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Recursion

Let X be a smooth projective surface and D be an ample divisor in X. Let
3 be a nonzero curve class of X. We use M, m(Ox(—D),/) to denote
the moduli space of m pointed genus g stable maps of class 3 to the total
space of Ox(—D). Since D is ample, Mg n(Ox(—D), ) coincides with

the moduli Mg m(X, ). Let [pt] be the point class of X. We consider the
following primary Gromov-Witten invariants:

NOx0) /[ Tevi(et)

Mg,m(ox(fD)vﬁ)]wr i=1

By dimension constraint, we need m = Tiog - 3 where Tiog = —Kx — D. In
particular, Tiog - 3 > 0. We only consider those 3 such that i, - 3 > 0.
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By fixing 8 and summing over g, we get the following generating series

FBOX(_D) — Z Ng)g(—D)th—}‘rTlog'B
g>0

The Gopakumar-Vafa conjecture proven by Zinger, lonel, Parker, Doan,
Walpuski tells us that we can reorganized it as

FoXEP) = N7 n2xCP) 2sin(h/2)) 2% =2+ Tee'
§20

where ns)é(fD) € Z. In particular, FﬂOX(fD) € Q((—q)f%) with g = e’
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For a divisor D C X, the virtual genus g(D) of a divisor D is defined by
1
g(D)=1- QTlog D

In this talk, we will further assume D to be of virtual genus 0. Then

Theorem (Bousseau-W.)

Let X be a smooth projective surface and D be an ample divisor in X with
virtual genus 0. Then, we have the following recursive formula:

FOX(0) Ox(=D) pOX(=D) (D | =D < Tiog - B = 3)
F Fs 4 =)
Blg ( 7 ) Tlog : /31 -1

B1,82>0

’.fTIog'BZ?’-
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Genus 0 recursion

If we specialize the above recursion to genus 0, we get

Ox(~D) _ Ox(~D) pOx(- Tlog'ﬁ—3>
Ny X Ny D . <
0,8 1%2:5 0,51 0/32 ( B) Tiog - 51— 1

B1:82>0

This genus zero recursion can also be deduced from the WDVV equation of
relative GW theory together with local/relative correspondence:

Or(—D Ox(=D) pOx(~D) Tiog -3 —3
(-rlog‘D)Nog( ) ) Z Nogl( )Noé;( (Dﬂl)2 (-,—I gg'ﬁl_l)
B1+B2=8 °

Bl 32 >0

So the requirement of D to be virtual genus zero, i.e., Tog - D = 2is

necessary. And this is also why we treat the previous recursion as all-genus
WDVV recursion.
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The genus 0 consideration can also be used to show that the requirement
of D to be ample can not be relaxed to be nef.

For example, let X = P(Op1(1) @ Op1) and D be a fiber of X. We have
the following recursion:

NOx(-P) o Tiog -8 —3 D
X( Z Nogl 032( (D B (T g-B—l) (D-B)? OBf)
B1+B2=5 log * 1
B1,82>0
if Tiog - B > 3, where f stands for the fiber class. Still, it can be deduced
from the WDVV equation of relative GW theory together with local/relative

correspondence.

The appearance of the additional term (D - B)2Ngg£_fD) follows from the
calculation of WDVV equation, there will be a contribution from a splitting
of curve class 5 = (1 + B2 with 1,82 # 0 but D - 5, = 0. Such kind of
contribution can not appear if D is ample.
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Deformation equivalence

According to Lanteri and Palleschi, the condition that X has an ample

divisor D with virtual genus 0 actually forces (X, D) to be the following two

types:

(1) (X, D) = (P2, line) or (P2, conic);

(2) X is a Hirzebruch surface and Ox(D) ® Of = Op1(1) for any fiber f
of the Hirzebruch surface X.

Let us give a more detailed description of case (2). First, we specialize X

to be F, = P(O(n) & O) where n € Z>g. Let C, and C_, be the sections

of X with intersection numbers n and —n respectively. The requirements

that Ox(D) ® Of = Opi(1) and D is ample will imply that D = C, + sf

with s > 0.
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A deformation of F, to F,4» is given by

{([xo cxal, o y1i e, t) € P'x P2 x C

§2y — Xy + g iy = 0}

Under such a deformation the divisor C, + (s 4+ 1)f of F, will deform to
be Chyo + sf of F,io and the curve class diC_, 4+ d»f deforms to be
d1C_p—2+ (di + dr)f. So after a sequence of deformation, we have
GW(OF,(=Cy — sf)) ~ GW(OF,,,(—Chy2 — (s — 1)f)) ~
"= GW(OFn+2572(_Cn+25—2 - f))

