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Abstract

The strong Allee effect plays an important role on the evolution of population in ecological
systems. One important concept is the Allee threshold that determines the persistence or extinc-
tion of the population in a long time. In general, a small initial population size is harmful to the
survival of a species since when the initial data is below the Allee threshold the population tends
to extinction, rather than persistence. Another interesting feature of population evolution is that
a species whose movement strategy follows a conditional dispersal strategy is more likely to per-
sist. In other words, the biased movement can be a benefit for the persistence of the population.
The coexistence of the above two conflicting mechanisms makes the dynamics rather intricate.
However, some numerical results obtained by Cosner et. al. (SIAM J. Appl. Math., Vol. 81,
No. 2, 2021) show that the directed movement can invalidate the strong Allee effect and help the
population survive. To study this intriguing phenomenon, we consider the pattern formation and
local dynamics for a class of single species population models of that is subject to the strong Allee
effect. We first rigorously show the existence of multiple localized solutions when the directed
movement is strong enough. Next, the spectrum analysis of the associated linear eigenvalue prob-
lem is established and used to investigate the stability properties of these interior spikes. This
analysis proves that there exists not only unstable but also linear stable steady states. Then, we
extend results of the single equation to coupled systems, and also construct several non-constant
steady states and analyze their stability. Finally, numerical simulations are performed to illustrate
the theoretical results.
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1 Introduction
In this paper, we mainly investigate the aggregation phenomena and dynamics of the following single
reaction-diffusion equation for u = u(x, t) with the no-flux boundary condition:

ut = ∇ · (d1∇u − χu∇A) + µu(1 − u)(u − θ), x ∈ Ω, t > 0,
(d1∇u − χu∇A) · n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

(1.1)
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Here x and t are space and time variables, d1, χ and µ are arbitrary positive constants, and n is the unit
outer normal on the boundary ∂Ω. To construct the non-constant steady states, we also focus on the
stationary problem of (1.1), which is:{

0 = ∇ · (d1∇u − χu∇A) + µu(1 − u)(u − θ), x ∈ Ω,
(d1∇u − χu∇A) · n = 0, x ∈ ∂Ω. (1.2)

Equation (1.1) serves as a paradigm to describe the dynamics of one population with the effect of
some known signal subject to the Allee Principle [1, 30], where u : Ω × [0,∞) 7→ [0,∞) denotes the
density of a population and A is a known stimulus that governs the directed movement; the constant
d1 represents the population diffusion rate, χ reflects the strength of the biased movement, while the
source f (u) := u(1 − u)(u − θ) models the Allee effect and θ ∈ (0, 1) is the Allee threshold.

The general form of system (1.1) was proposed by Cosner and Rodriguez [11], which reads:
ut = ∇ · (

random (flux)︷︸︸︷
d1∇u −

drift (flux)︷︸︸︷
χu∇A ) +

Allee Effect Source︷              ︸︸              ︷
µu(1 − u)(u − θ), x ∈ Ω, t > 0,

B[u] = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.3)

where B[u] = 0 represents either homogeneous Dirichlet or no-flux boundary conditions. In partic-
ular, they obtain a set of qualitative and numerical results concerning the short time dynamics and
steady states of system (1.3). Moreover, to study the interaction between two species, they extended
equation (1.3) to the following system:{

ut =Muu + ug(x, u + v),
vt =Mvv + vg(x, u + v), (1.4)

where (u, v) are the population densities of two species and the dispersal operators are defined by

Muu := ∇ · (∇u − χ1u∇A), χ1 > 0,

and
Mvv := ∇ · (∇v − χ2v∇A), χ2 > 0;

while the growth pattern is g(u + v) := (r − u − v)(u − v − θ) and where r is the given resources.
Some numerical results for (1.4) presented in [11] demonstrated that two populations cooperate at
low densities and compete at high densities.

To study this phenomenon, we consider the coupled system (1.4) in the following two cases of χ1

and χ2:

(i). χ1 = χ, χ2 = 1, where χ > 0 represents the speed of the intra-species;

(ii). χ1 = χ, χ2 = cχ, where constant c > 1 implies the inter-species is faster.

In particular, we prove the existence of non-constant steady states for system (1.4) in case (i) and case
(ii), then study their stability properties.

1.1 Allee Effect
The well-accepted definition of Allee effect is the positive relationship between population density and
individual fitness. This effect often occurs under situations involving the survival and reproduction of
animals, such as habitat alteration, mate-finding [13, 16], etc.
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In terms of the scale, the Allee principle is typically decomposed into the component Allee effect
and the demographic Allee effect. The former emphasizes the relationship between any measurable
component of survival rates and density size [3], while the latter highlights the overall correlation
between them [23]. Many researchers tend to consider macro-population problems, and thereby the
demographic Allee effect is more popular. Some significant concept therein is the critical population
size. When a population threshold exists, the demographic Allee effect is the so-called strong Allee
effect; otherwise it is named the weak Allee effect. In general, when the initial density is below
(above) the critical threshold, the population tends to be extinct (persistent). The critical population
size is called the Allee threshold and the relevant models have been intensively studied, see [25, 31–
33].

The most popular and simplest equation used to model the population dynamics subject to the
strong Allee effect is

ut = u(r − u)(u − θ),

where r represents the environmental resources and θ ∈ (0, 1) is the Allee threshold. Here we define
g(u) := (r−u)(u−θ) which admits the bistable growth pattern. It can be seen that when the environment
is homogeneous, u ≡ θ and u ≡ r are two constant equilibria. In particular, u ≡ θ is unstable and u ≡ r
is stable.

1.2 Directed Movement: Taxis and Advection
A taxis is the mechanism by which organisms direct their movements in response to the environmental
stimulus gradient. In terms of stimulus such as wind, light, chemical signal, etc., taxis can be identified
as Anemotaxis, Phototaxis, Chemotaxis and so on. In particular, the effect of taxis on population
dynamics is often interpreted as the conditional dispersal of species [26] and from the viewpoint of
mathematical modelling, the advection term presents a paradigm to model it.

Combining the biased and unbiased dispersal, many reaction-diffusion-advection models have
been proposed in the literature to analyze biological problems involving population dynamics. The
survey paper [9] summarizes a class of such systems and their applications. The conditional dispersal
in general is a benefit for the persistence of a species [2], with the sensible explanation that individuals
can perceive the favorable environmental signals such as the presence of food, and then move towards
the stimulus and finally aggregate.

There have been many previous results for the case where the population dynamics follows a
logistic growth [2, 4, 6, 10, 19]. In particular, Belgacem and Cosner [2] considered the following
reaction-diffusion-advection model:

ut = ∇ · (d1∇u − χu∇A) + µu(A − u), x ∈ Ω, t > 0,
(d1∇u − χu∇A) · n = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ Ω,

(1.5)

where the environment is spatially heterogeneous and the boundary acts as a reflecting barrier. They
proved the population tends to be persistent if χ is large, which implies that the strong advection effect
is beneficial. Moreover, they shew that there exists some unique non-negative constant µ̄∗ depending
on χ such that when µ > µ̄∗, (1.5) admits a unique positive global attractor. Cosner and Lou [10]
further showed that the effect of the biased movement is not always beneficial and depends crucially
on the shape of the domain, where it was established that non-convex domains can be harmful to the
persistence of the population. (See also interesting related results in Chen and Lou [8].) There are
also many different results when the boundary condition is assumed to be Dirichlet:

u(x, t) = 0, x ∈ ∂Ω, t > 0,
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which is the so-called lethal boundary. For instance, a strong drift term may be harmful rather than
helpful [2], and more interesting results were shown in [4, 20]. Similar to the logistic growth, Allee
effects also have rich applications in modelling population dynamics. There are a few references
focused on discussing the models subject to Allee effects [5, 27, 37].

1.3 Ideal Free Distribution Strategy
The ideal free distribution (IFD) was introduced by Fretwell [15] in 1969 to describe how one species
distribute individuals to minimize competition and maximize fitness. The theory states that under the
following assumptions:

(i). Individuals in the species are homogeneous and equally able to access resources;

(ii). Individuals are free to move in the environment;

(iii). Organisms understand how to acquire the largest amount of resources and maximize fitness,

the arrangement of individuals exactly matches the distribution of resources in the environment. In
general, the external resources are supposed to be located at several sites and form various aggregates,
then homogeneous individuals will move towards sites and distribute themselves among these patches
of resources. More specifically, the number of individuals aggregated in each patch is proportional to
the amount of available resources.

The IFD strategy can be modelled by the following equation:

vt = ∇ · (∇v − v∇ ln r) + v(r − v)(v − θ),

where the external resources, modelled by r, are fixed. In this equation, one finds that v = r is
an equilibrium, which implies the distribution of the species is the same as that of resources. In
this article, we study how the strategies including IFD strategy and aggressive strategy, influence the
persistence of species.

1.4 Motivations and Main Results
Cosner and Rodriguez [11] combined the free and conditional dispersal to model the movement of
a population with the assumption that its dynamics is governed by the strong Allee Principle. They
proposed (1.3) and studied the existence of equilibrium subject to the lethal boundary and reflecting
barrier. Furthermore, some numerical simulations were presented to illustrate that the biased move-
ment plays a vital role on overcoming a strong Allee effect. The figures in [11] show if χ is large, i.e.
the advection effect is strong, the population will persist rather than disappear even though the initial
size is below the Allee threshold θ.

To confirm this numerical experimental finding, we perform theoretical studies by considering
system (1.1) and (1.2). Our main goal is to rigorously construct non-constant solutions of (1.2), and
then investigate their stability properties within (1.1). In particular, since we focus in understanding
the influence of the conditional dispersal rate χ on the strong Allee effect, we set the remaining
parameters d1 and µ to one.

An immediate consequence of the no-flux boundary condition is the following integral constraint
satisfied by all classical solutions of (1.2):∫

Ω

u(1 − u)(u − θ)dx = 0. (1.6)
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It can be observed from (1.6) that system (1.1) can admit different nontrivial patterns. Indeed, some
formal analysis implies this integral constraint determines the height of each local interior spike. We
suppose A is smooth and radial with only one non-degenerate local maximum point at 0. Then we
expand A as A = A0−

a
2 |x|

2+O(|x|3), where A0 := A(0) is the local maximum of A and a := Arr(0) > 0.
Set U = U0 + ϵU1 + · · · and let χ := 1

ϵ2 , y := x
ϵ
, U(y) := u(x), F(U) := f (u) to obtain the following

leading order equation: 
0 = ∇y · (∇yU0 + aU0 · y), y ∈ Rn,
U0(y)→ 0, as |y| → ∞,∫
Rn F(U0)dy = 0.

(1.7)

By solving (1.7), we have

U0 = c0e−
a
2 |y|

2
. (1.8)

Upon Substituting U0 into (1.6), we find c0 satisfies∫
Rn

e−|y|
2
(c0e−|y|

2
− θ)(1 − c0e−|y|

2
)dy = 0. (1.9)

By a straightforward calculation, we readily find that (1.9) is equivalent to the following quadratic
algebraic equation:

2
n
2 c2

0 − (1 + θ)3
n
2 c0 + 6

n
2 θ = 0. (1.10)

It is easy to check that there exists

θ1 :=
2n+1 − 2

√
4n − 2n · 3

n
2 − 3

n
2

3
n
2

∈ (0, 1) (1.11)

such that for θ ∈ (0, θ1), there are two values for c0 given by

c01 =
(1 + θ)3

n
2 +
√
δ

2
n
2+1

, c02 =
(1 + θ)3

n
2 −
√
δ

2
n
2+1

, (1.12)

where δ := 3nθ2 + 2 · 3nθ − 4 · 12
n
2 θ + 3n. Thanks to (1.12) and (1.8), the asymptotic profiles of single

interior spikes can be expressed explicitly and are shown in Figure 1.
We would like to point out that when θ ∈ (θ1, 1), (1.7) only admits the solution U0 = 0 since the

quadratic equation (1.10) does not have any real solution. As a consequence, when θ ∈ (θ1, 1), there
only exists a trivial pattern or the only one non-trivial spatially homogeneous pattern to (1.1) what
we are not interested in. Therefore, we only focus on the case θ ∈ (0, θ1) rather than θ ∈ [θ1, 1). The
above formal argument supports our claim that the height of a spike, given by c0, is determined by the
integral constraint (1.6) and given by (1.12). Moreover, our forthcoming rigorous analysis will prove
that this statement holds for not only this special form for A but also for a more general class of A.

