All-genus WDVV recursion, quivers, and BPS invariants

Longting Wu

Southern University of Science and Technology

Joint work with Pierrick Bousseau, arXiv:2303.00503

Intercontinental Moduli and Algebraic Geometry Zoominar

Let X be a smooth projective surface and D be an ample divisor in X. Let β be a nonzero curve class of X. We use $\overline{M}_{g,m}(\mathcal{O}_X(-D),\beta)$ to denote the moduli space of m pointed genus g stable maps of class β to the total space of $\mathcal{O}_X(-D)$. Since D is ample, $\overline{M}_{g,m}(\mathcal{O}_X(-D),\beta)$ coincides with the moduli $\overline{M}_{g,m}(X,\beta)$. Let [pt] be the point class of X. We consider the following primary Gromov-Witten invariants:

$$N_{g,\beta}^{\mathcal{O}_{X}(-D)} \coloneqq \int_{[\overline{M}_{g,m}(\mathcal{O}_{X}(-D),\beta)]^{\mathrm{vir}}} \prod_{i=1}^{m} ev_{i}^{*}([pt])$$

By dimension constraint, we need $m = T_{\log} \cdot \beta$ where $T_{\log} = -K_X - D$. In particular, $T_{\log} \cdot \beta \ge 0$. We only consider those β such that $T_{\log} \cdot \beta > 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

By fixing β and summing over g, we get the following generating series

$$F_{eta}^{\mathcal{O}_X(-D)} \coloneqq \sum_{g \ge 0} N_{g,eta}^{\mathcal{O}_X(-D)} h^{2g-2+T_{\log}\cdoteta}$$

The Gopakumar-Vafa conjecture proven by Zinger, Ionel, Parker, Doan, Walpuski tells us that we can reorganized it as

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = \sum_{g \ge 0} n_{g,\beta}^{\mathcal{O}_{X}(-D)} (2\sin(h/2))^{2g-2+T_{\log}\cdot\beta}$$

where $n_{g,\beta}^{\mathcal{O}_X(-D)} \in \mathbb{Z}$. In particular, $F_{\beta}^{\mathcal{O}_X(-D)} \in \mathbb{Q}((-q)^{-\frac{1}{2}})$ with $q = e^{ih}$.

For a divisor $D \subset X$, the virtual genus g(D) of a divisor D is defined by

$$g(D) \coloneqq 1 - \frac{1}{2}T_{\log} \cdot D$$

In this talk, we will further assume D to be of virtual genus 0. Then

Theorem (Bousseau-W.)

Let X be a smooth projective surface and D be an ample divisor in X with virtual genus 0. Then, we have the following recursive formula:

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = \sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} F_{\beta_{1}}^{\mathcal{O}_{X}(-D)} F_{\beta_{2}}^{\mathcal{O}_{X}(-D)} \left(q^{D\cdot\beta_{1}}+q^{-D\cdot\beta_{1}}-2\right) \left(\frac{T_{\log}\cdot\beta-3}{T_{\log}\cdot\beta_{1}-1}\right)$$

if $T_{\log}\cdot\beta > 3$.

If we specialize the above recursion to genus 0, we get

$$N_{0,\beta}^{\mathcal{O}_{X}(-D)} = -\sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} N_{0,\beta_{1}}^{\mathcal{O}_{X}(-D)} N_{0,\beta_{2}}^{\mathcal{O}_{X}(-D)} (D \cdot \beta_{1})^{2} \begin{pmatrix} T_{\log} \cdot \beta - 3\\ T_{\log} \cdot \beta_{1} - 1 \end{pmatrix}$$

This genus zero recursion can also be deduced from the WDVV equation of relative GW theory together with local/relative correspondence:

$$(T_{\log} \cdot D) \mathsf{N}_{0,\beta}^{\mathcal{O}_{X}(-D)} = -2 \sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} \mathsf{N}_{0,\beta_{1}}^{\mathcal{O}_{X}(-D)} \mathsf{N}_{0,\beta_{2}}^{\mathcal{O}_{X}(-D)} \left(D \cdot \beta_{1}\right)^{2} \begin{pmatrix} T_{\log} \cdot \beta - 3\\ T_{\log} \cdot \beta_{1} - 1 \end{pmatrix}$$

So the requirement of D to be virtual genus zero, i.e., $T_{log} \cdot D = 2$ is necessary. And this is also why we treat the previous recursion as all-genus WDVV recursion.

The genus 0 consideration can also be used to show that the requirement of D to be ample can not be relaxed to be nef.

For example, let $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1})$ and D be a fiber of X. We have the following recursion:

$$N_{0,\beta}^{\mathcal{O}_{X}(-D)} = -\sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} N_{0,\beta_{1}}^{\mathcal{O}_{X}(-D)} N_{0,\beta_{2}}^{\mathcal{O}_{X}(-D)} \left(D \cdot \beta_{1}\right)^{2} \binom{T_{\log} \cdot \beta - 3}{T_{\log} \cdot \beta_{1} - 1} + (D \cdot \beta)^{2} N_{0,\beta-f}^{\mathcal{O}_{X}(-D)}$$

if $T_{\log} \cdot \beta \geq 3$, where f stands for the fiber class. Still, it can be deduced from the WDVV equation of relative GW theory together with local/relative correspondence.

