

The cohomology ring of moduli spaces of 1-dimensional sheaves on \mathbb{P}^2

Miguel Moreira ETHZ Joint with Y. Kononov, W. Lim, W. Pi Arxiv 2403.06277

Intercontinental Moduli and Algebraic Geometry Zoominar 15 April 2024

Conskumar M	lafa invariante			
1-dimensional sheaves ●00000	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000

Let X be the quintic 3-fold.

$$\begin{aligned} \mathrm{GW}_{g=0,d=1}^{X} &= 2875 \\ \mathrm{GW}_{g=0,d=2}^{X} &= \frac{4876875}{8} = 609250 + \frac{2875}{2^3} \,. \end{aligned}$$

Problem

How to define the "true curve counts" $n_{g=0,d=1}^{X} = 2875$, $n_{g=0,d=2}^{X} = 609250$ intrinsically, in a way that they are obviously integers?

Proposal by Maulik–Toda (ideas of Gopakumar–Vafa, Katz, Kiem–Li, Osono–Saito–Takahash, ...): use moduli spaces of 1-dimensional sheaves.

Moduli stacks of 1-dimensional sheaves

Given a sheaf F on \mathbb{P}^2 with 1-dimensional support, its slope is

$$\mu(F) = \frac{\chi(F)}{d(F)} \in \mathbb{Q}$$

where $d(F) = c_1(F) \in H^2(\mathbb{P}^2) \simeq \mathbb{Z}$ is the degree of the curve where F is supported. A sheaf is (semi)stable if

$$\mu(\mathcal{G})(\leqslant)\mu(\mathcal{F})$$
 for every $\mathcal{G}\subsetneq\mathcal{F}$.

Let

$$\mathfrak{M}_{d,\chi} \longrightarrow M_{d,\chi}$$

be the moduli stack and coarse moduli space of semistable sheaves on \mathbb{P}^2 with d(F) = d, $\chi(F) = \chi$.

1-dimensional sheaves 00●000	Perverse filtration and GV/GW	Cohomology ring 0000000000	Low <i>d</i> calculation	P = C 00000
Basic proper	ties			

1. The coarse moduli space $M_{d,\chi}$ is projective and irreducible, of dimension

$$\dim M_{d,\chi}=d^2+1\,.$$

2. For any d, χ , the stack $\mathfrak{M}_{d,\chi}$ is smooth of dimension

$$\dim\mathfrak{M}_{d,\chi}=d^2\,.$$

3. When $gcd(d, \chi) = 1$, all the semistable sheaves parametrized by $\mathfrak{M}_{d,\chi}$ or $M_{d,\chi}$ are automatically stable, the coarse moduli space $M_{d,\chi}$ is smooth, and

$$\mathfrak{M}_{d,\chi}\simeq M_{d,\chi}\times B\mathbb{G}_m$$
.

4. Twisting by line bundles and duality produces isomorphisms

$$\begin{split} \mathfrak{M}_{d,\chi} &\xrightarrow{\sim} \mathfrak{M}_{d,\chi+kd} & M_{d,\chi} \xrightarrow{\sim} M_{d,\chi+kd} \\ \mathfrak{M}_{d,\chi} &\xrightarrow{\sim} \mathfrak{M}_{d,-\chi} & M_{d,\chi} \xrightarrow{\sim} M_{d,-\chi} \end{split}$$

1-dimensional sheaves 000●00	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000
Hilbert–Chow	morphism			

There is a morphism

$$h\colon M_{d,\chi} \to |\mathcal{O}_{\mathbb{P}^2}(d)|$$

that sends a 1-dimensional sheaf to its (fitting) support.

ł

A generic point $[C] \in |\mathcal{O}_{\mathbb{P}^2}(d)|$ corresponds to a smooth curve C of genus

$$\mathsf{g}=\frac{(d-1)(d-2)}{2}\,,$$

and the fiber over [C] is

$$h^{-1}([C]) \simeq \operatorname{Jac}(C)$$
.