Before stating our main results for the pattern formation of (1.1), we discuss the properties of the
signal A. Indeed, it plays the vital role for the formation of nontrivial patterns within (1.1). Numerical
simulations exhibited in [11] show that the non-constant steady states to (1.1) tend to be concentrated
at the local non-degenerate maximum points of A. The formal asymptotic analysis given above also
confirms this fact. Now, we recall the assumptions satisfied by the admissible signal A in [11], which
are as follows:

(A1). A ∈ C2(Ω̄) is time independent and spatially heterogeneous;
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Figure 1: For a 1-D domain with given potential A = 1 − x2, Allee threshold θ = 0.3 and conditional dispersal rate χ = 10, we
show the leading order profiles of single interior spikes defined by (1.8) with c0 = c01 = 1.1339 (left) and c0 = c02 = 0.4582
(right). We shall prove that the left single interior spike is stable but the right one is unstable.

(A2). ∥∆A∥L∞(Ω) ≤ M for some constant M > 0.

Assumption (A1) and (A2) are technical assumptions needed for the analysis. For our analysis below,
we also propose several new hypotheses on A:

(H1). all critical points of A are either local non-degenerate maximum points, or critical points with
∆A > 0;

(H2). ∂A
∂n < 0 holds for all x ∈ ∂Ω.

After supposing A admits exactly k non-degenerate local maximum points x1, · · · , xk, where xm :=(
x(1)

m , · · · , x(n)
m

)T , m = 1, · · · , k. we have from assumption (A1), (A2) and hypothesis (H1), (H2) that A
can be expanded at xm as

A = Am −
1
2

n∑
i, j=1

(
x(i) − xi

m
)T h(i j)

m
(
x(i) − x(i)

m
)
+ o

(
|x − xm|

2),
where Am := A(xm) and −hi j

m is the i j-th entry of the Hessian matrix of A at xm. It is necessary to point
out that the Hessian matrix of A at every local non-degenerate maximum point xm is negative definite.
To simplify our subsequent analysis, one can utilize the rotation transform to write the expansion of
A as

A = Am −
1
2

n∑
i=1

ĥ(i)
m
(
x̂(i) − x̂(i)

m
)2
+ o

(
|x − xm|

2), (1.13)

where −ĥ(i)
m < 0 is the i-th eigenvalue of the Hessian matrix of A at x̂m and x̂, x̂m are rotated vectors.

We further rewrite (1.13) as the following form

A = Am −
1
2

n∑
i=1

h(i)
m
(
x(i) − x(i)

m
)2
+ o

(
|x − xm|

2), (1.14)

where the notations h(i)
m , x(i) and x(i)

m are used to substitute ĥ(i)
m , x̂(i) and x̂(i)

m in (1.14), respectively without
confusing readers.

With the help of the above discussion, now we summarize the first set of our results regarding the
stationary problem in the following theorem:
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Theorem 1.1. Under the assumptions (A1)-(A2) and hypotheses (H1)-(H2), for each fixed positive
integer l satisfying 1 ≤ l ≤ k, we have that there exists χ0 such that when χ > χ0, (1.2) admits a
solution having the following form:

us(x; χ) =
k∑

m=1

cm,χe
− 1

2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o(1), (1.15)

where o(1) → 0 uniformly as χ → 0, cm,χ = c0 + O( 1
√
χ
) for m = 1, 2, · · · , l and cm,χ = O( 1

√
χ
) for

m = l + 1, · · · , k; moreover, c0 > 0 is either c01 or c02 defined in (1.12).

Remark 1.1. As is shown in Theorem (1.1), in contrast to many reaction-diffusion-advection models
such as the minimal Keller–Segel model [21] where the single interior spiky solution is unique [7],
(1.2) has a variety of single interior spikes located at each local non-degenerate maximum point of A.

(L-1). Potential A (C-1). Single interior spike with c0 = 1.2 (R-1). Single interior spike with c0 = 0.75

(L-2). Potential A (C-2). Single interior spike with c0 = 1.2 (R-2). Single interior spike with c0 = 0.75

Figure 2: Top: Given signal A := 2e−
x2+y2

σ2 with σ = 0.2, the leading order profiles of single spikes defined in Theorem 1.1
presented on the middle and the right with θ = 0.3 and χ = 10. Bottom: Profiles of the signal and single interior spikes with the

same condition except A := 2e−
(√

x2+y2−0.5
)2

σ2 . We find that the shapes of spiky solutions follow those of signals A.

Theorem 1.1 states that there are many single and multiple interior spikes to (1.2), and the asymp-
totic profiles of some one-spike solutions given by (1.15) are shown in the unit ball in 2-D in Figure
2. Moreover, one can find from (1.15) that as χ→ ∞, the “inner regions” will shrink to zero exponen-
tially. It is natural to further study the large time behavior of the nontrivial steady states established
by Theorem 1.1. Our next results are devoted to investigate the linearized eigenvalue problem of (1.1)
around the spiky solutions in (1.15), which are summarized as:

Theorem 1.2. There exists χ0 such that when χ > χ0, the following alternatives hold:

(i). if cm,χ = c01 + O
( 1
√
χ

)
for all 1 ≤ m ≤ l, the steady state us(x; χ) is linearly stable;

(ii). if cm,χ = c02 + O
( 1
√
χ

)
for some m, the steady state us(x; χ) is unstable.
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Theorem 1.2 shows that single and multiple interior spikes to (1.2) can be stable in some cases.
This is an intriguing phenomenon that is not discovered while studying the reaction-diffusion-advection
systems without the source term such as for the minimal Keller–Segel model. It is well known that the
classical minimal chemotaxis model only admits the linearly stable single boundary spike solution,
and whatever multiple boundary spikes or interior spikes are always unstable. The main reason why
our results are different is that the strong Allee effect term can help stabilize interior spikes in some
cases.

Besides investigating the single equation, Cosner and Rodriguez [11] also discussed the dynamics
of some coupled systems. We are further motivated by their work and analyze the effect of strategies
on the survival of interacting species. More specifically, we consider the two specific forms of (1.4)
and study the existence and stability of spiky steady states. Our results are summarized as Theorem
1.3 and Theorem 1.4:

Theorem 1.3. Assume all conditions in Theorem 1.1 hold. If χ1 = χ, χ2 = 1 and the boundary
condition is no-flux in (1.4), then when χ ≫ 1, we have that there only exist two types of steady states
for θ small, which are

(i). (us, vs) = (0, r(x)) or (0, βθr(x)), where β :=
∫
Ω

r2dx∫
Ω

r3dx
and θ ∈

(
0, 1

β

)
;

(ii). (us, vs) = (u∗, 0), where u∗ is given by (4.7).

Moreover, if θ is independent of χ, then (0, r) is stable and (0, βθr) is unstable. In addition, the
following alternatives hold for the stability properties of (u∗, 0):

(i). if c̄m,χ = c̄01 + O
( 1
√
χ

)
for all 1 ≤ m ≤ l, the solution will be linearly stable;

(ii). if c̄m,χ = c̄02 + O
( 1
√
χ

)
for some m, the solution will be unstable,

where c̄0 are given by (4.6). However, if θ depends on χ and satisfies θ ∈ (0, ε1/χ
n
2 ) with ε1 defined by

(4.22), (u∗, 0) will be always unstable.

Theorem 1.4. Assume all conditions in Theorem 1.3 hold except that now χ1 = χ, χ2 = cχ with c > 1.
Then, when χ ≫ 1, we have that there exist the steady states (ū∗, v̄∗) and (û∗, v̂∗) to (4.2) defined by
(4.24) and (4.25), respectively.

Regarding the stability of the steady states (ū∗, v̄∗), we have that if there exists m such that S (1)
m,χ =

c02 + O( 1
√
χ
), the spiky solutions will be unstable; otherwise they will be linear stable. However, the

possible steady states (û∗, v̂∗) defined in Proposition 4.3 are always unstable.

Theorem 1.3 and Theorem 1.4 demonstrate that interacting species who are concentrated at some
patch of resources tend to occupy all resources rather than share with each other. A further interesting
phenomenon is that the species who follows the IFD strategy is likely to be better off in the long term.
This implies that the high speed is not always helpful for survival.

The remaining part of this paper is organized as follows. In section 2, we utilize the finite dimen-
sional Lyapunov-Schmidt reduction method to derive the stationary solutions (1.15) rigorously. Our
argument is divided into four steps. The first one is to construct a good ansatz of u. Next, we study
the linearized problem to establish a priori estimate of the error term. The last two steps concern the
nonlinear projected problem and the reduced problem. In section 3, we perform a theoretical analysis
of linearized eigenvalue problem around (1.15). We next qualitatively study the interaction of com-
peting species modelled by the coupled systems in Section 4. Section 5 is devoted to some numerical
simulations of the pattern formation within (1.1) and (1.4), where the dynamics of single and some
multiple interior spikes are presented.
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2 Construction of Interior Spikes
In section 2, we proceed to prove the existence of spiky solutions to system (1.2). The study of
boundary-layer and interior spikes arising from reaction-diffusion systems can be traced back to [24,
28, 29]. These pioneering researches have attracted intensive studies in the last two decades, see the
references [17, 18] and therein. For the Lyapunov-Schmidt reduction method, we refer to [34, 35]
and the lecture notes [12]. There are rich applications of this reduction method in various reaction-
diffusion system (see the book [36]). To help readers understand our argument comprehensively, we
shall present our main idea for the selection of the ansatz in the following subsection.

2.1 Approximate Solution of u

Recall the asymptotic form of A:

A = Am −
1
2

n∑
i=1

h(i)
m
(
x(i) − x(i)

m
)2
+ o

(
|x − xm|

2), (2.1)

where xm, m = 1, 2, · · · , k are non-degenerate local maximum points and h(i)
m > 0 for any i = 1, · · · , n.

In addition, when d1 = 1, the stationary problem (1.2) can be rewritten as{
∇ · (eχ(A−Am)∇(e−χ(A−Am)u)) + µu(1 − u)(u − θ) = 0, x ∈ Ω,
∇(e−χ(A−Am)u) · n = 0, x ∈ ∂Ω. (2.2)

Letting χ := 1
ϵ2 , y := x

ϵ
and u(x) := U(y), the u-equation in (2.2) becomes

∇y ·

(
e

A−Am
ϵ2 ∇y

(
e−

A−Am
ϵ2 U

))
+ µϵ2 f (U) = 0, y ∈ Ωϵ , (2.3)

where Ωϵ := {y ∈ Rn|ϵy ∈ Ω}. In light of (2.1), eχ(A−Am) has the following form near xm:

eχ(A−Am) = e
− 1

2

n∑
i=1

h(i)
m χ(x(i)−x(i)

m )2+o(χ|x−xm |
2)
.

Let the m-th centre of the interior spike be Pm := xm
ϵ

and am(y) := −1
2

n∑
i=1

h(i)
m

(x(i)−x(i)
m )2

ϵ2 = −1
2

n∑
i=1

h(i)
m (y(i) −

P(i)
m )2. One can rewrite eχ(A−Am) to obtain

eχ(A−Am) = eam(y) + o(|y|2eam(y)). (2.4)

Substituting (2.4) into (2.3), we find

∇y ·

[(
eam(y) + o

(
|y|2eam(y)

))
∇y

[(
e−am(y) + o

(
|y|2eam(y)

))
U

]]
+ µϵ2 f (U) = 0, y ∈ Ωϵ , (2.5)

The limiting equation of (2.5) becomes the following equation

∇y · (eam(y)∇y(e−am(y)U)) = 0, y ∈ Rn. (2.6)

We can see that there exists a non-constant solution Um(y) = cmeam(y) to system (2.6), where cm > 0
is constant. Note that our argument holds for every non-degenerate local maximum point xm. So it is
natural to consider the linear combination of Um as the approximate solution to (1.2). To achieve our
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idea, we shall extract all local regions that only includes one of xm from Ω, then truncate Um in every
region and linearly combine them eventually.

Under the hypothesis (H1), we first have the fact that there exist exactly k mutually disjoint Ωm :=
{x ∈ Ω|∆A < δ} such that xm ∈ Ωm. Next, the following cut-off functions ηm ∈ C∞c (Ω) are introduced:

ηm :=
{

1, x ∈ Ωm,
0, x ∈ Ω\BRm(0),

where Ωm ⊂ BRm(0) and BRm(0) are mutually disjoint. Now, we give the ansatz of u which has the
following form:

u0 =

k∑
m=1

cmeχ(A−Am)ηm, (2.7)

where cm > 0 need to be determined. Define u0(x) := U0(y) and ϕ(y) := U(y) − U0(y). Next we
discuss the property of the error term ϕ(y) in the following subsection.