The appearance of the additional term $(D \cdot \beta)^2 N_{0,\beta-f}^{\mathcal{O}_X(-D)}$ follows from the calculation of WDVV equation, there will be a contribution from a splitting of curve class $\beta = \beta_1 + \beta_2$ with $\beta_1, \beta_2 \neq 0$ but $D \cdot \beta_2 = 0$. Such kind of contribution can not appear if D is ample.

According to Lanteri and Palleschi, the condition that X has an ample divisor D with virtual genus 0 actually forces (X, D) to be the following two types:

- (1) $(X, D) = (\mathbb{P}^2, \text{line}) \text{ or } (\mathbb{P}^2, \text{conic});$
- (2) X is a Hirzebruch surface and $\mathcal{O}_X(D) \otimes \mathcal{O}_f = \mathcal{O}_{\mathbb{P}^1}(1)$ for any fiber f of the Hirzebruch surface X.

Let us give a more detailed description of case (2). First, we specialize X to be $F_n = \mathbb{P}(\mathcal{O}(n) \oplus \mathcal{O})$ where $n \in \mathbb{Z}_{\geq 0}$. Let C_n and C_{-n} be the sections of X with intersection numbers n and -n respectively. The requirements that $\mathcal{O}_X(D) \otimes \mathcal{O}_f = \mathcal{O}_{\mathbb{P}^1}(1)$ and D is ample will imply that $D = C_n + sf$ with s > 0.

A deformation of F_n to F_{n+2} is given by

$$\left\{ ([x_0:x_1],[y_0:y_1:y_2],t) \in \mathbb{P}^1 \times \mathbb{P}^2 \times \mathbb{C} \middle| x_0^{n+2}y_1 - x_1^{n+2}y_0 + tx_0^{n+1}x_1y_2 = 0 \right\}$$

Under such a deformation the divisor $C_n + (s + 1)f$ of F_n will deform to be $C_{n+2} + sf$ of F_{n+2} and the curve class $d_1C_{-n} + d_2f$ deforms to be $d_1C_{-n-2} + (d_1 + d_2)f$. So after a sequence of deformation, we have

$$\mathsf{GW}(\mathcal{O}_{F_n}(-C_n-sf))\simeq \mathsf{GW}(\mathcal{O}_{F_{n+2}}(-C_{n+2}-(s-1)f))\simeq \cdots \simeq \mathsf{GW}(\mathcal{O}_{F_{n+2s-2}}(-C_{n+2s-2}-f))$$

The all-genus WDVV equation is compatible with the above deformation. So it is enough to consider only the following three types of pairs (X, D):

$$(\mathbb{P}^2, \text{line}), \quad (\mathbb{P}^2, \text{conic}), \quad (F_n, C_n + f), \ n \ge 0.$$

The proof for the all-genus WDVV recursion goes as follows:

Local GW-theroy \longrightarrow Relative (Log) GW-theory \longrightarrow Quiver DT-theory

We first translate the recursion into a recursion for relative GW-invariants using the local/relative correspondence. We then further translate it into a recursion for quiver DT-invariants via a GW/quiver correspondence derived by Bousseau from the GW/Kronecker correspondence for log Calabi-Yau surfaces. The recursion on the quiver DT-side can then be deduced using the geometric properties of the quiver moduli.

Let $\overline{M}_{g,m}(X/D,\beta)$ be the moduli space of *m*-pointed genus *g* relative stable maps of class β to (X, D) with only one contact condition of maximal tangency along *D*. We consider

$$N_{g,eta}^{X/D}\coloneqq\int_{[\overline{M}_{g,m}(X/D,eta)]^{\mathrm{vir}}}\prod_{i=1}^m\mathrm{ev}_i^*([pt])(-1)^g\lambda_g$$

The genus 0 local/relative correspondence proven by van Garrel-Graber-Ruddat tells us that

$$N_{0,\beta}^{\mathcal{O}_X(-D)} = \frac{(-1)^{D \cdot \beta - 1}}{D \cdot \beta} N_{0,\beta}^{X/D}$$

But for g > 0, we have correction terms:

$$N_{g,\beta}^{\mathcal{O}_X(-D)} = \frac{(-1)^{D\cdot\beta-1}}{D\cdot\beta} N_{g,\beta}^{X/D} + \cdots$$

The higher genus generalization of the local/relative correspondence was proven by Bousseau-Fan-Guo-W. Fortunately, when D is ample and virtual genus 0 and $T_{log} \cdot \beta > 0$, these correction terms can be explicitly calculated:

By fixing β with $T_{\log} \cdot \beta > 0$ and summing over g, we have

$$F^{X/D}_{\beta} \coloneqq \sum_{g \ge 0} N^{X/D}_{g,\beta} h^{2g-1+T_{\log}\cdot\beta}$$

It is related to $F_{\beta}^{\mathcal{O}_{\chi}(-D)}$ as follows:

Theorem (Bousseau-W.)

$$F_{eta}^{\mathcal{O}_X(-D)} = F_{eta}^{X/D} rac{(-1)^{D \cdot eta - 1}}{2\sin(rac{(D \cdot eta)h}{2})}$$

Longting Wu (SUSTech)

20 March 2023

<ロト <回 > < 回 > < 回 >

.2 / 54

3

After converting local invariants to relative invariants, we need further translate them into quiver DT-invariants.

A quiver Q consists of a finite set of vertices Q_0 together with a finite set of arrows $Q_1 = \{\alpha : i \to j | i, j \in Q_0\}$.

