Castelnuovo bound and Gromov-Witten invariants of the quintic 3-fold

Zhiyu Liu

IASM at Zhejiang University
College of Mathematics at Sichuan University

November 21, 2022

Introduction

- BCOV conjectures and Castelnuovo bound.
- Results.
- Idea of proof.

Based on the joint work with Yongbin Ruan, arXiv: 2210.13411

Review: Gromov-Witten invariants

Let X be a compact Calabi-Yau (CY) 3-fold and $\beta \in H_{2}(X, \mathbb{Z})$ be a homology class. We are interested in counting algebraic curves in X of class β.

Review: Gromov-Witten invariants

Let X be a compact Calabi-Yau (CY) 3-fold and $\beta \in H_{2}(X, \mathbb{Z})$ be a homology class. We are interested in counting algebraic curves in X of class β.

- Naive approach: If the number of curves $C \subset X$ such that $[C]=\beta$ is finite, then the counting invariant is

$$
\#\{C \mid C \subset X,[C]=\beta\}
$$

Review: Gromov-Witten invariants

Let X be a compact Calabi-Yau (CY) 3-fold and $\beta \in H_{2}(X, \mathbb{Z})$ be a homology class. We are interested in counting algebraic curves in X of class β.

- Naive approach: If the number of curves $C \subset X$ such that $[C]=\beta$ is finite, then the counting invariant is

$$
\#\{C \mid C \subset X,[C]=\beta\}
$$

- Modern approach: Gromov-Witten (GW) invariants (symplectic: Ruan-Tian; algebraic: Li-Tian, Behrend-Fantechi)

$$
\begin{gathered}
\bar{M}_{g}(X, \beta)=\left\{\text { stable maps } f: C \rightarrow X \mid f_{*}[C]=\beta\right\} \\
N_{g, \beta}:=\int_{\left[\bar{M}_{g}(X, \beta)\right]^{\text {vir }}} 1
\end{gathered}
$$

- DT/PT/GV-invariants...

GW-invariants and physics

For simplicity, we restrict ourselves to the quintic 3-fold $X \subset \mathbb{P}^{4}$, one of the most famous compact CY 3-folds.

We define the genus g GW potential of X as

$$
F_{g}(t):=\sum_{d \geq 0} N_{g, d} t^{d}
$$

GW-invariants and physics

For simplicity, we restrict ourselves to the quintic 3-fold $X \subset \mathbb{P}^{4}$, one of the most famous compact CY 3-folds.

We define the genus g GW potential of X as

$$
F_{g}(t):=\sum_{d \geq 0} N_{g, d} t^{d}
$$

We consider two different string theories: type IIA (A-model) and type IIB (B-model). The A-model corresponds to the geometry on X while the B-model corresponds to the mirror quintic. In A-model, F_{g} is the genus g topological string amplitude.

$$
\text { B-modle Mirror Symmetry } \quad \text { A-model. }
$$

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

- Physical idea: B-model \Rightarrow A-model. (Mirror symmetry)

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

- Physical idea: B-model \Rightarrow A-model. (Mirror symmetry)
- $g=0$: predicted by Candelas-de la Ossa-Green-Parkes. (proved by Lian-Liu-Yau and Givental independently)

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

- Physical idea: B-model \Rightarrow A-model. (Mirror symmetry)
- $g=0$: predicted by Candelas-de la Ossa-Green-Parkes. (proved by Lian-Liu-Yau and Givental independently)
- $1 \leq g \leq 2$: predicted by Bershadsky-Cecotti-Ooguri-Vafa (BCOV), using Yamaguchi-Yau's finite generation and Holomorphic anomaly equation. ($g=1$ proved by Zinger. $g=2$ proved by Guo-Janda-Ruan.)

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

- Physical idea: B-model \Rightarrow A-model. (Mirror symmetry)
- $g=0$: predicted by Candelas-de la Ossa-Green-Parkes. (proved by Lian-Liu-Yau and Givental independently)
- $1 \leq g \leq 2$: predicted by Bershadsky-Cecotti-Ooguri-Vafa (BCOV), using Yamaguchi-Yau's finite generation and Holomorphic anomaly equation. ($g=1$ proved by Zinger. $g=2$ proved by Guo-Janda-Ruan.)
- $g=$ 3: predicted by Katz-Klemm-Vafa, using the reformulation of topological string amplitudes as a computation of BPS states in M-theory compactifications.

