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Recursion

Let X be a smooth projective surface and D be an ample divisor in X . Let
β be a nonzero curve class of X . We use Mg ,m(OX (−D), β) to denote
the moduli space of m pointed genus g stable maps of class β to the total
space of OX (−D). Since D is ample, Mg ,m(OX (−D), β) coincides with
the moduli Mg ,m(X , β). Let [pt] be the point class of X . We consider the
following primary Gromov-Witten invariants:

N
OX (−D)
g ,β :=

∫
[Mg,m(OX (−D),β)]vir

m∏
i=1

ev∗i ([pt])

By dimension constraint, we need m = Tlog · β where Tlog = −KX −D. In
particular, Tlog · β ≥ 0. We only consider those β such that Tlog · β > 0.
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By fixing β and summing over g , we get the following generating series

F
OX (−D)
β :=

∑
g≥0

N
OX (−D)
g ,β h2g−2+Tlog·β

The Gopakumar-Vafa conjecture proven by Zinger, Ionel, Parker, Doan,
Walpuski tells us that we can reorganized it as

F
OX (−D)
β =

∑
g≥0

n
OX (−D)
g ,β (2 sin(h/2))2g−2+Tlog·β

where n
OX (−D)
g ,β ∈ Z. In particular, F

OX (−D)
β ∈ Q((−q)−

1
2 ) with q = e ih.
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For a divisor D ⊂ X , the virtual genus g(D) of a divisor D is defined by

g(D) := 1− 1

2
Tlog · D

In this talk, we will further assume D to be of virtual genus 0. Then

Theorem (Bousseau-W.)

Let X be a smooth projective surface and D be an ample divisor in X with
virtual genus 0. Then, we have the following recursive formula:

F
OX (−D)
β =

∑
β1+β2=β
β1,β2>0

F
OX (−D)
β1

F
OX (−D)
β2

(
qD·β1 + q−D·β1 − 2

)(Tlog · β − 3

Tlog · β1 − 1

)

if Tlog · β ≥ 3.
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Genus 0 recursion

If we specialize the above recursion to genus 0, we get

N
OX (−D)
0,β = −

∑
β1+β2=β
β1,β2>0

N
OX (−D)
0,β1

N
OX (−D)
0,β2

(D · β1)2
(
Tlog · β − 3

Tlog · β1 − 1

)

This genus zero recursion can also be deduced from the WDVV equation of
relative GW theory together with local/relative correspondence:

(Tlog·D)N
OX (−D)
0,β = −2

∑
β1+β2=β
β1,β2>0

N
OX (−D)
0,β1

N
OX (−D)
0,β2

(D · β1)2
(
Tlog · β − 3

Tlog · β1 − 1

)

So the requirement of D to be virtual genus zero, i.e., Tlog · D = 2 is
necessary. And this is also why we treat the previous recursion as all-genus
WDVV recursion.
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The genus 0 consideration can also be used to show that the requirement
of D to be ample can not be relaxed to be nef.

For example, let X = P(OP1(1) ⊕ OP1) and D be a fiber of X . We have
the following recursion:

N
OX (−D)
0,β = −

∑
β1+β2=β
β1,β2>0

N
OX (−D)
0,β1

N
OX (−D)
0,β2

(D · β1)
2

(
Tlog · β − 3

Tlog · β1 − 1

)
+(D·β)2NOX (−D)

0,β−f

if Tlog · β ≥ 3, where f stands for the fiber class. Still, it can be deduced
from the WDVV equation of relative GW theory together with local/relative
correspondence.

The appearance of the additional term (D · β)2NOX (−D)
0,β−f follows from the

calculation of WDVV equation, there will be a contribution from a splitting
of curve class β = β1 + β2 with β1, β2 ̸= 0 but D · β2 = 0. Such kind of
contribution can not appear if D is ample.
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Deformation equivalence

According to Lanteri and Palleschi, the condition that X has an ample
divisor D with virtual genus 0 actually forces (X ,D) to be the following two
types:

(1) (X ,D) = (P2, line) or (P2, conic);

(2) X is a Hirzebruch surface and OX (D) ⊗ Of = OP1(1) for any fiber f
of the Hirzebruch surface X .