2.2 Linearized Projected Problem
After deriving the approximate solution of u, we are going to establish and analyze the linearized
problem satisfied by ϕ in order to prove its existence rigorously. It is necessary to introduce the
following Hilbert space:

H2
N∗(Ωϵ) =

{
U ∈ H2(Ωϵ)

∣∣∣∣(∇yU −
1
ϵ2 U∇yA

)
· n = 0 on ∂Ωϵ

}
.

Then, define

S ϵ(U) = ∇y ·
(
∇yU −

1
ϵ2 U∇yA

)
+ ϵ2 f (U) (2.8)

for U ∈ H2
N∗(Ωϵ). We have the fact that solving (1.2) is equivalent to find the solution of

S ϵ(U) = 0, ∀U ∈ H2
N∗(Ωϵ).

The linearized operator of (2.8) is defined by

Lϵ(ϕ) := ∇y ·
(
∇yϕ −

1
ϵ2ϕ∇yA

)
. (2.9)

We denote Zm for m = 1, · · · , k as

Zm = e
− 1

2

n∑
i=1

h(i)
m (y(i)−P(i)

m )2

= eam(y). (2.10)

Before stating that Zm are the approximate kernels of Lϵ , one needs to analyze the property of the
operator Lϵ(ϕ) near every xm for ϵ small. In fact, define ym := x−xm

ϵ
and

Lm
0 (ϕ) := ∇ym ·

(
eam(ym)∇ym(e−am(ym)ϕ)

)
,

then we have the following classification result on the kernel of Lm
0 (ϕ):
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Proposition 2.1. For each m = 1, 2, · · · , k, the bounded solution to the following problem{
Lm

0 (ϕ) = 0, ym ∈ R
n,

ϕ ∈ H2
0(Rn), |ϕ| = O(1)e−σ|ym |

2
.

(2.11)

is unique and given by (2.10), where σ > 0 is a small constant.

Proof. Define ϕ̂(ym) := e−am(ym)ϕ.The ϕ−equation becomes

∇ ·
(
eam(ym)∇ϕ̂

)
= 0, |ϕ̂| = o(1) at∞. (2.12)

Define ϕ̂+ and η̂ as

ϕ̂+ =

{
ϕ̂, ϕ̂ > 0,
0, ϕ̂ ≤ 0, and η̂ =

{
1, ym ∈ BR(0),
0, ym ∈ R

n\B2R(0),

where R > 0 is a constant. For any N > 0, multiply (2.12) by (ϕ̂+)N η̂2, then integrate it over Rn to get

0 =
∫
Rn
∇ · (eam∇ϕ̂)(ϕ̂+)N η̂2dym = −

∫
Rn

(eam∇ϕ̂) · ∇((ϕ̂+)N η̂2)dym,

which implies

0 = −
∫
Rn

eam∇ϕ̂ · ∇((ϕ̂+)N)η̂2dym −

∫
Rn

(eam∇ϕ̂) · (ϕ̂+)N∇(η̂2)dym;

moreover, since the support of η̂ is B2R(0), one has∫
B2R(0)

eam∇ϕ̂ · ∇((ϕ̂+)N)η̂2dym = −

∫
Rn

(eam∇ϕ̂) · (ϕ̂+)N∇(η̂2)dym.

By using integration by parts, we can obtain

4N
(N + 1)2

∫
B2R(0)

eam
∣∣∣∇((ϕ̂+) N+1

2
)∣∣∣2dym =

1
N + 1

∫
B2R(0)

(ϕ̂+)N+1∇ · (eam∇η̂2)dym.

Therefore, ∫
B2R(0)

eam
∣∣∣∇((ϕ̂+) N+1

2
)∣∣∣2dym ≤ C

∫
B2R(0)
|ϕ̂+|

N+1 · |∇ · (eam∇η̂2)|dym, (2.13)

where C > 0 is some large constant. In light of |ϕ̂| = o(1) and satisfies

|ϕ̂| ≤ C1e−am(ym)e−σ|ym |
2
,

for small σ > 0 and some constant C1 > 0, one finds from (2.13) that there exists some constant
C2 > 0 such that∫

B2R(0)
eam

∣∣∣∇ym

(
(ϕ̂+m)

N+1
2
)∣∣∣2dym ≤ C2(2R)n

(
e−Nam(ym)|ym=2R

)
e−σ(N+1)(2R)2

→ 0 as R→ ∞,

where σ and N can be chosen small enough. Thus, we have ϕ̂+ ≡ C3 for ym ∈ R
n, where C3 > 0

is a constant. It is similar to multiply (2.12) by ϕ̂−η̂2 to obtain ϕ̂− ≡ C4 for some constant C4 > 0.
Therefore, we prove there exists a unique bounded solution to (2.11) for each m. □
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Proposition 2.1 implies that when ϵ is small, the linear combination of Zm, m = 1, 2, · · · , k defined
by (2.10) consists of the kernel space to Lϵ(ϕ). Now, we establish the linearized projected problem
satisfied by ϕ: 

Lϵ(ϕ) = ∇y ·
(
∇yϕ −

1
ϵ2ϕ∇yA

)
= g −

k∑
m=1

dmZm, y ∈ Ωϵ ,∫
Ωϵ
ϕZmdy = 0, m = 1, 2, · · · , k,

ϕ ∈ H2
N∗(Ωϵ).

(2.14)

Given σ1 ∈ (0, 1), consider the ∗-norm

∥g∥∗ = sup
y∈Ωϵ

∣∣∣∣∣( k∑
m=1

eσ1am(y)
)−1

g(y)
∣∣∣∣∣,

then we shall estimate ϕ and prove its existence, and the result is summarized as the following propo-
sition:

Proposition 2.2. Assume g ∈ L2(Ωϵ) and ∥g∥∗ is bounded. Then there exist positive constant σ1 ∈

(0, 1), ϵ0 and C such that for any ϵ ∈ (0, ϵ0], (2.14) admits the unique solution (ϕ, {dm}). Moreover, ϕ
satisfies the following a priori estimate:

∥ϕ∥∗ ≤ C∥g∥∗. (2.15)

Proof. We divide our proof into two steps. First of all, one estimates the error term ϕ with the as-
sumption that (ϕ, {dm}) exists. Then we show the well-posedness of system (2.14) including existence
and uniqueness by invoking Fredholm alternative theorem.

Step A-a priori estimates:
To this end, we define Ωmϵ

:= {y ∈ Ωϵ |∆yA < ϵ2δ} and η̂m which has the following form:

η̂m =

{
1, y ∈ Ωmϵ

,
0, y ∈ Ωϵ\BRm,ϵ (Pm),

where Ωmϵ
⊂ BRm,ϵ (Pm) for some constant Rm,ϵ > 0 depending on ϵ. Then, multiply the ϕ-equation in

(2.14) by η̂m and integrate it over Ωϵ to find∫
Ωϵ

(Lϵ(ϕ) − g)η̂mdy = −dm

∫
Ωϵ

Zmη̂mdy −
∑
j,m

d j

∫
Ωϵ

Z jη̂mdy. (2.16)

We simplify the left hand side to obtain∫
Ωϵ

[
∇ ·

(
∇ϕ −

1
ϵ2ϕ∇A

)]
η̂mdy −

∫
Ωϵ

gη̂mdy =
∫
Ωϵ

∇ ·
(
eam(y)∇

(
e−am(y)ϕ

))
η̂mdy −

∫
Ωϵ

gη̂mdy,

which, after we apply the integration by parts, becomes∫
Ωϵ

[
∇ ·

(
∇ϕ −

1
ϵ2ϕ∇A

)]
η̂mdy −

∫
Ωϵ

gη̂mdy = −
∫
Ωϵ

(eam∇(e−amϕ)) · ∇η̂mdy −
∫
Ωϵ

gη̂mdy,

=

∫
BRm,ϵ (Pm)

ϕ∆η̂m + ϕ∇am · ∇η̂mdy −
∫
Ωϵ

gη̂mdy,

12



where the last equality holds since the support of η̂m is BRm,ϵ (Pm). Hence, we have from (2.16) that

dm =

∫
BRm,ϵ (Pm)

gdy −
∫

BRm,ϵ (Pm)\Ωmϵ
(ϕ∆η̂m + ϕ∇am · ∇η̂m)dy +

∑
j,m

d j

∫
BRm,ϵ (Pm)

Z jdy∫
BRm,ϵ (Pm)

Zmdy
. (2.17)

In addition, when j , m, we find that∫
BRm,ϵ (Pm)

Z jdy =
∫

BRm,ϵ (Pm)

e
− 1

2

n∑
i=1

h(i)
j (y(i)−P(i)

j )2

dy ≤ Ce−
1
2 σ̃|Pm−P j |

2
, (2.18)

where σ̃ > 0 is small and C > 0 is a constant. Since |Pm − P j| = O
(1
ϵ

)
for m , j, one can conclude

from (2.17) and (2.18) that

|dm| ≤ C1∥g∥∗ + ϵnC1∥ϕ∥∗ +C1

∑
j,m

|d j|e−
1
2 σ̃|Pm−P j |

2
. (2.19)

With the help of (2.19), we now discuss the estimates on the “inner” and “outer” region of every Pm,
m = 1, 2, · · · , k.

First of all, we study the property of ϕ in the outer region Ωϵ\ ∪k
m=1 BR(Pm) where R is a large

constant independent of ϵ. To this end, we construct the barrier function w = µ̂eσ2
Ā
ϵ2 , where µ̂ > 0 will

be chosen later, σ2 > 0 is a constant and

Ā =
k∑

m=1

(A − Am)η̂m −C(1 − η̂1) · · · (1 − η̂k).

It is straightforward to verify that when ϵ is small,

Lϵw =∇y ·

(
∇yw −

1
ϵ2 w∇yA

)
=w

[σ2
2

ϵ2 |∇yĀ|2 −
σ2

ϵ2 ∇yA · ∇yĀ + σ2∆yĀ − ∆yA
]
+ O(ϵ2)w.

Now, we claim that there exists a constant C > 0 such that Lϵw ≤ −Cw holds in Ωϵ\ ∪m BR(Pm) for
small ϵ. Indeed, if y ∈ Ωmϵ

for some m, then there exists some constant C2 > 0 such that |y−Pm| > C2,
which implies

∇y ·

(
∇yw −

1
ϵ2 w∇yA

)
= w

[
σ2

ϵ2 (σ2 − 1)|∇yA|2 + (σ2 − 1)∆yA
]
≤ −C3w,

where C3 > 0 is a constant; if y < Ωmϵ
for all m = 1, 2, · · · , k, then we have ∆A > δ > 0. It follows

that

w
[σ2

2

ϵ2 |∇yĀ|2 −
σ2

ϵ2 ∇yA · ∇yĀ + σ2∆yĀ − ∆yA
]
≤ −C4w,

where C4 > 0 is a constant. We collect the above arguments and hence finish the proof of our claim.
We further define ϕ1 := ϕ − Ĉw for a large constant Ĉ > 0 and obtain from the claim that

Lϵ(ϕ1) = ∇y ·

(
∇yϕ1 −

1
ϵ2ϕ1∇yA

)
> 0,
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where y ∈ Ωϵ\ ∪k
m=1 BR(Pm). In addition, due to the hypothesis (H2), we have that the boundary

condition of ϕ1 satisfies

∂nϕ1 −
ϕ1

ϵ2 ∂nA = C̃
w
ϵ2∇yA · n < 0 on ∂Ωϵ ,

where C̃ > 0 is a constant. Moreover, one lets µ̂ = supm=1,··· ,k ∥ϕ∥L∞(BR(Pm)∩Ωϵ ) + ∥g∥∗ +
∑k

m=1 |dm| · ∥Zm∥∗

and applies the maximum principle to ϕ1
w to get ϕ1 ≤ 0 pointwisely on Ωϵ\ ∪k

m=1 BR(Pm). As a
consequence, ϕ ≤ Ĉw on Ωϵ\ ∪k

m=1 BR(Pm). Similarly, we can show −ϕ ≤ Ĉw. Combining the above
two estimates, we have |ϕ| ≤ Ĉw for some constant Ĉ > 0 on Ωϵ\ ∪k

m=1 BR(Pm).
We are going to prove (2.15) via the contradiction argument. Assume that there exist a sequence

ϵn → 0 such that the corresponding sequence ϕn and gn satisfy

∥gn∥∗ → 0, ∥ϕn∥∗ = 1.