The all-genus WDVV equation is compatible with the above deformation.
So it is enough to consider only the following three types of pairs (X, D):

(P2, line), (P2, conic), (Fp, Co+f), n>0.
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Sketch of the proof

The proof for the all-genus WDVV recursion goes as follows:
Local GW-theroy — Relative (Log) GW-theory — Quiver DT-theory

We first translate the recursion into a recursion for relative GW-invariants
using the local/relative correspondence. We then further translate it into a
recursion for quiver DT-invariants via a GW/quiver correspondence derived
by Bousseau from the GW/Kronecker correspondence for log Calabi-Yau
surfaces. The recursion on the quiver DT-side can then be deduced using
the geometric properties of the quiver moduli.
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Local/Relative correspondence

Let Wg,m(X/D, ) be the moduli space of m-pointed genus g relative stable
maps of class § to (X, D) with only one contact condition of maximal
tangency along D. We consider

m
X/D ._ / . g
N = evi([pt])(—1)8A
&h (Wi m(X/ DB 1;[1 ¢

The genus 0 local/relative correspondence proven by van Garrel-Graber-
Ruddat tells us that

ox(-py _ (=1)PP71 /b
NO,/); ~ D-p N07/3
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But for g > 0, we have correction terms:

NOX(=D) _ (—1)PP1 N/

g8 - DB gB T

The higher genus generalization of the local/relative correspondence was
proven by Bousseau-Fan-Guo-W. Fortunately, when D is ample and virtual
genus 0 and Tjog - 3 > 0, these correction terms can be explicitly calculated:

By fixing 3 with Tiog - 8 > 0 and summing over g, we have

X/D ZNX/Dth—HT.og-ﬁ
g>0

It is related to FEQX(_D) as follows:
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D

P! — fiber

Theorem (Bousseau-W.)

_ —1)DA-1
FOx(=D) _ px/D |
P b 2sin((22h)
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GW /quiver correspondence

After converting local invariants to relative invariants, we need further trans-
late them into quiver DT-invariants.

A quiver @ consists of a finite set of vertices @y together with a finite set
of arrows Q1 = {a: i — j|i,j € Qo}.

A representation of a quiver @ consists of a tuple of vector space (V})icq,
indexed by the vertices, plus a tuple of linear morphisms (V,, : V; = V})q.is;
indexed by the arrows. By fixing a dimension vector d = (dim V});cq, and
a stability 6, we could construct a moduli of 6-stable (semistable) quiver
representations with fixed dimension vector d.

For all the quivers considered in this talk, the stability condition will always
choose to be 0(-) = {d, -} where {-,-} is the antisymmetrized Euler form.

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 13 /54



Given a projective moduli space Y of semistable quiver representations,
the corresponding refined Donaldson-Thomas invariant Qy(q) is defined as
follows. If the stable locus of Y is not empty, then

2dime Y
Qy(q) = (—g¥/2)7dmY  $™ dimIH (Y, Q)(—g"/?)
i=0

i.e., Qy(q) is the shifted Poincaré polynomial of the intersection cohomology
of Y. Otherwise, if the stable locus of Y is empty, then Qy(q) = 0.

The correspondence between log GW-invariants of log Calabi-Yau surfaces
and quiver DT invariants starts from the work of Gross-Pandharipande-
Siebert on the GW-side and Reineke on the quiver side. This genus 0/DT
correspondence was later generalized by Bousseau to higher genus/refined
DT correspondence.
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For this talk, we are interested in relative GW-invariants of the following
three types of pairs (X, D):

(P2, line), (P2 conic), (Fn, Co+f),n>0

We are in a situation of Fano-like cases instead of Calabi-Yau. So the first
step is to convert the Fano problems into Calabi-Yau ones.