Let us give a more detailed description of case (2). First, we specialize X
to be Fn = P(O(n)⊕O) where n ∈ Z≥0. Let Cn and C−n be the sections
of X with intersection numbers n and −n respectively. The requirements
that OX (D) ⊗ Of = OP1(1) and D is ample will imply that D = Cn + sf
with s > 0.
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A deformation of Fn to Fn+2 is given by{
([x0 : x1], [y0 : y1 : y2], t) ∈ P1 × P2 × C

∣∣∣xn+2
0 y1 − xn+2

1 y0 + txn+1
0 x1y2 = 0

}
Under such a deformation the divisor Cn + (s + 1)f of Fn will deform to
be Cn+2 + sf of Fn+2 and the curve class d1C−n + d2f deforms to be
d1C−n−2 + (d1 + d2)f . So after a sequence of deformation, we have

GW(OFn(−Cn − sf )) ≃ GW(OFn+2(−Cn+2 − (s − 1)f )) ≃
· · · ≃ GW(OFn+2s−2(−Cn+2s−2 − f ))

The all-genus WDVV equation is compatible with the above deformation.
So it is enough to consider only the following three types of pairs (X ,D):

(P2, line), (P2, conic), (Fn,Cn + f ), n ≥ 0.
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Sketch of the proof

The proof for the all-genus WDVV recursion goes as follows:

Local GW-theroy −→ Relative (Log) GW-theory −→ Quiver DT-theory

We first translate the recursion into a recursion for relative GW-invariants
using the local/relative correspondence. We then further translate it into a
recursion for quiver DT-invariants via a GW/quiver correspondence derived
by Bousseau from the GW/Kronecker correspondence for log Calabi-Yau
surfaces. The recursion on the quiver DT-side can then be deduced using
the geometric properties of the quiver moduli.
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Local/Relative correspondence

Let Mg ,m(X/D, β) be the moduli space of m-pointed genus g relative stable
maps of class β to (X ,D) with only one contact condition of maximal
tangency along D. We consider

N
X/D
g ,β :=

∫
[Mg,m(X/D,β)]vir

m∏
i=1

ev∗i ([pt])(−1)gλg

The genus 0 local/relative correspondence proven by van Garrel-Graber-
Ruddat tells us that

N
OX (−D)
0,β =

(−1)D·β−1

D · β
N

X/D
0,β
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But for g > 0, we have correction terms:

N
OX (−D)
g ,β =

(−1)D·β−1

D · β
N

X/D
g ,β + · · ·

The higher genus generalization of the local/relative correspondence was
proven by Bousseau-Fan-Guo-W. Fortunately, when D is ample and virtual
genus 0 and Tlog ·β > 0, these correction terms can be explicitly calculated:

By fixing β with Tlog · β > 0 and summing over g , we have

F
X/D
β :=

∑
g≥0

N
X/D
g ,β h2g−1+Tlog·β

It is related to F
OX (−D)
β as follows:

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 11 / 54



Theorem (Bousseau-W.)

F
OX (−D)
β = F

X/D
β

(−1)D·β−1

2 sin( (D·β)h
2 )
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GW/quiver correspondence

After converting local invariants to relative invariants, we need further trans-
late them into quiver DT-invariants.

A quiver Q consists of a finite set of vertices Q0 together with a finite set
of arrows Q1 = {α : i → j |i , j ∈ Q0}.
A representation of a quiver Q consists of a tuple of vector space (Vi )i∈Q0

indexed by the vertices, plus a tuple of linear morphisms (Vα : Vi → Vj)α:i→j

indexed by the arrows. By fixing a dimension vector d = (dimVi )i∈Q0 and
a stability θ, we could construct a moduli of θ-stable (semistable) quiver
representations with fixed dimension vector d .