Structure of $F_{g}(t)$

One of the most difficult problems in geometry and physics is

Question

How to determine $F_{g}(t)$ (structure, explicit form.....)?

- Physical idea: B-model \Rightarrow A-model. (Mirror symmetry)
- $g=0$: predicted by Candelas-de la Ossa-Green-Parkes. (proved by Lian-Liu-Yau and Givental independently)
- $1 \leq g \leq 2$: predicted by Bershadsky-Cecotti-Ooguri-Vafa (BCOV), using Yamaguchi-Yau's finite generation and Holomorphic anomaly equation. ($g=1$ proved by Zinger. $g=2$ proved by Guo-Janda-Ruan.)
- $g=$ 3: predicted by Katz-Klemm-Vafa, using the reformulation of topological string amplitudes as a computation of BPS states in M-theory compactifications.
- Higher genus: predicted by Huang-Klemm-Quackenbush for all $F_{g}(t)$ for $g \leq 53$! Using four B-model conjectures and one A-model conjecture.

Four B-model conjectures

- Yamaguchi-Yau's finite generation asserts that

$$
F_{g}(t)=Y^{-(g-1)} P_{g}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Y\right)
$$

for a polynomial P_{g} where Z_{i} and Y are explicit generating series in t constructed from genus zero data.

Four B-model conjectures

- Yamaguchi-Yau's finite generation asserts that

$$
F_{g}(t)=Y^{-(g-1)} P_{g}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Y\right)
$$

for a polynomial P_{g} where Z_{i} and Y are explicit generating series in t constructed from genus zero data.

- Holomorphic anomaly equation implies that the monomials of P_{g} containing Z_{i} are determined by lower genus data. Moreover,

$$
f_{g}:=P_{g}(0,0,0,0, Y)=\sum_{i=0}^{3 g-3} a_{i, g} Y^{i}
$$

is a polynomial in Y of degree $3 g-3$.

Four B-model conjectures

- Yamaguchi-Yau's finite generation asserts that

$$
F_{g}(t)=Y^{-(g-1)} P_{g}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Y\right)
$$

for a polynomial P_{g} where Z_{i} and Y are explicit generating series in t constructed from genus zero data.

- Holomorphic anomaly equation implies that the monomials of P_{g} containing Z_{i} are determined by lower genus data. Moreover,

$$
f_{g}:=P_{g}(0,0,0,0, Y)=\sum_{i=0}^{3 g-3} a_{i, g} Y^{i}
$$

is a polynomial in Y of degree $3 g-3$.

- The orbifold regularity asserts that $a_{i, g}=0$ for $i \leq\left\lceil\frac{3 g-3}{5}\right\rceil$.

Four B-model conjectures

- Yamaguchi-Yau's finite generation asserts that

$$
F_{g}(t)=Y^{-(g-1)} P_{g}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Y\right)
$$

for a polynomial P_{g} where Z_{i} and Y are explicit generating series in t constructed from genus zero data.

- Holomorphic anomaly equation implies that the monomials of P_{g} containing Z_{i} are determined by lower genus data. Moreover,

$$
f_{g}:=P_{g}(0,0,0,0, Y)=\sum_{i=0}^{3 g-3} a_{i, g} Y^{i}
$$

is a polynomial in Y of degree $3 g-3$.

- The orbifold regularity asserts that $a_{i, g}=0$ for $i \leq\left\lceil\frac{3 g-3}{5}\right\rceil$.
- The conifold gap condition determines $a_{i, g}$ for $i \geq g$ recursively from lower genus data.

Four B-model conjectures

Using these four B-model conjectures, we only need to determine $\left\{a_{i, g}\right\}_{i=\left[\frac{3 g-3}{5}\right\rceil+1}^{g-1}$ to derive $F_{g}(t)$. In other words, we need to fix $\left\lfloor\frac{2 g-2}{5}\right\rfloor$ many initial conditions for each genus g.

Four B-model conjectures

Using these four B-model conjectures, we only need to determine $\left\{a_{i, g}\right\}_{i=\left\lceil\frac{3 g-3}{5}\right\rceil+1}^{g-1}$ to derive $F_{g}(t)$. In other words, we need to fix $\left\lfloor\frac{2 g-2}{5}\right\rfloor$ many initial conditions for each genus g.

The last A-model conjecture is called the Castelnuovo bound, which fixes a large number of remaining initial conditions and allows us to compute F_{g} for $g \leq 53$ effectively.