Here is an illustration of how it works:
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Blowup < |

line

conic

P2

L /

— T

/

(P?, 1) — (P?, LU C) — (BI(P?), LU C)
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Next step, find a toric model for (BI(P?), L LI C):

(2.5)

(BI(P2),LuC) (Z,D)

Here (Z, D) is a toric log Calabi-Yau surface with maximal boundary and T3
is a sequence of interior blow-ups and 75 is a sequence of corner blow-ups.
The reason to find such a toric model is that on the GW-side, the GW /quiver
correspondence is dealing with log GW-invariants of (Z D) And a quiver
can be constructed via the toric data of (Z, D) and 75. For different toric
models, the quivers are related via mutations.
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F>

(Oa _1)

The above gives a toric model for (BI(P2), LU C) by setting Z = F» and
D = union of toric divisors. 75 is a sequence of blow-ups at the red points,

and 75 is a sequence blow-downs of divisors associated to the purple and
blue rays.
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We can then construct a quiver from the above toric data:

with m = Tiog - f = 2d and dimension vector d = > e, + dej € NQp.
Recall that, the stability 6 is always given by 6(-) = {d, -}.
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We use Md[,{ to denote the corresponding moduli of #-semistable quiver

representations with [/] be the line class. Then the GW/quiver correspon-
dence in this case becomes

p2y. (—1)471 i
Ly @) = Fan Ggin(h/2yypa 1 97

Specialize g = 1, we get

IP /L P2/L
xic(Mgyy ) = No.dry

We remark that the above identity is first derived by Reineke and Weist
using a direct computation on both GW and quiver sides. The higher genus
generalization was given by Bousseau using the procedures | mentioned
above.
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Using Bousseau's method, we can find the quiver for (IP?, conic):
11\
E / |
i
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Also the quiver for (Fp, C, + f):

iz ] 1
: : ﬂ>

I

For all of the three types of quivers, the number m of vertices on the LHS
always equal to Tig - § and the dimensions put on the vertices on the
LHS are all 1. But the dimensions put on the vertices on the RHS will be
determined by S.
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For each of the above three types pairs (X, D), we use Mg/D to denote the
corresponding quiver moduli. Then we have

Theorem (Bousseau)

(_1)D'B+1
(2sin(h/2)) s

h

X /D i
QMg/D(q): Fﬁ/ —1-9=¢

if Tiog - 8> 0.
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Combining local/relative correspondence with GW /quiver correspondence,
we have

(2sin(h/2)) Tes"A—1

Ox(-D) ih
Fx =Q ,g=ce¢e
g Mé/D(q) 25in(7(D'25)h)
Together with
Ox(~D Ox(=D) (r . _ .
FoXEP) = N7 n2xCD) 2sin(h/2)) 2%~ 2+ Tee'
§20
It yields
Ox(=D) (5 o 2 2sin(h/2)
n 2sin(h/2))% = Q, xp(q)——— =~
ggo g5 (2sin(h/2)) w/o( )2sin((o-2/3)h)
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Note that

25in((LLRY  g(DB)/2 _ g~(D6)/2

— (—1)D"8_1PIP>D45,1

2sin(h/2) g2 — q1/2
where
D-8-1
P]P’D'ﬁ—l = (_q1/2)*(D-571) Z dim H’(]P)D"Bfl,@)(—ql/z)'
i=0

So QMX/D(q) could divide Pppo.s-1. This actually has a geometry meaning:
8
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Let Q be a quiver corresponding to (X, D) as above. We construct a new
quiver Q_ from @ by deducing the number of vertices on the LHS by one,
and keep the dimensions putting on these vertices. We use MgX(fD)
denote the corresponding quiver moduli associated to Q_. Then we have

to

QMg/D(q) = PPD-BAQM;QX(_D)

The reason is that the framed quiver moduli of Q_ actually gives a small
resolution of MX/P and the framing quiver moduli is a PP#~1pundle of
M[?X(_D) because ng(—D) is smooth. This was first shown by Reineke

and Weist for the quivers associated to (P2, line). Their arguments can be
generalized to other two types of quivers.
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Theorem (Bousseau-W.)
For each of the above three types pairs (X, D), we have

Ngs
g

if Tiog - B> 0.

ngs (2sin(h/2))% = (=1)°771Q o 0)()

v

Note that using the deformation equivalence, the above theorem can be
easily generalized to all the pairs (X, D) such that D is ample and virtual

genus 0. The geometry properties of ng(—D)

consequence.
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We define the BPS Castelnuovo number to be

g5 " = sup{g|ng s # 0}

(1) ggx(—D) _ (szﬁ)‘ﬁ +1;

(2) ns)é(*D) — (_1)g+D~B—1' ”cg — (KX‘gﬁ)'ﬁ +1>0.

if Tiog - B >0 and ng(_D) # (.