For all the quivers considered in this talk, the stability condition will always
choose to be θ(·) = {d , ·} where {·, ·} is the antisymmetrized Euler form.
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Given a projective moduli space Y of semistable quiver representations,
the corresponding refined Donaldson-Thomas invariant ΩY (q) is defined as
follows. If the stable locus of Y is not empty, then

ΩY (q) = (−q1/2)− dimC Y
2 dimC Y∑

i=0

dim IHi (Y ,Q)(−q1/2)i

i.e., ΩY (q) is the shifted Poincaré polynomial of the intersection cohomology
of Y . Otherwise, if the stable locus of Y is empty, then ΩY (q) = 0.

The correspondence between log GW-invariants of log Calabi-Yau surfaces
and quiver DT invariants starts from the work of Gross-Pandharipande-
Siebert on the GW-side and Reineke on the quiver side. This genus 0/DT
correspondence was later generalized by Bousseau to higher genus/refined
DT correspondence.

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 14 / 54



For this talk, we are interested in relative GW-invariants of the following
three types of pairs (X ,D):

(P2, line), (P2, conic), (Fn,Cn + f ), n ≥ 0

We are in a situation of Fano-like cases instead of Calabi-Yau. So the first
step is to convert the Fano problems into Calabi-Yau ones.

Here is an illustration of how it works:
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(P2, L) −→ (P2, L ⊔ C ) −→ (Bl(P2), L ⊔ C̃ )
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Next step, find a toric model for (Bl(P2), L ⊔ C̃ ):(
Z̃ , D̃

)

(Z̄ , D̄)
(
Bl
(
P2
)
, L ⊔ C̃

)
πZ̃ πZ̄

Here (Z̄ , D̄) is a toric log Calabi-Yau surface with maximal boundary and πZ̄
is a sequence of interior blow-ups and π

Z̃
is a sequence of corner blow-ups.

The reason to find such a toric model is that on the GW-side, the GW/quiver
correspondence is dealing with log GW-invariants of (Z̃ , D̃). And a quiver
can be constructed via the toric data of (Z̄ , D̄) and πZ̄ . For different toric
models, the quivers are related via mutations.
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(0, 1)

(1, 2)

(0,−1)

(−1, 0)

F2

×

×
×

×

...2d

The above gives a toric model for (Bl(P2), L ⊔ C̃ ) by setting Z̄ = F2 and
D̄ = union of toric divisors. πZ̄ is a sequence of blow-ups at the red points,
and π

Z̃
is a sequence blow-downs of divisors associated to the purple and

blue rays.
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We can then construct a quiver from the above toric data:

with m = Tlog · β = 2d and dimension vector d =
∑

eik + dej ∈ NQ0.
Recall that, the stability θ is always given by θ(·) = {d , ·}.
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We use M
P2/L
d [l ] to denote the corresponding moduli of θ-semistable quiver

representations with [l ] be the line class. Then the GW/quiver correspon-
dence in this case becomes

Ω
M

P2/L
d [l ]

(q) = F
P2/L
d [l ]

(−1)d−1

(2 sin(h/2))2d−1
, q = e ih

Specialize q = 1, we get

χIC (M
P2/L
d [l ] ) = N

P2/L
0,d [l ]

We remark that the above identity is first derived by Reineke and Weist
using a direct computation on both GW and quiver sides. The higher genus
generalization was given by Bousseau using the procedures I mentioned
above.
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Using Bousseau’s method, we can find the quiver for (P2, conic):
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Also the quiver for (Fn,Cn + f ):

