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ABSTRACT. New finite energy traveling wave solutions with small
speed are constructed for the three dimensional Gross-Pitaevskii
equation

iΨt = ∆Ψ + (1− |Ψ|2)Ψ,
where Ψ is a complex valued function defined on R3 ×R. These
solutions have the shape of 2n + 1 vortex rings, far away from
each other. Among these vortex rings, n + 1 of them have posi-
tive orientation and the other n of them have negative orientation.
The location of these rings are described by the roots of a sequence
of polynomials with rational coefficients. The polynomials found
here can be regarded as a generalization of the classical Adler-
Moser polynomials and can be expressed as the Wronskian of cer-
tain very special functions. The techniques used in the derivation
of these polynomials should have independent interest.

1. INTRODUCTION

In this paper, we are interested in the existence of solutions with
the shape of multiple vortex rings, to the nonlinear Schrödinger type
problem

iΨt = 4Ψ +
(

1− |Ψ|2
)

Ψ,(1.1)

where4 = ∂2
y1
+ ∂2

y2
+ ∂2

y3
is the Laplacian operator in R3. Equation

(1.1), usually called Gross-Pitaevskii equation (GP), is a well-known
mathematical model arising in various physical contexts such as non-
linear optics and Bose-Einstein condensates, see for instance [30].

Traveling wave solutions of the GP equation play important role
in its long time dynamics. If Ψ is a traveling wave type solution of
the form

Ψ(y, t) = ũ
(
y1, y2, y3 − ct

)
,
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then ũ(ỹ1, ỹ2, ỹ3) will be a solution of the nonlinear elliptic problem

− i c
∂ũ
∂ỹ3

= 4ũ +
(

1− |ũ|2
)

ũ.(1.2)

The existence or nonexistence of traveling wave solutions to (1.2)
with ũ → 1 as |ỹ| → ∞ has attracted much attention in the liter-
ature, initiated from the work of Jones, Putterman, Roberts [22, 23],
where they studied the equation from the physical point of view and
obtained solutions with formal and numerical calculation. They car-
ried out their computation in dimension two and three, and find that
the solution branches in these two cases have different properties. In
particular, in the energy-momentum diagram, the branch in 2D is
smooth, while the branch in 3D has a cusp singularity. In any case,
the solutions they found have traveling wave speed c less than

√
2

(the sound speed in this context, appears after taking the Madelung
transform for the GP equation).

A natural question is whether there exist solutions whose travel-
ing speed is larger than the sound speed. In this respect, the nonex-
istence of finite energy solutions with c >

√
2 is rigorously proved

by Gravejat in [18, 19]. This result is also true for c =
√

2 in R2, but
the higher dimensional case is still open.

The first rigorous mathematical proof of the existence is carried
out in [10], where solutions in 2D with small traveling speed are ob-
tained using mountain pass theorem. Later on, the existence of small
speed solutions in dimension larger than two are proved in [11], also
based on the mountain pass theorem. In [9], a different approach,
minimizing the action functional with fixed momentum, is applied
to get the existence of solutions with large momentum in dimension
N ≥ 3. This method is further developed in [8] to dimensions 2
and 3, yielding existence in dimension 2 for any constrained value
of the momentum and existence in dimension 3 when the momen-
tum p > p0 for some threshold value p0 > 0. The asymptotic profile
of these solutions are also studied in the above mentioned papers.
In particular, for c close to 0, in 2D, these solutions have two vor-
tices and around them, the solution is close to the degree one vortex
solution of the the Ginzburg-Landau equation; while in 3D, the solu-
tions have the shape of a single vortex ring. See also [12] for related
results. We also refer to the paper [7] by F. Bethuel, P. Gravejat and J.
Saut and the references therein for more details and discussions.

The question of existence for all traveling speed c ∈ (0,
√

2) is
quite delicate. It is proved by Maris in [27] that in dimension N > 2,
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one can minimize the action under a Pohozaev constraint, obtaining
solutions in the full speed interval (0,

√
2). Unfortunately, this ar-

gument breaks down in 2D, thus leaving the problem open in this
dimension. Recently, Bellazzini-Ruiz [2] proved that the existence
of almost all subsonic speed in 2D, using mountain pass argument.
They also recovered the results of Maris in 3D.

Note that when the parameter c = 0, equation (1.2) reduces to the
Ginzburg-Landau equation:

(1.3) ∆u + u
(

1− |u|2
)
= 0.

In R2, for each τ ∈ Z\ {0} , it is known that the Ginzburg-Landau
equation (1.3) has a degree τ vortex solution. In the polar coordi-
nate, it has the form Sτ (r) eiτθ. The function Sτ is real valued and
vanishes exactly at r = 0. It satisfies

−S′′τ −
1
r

S′τ +
τ2

r2 Sτ = Sτ

(
1− S2

τ

)
in (0,+∞) .

This equation indeed has a unique solution Sτ with Sτ (0) = 0 and
Sτ (+∞) = 1 and S′τ (r) > 0. See [17, 31] for a proof.

Recently, based on the vortex solutions of the Ginzburg-Landau
equation, multi-vortex traveling wave solutions to (1.2) were con-
structed in [25] using Lyapunov-Schmidt reduction method. These
solutions have n(n+1)

2 pairs of vortex-anti vortex configuration, where
the location of the vortex points are determined by the roots of the
Adler-Moser Polynomials. It is worth pointing out that the Adler-
Moser polynomials arise naturally from the rational solutions of the
KdV equation. We also mention that as c tends to

√
2, a suitable

rescaled traveling waves will converge to solutions of the KP-I equa-
tion, which is an important integrable system, see [6, 13]. Interest-
ingly, the KP-I equation is actually a two dimensional generalization
of the classical KdV equation. Hence in the context of GP equation,
we see the KP-I equation in the transonic limit and KdV in the small
speed limit. The inherent reason behind this phenomena is still to
be explored. As a related result, we would like to mention that nu-
merical simulation has been performed in [14] to illustrate the higher
energy solutions of the GP equation.

Denote the degree ±1 vortex solutions of the Ginzburg-Landau
equation (1.3) as

v+ = eiθS1 (r) , v− = e−iθS1 (r) .
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To better explain our main result in this paper, let us recall the fol-
lowing result proved in [25], which provides a family of multi-vortex
solutions in dimension 2.

Theorem 1.1 ([25]). In R2, for each n ≤ 34, there exists c0 > 0, such that
for all c ∈ (0, c0) , the equation (1.2) has a solution uc, with

uc =
n(n+1)/2

∏
k=1

[
v+
(

z− c−1pk

)
v−
(

z + c−1pk

)]
+ o (1) ,

where pk, k = 1, ..., n (n + 1) /2 are roots of the Adler-Moser polynomials.

In this paper, we construct new traveling waves for c close to 0
in 3D. The solutions will have multiple vortex rings. By our con-
struction below, it turns out that the location of the vortex points are
closely related to the following system (Balancing condition):

(1.4)


m

∑
j=1,j 6=k

1
ak−aj

−
n

∑
j=1

1
ak−bj

= −n, for k = 1, ..., m,

−
n

∑
j=1,j 6=k

1
bk−bj

+
m

∑
j=1

1
bk−aj

= −m, for k = 1, ..., n.

Here aj, j = 1, ..., m, b`, ` = 1, ..., n, are complex numbers in the
z = x1 + ix2 plane. The integer m actually denotes the number of
positively oriented vortex rings and n denotes the number of nega-
tively oriented ones. Moreover, the solvability of our original prob-
lem is related to the nondegeneracy of the linearized operator dF of
the map F defined by (5.2).

The make our construction possible, the solution aj, b` to the sys-
tem (1.4) has to satisfy some symmetric properties. We therefore in-
troduce the following condition:

(M). m > n. The points aj, b`, j = 1, ..., m, ` = 1, ..., n are all distinct.
The set of points of {a1, ..., am} and {b1, ..., bn} are both symmetric
with respect to the x1 axis.

The existence and nondegeneracy of symmetric (aj, b`) are con-
sequences of generalized Adler-Moser polynomials which will be
studied in Section 5 and Section 6.

We use Lyapunov-Schmidt reduction method to construct multi-
vortex ring solutions. Our main result is the following:

Theorem 1.2. Suppose aj, b`, j = 1, ..., m, ` = 1, ..., n is a solution of
(1.4) satisfying condition M and the linearized operator dF of (5.2) is
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non-degenerate at this solution in the sense defined in Section 5. Then
for all ε > 0 sufficiently small, there exists an axially symmetric solution

u = u(
√

y2
1 + y2

2, y3) to equation (2.2), and u has m positively oriented
vortex rings and n negatively oriented vortex rings. The distance of the
vortex rings to the axis is of the order O(ε−1), while the mutual distance of
two vortex rings are of the order O(ε−1/| ln ε)|. After scaling back by the
factor ε| ln ε|, the position of the vortex rings in the (x1, x2) plane is close
to suitable x1-translation of those points {a1, ..., am, b1, ..., bn}.

