Universally counting curves in Calabi--Yau threefolds John Pardon
There are lots of ways of counting curves!

Most come from moduli spaces with virtual fundamental cycle lying over space of 1-cycles
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Most are invariant under deformation
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Universal invariant with these three properties!
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(no compactness/properness assumption!)

(inspired by work of lonel--Parker on Gopakumar--Vafa integrality conjecture)
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Recover usual invts by applying to (X , ’(SG H p (’—Z—(X )) for X projective

(ring homomorphisms)




Can also include "higher deformation invariants" wrt families over any simplex
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co-multiplication: sum of cycles

Theorem: This homology group (for complex CY3's) is supported in cohomological degree <=0, and
in degree O it is the free polynomial algebra on "equivariant local curve elements" x_{g,m}.
Corollary: GW and PT are related by MNOP transformation on CY3's iff they are so on x_{g,m}.

Prop: Eval on x_{g,m} coincides with localized equivariant count on local curve of genus g in class m

Bryan--Pandharipande compute equivariant GW of local curves
Okounkov--Pandharipande compute equivariant DT of local curves

Conclude: MNOP correspondence on all CY3's

Generation statements is essentially a *transversality* assertion.

Almost complex geometry: transversality wrt generic almost complex structures
¢y
--> compute H (F\(]X-;,\’\ ( ))

Complex geometry: transversality in total space after enlarging base, *locally* on cycle space

--> compute \—\s:( iw(C‘XJ\)
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Lemma: H* (_z‘l(cvx;\; ., ) vanishes in degrees <0 and in degree 0 is freely generated by monomials in
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Proposition: (Enough Divisors) Let X-->B be a family of threefolds, and let Kg 2:()(/1;) be compact analytic set whose
projection map K-->B is injective. After removing from X a closed set disjoint from the support of K, there exist

relative divisors :Di c XEU; (M;EB ‘T“‘) which together "control" all cycles z in K.
(A cycle z:.Zh;C; is *controlled* by a divisor when said divisor intersects all C:)

Proof: Induct on dimension of base B. Choosing divisors generically reduces to base of two real dimensions less. QED

Proposition: Comparison map \v\*(%q(q:x}\as ) "_’)) > H’:’(_—é‘l(qxs)) is an isomorphism.
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Proof: Use enough divisors and "generic transversality". QED
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Generic transversality: Given a smooth divisor DEX we can deform X by any subspace ofH (’D,’\'X(—oa‘b)l
and in the resulting family every connected curve intersecting D can be made regular using a suitable sug?space.

Equivariant local curve elements lem
E = rank two vector bundle over curve C of genus g

Fix weight r; maps )\c: QL(E.\M)—""‘C with compact joint zero set. \. y - ,\N
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Proposition: Monomials in equivariant and geometric local curve elements coincide modulo

cycles of smaller covering multiplicity.
Question: X,.h:Yj-h?
Remark: Can use an algebraic trick to show that if x_{g,m} generate then they necessarily freely generate.

(analyze possible kernels and show they must be trivial)

Question: How to keep track of multiple covers in this framework?

Conjecture: For any complex CY3, the element (X {[-1) € H° (%‘Y(Crx?\) E{H"mﬂ has the form

eq (X
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’Y \ 1 Zx,),,;k for integers e?'f‘(x) (compare lonel--Parker).
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