Four B-model conjectures

Using these four B-model conjectures, we only need to determine $\left\{a_{i, g}\right\}_{i=\left\lceil\frac{3 g-3}{5}\right\rceil+1}^{g-1}$ to derive $F_{g}(t)$. In other words, we need to fix $\left\lfloor\frac{2 g-2}{5}\right\rfloor$ many initial conditions for each genus g.

The last A-model conjecture is called the Castelnuovo bound, which fixes a large number of remaining initial conditions and allows us to compute F_{g} for $g \leq 53$ effectively.

- Yamaguchi-Yau's finite generation and holomorphic anomaly equation are proved by Guo-Janda-Ruan and Chang-Guo-Li independently.
- The orbifold regularity is proved by Guo-Janda-Ruan.
- The conifold gap condition is proved by Guo-Janda-Ruan for $g \leq 5$.

The A-model conjecture: Castelnuovo bound

Let

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0}\left(F_{g}(t)-N_{g, 0}\right) \lambda^{2 g-2}=\sum_{d>0} \sum_{g \geq 0} N_{g, d} \lambda^{2 g-2} t^{d} .
$$

We expand it in terms of the Fourier series and obtain

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0} \sum_{d>0} \sum_{r \geq 1} \frac{n_{g, d}}{r} \cdot\left(2 \sin \left(\frac{r \lambda}{2}\right)\right)^{2 g-2} \cdot t^{r d}
$$

The coefficients $n_{g, d}$ are called Gopakumar-Vafa (GV) invariants. In physics, these invariants count the number of BPS states in the associated M-theory.

The A-model conjecture: Castelnuovo bound

Let

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0}\left(F_{g}(t)-N_{g, 0}\right) \lambda^{2 g-2}=\sum_{d>0} \sum_{g \geq 0} N_{g, d} \lambda^{2 g-2} t^{d} .
$$

We expand it in terms of the Fourier series and obtain

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0} \sum_{d>0} \sum_{r \geq 1} \frac{n_{g, d}}{r} \cdot\left(2 \sin \left(\frac{r \lambda}{2}\right)\right)^{2 g-2} \cdot t^{r d}
$$

The coefficients $n_{g, d}$ are called Gopakumar-Vafa (GV) invariants. In physics, these invariants count the number of BPS states in the associated M-theory.

- (lonel-Parker) $n_{g, d} \in \mathbb{Z}$.
- (Doan-lonel-Walpuski) $n_{g, d}=0$ for $g \gg 0$.

The A-model conjecture: Castelnuovo bound

Let

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0}\left(F_{g}(t)-N_{g, 0}\right) \lambda^{2 g-2}=\sum_{d>0} \sum_{g \geq 0} N_{g, d} \lambda^{2 g-2} t^{d}
$$

We expand it in terms of the Fourier series and obtain

$$
Z_{G W}(\lambda, t)=\sum_{g \geq 0} \sum_{d>0} \sum_{r \geq 1} \frac{n_{g, d}}{r} \cdot\left(2 \sin \left(\frac{r \lambda}{2}\right)\right)^{2 g-2} \cdot t^{r d}
$$

The coefficients $n_{g, d}$ are called Gopakumar-Vafa (GV) invariants. In physics, these invariants count the number of BPS states in the associated M-theory.

- (lonel-Parker) $n_{g, d} \in \mathbb{Z}$.
- (Doan-lonel-Walpuski) $n_{g, d}=0$ for $g \gg 0$.

Conjecture (Castelnuovo bound)

We have $n_{g, d}=0$ for any

$$
g>\frac{d^{2}+5 d+10}{10}
$$

Castelnuovo bound

Theorem

The Castelnuovo bound conjecture holds.

Castelnuovo bound

Theorem

The Castelnuovo bound conjecture holds.

Corollary

(1) If $g \leq 53$ and $g \neq 51$, then

$$
n_{g, d}=0
$$

for $d \leq\left\lfloor\frac{2 g-2}{5}\right\rfloor$.
(2) If $g=51$, then

$$
n_{51, d}=0
$$

for $d \leq\left\lfloor\frac{2 g-2}{5}\right\rfloor-1=19$.
The above corollary together with B-model conjectures allows us to compute $F_{g}(t)$ for $g \leq 50$. For $51 \leq g \leq 53$, we need another theorem.

Non-vanishing of GV-invariants

Theorem

Let $m \geq 2$ and $d=5 m$ be integers. Then we have

$$
n_{\frac{d^{2}+5 d+10}{10}, d}=(-1)\left(\begin{array}{c}
\binom{m+3}{3}-\binom{m-2}{3}+3 \cdot 5\left(\binom{m+3}{3}-\binom{m-2}{3}\right)
\end{array}\right.
$$

In particular, we have $n_{51,20}=175$.