More precise description of the solutions can be found in the course
of the proof. From the proof in Section 5, we can see that in the case
of two positively oriented vortex rings and one negatively oriented
vortex ring, there exists solutions to (1.4) and the corresponding lin-
earized operator of (5.2) is non-degenerate. Hence one can construct
traveling wave solutions with three vortex rings. We also show in
Section 5.2 and Section 6 that (1.4) has solutions satisfyingM, pro-
vided that m = n + 1. (Surprisingly, if m− n > 1, we have not found
any solutions satisfying M.) When m = n + 1 the location of the
vortex points are determined by the roots of generating polynomials
which have recurrence relations and can be explicitly written down
using certain Wronskians. These generating polynomials are natural
generalizations of the classical Adler-Moser polynomials. We refer
to Section 6 for more details.

Let us point out that traveling wave solutions of the Schrodinger
map equation with single vortex ring has been constructed in [24].
In principle, our method in this paper can also be applied to this
equation and other related equation such as the Euler equation.

The dimension three case (with obvious extension to higher di-
mensions) studied in the present paper actually has some new prop-
erties compared to the 2D case. Roughly speaking, the main dif-
ference of the 2D and 3D case is the following. In 2D, the vortex
location of our solutions is determined by the Adler-Moser polyno-
mials. These polynomials can be obtained by method of integrable
systems and are well studied. However, in 3D, due to the presence
of additional terms in the equation, the vortex location is not deter-
mined by Adler-Moser polynomials. Indeed they are determined by
a sequence of polynomials, which can be regarded as a generaliza-
tion of Adler-Moser polynomials, and up to our knowledge, are new.
We have to find these new generating polynomials using some tech-
niques from the theory of integrable systems. This step is nontrivial
and may have independent interest.
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If we rescale the Gross-Pitaevskii equation x = ε−1x̄, then the dis-
tance between the locations of the vortex rings obtained in Theorem
1.2 is of the order O( 1

| log ε|). Note that this distance is much smaller
than the leapfrogging region in which the distance between the vortex
rings is of the order O( 1√

| log ε|
). For the dynamics of vortex rings in

the leapfrogging region for the Gross-Pitaevskii equation we refer to
Jerrard-Smets [21] and the references therein.

The paper is organized as follows. In Section 2, we formulate the
3D problem as a two dimensional one. In Section 3, we introduce
the approximate multi-vortex ring solutions and estimate their error.
Section 4 is devoted to the study of a nonlinear projected problem.
This is more or less standard. The main part of the paper is Section
5 and Section 6, where we get the reduced problem for the position
of the vortex points and study some generating polynomials whose
roots determine the location of the vortex rings.

Acknowledgement W. Ao is supported by NSFC no. 11631011,
no. 11801421, and no. 12071357. Y. Liu is partially supported by
NSFC no. 11971026 and “The Fundamental Research Funds for the
Central Universities WK3470000014”. J. Wei is partially supported
by NSERC of Canada. We thank Professor D. Ruiz for some useful
suggestions.

2. FORMULATION OF THE PROBLEM

We are looking for a solution to problem (1.1) in the form

Ψ(y, t) = ũ
(

y1, y2, y3 − ct
)

.

Then ũ must satisfy

(2.1) −ic
∂ũ
∂y3

= ∆ũ + (1− |ũ|2)ũ.

Let ε > 0 be a small parameter. We would like to seek solutions with
traveling speed c = ε| ln ε|. Equation (1.2) then becomes

(2.2) −iε| ln ε| ∂ũ
∂y3

= ∆ũ + (1− |ũ|2)ũ.

We require the solution ũ satisfies

ũ(y)→ 1 as |y| → ∞.
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We are interested in the solutions axially symmetric with respect to

the y3 axis. Let us introduce x1 =
√

y2
1 + y2

2, x2 = y3, and

z = x1 + ix2, u(x1, x2) = ũ(y1, y2, y3).

Then we get the following equation satisfied by u:

(2.3) −iε| ln ε| ∂u
∂x2

= ∆(x1,x2)u +
1
x1

∂u
∂x1

+ (1− |u|2)u,

with boundary conditions

∂

∂x1
u(0, x2) = 0, u→ 1 as |z| → ∞.

Observe that the problem (6.2) is invariant under the following
two transformations:

u(z)→ u(z̄), u(z)→ u(−z̄).

Thus we impose the following symmetry on the solutions u:

Σ = {u(z) = u(z̄), u(z) = u(−z̄).}
This symmetry will play an important role in our analysis. As a con-
clusion, if we write

u(x1, x2) = u1(x1, x2) + iu2(x1, x2),

then u1 and u2 enjoy the following conditions:

u1(x1, x2) = u1(−x1, x2), u1(x1, x2) = u1(x1,−x2),

u2(x1, x2) = u2(−x1, x2), u2(x1, x2) = −u2(x1,−x2),
∂u1

∂x1
(0, x2) = 0,

∂u2

∂x1
(0, x2) = 0.

(2.4)

We now have a two dimensional elliptic system with Neumann
boundary condition ∂u

∂x1
(0, x2) = 0. Compared with the two di-

mensional problem studied in [25], there are two differences: Firstly,
there is an extra term 1

x1
∂u
∂x1

; Secondly, the coefficient in front of ∂u
∂x2

becomes ε| ln ε|, instead of ε.
Some remarks are in order. We aim to construct multi-vortex ring

solutions to (2.2). For single vortex ring, one can use v+(x− p)v−(x+
p) as a good approximate solution for the equation (6.2). But for
multi-vortex rings, the vortex-anti vortex pairs are not good enough
because of the extra term 1

x1
∂u
∂x1

and the Neumann boundary condi-
tion. So we need to use more accurate approximate solution which
we will explain in the next section.
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3. THE APPROXIMATE SOLUTION

In this section, we would like to define a family of approximate
solutions for the equation (6.2).

3.1. The first approximate solution. We consider K distinct points
pj = (pj,1, pj,2), j = 1, ...,K, lying in the right half of the z plane. Let
us define p∗j = − p̄j for j = 1, · · · ,K. We also denote pK+j = p∗j for
j = 1, · · · ,K. Intuitively, these points represent the location of the
vortex rings. We also suppose that the set of points {p1, ..., pK} is
symmetric with respect to the x1 axis. Moreover, we will assume:

(A1.)

ρ := min` 6=j,1≤`,j≤K{|p` − pj|} ∼ 1
ε| ln ε| ,(3.1)

and
|pj,1| ∼

1
ε

for j = 1, · · · ,K.

n order to understand more clearly the difference between the 2D
and 3D case, let us now following the strategy of [25] to define an
approximate solution.

Let S = S1 be the function associated to the degree one vortex so-
lution of the Ginzburg-Landau equation, defined in the first section.
Define

uj := S(|z− pj|)eiτjθj , j = 1, · · · ,K,
where θj is the angle around pj, τj = +1 or− 1, corresponding to the
degree ±1 vortex. We then set

uj = S(|z− pj|)e−iτj−Kθj , j = K+ 1, · · · , 2K
where θj is the angle around pj. The reason of defining these func-
tions is the following: Projecting a vortex ring onto the z plane, we
get two circles in the right and left plane with different orientation.
Here uj and uj+K can be viewed as a vortex-antivortex pair.

We now define the first approximate solution as

(3.2) U = Π2K
j=1uj.

We will see that this approximate solution is not good enough to
handle the 3D case and later on we will introduce a refined approxi-
mate solution. Note that at this moment, we still haven’t decided the
sign of the degree of the vortex. This will also be done later on.

Since each vortex in the right half plane has a vortex in the left
plane with opposite sign, we can check directly that U → 1 as |z| →
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∞. We will see that the approximate solution satisfies the boundary
and symmetry condition (2.4). In fact, by the choice of the vortex
points, one has

Lemma 3.1. The approximate solution U has the following symmetry:

U(z̄) = Ū(z), U(z∗) = U(z)

where z∗ = −z̄.

Proof. This is the result by the definition of the vortex points. Since
v−(z) = v+(z), one has

U(z∗) = ΠKj=1[uj(z∗ − pj)uK+j(z∗ − p∗j )]

= ΠKj=1[uj((z− p∗j )
∗)uK+j((z− pj)

∗)]

= ΠKj=1[uK+j(z− p∗j )uj(z− pj)] = U(z),

and since the points {pj} are invariant with respect to the reflection
across the x1 axis, we have

U(z̄) = ΠKj=1[uj(z̄− pj)uK+j(z̄− p∗j )]

= ΠKj=1[ūj(z− p̄j)ūK+j(z− p̄∗j )] = Ū(z).

This finishes the proof.
�

3.2. The error of the first approximate solution. Firstly, we estimate
the error of the first approximate solution U. Since it satisfies the
symmetry and boundary condition (2.4), one only need to consider
in the domain {x1 > 0}.

