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Introduction

BCOV conjectures and Castelnuovo bound.

Results.

Idea of proof.

Based on the joint work with Yongbin Ruan, arXiv: 2210.13411
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Review: Gromov–Witten invariants

Let X be a compact Calabi–Yau (CY) 3-fold and β ∈ H2(X ,Z) be a homology class. We are
interested in counting algebraic curves in X of class β.

Naive approach: If the number of curves C ⊂ X such that [C ] = β is finite, then the
counting invariant is

#{C | C ⊂ X , [C ] = β}.

Modern approach: Gromov–Witten (GW) invariants (symplectic: Ruan–Tian; algebraic:
Li–Tian, Behrend–Fantechi)

Mg (X , β) = {stable maps f : C → X | f∗[C ] = β}

Ng ,β :=

∫
[Mg (X ,β)]vir

1

DT/PT/GV-invariants...
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GW-invariants and physics

For simplicity, we restrict ourselves to the quintic 3-fold X ⊂ P4, one of the most famous
compact CY 3-folds.

We define the genus g GW potential of X as

Fg (t) :=
∑
d≥0

Ng ,d t
d .

We consider two different string theories: type IIA (A-model) and type IIB (B-model). The
A-model corresponds to the geometry on X while the B-model corresponds to the mirror
quintic. In A-model, Fg is the genus g topological string amplitude.

B-modle
Mirror Symmetry⇐⇒ A-model.
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Structure of Fg(t)
One of the most difficult problems in geometry and physics is

Question

How to determine Fg (t) (structure, explicit form.....)?

Physical idea: B-model ⇒ A-model. (Mirror symmetry)

g = 0: predicted by Candelas-de la Ossa-Green-Parkes. (proved by Lian-Liu-Yau and
Givental independently)

1 ≤ g ≤ 2: predicted by Bershadsky-Cecotti-Ooguri-Vafa (BCOV), using
Yamaguchi–Yau’s finite generation and Holomorphic anomaly equation. (g = 1 proved by
Zinger. g = 2 proved by Guo-Janda-Ruan.)

g = 3: predicted by Katz-Klemm-Vafa, using the reformulation of topological string
amplitudes as a computation of BPS states in M-theory compactifications.

Higher genus: predicted by Huang-Klemm-Quackenbush for all Fg (t) for g ≤ 53! Using
four B-model conjectures and one A-model conjecture.
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Four B-model conjectures

Yamaguchi–Yau’s finite generation asserts that

Fg (t) = Y−(g−1)Pg (Z1,Z2,Z3,Z4,Y )

for a polynomial Pg where Zi and Y are explicit generating series in t constructed from
genus zero data.

Holomorphic anomaly equation implies that the monomials of Pg containing Zi are
determined by lower genus data. Moreover,

fg := Pg (0, 0, 0, 0,Y ) =

3g−3∑
i=0

ai ,gY
i

is a polynomial in Y of degree 3g − 3.

The orbifold regularity asserts that ai ,g = 0 for i ≤ ⌈3g−3
5 ⌉.

The conifold gap condition determines ai ,g for i ≥ g recursively from lower genus data.
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Four B-model conjectures

Using these four B-model conjectures, we only need to determine {ai ,g}g−1

i=⌈ 3g−3
5

⌉+1
to derive

Fg (t). In other words, we need to fix ⌊2g−2
5 ⌋ many initial conditions for each genus g .

The last A-model conjecture is called the Castelnuovo bound, which fixes a large number of
remaining initial conditions and allows us to compute Fg for g ≤ 53 effectively.

Yamaguchi–Yau’s finite generation and holomorphic anomaly equation are proved by
Guo-Janda-Ruan and Chang-Guo-Li independently.

The orbifold regularity is proved by Guo-Janda-Ruan.

The conifold gap condition is proved by Guo-Janda-Ruan for g ≤ 5.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 7 / 21



Four B-model conjectures

Using these four B-model conjectures, we only need to determine {ai ,g}g−1

i=⌈ 3g−3
5

⌉+1
to derive

Fg (t). In other words, we need to fix ⌊2g−2
5 ⌋ many initial conditions for each genus g .