Non-vanishing of GV-invariants

Theorem

Let $m \geq 2$ and $d=5 m$ be integers. Then we have

$$
n_{\frac{d^{2}+5 d+10}{10}, d}=(-1)\binom{\binom{m+3}{3}-\binom{m-2}{3}+3}{3}-5\left(\binom{m+3}{3}\right) .
$$

In particular, we have $n_{51,20}=175$.
Since four B-model conjectures above have been proved except the conifold gap condition, combined with the results above we have:

Corollary

Let $G \leq 53$ be a positive integer. Assume that the conifold gap condition holds for $F_{g}(t)$ and any $g \leq G$. Then we can compute $F_{g}(t)$ effectively up to genus G.

GV-invariants via PT-invariants

Let $P_{n, d}$ be the Pandharipande-Thomas (PT) invariants which counts stable pairs

$$
\left[\mathcal{O}_{X} \xrightarrow{s} F\right] \in \mathrm{D}^{b}(X), \quad \chi(F)=n, \quad[F]=d \in H_{2}(X, \mathbb{Z})=\mathbb{Z}
$$

with F pure 1-dim and $\operatorname{dim} \operatorname{cok}(s)=0$. The generating series of PT -invariants is defined as

$$
Z_{P T}(q, t):=1+\sum_{d>0} \sum_{n \in \mathbb{Z}} P_{n, d} q^{n} t^{d}
$$

GV-invariants via PT-invariants

Let $P_{n, d}$ be the Pandharipande-Thomas (PT) invariants which counts stable pairs

$$
\left[\mathcal{O}_{X} \xrightarrow{s} F\right] \in \mathrm{D}^{b}(X), \quad \chi(F)=n, \quad[F]=d \in H_{2}(X, \mathbb{Z})=\mathbb{Z}
$$

with F pure 1-dim and $\operatorname{dim} \operatorname{cok}(s)=0$. The generating series of PT-invariants is defined as

$$
Z_{P T}(q, t):=1+\sum_{d>0} \sum_{n \in \mathbb{Z}} P_{n, d} q^{n} t^{d}
$$

We have the GW/PT correspondence proved by Pandharipande-Pixton:

$$
Z_{G W}(\lambda, t)=F_{P T}(q, t):=\log Z_{P T}(q, t)
$$

after changing the variable $q=-\exp (i \lambda)$.

GV-invariants via PT-invariants

Let $P_{n, d}$ be the Pandharipande-Thomas (PT) invariants which counts stable pairs

$$
\left[\mathcal{O}_{X} \xrightarrow{s} F\right] \in \mathrm{D}^{b}(X), \quad \chi(F)=n, \quad[F]=d \in H_{2}(X, \mathbb{Z})=\mathbb{Z}
$$

with F pure 1 - dim and $\operatorname{dim} \operatorname{cok}(s)=0$. The generating series of PT-invariants is defined as

$$
Z_{P T}(q, t):=1+\sum_{d>0} \sum_{n \in \mathbb{Z}} P_{n, d} q^{n} t^{d}
$$

We have the GW/PT correspondence proved by Pandharipande-Pixton:

$$
Z_{G W}(\lambda, t)=F_{P T}(q, t):=\log Z_{P T}(q, t)
$$

after changing the variable $q=-\exp (i \lambda)$.
Then combined with the finiteness result of Doan-lonel-Walpuski, we obtain

$$
F_{P T}(q, t)=\sum_{g \geq 0} \sum_{d>0} \sum_{r \geq 1} n_{g, d} \frac{(-1)^{g-1}}{r}\left((-q)^{\frac{r}{2}}-(-q)^{-\frac{r}{2}}\right)^{2 g-2} t^{r d}
$$

GV-invariants via PT-invariants

To prove the Castelnuovo bound conjecture, it is sufficient to bound the genus of 1-dim subschemes:

Conjecture

For any 1-dim closed subscheme $C \subset X$ of degree d and (arithmetic) genus g, we have

$$
g \leq \frac{d^{2}+5 d+10}{10}
$$

If this conjecture is true, then by the emptiness of moduli spaces we have $P_{n, d}=0$ for any $1-n>\frac{d^{2}+5 d+10}{10}$. Then a calculation of the generating series implies the vanishing of connected PT and GV-invariants.