Moreover, one obtains from (2.19) that dn
m → 0 for any m = 1, 2, · · · , k as n → ∞. Noting that ∥ϕn∥∗

and ∥g∥∗ are bounded, we conclude ϕn ∈ C1,γ(BR(Pm)) thanks to the standard elliptic estimate. On the
other hand, note that ϕn satisfies the following equation:

∆yϕn −
1
ϵ2∇yϕn · ∇yA −

1
ϵ2ϕn∆yA = gn −

k∑
m=1

dn
mZm.

Hence, |∆ϕn| ≤ C7 for some constant C7 > 0. It follows that we can extract a sub-sequence ϕn j → ϕ∞
as j→ ∞ such that the limit ϕ∞ is a solution of the following equation: ∇ym ·

(
eam(ym)∇ym(e−am(ym)ϕ∞)

)
= 0, ym ∈ R

n,∫
Rn ϕ∞Zmdy = 0, m = 1, 2, · · · , k,

where ym =
x−xm
ϵ

. Moreover, by invoking Proposition 2.1, we can show ϕ∞ ∈ span{Z1,Z2, · · · ,Zk} and
satisfies the orthogonality condition, which imply ϕ∞ ≡ 0 in ∪k

m=1B̄R(Pm).
We next estimate ϕ∞ in the outer region Ωϵ\ ∪k

m=1 B̄R(Pm). To this end, we first find µ̂n → 0 as
n → ∞ since ∥gn∥∗, dn

m and ∥ϕn∥L∞(BR(Pm)∩Ωϵ ) vanish for any m = 1, 2, · · · , k. Moreover, noting that
there exists C8 > 0 such that |ϕn| ≤ C8wn in Ωϵ\ ∪k

m=1 B̄R(Pm), we conclude from µ̂n → 0 that ϕn → 0
in Ωϵ\ ∪k

m=1 BR(Pm).
In summary, ∥ϕn∥∗ → 0 in Ωϵ as n → ∞, which reaches the contradiction with ∥ϕn∥∗ ≡ 1,

∀n = 1, 2, · · · . This completes the proof of (2.15).

Step B-Existence of ϕ:
Let

X =
{
ϕ ∈ H2

N∗(Ωϵ) :
∫
Ωϵ

ϕZmdy = 0, m = 1, 2, · · · , k
}
.

Then the ϕ-equation in (2.14) can be rewritten as

ϕ + B(ϕ) = g̃ in X, (2.20)

where g̃ is defined by duality and B : X → X is a linear compact operator. With the aid of Fredholm
alternative theorem, it suffices to show that (2.20) admits the unique solution for g̃ = 0 so as to
obtain the existence. This statement follows from the discussion in Step A. Therefore, we conclude
Proposition 2.2 holds. □

Proposition 2.2 implies that there exists an invertible operatorA such that ϕ = A(g) and

∥A(g)∥∗ ≤ C̄∥g∥∗,

where C̄ is a positive constant. Now, we are well-prepared to solve the nonlinear equation satisfied
by ϕ.
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2.3 Nonlinear Projected Problem
In this subsection, the contraction mapping theorem will be employed to show the existence of the
solution ϕ to the following nonlinear projected problem:

Lϵ(ϕ) + E + N(ϕ) = −
k∑

m=1
dmZm,∫

Ωϵ
ϕZmdy = 0, for m = 1, · · · , k,

ϕ ∈ H2
N∗(Ωϵ),

(2.21)

where E is the error of the approximate solution U0 and N(ϕ) is the nonlinear term, which are defined
by

E = ∇y ·

(
∇yU0 −

1
ϵ2 U0∇yA

)
and N(ϕ) = µϵ2 f (U). (2.22)

In light of Proposition 2.2, the ϕ-equation in (2.21) can be rewritten as

ϕ = T (ϕ) := −A(E + N(ϕ)),

whereA is an invertible operator. To prove the existence, it is equivalent to showing that ϕ is a fixed
point of the operator T . We restrict ϕ into the following Hilbert space:

H :=
{
ϕ ∈ H2

N∗(Ωϵ) : ∥ϕ∥∗ ≤ Cϵ,
∫
Ωϵ

ϕZmdy = 0
}
,

where C > 0 is a large constant. We use the contraction mapping theorem to derive the results which
are summarized as the following proposition.

Proposition 2.3. There exist σ3 ∈ (0, 1), ϵ0 > 0 and large constant C > 0 such that for all ϵ ∈ (0, ϵ0],
the following estimates hold:

∥E∥∗ ≤ Cϵ and ∥N(ϕ)∥∗ ≤ Cϵ2. (2.23)

Moreover, (2.21) admits a unique solution ϕ which satisfies

∥ϕ∥∗ ≤ Cϵ. (2.24)

Proof. We first compute the approximate error E defined by (2.22). Since the ansatz of u satisfies
(2.7), we have

E =
k∑

m=1

∇ym ·

(
∇ymU0 −

1
ϵ2 U0∇ym A

)
=

k∑
m=1

cm∇ym · (e
am(ym)∇ym η̂m) (2.25)

=

k∑
m=1

cm[eam(ym)ϵ∇xA · ∇ym η̂m + eam(ym)∆ym η̂m] = O(1)ϵ
k∑

m=1

e−hm |ym |
2
,

where hm > 0 are constants. Then, we calculate N(ϕ) to obtain that

N(ϕ) = µϵ2 f (U) =µϵ2 f (U0) + µϵ2 f ′(U0)ϕ + o(ϕ)ϵ2

=µϵ2U0(1 − U0)(U0 − θ) + o(ϵ2)

=µϵ2(U2
0 − U3

0 − θU0 + θU2
0) + o(ϵ2)

=O(1)ϵ2
k∑

m=1

e−hm |ym |
2
. (2.26)
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We obtain that (2.23) follows from (2.25) and (2.26).
For the operator T , one first shows that it is a mapping fromH → H . Indeed, for any ϕ ∈ H ,

∥T (ϕ)∥∗ ≤C1∥E + N(ϕ)∥∗
≤C1(∥E∥∗ + ∥N(ϕ)∥∗)

≤C2(ϵ + ϵ2) ≤ C3ϵ,

for some constants C1,C2,C3 > 0. As a consequence, T (ϕ) maps into itself. Moreover, we have

∥T (ϕ1) − T (ϕ2)∥∗ ≤C4∥N(ϕ1) − N(ϕ2)∥∗
≤C5∥µϵ

2 f ′(U0)(ϕ1 − ϕ2)∥∗ +C5∥ϵ
3(ϕ1 − ϕ2)∥∗

≤C6ϵ
2∥ϕ1 − ϕ2∥∗ = o(1)∥ϕ1 − ϕ2∥∗,

where C4,C5,C6 > 0 are large constants. It follows that T is a contraction mapping from H into H .
By the contraction mapping theorem we infer that there exists a fixed point ϕ which is a solution to
(2.21) inH and satisfies (2.24). □

2.4 Reduced Problem

After proving the existence of ϕ, we solve the reduced problem dm = 0 for any m = 1, 2, · · · , k by
adjusting the coefficients cm,χ. Recall that U is the solution of the following equation:

∇y ·

(
∇yU −

1
ϵ2 U∇yA

)
+ µ f (U) = −

k∑
m=1

dmZm, (2.27)

where y ∈ Ωϵ . Testing (2.27) against η̂m and integrating it over Ωϵ , then we find∫
Ωϵ

[
Lϵ(U0 + ϕ) + E + N(U0 + ϕ)

]
η̂mdy = −dm

∫
Ωϵ

Zmη̂mdy. (2.28)

On the one hand, since E satisfies (2.23), we obtain
∫
Ωϵ

Eη̂mdy = O(1)ϵ; on the other hand, c0 is
determined by the integral constraint (1.9). Therefore, we have from (2.28) that dm satisfies

dm = ĉm,χ + O(1)ϵ,

where ĉm,χ := cm,χ − c0. It follows that ĉm,χ = O(ϵ) = O( 1
√
χ
) for m = 1, 2, · · · , k.

Combining the results obtained in Subsection 2.1–2.4, we then conclude the proof of Theorem
1.1. This theorem establishes nontrivial localized steady states to (1.1). To further investigate their
qualitative properties, we shall focus on the associated eigenvalue problem of (1.1).

3 Eigenvalue Estimates and Stability Analysis
In this section, we will investigate the local linear stability of the interior spike us defined in Theorem
1.1. To this end, we linearize (1.1) around us and choose the solution u in the following form:

u(x, t) = us + εeλtψ(x),
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where ϕ is a small perturbation and ε ≈ 0. The linearized problem becomes{
Lχ(ψ) := ∇ · (d1∇ψ − χ∇Aψ) + µ f ′(us)ψ = λψ, x ∈ Ω,
(d1∇ψ − χ∇Aψ) · n = 0, x ∈ ∂Ω. (3.1)

Since we concentrate on the effect of χ on the dynamics, in the sequel, other parameters d1 and µ can
be set as µ = d1 = 1. As is shown in [11], the function ψ̂ defined by ψ̂ := e−χAψ plays an important
role in our analysis. It is straightforward to show that ψ̂ satisfies{

L̂χ(ψ̂) := ∇ ·
(
eχA∇ψ̂

)
+ f ′(us)eχAψ̂ = λeχAψ̂, x ∈ Ω,

∂ψ̂

∂n = 0, x ∈ ∂Ω.
(3.2)

We consider ψ̂ ∈ Y where Y is given by

Y =
{
ψ̂ ∈ H1(Ω) : ∂ψ̂/∂n = 0 on ∂Ω

}
.

In addition, the associated weighted inner product of Y is defined as

< ϕ̂, ψ̂ >Y:=
∫
Ω

eχA[∇ψ̂ · ∇ϕ̂ + ψ̂ϕ̂]dx,

and the norm is defined by

∥ψ̂∥Y :=

√∫
Ω

eχA[|∇ψ̂|2 + |ψ̂|2]dx.

We plan to perform a priori estimate of λ so as to prove λ is bounded. To achieve our goal, we
multiply the ψ̂-equation in (3.2) by ψ̂ and integrate it over Ω to find

−

∫
Ω

eχA|∇ψ̂|2dx +
∫
Ω

f ′(us)eχA|ψ̂|2dx = λ
∫
Ω

eχA|ψ̂|2dx,

which implies

|λ| ≤ C1

∫
Ω

eχA|∇ψ̂|2dx +C1

∫
Ω

eχA| f ′(us)||ψ̂|2dx, (3.3)

where C1 > 0 is a constant. Since f (u) ∈ C∞ with respect to u, one has from (3.3) that there exist
constants C2,C3 > 0 such that

|λ| ≤ C2∥ψ̂∥Y ≤ C3,

where ψ̂ ∈ Y. With the boundedness of λ, we are able to focus on the formulation of the eigenvalue
problem satisfied by < λ, ψ >.

3.1 Formulation of the Eigenvalue Problem
Problem (3.1) can be simplified through a change of variable and the stretched variable can be defined
as y = x

ϵ
. To be more general, we assume that in the sequel, us is a generic function satisfying the

following transform:
us(x) := Us(y), Us(y) := U0(y) + ϕ(y),

where U0(y) and ϕ(y) have the following properties:

U0(y) =
k∑

m=1

cm,ϵe
− 1

2

n∑
i=1

h(i)
m (y−P(i)

m )2

, |ϕ(y)| ≤ Mϵe−σ̄y,
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where constant M > 0 and σ̄ ∈ (0, 1) independent of ϵ and y. Moreover, the old steady states and
eigen-pairs (x, us(x), λ, ψ(x)) are equivalent to the new ones given by (y,Us(y), µ,Ψ(y)) via the fol-
lowing transforms:

x = ϵy, ∀y ∈ Ωϵ ⇔ y =
x
ϵ
, ∀x ∈ Ω, us(x) = Us

( x
ϵ

)
⇔ Us(y) = us(ϵy);

and

λ =
µ

ϵ2 ⇔ µ = ϵ2λ, ψ(x) = Ψ
(

x
ϵ

)
⇔ Ψ(y) = ψ(ϵy).

Therefore, (3.1) is equivalent to the following scaled eigenvalue problem: Lϵ(Ψ) := ∇y · (∇yΨ −
1
ϵ2∇yAΨ) + ϵ2 f ′(Us)Ψ = µΨ, y ∈ Ωϵ ,(

∇yΨ −
1
ϵ2∇yAΨ

)
· n = 0, y ∈ ∂Ωϵ .

(3.4)

Similarly, it is useful to analyze the property of Ψ̂ defined by Ψ̂ := e−
A
ϵ2Ψ. The equation for Ψ̂ is

shown as

L̂ϵ(Ψ̂) := ∇y ·
(
e

A
ϵ2∇yΨ̂

)
+ ϵ2 f ′(Us)e

A
ϵ2 Ψ̂ = µe

A
ϵ2 Ψ̂, y ∈ Ωϵ .