Recall that the degree ±1 vortex satisfies

S′′(r) +
1
r

S′(r)− 1
r2 S(r) + (1− S2)S = 0.

It has the following properties([29]):

Lemma 3.2. The vortex solution satisfies the following properties:
(i). S(0) = 0, S′(r) > 0, S(r) ∈ (0, 1);

(ii.) S(r) = 1− 1
2r2 + O( 1

r4 ) as r → ∞;
(iii). S(r) = a0r − a0

8 r3 + O(r5) as r → 0 where a0 is a positive con-
stant.

In this subsection, we are going to estimate the error caused by the
first approximation U. Use E1 to denote the error :

E1 = iε| ln ε| ∂U
∂x2

+ ∆U + (1− |U|2)U +
1
x1

∂U
∂x1

.
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We have

∆U = ∆(u1 · · · u2K)

=
K
∑
`=1

(∆u`Πj 6=`uj) + ∑
j 6=`

∇u` · ∇ujΠt 6=`,jut.

On the other hand, writing ρj = |uj|2 − 1, one has

|U|2 − 1 = Π2K
j=1(1 + ρj)− 1

= ∑
j

ρj +
2K
∑
j=1
Qj,

where Qj = ∑i1<i2<···<ii(ρi1 · · · ρii). Using the fact that ∆uj − ρjuj =
0, we get

∆U + (1− |U|2)U = ∑
` 6=j

(∇u` · ∇ujΠt 6=`,jut)−U
2K
∑
j=2
Qj.

Let

ϕ0 =
K
∑
j=1

τj(θj − θK+j),

and

rj = |z− pj|, rK+j = |z− qj|, rj,1 = x1 − pj,1, rj,2 = x2 − pj,2.

We have

1
x1

∂U
∂x1

=
1
x1

[
eiϕ0

∂

∂x1
(ΠKj=1S(rj)S(rK+j)) + ieiϕ0

∂ϕ0

∂x1
ΠKj=1S(rj)S(rK+j)

]
=
( 2K

∑
j=1

1
x1

S′(rj)

S(rj)

rj,1

rj
+

i
x1

∂ϕ0

∂x1

)
U.

Similarly, there holds

∂U
∂x2

=
2K
∑
j=1

∂x2ujΠ` 6=ju`

=
( 2K

∑
j=1

S′(rj)

S(rj)

rj,2

rj
+ i

∂ϕ0

∂x2

)
U.
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Combining the above computations, we obtain

E1 = ∑
` 6=j

(∇u` · ∇uj)

u` uj
U −U

2K
∑
j=2
Qj

+
( 2K

∑
j=1

1
x1

S′(rj)

S(rj)

rj,1

rj
+

i
x1

∂ϕ0

∂x1

)
U

+ iε| ln ε|
( 2K

∑
j=1

S′(rj)

S(rj)

rj,2

rj
+ i

∂ϕ0

∂x2

)
U.

In the sequel, we denote |pj,1| by dj. Direct computation yields

∂ϕ0

∂x2
=
K
∑
j=1

τj
[ ∂θj

∂x2
−

∂θK+j

∂x2

]
=
K
∑
j=1

τj

[x1 − pj,1

r2
j

−
x1 − p∗j,1

r2
K+j

]

=
K
∑
j=1

τj
2dj(x2

1 − p2
j,1 − (x2 − pj,2)

2)

r2
j r2
K+j

.

We also have

1
x1

∂ϕ0

∂x1
=

1
x1

K
∑
j=1

τj

[ ∂θj

∂x1
−

∂θK+j

∂x1

]
= − 1

x1

K
∑
j=1

τj

[x2 − pj,2

r2
j

−
x2 − p∗j,2

r2
K+j

]
.

Observe that 1
x1

∂ϕ0
∂x1

contributes to the imaginary part of the error E1.
Note that away from the vortex point pj, this decays only at the rate
O(r2

j ), which is not sufficient for our construction. Hence the vortex-
antivortex pair is not enough to be a good approximate solution.

3.3. The reference vortex ring. In order the get rid of these singu-
larities, one need more accurate approximations for the vortex ring.

In [21], leap frogging behavior of the vortex rings to the GP equa-
tion has been analyzed. Indeed, our construction in this paper is
partly inspired by these leap frogging behavior. Following the anal-
ysis performed in [21], we introduce the potential function Aa, which
satisfies the following equation:
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(3.3)

{
−div

(
1
x1
∇(x1Aa)

)
= 2πδa in H,

Aa = 0 on ∂H,

where H = {(x1, x2) ∈ R2, x1 > 0} and a ∈ H.
For the region {x1 ≤ 0}, we consider the odd extension of Aa. The

expression of Aa can be integrated explicitly in terms of complete
elliptic integrals (see [20, 21]). We emphasize that in the literature,
there are different notations concerning the definition of complete
elliptic integrals, mainly about its arguments.

Let r := ra = |z − a|. When ra = o(|a1|), one has the following
asymptotic behavior

(3.4) Aa(z) =
(

ln
a1

ra
+ 3 ln 2− 2

)
+ O

( ra

a1
| ln ra

a1
|
)

and

(3.5) ∂r Aa = −
1
r
+ O(

1
a1
),

and for x1 → 0

(3.6) Aa(x1, x2) =
x1a2

1

a3
1 + x2

2
as

x1

a1
→ 0.

Up to a constant phase factor, there exists a unique unimodular
map u∗a ∈ C∞(H \ {a}, S1) such that

(3.7) x1(iu∗a ,∇u∗a) = x1 j(u∗a) = −∇⊥(x1Aa),

where
j(u) = u×∇u = (iu,∇u) = Re(iu∇ū).

In the sense of distribution, we have{
div(x1 j(u∗a)) = 0,
curl(j(u∗a)) = 2πδa,

and the function u∗a corresponds to a singular vortex ring centered at
a.

If we denote by u∗a = eiϕa , then by (3.7), one has

(3.8) ∂1ϕa = ∂2Aa, ∂2ϕa = −
1
x1

∂(x1Aa)

∂x1
.

So from the definition of ϕa and the boundary condition of Aa, one
has
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{
∆ϕa +

1
x1

∂ϕa
∂x1

= 0 in H,
∂1ϕa(0, x2) = 0 on ∂H.

Moreover, using the relation of ϕa and Aa in (3.8), one has

(3.9) ∇ϕa =
1
ra
∇⊥ra + O(

1
x1

log
a1

ra
) for

ra

a1
→ 0

and

(3.10) |∇ϕa| ≤
C

1 + ra
for ra ≥ 1.

So near the vortex point a, ∇ϕa can be viewed as a perturbation of
∇θa.

3.4. Improvement of the first approximate solution. We will use u∗a
instead of the vortex-anti vortex pair ei(θj−θK+j) to define a more ac-
curate approximate vortex ring. In view of the symmetry condition
(2.4), the vortex ring associated to a point a ∈ H will defined to be

S(|z− a|)S(|z− a∗|)u∗a(x) = S(|z− a|)S(|z− a∗|)eiϕa(z).

We can also decompose ϕa as

ϕa(z) = θa(z)− θa∗(z) + ϕ̃a.

Note that the difference ϕ̃a can be analyzed around the vortex point
a using the asymptotic behavior of A.

Define

ϕd =
K
∑
j=1

τj ϕpj = ϕ0 +
K
∑
j=1

τj ϕ̃pj := ϕ0 + ϕ̃p.

Then our final approximation will be defined as

U (x) = U(x)eiϕ̃p = Π2K
j=1Spj(x)eiϕd .

Namely, we replace the function ϕ0 by ϕd in the first approximate
solution. Since {pj} satisfies (A1), one can see that the new approxi-
mate solution will satisfy the symmetry condition (2.4).
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3.5. Error of the final approximation. Now the new error becomes

E2 = iε| ln ε| ∂U
∂x2

+ ∆U + (1− |U|2)U +
1
x1

∂U
∂x1

:= E21 + E22.

Here E21 is the first term in the left hand side. We use Bl(p) to denote
the ball of radius l centered at the point p. We have the following
error estimate:

Lemma 3.3. There exists a constant C such that for all small ε and all
points pj satisfying (A1), we have

2K
∑
j=1
‖E2‖L9(B3(pj))

≤ Cε| ln ε|.

Moreover, we have E2 = iU [R1 + iR2], with R1, R2 real valued and

|R1| ≤ C
2K
∑
j=1

O(ε1−δ)

(1 + rj)3 ,

|R2| ≤ C
2K
∑
j=1

O(ε1−δ)

1 + rj
,

for any δ ∈ (0, 1), if |z− pj| > 1 for all j.

Proof. We compute, in B ρ
5
(pj),

∂U
∂x2

=
∂Π2K

j=1Sj

∂x2
eiϕd + iU∇ϕd

=
[ 2K
∑
j=1

S′(rj)

S(rj)

rj,2

rj
+ i∇ϕd

]
U .