Bound for the genus

Theorem (Hartshorne)

Let $C \subset \mathbb{P}^{3}$ be a 1 -dim closed subscheme of degree d and genus g. Then we have $g \leq \frac{(d-1)(d-2)}{2}$. Moreover, if C is not contained in \mathbb{P}^{2}, then we have $g \leq \frac{(d-2)(d-3)}{2}$.

Bound for the genus

Theorem (Hartshorne)

Let $C \subset \mathbb{P}^{3}$ be a 1-dim closed subscheme of degree d and genus g. Then we have $g \leq \frac{(d-1)(d-2)}{2}$. Moreover, if C is not contained in \mathbb{P}^{2}, then we have $g \leq \frac{(d-2)(d-3)}{2}$.

Theorem

Let $X \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree $n \leq 5$. Then for any one-dimensional closed subscheme $C \subset X$ of degree d and genus g, we have

$$
g \leq \frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1
$$

Moreover, when C is not contained in any hyperplane section of X, we have

$$
g \leq \frac{1}{2 n} d^{2}+\left(\frac{n-4}{2}-\frac{1}{n}\right) d+2+\frac{1}{n} .
$$

Extremal curves

Let $X \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree $n \leq 5$.

Theorem

Let C be a one-dimensional closed subscheme $C \subset X$ of degree $d>n$ and genus g. Then

$$
g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1
$$

if and only if C is a complete intersection of a hyperplane section and a degree $\frac{d}{n}$ hypersurface section of X.

Extremal curves

Let $X \subset \mathbb{P}^{4}$ be a smooth hypersurface of degree $n \leq 5$.

Theorem

Let C be a one-dimensional closed subscheme $C \subset X$ of degree $d>n$ and genus g. Then

$$
g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1
$$

if and only if C is a complete intersection of a hyperplane section and a degree $\frac{d}{n}$ hypersurface section of X.
Thus, the Hilbert scheme $\operatorname{Hilb}_{X}^{d t-\frac{1}{2 n} d^{2}-\frac{n-4}{2} d}$ is a projective bundle over $\mathbb{P}\left(\mathrm{H}^{0}\left(\mathcal{O}_{X}(1)\right)\right)$.
Then the non-vanishing result for GV-invariants of quintic follows from a a computation of DT-invariants and DT/PT correspondence (Bridgeland, Toda).

Slope stability

Let (X, H) be a polarised smooth projective variety of dimension n. For any sheaf $E \in \operatorname{Coh}(X)$, we define

$$
\mu_{H}(E):= \begin{cases}\frac{H^{n-1} \operatorname{ch}_{1}(E)}{H^{n} \mathrm{ch}_{0}(E)}, & \text { if } \operatorname{ch}_{0}(E) \neq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Slope stability

Let (X, H) be a polarised smooth projective variety of dimension n. For any sheaf $E \in \operatorname{Coh}(X)$, we define

$$
\mu_{H}(E):= \begin{cases}\frac{H^{n-1} \operatorname{ch}_{1}(E)}{H^{n} \operatorname{ch}_{0}(E)}, & \text { if } \operatorname{ch}_{0}(E) \neq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

We say a sheaf $0 \neq E \in \operatorname{Coh}(X)$ is $\mu_{H^{-}}($semi $)$stable if $\mu_{H}(F)(\leq)<\mu_{H}(E / F)$ for all proper subsheaves $F \subset E$.

Slope stability

Let (X, H) be a polarised smooth projective variety of dimension n. For any sheaf $E \in \operatorname{Coh}(X)$, we define

$$
\mu_{H}(E):= \begin{cases}\frac{H^{n-1} \operatorname{ch}_{1}(E)}{H^{n} \operatorname{ch}_{0}(E)}, & \text { if } \operatorname{ch}_{0}(E) \neq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

We say a sheaf $0 \neq E \in \operatorname{Coh}(X)$ is $\mu_{H^{-}}($semi $)$stable if $\mu_{H}(F)(\leq)<\mu_{H}(E / F)$ for all proper subsheaves $F \subset E$.

- Any object $E \in \operatorname{Coh}(X)$ has a Harder-Narasimhan (HN) filtration in terms of μ_{H}-semistability defined above.