Note:

$$|\mathcal{O}_{\mathbb{P}^2}(d)| \simeq \mathbb{P}^{rac{d(d+3)}{2}}$$
 .

1-dimensional sheaves 0000€0	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000
Examples				

1. For d = 1, 2 and any χ , the Hilbert–Chow morphism is an isomorphism

$$\begin{split} & M_{1,\chi} \xrightarrow{\sim} |\mathcal{O}_{\mathbb{P}^2}(1)| \simeq \mathbb{P}^2 \\ & M_{2,\chi} \xrightarrow{\sim} |\mathcal{O}_{\mathbb{P}^2}(2)| \simeq \mathbb{P}^5 \end{split}$$

2. For d = 3, the Hilbert–Chow morphism identifies $M_{3,1}$ with the universal cubic:

$$|\mathcal{O}_{\mathbb{P}^2}(3)| imes \mathbb{P}^2 \supseteq \mathcal{C}_3 \simeq M_{3,1} \xrightarrow{h} |\mathcal{O}_{\mathbb{P}^2}(3)| \simeq \mathbb{P}^9$$

In other words,

$$h^{-1}([E])\simeq E$$
.

Theorem (Toda+Konishi, conjectured by Katz)

We have $n_{g=0,d}^{K\mathbb{P}^2} = (-1)^{d^2+1} e(M_{d,\chi})$ for any χ coprime with d, i.e.

$$\mathrm{GW}_{g=0,d}^{K\mathbb{P}^2} = \sum_{d=kd'} \frac{(-1)^{(d')^2+1}}{k^3} e(M_{d',\chi}).$$

In particular, $e(M_{d,\chi})$ does not depend on χ .

- The same holds for an arbitrary χ (not necessarily coprime with d) if we replace the Euler characteristic $e(M_{d,\chi})$ by the intersection Euler characteristic.
- To get higher genus Gopakumar-Vafa/Gromov-Witten invariants we need to introduce the perverse filtration.

1-dimensional sheaves	Perverse filtration and GV/GW 0●00	Cohomology ring	Low <i>d</i> calculation	P = C 00000
Perverse filtr	ation			

There is a filtration on the intersection cohomology of $M_{d,\chi}$ associated to the Hilbert–Chow morphism $h: M_{d,\chi} \to |\mathcal{O}_{\mathbb{P}^2}(d)|$:

$$P_0 IH^*(M_{d,\chi}) \subseteq P_1 IH^*(M_{d,\chi}) \subseteq \ldots \subseteq P_{2g} IH^*(M_{d,\chi}) = IH^*(M_{d,\chi}).$$

Theorem (de Cataldo–Migliorini)

Let $f: X \to Y$ be a morphism between smooth and proper varieties with equidimensional fibers. Denote by L: $H^*(X) \to H^{*+2}(X)$ the operator of multiplication by $f^*\eta$ where η is an ample class in Y. Then the perverse filtration associated to f is

$$P_k H^m(X) = \sum_{i \ge 1} \ker(L^{\dim Y + k + i - m}) \cap \operatorname{im}(L^{i-1}) \cap H^m(X).$$

000000	00•0	ంంంంంంంరో	0000	00000
γ -independe	nce			

Theorem (Maulik-Shen)

Given any $\chi,\chi',$ there is a natural isomorphism of graded vector spaces

$$IH^*(M_{d,\chi}) \simeq IH^*(M_{d,\chi'})$$

that respects the perverse filtrations.

Let

$$\Omega_d(q,t) = (-1)^{d^2+1} q^{-g} t^{-b} \sum_{i,j \ge 0} \dim \operatorname{Gr}_i^P I H^{i+j}(M_{d,\chi}) q^i t^j$$

This encodes (refined) Gopakumar–Vafa invariants of $K\mathbb{P}^2$, as defined by Maulik–Toda. It is a Laurent polynomial symmetric under $q \leftrightarrow q^{-1}$ and $t \leftrightarrow t^{-1}$ by Hard Lefschetz symmetries. Notation: $\operatorname{Gr}_i^P = P_i/P_{i-1}$.