For all of the three types of quivers, the number m of vertices on the LHS
always equal to Tlog · β and the dimensions put on the vertices on the
LHS are all 1. But the dimensions put on the vertices on the RHS will be
determined by β.
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For each of the above three types pairs (X ,D), we use M
X/D
β to denote the

corresponding quiver moduli. Then we have

Theorem (Bousseau)

Ω
M

X/D
β

(q) = F
X/D
β

(−1)D·β+1

(2 sin(h/2))Tlog·β−1
, q = e ih

if Tlog · β > 0.
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BPS invariants

Combining local/relative correspondence with GW/quiver correspondence,
we have

F
OX (−D)
β = Ω

M
X/D
β

(q)
(2 sin(h/2))Tlog·β−1

2 sin( (D·β)h
2 )

, q = e ih

Together with

F
OX (−D)
β =

∑
g≥0

n
OX (−D)
g ,β (2 sin(h/2))2g−2+Tlog·β

It yields ∑
g≥0

n
OX (−D)
g ,β (2 sin(h/2))2g = Ω

M
X/D
β

(q)
2 sin(h/2)

2 sin( (D·β)h
2 )
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Note that

2 sin( (D·β)h
2 )

2 sin(h/2)
=

q(D·β)/2 − q−(D·β)/2

q1/2 − q−1/2
= (−1)D·β−1PPD·β−1

where

PPD·β−1 = (−q1/2)−(D·β−1)
D·β−1∑
i=0

dimHi (PD·β−1,Q)(−q1/2)i

So Ω
M

X/D
β

(q) could divide PPD·β−1 . This actually has a geometry meaning:
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Let Q be a quiver corresponding to (X ,D) as above. We construct a new
quiver Q− from Q by deducing the number of vertices on the LHS by one,

and keep the dimensions putting on these vertices. We use M
OX (−D)
β to

denote the corresponding quiver moduli associated to Q−. Then we have

Ω
M

X/D
β

(q) = PPD·β−1Ω
M

OX (−D)

β

The reason is that the framed quiver moduli of Q− actually gives a small

resolution of M
X/D
β and the framing quiver moduli is a PD·β−1-bundle of

M
OX (−D)
β because M

OX (−D)
β is smooth. This was first shown by Reineke

and Weist for the quivers associated to (P2, line). Their arguments can be
generalized to other two types of quivers.

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 26 / 54



Theorem (Bousseau-W.)

For each of the above three types pairs (X ,D), we have∑
g

n
OX (−D)
g ,β (2 sin(h/2))2g = (−1)D·β−1Ω

M
OX (−D)

β

(q)

if Tlog · β > 0.

Note that using the deformation equivalence, the above theorem can be
easily generalized to all the pairs (X ,D) such that D is ample and virtual

genus 0. The geometry properties of M
OX (−D)
β will have some interesting

consequence.
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We define the BPS Castelnuovo number to be

g
OX (−D)
β := sup{g | nOX (−D)

g ,β ̸= 0}

Corollary

(1) g
OX (−D)
β = (KX+β)·β

2 + 1;

(2) n
OX (−D)
g ,β = (−1)g+D·β−1, if g = (KX+β)·β

2 + 1 ≥ 0.

if Tlog · β > 0 and M
OX (−D)
β ̸= ∅.

Note that case (1) matches with the genus-degree formula, and case (2)

actually follows from the geometric fact that the moduli space M
OX (−D)
β is

connected.
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Proof of the recursion

After replacing Ω
M

X/D
β

(q) by Ω
M

OX (−D)

β

(q) in

F
OX (−D)
β = Ω

M
X/D
β

(q)
(2 sin(h/2))Tlog·β−1

2 sin( (D·β)h
2 )

, q = e ih,

we get

F
OX (−D)
β = (−1)D·β−1Ω

M
OX (−D)

β

(q)(2 sin(h/2))Tlog·β−2

After plugging into the recursion

F
OX (−D)
β =

∑
β1+β2=β
β1,β2>0

F
OX (−D)
β1

F
OX (−D)
β2

(
qD·β1 + q−D·β1 − 2

)(Tlog · β − 3

Tlog · β1 − 1

)
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It becomes

Ω
M

OX (−D)