Let Ψ̂ ∈ Y with Y being given by

Y =
{
Ψ̂ ∈ H1(Ωϵ) : ∂Ψ̂/∂n = 0 on ∂Ωϵ

}
.

Define the weighted inner product and norm as

< Φ̂, Ψ̂ >Y :=
∫
Ωϵ

e
A
ϵ2
[
∇yΨ̂ · ∇yΦ̂ + Ψ̂Φ̂

]
dy

and

∥Ψ̂∥Y :=

√∫
Ωϵ

e
A
ϵ2
[
|∇yΨ̂|2 + |Ψ̂|2

]
dy.

Then we have the following properties of the operator L̂ϵ:

Lemma 3.1. Assume that Us is generic. Then the operator L̂ϵ in Y is self-adjoint. And the following
conclusions hold for the eigen-pairs

〈
µ, Ψ̂(y)

〉
:

(i). all eigenvalues are real and eigenvectors corresponding to different eigenvalues are perpendic-
ular to each other;

(ii). {
〈
µi, Ψ̂i

〉
}∞i=1 consist of a complete set of eigen-pairs, and µ1 ≥ µ2 ≥ · · · , which satisfy

µi := max
Z⊂Y,dim Z=i

min
Ψ̂∈Z

{
−

∫
Ωϵ

(
e

A
ϵ2 |∇yΨ̂|

2
)
dy + ϵ2

∫
Ωϵ

f ′(Us)e
A
ϵ2 |Ψ̂|2dy∫

Ωϵ
e

A
ϵ2 |Ψ̂|2dy

}
.

Proof. By using the integration by parts, one has for any Φ̂ and Ψ̂ in Y ,

< L̂ϵΦ̂, Ψ̂ >Y= −

∫
Ωϵ

(
e

A
ϵ2∇yΨ̂ · ∇yΦ̂

)
dy + ϵ2

∫
Ωϵ

f ′(Us)e
A
ϵ2 Ψ̂Φ̂dy =< L̂ϵΨ̂, Φ̂ >Y ,

which implies L̂ϵ is self-adjoint. The conclusions (i) and (ii) follow from the standard results of
self-adjoint operators. □
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3.2 Spectrum Analysis

After formulating the eigenvalue problems and stating the characterization of eigen-pairs < µ, Ψ̂(y) >,
our focus is then on the study of the spectrum of the operator Lϵ defined by (3.4). To this end, some
results obtained from the previous Lyapunov-Schmidt reduction procedure need to be stated. First of
all, define the approximate kernel set as

Kϵ := span{Zϵ
m|m = 1, · · · , k} ⊂ H2

N∗(Ωϵ),

and Cϵ as the approximate cokernel set. ThenK⊥ϵ and C⊥ϵ are denoted as the orthogonal sets ofKϵ and
Cϵ . It is necessary to next set πϵ,P and π⊥ϵ,P to be the projection of L2(Ωϵ) onto Cϵ and C⊥ϵ , respectively.
Our argument in Section 2 can be summarized as that there exists a unique solution ϕ such that

π⊥ϵ ◦ S ϵ(U0 + ϕ) = 0,

where ϕ ∈ K⊥ϵ and S ϵ is defined by (2.8). The results involving with a priori estimate of ϕ in
Proposition 2.2 are stated as:

Proposition 3.1. Let L̃ϵ := π⊥ϵ ◦ Lϵ , where Lϵ is given by (2.9), then there exist positive constants ϵ0

and C such that for all ϵ ∈ (0, ϵ0], the solution ϕ to (2.14) satisfies

∥ϕ∥∗ ≤ C∥L̃ϵϕ∥∗,

where ϕ ∈ K⊥ϵ .

Furthermore, the results for the nonlinear projected problem of ϕ stated in Proposition 2.3 are
rewritten and shown in the following proposition:

Proposition 3.2. There exists a positive constant ϵ0 such that for all ϵ ∈ (0, ϵ0], (2.21) admits the
unique solution ϕ ∈ K⊥ϵ satisfying S ϵ(U0 + ϕ) ∈ Cϵ such that

∥ϕ∥∗ ≤ Cϵ.

The next step is to give the asymptotics satisfied by eigen-pairs < µ,Ψ > via Proposition 3.1 and
3.2. Our results are summarized as follows:

Proposition 3.3. Let < µ,Ψ > be the solutions to (3.4), then there exists ϵ0 > 0 such that for all
ϵ ∈ (0, ϵ0], i = 1, 2, · · · , k,

µi = ϵ
2α0h′(ci,0) + O(1)ϵ3, (3.5)

where α0 := 1∫
Rn e−|y|2 dy

and ci,0 is either c0 defined by (1.12) or 0. Furthermore,

Ψi =

k∑
m=1

[
e(i)

m,0 + o(1)
]
Zm + o(1),

where e(i)
m,0 are non-negative constants but not identically zero. As a consequence,

λi = α0h′(ci,0) + O(1)ϵ.
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Proof. Note that λ is bounded, then we can choose sub-sequences ϵn, Ψ̂n := e
− A
ϵ2nΨn such that ϵn → 0,

Ψn → Ψ0 and Ψ̂n → Ψ̂0. Moreover, Ψ̂0 near every centre of the interior spike defined by Pm satisfies L̂ m
0 (Ψ̂m

0 ) := ∇ym ·
(
eam(ym)∇ymΨ̂

m
0

)
= 0, ym ∈ R

n,

Ψ̂m
0 ∈ H1(Rn), |Ψ̂m

0 | = O(1)e−σ̃1 |ym |
2 (3.6)

where ym := x−xm
ϵ

and σ̃1 ∈ (0, 1). According to Proposition 2.1, system (3.6) admits the unique
solution Ψ̂m

0 ≡ C, where C > 0 is a constant, which implies Ψm
0 = Ceam(ym). As a consequence, Ψ0 has

the following form:

Ψ0 =

k∑
m=1

emΨ
m
0 =

k∑
m=1

emZm,

where em > 0 are constants for m = 1, 2, · · · , k and Zm are approximate kernels of Lϵ with Zm = eam(ym).

We would like to point out that Zm is an approximation of Zϵ
m defined by e

1
ϵ2

(A−Am), which is the solution
of

∇y ·

(
∇yZϵ

m −
1
ϵ2∇yAZϵ

m

)
= 0, ym ∈ R

n.

Now, we take the ansatz of Ψ, the eigen-funcion of the operator Lϵ , as

Ψϵ0 =

k∑
m=1

em,ϵZϵ
m,

where em,ϵ > 0 are constants. Thus Ψ can be decomposed as

Ψ = Ψϵ0 + Ψ
⊥
ϵ ,

where Ψ⊥ϵ ⊥ Kϵ and ∥Ψ⊥ϵ ∥∗ = o(1). Recall Lϵ is given in (3.4), then by straightforward calculation,
we have

LϵΨ =

k∑
m=1

em,ϵ

[
∇y ·

(
∇yZϵ

m −
1
ϵ2∇yAZϵ

m

)
+ ϵ2 f ′(Us)Zϵ

m

]
+ ∇y ·

(
∇yΨ

⊥
ϵ −

1
ϵ2∇yAΨ⊥ϵ

)
+ ϵ2 f ′(Us)Ψ⊥ϵ

=LϵΨ
⊥
ϵ + ϵ

2[ f ′(Us) − f ′(U0)]Ψ⊥ϵ +
k∑

m=1

em,ϵϵ
2 f ′(Us)Zϵ

m

=

k∑
m=1

ϵ2λem,ϵZϵ
m + ϵ

2λΨ⊥ϵ .

In light of Proposition 3.1 and the boundedness of λ, the following estimate holds:

∥Ψ⊥ϵ ∥∗ ≤C∥ϵ2[ f ′(Us) − f ′(U0)]Ψ⊥ϵ ∥∗ +C
∥∥∥∥∥ k∑

m=1

em,ϵϵ
2 f ′(Us)Zϵ

m

∥∥∥∥∥
∗

≤C1ϵ
2

k∑
m=1

|em,ϵ |, (3.7)
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where C and C1 are positive constants. (3.7) implies Ψ⊥ϵ can be neglected and Ψ satisfies

Ψ =

k∑
m=1

em,ϵZϵ
m + O(1)ϵ2

k∑
m=1

|em,ϵ |.

Since we have the fact that

Zϵ
m = Zm + O(1)ϵe−σ̂5 |ym |

2
for small σ̂5 > 0,

Ψ has the following form:

Ψ =

k∑
m=1

em,ϵZm + O(1)ϵ
k∑

m=1

|em,ϵ |.

Now, the estimates of eigen-functions have been completed. We obtain that there exists k eigen-pairs
< µi,Ψi >, i = 1, 2, · · · , k such that Ψi satisfies

Ψi =

k∑
m=1

e(i)
m,ϵZ

ϵ
m + O(1)ϵ2

k∑
m=1

|e(i)
m,ϵ |

=

k∑
m=1

[e(i)
m,0 + o(1)]Zm + O(1)ϵ

k∑
m=1

|e(i)
m,ϵ |. (3.8)

We next analyze the asymptotic behavior of the corresponding eigenvalues µi, then derive the property
of λi := ϵ2µi. To begin with, let i = 1, 2, · · · , k be arbitrary but fixed, then we test the Ψ-equation in
(3.4) against η̂i and integrate it over Ωϵ to obtain

I1︷                                    ︸︸                                    ︷
1
ϵ2

∫
Ωϵ

(
∇yΨi −

1
ϵ2∇yAΨi

)
∇yη̂idy+

∫
Ωϵ

f ′(Us)Ψiη̂idy = λi

∫
Ωϵ

Ψiη̂idy. (3.9)

Our next aim is to estimate I1, which we define yi = y − Pi, becomes

I1 =
1
ϵ2

∫
BRi,ϵ (0)\BRi,ϵ−δ̃

(0)

(
∇yΨi −

1
ϵ2∇yAΨi

)
∇yη̂idyi, (3.10)

where δ̃ > 0 is small and Ri,ϵ = Ri/ϵ with a large constant Ri. Since Ψi = O(1) 1
ϵ2 e−σ̂6 |Ri/ϵ|

2
for

some small constant σ̂6 > 0 on ∂BRi,ϵ (0), one obtains from (3.10) that there exists σ̂7 > 0 such that
I1 = O(1)e−σ̂7 |Ri/ϵ |

2
. Moreover,∫

Ωϵ

f ′(Us)Ψiη̂idy =ei,ϵ

∫
BRi,ϵ (Pi)

f ′(Us)Zϵ
i η̂idy + O(1)ϵ2

k∑
m=1

|e(i)
m,ϵ |

∫
Ωϵ

f ′(Us)η̂idy

+
∑
m,i

em,ϵ

∫
BRi,ϵ (Pi)

f ′(Us)Zϵ
mη̂idy, (3.11)

where the last term has the order satisfying O
(
e−σ̂8

minm,i |xm−xi |
2

ϵ2

)
with small σ̂8 > 0. Thus, by applying

f ′(U0 + ϕ) = f ′(U0) + f ′′(U0)ϕ to (3.11), one has∫
Ωϵ

f ′(Us)Ψiη̂idy =ei,ϵ

∫
BRi,ϵ (Pi)

f ′(U0)Zϵ
i η̂idy + ei,ϵ

∫
BRi,ϵ (Pi)

f ′′(U0)ϕZϵ
i η̂idy + O(1)ϵ2

k∑
m=1

|e(i)
m,ϵ |

=ei,ϵ

∫
BRi,ϵ (Pi)

f ′(U0)Zϵ
i η̂idy + O(1)ϵ

k∑
m=1

|e(i)
m,ϵ |,
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where we use the fact that ∥ϕ∥∗ = O(ϵ) due to Proposition 3.2. Similarly, the right hand side of (3.9)
can be written as

λi

∫
Ωϵ

Ψiη̂idy = λiei,ϵ

∫
BRi,ϵ (Pi)

Zϵ
i η̂idy + O(1)ϵ2

k∑
m=1

|e(i)
m,ϵ |,

where
∫

BRi,ϵ (Pi)
Zϵ

i η̂idy is finite due to the boundedness of
∫
Ωϵ

Zϵ
i dy. In conclusion, (3.9) can be simpli-

fied as

ei,ϵ

∫
BRi,ϵ (Pi)

f ′(U0)Zϵ
i η̂idy = λiei,ϵ

∫
BRi,ϵ (Pi)

Zϵ
i η̂idy + O(1)ϵ

k∑
m=1

|e(i)
m,ϵ |. (3.12)

It is easy to see that ei,ϵ , 0 since the definition of eigen-functions. Now, it is left to discuss I(i)
2 defined

by

I(i)
2 =

∫
BRi,ϵ (Pi)

f ′(U0)Zϵ
i η̂idy.