Gopakumar–Vafa/Gromov–Witten correspondence

Conjecture (GV/GW)

We have

$$\exp\left(\sum_{g,d} \operatorname{GW}_{g,d}^{\mathcal{K}\mathbb{P}^{2}} u^{2g-2} Q^{d}\right)$$
$$= \mathsf{PE}\left(-\frac{q}{(1-qt)(1-q/t)} \sum_{d \ge 1} \Omega_{d}(q,t) Q^{d}\right)$$

after setting t = 1, $q = e^{iu}$.

Above, PE is the plethystic exponential:

$$\mathsf{PE}(f(q,t,Q)) = \exp\left(\sum_{k \ge 1} \frac{1}{k} f(q^k, t^k, Q^k)\right)$$

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring ●000000000	Low <i>d</i> calculation	P = C
Tautological	classes			
		с .	1 1	

Goal: describe the rings in terms of generators and relations.

Definition

Let \mathcal{F} be the universal sheaf on $\mathfrak{M}_{d,\chi} \times \mathbb{P}^2$. Let p, q be the projections of $\mathfrak{M}_{d,\chi} \times \mathbb{P}^2$ onto $\mathfrak{M}_{d,\chi}$ and \mathbb{P}^2 , respectively. We define for $k \ge 0, j = 0, 1, 2$

$$c_k(j) = p_* \left(\mathsf{ch}_{k+1}(\mathcal{F}) q^* \mathcal{H}^j \right) \in \mathcal{H}^{2k+2j-2}(\mathfrak{M}_{d,\chi}) \,.$$

If $gcd(d, \chi) = 1$, the coarse moduli space $M_{d,\chi}$ also has a universal sheaf, but it is not unique! We choose a normalized universal sheaf by requiring that $c_1(1) = 0$ in $H^2(M_{d,\chi})$.

Remark

The class $c_2(0) \in H^2(M_{d,\chi})$ is relatively ample with respect to the Hilbert–Chow map. The class $c_0(2) \in H^2(M_{d,\chi})$ is the pullback of an ample class from $|\mathcal{O}_{\mathbb{P}^2}(d)|$.

We have algebra homomorphisms

$$\mathbb{D} := \mathbb{Q}[c_0(2), c_1(1), c_2(0), c_1(2), c_2(1), c_3(0), \ldots] \to H^*(\mathfrak{M}_{d,\chi})$$
$$\widetilde{\mathbb{D}} := \mathbb{D}/\langle c_1(1) \rangle \to H^*(M_{d,\chi})$$

Theorem (Pi-Shen, KLMP)

The homomorphisms above are surjective, i.e. $H^*(\mathfrak{M}_{d,\chi})$ and $H^*(M_{d,\chi})$ are generated as algebras by tautological classes. More precisely, $H^*(\mathfrak{M}_{d,\chi})$ is generated by the tautological classes of (algebraic) degree $\leq d$ and $H^*(M_{d,\chi})$ is generated by tautological classes of degree $\leq d - 2$.

Problem

Describe the ideal of relations, i.e.

 $\ker\left(\mathbb{D}\to H^*(\mathfrak{M}_{d,\chi})\right), \qquad \ker\left(\widetilde{\mathbb{D}}\to H^*(M_{d,\chi})\right).$

Proposition

Let F, F' be semistable sheaves of type (d, χ) and (d', χ') , respectively. If

$$\frac{\chi'}{d'} < \frac{\chi}{d} < \frac{\chi'}{d'} + 3\,,$$

then

$$\mathsf{Hom}(F,F')=\mathsf{Ext}^2(F,F')=0\,.$$

Proof.

