzero SW
invariants are SW (0) = 1, SW (KS) = (−1)χ(OS)

This gives previous version with

AJ,r := Ar

∏
j∈J

Aj,r , BJ,r := Br

∏
i≤j∈J

Bij,r
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Virtual Segre numbers of moduli spaces

For any class α ∈ K 0(S), we define with πM : S ×M → M,
πS : S ×M → S,

αM := −πM!(π
∗
Sα · E · det(E)

− 1
ρ )

On M := MH
S (1,0,n) ∼= S[n], we have αM = α[n]

For α ∈ K 0(S), the virtual Segre number of M is∫
[M]vir

cvd(αM) ∈ Z
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Virtual Segre numbers of moduli spaces

For simplicity we assume in the following that pg(S) > 0, b1(S) = 0
and S has a smooth connected canonical divisor
Write ερ := exp(2πi/ρ) and [n] := {1, . . . ,n}. For any J ⊂ [n], write |J|
for its cardinality and ‖J‖ :=

∑
j∈J j

Conjecture (GK)

Let ρ ∈ Z>0 and s ∈ Z. There exist Vs, Ws, Xs ∈ C[[z]], YJ,s,
ZJ,s ∈ C[[z 1

2 ]], for all J ⊂ [ρ− 1] s.th. for all S as above, any
α ∈ K 0(S) with rk(α) = s we have that∫

[MH
S (ρ,c1,c2)]vir

cvd(αM)

is the coefficient of z
1
2 vd(M) of

ρ2−χ(OS)+K 2
S V c2(α)

s W c1(α)
2

s Xχ(OS)
s∑

J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ Y c1(α)KS

J,s Z K 2
S

J,s.
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Virtual Segre numbers of moduli spaces

Conjecture (GK)∫
[M]vir c(αM) is the coefficient of z

1
2 vd(M) of

ρ2−χ(OS)+K 2
S V c2(α)

s W c1(α)
2

s Xχ(OS)
s

∑
J⊂[ρ−1]

(−1)|J|χ(OS) ε‖J‖KSc1
ρ Y c1(α)KS

J,s Z K 2
S

J,s.

With z = t(1 + (1− s
ρ )t)

1− s
ρ , we have

Vs(z) = (1 + (1 − s
ρ
)t)ρ−s(1 + (2 − s

ρ
)t)s,

Ws(z) = (1 + (1 − s
ρ
)t)

1
2 (s−1−ρ)(1 + (2 − s

ρ
)t)

1
2 (1−s),

Xs(z) = (1 + (1 − s
ρ
)t)

1
2 (s

2−(ρ+ 1
ρ
)s)(1 + (2 − s

ρ
)t)−

1
2 s2+ 1

2 (1 + (1 − s
ρ
)(2 − s

ρ
)t)−

1
2 .

Furthermore, YJ,s, ZJ,s are all algebraic functions

Theorem (Oberdieck 2022)

This conjecture is true for K3 surfaces
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Virtual Segre-Verlinde correspondence

We get the following analogue of the Segre-Verlinde
correspondence for Hilbert schemes

Conjecture (GK)
For any ρ ∈ Z>0 and r ∈ Z, for all J ⊂ [ρ− 1], we have

AJ,r (w) = Wρ+r (z)YJ,ρ+r (z), BJ,r (w) = ZJ,ρ+r (z),

with

w = v(1 + v)
r2

ρ2−1
, z = t(1 + (1− s

ρ)t)
1− s

ρ , v = t(1− r
ρ t)−1.
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Blowup formulas

Let π : Ŝ → S blowup of S in a point with exceptional divisor D

For many invariants (Donaldson invariants, GW-invariants, . . . )
blowup formula gives important structural information

Conjecture

Let L ∈ Pic(S), let c ∈ K 0(S) be a class of rank ρ. Let |r | ≤ ρ. Then

χvir(MŜ(π
∗c), µ(π∗L+kD)⊗E⊗r )=χvir(MS(c), µ(L)⊗E⊗r ), k = 0, . . . , ρ

χvir(MŜ(π
∗c−`OD), µ(π

∗L+(k+r− `
ρ )D)⊗E⊗r )=0, k , ` = 1, . . . , ρ−1

There are similar s formulas for the Segre invariants
Based on computations with Mochizuki’s formula
Note: similar formulas shown earlier by Nakajima-Yoshioka for
eq. sheaves on A2 vs Â2. Tannaka-Kuhn showed this generalizes to
virtual invariants of moduli spaces of sheaves
use this: working on a proof
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eq. sheaves on A2 vs Â2. Tannaka-Kuhn showed this generalizes to
virtual invariants of moduli spaces of sheaves
use this: working on a proof