(3.11)
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Hence in (∪2K
j=1B3(pj))

c, by (3.10), we have

Re
[E21

iU

]
= ε| ln ε|

[ 2K
∑
j=1

S′(rj)

S(rj)

rj,2

rj

]
≤ C

2K
∑
j=1

O(ε1−δ)

(1 + rj)3 ,

Im
[E21

iU

]
= ε| ln ε|[∇ϕd]

≤ C
2K
∑
j=1

O(ε1−δ)

(1 + rj)
.

We also have

‖iε| ln ε| ∂x2U‖L9(∪j{rj≤3}) ≤ Cε| ln ε|.

Note that the L∞ norm is not bounded near pj, due to the presence
of ln rj term.

Next, letting Sj = S(rj) and using the fact that

∆Sj −
Sj

r2
j
+ (1− S2

j )Sj = 0,

one has

E22 = ∆U + (1− |U|2)U +
1
x1

∂U
∂x1

= U
[ 2K

∑
j=1

1
r2

j
− |∇ϕd|2 +

1
x1

2K
∑
j=1

S′(rj)

S(rj)
∂x1rj −

2K
∑
j=1
Qj

+ 2i
2K
∑
j=1

S′(rj)

S(rj)
∇rj · ∇ϕd

](3.12)

where we have used the fact that

∆ϕd +
1
x1

∂

∂x1
ϕd = 0.

By carefully checking the terms, using (3.4)-(3.10), away from the
vortex points, one has
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Re
[E22

iU

]
≤ C

2K
∑
j=1

O(ε1−δ)

(1 + rj)3 ,

Im
[E22

iU

]
≤ C

2K
∑
j=1

O(ε1−δ)

(1 + rj)
.

Moreover,
‖E22‖L9(∪j{rj≤3}) ≤ Cε| ln ε|.

Combining the estimates for E21 and E22, we obtain the desired esti-
mates.

�

4. LINEAR THEORY

Now we set up the reduction procedure. The linear theory we use
here will be the same one as that of [25]. We recall the framework
developed there in the sequel. As usual, we shall look for a solution
of (6.2) in the form:

(4.1) u := (U + Uη) χ + (1− χ)U eη,

where χ is a cutoff function such that

χ(x) =
2K
∑
j=1

χ̃(x− pj)

and χ̃(s) = 1 for s ≤ 1 and χ̃(s) = 0 for s ≥ 2 and η = η1 + η2i
is complex valued function close to 0 in suitable norm which will be
introduced below. We also assume that η has the same symmetry as
U . Note that near the vortice, u is obtained from U by an additive
perturbation; while away from the vortice, u is of the form U eη. The
reason of choosing the perturbation η in the form (4.1) is explained in
Section 3 of [16] and also in [25]. Essentially, the form of the pertur-
bation far away from the origin makes it easier to handle the decay
rates of the error away from the origin.

The conditions imposed on u in (2.4) can be transmitted to η:

η1(x1, x2) = η1(−x1, x2), η1(x1, x2) = −η1(x1,−x2),

η2(x1, x2) = η2(−x1, x2), η2(x1, x2) = η2(x1,−x2),
∂η1

∂x1
(0, x2) = 0,

∂η2

∂x1
(0, x2) = 0.

(4.2)
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In view of (4.1), we can write u = U eη + γ, where

γ := χU (1 + η − eη) .

Note that γ is localized near the vortex points and of the order o(η),
for η small.

Set A := (χ + (1− χ) eη)U . Then u can be written as

u = Uηχ +A.

Following the computation in [25], we get(
1− |u|2

)
u = (Uηχ +A)

(
1− |U eη + γ|2

)
.

The equation for η becomes

(4.3) −AL (η) = (1 + η) χE2 (U ) + (1− χ) eηE2 ( U) + N0 (η) ,

where E2 (U ) represents the error of the approximate solution U , and

(4.4) Lη := iε
∂η

∂x2
+ ∆η + 2u−1∇u · ∇η − 2 |u|2 η1 +

1
x1

∂η

∂x1
,

while N0 is o(η), and explicitly given by

N0 (η) := (1− χ)U eη |∇η|2 + iε| ln ε| (U (1 + η − eη)) ∂x2χ

+
1
x1

(U (1 + η − eη)) ∂x1χ + 2∇ (U (1 + η − eη)) · ∇χ + U (1 + η − eη)∆χ

− 2U |U|2 ηη1χ− (A+ Uηχ)
[
|U |2

(
e2η1 − 1− 2η1

)
+ |γ|2 + 2 Re (U eηγ̄)

]
.

Let us write this equation as

(4.5) L (η) = −U−1E2 (U ) + N (η) ,

where

N(η) = − |U|2
(

e2η1 − 1− 2η1

)
+ |∇η|2

+ iε| ln ε|A−1 (U (1 + η − eη)) ∂x2χ +
1
Ax1

(U (1 + η − eη)) ∂x1χ

+ 2A−1∇ (U (1 + η − eη)) · ∇χ

+A−1U (1 + η − eη)∆χ−A−1Uχ |∇η|2 − |γ|2 − 2 Re (U eηγ̄)

+A−1Uηχ
[
U−1E2 (U )− 2 |U |2 η1 − |U|2

(
e2η1 − 1− 2η1

)
− |γ|2 − 2 Re (U eηγ̄)

]
.

This nonlinear equation, equivalent to the original GP equation, is
the one we eventually want to solve. Observe that in N (η), except
|U |2

(
e2η1 − 1− 2η1

)
− |∇η|2 , other terms are all localized near the

vortex points.
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4.1. A Linear problem. By the definition of our vortex configura-
tion, one can see that the terms contain ε| ln ε| and 1

x1
can be viewed

as small perturbation near the vortex points.
Let us first consider the following linear problem:

(4.6) L(η) = h, Re
∫

R2
UηZ`j = 0, η satisfies (4.2),

where

Z`j = α`∇u` ρ̃`(x), α` =
U
u`

,

and ρ̃` is a cutoff function centered at p` with support in B ρ
5
(p`).

We shall establish a priori estimates for this problem. The following
weighted norms and linear theory has been studied in [25].

Recall that rj, j = 1, · · ·,K, represent the distance to the j-th vortex
point. Let w be a weight function defined by

w(z) :=

(
2K
∑
j=1

(
1 + rj

)−1

)−1

.

This function measures the minimal distance from the point z to
those vortex points. We use Ba (z) to denote the ball of radius a
centered at z. Let α, σ ∈ (0, 1) be small positive numbers. For com-
plex valued function η = η1 + η2i, we define the following weighted
norm:

‖η‖∗
= ‖uη‖W2,9(w<3) +

∥∥∥w1+ση1

∥∥∥
L∞(w>2)

+
∥∥∥w2+σ(|∇η1|+ |∇2η1|)

∥∥∥
L∞(w>2)

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
|∇η1 (z1)−∇η1 (z2)|+

∣∣∇2η1 (z1)−∇2η1 (z2)
∣∣

w (z)−2−σ−α |z1 − z2|α

)
+ ‖wση2‖L∞(w>2) +

∥∥∥w1+σ∇η2

∥∥∥
L∞(w>2)

+
∥∥∥w2+σ∇2η2

∥∥∥
L∞(w>2)

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)1+σ+α |∇η2 (z1)−∇η2 (z2)|

|z1 − z2|α
)

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)2+σ+α

∣∣∇2η2 (z1)−∇2η2 (z2)
∣∣

|z1 − z2|α

)
.

Basically, the norm means that the real part of η decays like w−1−σ

and its first and second derivatives decay like w−2−σ. Moreover, the
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imaginary part of η only decays as w−σ, but its first and second de-
rivative decay as w−1−σ and w−2−σ respectively. It is worth mention-
ing that the Hölder norms are taken into account in the definition
because eventually we shall use the Schauder estimates. Moreover,
near the vortex points, we use the Lp norm, because the L∞ norm is
not bounded there.

On the other hand, for complex valued function h = h1 + ih2, we
define the following weighted Hölder norm

‖h‖∗∗ := ‖uh‖L9(w<3) +
∥∥∥w1+σh1

∥∥∥
L∞(w>2)

+
∥∥∥w2+σ∇h1

∥∥∥
L∞(w>2)

+
∥∥∥w2+σh2

∥∥∥
L∞(w>2)

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)2+σ+α |∇h1 (z1)−∇h1 (z2)|

|z1 − z2|α
)

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)2+σ+α |h2 (z1)− h2 (z2)|

|z1 − z2|α
)

.

This definition tells us that the real and imaginary parts of h have
different decay rates. Moreover, intuitively we require h1 to gain
one more power of decay at infinity after taking one derivative. The
choice of this norm is partly decided by the decay and smooth prop-
erties of E2(U ).

We have the following a priori estimate for solutions of the equa-
tion (4.6).