Recall that

Zϵ
m := e

1
ϵ2

(A−Am)
= e

−
n∑

i=1

1
2 h(i)

m

(
y(i)

m

)2
+O(1)ϵ |ym |

3

= eam(ym) + O(1)ϵe−σ̂9 |ym |
2

for some small σ̂9 > 0, and

U0 =

k∑
m=1

cm,0eam(ym) + O(ϵ)
k∑

m=1

eam(ym),

where cm,0 := c0 for m = 1, · · · , l and cm,0 := 0 for m = l + 1, · · · , k, then one has

I(i)
2 =

∫
BRi,ϵ (Pi)

f ′
(
ci,0eai(yi))eai(yi)η̂idy + O(1)e−σ̂8

minm,i |xm−xi |
2

ϵ2

k∑
m=1

|e(i)
m,ϵ | + O(1)ϵ

=

∫
Rn

f ′
(
ci,0eai(yi))eai(yi)dy +

∫
BRϵ (Pi)

f ′
(
ci,0eai(yi))eai(yi)η̂idy −

∫
Rn

f ′
(
ci,0eai(yi))eai(yi)dy

+ O(1)e−σ̂8
minm,i |xm−xi |

2

ϵ2

k∑
m=1

|e(i)
m,ϵ | + O(1)ϵ

=

∫
Rn

f ′
(
ci,0eai(yi))eai(yi)dy + O(1)ϵ

k∑
m=1

|e(i)
m,ϵ |.

Denote h(ξ) as
h(ξ) := ξ[−2

n
2 ξ2 + 3

n
2 (1 + θ)ξ − 6

n
2 θ],

then we have h(ci,0) =
∫
Rn f

(
ci,0eai(yi)

)
dy. Furthermore, I(i)

2 becomes

I(i)
2 = h′(ci,0) + O(1)ϵ

k∑
m=1

|e(i)
m,ϵ |.

Now, (3.12) can be rewritten as

λi = α0h′(ci,0) + O(1)ϵ
k∑

m=1

|e(i)
m,ϵ | = α0h′(ci,0) + O(1)ϵ, (3.13)

where α0 := 1∫
Rn e−|y|2 dy

= π−
n
2 is a positive constant and i = 1, 2, · · · , k. Combine (3.8) and (3.13), then

our proof is finished. □
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We have established the bounded eigenvalue estimates of the operator Lϵ in Proposition 3.3. Our
next goal is to study the local linearized stability of interior spikes given by (1.15) via these estimates.

3.3 Stability Analysis
It is well known that the stability properties are determined by the signs of the principal eigenvalues.
On the other hand, the asymptotics (3.5) indicate that the signs depend on the height of every bump
defined by c0. Therefore, there are several cases for the stability properties in terms of c0, which are
summarized as:

Proposition 3.4. Assume all conditions in Theorem 1.1 hold, then the steady states given by (1.15)
satisfy the following alternatives:

(i). when cm,0 are either c01 or 0 for any m = 1, · · · , k, steady states (1.15) are linear stable;

(ii). when there exists some m such that cm,0 = c02, steady states (1.15) are unstable;

Proof. According to Proposition 3.3, we have for any i = 1, · · · , k, λi satisfies

λi = α0h′(ci,0) + O(1)ϵ, (3.14)

where α0 = π
− n

2 and h is given by

h(ξ) := ξ[−2
n
2 ξ2 + 3

n
2 (1 + θ)ξ − 6

n
2 θ].

Before proving this proposition, we state some properties satisfied by h. First of all, h(ξ) admits
three distinct zeros denoted by 0, c01 and c02, since θ is assumed to satisfy θ ∈ (0, θ1) where θ1 is given
by (1.11). Next, we have the facts that h′ at 0 and c01 are negative but at c02 are positive. We shall
prove the statements in case (i) and case (ii), respectively.

In case (i), one supposes that ci,0 = c01 or ci,0 = 0 for any i = 1, · · · , k. Noting that (3.14) and the
properties of h, one finds λi < 0 for small ϵ. In other words, the principal eigenvalues of the operator
Lϵ are negative. Therefore, when ϵ ≪ 1, steady states (1.15) are linear stable.

In case (ii), we claim that there exists some eigen-pair < µ∗,Ψ∗ > within (3.4) such that µ∗ > 0 for
sufficiently small ϵ. Indeed, with the help of Proposition 3.3, one can choose i = m such that

Ψm =

k∑
j=1

[
e(m)

j,0 + o(1)
]
Z j + o(1),

where e(m)
m,0 = O(1) and e(m)

j,0 = o(1) for j , m. Moreover, the corresponding µm satisfies

µm = ϵ
2α0h′(cm,0) + O(1)ϵ3.

According to the properties satisfied by h, we have h′(cm,0) > 0. This conclusion in conjunction with
(3.5) implies µm > 0 when ϵ is sufficiently small. Now, we indeed show that when ϵ ≪ 1, there exists
the eigen-function Ψ∗ := Ψm with some coefficient e(m)

m,0 = O(1) such that the associated eigenvalue µ∗
satisfies µ∗ > 0, which is our claim.

Due to the definition of λ∗, one further obtains that λ∗ > 0 now that ϵ is sufficiently small. As a
consequence, steady states (1.15) are unstable. □

Remark 3.1. When ϵ is small, the k linear independent eigen-functions Ψi, i = 1, 2, · · · , k defined in
Proposition 3.3 are approximate orthogonal, and thereby the coefficient matrix

(
e(m)

j

)
1≤m, j≤k

is “nearly
diagonal”.
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Proposition 3.4 implies that when ϵ ≪ 1, (1.1) admits many stable and unstable interior spikes. In
particular, the existence of bumps with the small positive heights will cause steady states to become
unstable. We would like to mention that the alternatives in Proposition 3.4 also hold for sufficiently
large χ since ϵ := 1

√
χ
, which immediately finishes the proof of Theorem 1.2. Figure 3, 5, 7 and 8

support our theoretical results in Theorem 1.2.
One can observe from our analysis that the source f (u) plays the key role in stabilizing interior

spikes for (1.1). Indeed, the lack of source term in other reaction-advection-diffusion systems such
as the minimal Keller–Segel models typically leads to the instability of multi-spike solutions. For the
results of the minimal Keller–Segel models, we refer readers to [22].

The single equation served as a paradigm to model the evolution of the single species admits
some interesting patterns. However, more interesting phenomena are discovered while studying the
interaction effects among multiple species.

4 Population Competition Models
To investigate the coexistence of two interacting species, we shall consider several specific forms of
(1.4). First of all, we denote u and v as the densities of intra- and inter-species, then suppose χ1 = χ,
χ2 = 1 in (1.4) to obtain

ut = ∇ · (∇u − χu∇A) + ug(x, u + v), x ∈ Ω, t > 0,
vt = ∇ · (∇v − v∇A) + vg(x, u + v), x ∈ Ω, t > 0,
∂nu − χu∂nA = ∂nv − v∂nA = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(4.1)

where the inter-species is defensive and follows the IFD strategy, whereas the intra-species is ag-
gressive with the higher speed. We are interested at the existence of steady states to (4.1) and their
dynamics. In particular, we focus on the effect of IFD strategy on the stability of steady states.

We next set χ1 = χ and χ2 = cχ in (1.4) to get
ut = ∇ · (∇u − χu∇A) + ug(x, u + v), x ∈ Ω, t > 0,
vt = ∇ · (∇v − cχv∇A) + vg(x, u + v), x ∈ Ω, t > 0,
∂nu − χu∂nA = ∂nv − cχv∂nA = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(4.2)

where c > 1 is a constant. The system (4.2) can be used to describe the interaction between two
aggressive species and we will also focus on the concentration phenomena within (4.2) and its dy-
namics.

4.1 IFD Strategy Versus Aggressive Strategy
One of our central problems in Section 4 is the effect of IFD on the survival of species. To investigate
it, we first consider the stationary problem of (4.1) over the heterogeneous environment, which is

0 = ∇ · (∇u − χu∇A) + ug(x, u + v), x ∈ Ω,
0 = ∇ · (∇v − v∇A) + vg(x, u + v), x ∈ Ω,
∂nu − χu∂nA = ∂nv − v∂nA = 0, x ∈ ∂Ω,

(4.3)

where the spatial region Ω ⊂ Rn, n ≥ 1 is a bounded domain with smooth boundary ∂Ω. Here
χ measures the speed of the aggressive species and the signal A reflects the variations of directed
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dispersal magnitude. Recall the growth pattern g is

g(x, u + v) = (u + v − θ)(r − u − v),

where r = r(x) is the fixed external resources. Since the inter-species is supposed to take the IFD
strategy, the v-equation in (4.3) should admit the solution v = r. To achieve this, we choose A as
A = ln r. Therefore, we obtain (0, r(x)) is a non-constant steady state to (4.3). This equilibrium
represents the inter-species and it eventually wins and occupies all resources. In contrast, the intra-
species is extinct in the long-term.

4.1.1 Existence of Non-constant Steady States

In this section, we construct other non-trivial steady states and our results are summarized as follows:

Proposition 4.1. Assume χ ≫ 1, then for θ sufficiently small, we have (4.3) only admits the two types
of spiky solutions, which are

(i). (us, vs) = (0, r(x)) or (0, βθr(x)), where β :=
∫
Ω

r2dx∫
Ω

r3dx
and θ ∈

(
0, 1

β

)
;

(ii). (us, vs) = (u∗, 0), where u∗ is given by (4.7).

Proof. We have the fact that (0, r(x)) is a non-trivial solution of (4.3). To find other steady states, we
first let v = 0 in (4.3), then the system are simplified into the following form:{

0 = ∇ · (∇u − χu∇A) + ug(u), x ∈ Ω,
∂nu − χu∂nA = 0, x ∈ ∂Ω, (4.4)

where g(u) = (u − θ)(r − u). Noting that Am is the m-th non-degenerate maximum of A, we define
ām := eAm , δ1 := 3nθ2 + (2 · 3nām − 4 · 12

n
2 ām)θ + 3nā2

m and

θ̄1 := ām ·
2n+1 − 3

n
2 − 2

√
4n − 2n · 3

n
2

3
n
2

∈ (0, ām),

then we obtain by Theorem 1.1 that for θ ∈ (0, θ̄1), there exists a non-constant solution u∗ to (4.4) with
the leading order term is

u∗0 =
k∑

m=1

c̄m,χeχ(A−Am)ηm, (4.5)

where c̄m,χ := c̄0 + O
( 1
√
χ

)
and c̄0 is either c̄01 or c̄02 which are given by

c̄01 :=
3

n
2
(
ām + θ

)
+
√
δ1

2
n
2+1

, c̄02 :=
3

n
2
(
ām + θ

)
−
√
δ1

2
n
2+1

. (4.6)

Therefore, thanks to Theorem 1.1, for each fixed integer 1 ≤ l ≤ k, the solution u∗ has the following
form:

u∗(x; χ) =
k∑

m=1

c̄m,χe
− 1

2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o(1), (4.7)
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where o(1) → 0 uniformly as χ → 0, c̄m,χ = c̄0 + O( 1
√
χ
) for m = 1, 2, · · · , l and c̄m,χ = O( 1

√
χ
) for

m = l + 1, · · · , k.
Similarly, we assume u = 0 and let v = Cr with C > 0 in the v-equation of (4.3) to obtain that

for θ ∈
(
0, 1

β

)
, v = βθr(x), where β :=

∫
Ω

r2dx∫
Ω

r3dx
. Hence, we proved that (4.3) admits the other non-trivial

solution (0, βθr).
To study the coexistence of steady states, we proceed to further analyze the balancing conditions.

If v = r, we claim that for θ ∈ (0, ām), (4.3) does not admit the u-solution with the height is O(1). To
this end, we focus on the following integral constraint satisfied by u:∫

Ω

u(r − u − v)(u + v − θ)dx = −
∫
Ω

u2(r + u − θ)dx = 0. (4.8)

The ansatz of u is similar as in (4.5), which is

u0 =

k∑
m=1

c̃m,χeχ(A−Am)ηm, (4.9)

where c̃m,χ = c̃0 + O( 1
√
χ
). Upon Substituting (4.9) into (4.8), we find that c̃0 satisfies

c̃0

∫
Rn

e−3|y|3dy + ām

∫
Rn

e−2|y|2dy − θ
∫
Rn

e−2|y|2dy = 0. (4.10)

Since θ ∈ (0, ām), it follows that (4.10) does not admit any positive root c̄0. This finishes our claim.
Therefore, when v = r, there is the only one steady state (0, r) to (4.1) for θ ∈ (0, ām).