A map from a semistable object to another semistable object with smaller slope is necessarily trivial, so Hom(F, F') = 0. By Serre duality,

$$\operatorname{Ext}^{2}(F,F') = \operatorname{Hom}(F',F(-3))^{\vee} = 0.$$

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring 000●000000	Low <i>d</i> calculation	P = C 00000
(Generalized)	Mumford relation	S		

1. This means that

$$\mathcal{V} = \textit{Rp}_{*}\mathcal{R}\textit{Hom}(\mathcal{F}, \mathcal{F}')[1]$$

is a vector bundle on $\mathfrak{M}_{d,\chi} \times \mathfrak{M}_{d',\chi'}$ of rank dd', with fibers

$$\mathcal{V}_{|(F,F')} = \mathsf{Ext}^1(F,F') \,.$$

2. Hence

$$c_j(\mathcal{V}) = 0$$
, for $j > dd'$.

- Using Grothendieck-Riemann-Roch and Newton's identities, we express c_j(V) in terms of tautological classes on M_{d,χ} and M_{d',χ'}.
- 4. If we already understand $H^*(\mathfrak{M}_{d',\chi'})$, we obtain relations on $H^*(\mathfrak{M}_{d,\chi})$ by taking Kunneth components of $c_j(\mathcal{V})$.

BPS integrality

Problem

How do we know when we found all the relations?

- If $gcd(d, \chi) = 1$, $M_{d,\chi}$ satisfies Poincaré duality, so we can obtain all the relations once we cut the dimension of the top degree cohomology to 1.
- Alternatively: Betti numbers of M_{d,χ} for small d are known (Choi–Chung, Bousseau,...).
- Betti numbers for the stacks $\mathfrak{M}_{d,\chi}$ can be obtained using BPS integrality + χ -independence.

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000
BPS integrali	ty			

Let

$$\begin{split} \Omega_{M_{d,\chi}}(q) &= (-q)^{-d^2-1} \sum_{i \ge 0} \dim IH^i(M_{d,\chi}) q^i = \Omega_d(q,q) \\ \Omega_{\mathfrak{M}_{d,\chi}}(q) &= (-q)^{-d^2} \sum_{i \ge 0} \dim H^i(\mathfrak{M}_{d,\chi}) q^i \,. \end{split}$$

Theorem (Mozgovoy-Reineke)

Let $\mu \in \mathbb{Q}$ be a fixed slope. We have

$$\sum_{\substack{d \ge 0\\ \chi = d\mu}} \Omega_{\mathfrak{M}_{d,\chi}}(q) Q^d = \mathsf{PE}\left(\frac{q}{q^2 - 1} \sum_{\substack{d \ge 1\\ \chi = d\mu}} \Omega_{M_{d,\chi}}(q) Q^d\right)$$

.

Using $\mu = 0$ and taking the Q^2 coefficient on both sides:

$$\begin{split} \sum_{i \ge 0} \dim H^i(\mathfrak{M}_{2,0}) q^i = & (-q)^4 \Big(\frac{q}{q^2 - 1} \Omega_2(q) + \frac{q^2}{2(q^4 - 1)} \Omega_1(q^2) \\ & + \frac{q^2}{2(q^2 - 1)^2} \Omega_1(q)^2 \Big) \\ &= \frac{1 + q^2 + 2q^4 + 2q^6 + 3q^8 + q^{10} - q^{14}}{(1 - q^2)(1 - q^4)} \\ &= 1 + 2q^2 + 5q^4 + 8q^6 + 14q^8 + 18q^{10} + \cdots \end{split}$$

٠

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000
Virasoro rep	resentation			

Definition

Let $R_n \colon \mathbb{D} \to \mathbb{D}$, $n \ge -1$, be a derivation of the algebra

$$\mathbb{D} = \mathbb{Q}[c_0(2), c_1(1), c_2(0), c_1(2), \ldots]$$

defined on generators by

$$\mathsf{R}_n(c_k(j)) = \frac{(k+j+n-1)!}{(k+j-2)!} c_{k+n}(j) \,.$$

These operators define a representation of $Vir_{\ge -1}$ on \mathbb{D} , i.e.