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Blowup formulas

Using the structure conjecture this gives

Conjecture

Let |r | ≤ ρ. Recall [ρ− 1] = {1, . . . , ρ− 1} and ‖J‖ =
∑

j∈J j

1 For a = −ρ, . . . ,0 we have

∑
J⊂[ρ−1]

AJ,r (w)aBJ,r (w)−1 = (1 + v)(
a+1

2 ), w = v(1 + v)
r2

ρ2−1

2 For ` = −1, . . . , ρ− 1, a = i − r + `
ρ with i = −ρ− 1, . . . ,−1 we

have ∑
J⊂[ρ−1]

ε`‖J‖ρ Aa
J,r B

−1
J,r = 0

There are similar formulas for the Segre invariants
related to the formulas for the Verlinde invariants by the
Verlinde-Segre correspondence
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2 For ` = −1, . . . , ρ− 1, a = i − r + `
ρ with i = −ρ− 1, . . . ,−1 we

have ∑
J⊂[ρ−1]

ε`‖J‖ρ Aa
J,r B

−1
J,r = 0

There are similar formulas for the Segre invariants
related to the formulas for the Verlinde invariants by the
Verlinde-Segre correspondence
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Case s = 0 and Donaldson invariants

Making suitable assumptions, the blowup formulas allow computation
of coefficients of AJ,r ,BJ,r , YJ,s,ZJ,s

In case s = 0 we can consider the case α = 0, thus∫
[Mvir]

c(αM) =
∫
[Mvir]

1, and
∫
[Mvir]

1 = 0 unless vd(M) = 0
Thus ZJ,0(z) = BJ,−ρ(w) are constant (independent of w and z)
Using blowup formulas and extensive computations for ρ ≤ 10 we find

Conjecture

Let ξ primitive 4ρ-th root of unity. For i , j ≤ ρ− 1 let βij =
ξ|i+j|−ξ−|i+j|

ξ|i−j|−ξ−|i−j| .
For J ⊂ [ρ− 1] put

βJ =
∏
i∈J

j∈[ρ−1]\J

βij , BI =
∑

J∈[ρ−1]

βJ

βI
.

Then BI,−ρ = ZI,0 = BI .
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Case s = 0 and Donaldson invariants

Application: Donaldson invariants in arbitrary rank

For any γ ∈ Hk (S,Q) let
µ(γ) :=

(
c2(E)− ρ−1

2ρ c1(E)2
)
/PD(γ) ∈ Hk (M,Q). Let L ∈ H2(S,Q).

The rank ρ Donaldson invariants of S with respect to H, c1 are

DS,H
ρ,c1,c2(L + u pt) =

∫
[MH

S (ρ,c1,c2)]vir
exp(µ(L) + µ(pt)u).

Conjecture

DS,H
ρ,c1,c2(L + u pt) is the coefficient of zvd of

ρ2−χ(OS)BK 2
S
∅ e( 1

2 L2+ρu)z2∑
(a1,...,aρ−1)

ρ−1∏
j=1

ε
j·(aj ,c1)
ρ S̃W (ãj)e−sin(π

j
ρ )(ãj L)z

∏
1≤i<j≤ρ−1

β
1
2 ãi (ãj−ãi )

ij

Here ã := 2a− KS for a ∈ H2(S,Z), and S̃W (ã) := SW (a) are the
Seiberg Witten invariants in differential/algebraic geometry
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ρ S̃W (ãj)e−sin(π

j
ρ )(ãj L)z
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Seiberg Witten invariants in differential/algebraic geometry



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Computation of the the coefficients of AI,r , BI,r

In joint work with Kool, we had observed the following:

Conjecture (GK)

For all ρ > 0, r ∈ Z, AI,r starts with 1, and the coefficient of v
n
2 of AI,r ,

BI,r is a polynomial of degree ≤ n in r

In case ρ > |r |, knowing the constant terms of the AI,r , BI,r gives us
starting point. Then blowup formulas give successively degree by
degree in v

1
2 linear equations for the coefficients of AI,r , BI,r

With computer determine AI,r , BI,r for |r | ≤ ρ ≤ 6 modulo v70

Satisfy alg. equations of degree 2ρ−1 (recall [ρ− 1] = {1, . . . , ρ− 1})

Conjecture

Let ρ ≥ |r |, then∏
J⊂[ρ−1]

(y − AJ,r ) ∈ Q(v)[y ],
∏

J⊂[ρ−1]

(y − BJ,r ) ∈ Q(v)[y ].