A representation of a quiver Q consists of a tuple of vector space $(V_i)_{i \in Q_0}$ indexed by the vertices, plus a tuple of linear morphisms $(V_{\alpha} : V_i \to V_j)_{\alpha:i \to j}$ indexed by the arrows. By fixing a dimension vector $\underline{d} = (\dim V_i)_{i \in Q_0}$ and a stability θ , we could construct a moduli of θ -stable (semistable) quiver representations with fixed dimension vector \underline{d} .

For all the quivers considered in this talk, the stability condition will always choose to be $\theta(\cdot) = \{\underline{d}, \cdot\}$ where $\{\cdot, \cdot\}$ is the antisymmetrized Euler form.

Given a projective moduli space Y of semistable quiver representations, the corresponding refined Donaldson-Thomas invariant $\Omega_Y(q)$ is defined as follows. If the stable locus of Y is not empty, then

$$\Omega_{Y}(q) = (-q^{1/2})^{-\dim_{\mathbb{C}}Y} \sum_{i=0}^{2\dim_{\mathbb{C}}Y} \dim \operatorname{IH}^{i}(Y, \mathbb{Q})(-q^{1/2})^{i}$$

i.e., $\Omega_Y(q)$ is the shifted Poincaré polynomial of the intersection cohomology of Y. Otherwise, if the stable locus of Y is empty, then $\Omega_Y(q) = 0$.

The correspondence between log GW-invariants of log Calabi-Yau surfaces and quiver DT invariants starts from the work of Gross-Pandharipande-Siebert on the GW-side and Reineke on the quiver side. This genus 0/DT correspondence was later generalized by Bousseau to higher genus/refined DT correspondence.

For this talk, we are interested in relative GW-invariants of the following three types of pairs (X, D):

$$(\mathbb{P}^2, \mathsf{line}), \quad (\mathbb{P}^2, \mathsf{conic}), \quad (F_n, C_n + f), \ n \ge 0$$

We are in a situation of Fano-like cases instead of Calabi-Yau. So the first step is to convert the Fano problems into Calabi-Yau ones.

Here is an illustration of how it works:

$$(\mathbb{P}^2, L) \longrightarrow (\mathbb{P}^2, L \sqcup C) \longrightarrow (Bl(\mathbb{P}^2), L \sqcup \widetilde{C})$$

Next step, find a toric model for $(BI(\mathbb{P}^2), L \sqcup \widetilde{C})$:

Here $(\overline{Z}, \overline{D})$ is a toric log Calabi-Yau surface with maximal boundary and $\pi_{\overline{Z}}$ is a sequence of interior blow-ups and $\pi_{\widetilde{Z}}$ is a sequence of corner blow-ups. The reason to find such a toric model is that on the GW-side, the GW/quiver correspondence is dealing with log GW-invariants of $(\widetilde{Z}, \widetilde{D})$. And a quiver can be constructed via the toric data of $(\overline{Z}, \overline{D})$ and $\pi_{\overline{Z}}$. For different toric models, the quivers are related via mutations.

The above gives a toric model for $(BI(\mathbb{P}^2), L \sqcup \widetilde{C})$ by setting $\overline{Z} = F_2$ and $\overline{D} =$ union of toric divisors. $\pi_{\overline{Z}}$ is a sequence of blow-ups at the red points, and $\pi_{\widetilde{Z}}$ is a sequence blow-downs of divisors associated to the purple and blue rays.

We can then construct a quiver from the above toric data:

with $m = T_{\log} \cdot \beta = 2d$ and dimension vector $\underline{d} = \sum e_{i_k} + de_j \in \mathbb{N}Q_0$. Recall that, the stability θ is always given by $\theta(\cdot) = \{\underline{d}, \cdot\}$.

We use $M_{d[I]}^{\mathbb{P}^2/L}$ to denote the corresponding moduli of θ -semistable quiver representations with [I] be the line class. Then the GW/quiver correspondence in this case becomes

$$\Omega_{M_{d[l]}^{\mathbb{P}^2/L}}(q) = F_{d[l]}^{\mathbb{P}^2/L} \frac{(-1)^{d-1}}{(2\sin(h/2))^{2d-1}}, \ q = e^{ih}$$

Specialize q = 1, we get

$$\chi_{IC}(M_{d[I]}^{\mathbb{P}^2/L}) = N_{0,d[I]}^{\mathbb{P}^2/L}$$

We remark that the above identity is first derived by Reineke and Weist using a direct computation on both GW and quiver sides. The higher genus generalization was given by Bousseau using the procedures I mentioned above.

Using Bousseau's method, we can find the quiver for (\mathbb{P}^2 , conic):

æ

Also the quiver for $(F_n, C_n + f)$:

For all of the three types of quivers, the number m of vertices on the LHS always equal to $T_{log} \cdot \beta$ and the dimensions put on the vertices on the LHS are all 1. But the dimensions put on the vertices on the RHS will be determined by β .