We further claim that there does not exist θ∗ > 0 such that for θ ∈ (0, θ∗), (4.3) admits the positive
solution (u, v). If not, we denote (u∗s, v

∗
s) as the steady states to (4.1), then we have the following

balancing conditions: { ∫
Ω

u∗s(r − u∗s − v∗s)(u
∗
s + v∗s − θ)dx = 0,∫

Ω
v∗s(r − u∗s − v∗s)(u

∗
s + v∗s − θ)dx = 0.

(4.11)

Similarly, we consider the leading order term of u∗s is u∗0 = c̃0e
− 1

2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

and v∗s has the form of
v∗s = C̃r, where C̃ is a constant needs to be determined. We substitute them into (4.11) to obtain

(1 − C̃)c̃0√
Πn

i=1hiχ
n
2

∫
Ωχ

e−y2− 2
χ |y|

2
dy +

1
ām

∫
Ω

(C̃r − θ)(1 − C̃)r2dx

−
c̃2

0√
Πn

i=1hiχ
n
2

∫
Ωχ

e−2|y|2− 1
χ |y|

2
dy −

C̃c̃0ām√
Πn

i=1hiχ
n
2

∫
Ωχ

e−|y|
2
dy +

θc̄0

χ
n
2
√
Πn

i=1hi

∫
Ωχ

e−|y|
2
dy = 0. (4.12)

Letting χ→ ∞, one further has ∫
Ω

(C̃r − θ)(1 − C̃)r2dx = 0,

which implies C̃ = βθ if C̃ , 1. We substitute C̃ = βθ into (4.12) again to conclude that c̃0 =

2
n
2 [1 − (ām + 1)C̃ + θ], which indicates c̃0 → 2

n
2 as θ → 0+. Similarly, we calculate from the second

equation in (4.11) that

2
n
2 c̃2

0 − 3
n
2 c̃0[(1 − 2βθ)ām + θ] + θ(1 − βθ)(1 − β)ām6

n
2 = 0.

In this way, we find c̃0 →
(3

2

) n
2 ām as θ → 0+, which reaches the contradiction. This shows that one can

not find any θ∗ > 0 such that for all θ ∈ (0, θ∗), (4.11) admits positive solution (c̃0, C̃). This completes
the proof of our claim. Proposition 4.1 follows from summarizing our above arguments. □

After showing the existence of steady states in Theorem 1.3, we shall discuss their local dynamics.
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4.1.2 Linearized Eigenvalue Problem and Stability Analysis

To analyze the stability of steady states given in Proposition 4.1, we assume

u(x, t) = us(x) + εeλtφ(x), v(x, t) = vs(x) + εeλtψ(x),

where (u, v) is defined as the solution of (4.1). Upon substituting this into (4.1), we obtain the follow-
ing linearized eigenvalue problem

λφ = ∇ · (∇φ − χφ∇A) + usgu|(us+vs)φ + usgv|(us+vs)ψ + g|(us+vs)φ, x ∈ Ω,
λψ = ∇ · (∇ψ − ψ∇A) + vsgv|(us+vs)ψ + vsgu|(us+vs)φ + g|(us+vs)ψ, x ∈ Ω,
∂nφ − χφ∂nA = ∂nψ − ψ∂nA = 0, x ∈ ∂Ω.

(4.13)

By analyzing (4.13) around steady states defined in Theorem 1.3, we obtain the following proposition:

Proposition 4.2. Assume all conditions in Proposition 4.1 hold. When χ ≫ 1, we have if θ ∈ (0, 1
β
)

independent of χ, the steady states (0, r) and (0, βθr) are linear stable and unstable, respectively; in
addition, there exist the following alternatives satisfied by (u∗, 0):

(i). if c̄m,χ = c̄01 + O
( 1
√
χ

)
for all 1 ≤ m ≤ l, (u∗, 0) will be linearly stable;

(ii). if c̄m,χ = c̄02 + O
( 1
√
χ

)
for some m, (u∗, 0) will be unstable.

However, if θ depends on χ and satisfies θ ∈
(
0, ε

∗
1

χ
n
2

)
, where ε∗1 is given by (4.22), then (u∗, 0) will be

always unstable.

Proof. After considering (us, vs) = (0, r(x)), (4.13) becomes
λφ = ∇ · (∇φ − χφ∇A), x ∈ Ω,
λψ = ∇ · (∇ψ − ψ∇A) + r(θ − r)(φ + ψ), x ∈ Ω,
∂nφ − χφ∂nA = ∂nψ − ψ∂nA = 0, x ∈ ∂Ω.

(4.14)

We integrate the φ-equation in (4.14), then obtain from λ , 0 that
∫
Ω
φdx = 0. Furthermore, it

follows from the same argument in Section 3 that λ is bounded. Then, we define y = x
ϵ
, r(x) = r̃(y),

φ(x) = Φ(y) and ψ(x) = Ψ (y) to get (4.14) has the following form:
ϵ2λΦ = ∇y ·

(
∇yΦ −

1
ϵ2Φ∇yA

)
, y ∈ Ωϵ ,

ϵ2λΨ = ∇y · (∇yΨ − Ψ∇yA) + ϵ2r(θ − r)(Φ + Ψ ), y ∈ Ωϵ ,
∂nφ −

1
ϵ2φ∂nA = ∂nψ − ψ∂nA = 0, x ∈ ∂Ω.

(4.15)

Since λ is bounded, we have from Proposition 3.3 that Φ = C2e−
1
ϵ2

A
+o(1) and Ψ = C3e−A+o(1) for ϵ

small, where C2,C3 > 0 are constants. Thanks to
∫
Ω
φdx = 0, one finds from Φ = C2e−

1
ϵ2

A
+ o(1) that

C2 = 0, which implies Φ = 0 is a solution to the Φ-equation in (4.15). Let Φ = 0 in the Ψ -equation
of (4.15) and integrate it to get

λ

∫
Ωϵ

Ψdy =
∫
Ωϵ

r̃(θ − r̃)Ψdy.

By noting that Ψ = C3r̃ + o(1), we further have

λ =
θ
∫
Ω

r2dx −
∫
Ω

r3dx∫
Ω

rdx
+ O(ϵ),
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which indicates that λ < 0 for ϵ small due to θ ∈ (0, 1
β
). Thus, the steady state (0, r(x)) is linear stable.

Concerning the steady sate (0, βθr(x)), the linearized problem (4.13) becomes
λφ = ∇ · (∇φ − χφ∇A) + θ(βr − 1)(1 − βθ)rφ, x ∈ Ω,
λψ = ∇ · (∇ψ − ψ∇A) + r(θ − r)(φ + ψ) + θ(βr − 1)(1 − βθ)rψ, x ∈ Ω,
∂nφ − χφ∂nA = ∂nψ − ψ∂nA = 0, x ∈ ∂Ω.

(4.16)

Similarly, define y = x
ϵ
, r(x) = r̃(y), φ(x) = Φ(y), then we have from Proposition 3.3 that there exist

constants e(i)
m,0 such that

Φi =

k∑
m=1

[
e(i)

m,0 + o(1)
]
Zm + o(1), i = 1, 2, · · · , k.

Integrate the φ−equation in (4.16) to obtain

λi

∫
Ωϵ

Φidy = θ(1 − βθ)
∫
Ωϵ

(βr̃ − 1)r̃Φidy. (4.17)

Since the coefficient matrix
(
e(m)

j

)
1≤m, j≤k

is “nearly diagonal”, we substitute Φi into (4.17) to get

λi = π
− n

2 āmθ(1 − βθ)(β − 1) + O(ϵ),

which implies when ϵ sufficiently small, λi > 0 for any i = 1, 2, · · · , k since θ ∈ (0, 1
β
). This proves

that steady state (0, βθr) is unstable.
We next discuss the stability of the steady state (u∗, 0) defined in Theorem 1.3. Note that the

associated linearized problem is
λφ = ∇ · (∇φ − χφ∇A) + u∗sgu(x, u∗s)φ + u∗sgv(x, u∗s)ψ + g(x, u∗s)φ, x ∈ Ω,
λψ = ∇ · (∇ψ − ψ∇A) + g(x, u∗s)ψ, x ∈ Ω,
∂nφ − χφ∂nA = ∂nψ − ψ∂nA = 0, x ∈ ∂Ω.

(4.18)

Then we have from Proposition 3.3 that there exists ψ1 = Cr + o(1) which satisfies the ψ-equation of
(4.18), where C ≥ 0 needs to be determined. Substitute it into the ψ-equation and integrate over Ω to
obtain

λ1C
∫
Ω

rdx + θC
∫
Ω

r2dx + o(1)

=

k∑
m=1

ϵnC√
Πn

i=1hm
i

(
− c̄2

0,mām

∫
Ωϵ

e−2|y|2dy + c̄0,mā2
m

∫
Ωϵ

e−|y|
2
dy + θc̄0,mām

∫
Ωϵ

e−|y|
2
dy

)
. (4.19)

When θ is fixed and independent of ϵ, if C , 0, one finds λ1 → −θ
∫
Ω

r2dx∫
Ω

rdx
< 0 as ϵ → 0. As a

consequence, λ1 ≈ −θ
∫
Ω

r2dx∫
Ω

rdx
for ϵ small. Otherwise, we suppose C = 0 which indicates that ψ = 0 is a

solution to the ψ-equation. Moreover, the φ-equation in (4.18) becomes

λφ = ∇ · (∇φ − χφ∇A) + u∗sgu(x, u∗s)φ + g(x, u∗s)φ.

We analyze this single equation and conclude from Proposition 3.3 that for i = 2, · · · , k + 1,

φi =

k∑
m=1

[
e(i)

m,0 + o(1)
]
zm + o(1),
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where zm(x) := Zm(y) and e(i)
m,0 are non-negative constants but not identically zero; furthermore,

λi = π
− n

2 h̄′(c̄i,0) + O(1)ϵ,

where c̄i,0 is 0, c̄01 or c̄02; while h̄ is given by

h̄(ξ) := ξ[−2
n
2 c̄2

0 + 3
n
2
(
ām + θ

)
c̄0 − 6

n
2 θām].

According to Proposition 3.4, when for any i = 2, · · · , k+ 1, c̄i,0 are either c̄01 or 0, all eigenvalues are
strictly negative for ϵ small; if there exists some i such that c̄i,0 = c̄02, the corresponding eigenvalues
satisfy λi > 0. Combining the fact that λ1 < 0 for ϵ small, one can show the stability properties of
(u∗, 0).

Focusing on the case that θ depends on χ, we claim that there exists some ε∗1 such that when
θ ∈ (0, ε∗1ϵ

n), the steady state (u∗, 0) are unstable. To prove our claim, we suppose θ = ε1ϵ
n and

substitute it into (4.19) to obtain

ϵ−nλ10

∫
Ω

rdx =
l∑

m=1

π
n
2 ām√
Πn

i=1hm
i

(
− c̄2

0,m2−
n
2 + c̄0,mām

)
+

l∑
m=1

π
n
2√

Πn
i=1hm

i

ε1ϵ
nc̄0ām − ε1

∫
Ω

r2dx, (4.20)

where λ10 is defined as the leading term of λ1. Our goal is to find all ε1 such that λ10 > 0 for ϵ small.
To achieve it, we conclude from (4.20) that it is equivalent to verify

−c̄2
0,∞2−

n
2 + c̄0,∞ − ε1

1
α1π

n
2

∫
Ω

r2dx > 0, (4.21)

where c̄0,∞ = ( 3
2 )

n
2 and α1 =

∑l
m=1

ā3
m√
Πn

i=1hm
i

. We define C4 := 1
α1π

n
2

∫
Ω

r2dx and h̃(ξ) = −ξ22−
n
2 + ξ−C4ε1,

then (4.21) is equivalent to h̃(c̄0,∞) > 0. Since we have the fact that when ε1 ∈ (0, 2n/2

4C4
), there exist two

roots ξ∗1 and ξ∗2 of h̃(ξ) = 0 given by

ξ∗1 :=
1 −
√
δ2

21− n
2

, ξ∗2 :=
1 +
√
δ2

21− n
2

,

where δ2 := 1−22− n
2 C4ε1, our desired conclusion is equivalent to find all ε1 such that ξ∗2 > c̄0,∞, which

is

2 · 3n/2 < 2n + 2n

√
1 −

4
2n/2ε1C4.