We determined these polynomials for |r | ≤ ρ ≤ 6
this gives conjectural Segre and Verlinde formula for |r | ≤ ρ ≤ 6
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Simpler relations for factors

These relations are complicated and difficult to generalize
e.g. rank 4, r = 1

∏
J⊂[3]

(y − A(4)
J,1) = y8 − 8 + 8v + v2

(1 + v)2 y7 +
28 + 20v
(1 + v)3 y6

− 56 + 120v + 71v2 + 8v3

(1 + v)6 y5 +
70 + 160v + 104v2 + 16v3 + v4

(1 + v)4 y4

− 56 + 120v + 71v2 + 8v3

(1 + v)10 y3 +
28 + 20v
(1 + v)11 y2 − 8 + 8v + v2

(1 + v)14 y +
1

(1 + v)16

There is one hint, that something good happens

This polynomial is essentially palindromic
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Simpler relations for factors

Recall that
AJ,r := Ar

∏
j∈J

Aj,r , BJ,r := Br

∏
i≤j∈J

Bij,r

Proceed as follows:

1 Express Ar and thus all AJ,r in terms of the Ai,r

2 find simpler relations for the Ai,r

(and similar for B; work in progress, only discuss the A case)
Step 1: the equation for the AJ,r is essentially palindromic.

Conjecture

pρ,r (y , v) :=
∏

J⊂[ρ−1]

(y − (1 + v)
ρ+r−1

2 AJ,r )

satisfies y2ρ−1
pρ,r (

1
y , v) = pρ,r (y , v); equiv. AJ,r =

∏
i∈J A

1
2
i,r

(1+v)
ρ+r−1

2
∏

j 6∈J A
1
2
j,r
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Simpler relations for factors

Step 1: AI,r =
∏

i∈I A
1
2
i,r

(1+v)
ρ+r−1

2
∏

j 6∈I A
1
2
j,r

Step 2: The Ai,r satisfy a very simple algebraic equation

Conjecture

Let i ∈ [ρ− 1], r < ρ, let ξ primitive 4ρ-th root of unity
(Ai,r )

1
2ρ satisfies the equation yρ−y−ρ

ξ2i−ρy r+ξρ−2i y r = v
1
2

(Ai,r )
1

2ρ = exp

( exp(ρv
1
2 )− exp(−ρv

1
2 )

ξ2i−ρ exp(rv 1
2 ) + ξρ−2i exp(−rv 1

2 )

)−1


(compositional inverse)

Result: Assume 0 ≤ |r | ≤ ρ. Get Conjectural Verlinde formula for
χvir(MH

S (ρ, c1, c2), µ(L)⊗ E⊗r ) for pg(S) > 0 q(S) = 0 and K 2
S = 0

(resp. formula for
∫
[M]vir c(αM) for 0 ≤ s = rk(α) ≤ 2ρ)

Working on the case K 2
S 6= 0.



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Simpler relations for factors

Step 1: AI,r =
∏

i∈I A
1
2
i,r

(1+v)
ρ+r−1

2
∏

j 6∈I A
1
2
j,r

Step 2: The Ai,r satisfy a very simple algebraic equation

Conjecture

Let i ∈ [ρ− 1], r < ρ, let ξ primitive 4ρ-th root of unity
(Ai,r )

1
2ρ satisfies the equation yρ−y−ρ

ξ2i−ρy r+ξρ−2i y r = v
1
2

(Ai,r )
1

2ρ = exp

( exp(ρv
1
2 )− exp(−ρv

1
2 )

ξ2i−ρ exp(rv 1
2 ) + ξρ−2i exp(−rv 1

2 )

)−1


(compositional inverse)

Result: Assume 0 ≤ |r | ≤ ρ. Get Conjectural Verlinde formula for
χvir(MH

S (ρ, c1, c2), µ(L)⊗ E⊗r ) for pg(S) > 0 q(S) = 0 and K 2
S = 0

(resp. formula for
∫
[M]vir c(αM) for 0 ≤ s = rk(α) ≤ 2ρ)

Working on the case K 2
S 6= 0.