For each of the above three types pairs (X, D), we use $M_{\beta}^{X/D}$ to denote the corresponding quiver moduli. Then we have

Combining local/relative correspondence with $\mathsf{GW}/\mathsf{quiver}$ correspondence, we have

$$\mathcal{F}^{\mathcal{O}_X(-D)}_eta = \Omega_{\mathcal{M}^{X/D}_eta}(q) rac{(2\sin(h/2))^{\mathcal{T}_{ ext{log}},eta - 1}}{2\sin(rac{(D\cdoteta)h}{2})}, \ q = e^{ih}$$

Together with

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = \sum_{g \ge 0} n_{g,\beta}^{\mathcal{O}_{X}(-D)} (2\sin(h/2))^{2g-2+T_{\log}\cdot\beta}$$

It yields

$$\sum_{g\geq 0} n_{g,\beta}^{\mathcal{O}_X(-D)} (2\sin(h/2))^{2g} = \Omega_{M_\beta^{X/D}}(q) \frac{2\sin(h/2)}{2\sin(\frac{(D\cdot\beta)h}{2})}$$

Image: A matrix

æ

Note that

$$\frac{2\sin(\frac{(D\cdot\beta)h}{2})}{2\sin(h/2)} = \frac{q^{(D\cdot\beta)/2} - q^{-(D\cdot\beta)/2}}{q^{1/2} - q^{-1/2}} = (-1)^{D\cdot\beta - 1} P_{\mathbb{P}^{D\cdot\beta - 1}}$$

where

$$P_{\mathbb{P}^{D\cdot\beta-1}} = (-q^{1/2})^{-(D\cdot\beta-1)} \sum_{i=0}^{D\cdot\beta-1} \dim \mathsf{H}^{i}(\mathbb{P}^{D\cdot\beta-1},\mathbb{Q})(-q^{1/2})^{i}$$

So $\Omega_{M_{\beta}^{X/D}}(q)$ could divide $P_{\mathbb{P}^{D\cdot\beta-1}}$. This actually has a geometry meaning:

æ

Let Q be a quiver corresponding to (X, D) as above. We construct a new quiver Q_{-} from Q by deducing the number of vertices on the LHS by one, and keep the dimensions putting on these vertices. We use $M_{\beta}^{\mathcal{O}_{X}(-D)}$ to denote the corresponding quiver moduli associated to Q_{-} . Then we have

$$\Omega_{M^{X/D}_{\beta}}(q) = P_{\mathbb{P}^{D\cdot\beta-1}}\Omega_{M^{\mathcal{O}_{X}(-D)}_{\beta}}$$

The reason is that the framed quiver moduli of Q_{-} actually gives a small resolution of $M_{\beta}^{X/D}$ and the framing quiver moduli is a $\mathbb{P}^{D\cdot\beta-1}$ -bundle of $M_{\beta}^{\mathcal{O}_X(-D)}$ because $M_{\beta}^{\mathcal{O}_X(-D)}$ is smooth. This was first shown by Reineke and Weist for the quivers associated to (\mathbb{P}^2 , line). Their arguments can be generalized to other two types of quivers.

Theorem (Bousseau-W.)

if T_{lor}

For each of the above three types pairs (X, D), we have

$$\sum_{g} n_{g,\beta}^{\mathcal{O}_{\chi}(-D)} (2\sin(h/2))^{2g} = (-1)^{D \cdot \beta - 1} \Omega_{M_{\beta}^{\mathcal{O}_{\chi}(-D)}}(q)$$

$$g \cdot \beta > 0.$$

Note that using the deformation equivalence, the above theorem can be easily generalized to all the pairs (X, D) such that D is ample and virtual genus 0. The geometry properties of $M_{\beta}^{\mathcal{O}_X(-D)}$ will have some interesting consequence.

We define the BPS Castelnuovo number to be

$$g_{\beta}^{\mathcal{O}_{X}(-D)} \coloneqq \sup\{g \mid n_{g,\beta}^{\mathcal{O}_{X}(-D)} \neq 0\}$$

Corollary

(1)
$$g_{\beta}^{\mathcal{O}_{X}(-D)} = \frac{(K_{X}+\beta)\cdot\beta}{2} + 1;$$

(2) $n_{g,\beta}^{\mathcal{O}_{X}(-D)} = (-1)^{g+D\cdot\beta-1}$, if $g = \frac{(K_{X}+\beta)\cdot\beta}{2} + 1 \ge 0.$
if $T_{\log} \cdot \beta > 0$ and $M_{\beta}^{\mathcal{O}_{X}(-D)} \neq \emptyset.$

Note that case (1) matches with the genus-degree formula, and case (2) actually follows from the geometric fact that the moduli space $M_{\beta}^{\mathcal{O}_{\chi}(-D)}$ is connected.

Proof of the recursion

After replacing
$$\Omega_{M_{\beta}^{X/D}}(q)$$
 by $\Omega_{M_{\beta}^{\mathcal{O}_{X}(-D)}}(q)$ in

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = \Omega_{M_{\beta}^{X/D}}(q) \frac{(2\sin(h/2))^{T_{\log}\cdot\beta-1}}{2\sin(\frac{(D\cdot\beta)h}{2})}, q = e^{ih}$$

we get

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = (-1)^{D \cdot \beta - 1} \Omega_{\mathcal{M}_{\beta}^{\mathcal{O}_{X}(-D)}}(q) (2\sin(h/2))^{T_{\log} \cdot \beta - 2}$$

After plugging into the recursion

$$F_{\beta}^{\mathcal{O}_{X}(-D)} = \sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} F_{\beta_{1}}^{\mathcal{O}_{X}(-D)} F_{\beta_{2}}^{\mathcal{O}_{X}(-D)} \left(q^{D\cdot\beta_{1}}+q^{-D\cdot\beta_{1}}-2\right) \begin{pmatrix} T_{\log}\cdot\beta-3\\ T_{\log}\cdot\beta_{1}-1 \end{pmatrix}$$