Note that case (1) matches with the genus-degree formula, and case (2)
actually follows from the geometric fact that the moduli space M[?X(_D) is
connected.
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Proof of the recursion

After replacing Q x/0(q) by Q oy(-0)(q) in
8 Ms

Ox(~D) _ (2sin(h/2))TesP~1 4,
Fg 7QM2(/D( ) 2S|n((D5 ) ,q=¢€",

we get
FP P = ()P0, 0000 (q) 25in(h/2) T2

After plugging into the recursion

FOX(-D) FOX(=D) Ox(=D) ( D1 | ~DBi _ o) ( Tiog B —3
ﬂ1§ B1 B2 <C] Ta > Tiog - 1 — 1

Bl ﬁz >0
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It becomes

Tiog - B—3
Q oy = Q o0y-0)Q, ox(-p) (Ppp-s 71)2 < o8
P 1
Mﬁ Bﬁ-zﬁ;ﬁ M51 M/32 7_Iog : 51 -1
B1,82>0

Here we recall that
Ppp.gi-1 =

When (X, D) = (P?, line), the above recursion was first derived by Reineke
and Weist. Their arguments can actually be generalized to give a proof of
the recursion for other two types of quivers.
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The key formula used in Reineke and Weist's proof is a formula relating
DT-invariants of framed moduli spaces to unframed ones.

Let Q be a quiver. A framed quiver of (3 can be derived from @ by adding an
additional vertex iy and n; arrows from ip to i € Qg. By putting dimension
1to io, we can extend the dimension vector d of @ to a dimension vector
d of Q. Assume that the stability 6 of Q is normalized, i.e., 6(d) = 0. We

then also extend the stability 6 to a stability § of Q by adding the entry 1
for the vertex ip.

Then the moduli space I\/IZ{:(Q) of #-semistable n-framed representations of
Q@ with dimension d is simply the moduli space Mg_s“(@) of H-semistable

representations of CA) with dimension d.
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The formula relating DT-invariants of framed moduli spaces to unframed
ones can be stated as follows.

Let @ be a quiver with stability . We use /\g to denote the set of nonzero
dimension vectors d such that 6(d) = 0. Then

_1)yrd,d _ _1)2d,d

1+ Z QMZ:E( 1) x* = Exp Z PIP’Q'Q—lQMz—sst( 1) X
dend dend
where Exp(+) is the plethystic exponential:

Exp(f) = (3 [0))
k=1
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Recall that the quivers @ associated to the pair (P2, line) are

i

with d = > e, +dej, 0 =3 e} —2e;. By specifying the number of vertices
on the LHS , we also use I\/I,&,,d to denote the corresponding quiver moduli,

and use M,fq’fcr, to denote the corresponding framed moduli.
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By further setting m = 2d, n = ¢; and taking the coefficient of x; - - -x,~2dxf"

on both sides of the formula relating DT-invariants of framed moduli spaces

to unframed ones:

14+ Y Qen(-1)29d = Exp | ) PPQ.Q,IQMgﬂst(_l)g.g d
d,n M
deny dend
we have
MmLfr = E d ( Pk—13Lp L )
20 ey tag=d | ((2k)!)ak(ak)! ey 2k, k

a; >0

20 March 2023
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Note that Oua(-1)
P2\
Moy~ = Suat,
To get a recursion for QM2Ld e need the following key geometric prop-

erties of quiver moduli:

Lfr  agL ~ L —
Mzd,d - M2d+1,d - M2d+1,d+17 QMQde - PIP’d—lﬂmzLd_ld

The second isomorphism is induced by the reflection functor in Repc Q.
Then the above formula becomes

i1 = (2d)! 21 ak
e T EE (L

with zﬁ(q) =Qe  (9).

2d—1,d
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So by summing over d, we have

L
Zd+1 d_ P]P)kl Z
1+E (2d)!X —exp<E )
d>0

k

By further taking a derivative 2xd% on both sides, we have

Zixd: wak Z Z§+1Xd
(2d —1)! (2k —1)! = (2d)!

d>0 k>0

So by taking the coefficients of x~1 on both sides, we get the recursion

2d -3
zé = Z 251252(:91?411)2(2(!1 B 1>

dy+dy=d
dy,dr>0
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2

For the quivers associated to (IP*, conic):

\/

We use l\/lcd to denote the corresponding quiver moduli, and use I\/ICd to
denote the correspondlng framed moduli.
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The key geometric properties are

Cfr  pgC ~ MC —
Md,d =~ Mgy1,d = Mgi1,d+2; QMdCd = 'DIPQ"*lQMdC_ld

Still the second isomorphism is induced by reflection functor and can be
proven in a similar way. It yields