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Simpler relations for factors

Step 1: AI,r =
∏

i∈I A
1
2
i,r

(1+v)
ρ+r−1

2
∏

j 6∈I A
1
2
j,r

Step 2: The Ai,r satisfy a very simple algebraic equation

Conjecture

Let i ∈ [ρ− 1], r < ρ, let ξ primitive 4ρ-th root of unity
(Ai,r )

1
2ρ satisfies the equation yρ−y−ρ

ξ2i−ρy r+ξρ−2i y r = v
1
2

(Ai,r )
1

2ρ = exp

( exp(ρv
1
2 )− exp(−ρv

1
2 )

ξ2i−ρ exp(rv 1
2 ) + ξρ−2i exp(−rv 1

2 )

)−1


(compositional inverse)

Result: Assume 0 ≤ |r | ≤ ρ. Get Conjectural Verlinde formula for
χvir(MH

S (ρ, c1, c2), µ(L)⊗ E⊗r ) for pg(S) > 0 q(S) = 0 and K 2
S = 0

(resp. formula for
∫
[M]vir c(αM) for 0 ≤ s = rk(α) ≤ 2ρ)

Working on the case K 2
S 6= 0.



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Simpler relations for factors

Step 1: AI,r =
∏

i∈I A
1
2
i,r

(1+v)
ρ+r−1

2
∏

j 6∈I A
1
2
j,r

Step 2: The Ai,r satisfy a very simple algebraic equation

Conjecture

Let i ∈ [ρ− 1], r < ρ, let ξ primitive 4ρ-th root of unity
(Ai,r )

1
2ρ satisfies the equation yρ−y−ρ

ξ2i−ρy r+ξρ−2i y r = v
1
2

(Ai,r )
1

2ρ = exp

( exp(ρv
1
2 )− exp(−ρv

1
2 )

ξ2i−ρ exp(rv 1
2 ) + ξρ−2i exp(−rv 1

2 )

)−1


(compositional inverse)

Result: Assume 0 ≤ |r | ≤ ρ. Get Conjectural Verlinde formula for
χvir(MH

S (ρ, c1, c2), µ(L)⊗ E⊗r ) for pg(S) > 0 q(S) = 0 and K 2
S = 0

(resp. formula for
∫
[M]vir c(αM) for 0 ≤ s = rk(α) ≤ 2ρ)

Working on the case K 2
S 6= 0.



Hilbert schemes Moduli of sheaves Blowup formulas Relations for ρ ≥ |r| Strange duality Hilbert scheme

Virtual strange duality

How to remove the condition |r | ≤ ρ? We have no blowup
formulas in this case

Use a virtual version of strange duality
Determinant bdls: c ∈ K (S) class of E ∈ M(c) = MH

S (ρ, c1, c2)
For α ∈ Kc := {v ∈ K (S) : χ(S, c ⊗ v) = 0}

λ(α) := det
(
πM(c)!

(
π∗Sα · [E ]

))−1 ∈ Pic(M(c))

Conjecture (Strange duality)
If λ(α) is sufficiently positive (can be made precise) on M(c)
and λ(c) is sufficiently positive on M(α), then

χvir(M(c), λ(α)) = χvir(M(α), λ(c)).

Note that c has rank ρ and α has rank r , then λ(α) = µ(L)⊗E⊗r

and λ(c) = µ(L′)⊗ E⊗ρ, so strange duality exchanges r and ρ.
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and λ(c) = µ(L′)⊗ E⊗ρ, so strange duality exchanges r and ρ.
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Virtual strange duality

Use virtual strange duality and the algebraic equations for A(ρ)
I,r ,

B(ρ)
I,r to order by order determine the coefficients and thus also

algebraic equations for the A(r)
I,ρ , B(r)

I,ρ

We find the following

Conjecture
Assume ρ > r > 0.