æ

It becomes

$$\Omega_{\mathcal{M}_{\beta}^{\mathcal{O}_{X}(-D)}} = \sum_{\substack{\beta_{1}+\beta_{2}=\beta\\\beta_{1},\beta_{2}>0}} \Omega_{\mathcal{M}_{\beta_{1}}^{\mathcal{O}_{X}(-D)}} \Omega_{\mathcal{M}_{\beta_{2}}^{\mathcal{O}_{X}(-D)}} (P_{\mathbb{P}^{D}\cdot\beta_{1}-1})^{2} \begin{pmatrix} T_{\mathsf{log}} \cdot \beta - 3\\ T_{\mathsf{log}} \cdot \beta_{1} - 1 \end{pmatrix}$$

Here we recall that

$$P_{\mathbb{P}^{D\cdot\beta_{1}-1}}=(-1)^{D\cdot\beta_{1}-1}\frac{q^{\frac{D\cdot\beta_{1}}{2}}-q^{-\frac{D\cdot\beta_{1}}{2}}}{q^{1/2}-q^{-1/2}}$$

When $(X, D) = (\mathbb{P}^2, \text{line})$, the above recursion was first derived by Reineke and Weist. Their arguments can actually be generalized to give a proof of the recursion for other two types of quivers.

The key formula used in Reineke and Weist's proof is a formula relating DT-invariants of framed moduli spaces to unframed ones.

Let Q be a quiver. A framed quiver of \widehat{Q} can be derived from Q by adding an additional vertex i_0 and n_i arrows from i_0 to $i \in Q_0$. By putting dimension 1 to i_0 , we can extend the dimension vector \underline{d} of Q to a dimension vector $\underline{\hat{d}}$ of \widehat{Q} . Assume that the stability θ of Q is normalized, i.e., $\theta(\underline{d}) = 0$. We then also extend the stability θ to a stability $\hat{\theta}$ of \widehat{Q} by adding the entry 1 for the vertex i_0 .

Then the moduli space $M_{\underline{d},\underline{n}}^{\theta,\mathrm{fr}}(Q)$ of θ -semistable \underline{n} -framed representations of Q with dimension \underline{d} is simply the moduli space $M_{\underline{\hat{d}}}^{\hat{\theta}-sst}(\widehat{Q})$ of $\hat{\theta}$ -semistable representations of \widehat{Q} with dimension $\underline{\hat{d}}$.

The formula relating DT-invariants of framed moduli spaces to unframed ones can be stated as follows.

Let Q be a quiver with stability θ . We use Λ_0^+ to denote the set of nonzero dimension vectors \underline{d} such that $\theta(\underline{d}) = 0$. Then

$$1 + \sum_{\underline{d} \in \Lambda_0^+} \Omega_{M_{\underline{d},\underline{n}}^{\theta, \mathrm{fr}}}(-1)^{\underline{n} \cdot \underline{d}} x^{\underline{d}} = \mathrm{Exp}\left(\sum_{\underline{d} \in \Lambda_0^+} P_{\mathbb{P}^{\underline{n} \cdot \underline{d} - 1}} \Omega_{M_{\underline{d}}^{\theta-\mathrm{sst}}}(-1)^{\underline{n} \cdot \underline{d}} x^{\underline{d}}\right)$$

where $Exp(\cdot)$ is the plethystic exponential:

$$\operatorname{Exp}(f) = \exp(\sum_{k=1}^{\infty} \frac{f(x^k)}{k})$$

Recall that the quivers Q associated to the pair (\mathbb{P}^2 , line) are

with $\underline{d} = \sum e_{i_k} + de_j$, $\theta = \sum e_{i_k}^* - 2e_j^*$. By specifying the number of vertices on the LHS , we also use $M_{m,d}^L$ to denote the corresponding quiver moduli, and use $M_{m,d}^{L,\mathrm{fr}}$ to denote the corresponding framed moduli.

By further setting m = 2d, $\underline{n} = e_j$ and taking the coefficient of $x_{i_1} \cdots x_{i_{2d}} x_j^d$ on both sides of the formula relating DT-invariants of framed moduli spaces to unframed ones:

$$1 + \sum_{\underline{d} \in \Lambda_0^+} \Omega_{M_{\underline{d},\underline{n}}^{\theta,\mathrm{fr}}}(-1)^{\underline{n} \cdot \underline{d}} x^{\underline{d}} = \mathrm{Exp}\left(\sum_{\underline{d} \in \Lambda_0^+} P_{\mathbb{P}^{\underline{n} \cdot \underline{d}-1}} \Omega_{M_{\underline{d}}^{\theta-sst}}(-1)^{\underline{n} \cdot \underline{d}} x^{\underline{d}}\right)$$

we have

$$\Omega_{M_{2d,d}^{L,fr}} = \sum_{a_1+a_2\cdots+a_d=d \atop a_i \ge 0} \frac{(2d)!}{\prod_{k=1}^d ((2k)!)^{a_k} (a_k)!} \prod_{k=1}^d \left(P_{\mathbb{P}^{k-1}} \Omega_{M_{2k,k}^L} \right)^{a_k}$$

Note that

$$M_{d[I]}^{\mathcal{O}_{\mathbb{P}^2}(-1)} = \Omega_{M_{2d-1,d}^L}$$

To get a recursion for $\Omega_{M^L_{2d-1,d}}$, we need the following key geometric properties of quiver moduli:

$$M^{L,\mathrm{fr}}_{2d,d} \simeq M^L_{2d+1,d} \simeq M^L_{2d+1,d+1}, \quad \Omega_{M^L_{2d,d}} = P_{\mathbb{P}^{d-1}} \Omega_{M^L_{2d-1,d}}$$

The second isomorphism is induced by the reflection functor in $\operatorname{Rep}_{\mathbb{C}} Q$. Then the above formula becomes

$$z_{d+1}^{L} = \sum_{\substack{a_1 + a_2 \dots + a_d = d \\ a_i \ge 0}} \frac{(2d)!}{\prod_{k=1}^{d} ((2k)!)^{a_k} (a_k)!} \prod_{k=1}^{d} \left(\left(P_{\mathbb{P}^{k-1}} \right)^2 z_k^L \right)^{a_k}$$

with $z_d^L(q) = \Omega_{M_{2d-1,d}^L}(q)$.

