There are lots of ways of counting curves!
Most come from moduli spaces with virtual fundamental cycle lying over space of 1-cycles
Istablempes $9^{\prime}(x) \quad P(x)$
(stable pairs)
Functorial under open embeddings

Most are invariant under deformation

$$
Z(X / B)=\bigcup_{b<B} z\left(x_{1}\right)
$$

Universal invariant with these three properties!

$$
\underset{\substack{X \in C Y 3 / \Delta_{c}^{\prime} \\ \text { (no compactness/properness assumption!) }}}{ } H_{\substack{0 \\ X \in C Y 3}} H_{c}^{0}\left(z\left(X / \Delta^{\prime}\right)\right) \xrightarrow{e r_{0}-o v_{1}} \nrightarrow|-|_{0}\left(C y_{3}, H_{c}^{0}(z)\right) \rightarrow 0
$$

(inspired by work of Ionel--Parker on Gopakumar--Vafa integrality conjecture)

$$
G W: H_{0}\left(c y 3, H_{c}^{\circ}(z)\right) \longrightarrow \mathbb{Q}((w))
$$ (ring homomorphisms)

$$
P T:-\quad \longrightarrow \mathbb{Z}((q))
$$

Recover usual invts by applying to $\left(X, I_{\beta} \in H_{c}^{0}(Z(X))\right)^{\text {for } X \text { projective }}$

Can also include "higher deformation invariants" wry families over any simplex

$$
\begin{aligned}
& C_{*}\left(c y_{3}, c_{c}^{*}(z)\right)=\bigoplus c_{c}^{*+k}\left(z\left(x / s^{k}\right)\right) \\
& \left\{\begin{array} { l }
{ \text { hondory } }
\end{array} \quad X \in \left(Y 3 / \Delta^{k}\right.\right. \\
& H_{c}^{*}(Z(c y s)) \quad \begin{array}{l}
\text { multipiciction: disisint union of cf } \\
\text { comulipication: sum of cycles }
\end{array}
\end{aligned}
$$

Theorem: This homology group (for complex CY3's) is supported in cohomological degree $<=0$, and in degree 0 it is the free polynomial algebra on "equivariant local curve elements" $x_{-}\{g, m\}$.

Corollary: GW and PT are related by MNOP transformation on CY3's of they are so on x_\{g,m\} . ~
Prop: Eval on $x_{-}\{g, m\}$ coincides with localized equivariant count on local curve of genus g in class m.
Bryan--Pandharipande compute equivariant GW of local curves
Okounkov--Pandharipande compute equivariant DT of local curves
Conclude: MNOP correspondence on all CY3's

Generation statements is essentially a *transversality* assertion.
Almost complex geometry: transversality writ generic almost complex structures

$$
\rightarrow>\text { compute } H_{0}\left(A C p x_{3}, H_{c}^{0}\left(Z^{c y}\right)\right)
$$

Complex geometry: transversality in total space after enlarging base, *locally* on cycle space

$$
\rightarrow->\text { compute } \quad H_{e}^{*}\left(Z^{c y}\left(C_{p x_{3}}\right)\right)
$$

Curve $C \subseteq X$ is regular when def prithee of $\tilde{C} \rightarrow X, y$ its given jet/incidence constraints is unobstmided.
Cycle $z=\sum_{i} m_{i} c_{i}$ is semi-regular when $\bigcup_{i} c_{i} \leq X$ is regales. $\quad Z_{\text {seminery }} \subseteq Z$ constructible

$$
H_{c}^{*}\left(Z^{q}\left(c_{p x_{3}}\right)_{\text {sem-r-s }}\right) \longrightarrow H_{c}^{*}\left(Z^{c y}\left(C_{p x_{3}}\right)\right)
$$

$$
\operatorname{dim} Z^{C Y}(X B)_{\text {semi-reg }}=\operatorname{dim} B
$$

Lemma: $\quad H_{c}^{*}\left(Z^{4}\left(C_{p} x_{3}\right)_{\text {sem-r-ry }}^{0}\right)$ vanishes in degrees <0 and in degree 0 is freely generated by monomials in "geometric local curve elements" $y_{g, m}=P . D$. of smash point of $Z^{4}\left(X / \Delta^{5}\right)_{\text {evening }}^{0}$ of geans $g+$ multiplicity m

Proposition: (Enough Divisors) Let $X->B$ be a family of threefold, and let $K \leq Z(X / B)$ be compact analytic set whose projection map $K->B$ is infective. After removing from X a closed set disjoint from the support of K, there exist relative divisors $D_{i} \subseteq X_{B}^{x} U_{i} \quad\left(U_{i} \leq B\right.$ yea) which together "control" all cycles z in K.
(A cycle $z=\sum_{i} m_{i} C_{i}$ is $*$ controlled* by a divisor when said divisor intersects all C_{i})
Proof: Induct on dimension of base B. Choosing divisors generically reduces to base of two real dimensions less. QED
Proposition: Comparison map $H_{c}^{*}\left(Z^{q}\left(C_{p x_{3}}\right)_{\text {senior } 5}^{\infty}\right) \longrightarrow H_{c}^{*}\left(Z^{c y}\left(C_{p x_{3}}\right)\right)$ is an isomorphism.
Proof: Use enough divisors and "generic transversality". QED

Generic transversality: Given a smooth divisor $D \subseteq X$ we can deform X by any subspace of $H^{\circ}\left(\left.D_{1} T X(-\infty D)\right|_{D}\right)$ and in the resulting family every connected curve intersecting D can be made regular using a suitable suBspace.

Equivariant local curve elements X_{g}, m

$$
\mathrm{E}=\text { rank two vector bundle over curve } \mathrm{C} \text { of genus } \mathrm{g}
$$

Fix weight r_{i} maps $\lambda_{i}: Z(E, m) \longrightarrow \mathbb{C}$ with compact joint zero set. $\lambda_{1}, \ldots, \lambda_{N}$

$$
\left.x_{g, m}=\left(\frac{E x\left(c^{N+1}-0\right)}{\mathbb{C}-0}, 1_{m} \cdot \prod_{i} \frac{\lambda_{i}^{*} c_{1}\left(\mathcal{L}^{\otimes r}\right)}{r_{i}} \epsilon H_{c}^{2 n}\left(Z\left(\frac{E x\left(\mathbb{C}^{N+1}-0\right)}{\mathbb{C}-0} / \mathbb{C} \mathbb{P}^{N}\right)\right)\right) \quad \text { (independent of choice of } \lambda_{i s}^{s}\right)
$$

Proposition: Monomials in equivariant and geometric local curve elements coincide modulo cycles of smaller covering multiplicity.
Question: $X_{g, m}=y_{g, m}$?
Remark: Can use an algebraic trick to show that if $\mathrm{x}_{\mathrm{l}}\{\mathrm{g}, \mathrm{m}\}$ generate then they necessarily freely generate. (analyze possible kernels and show they must be trivial)

Question: How to keep track of multiple covers in this framework?
Conjecture: For any complex CY 3 , the element $\quad\left(X, t^{[\cdot]}\right) \in H_{c}^{0}\left(Z^{(4)}\left(C_{p x_{3}}\right)\right)\left[I t^{H_{2}(x)} \rrbracket\right.$ has the form

$$
\prod_{\beta \neq 0} \prod_{g 30}\left(\sum_{m \geq 0} x_{g, m} t^{m \beta}\right)^{e_{\beta, g}(x)} \text { for integers } e_{g, \beta}(x) \text { (compare lonel--Parker). }
$$