Lemma 4.1 (Proposition 4.5 in [25]). Let ε > 0 be small. Suppose η is a
solution of (4.6) with ‖h‖∗∗ < ∞. Then

‖η‖∗ ≤ Cε−σ |ln ε| ‖h‖∗∗
where C is a constant independent of ε and h.

We now consider the following linear projected problem:

(4.7)


L(η) = h + ∑2K

j=1 ∑2
j=1 c`jZ`j,

Re
∫

R2 UηZ`j dx = 0,
η satisfies (4.2).

We state the following existence result:

Proposition 4.2. There exists constant C, depending only on α, σ such
that for all ε small, the following holds: if ‖h‖∗∗ < ∞, there exists a unique
solution (η, {c`j}) = Tε(h) to (4.7). Furthermore, there holds

‖η‖∗ ≤ Cε−σ| ln ε|‖h‖∗∗.
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Proof. The proof is similar to that of Proposition 4.1 in [16]. Instead
of solving (4.7) in R2, we solve it in a bounded domain first: L(η) = h + ∑2K

`=1 ∑2
j=1 c`jZ`j, Re

∫
BM
UηZ`j dx = 0 in BM(0)

η = 0 on ∂BM(0),
η satisfies the condition (4.2),

where M large enough. By the standard proof of a priori estimates,
we also obtain the following estimates for any solution ηM of the
above problem with

‖ηM‖∗ ≤ Cε−σ| ln ε|‖h‖∗∗.
By working in the Sobolev space H1

0(BM), the existence will follow
by Fredholm alternatives. Now letting M→ ∞, we obtain a solution
of the required properties.

�

4.2. Projected nonlinear problem. From now on, we will denote by
Tε(h) the solution of (4.7). We consider the following nonlinear pro-
jected problem :

(4.8)


L(η) + E2(U )

U + N(η) = ∑2K
`=1 ∑2

j=1 c`jZ`j,
Re
∫

R2 UηZ`j dx = 0,
η satisfies the condition (4.2).

Using the operator Tε defined in Proposition 4.2, we can write the
above problem as

η = Tε(
E2(U )
U − N(η)) := Gε(η).

Using the error estimates in Lemma 3.3, we have for rj ∼ ε−1,

Re(
E2

U ) ∼ ε1−δ

rj
, Im(

E2

U ) ∼ ε1−δ

r3
j

.

More precisely, if one check the express of the error, and using the
explicate expression for Aa in Section 2, one can check by direct cal-
culation that for rj >> ε−1,

Re(
E2

U ) ∼ ε1−δ

r2
j

, Im(
E2

U ) ∼ ε1−δ

r3
j

.

Taking this into account, one has

‖U−1E2(U )‖∗∗ ≤ Cε1−δ
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for any δ > 0.
Let

η ∈ B := {‖η‖∗ ≤ Cε1−β}
for β ∈ (δ + σ, 1). Then using the explicit form of N(η), we have

‖Gε(η)‖∗ ≤ C(‖N(η)‖∗∗ + ‖U−1E2(U )‖∗∗) ≤ Cε1−β

and
‖Gε(η)− Gε(η̃)‖∗ ≤ o(1)‖η − η̃‖∗

for all η, η̃ ∈ B. By contraction mapping theorem, we obtain the
following:

Proposition 4.3. There exists constant C and β small, depending only on
α, σ such that for all ε small, the following holds: there exists a unique
solution (ηε,{pi}, {cij}) = Tε(h) to (4.8). Furthermore, there holds

‖η‖∗ ≤ Cε1−β,

and ηε,{pi} is continuous in {pi}.

5. THE REDUCED PROBLEM AND THE MULTIPLE VORTEX RINGS
SOLUTIONS

5.1. The reduced problem. To find a real solution to problem (4.5),
we solve the reduced problem by finding the positions of the vortex
points {pi} such that the coefficients c`j in (4.8) are zero for small ε.
In the previous section, we have deduced the existence of η to the
projected nonlinear problem:

Lη +
E2

U + N(η) = ∑
j

cj
∇uj

uj
ρ̃j(x).

So cj = 0 is equivalent to

(5.1) Re
∫

R2
uj[Lη +

E2

U + N(η)]∇ūjdx = 0.

By the relation of ujL and L0(φj) where φj = ujη,

ujL(η) = L0(φj) + o(
1
ρ2 )φj,

where
L0(φ) = ∆φ + (1− S2)φ− 2Re(ū0φ)u0.
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One has, by integration by parts,

Re
∫

R2
ujLη∇ūjdx = Re

∫
R2
(L0 + O(

1
ρ2 )φj∇ūjdx

= Re
∫

R2
φjL0(∇ūj)dx + o(ε) = o(ε),

and using the expression of N(ψ),

Re
∫

R2
ujN(η)∇ūjdx = o(ε).

We now compute

Re
∫

R2
uj

E2

U ∇ūjdx.

Recall that one can write U as ujαj, where αj = π` 6=ju`eiϕ̃p , near each
vortex point pj. By (3.11) in Section 3, we have

Re
∫

R2

E21

αj
∇ūjdx

= Re(iε| ln ε|)
∫

R2

[S′(rj)

S(rj)

rj,2

rj
+ i∂x2 ϕd

](S′(rj)

S(rj)
∇rj − iτj∇θj

)
S2(rj)dx

+ o(ε)

= −ε| ln ε|τj

∫
R2

SS′(r)
(

∂x2 ϕd − τj
x2

r
∇θ
)

dx + o(ε)

= −ε| ln ε|τj

∫
R2

SS′(r)
(x1

r2∇r− x2

r
∇θ
)

dx + o(ε)

= (−πε| ln ε|τj, 0) + o(ε),
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where we have used the estimate (3.6). On the other hand, by (3.12),

Re
∫

R2

E22

αj
∇ūjdx

=
∫

R2

(
∑
`

1
r2
`

− |∇ϕd|2 +
1
x1

∑
`

S′(r`)
S(r`)

∂x1r`
)

S(rj)S′(rj)∇rjdx

+ 2τj

∫
∑
`

S′(r`)
S(r`)

∇r` · ∇ϕd∇θjS2(rj)dx + o(ε)

= −
∫

R2
|∇ϕd|2∇rjS(rj)S′(rj)dx

+
1

pj,1

∫
R2
(S′(r))2∂x1r∇rdx

+ 2τj

∫
R2
∇rj · ∇ϕd∇θjS(rj)S′(rj) dx + o(ε)

= I1 + o(ε).

Recall the relation of ϕd and ψ in (3.8), one has

∇ϕd =
( K

∑
j=1

τj∂2Apj , −
K
∑
j=1

τj(
Apj

x1
+ ∂1Apj)

)
.

It has been shown in [20] that

Aa(x1, x2) =

√
a1

x1

1
κ

[
(2− κ2)K(κ2)− 2E(κ2)

]
,

where

κ2(x) =
4a1x1

x2
1 + a2

1 + (x2 − a2)2 + 2a1x1

and K, E are the complete elliptic integrals of first and second kind,
i.e.,

K(s) =
∫ π

2

0
(1− s sin2 θ)−

1
2 dθ,

E(s) =
∫ π

2

0
(1− s sin2 θ)

1
2 dθ.

They satisfy

K′(s) = K(1− s), E′(s) = E(1− s) for 1 < s < 1.
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Note that Aλa(λx) = Aa(x), and for s→ 1,

K(s) = −1
2

ln(1− s)(1 +
1− s

4
) + ln 4 + O(1− s),

E(s) = 1− ln(1− s)
1− s

4
+ O(1− s).

Moreover, as we mentioned before, when r = |z− a| = o(|a1|),

Aa(z) =
(

ln
a1

r
+ 3 log(2)− 2

)
+ O

( r
a1
| ln r

a1
|
)

and

∂r Aa = −
1
r
+ O(

1
a1
).

Combining all these, one has

−
∫

R2
|∇ϕd|2∇rjS(rj)S′(rj)dx

+ 2τj

∫
R2
∇rj · ∇ϕd∇θjS(rj)S′(rj) dx

= −2τj

∫
R2

S(rj)S′(rj)
(
∇θj · ∇ϕd∇rj −∇rj · ∇ϕd∇θj

)
+ o(ε)

= 2τj

( τj

pj,1

∫ S(rj)S′(rj)

rj
Apj(x)dx +

π

pj,1
∑
` 6=j

τ`Ap`(pj), 0
)

+ 2τjπ ∑
` 6=j

τ`∇Ap`(pj) + o(ε)

=
2π

pj,1

(
ln pj,1 + c0 + ∑

` 6=j
τjτ`Ap`(pj), 0

)
+ 2π ∑

` 6=j
τjτ`∇Ap`(pj) + o(ε)

where

(5.2) c0 = 3 ln 2− 2− 1
π

∫ S(r)S′(r) ln r
r

dx.