C 2_c

Zd+2 d __ (szk—1) Zk k

1 + TX = exp E WX
d>0 k>0

with de = QM§_1,d' By taking a derivative xd% on both sides, we get the

d—3
= Y 2525 < . 1)

dy+dy=d
dy,dr>0

recursion

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 38 /54



For the quivers associated to (F,, C, + f):

i
i J1
) - e
. .
j2
in

We use I\/I,’;"’dl’d2 to denote the corresponding quiver moduli, and use M

to denote the corresponding framed moduli.
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The key geometric properties are

Mr,7:1'351r7d2 - Mm+1 cdh+1,da+n+1 QM,f,"dl 6 PIP’dﬁdz—lQMnﬁ" Ly,
with m = (1 — n)di + db. It yields
14 Z 51+1 dintl  d d — Gexp Z (deﬁdz*l)zzlin,kz e
Coi R20 (L= n)dh + o)1 ™2 Uenfatiso (L= nk + ko)t P
with zjr = Q, r, and

(1—n)dy+dp —1,dy ,dp

_ Fa di do
G=1+ E EAURINTARE S
(1—n)dy +dp=0
dy+dp >0

By taking a derivative (1 — n)Xla%1 + XQB%Q on both sides, we get the
recursion

F, F, F 2 (1—n)d1+d2—3)

z,", = E z," Z/n/P]Puk+k—1 (

e kythq =dy o kl’kZ( o ) (1 - n)kl +hk—1
ko+kh=do
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Numerical results

Table: GW-invariants of Op2(—1)

d FOr 1)
d
1 1
2 (a-1%/q
3 (4 — DHe? +5q+1)/q°
4 (g — 1)%(q° + 7¢° + 29¢* + 64¢® + 2942 + 7q + 1)/°
5 (g — 1)%(q*? + 9g** + 464'° + 1754¢° + 506¢°
+1138q” + 17274¢% + 1138¢° + 506¢* + 175¢> + 464° + 9q + 1)/q*°
(g — 1)1%(¢® + 11¢'° + 6798 + 208¢'7 + 10804'® + 3313¢"° + 87704
6 +20253q"3 + 40352412 + 67279q'! + 8479240 + 67279¢° + 403524
+20253q" + 8770q° + 3313¢° + 1080q* + 298¢ + 67¢> + 11qg + 1)/q*°
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Table: BPS states ng 4 for Op2(—1)

g
d 0 1 2 3 4 5 6
1 1 0 0 0 0 0 |0
2 -1 0 0 0 0 0 |0
3 7 -1 0 0 0 0 |0
4 —138 66 —13 1 0 0 |0
5 5477 | —5734 | 3031 | =970 | 190 | —21 | 1
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Table: GW-invariants of Op2(—2)

d FOr(=2)
d
1 —(~a)"?/(a — 1)
2 ~1
3 (g — 1)(a® +2q + 1)/(—q)*/?
4 (g — 1)%(q® + 3¢° + 7¢* + 10¢° + 7¢* + 3q + 1) /¢*
5 T(q = 132+ 49 1 114" 1 25¢° + 465
+71q" + 84q° + 71¢° + 46¢" + 25¢° + 11q% + 4q + 1)/(—q)'*/2
6 (9 — 1)*(q% +5¢*° + 168 + 41¢7 + 924" + 182" + 323¢™ + 522q*3 + 759¢*? + 978q™!
+1074q'° 4 9784¢° + 759¢% + 522¢7 + 323¢° + 182¢° + 92¢* + 414> + 164% + 5q + 1)/q'2
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Table: BPS states ng 4 for Op2(—2)

g
d 0 1 2 3 4 51 6
1 -1 0 0 0 0 0| 0
2 -1 0 0 0 0 0] O
3 —4 1 0 0 0 0] O
4 —-32 | 28 -9 1 0 0] O
5 —400 | 792 | —721 | 365 | —105 | 16 | —1
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Table: GW-invariants of Opiyp1(—1,—1)

(dy, db) ,_—51)1’1»;2@1(—1,—1)
(1,0) (—a)"/2/(a — 1)
(2,0 )
(3,0) 0
(1,1) 1
(2,1) (- 1)/(—q)*/2
(3,1) (a-1)%/q
(2,2) (a—1)%(d* +49+1)/d°
(3,2) (0 — 13(¢* + 5¢° + 12¢% + 5q + 1)/(—q)7/?
(3,3) | —(a— 1)*(¢® + 64" +23¢° + 58¢° + 94q* + 58° + 232 + 6 + 1)/°
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Table: BPS states ng (4, 4,) for Opiypi(—1,—1)