The last A-model conjecture is called the Castelnuovo bound, which fixes a large number of
remaining initial conditions and allows us to compute Fg for g ≤ 53 effectively.

Yamaguchi–Yau’s finite generation and holomorphic anomaly equation are proved by
Guo-Janda-Ruan and Chang-Guo-Li independently.

The orbifold regularity is proved by Guo-Janda-Ruan.

The conifold gap condition is proved by Guo-Janda-Ruan for g ≤ 5.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 7 / 21



Four B-model conjectures

Using these four B-model conjectures, we only need to determine {ai ,g}g−1

i=⌈ 3g−3
5

⌉+1
to derive

Fg (t). In other words, we need to fix ⌊2g−2
5 ⌋ many initial conditions for each genus g .

The last A-model conjecture is called the Castelnuovo bound, which fixes a large number of
remaining initial conditions and allows us to compute Fg for g ≤ 53 effectively.

Yamaguchi–Yau’s finite generation and holomorphic anomaly equation are proved by
Guo-Janda-Ruan and Chang-Guo-Li independently.

The orbifold regularity is proved by Guo-Janda-Ruan.

The conifold gap condition is proved by Guo-Janda-Ruan for g ≤ 5.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 7 / 21



The A-model conjecture: Castelnuovo bound
Let

ZGW (λ, t) =
∑
g≥0

(Fg (t)− Ng ,0)λ
2g−2 =

∑
d>0

∑
g≥0

Ng ,dλ
2g−2td .

We expand it in terms of the Fourier series and obtain

ZGW (λ, t) =
∑
g≥0

∑
d>0

∑
r≥1

ng ,d
r

·
(
2 sin(

rλ

2
)
)2g−2 · trd .

The coefficients ng ,d are called Gopakumar–Vafa (GV) invariants. In physics, these
invariants count the number of BPS states in the associated M-theory.

(Ionel–Parker) ng ,d ∈ Z.
(Doan–Ionel–Walpuski) ng ,d = 0 for g ≫ 0.

Conjecture (Castelnuovo bound)

We have ng ,d = 0 for any

g >
d2 + 5d + 10

10
.
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Castelnuovo bound

Theorem

The Castelnuovo bound conjecture holds.

Corollary

1 If g ≤ 53 and g ̸= 51, then
ng ,d = 0

for d ≤ ⌊2g−2
5 ⌋.

2 If g = 51, then
n51,d = 0

for d ≤ ⌊2g−2
5 ⌋ − 1 = 19.

The above corollary together with B-model conjectures allows us to compute Fg (t) for g ≤ 50.
For 51 ≤ g ≤ 53, we need another theorem.
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Non-vanishing of GV-invariants

Theorem

Let m ≥ 2 and d = 5m be integers. Then we have

n d2+5d+10
10

,d
= (−1)(

m+3
3 )−(m−2

3 )+3 · 5
((m + 3

3

)
−
(
m − 2

3

))
.

In particular, we have n51,20 = 175.

Since four B-model conjectures above have been proved except the conifold gap condition,
combined with the results above we have:

Corollary

Let G ≤ 53 be a positive integer. Assume that the conifold gap condition holds for Fg (t) and
any g ≤ G . Then we can compute Fg (t) effectively up to genus G .
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GV-invariants via PT-invariants
Let Pn,d be the Pandharipande–Thomas (PT) invariants which counts stable pairs

[OX
s−→ F ] ∈ Db(X ), χ(F ) = n, [F ] = d ∈ H2(X ,Z) = Z

with F pure 1-dim and dim cok(s) = 0. The generating series of PT-invariants is defined as

ZPT (q, t) := 1 +
∑
d>0

∑
n∈Z

Pn,dq
ntd .