So one has

I1 =
2π

pj,1

(
ln pj,1 + c1 + ∑

` 6=j
τjτ`Ap`(pj), 0

)
+ 2π ∑

` 6=j
τjτ`∇Ap`(pj)+ o(ε)

where

c1 = c0 +
1
2

∫ ∞

0
S′(r)rdr.

By the above estimates,
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Re
∫

R2

E2

αj
∂x1 ūjdx

= −π
[
τjε| ln ε| −

2 ln pj,1

pj,1
− 2c1

pj,1
− 2 ∑

` 6=j
τjτ`

Ap`(pj)

pj,1
− 2 ∑

` 6=j
τjτ`∂1Ap`(pj)

]
+ o(ε)

and

Re
∫

R2

E2

αj
∂x2 ūjdx = 2π ∑

` 6=j
τjτ`∂2Ap`(pj) + o(ε).

We now have the following reduced problem:

Lemma 5.1. The reduced problem (5.1) is equivalent to the following sys-
tem of the vortex points {pj}:

τjε| ln ε| −
2 ln pj,1

pj,1
− 2c1

pj,1
− 2 ∑

` 6=j
τjτ`

Ap`(pj)

pj,1
− 2 ∑

` 6=j
τjτ`∂1Ap`(pj) = o(ε),

(5.3)

and

(5.4) 2 ∑
` 6=j

τjτ`∂2Ap`(pj) = o(ε).

Using the scaling invariance

Aλa(λx) = Aa(x),

if we denote by

pj =
p̃j

ε
,

where | p̃j,1| = O(1), we can get the reduced problem for p̃j:

τj| ln ε|+ 2 ln ε

p̃j,1
−

2 ln p̃j,1

p̃j,1
− 2c1

p̃j,1
− 2 ∑

` 6=j
τjτ`

A p̃`( p̃j)

p̃j,1

− 2 ∑
` 6=j

τjτ`∂1A p̃`( p̃j) = o(1),
(5.5)

and

(5.6) 2 ∑
` 6=j

τjτ`∂2A p̃`( p̃j) = o(1).
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Using the asymptotic behavior of Aa(x) and A′a(r), and recall that

| p̃` − p̃j| ∼
1

ln ε
, | p̃j,1| ∼ O(1),

we obtain the following equivalent reduced problem:

(5.7)

 τj| ln ε|+ 2 ln ε
p̃j,1

+ 2 ∑` 6=j τjτ`
p̃j,1− p̃`,1
| p̃j− p̃`|2

= o(ln ε),

2 ∑` 6=j τjτ`
p̃j,2− p̃`,2
| p̃j− p̃`|2

= o(1).

5.2. Vortex locations and their generating polynomials. In this sec-
tion, we construct a family of polynomials whose roots will corre-
spond to the locations of the vortex rings.

For each rescaled vortex point p̃j, j = 1, ...,K, we have associated
a degree τj = ±1. To analyze the reduced problem in a more precise
way, let us relabel those points with τj = 1 by p̃+1 , ..., p̃+m and those
with τ = −1 will be denoted by p̃−1 , ..., p̃−n . We then write

p̃+j = α0 + α +
1
|ln ε|aj, for j = 1, ..., m,

p̃−j = α0 + α +
1
|ln ε|bj, for j = 1, ..., n.

Here α0 is a fixed constant only depends on m, n, and α = o (1) de-
pends on ε. Inserting these into the reduced problem (5.7), we find
that, at the main order, (a1, ..., am, b1, ..., bn) should satisfy the fol-
lowing system:

m

∑
j=1,j 6=k

1
ak−aj

−
n

∑
j=1

1
ak−bj

= 1
2 − α0

−1, for k = 1, ..., m,

−
n

∑
j=1,j 6=k

1
bk−bj

+
m

∑
j=1

1
bk−aj

= 1
2 + α0

−1, for k = 1, ..., n.

This can be regarded as a balancing condition between the multiple
vortex rings. Adding together the m + n equations in the balancing
condition, we find that a necessary condition for the existence of a
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balancing configuration is
(

α0
−1 − 1

2

)
m +

(
α0
−1 + 1

2

)
n = 0. It fol-

lows that α0 = 2 m+n
m−n . Therefore, we are lead to consider the system

(5.8)


m

∑
j=1,j 6=k

1
ak−aj

−
n

∑
j=1

1
ak−bj

= −n, for k = 1, ..., m,

−
n

∑
j=1,j 6=k

1
bk−bj

+
m

∑
j=1

1
bk−aj

= −m, for k = 1, ..., n.

To find solutions to this system, we define the generating polynomial
as

P (x) :=
m

∏
j=1

(
x− aj

)
, Q (x) :=

n

∏
j=1

(
x− bj

)
.

If aj, bj satisfy (5.8) , then

(5.9) P′′Q− 2P′Q′ + PQ′′ + nP′Q−mPQ′ = 0.

The case of m = n has been studied in [25] . In this case, the system
(5.8) is equivalent to

m

∑
j=1,j 6=k

1
ak−aj

−
n

∑
j=1

1
ak−bj

= −1, for k = 1, ..., m,

n

∑
j=1,j 6=k

1
bk−bj

−
m

∑
j=1

1
bk−aj

= 1, for k = 1, ..., n.

The polynomial solutions of this system are connected with theory of
integrable system. Indeed, letting φ = Q

P exp (x) and u = 2 (ln P)′′ .
The equation (5.9) can be rewritten as

φ′′ + uφ = φ.

This equation appears as the first equation in the Lax pair of the KdV
equation and has the Darboux invariance property. The polynomial
solutions of (5.9) in this case are given by the Adler-Moser polyno-
mials.

From the view point of numerical computation, the equation (5.9)
is indeed easier than (5.8) . Note that our construction of multiple
vortex ring solutions requires that all the points aj, j = 1, ..., m and
bj, j = 1, ..., n are distinct from each other. Therefore we require that
the polynomials P, Q satisfy the following condition:

(H1) P, Q have no repeated roots.

Our construction also requires the following condition:
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(H2) The set of points {a1, · · · , am, b1, · · · , bn} are symmetric with
respect to the x1 axis.

Observe that equation (5.9) implies that if X0 is a common root of
P and Q, then necessarily X0 is a repeated root of P or Q.

We observe that due to the translation invariance of the equation
in the balancing condition, we can normalize the polynomials P, Q
as

P (x) = s1 + s2x + ... + sm−1xm−1 + xm,

Q (x) = t1 + t2x + ... + tn−2xn−2 + xn.

That is, the xn−1 term in Q can be chosen to be zero. In this sec-
tion, we would like to find some solution pair (P, Q) using software
such as Maple. Then in the next section, we shall use techniques of
integrable system to find a sequence of solution pairs, with explicit
Wronskian representation.

Let us consider the case of m + n ≤ 12. With this constraints, we
find, using Maple, that there exist polynomial solutions to (5.9) sat-
isfying (H1) and whose roots satisfy (H2), if further (m, n) are one of
the cases in the set

S := {(2, 1) , (3, 2) , (4, 3) , (5, 4) , (6, 5)}.

Indeed, if (m, n) = (2, 1) , then (5.9) has a solution of the form

P (x) = x2 − 2x + 2, Q (x) = x.

If (m, n) = (3, 2) , then (5.9) has solution:

P (x) = x3 − 2x2 +
7
2

x− 3
2

, Q (x) = x2 + 1.

If (m, n) = (4, 3) , then (5.9) has solution:

P (x) = x4 − 2x3 +
44
9

x2 − 89
27

x +
533
324

,

Q (x) = x3 +
13
6

x +
13
54

.

If (m, n) = (5, 4) , then (5.9) has solution:

P (x) = x5 − 2x4 +
449
72

x3 − 749
144

x2 +
12919
2592

x− 16015
15552

,

Q (x) = x4 +
61
18

x2 +
16
27

x +
1337
1296

.
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When (m, n) = (6, 5) , we have

P (x) = x6 − 2x5 +
2269
300

x4 − 193279
27000

x3 +
10810499
1080000

x2 − 57115601
16200000

x +
3980046413
2916000000

,

Q (x) = x5 +
1669
360

x3 +
3607
3600

x2 +
1112099
324000

x +
23805769
48600000

.

The roots of P, Q listed above are solutions of the balancing system.
Here we list them in the order a1, ..., am, b1, ..., bn and denote it by
P(m,n).

The numerical value can be listed as below:

P(2,1) : (1 + i, 1− i, 0) ,

P(3,2) : (0.56, 0.72 + 1.48i, 0.72− 1.48i, i,−i) ,

P(4,3) : (0.393− 0.57i, 0.393 + 0.57i, 0.607− 1.76i, 0.607 + 1.76i,

− 0.11, 0.055− 1.48i, 0.055 + 1.48i),

P(5,4) : (0.255, 0.322− 0.938i, 0.322 + 0.938i, 0.55− 1.948i, 0.55 + 1.948i,

− 0.107− 0.567i,−0.107 + 0.567i, 0.107− 1.758i, 0.107 + 1.758i),

P(6,5) : (0.191− 0.395i, 0.191 + 0.395i, 0.29− 1.2i, 0.29 + 1.2i, 0.52− 2.09i,

0.52 + 2.09i,−0.145,−0.078− 0.94i,−0.078 + 0.94i, 0.15− 1.95i, 0.15 + 1.95i).