So by summing over d, we have

$$1 + \sum_{d>0} \frac{z_{d+1}^{L}}{(2d)!} x^{d} = \exp\left(\sum_{k>0} \frac{\left(P_{\mathbb{P}^{k-1}}\right)^{2} z_{k}^{L}}{(2k)!} x^{k}\right)$$

By further taking a derivative $2x \frac{d}{dx}$ on both sides, we have

$$\sum_{d>0} \frac{z_{d+1}^L}{(2d-1)!} x^d = \left(\sum_{k>0} \frac{(P_{\mathbb{P}^{k-1}})^2 z_k^L}{(2k-1)!} x^k \right) \left(\sum_{d\geq 0} \frac{z_{d+1}^L}{(2d)!} x^d \right)$$

So by taking the coefficients of x^{d-1} on both sides, we get the recursion

$$z_{d}^{L} = \sum_{\substack{d_{1}+d_{2}=d\\d_{1},d_{2}>0}} z_{d_{1}}^{L} z_{d_{2}}^{L} (P_{\mathbb{P}^{d_{1}-1}})^{2} \binom{2d-3}{2d_{1}-1}$$

Longting Wu (SUSTech)

For the quivers associated to $(\mathbb{P}^2, \text{conic})$:

We use $M_{m,d}^C$ to denote the corresponding quiver moduli, and use $M_{m,d}^{C,fr}$ to denote the corresponding framed moduli.

The key geometric properties are

$$M_{d,d}^{\mathsf{C},\mathsf{fr}} \simeq M_{d+1,d}^{\mathsf{C}} \simeq M_{d+1,d+2}^{\mathsf{C}}, \quad \Omega_{M_{d,d}^{\mathsf{C}}} = P_{\mathbb{P}^{2d-1}}\Omega_{M_{d-1,d}^{\mathsf{C}}}$$

Still the second isomorphism is induced by reflection functor and can be proven in a similar way. It yields

$$1 + \sum_{d>0} \frac{z_{d+2}^{C}}{d!} x^{d} = \exp\left(\sum_{k>0} \frac{\left(P_{\mathbb{P}^{2k-1}}\right)^{2} z_{k}^{C}}{(k)!} x^{k}\right)$$

with $z_d^C = \Omega_{M_{d-1,d}^C}$. By taking a derivative $x \frac{d}{dx}$ on both sides, we get the recursion

$$z_d^{\mathcal{C}} = \sum_{\substack{d_1+d_2=d \ d_1,d_2>0}} z_{d_1}^{\mathcal{C}} z_{d_2}^{\mathcal{C}} \mathcal{P}_{\mathbb{P}^{2d_1-1}} {d-3 \choose d_1-1}$$

For the quivers associated to $(F_n, C_n + f)$:

We use $M_{m,d_1,d_2}^{F_n}$ to denote the corresponding quiver moduli, and use $M_{m,d_1,d_2}^{F_n,fr}$ to denote the corresponding framed moduli.

The key geometric properties are

$$M_{m,d_1,d_2}^{F_n, \text{fr}} \simeq M_{m+1,d_1+1,d_2+n+1}^{F_n}, \, \Omega_{M_{m,d_1,d_2}^{F_n}} = P_{\mathbb{P}^{d_1+d_2-1}} \Omega_{M_{m-1,d_1,d_2}^{F_n}}$$

with $m = (1 - n)d_1 + d_2$. It yields

$$1 + \sum_{\substack{(1-n)d_1+d_2 \ge 0\\d_1+d_2 > 0}} \frac{z_{d_1+1,d_2+n+1}^{F_n}}{((1-n)d_1+d_2)!} x_1^{d_1} x_2^{d_2} = G \exp\left(\sum_{\substack{(1-n)k_1+k_2 > 0}} \frac{(P_{\mathbb{P}^{d_1+d_2-1}})^2 z_{k_1,k_2}^{F_n}}{((1-n)k_1+k_2)!} x_1^{k_1} x_2^{k_2}\right)$$

with
$$z_{d_1,d_2}^{F_n} = \Omega_{\mathcal{M}_{(1-n)d_1+d_2-1,d_1,d_2}^{F_n}}$$
 and

$$G = 1 + \sum_{\substack{(1-n)d_1+d_2=0\\d_1+d_2>0}} z_{d_1+1,d_2+n+1}^{F_n} x_1^{d_1} x_2^{d_2}$$

By taking a derivative $(1 - n)x_1\frac{\partial}{\partial x_1} + x_2\frac{\partial}{\partial x_2}$ on both sides, we get the recursion

$$z_{d_1,d_2}^{F_n} = \sum_{\substack{k_1+k_1'=d_1\\k_2+k_2'=d_2}} z_{k_1,k_2}^{F_n} z_{k_1',k_2'}^{F_n} (P_{\mathbb{P}^{k_1+k_2-1}})^2 \binom{(1-n)d_1+d_2-3}{(1-n)k_1+k_2-1}$$