Slope stability

Let (X, H) be a polarised smooth projective variety of dimension n. For any sheaf $E \in \operatorname{Coh}(X)$, we define

$$
\mu_{H}(E):= \begin{cases}\frac{H^{n-1} \mathrm{ch}_{1}(E)}{H^{n} \mathrm{ch}_{0}(E)}, & \text { if } \operatorname{ch}_{0}(E) \neq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

We say a sheaf $0 \neq E \in \operatorname{Coh}(X)$ is $\mu_{H^{-}}($semi $)$stable if $\mu_{H}(F)(\leq)<\mu_{H}(E / F)$ for all proper subsheaves $F \subset E$.

- Any object $E \in \operatorname{Coh}(X)$ has a Harder-Narasimhan (HN) filtration in terms of $\mu_{H^{-}}$-semistability defined above.
- (Bogomolov-Gieseker) For any μ_{H}-semistable object $E \in \operatorname{Coh}(X)$, we have

$$
\Delta_{H}(E)=\left(H^{n-1} \operatorname{ch}_{1}(E)\right)^{2}-2 H^{n} \operatorname{ch}_{0}(E) H^{n-2} \operatorname{ch}_{2}(E) \geq 0
$$

Tilt-stability

For a fixed $b \in \mathbb{R}$, we replace $\operatorname{Coh}(X)$ by the tilted heart $\mathcal{A}^{b} \subset \mathrm{D}^{b}(X)$.

Tilt-stability

For a fixed $b \in \mathbb{R}$, we replace $\operatorname{Coh}(X)$ by the tilted heart $\mathcal{A}^{b} \subset \mathrm{D}^{b}(X)$. Fix a real number $a \in \mathbb{R}_{>0}$. For any $E \in \mathcal{A}^{b}$, we define

$$
\mu_{\mathrm{a}, b}(E):= \begin{cases}\frac{-\frac{1}{2} \mathrm{a}^{2} H^{n} \mathrm{ch}_{0}^{b H}(E)+H^{n-2} \operatorname{ch}_{2}^{b H}(E)}{H^{n-1} \operatorname{ch}_{1}^{b H}(E)}, & \text { if } \operatorname{ch}_{1}^{b}(E) \neq 0 \\ +\infty, & \text { otherwise }\end{cases}
$$

Tilt-stability

For a fixed $b \in \mathbb{R}$, we replace $\operatorname{Coh}(X)$ by the tilted heart $\mathcal{A}^{b} \subset \mathrm{D}^{b}(X)$. Fix a real number $a \in \mathbb{R}_{>0}$. For any $E \in \mathcal{A}^{b}$, we define

$$
\mu_{\mathrm{a}, b}(E):= \begin{cases}\frac{-\frac{1}{2} a^{2} H^{n} \operatorname{ch}_{0}^{b H}(E)+H^{n-2} \mathrm{ch}_{2}^{b H}(E)}{H^{n-1} \operatorname{ch}_{1}^{b H}(E)}, & \text { if } \operatorname{ch}_{1}^{b}(E) \neq 0 \\ +\infty, & \text { otherwise. }\end{cases}
$$

We say an object $0 \neq E \in \mathcal{A}^{b}$ is $\mu_{a, b^{-}}($semi $)$stable if $\mu_{a, b}(F)(\leq)<\mu_{a, b}(E / F)$ for all proper subsheaves $F \subset E$.

Tilt-stability

For a fixed $b \in \mathbb{R}$, we replace $\operatorname{Coh}(X)$ by the tilted heart $\mathcal{A}^{b} \subset \mathrm{D}^{b}(X)$.
Fix a real number $a \in \mathbb{R}_{>0}$. For any $E \in \mathcal{A}^{b}$, we define

$$
\mu_{\mathrm{a}, b}(E):= \begin{cases}\frac{-\frac{1}{2} \mathrm{a}^{2} H^{n} \mathrm{ch}_{0}^{b H}(E)+H^{n-2} \mathrm{ch}_{2}^{b H}(E)}{H^{n-1} \operatorname{ch}_{1}^{b H}(E)}, & \text { if } \operatorname{ch}_{1}^{b}(E) \neq 0 \\ +\infty, & \text { otherwise. }\end{cases}
$$

We say an object $0 \neq E \in \mathcal{A}^{b}$ is $\mu_{a, b}$-(semi)stable if $\mu_{a, b}(F)(\leq)<\mu_{a, b}(E / F)$ for all proper subsheaves $F \subset E$.

- Any object $E \in \mathcal{A}^{b}$ has a HN filtration in terms of $\mu_{\mathrm{a}, b}$-semistability defined above.
- For any $\mu_{a, b}$-semistable object $E \in \mathcal{A}^{b}$, we have $\Delta_{H}(E) \geq 0$.