1 Write pρ,r (v , y) =
∏

I⊂[ρ−1](y − A(ρ)
I,r ) ∈ Q(v)[y ]

Then for J ⊂ [r − 1], (A(r)
J,ρ)

ρ
r , J ⊂ [r − 1] is a zero of

pρ,r ( 1
v , y)

2 Write qρ,r (v , y) =
∏

I⊂[ρ−1](y − B(ρ)
I,r ) ∈ Q(v)[y ]

Then for J ⊂ [r − 1], B(r)
J,ρ, is a zero of qρ,r ( 1

v , y).

Thus if we know equations for the A(ρ)
I,r , B(ρ)

I,r for ρ > r > 0, we
also know them for r > ρ.
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Virtual strange duality

In case ρ > r have pρ,r (v , y) =
∏

I⊂[ρ−1](y − A(ρ)
I,r ) ∈ Q(v)[y ]

Now assume r > ρ

The (A(ρ)
I,r )

r
ρ with I ⊂ [ρ− 1] are 2ρ−1 of the 2r−1 zeros of pρ,r ( 1

v , y)

Define (A(ρ)
J,r )

r
ρ for J ⊂ [r − 1] \ [ρ− 1] as the other solutions

Define A(ρ)
j,r =

A(ρ)

{j},r

A(ρ)

∅,r
for j = ρ, . . . r − 1

Carry out steps 1 and 2 above: Step 1:

Conjecture

AJ,r =

∏
i∈J A

1
2
i,r

v
ρ
2 (1 + v)

ρ+r−1
2
∏

j∈[r−1]\J A
1
2
j,r

, J ⊂ [r − 1]

Step 2 (in progress): We find that Ai,r satisfy equations similar to
case |r | < ρ (worked out until now for gcd(r , ρ) = 1, or ρ|r )
Step 3 (in progress): Extend this to the BI,r : expect to find complete
Verlinde and Segre conjecture for surfaces with pg > 0, q = 0
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Hilbert schemes: A-series

Finally for Hilbert schemes of points we can get (and partially prove)
the complete Verlinde (and Segre) formula

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r

gr (w) = 1 + v , fr (w) =
(1 + v)r2

1 + r2v
, w = v(1 + v)r2−1

Theorem

Ar (w)=(1 + v)−
r
2 exp

(∑
i>0

(−1)i+1v i

2i
Coeffx0

[(x r − x−r

x − x−1

)2i])
equivalently the Ai,r (w)

1
2 are the solutions of y−1+(−1)r y

y−r−y r = v
1
2 , and

Ar (w) = 1

v
1
2 (1+v)

r
2
∏

i∈[r−1] A
1
2
i,r

Method of proof: by cobordism invariance can assume S is toric, use
localization. This expresses answer in terms of combinatorics of
partitions. Use results and methods of Anton Mellit on symmetric
functions to study generating functions (would be talk by itself)
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Hilbert schemes: B-series

We can conjecturally also determine the B-series.

∞∑
n=0

wn χ(S[n], µ(L)⊗ E⊗r ) = gχ(L)r f
1
2χ(OS)

r ALKS
r BK 2

S
r

gr (w) = 1 + v , fr (w) =
(1 + v)r2

1 + r2v
, w = v(1 + v)r2−1

Conjecture

Br (w)8 =
(∏r−1

i=1 Ai,r

v

)4r+2
(1 + v)r2+2r (1 + r2v)3

·
r−1∏
i,j=1

(1− Ai,r Aj,r )
2

r−1∏
i,j=1
i 6=j

(1− Ar
i,r A

r
j,r )

2

There is also closed formula in terms of binomial coefficients
Expect that for all ρ, r , the B(ρ)

I,r can be expressed in terms of the A(ρ)
i,r
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Hilbert schemes: Verlinde-Segre correspondence

∞∑
n=0

zn
∫

S[n]
c2n(α

[n]) = V c2(α)
s W c1(α)

2

s Xχ(OS)
s Y c1(α)KS

s Z K 2
S

s .

with Vs, Ws, Xs known.

Conjecture (Johnson, Marian-Oprea-Pandharipande)
For any r ∈ Z, we have

Ar (w) = Ws(z)Ys(z), Br (w) = Zs(z),

where s = 1 + r and w = v(1 + v)r2−1, z = t(1 + (1− s)t)1−s, and
v = t(1− rt)−1.

Theorem
This conjecture is true.

The methods for now are not strong enough to prove formula
for B and Z series, but enough to show they become the same
after change of variables
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