Longting Wu (SUSTech)

Table: GW-invariants of $\mathcal{O}_{\mathbb{P}^2}(-1)$

d	$F_d^{\mathcal{O}_{\mathbb{P}^2}(-1)}$
1	1
2	$(q-1)^2/q$
3	$(q-1)^4(q^2+5q+1)/q^3$
4	$(q-1)^6(q^6+7q^5+29q^4+64q^3+29q^2+7q+1)/q^6$
5	$(q-1)^8(q^{12}+9q^{11}+46q^{10}+175q^9+506q^8$
5	$+1138q^7+1727q^6+1138q^5+506q^4+175q^3+46q^2+9q+1)/q^{10}$
	$(q-1)^{10}(q^{20}+11q^{19}+67q^{18}+298q^{17}+1080q^{16}+3313q^{15}+8770q^{14}$
6	$+ 20253q^{13} + 40352q^{12} + 67279q^{11} + 84792q^{10} + 67279q^9 + 40352q^8$
	$+ 20253q^7 + 8770q^6 + 3313q^5 + 1080q^4 + 298q^3 + 67q^2 + 11q + 1)/q^{15}$

▶ < ∃ >

Table: BPS states $n_{g,d}$ for $\mathcal{O}_{\mathbb{P}^2}(-1)$

d g	0	1	2	3	4	5	6
1	1	0	0	0	0	0	0
2	-1	0	0	0	0	0	0
3	7	$^{-1}$	0	0	0	0	0
4	-138	66	-13	1	0	0	0
5	5477	-5734	3031	-970	190	-21	1

• • • • • • • •

d	$F_d^{\mathcal{O}_{\mathbb{P}^2}(-2)}$
1	$-(-q)^{1/2}/(q-1)$
2	-1
3	$(q-1)(q^2+2q+1)/(-q)^{3/2}$
4	$(q-1)^2(q^6+3q^5+7q^4+10q^3+7q^2+3q+1)/q^4$
5	$\begin{array}{r} -(q-1)^3(q^{12}+4q^{11}+11q^{10}+25q^9+46q^8\\ +71q^7+84q^6+71q^5+46q^4+25q^3+11q^2+4q+1)/(-q)^{15/2}\end{array}$
6	$(q-1)^4(q^{20}+5q^{19}+16q^{18}+41q^{17}+92q^{16}+182q^{15}+323q^{14}+522q^{13}+759q^{12}+978q^{11}$
0	$+ 1074q^{10} + 978q^9 + 759q^8 + 522q^7 + 323q^6 + 182q^5 + 92q^4 + 41q^3 + 16q^2 + 5q + 1)/q^{12}$

Table: GW-invariants of $\mathcal{O}_{\mathbb{P}^2}(-2)$

• • • • • • • •

Table: BPS states $n_{g,d}$ for $\mathcal{O}_{\mathbb{P}^2}(-2)$

g d	0	1	2	3	4	5	6
1	-1	0	0	0	0	0	0
2	$^{-1}$	0	0	0	0	0	0
3	-4	1	0	0	0	0	0
4	-32	28	-9	1	0	0	0
5	-400	792	-721	365	-105	16	-1

• • • • • • • •

(d_1, d_2)	$F_{d_1,d_2}^{\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^1}(-1,-1)}$
(1, 0)	$(-q)^{1/2}/(q-1)$
(2,0)	0
(3,0)	0
(1, 1)	-1
(2, 1)	$(q-1)/(-q)^{1/2}$
(3,1)	$(q-1)^2/q$
(2, 2)	$(q-1)^2(q^2+4q+1)/q^2$
(3, 2)	$(q-1)^3(q^4+5q^3+12q^2+5q+1)/(-q)^{7/2}$
(3,3)	$-(q-1)^4(q^8+6q^7+23q^6+58q^5+94q^4+58q^3+23q^2+6q+1)/q^6$

Table: GW-invariants of $\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(-1,-1)$

→ < ∃ →</p>

• • • • • • • •

Table: BPS states $n_{g,(d_1,d_2)}$ for $\mathcal{O}_{\mathbb{P}^1 imes\mathbb{P}^1}(-1,-1)$

(d_1, d_2) g	0	1	2	3	4
(1,0)	1	0	0	0	0
(2,0)	0	0	0	0	0
(3,0)	0	0	0	0	0
(1,1)	-1	0	0	0	0
(2,1)	1	0	0	0	0
(3,1)	-1	0	0	0	0
(2,2)	-6	1	0	0	0
(3,2)	24	-9	1	0	0
(3,3)	-270	220	-79	14	-1

イロト イヨト イヨト -

For $(F_n, C_n + f)$ with $n \ge 1$ and $\beta = d_1C_{-n} + d_2f$, we need to determine those $F_{d_1,d_2}^{\mathcal{O}_{F_n}(-C_n-f)}$ such that $T_{\log} \cdot \beta = (1-n)d_1 + d_2 < 3$. It corresponds to determine Donaldson-Thomas invariants for the following quivers:

When n = 1, 2, these initial $F_{d_1, d_2}^{\mathcal{O}_{F_n}(-C_n - f)}$ can be explicitly determined.