β

=
∑

β1+β2=β
β1,β2>0

Ω
M

OX (−D)

β1

Ω
M

OX (−D)

β2

(PPD·β1−1)2
(
Tlog · β − 3

Tlog · β1 − 1

)

Here we recall that

PPD·β1−1 = (−1)D·β1−1 q
D·β1

2 − q−
D·β1

2

q1/2 − q−1/2

When (X ,D) = (P2, line), the above recursion was first derived by Reineke
and Weist. Their arguments can actually be generalized to give a proof of
the recursion for other two types of quivers.
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The key formula used in Reineke and Weist’s proof is a formula relating
DT-invariants of framed moduli spaces to unframed ones.

Let Q be a quiver. A framed quiver of Q̂ can be derived from Q by adding an
additional vertex i0 and ni arrows from i0 to i ∈ Q0. By putting dimension
1 to i0, we can extend the dimension vector d of Q to a dimension vector
d̂ of Q̂. Assume that the stability θ of Q is normalized, i.e., θ(d) = 0. We
then also extend the stability θ to a stability θ̂ of Q̂ by adding the entry 1
for the vertex i0.

Then the moduli space Mθ,fr
d ,n (Q) of θ-semistable n-framed representations of

Q with dimension d is simply the moduli space M θ̂−sst

d̂
(Q̂) of θ̂-semistable

representations of Q̂ with dimension d̂ .
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The formula relating DT-invariants of framed moduli spaces to unframed
ones can be stated as follows.

Let Q be a quiver with stability θ. We use Λ+
0 to denote the set of nonzero

dimension vectors d such that θ(d) = 0. Then

1 +
∑
d∈Λ+

0

Ω
Mθ,fr

d,n
(−1)n·dxd = Exp

∑
d∈Λ+

0

PPn·d−1ΩMθ−sst
d

(−1)n·dxd


where Exp(·) is the plethystic exponential:

Exp(f ) = exp(
∞∑
k=1

f (xk)

k
)
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Recall that the quivers Q associated to the pair (P2, line) are

with d =
∑

eik +dej , θ =
∑

e∗ik −2e∗j . By specifying the number of vertices

on the LHS , we also use ML
m,d to denote the corresponding quiver moduli,

and use ML,fr
m,d to denote the corresponding framed moduli.
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By further setting m = 2d , n = ej and taking the coefficient of xi1 · · · xi2d xdj
on both sides of the formula relating DT-invariants of framed moduli spaces
to unframed ones:

1 +
∑
d∈Λ+

0

Ω
Mθ,fr

d,n
(−1)n·dxd = Exp

∑
d∈Λ+

0

PPn·d−1ΩMθ−sst
d

(−1)n·dxd


we have

Ω
ML,fr

2d,d
=

∑
a1+a2···+ad=d

ai≥0

(2d)!∏d
k=1

(
(2k)!

)ak (ak)!
d∏

k=1

(
PPk−1ΩML

2k,k

)ak
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Note that
M

OP2 (−1)

d [l ] = ΩML
2d−1,d

To get a recursion for ΩML
2d−1,d

, we need the following key geometric prop-

erties of quiver moduli:

ML,fr
2d ,d ≃ ML

2d+1,d ≃ ML
2d+1,d+1, ΩML

2d,d
= PPd−1ΩML

2d−1,d

The second isomorphism is induced by the reflection functor in RepCQ.
Then the above formula becomes

zLd+1 =
∑

a1+a2···+ad=d
ai≥0

(2d)!∏d
k=1

(
(2k)!