$$[\mathsf{R}_n,\mathsf{R}_m]=(m-n)\mathsf{R}_{n+m}.$$

1-dimensional	sheaves

Virasoro geometricity

Theorem (Lim–M)

The action of R_n , $n \ge -1$, descends to $H^*(\mathfrak{M}_{d,\chi})$ via the realization morphism $\mathbb{D} \to H^*(\mathfrak{M}_{d,\chi})$. In other words, R_n preserves the ideal of tautological relations.

Theorem (KLPM)

The derivations R_n preserve each of the ideals of (generalized) Mumford relations obtained from $\mathfrak{M}_{d',\chi'}$ for each fixed d',χ' . Theoretically we do not get new relations, but very useful in practice for implementation on the computer:

Theorem (KLPM)

The ideal of Mumford relations is the smallest ideal containing the relations obtained from the vanishing

$$c_{dd'+1}(\mathcal{V}) = c_{dd'+2}(\mathcal{V}) = 0$$

which is closed under R_n .

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation ●000	P = C 00000
Calculations				

Theorem (KLMP)

The procedure explained determines completely the cohomology rings $H^*(M_{d,\chi})$ for $d \leq 5$ and $gcd(d,\chi) = 1$ and $H^*(\mathfrak{M}_{d,\chi})$ for $d \leq 4$.

All the rings are available online.

Corollary

The GV/GW (and refined GV/PT) correspondence holds up to degree 5.

Remark

It turns out that the relations proven for $H^*(M_{5,1})$ are not all of them (but for $H^*(M_{5,2})$ they are). However, they cut down the top degree of the ring to dimension 1, so we can recover the missing relations by Poincaré duality.

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation ○●○○	P = C 00000
Example: I	$H^*(M_{5,1}), H^*(M_{5,2})$			

Both are generated by

 $c_0(2), c_2(0), c_1(2), c_2(1), c_3(0), c_2(2), c_3(1), c_4(0)$

Relations for $M_{5,1}$:

degrees	H^{10}	H^{12}	H^{14}	H ³⁰	H ³⁴	H ³⁶	H ³⁸	H^{40}
# of rel.	3	12	13	1	1	1^{\times}	2×	1

Relations for $M_{5,2}$:

2

3

degrees	H^{10}	H^{12}	H^{14}	H^{16}	H^{18}	H ²⁸	H ³⁰	H ³²
# of rel.	3	12	13	2	1	1	1	1
	H ³⁴	H ³⁶	H ³⁸	H^{40}				

1

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring 0000000000	Low <i>d</i> calculation 00●0	P = C 00000
Example:	$H^*(\mathfrak{M}_{2,0})$			

$$H^*(\mathfrak{M}_{2,0}) \simeq \mathbb{D}/(U(\mathsf{Vir}_{\geq -1}) \cdot I_1)$$

where

$$\begin{split} \mathcal{I}_1 &= \left\langle 8c_2(0) - c_0(2), \\ &c_2(2) + 2c_1(1)^2c_2(0) + \frac{32}{3}c_2(0)^3 - 4c_1(1)c_3(0) - 4c_2(0)c_2(1), \\ &c_3(1) + \frac{1}{12}c_1(1)^3 + 4c_1(1)c_2(0)^2 - 8c_2(0)c_3(0) - \frac{1}{2}c_1(1)c_2(1) \right\rangle \end{split}$$

These 3 relations are obtained by using the (generalized) Mumford relations with $d' = 1, \chi' = -1, -2$.