Tilt-stability

For a fixed $b \in \mathbb{R}$, we replace $\operatorname{Coh}(X)$ by the tilted heart $\mathcal{A}^{b} \subset \mathrm{D}^{b}(X)$.
Fix a real number $a \in \mathbb{R}_{>0}$. For any $E \in \mathcal{A}^{b}$, we define

$$
\mu_{a, b}(E):= \begin{cases}\frac{-\frac{1}{2} a^{2} H^{n} \mathrm{ch}_{0}^{b H}(E)+H^{n-2} \operatorname{ch}_{2}^{b H}(E)}{H^{n-1} \mathrm{ch}_{1}^{b H}(E)}, & \text { if } \operatorname{ch}_{1}^{b}(E) \neq 0 \\ +\infty, & \text { otherwise. }\end{cases}
$$

We say an object $0 \neq E \in \mathcal{A}^{b}$ is $\mu_{a, b}$-(semi)stable if $\mu_{a, b}(F)(\leq)<\mu_{a, b}(E / F)$ for all proper subsheaves $F \subset E$.

- Any object $E \in \mathcal{A}^{b}$ has a HN filtration in terms of $\mu_{a, b}$-semistability defined above.
- For any $\mu_{a, b}$-semistable object $E \in \mathcal{A}^{b}$, we have $\Delta_{H}(E) \geq 0$.

In other words, we have a family of "stability conditions" parametrized by $\mathbb{R}_{>0} \times \mathbb{R}$

$$
(a, b) \mapsto\left(\mathcal{A}^{b}, \mu_{\mathrm{a}, \mathrm{~b}}\right)
$$

Bayer-Macrì-Toda's generalized Bogomolov-Gieseker inequality

BMT Conjecture (Bayer-Macrì-Toda)

Let (X, H) be a polarised smooth projective 3-fold. Assume that $(a, b) \in \mathbb{R}_{>0} \times \mathbb{R}$ and E is any $\mu_{a, b}$-semistable object. Then

$$
Q_{a, b}(E):=a^{2} \Delta_{H}(E)+4\left(H \operatorname{ch}_{2}^{b H}(E)\right)^{2}-6\left(H^{2} \operatorname{ch}_{1}^{b H}(E)\right) \operatorname{ch}_{3}^{b H}(E) \geq 0 .
$$

Bayer-Macrì-Toda's generalized Bogomolov-Gieseker inequality

BMT Conjecture (Bayer-Macrì-Toda)

Let (X, H) be a polarised smooth projective 3-fold. Assume that $(a, b) \in \mathbb{R}_{>0} \times \mathbb{R}$ and E is any $\mu_{a, b}$-semistable object. Then

$$
Q_{a, b}(E):=a^{2} \Delta_{H}(E)+4\left(H \operatorname{ch}_{2}^{b H}(E)\right)^{2}-6\left(H^{2} \operatorname{ch}_{1}^{b H}(E)\right) \operatorname{ch}_{3}^{b H}(E) \geq 0 .
$$

Theorem (Chunyi Li)

Let X be the quintic 3-fold. Then the BMT conjecture holds for any

$$
(a, b) \in U:=\left\{(a, b) \in \mathbb{R}_{>0} \times \mathbb{R} \mid a^{2}>(b-\lfloor b\rfloor)(\lfloor b\rfloor+1-b)\right\}
$$

Sketch of proof

We fix X to be the quintic 3-fold from now on.

- A simple observation: applying Li's theorem to \mathcal{I}_{C} at $(a, b)=\left(\sqrt{\frac{2}{9}},-\frac{4}{3}\right)$, we obtain the desired bound.

Sketch of proof

We fix X to be the quintic 3-fold from now on.

- A simple observation: applying Li's theorem to \mathcal{I}_{C} at $(a, b)=\left(\sqrt{\frac{2}{9}},-\frac{4}{3}\right)$, we obtain the desired bound.
- Bad news: we can not do this in general, since \mathcal{I}_{C} are only $\mu_{a, b}$-semistable for $b<0$ and $a \gg 0$ in general. When a goes small, \mathcal{I}_{C} will meet many walls, which destabilize \mathcal{I}_{C}.

Sketch of proof

We fix X to be the quintic 3 -fold from now on.