)ak (ak)!
d∏

k=1

((
PPk−1

)2
zLk

)ak

with zLd (q) = ΩML
2d−1,d

(q).
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So by summing over d , we have

1 +
∑
d>0

zLd+1

(2d)!
xd = exp

(∑
k>0

(
PPk−1

)2
zLk

(2k)!
xk

)

By further taking a derivative 2x d
dx on both sides, we have

∑
d>0

zLd+1

(2d − 1)!
xd =

(∑
k>0

(
PPk−1

)2
zLk

(2k − 1)!
xk

)∑
d≥0

zLd+1

(2d)!
xd


So by taking the coefficients of xd−1 on both sides, we get the recursion

zLd =
∑

d1+d2=d
d1,d2>0

zLd1z
L
d2

(
PPd1−1

)2( 2d − 3

2d1 − 1

)
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For the quivers associated to (P2, conic):

We use MC
m,d to denote the corresponding quiver moduli, and use MC ,fr

m,d to
denote the corresponding framed moduli.
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The key geometric properties are

MC ,fr
d ,d ≃ MC

d+1,d ≃ MC
d+1,d+2, ΩMC

d,d
= PP2d−1ΩMC

d−1,d

Still the second isomorphism is induced by reflection functor and can be
proven in a similar way. It yields

1 +
∑
d>0

zCd+2

d!
xd = exp

(∑
k>0

(
PP2k−1

)2
zCk

(k)!
xk

)

with zCd = ΩMC
d−1,d

. By taking a derivative x d
dx on both sides, we get the

recursion

zCd =
∑

d1+d2=d
d1,d2>0

zCd1z
C
d2PP2d1−1

(
d − 3

d1 − 1

)
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For the quivers associated to (Fn,Cn + f ):

We useMFn
m,d1,d2

to denote the corresponding quiver moduli, and useMFn,fr
m,d1,d2

to denote the corresponding framed moduli.

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 39 / 54



The key geometric properties are

MFn,fr
m,d1,d2

≃ MFn
m+1,d1+1,d2+n+1, ΩMFn

m,d1,d2

= PPd1+d2−1ΩMFn
m−1,d1,d2

with m = (1− n)d1 + d2. It yields

1+
∑

(1−n)d1+d2≥0
d1+d2>0

zFnd1+1,d2+n+1(
(1− n)d1 + d2

)
!
xd1
1 xd2

2 = G exp

 ∑
(1−n)k1+k2>0

(
PPd1+d2−1

)2
zFnk1,k2(

(1− n)k1 + k2
)
!
xk1
1 xk2

2


with zFnd1,d2

= Ω
M

Fn
(1−n)d1+d2−1,d1,d2

and

G = 1 +
∑

(1−n)d1+d2=0
d1+d2>0

zFnd1+1,d2+n+1x
d1
1 xd2

2

By taking a derivative (1 − n)x1
∂
∂x1

+ x2
∂
∂x2

on both sides, we get the
recursion

zFn

d1,d2
=

∑
k1+k′

1
=d1

k2+k′
2
=d2

zFn

k1,k2
zFn

k′
1,k

′
2

(
PPk1+k2−1

)2((1− n)d1 + d2 − 3

(1− n)k1 + k2 − 1

)
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Numerical results

Table: GW-invariants of OP2(−1)

d F
OP2 (−1)

d

1 1

2 (q − 1)2/q

3 (q − 1)4(q2 + 5q + 1)/q3

4 (q − 1)6(q6 + 7q5 + 29q4 + 64q3 + 29q2 + 7q + 1)/q6

5
(q − 1)8(q12 + 9q11 + 46q10 + 175q9 + 506q8

+1138q7 + 1727q6 + 1138q5 + 506q4 + 175q3 + 46q2 + 9q + 1)/q10

6
(q − 1)10(q20 + 11q19 + 67q18 + 298q17 + 1080q16 + 3313q15 + 8770q14

+20253q13 + 40352q12 + 67279q11 + 84792q10 + 67279q9 + 40352q8

+20253q7 + 8770q6 + 3313q5 + 1080q4 + 298q3 + 67q2 + 11q + 1)/q15
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Table: BPS states ng ,d for OP2(−1)

d
g

0 1 2 3 4 5 6

1 1 0 0 0 0 0 0

2 −1 0 0 0 0 0 0

3 7 −1 0 0 0 0 0

4 −138 66 −13 1 0 0 0

5 5477 −5734 3031 −970 190 −21 1
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Table: GW-invariants of OP2(−2)

d F
OP2 (−2)

d

1 −(−q)1/2/(q − 1)