We have the GW/PT correspondence proved by Pandharipande-Pixton:

ZGW (λ, t) = FPT (q, t) := logZPT (q, t)

after changing the variable q = − exp (iλ).
Then combined with the finiteness result of Doan–Ionel–Walpuski, we obtain

FPT (q, t) =
∑
g≥0

∑
d>0

∑
r≥1

ng ,d
(−1)g−1

r

(
(−q)

r
2 − (−q)−

r
2
)2g−2

trd .
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GV-invariants via PT-invariants

To prove the Castelnuovo bound conjecture, it is sufficient to bound the genus of 1-dim
subschemes:

Conjecture

For any 1-dim closed subscheme C ⊂ X of degree d and (arithmetic) genus g , we have

g ≤ d2 + 5d + 10

10
.

If this conjecture is true, then by the emptiness of moduli spaces we have Pn,d = 0 for any

1− n > d2+5d+10
10 . Then a calculation of the generating series implies the vanishing of

connected PT and GV-invariants.
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Bound for the genus

Theorem (Hartshorne)

Let C ⊂ P3 be a 1-dim closed subscheme of degree d and genus g . Then we have
g ≤ (d−1)(d−2)

2 . Moreover, if C is not contained in P2, then we have g ≤ (d−2)(d−3)
2 .

Theorem

Let X ⊂ P4 be a smooth hypersurface of degree n ≤ 5. Then for any one-dimensional closed
subscheme C ⊂ X of degree d and genus g , we have

g ≤ 1

2n
d2 +

n − 4

2
d + 1.

Moreover, when C is not contained in any hyperplane section of X , we have

g ≤ 1

2n
d2 + (

n − 4

2
− 1

n
)d + 2 +

1

n
.
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Extremal curves

Let X ⊂ P4 be a smooth hypersurface of degree n ≤ 5.

Theorem

Let C be a one-dimensional closed subscheme C ⊂ X of degree d > n and genus g . Then

g =
1

2n
d2 +

n − 4

2
d + 1

if and only if C is a complete intersection of a hyperplane section and a degree d
n hypersurface

section of X .

Thus, the Hilbert scheme Hilb
dt− 1

2n
d2− n−4

2
d

X is a projective bundle over P
(
H0(OX (1))

)
.

Then the non-vanishing result for GV-invariants of quintic follows from a a computation of
DT-invariants and DT/PT correspondence (Bridgeland, Toda).
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Slope stability

Let (X ,H) be a polarised smooth projective variety of dimension n. For any sheaf
E ∈ Coh(X ), we define

µH(E ) :=

{
Hn−1ch1(E)
Hnch0(E) , if ch0(E ) ̸= 0

+∞, otherwise.

We say a sheaf 0 ̸= E ∈ Coh(X ) is µH -(semi)stable if µH(F )(≤) < µH(E/F ) for all proper
subsheaves F ⊂ E .

Any object E ∈ Coh(X ) has a Harder–Narasimhan (HN) filtration in terms of
µH -semistability defined above.

(Bogomolov–Gieseker) For any µH -semistable object E ∈ Coh(X ), we have

∆H(E ) =
(
Hn−1ch1(E )

)2 − 2Hnch0(E )H
n−2ch2(E ) ≥ 0.
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Tilt-stability

For a fixed b ∈ R, we replace Coh(X ) by the tilted heart Ab ⊂ Db(X ).

Fix a real number a ∈ R>0. For any E ∈ Ab, we define

µa,b(E ) :=


− 1

2
a2HnchbH0 (E)+Hn−2chbH2 (E)

Hn−1chbH1 (E)
, if chb1(E ) ̸= 0

+∞, otherwise.

We say an object 0 ̸= E ∈ Ab is µa,b-(semi)stable if µa,b(F )(≤) < µa,b(E/F ) for all proper
subsheaves F ⊂ E .

Any object E ∈ Ab has a HN filtration in terms of µa,b-semistability defined above.

For any µa,b-semistable object E ∈ Ab, we have ∆H(E ) ≥ 0.