-1

14

—79

24
—270 | 220

(d1, )
(1,0)
(2,0)

(3,0)

(1,1)

(2,1)

(3.1)

(2,2)

(3,2)

(3,3)
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For (Fn, Co+ f) with n > 1 and 8 = d1 C_,, + daf, we need to determine
those F(ffc’;;_c"_f) such that Tiog - 5 = (1 — n)dy + do < 3. It corresponds

to determine Donaldson-Thomas invariants for the following quivers:

dq fl jl dq
;; 1 7 n
(n-1)d; +1 J2 jn (m=-1)dp+2
Ok, (= Co—f)

When n = 1,2, these initial F, can be explicitly determined.

Fn
1,d2
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Table: GW invariants of Of (—C; — f)

(i, db) F:'?Fé; G—f)
(0,1) (—9)'*/(a 1)
(1,1) -(=9)"?/ta - 1)
(1,2) :
(1,3) —(a—/(-q)*/?
(1,4) —(a-12/q
(2,2) 1
(2,3) (g~ 1)(¢ +39 + 1)/(~q)*"2
(27 4) (@ —1)%(q* + 46> + 8¢ + 49 + 1)/¢°
(3,3) (- 1)(a? +2q + 1)/(—q)*/?
(3, 4) —(q — 1)%(q® + 4¢° + 11¢* + 17¢° + 11¢% + 4q + 1)/q*
(4, 4) (g — 1)%(q® + 3¢° + 7¢* + 106 + 7¢* + 39 + 1)/¢*
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Table: BPS states ng (g, 4,) for Of, (=G — f)

g
(61.05) o 1 |2]3
(0,1) 1 |0 [o0]o0
(1,1) “1] 0 | 0O
(1,2) 1 |0 o0]o0
(1,3) “1] 0 | 0O
(1,4) 1|0 o0]o0
(2,2) “1] 0 | 0O
(2,3) 5 | -1]0] 0
(2,4) —18] 8 |-1] 0
(3.3) “4 ] 1 |00
(3,4) 49 | =36 | 10 | —1
(4,4) —32] 28 | 9 1
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Table: GW invariants of Of,(—C, — f)

OF,(—-G—f)
) Fd1 52

(—)'?/(a—1)
(=)' /a-1)

—1

(

o
S

o
[ay

WIWWINNININ =] =] =
QOGO B W OGS WN
~— — | | = = |~ | — | = | — |~ [ — | ~— | ~—

(a—1)/(-a)*/?
(a-1)%/q
(4 —1)*/(—q)*?
(—)'/?/(a—1)

—(a® +29+1)/q

(9 — (" +3¢° +5¢> + 3¢+ 1)/(—q)*/2

(g —1)%(q® + 4¢° + 8¢" + 12¢° + 84> + 49 + 1)/q*
(—a)*%/(a = 1)

—(q" +2¢° +5¢% + 2q + 1)/

(a — 1)(q® + 39" +8¢° + 144 + 20¢* + 14¢% + 8¢% + 3¢ + 1)/(—q)*/?

|~~~ o~~~
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Table: BPS states ng (4, 4,) for O, (=G — f)

—11

—10

46

33

-89

13
—38

—11

72

(d1, o)

(0,1)

(1,2)
(1,3)
(1,4)
(1,5)
(1,6)

(2,3)

(2,4)

(2,5)

(2,6)

(3,4)

(3,5)

(3,6)

51/54
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But when n > 2, we need to determine the Donaldson-Thomas invariants
for the following quivers:

dl ]'1 jl dl
1; 1 i r.l.
n-1d;+1 ]2 jo (n=T)dy +2

No explicit closed formulas are known to us.
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Comparison with the recursion from Virasoro constraints

By embedding Op2(—1) into P(Op2(—1) & Op2). GW invariants of Op2(—1)
equal to the corresponding invariants of P(Op2(—1) & Op2). We can apply
the Virasoro constraints and get another recursion:

dd-1 d-—1)2d—-1)/2d -3
Nl,d = _QNO d— Z % <2d1 B 2) N07le17d2

This recursion is different from the recursion coming from the all-genus
WDVV recursion:

dt 2d -3
Na= > | NoaNoas— D (NoaNog,+ NooNoa)df ( )

2d; —1
dy+dy=d dy+dy=d
dy,dy >0 dy,dy >0

Using computer, we check that up to degree 19, the two recursions give the
same answer. But a proof for the equivalence between these two recursions
is still missing.
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Thank you!
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