2 −1

3 (q − 1)(q2 + 2q + 1)/(−q)3/2

4 (q − 1)2(q6 + 3q5 + 7q4 + 10q3 + 7q2 + 3q + 1)/q4

5 −(q − 1)3(q12 + 4q11 + 11q10 + 25q9 + 46q8

+71q7 + 84q6 + 71q5 + 46q4 + 25q3 + 11q2 + 4q + 1)/(−q)15/2

6
(q − 1)4(q20 + 5q19 + 16q18 + 41q17 + 92q16 + 182q15 + 323q14 + 522q13 + 759q12 + 978q11

+1074q10 + 978q9 + 759q8 + 522q7 + 323q6 + 182q5 + 92q4 + 41q3 + 16q2 + 5q + 1)/q12
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Table: BPS states ng ,d for OP2(−2)

d
g

0 1 2 3 4 5 6

1 −1 0 0 0 0 0 0

2 −1 0 0 0 0 0 0

3 −4 1 0 0 0 0 0

4 −32 28 −9 1 0 0 0

5 −400 792 −721 365 −105 16 −1
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Table: GW-invariants of OP1×P1(−1,−1)

(d1, d2) F
OP1×P1 (−1,−1)

d1,d2

(1, 0) (−q)1/2/(q − 1)

(2, 0) 0

(3, 0) 0

(1, 1) −1

(2, 1) (q − 1)/(−q)1/2

(3, 1) (q − 1)2/q

(2, 2) (q − 1)2(q2 + 4q + 1)/q2

(3, 2) (q − 1)3(q4 + 5q3 + 12q2 + 5q + 1)/(−q)7/2

(3, 3) −(q − 1)4(q8 + 6q7 + 23q6 + 58q5 + 94q4 + 58q3 + 23q2 + 6q + 1)/q6

Longting Wu (SUSTech) WDVV, quivers and BPS 20 March 2023 45 / 54



Table: BPS states ng ,(d1,d2) for OP1×P1(−1,−1)

(d1, d2)
g

0 1 2 3 4

(1, 0) 1 0 0 0 0

(2, 0) 0 0 0 0 0

(3, 0) 0 0 0 0 0

(1, 1) −1 0 0 0 0

(2, 1) 1 0 0 0 0

(3, 1) −1 0 0 0 0

(2, 2) −6 1 0 0 0

(3, 2) 24 −9 1 0 0

(3, 3) −270 220 −79 14 −1
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For (Fn,Cn + f ) with n ≥ 1 and β = d1C−n + d2f , we need to determine

those F
OFn (−Cn−f )
d1,d2

such that Tlog · β = (1− n)d1 + d2 < 3. It corresponds
to determine Donaldson-Thomas invariants for the following quivers:

When n = 1, 2, these initial F
OFn (−Cn−f )
d1,d2

can be explicitly determined.
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Table: GW invariants of OF1(−C1 − f )

(d1, d2) F
OF1

(−C1−f )

d1,d2

(0, 1) (−q)1/2/(q − 1)

(1, 1) −(−q)1/2/(q − 1)