In other words, we have a family of ”stability conditions” parametrized by R>0 × R

(a, b) 7→ (Ab, µa,b).
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Bayer–Macr̀ı–Toda’s generalized Bogomolov–Gieseker inequality

BMT Conjecture (Bayer–Macr̀ı–Toda)

Let (X ,H) be a polarised smooth projective 3-fold. Assume that (a, b) ∈ R>0 × R and E is
any µa,b-semistable object. Then

Qa,b(E ) := a2∆H(E ) + 4
(
HchbH2 (E )

)2 − 6
(
H2chbH1 (E )

)
chbH3 (E ) ≥ 0.

Theorem (Chunyi Li)

Let X be the quintic 3-fold. Then the BMT conjecture holds for any

(a, b) ∈ U := {(a, b) ∈ R>0 × R | a2 > (b − ⌊b⌋)(⌊b⌋+ 1− b)}.
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Sketch of proof

We fix X to be the quintic 3-fold from now on.

A simple observation: applying Li’s theorem to IC at (a, b) = (
√

2
9 ,−

4
3), we obtain the

desired bound.

Bad news: we can not do this in general, since IC are only µa,b-semistable for b < 0 and
a ≫ 0 in general. When a goes small, IC will meet many walls, which destabilize IC .
Good news: there is a nice subset V ⊂ R>0 × R<0 such that (a,−4

3) ∈ V for any

a >
√

2
9 and the walls (HN factors) for IC in V can be controlled.
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Sketch of proof
We only need to consider pure 1-dim subschemes (curves). We have the following types of
curves.

(Type I): IC has no wall in V.
(Type II): the upper-most wall is given by OX (−H). In other words, C ⊂ H.

(Type III): other cases.

Bound for type I: Applying BMT’s inequality on the boundary of V,
we can get a better bound than Castelnuovo bound.

Bound for type II: Applying wall-crossing and BMT’s inequality to the torsion sheaf IC/H .

Bound for type III: C = C1 ∪ C2, such that length(C1 ∩ C2) = d1 and d1 < E (d). Then
we can do induction and use

g(C ) = g(C1) + g(C2) + length(C1 ∩ C2)− 1.

In this case, we can get a better bound than Castelnuovo bound.
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Sketch of proof

If C ⊂ X has degree d and genus g = 1
2nd

2 + n−4
2 d + 1, then by the bound above, we

know that C is of Type II (i.e. C ⊂ H).

Thus we can regard C as a curve in H = X ∩ P3 ⊂ P3 and do wall-crossing on P3 for
IC/H .

Key point: if g = 1
2nd

2 + n−4
2 d + 1, then by BMT conjecture on P3 proved by Macr̀ı, we

can not cross the wall given by OP3(dn ). This means

H0(P3, IC/H(
d

n
)) ̸= 0.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 20 / 21



Sketch of proof

If C ⊂ X has degree d and genus g = 1
2nd

2 + n−4
2 d + 1, then by the bound above, we

know that C is of Type II (i.e. C ⊂ H).

Thus we can regard C as a curve in H = X ∩ P3 ⊂ P3 and do wall-crossing on P3 for
IC/H .

Key point: if g = 1
2nd

2 + n−4
2 d + 1, then by BMT conjecture on P3 proved by Macr̀ı, we

can not cross the wall given by OP3(dn ). This means

H0(P3, IC/H(
d

n
)) ̸= 0.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 20 / 21



Sketch of proof

If C ⊂ X has degree d and genus g = 1
2nd

2 + n−4
2 d + 1, then by the bound above, we

know that C is of Type II (i.e. C ⊂ H).

Thus we can regard C as a curve in H = X ∩ P3 ⊂ P3 and do wall-crossing on P3 for
IC/H .

Key point: if g = 1
2nd

2 + n−4
2 d + 1, then by BMT conjecture on P3 proved by Macr̀ı, we

can not cross the wall given by OP3(dn ). This means

H0(P3, IC/H(
d

n
)) ̸= 0.

Zhiyu Liu Castelnuovo bound and GW-invariants of the quintic November 21, 2022 20 / 21



Thanks!
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