Let us denote the pair (P, Q) for (m, n) = (j, j− 1) as (Pj, Qj). Then
for the above examples, we can see that Pj is simply a translation in
the x variable of Qj+1. We will see in the next section that this is true
for all m = n + 1.

Next let us consider the linearized operator around the solution.
Let us denote the left hand side of the j-th equation of (5.8) by Fj.
Then we can compute the linearization dF of the map

F : (a1, ..., am, b1, ..., bn)→ (F1, ..., Fm+n) .

dF evaluated at the point P(m,n) is a matrix, which can be explicitly
computed. The solvability of our original reduced problem is closely
related to the nondegeneracy of dF. Since any translation of the (a, b)
is still a solution to the balancing system, necessarily the determi-
nant of this matrix is zero. That is, 0 is an eigenvalue of dF. Observe
that (1, 1, ...., 1) is an eigenvector. We call (a1, ..., am, b1, ..., bn) nonde-
generated, if the kernel of dF is one dimensional. One can check by
explicit computations that for the solutions P(m,n) listed above, they
are all nondegenerated.
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FIGURE 1. (m, n) = (2, 1)
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FIGURE 2. (m, n) = (4, 3)
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FIGURE 3. (m, n) = (6, 5)
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It is worth pointing out that if (m, n) is not in S, there may still
have polynomials P, Q satisfying (5.9) , but with repeated roots. For
instance, when (m, n) = (4, 1) , it has a solution with

P (x) = x4 + 4x3, Q (x) = x.

When (m, n) = (5, 3) , it has a solution with

P (x) = x5 − 4
3

x4 +
4
3

x3 − 8
9

x2 +
8

27
x, Q (x) = x3.

A given pair (m, n) can be used in the construction of multiple
vortex rings, if there exist polynomial solutions to (5.9) satisfying
(H1) and (H2). In this respect, there are many questions remain to
be answered. For instances, are there infinitely many such pairs? If
(m, n) is such a pair, is it necessarily that m = n + 1? Is the balanc-
ing configuration unique up to translation? These questions will be
partially answered in the next section.

Now let us come back to our original reduced problem (5.7) of
the GP equation. For each (m, n) ∈ S. We have a special solution(
a0

1, ..., a0
m, b0

1, ..., b0
n
)

given by P(m,n). If we define vector β by

aj = a0
j + β j, j = 1, ..., m,

bj = b0
j + β j+m, j = 1, ..., n,

then the reduced problem (5.7) takes the form

(5.10) dF (β) = G (α, β) + αα−2
0 e1,

where G (α, β) = o (1) as ε → 0, with higher order dependence on
α, β, and e1 is a m + n dimensional column vector whose first m en-
tries are equal to−1 and the last n entries are all equal to 1. Note that
dF is in general not a symmetric matrix. However, since dF is non-
degenerated, the kernel of (dF)T is spanned by e2 := (1, ..., 1) . Using
the fact that m− n = 1, we find that the projection of the right hand
side of (5.10) onto e2 is equal to G · e2 − αα−2

0 . Now let us consider
the projected problem

(5.11) dF (β) = G (α, β) + αα−2
0 e1 −

G · e2 − αα−2
0

m + n
e2.

Note that for each fixed small α, using the nondegeneracy of the solu-
tion

(
a0

1, ..., a0
m, b0

1, ..., b0
n
)

, the projected system (5.11) can be solved
and a solution β depending on α. With this β, we then can solve
the equation G · e2 − αα−2

0 = 0 by a contraction mapping argument.
Hence the reduced problem (5.10) can be finally solved. Once this
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is done, with the help of linear theory of Section 4, arguments simi-
lar as that of [25] yield a solution to the GP equation, satisfying the
conclusion of Theorem 1.2 .

6. RECURRENCE RELATIONS AND WRONSKIAN REPRESENTATION
OF THE GENERATING POLYNOMIALS

In this section, we show that the generating polynomials of the
balancing system discussed in the previous section have recurrence
relations in the case of m = n+ 1, and can be explicitly written down
using certain Wronskians. The main result of this section is the fol-
lowing

Theorem 6.1. There exists a sequence of polynomials Pn, n = 1, ..., such
that
(6.1)
P ′′n+1Pn − 2P ′n+1P ′n + P ′′n+1Pn + nP ′n+1Pn − (n + 1)Pn+1P ′n = 0,

where Pn is of degree n, P1 = x and P2 = x2 − 2x + 2. Moreover, up to a
constant factor(see (6.8)), these polynomials can be written as

exp
(
−n (n− 1) x

2

)
W (ω1, ..., ωn) ,

where W represents the Wronskian, ωj =
(
x− aj

)
exp ((j− 1) x) , and

a1 = 0, aj+1 = aj +
2
j .

These polynomials can be regarded as a generalization of the Adler-
Moser polynomials. There are other types of generalization of the
Adler-Moser polynomials, see, for instance [26]. We also refer to
[3, 4, 15, 25] and the references cited therein for more discussion in
this direction.

Recall that in the previous section, we derived the equation

(6.2) P′′Q− 2P′Q′ + PQ′′ + nP′Q− (n + 1) PQ′ = 0.

For n = 1, we have found that P (x) = x2 − 2x + 2, Q (x) = x is
a solution. To solve this equation for general n, we define φ = Q

P .
Direction computation shows that the equation (6.2) can be written
as

(6.3) φ′′ +
(
2 (ln P)′′ − (ln P)′

)
φ− (n + 1) φ′ = 0.

Note that the equation in this form is different from the one consid-
ered by Adler-Moser, in the sense that we have two additional terms
corresponding to (ln P)′ and φ′. Moreover, equation (6.2) is not of
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the standard Hirota bilinear form. This significantly complicates the
analysis.

For n = 1, we already know that equation (6.3) has the solution

φ̄ (x) :=
Q
P

=
x

x2 − 2x + 2
.

It is worth pointing out, although not necessarily relevant to our later
analysis, φ̄ is smooth in the whole line. Equation (6.3) is a second
order ODE, it has another solution linearly independent with φ̄. One
can check that φ∗ defined below is such a solution. Explicitly,

φ∗ (x) :=
2x3 − 10x2 + 21x− 16

x2 − 2x + 2
exp (2x) .

Note that φ∗ can also be written as

φ∗ =

(∫ x

−∞

exp [(n + 1) s]
φ̄2 ds

)
φ̄ (x) .

Next we discuss the generalized Darboux transformation adapted
to equation (6.3). The following result can be found in the last section
of [28].

Lemma 6.2. Suppose φ = φ1 and φ = φ2 are two solutions of the equation

u2φ′′ + u1φ′ + u0φ = 0.

Then the functions φ̃ := φ′2 −
φ′1φ2

φ1
satisfies

ũ2φ̃′′ + ũ1φ̃′ + ũ0φ̃ = 0,

where ũ2 = u2, ũ1 = u1 + u′2, ũ0 = u0 + u′1 + 2u2 (ln φ1)
′′+ u′2 (ln φ1)

′ .

To apply this lemma, we write equation (6.3) as

e−xφ′′ + e−x (2 (ln P)′′ − (ln P)′
)

φ− e−x (n + 1) φ′ = 0.

Let us define the new potential

ũ0 := e−x (2 (ln P)′′ − (ln P)′
)
+ (n + 1) e−x + 2e−x (ln φ∗)′′ − e−x (ln φ∗)′ .

ũ1 = −e−x (n + 1)− e−x,

and the new function

Φ1 := φ̄′ − φ∗′φ̄

φ∗
=

W (φ∗, φ̄)

φ∗
=

e2x

φ∗
.

Then using the generalized Darboux transformation described in the
previous lemma, we have

e−xΦ′′1 + ũ0Φ1 + ũ1Φ′1 = 0.
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That is,

(6.4) e−xΦ′′1 + e−x (2 (ln P3)
′′ − (ln P3)

′)Φ1 − (n + 2) e−xΦ′1 = 0,

where the polynomial P3 is defined by

P3 := Pφ∗e−2x = 2x3 − 10x2 + 21x− 16.

Equation (6.4) precisely has the form (6.3) . An important property
is that the equation (6.4) has another solution

Φ∗1 :=
36x4 − 312x3 + 1136x2 − 1972x + 1357

2x3 − 10x2 + 21x− 16
e3x.

The computations tell us that if Pn is a sequence of polynomials
satisfies the conclusion of Theorem 6.1, then we expect the equation

φ′′ +
(
2 (lnPn+1)

′′ − (lnPn+1)
′) φ− (n + 1) φ′ = 0,

has two linearly independent solutions, of the form

φ1 =
Pn

Pn+1
, φ2 =

Pn+2

Pn+1
e(n+1)x.