(1, 2) 1

(1, 3) −(q − 1)/(−q)1/2

(1, 4) −(q − 1)2/q

(2, 2) −1

(2, 3) −(q − 1)(q2 + 3q + 1)/(−q)3/2

(2, 4) (q − 1)2(q4 + 4q3 + 8q2 + 4q + 1)/q3

(3, 3) (q − 1)(q2 + 2q + 1)/(−q)3/2

(3, 4) −(q − 1)2(q6 + 4q5 + 11q4 + 17q3 + 11q2 + 4q + 1)/q4

(4, 4) (q − 1)2(q6 + 3q5 + 7q4 + 10q3 + 7q2 + 3q + 1)/q4
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Table: BPS states ng ,(d1,d2) for OF1(−C1 − f )

(d1, d2)
g

0 1 2 3

(0, 1) 1 0 0 0

(1, 1) −1 0 0 0

(1, 2) 1 0 0 0

(1, 3) −1 0 0 0

(1, 4) 1 0 0 0

(2, 2) −1 0 0 0

(2, 3) 5 −1 0 0

(2, 4) −18 8 −1 0

(3, 3) −4 1 0 0

(3, 4) 49 −36 10 −1

(4, 4) −32 28 −9 1
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Table: GW invariants of OF2(−C2 − f )

(d1, d2) F
OF2

(−C2−f )

d1,d2

(0, 1) (−q)1/2/(q − 1)

(1, 2) (−q)1/2/(q − 1)

(1, 3) −1

(1, 4) (q − 1)/(−q)1/2

(1, 5) (q − 1)2/q

(1, 6) (q − 1)3/(−q)3/2

(2, 3) (−q)1/2/(q − 1)

(2, 4) −(q2 + 2q + 1)/q

(2, 5) (q − 1)(q4 + 3q3 + 5q2 + 3q + 1)/(−q)5/2

(2, 6) (q − 1)2(q6 + 4q5 + 8q4 + 12q3 + 8q2 + 4q + 1)/q4

(3, 4) (−q)1/2/(q − 1)

(3, 5) −(q4 + 2q3 + 5q2 + 2q + 1)/q2

(3, 6) (q − 1)(q8 + 3q7 + 8q6 + 14q5 + 20q4 + 14q3 + 8q2 + 3q + 1)/(−q)9/2
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Table: BPS states ng ,(d1,d2) for OF2(−C2 − f )

(d1, d2)
g

0 1 2 3 4

(0, 1) 1 0 0 0 0

(1, 2) 1 0 0 0 0

(1, 3) −1 0 0 0 0

(1, 4) 1 0 0 0 0

(1, 5) −1 0 0 0 0

(1, 6) 1 0 0 0 0

(2, 3) 1 0 0 0 0

(2, 4) −4 1 0 0 0

(2, 5) 13 −7 1 0 0

(2, 6) −38 33 −10 1 0

(3, 4) 1 0 0 0 0

(3, 5) −11 6 −1 0 0

(3, 6) 72 −89 46 −11 1
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But when n > 2, we need to determine the Donaldson-Thomas invariants
for the following quivers:

No explicit closed formulas are known to us.
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Comparison with the recursion from Virasoro constraints

By embedding OP2(−1) into P(OP2(−1)⊕OP2). GW invariants of OP2(−1)
equal to the corresponding invariants of P(OP2(−1)⊕OP2). We can apply
the Virasoro constraints and get another recursion:

N1,d = −d(d − 1)

24
N0,d −

∑
d1+d2=d
d1,d2>0

(d − 1)(2d − 1)

2

(
2d − 3

2d1 − 2

)
N0,d1N1,d2

This recursion is different from the recursion coming from the all-genus
WDVV recursion:

N1,d =
∑

d1+d2=d
d1,d2>0

N0,d1N0,d2

d4
1

12
−
∑

d1+d2=d
d1,d2>0

(N0,d1N1,d2 + N0,d2N1,d1)d
2
1

( 2d − 3

2d1 − 1

)

Using computer, we check that up to degree 19, the two recursions give the
same answer. But a proof for the equivalence between these two recursions
is still missing.
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Thank you!
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