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C
Example: H^*	$(\mathfrak{M}_{2,0})$			

Eliminating the redundant variables:

$$H^*(\mathfrak{M}_{2,0}) \simeq \mathbb{Q}[c_1(1), c_2(0), c_2(1), c_3(0)]/I_2$$

where

$$\begin{split} & l_2 = \left\langle c_1(1)c_2(0)^4 - 2c_2(0)^3c_3(0), \\ & 16c_2(0)^5 + c_1(1)^2c_2(0)^3 - 6c_1(1)c_2(0)^2c_3(0) \\ & + 6c_2(0)c_3(0)^2 + 2c_2(0)^3c_2(1), \\ & c_1(1)^3c_2(0)^3 - 6c_1(1)c_2(0)c_3(0)^2 + 4c_3(0)^3 \\ & - 6c_1(1)c_2(0)^3c_2(1) + 12c_2(0)^2c_3(0)c_2(1), \\ & 2c_1(1)c_2(0)^3c_3(0) - 3c_2(0)^2c_3(0)^2 - c_2(0)^4c_2(1) \right\rangle \end{split}$$

- Our moduli M_{d,χ} are analogues of moduli of Higgs bundles (replace ℙ² by T*C).
- The P filtration for Higgs bundles has been identified with a weight filtration on a character variety (P = W conjecture, proofs by Maulik-Shen, Hausel-Mellit-Minets-Schiffmann, Maulik-Shen-Yin).
- We do not have a character variety side, but there is an intermediate filtration C that is used in the proof (P = C = W) which makes sense for M_{d,χ}.
- Non Calabi–Yau/compact setting changes many things, but P = C seems to be true.

1-dimensional sheaves	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C
The $P = C$	conjecture			
Definition				

Let $C_{\bullet}H^*(M_{d,\chi})$ be the filtration defined by

$$C_k H^*(M_{d,\chi}) = \operatorname{span}\{c_{k_1}(j_1) \dots c_{k_l}(j_l) \colon k_1 + \dots + k_l \leqslant k\}.$$

Conjecture (P = C)

$$P_{\bullet}H^*(M_{d,\chi})=C_{\bullet}H^*(M_{d,\chi}).$$

Corollary (KLMP)

P = C holds up to d = 5.

Theorem (Maulik-Shen-Yin)

$$P_{\bullet}H^{\leq 2d-2}(M_{d,\chi}) \supseteq C_{\bullet}H^{\leq 2d-2}(M_{d,\chi}).$$

- 1. The *P* filtration is multiplicative (but, unlike for Higgs bundles, it does not admit a multiplicative splitting).
- 2. The C filtration is χ -independent (for other del Pezzo surfaces, also polarization independent).
- 3. The C filtration has "curious hard Lefschetz" symmetries.

4.
$$C_{2g}H^*(M_{d,\chi}) = H^*(M_{d,\chi}).$$

5. Vanishing of integrals:

$$\int_{M_{d,\chi}} c_{k_1}(j_1) \dots c_{k_l}(j_l) = 0$$

for $k_1 + \ldots + k_l < 2g = (d-1)(d-2)$.

There is a *P* filtration on $H^*(\mathfrak{M}_{d,\chi})$ defined by Ben Davison, which is compatible with the BPS integrality formula. The *C* filtration can be defined on the stack easily.

Conjecture (Stacky P = C)

$$P_{\bullet}H^*(\mathfrak{M}_{d,\chi})=C_{\bullet}H^*(\mathfrak{M}_{d,\chi}).$$

Corollary (KLMP)

The numerical stacky P = C holds up to d = 4, i.e.

$$\dim \operatorname{Gr}_{i}^{P} H^{i+j}(\mathfrak{M}_{d,\chi}) = \dim \operatorname{Gr}_{i}^{C} H^{i+j}(\mathfrak{M}_{d,\chi})$$

for every $i, j \ge 0$ and $d \le 4$.

1-dimensional sheaves 000000	Perverse filtration and GV/GW	Cohomology ring	Low <i>d</i> calculation	P = C 00000
Thanks you!				