- A simple observation: applying Li's theorem to \mathcal{I}_{C} at $(a, b)=\left(\sqrt{\frac{2}{9}},-\frac{4}{3}\right)$, we obtain the desired bound.
- Bad news: we can not do this in general, since \mathcal{I}_{C} are only $\mu_{a, b}$-semistable for $b<0$ and $a \gg 0$ in general. When a goes small, \mathcal{I}_{C} will meet many walls, which destabilize \mathcal{I}_{C}.
- Good news: there is a nice subset $\mathcal{V} \subset \mathbb{R}_{>0} \times \mathbb{R}_{<0}$ such that $\left(a,-\frac{4}{3}\right) \in \mathcal{V}$ for any $a>\sqrt{\frac{2}{9}}$ and the walls (HN factors) for \mathcal{I}_{C} in \mathcal{V} can be controlled.

Sketch of proof

We only need to consider pure 1-dim subschemes (curves). We have the following types of curves.

- (Type I): \mathcal{I}_{C} has no wall in \mathcal{V}.
- (Type II): the upper-most wall is given by $\mathcal{O}_{X}(-H)$. In other words, $C \subset H$.
- (Type III): other cases.

Sketch of proof

We only need to consider pure 1-dim subschemes (curves). We have the following types of curves.

- (Type I): \mathcal{I}_{C} has no wall in \mathcal{V}.
- (Type II): the upper-most wall is given by $\mathcal{O}_{X}(-H)$. In other words, $C \subset H$.
- (Type III): other cases.
- Bound for type I: Applying BMT's inequality on the boundary of \mathcal{V}, we can get a better bound than Castelnuovo bound.

Sketch of proof

We only need to consider pure 1-dim subschemes (curves). We have the following types of curves.

- (Type I): \mathcal{I}_{C} has no wall in \mathcal{V}.
- (Type II): the upper-most wall is given by $\mathcal{O}_{X}(-H)$. In other words, $C \subset H$.
- (Type III): other cases.
- Bound for type I: Applying BMT's inequality on the boundary of \mathcal{V}, we can get a better bound than Castelnuovo bound.
- Bound for type II: Applying wall-crossing and BMT's inequality to the torsion sheaf $\mathcal{I}_{C / H}$.

Sketch of proof

We only need to consider pure 1-dim subschemes (curves). We have the following types of curves.

- (Type I): \mathcal{I}_{C} has no wall in \mathcal{V}.
- (Type II): the upper-most wall is given by $\mathcal{O}_{X}(-H)$. In other words, $C \subset H$.
- (Type III): other cases.
- Bound for type I : Applying BMT's inequality on the boundary of \mathcal{V}, we can get a better bound than Castelnuovo bound.
- Bound for type II: Applying wall-crossing and BMT's inequality to the torsion sheaf $\mathcal{I}_{C / H}$.
- Bound for type III: $C=C_{1} \cup C_{2}$, such that length $\left(C_{1} \cap C_{2}\right)=d_{1}$ and $d_{1}<E(d)$. Then we can do induction and use

$$
g(C)=g\left(C_{1}\right)+g\left(C_{2}\right)+\text { length }\left(C_{1} \cap C_{2}\right)-1
$$

In this case, we can get a better bound than Castelnuovo bound.

Sketch of proof

- If $C \subset X$ has degree d and genus $g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1$, then by the bound above, we know that C is of Type II (i.e. $C \subset H$).

Sketch of proof

- If $C \subset X$ has degree d and genus $g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1$, then by the bound above, we know that C is of Type II (i.e. $C \subset H$).
- Thus we can regard C as a curve in $H=X \cap \mathbb{P}^{3} \subset \mathbb{P}^{3}$ and do wall-crossing on \mathbb{P}^{3} for $\mathcal{I}_{C / H}$.

Sketch of proof

- If $C \subset X$ has degree d and genus $g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1$, then by the bound above, we know that C is of Type II (i.e. $C \subset H$).
- Thus we can regard C as a curve in $H=X \cap \mathbb{P}^{3} \subset \mathbb{P}^{3}$ and do wall-crossing on \mathbb{P}^{3} for $\mathcal{I}_{C / H}$.
- Key point: if $g=\frac{1}{2 n} d^{2}+\frac{n-4}{2} d+1$, then by BMT conjecture on \mathbb{P}^{3} proved by Macrì, we can not cross the wall given by $\mathcal{O}_{\mathbb{P}^{3}}\left(\frac{d}{n}\right)$. This means

$$
\mathrm{H}^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{C / H}\left(\frac{d}{n}\right)\right) \neq 0
$$

Thanks!