The Wronskian W (φ1, φ2) should be equal to ce(n+1)x for some con-
stant c. Hence we get the following recursive relations betweenPn,Pn+1,Pn+2 :(

Pn

Pn+1

)′ Pn+2

Pn+1
e(n+1)x −

(
Pn

Pn+1

)(
Pn+2

Pn+1
e(n+1)x

)′
= ce(n+1)x.

That is,(
P ′nPn+1 −PnP ′n+1

)
Pn+2−Pn

(
P ′n+2Pn+1 −Pn+2P ′n+1 + (n + 1)Pn+2Pn+1

)
= cP3

n+1.

This can be written as

P ′nPn+2 −PnP′n+2 − (n + 1)PnPn+2 = cP2
n+1.

If we normalize the polynomials Pn such that the highest order term
is xn. Then the constant c satisfies

− (n + 1) = c

We get the following recurrence relations

(6.5) P ′nPn+2 −PnP′n+2 − (n + 1)PnPn+2 + (n + 1)P2
n+1 = 0.

When we are given Pn,Pn+1, the recurrence equation (6.5) can be
integrated, and we expect that the resulted function Pn+2 is a poly-
nomial. However, in this step, we will not get a free parameter in
this polynomial, because solution of the homogeneous equation has
an exponential factor.
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To show that integrating (6.5) indeed yields a polynomial, we pro-
ceed to find the explicit formula of the sequence Pn which satisfies
(6.5) .

Let us consider the sequence aj defined through the recurrence
a1 = 0, and aj+1 = aj +

2
j . Let us define functions ωj by

(6.6) ωj =
(
x− aj

)
exp ((j− 1) x) .

Then we define functions Pn through the Wronskian

(6.7) Pn := cn exp
(
−n (n− 1)

2
x
)

W (ω1, ..., ωn) ,

where

(6.8) cn =

[
(n− 1)! ∏

1≤i<j≤n−1
(j− i)

]−1

.

The normalizing constant cn is used to ensure that the highest or-
der term of Pn is xn. Note that Pn defined by (6.7) are indeed poly-
nomials of degree n, and its leading coefficient is a determinant of
Vandermont type.

Lemma 6.3. Pn defined by (6.7) satisfies the three-term recurrence relation
(6.5) .

Proof. For national simplicity, we write W (ω1, ..., ωk) as Wk. Using
(6.7) and the fact that

c2
n+1

cncn+2
= n + 1,

we see that to prove (6.5) , it suffices to prove

(6.9) W ′nWn+2 −WnW ′n+2 + nWnWn+2 + (n + 1)2 exW2
n+1 = 0.

Following Adler-Moser [1], for any function ξ, we define

Wk (ξ) := W (ω1, ..., ωk, ξ) .

Then we have the Jacobi identity(see [1], Lemma 1)

(6.10) (Wk (ξ))
′Wk+1 −Wk (ξ)W ′k+1 −Wk+1 (ξ)Wk = 0

Direct computation tells us that

ω′′j+1 = j2ωj exp (x) .

Using this relation and its differentiation and the fact that ω1 = x,
we obtain

Wk (1) = (−1)k ((k− 1)!)2 exp [(k− 1) x]Wk−1.
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We then compute

(−1)k ((Wk (1))
′Wk+1 −Wk (1)W ′k+1 −Wk+1 (1)Wk

)
=
(
[(k− 1)!]2 exp [(k− 1) x]Wk−1

)′
Wk+1

− ((k− 1)!)2 exp [(k− 1) x]Wk−1W ′k+1 + (k!)2 exp [kx]W2
k .

Dividing the right hand side by [(k− 1)!]2 exp (k− 1) x, we get

W ′k−1Wk+1 −Wk−1W ′k+1 + (k− 1)Wk−1Wk+1 + k2 exp (x)W2
k .

By the Jacobi identity, this has to be zero. Letting k = n + 1, we get
(6.9) . This finishes the proof. �

The conclusion of Theorem 6.1 follows immediately from Lemma
6.3 and the Darboux invariance property discussed above. Hence we
have abundant candidates of balancing configurations of multiple
vortex rings. In principle, the nondegeneracy of these configuration
could be proved using similar idea as that of [25]. We leave this to a
further study.

Finally, let us comment on the reason why we restrict to the case
m = n + 1. Indeed, our original equation in Section 5 to be solved is

(6.11) P′′Q− 2P′Q′ + PQ′′ + nP′Q−mPQ′ = 0

Let Q = x, n = 1 and m ≥ 3. Then the degree m polynomial P
satisfying (6.11) necessarily has the factor x3. Hence P and Q has a
common root and can’t be used in our construction. We conjecture
that when m− n > 1, there will be no balancing configurations sat-
isfying our requirements stated in Section 5.
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Ann. Henri Poincaré, 70 (1999), no. 2, 147-238.

[11] D. CHIRON, Travelling waves for the Gross-Pitaevskii equation in dimension larger
than two, Nonlinear Anal. 58 (2004), no. 1-2, 175-204.

[12] D. CHIRON, E. PACHERIE, Smooth branch of travelling waves for the Gross-
Pitaevskii equation in R2 for small speed, arXiv:1911.03433.

[13] D. CHIRON, M. MARIS, Rarefaction pulses for the nonlinear Schr?dinger equation
in the transonic limit, Comm. Math. Phys. 326 (2014), no. 2, 329C392.

[14] D. CHIRON, C. SCHEID, Multiple branches of travelling waves for the Gross-
Pitaevskii equation, Nonlinearity 31 (2018), no. 6, 2809–2853.

[15] P. A. CLARKSON, Vortices and polynomials, Stud. Appl. Math., 123 (2009), no.
1, pp. 37–62.

[16] M. DEL PINO, M. KOWALCZYK AND M. MUSSO, Variational reduction for
Ginzburg -Landau vortices, Journal of Functional Analysis, 239(2) (2006), 497-
541.

[17] P. C. FIFE, L. A. PELETIER, On the location of defects in stationary solutions of the
Ginzburg-Landau equation in R2, Quart. Appl. Math., 54 (1996), no. 1,85-104.

[18] P. GRAVEJAT, A non-existence result for supersonic travellingwaves in the Gross-
Pitaevskii equation, Comm. Math. Phys., 243 (2003),93-103.

[19] P. GRAVEJAT, Limit at infinity and nonexistence results for sonic travelling waves
in the Gross-Pitaevskii equation, Differ. Int. Eqs., 17 (2004), 1213-1232.

[20] J.D.JACKSON, Classical Electrodynamics., Wiley, New York, (1962).
[21] R. JERRARD, D. SMETS, Leapfrogging vortex rings for the three dimensional gross-

pitaevskii equationl, Annals of PDE, 4 (2016), 1-48.
[22] C. A. JONES, P. H. ROBERTS, Motion in a Bose condensate IV. Axisymmetric

solitary waves, J. Phys. A: Math. Gen., 15 (1982), 2599-2619.
[23] C. A. JONES, S. J. PUTTERMAN AND P. H. ROBERTS, Motions in a Bose conden-

sate V. Stability of solitary wave solutions of nonlinear Schrodinger equations in two
and three dimensions, J. Phys. A, Math. Gen., 19 (1986), 2991-3011.

[24] F. H. Lin, J. C. Wei, Traveling wave solutions of the Schrodinger map equation,
Comm. Pure Appl. Math., 63 (2010), no. 12, pp. 1585–1621.

[25] Y. LIU, J. C. WEI, Multi-vortex traveling waves for the Gross-Pitaevskii equation
and the Adler-Moser polynomials, SIAM J. Math. Anal. 52 (2020), no. 4, 3546–
3579 .

[26] I. Loutsenko, Integrable dynamics of charges related to the bilinear hyperge-
ometric equation, Comm. Math. Phys. 242 (2003), no. 1-2, 251–275.

[27] M. MARIS, Traveling waves for nonlinear Schrodinger equations with nonzero con-
ditions at infinity, Ann. of Math. (2) 178 (2013), no. 1, 107C182.

[28] V. B. MATVEEV, Darboux transformation and explicit solutions of the Kadomtcev-
Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3
(1979), no. 3, 213216.



40 WEIWEI AO, YEHUI HUANG, YONG LIU, AND JUNCHENG WEI

[29] F. PACARD, T. RIVIERE, Linear and nonlinear aspects of vortices. The Ginzburg-
Landau model, Progress in Nonlinear Differential Equations and their Appli-
cations, 39. Birkhauser Boston, Inc., Boston, MA, 2000.

[30] C. PETHICK, H. SMITH, Bose-Einstein condensation in dilute gases. Cambridge
University Press, Cambridge, 2002.

[31] R. M. HERVE AND M. HERVE, Etude qualitative des solutions reelles d’une equa-
tion differentielle liee ‘a l’equation de Ginzburg–Landau, Ann. Inst. H. Poincaré
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