Table: GW invariants of $\mathcal{O}_{F_1}(-C_1-f)$

(d_1, d_2)	$F_{d_1,d_2}^{\mathcal{O}_{F_1}(-C_1-f)}$
(0,1)	$(-q)^{1/2}/(q-1)$
(1, 1)	$-(-q)^{1/2}/(q-1)$
(1,2)	1
(1,3)	$-(q-1)/(-q)^{1/2}$
(1,4)	$-(q-1)^2/q$
(2,2)	-1
(2,3)	$-(q-1)(q^2+3q+1)/(-q)^{3/2}$
(2,4)	$(q-1)^2(q^4+4q^3+8q^2+4q+1)/q^3$
(3,3)	$(q-1)(q^2+2q+1)/(-q)^{3/2}$
(3,4)	$-(q-1)^2(q^6+4q^5+11q^4+17q^3+11q^2+4q+1)/q^4$
(4,4)	$(q-1)^2(q^6+3q^5+7q^4+10q^3+7q^2+3q+1)/q^4$

20 March 2023

イロト イヨト イヨト

Table: BPS states $n_{g,(d_1,d_2)}$ for $\mathcal{O}_{F_1}(-C_1-f)$

(d_1, d_2) g	0	1	2	3
(0,1)	1	0	0	0
(1,1)	-1	0	0	0
(1,2)	1	0	0	0
(1,3)	-1	0	0	0
(1,4)	1	0	0	0
(2,2)	-1	0	0	0
(2,3)	5	-1	0	0
(2,4)	-18	8	-1	0
(3,3)	-4	1	0	0
(3,4)	49	-36	10	-1
(4,4)	-32	28	-9	1

イロト 不得 トイヨト イヨト

Table:	GW	invariants	of	\mathcal{O}_{F_2}	(-	$C_{2} -$	f)
--------	----	------------	----	---------------------	----	-----------	----

(d_1, d_2)	$F_{d_1,d_2}^{\mathcal{O}_{F_2}(-C_2-f)}$
(0,1)	$(-q)^{1/2}/(q-1)$
(1,2)	$(-q)^{1/2}/(q-1)$
(1,3)	-1
(1,4)	$(q-1)/(-q)^{1/2}$
(1,5)	$(q-1)^2/q$
(1,6)	$(q-1)^3/(-q)^{3/2}$
(2,3)	$(-q)^{1/2}/(q-1)$
(2,4)	$-(q^2+2q+1)/q$
(2,5)	$(q-1)(q^4+3q^3+5q^2+3q+1)/(-q)^{5/2}$
(2,6)	$(q-1)^2(q^6+4q^5+8q^4+12q^3+8q^2+4q+1)/q^4$
(3,4)	$(-q)^{1/2}/(q-1)$
(3,5)	$-(q^4+2q^3+5q^2+2q+1)/q^2$
(3,6)	$(q-1)(q^8+3q^7+8q^6+14q^5+20q^4+14q^3+8q^2+3q+1)/(-q)^{9/2}$

Longting Wu (SUSTech)

20 March 2023

イロト イヨト イヨト イヨト

∃ ∽ へ (~

(d_1, d_2) g	0	1	2	3	4
(0,1)	1	0	0	0	0
(1,2)	1	0	0	0	0
(1,3)	-1	0	0	0	0
(1,4)	1	0	0	0	0
(1,5)	-1	0	0	0	0
(1,6)	1	0	0	0	0
(2,3)	1	0	0	0	0
(2,4)	-4	1	0	0	0
(2,5)	13	-7	1	0	0
(2,6)	-38	33	-10	1	0
(3,4)	1	0	0	0	0
(3,5)	-11	6	-1	0	0
(3,6)	72	-89	46	-11	1

Table: BPS states $n_{g,(d_1,d_2)}$ for $\mathcal{O}_{F_2}(-C_2-f)$

20 March 2023

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Ξ.

But when n > 2, we need to determine the Donaldson-Thomas invariants for the following quivers:

No explicit closed formulas are known to us.

Longting Wu (SUSTech)

WDVV, quivers and BPS

Comparison with the recursion from Virasoro constraints

By embedding $\mathcal{O}_{\mathbb{P}^2}(-1)$ into $\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(-1)\oplus\mathcal{O}_{\mathbb{P}^2})$. GW invariants of $\mathcal{O}_{\mathbb{P}^2}(-1)$ equal to the corresponding invariants of $\mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(-1)\oplus\mathcal{O}_{\mathbb{P}^2})$. We can apply the Virasoro constraints and get another recursion:

$$N_{1,d} = -\frac{d(d-1)}{24}N_{0,d} - \sum_{\substack{d_1+d_2=d\\d_1,d_2>0}} \frac{(d-1)(2d-1)}{2} \binom{2d-3}{2d_1-2} N_{0,d_1}N_{1,d_2}$$

This recursion is different from the recursion coming from the all-genus WDVV recursion:

$$N_{1,d} = \sum_{d_1+d_2=d \ d_1,d_2>0} \left(N_{0,d_1} N_{0,d_2} \frac{d_1^4}{12} - \sum_{d_1+d_2=d \ d_1,d_2>0} (N_{0,d_1} N_{1,d_2} + N_{0,d_2} N_{1,d_1}) d_1^2 \right) {2d-3 \choose 2d_1-1}$$

Using computer, we check that up to degree 19, the two recursions give the same answer. But a proof for the equivalence between these two recursions is still missing.

Longting Wu (SUSTech)

Thank you!

æ