By straightforward calculation, we obtain that when ε1 ∈ (0, ε∗1), λ10 > 0 for ϵ small, where ε∗1 is
defined by

ε∗1 =
2n/2 · 4n − 2n/2(2 · 3n/2 − 2n)2

4 · 4nC4
, (4.22)

which completes the proof of our claim. One can summarize the above arguments to show that
Proposition 4.2 holds. □

Theorem 1.3 follows from Proposition 4.1 and Proposition 4.2. On the one hand, we have from
Theorem 1.3 that the aggressive species can not coexist with the defensive one. On the other hand,
Theorem 1.3 illustrates that the species who follows the aggressive strategy and the IFD strategy is
likely to be better off in a long run. It is worthy mentioning that when Allee threshold is small but
independent of χ, the final pattern formations really depend on the initial resources what each species
possesses. In particular, the species who starts with the more resources will persist and the other will
be eliminated. Whereas we can observe that in some situations, the aggressive species will be extinct
in the long term no matter how many resources it initially has. When Allee threshold is sufficiently
small and depends on χ, the aggressive species is always extinct in the long term. This demonstrates
that the IFD strategy can be probably better in this case.
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4.2 Aggressive Strategies and Allee Effect

In this section, we focus on the existence and dynamics of spiky steady states to system (4.2). From
the viewpoint of biological background, (4.2) indicates that two species both take the aggressive
strategy and the inter-species is the more aggressive. Similarly, we first investigate the following
stationary problem of (4.2):

0 = ∇ · (∇u − χu∇A) + ug(x, u + v), x ∈ Ω,
0 = ∇ · (∇v − cχv∇A) + vg(x, u + v), x ∈ Ω,
∂nu − χu∂nA = ∂nv − cχv∂nA = 0, x ∈ ∂Ω,

(4.23)

where c > 1 is a constant, χ reflects the speed of the species and A is the signal; while the growth
pattern g is given by

g(x, u + v) = (u + v − θ)(1 − u − v).

To construct non-constant solutions to (4.2), we first consider the simpler cases, which are us = 0 or
vs = 0 in every local region, next analyze the coexistence of spiky steady states.

4.2.1 Existence of Non-constant Steady States

Our results are summarized as follows:

Proposition 4.3. Assume χ ≫ 1 and θ ∈ (0, θ1) with θ1 given in (1.11), then for each 1 ≤ l ≤ k,
system (4.23) admits the spiky solutions (ū∗, v̄∗) which has the following form:

ū∗(x; χ) =
∑l

m=1 S (1)
m,χe

− 1
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ O
(

1
√
χ

)∑k
m=l+1 e

− 1
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o
(

1
√
χ

)
;

v̄∗(x; χ) = O
(

1
√
χ

)∑l
m=1 e

− c
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+
∑k

m=l+1 S (2)
m,χe

− c
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o
(

1
√
χ

)
,

(4.24)

where S (i)
m,χ = c0 + O( 1

√
χ
) with c0 defined in (1.12) for i = 1, 2.

Moreover, for each 1 ≤ l1, l2 ≤ k, there coexist many possible non-constant solutions (û∗s, v̂
∗
s) to

(4.23), which are  û∗(x; χ) =
∑k

m=1 S̄ (1)
m,χe

− 1
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o(1);

v̂∗(x; χ) =
∑k

m=1 S̄ (2)
m,χe

− c
2

n∑
i=1

h(i)
m χ(x−x(i)

m )2

+ o(1),
(4.25)

where for i = 1, 2, S̄ (i)
m,χ = S ∗i + O( 1

√
χ
) for m = 1, 2, · · · , li and S̄ (i)

m,χ = O( 1
√
χ
) for m = li + 1, · · · , k. In

particular, S ∗1 and S ∗2 are determined by (4.27).

Proof. We first assume that either S (1)
m,χ ≈ O( 1

√
χ
) or S (2)

m,χ ≈ O( 1
√
χ
) in the neighborhood of every m-

th non-degenerate maximum point. Thanks to Theorem 1.1, we have for χ large, there exists the
non-constant solution (ū∗, v̄∗) to (4.23), which satisfies (4.24).

Next, we focus on the coexistence of steady states in the local bump. It suffices to consider the
following balancing conditions:

∫
Rn e−|y|

2
(S 1e−|y|

2
+ S 2e−c|y|2 − θ)(1 − S 1e−|y|

2
− S 2e−c|y|2)dy = 0,∫

Rn e−c|y|2(S 1e−|y|
2
+ S 2e−c|y|2 − θ)(1 − S 1e−|y|

2
− S 2e−c|y|2)dy = 0.

(4.26)
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By straightforward calculation, (4.26) can be simplified as:{
I1(S 1, S 2) = 0,
I2(S 1, S 2) = 0, (4.27)

where I1 and I2 are defined by

I1 := −3−
n
2 S 2

1 − 2(c + 2)−
n
2 S 1S 2 − (2c + 1)−

n
2 S 2

2 + 2−
n
2 (1 + θ)S 1 + (c + 1)−

n
2 (1 + θ)S 2 − θ

and

I2 := −(c + 2)−
n
2 S 2

1 − 2(2c + 1)−
n
2 S 1S 2 − (3c)−

n
2 S 2

2 + (c + 1)−
n
2 (1 + θ)S 1 + (2c)−

n
2 (1 + θ)S 2 − c−

n
2 θ.

By using S 2 to express S 1, we have from I1(S 1, S 2) = 0 that S 1 = g1(S 2) or S 1 = g2(S 2), where

g1(S 2) :=
(3

2

) n
2 (1 + θ) − 2

( 3
c+2

) n
2 S 2 + 3

n
2
√
∆1

2
;

g2(S 2) :=
(3

2

) n
2 (1 + θ) − 2

( 3
c+2

) n
2 S 2 − 3

n
2
√
∆1

2
, (4.28)

and ∆1 is given by

∆1(S 2) :=[2−
n
2 (1 + θ) − 2(c + 2)−

n
2 S 2]2 − 4 · 3−

n
2 [(2c + 1)−

n
2 S 2

2 − (c + 1)−
n
2 (1 + θ)S 2 + θ]

= − 4
[( 1

6c + 3

) n
2

−
1

(c + 2)n

]
S 2

2 + 4(1 + θ)[(3c + 3)−
n
2 − (2c + 4)−

n
2 ]S 2

+ 2−nθ2 − (4 · 3−
n
2 − 21−n)θ + 2−n.

Similarly, one finds from I2(S 1, S 2) = 0 that S 1 = g3(S 2) or S 1 = g4(S 2), where

g3(S 2) =
( c+2

c+1

) n
2 (1 + θ) − 2

( c+2
2c+1

) n
2 S 2 + (c + 2)

n
2
√
∆2

2
;

g4(S 2) =
( c+2

c+1

) n
2 (1 + θ) − 2

( c+2
2c+1

) n
2 S 2 − (c + 2)

n
2
√
∆2

2
, (4.29)

and ∆2 is defined as

∆2(S 2) :=[(c + 1)−
n
2 (1 + θ) − 2(2c + 1)−

n
2 S 2]2 − 4 · (c + 2)−

n
2 [(3c)−

n
2 S 2

2 − (2c)−
n
2 (1 + θ)S 2 + c−

n
2 θ]

= − 4
[( 1

3c2 + 6c

) n
2

−
1

(2c + 1)n

]
S 2

2 − 4(1 + θ)[(c + 1)−
n
2 (2c + 1)−

n
2 − (2c)−

n
2 (c + 2)−

n
2 ]S 2

+ (c + 1)−n(1 + θ)2 − 4(c2 + 2c)−
n
2 θ.

To find the positive solution (S ∗1, S
∗
2) of the algebraic system (4.27), it is equivalent to prove there

exists S ∗2 such that one of the following statements holds:

(i). g1(S ∗2) = g3(S ∗2); (ii). g1(S ∗2) = g4(S ∗2);
(iii). g2(S ∗2) = g3(S ∗2); (iv). g2(S ∗2) = g4(S ∗2). (4.30)

We only discuss case (i) and others can be similarly analyzed. It is necessary to first study the proper-
ties of g1 and g3. We claim g1(S 2) is a decreasing function with respect to S 2. Indeed, we have from
(4.28) that

dg1

dS 2
= −

( 3
c + 2

) n
2
+

3
n
2∆′1

4
√
∆1
,
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where
∆′1 = −8S 2[(6c + 3)−

n
2 − (c + 2)−n] − 4(1 + θ)[(2c + 4)−

n
2 − (3c + 3)−

n
2 ] < 0

due to c > 1, and thereby g′1(S 2) < 0, which proves our claim. Similarly, we obtain from (4.29) that
g3 is decreasing. Note that

g1(0) =
(3
2

) n
2 (1 + θ) + 3

n
2

√
2−n(1 + θ)2 − 4 · 3−

n
2 θ,

and
g3(0) =

(c + 2
c + 1

) n
2 (1 + θ) + (c + 2)

n
2

√
(c + 1)−n(1 + θ)2 − 4 · (c2 + 2c)−

n
2 θ,

then we have g1(0) ≈ 2
(

3
2

) n
2
> 2

(
c+2
c+1

) n
2
≈ g3(0) for θ small in light of c > 1, which implies there exists

θ̄∗ such that g1(0) > g3(0) for all θ ∈ (0, θ̄∗). Assume c − 1 is small, then we expand ∆1 and ∆2 to
obtain

∆1 = − 4(1 + θ)(c − 1)2−
n
2−2 · 3−

n
2−1nS 2 + 2−nθ2 − (4 · 3−

n
2 − 21−n)θ + 2−n + O((c − 1)2),

and

∆2 = − 4(1 + θ)(c − 1)2−
n
2−2 · 3−

n
2−1nS 2 + 2−nθ2 − (4 · 3−

n
2 − 21−n)θ + 2−n

− (c − 1)2−n−1n(1 + θ)2 + 8(c − 1)3−
n
2−1nθ + O((c − 1)2).

We define
β2 := 2−nθ2 − (4 · 3−

n
2 − 21−n)θ + 2−n

and further expand
√
∆1 and

√
∆2 to get√

∆1 =
√
β2 −

1
√
β2

(1 + θ)(c − 1)2−
n
2−1 · 3−

n
2−1nS 2 + O((c − 1)2), (4.31)

and √
∆2 =

√
β2 −

1
√
β2

(1 + θ)(c − 1)2−
n
2−1 · 3−

n
2−1nS 2

−
1
√
β2

(c − 1)2−n−2n(1 + θ)2 4
√
β2

(c − 1)3−
n
2−1nθ + O((c − 1)2). (4.32)

Substitute (4.31) and (4.32) into g1 and g3 to obtain

g3(S 2) − g1(S 2) =
1

2
√
β2

(c − 1)33−
n
2−3n(n + 2)S 2

2 + γ(θ)(c − 1) + O((c − 1)4), (4.33)

where

γ(θ) := −2−
n
2−33

n
2−1n(1 + θ) −

3
n
2

2
√
β2

2−n−2n(1 + θ)2 +
2

3
√
β2

nθ +
√
β2n3

n
2−1

4
< 0,

since g1(0) > g3(0) for θ small. In light of γ(θ) → 0 as θ → 0, 1
2
√
β2

3−
n
2−3n(n + 2) > 0 and c > 1,

we have it is possible to adjust θ in (4.33) such that there exists S 2max which satisfies g3(S 2max) −
g1(S 2max) > 0. By the existence theorem of zeros, we obtain there exists S ∗2 such that g3 = g1.
Therefore, we have there exists some c̄∗ such that when c ∈ (1, c̄∗), (4.27) admits the positive solution
(S ∗1, S

∗
2) satisfying g3 = g1. This finishes the proof of the coexistence of non-constant solutions and

Proposition 4.3. □
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4.2.2 Study of Linearized Eigenvalue Problem

We proceed to discuss the stability of steady states given in Proposition 4.3. The linearized eigenvalue
problem of (4.2) around the spiky solutions (us, vs) is:

λφ̄ = ∇ · (∇φ̄ − χφ̄∇A) + usgu|(us+vs)φ̄ + usgv|(us+vs)ψ̄ + g|(us+vs)φ̄, x ∈ Ω,
λψ̄ = ∇ · (∇ψ̄ − cχψ̄∇A) + vsgv|(us+vs)ψ̄ + vsgu|(us+vs)φ̄ + g|(us+vs)ψ̄, x ∈ Ω,
∂nφ̄ − χφ̄∂nA = ∂nψ̄ − cχψ̄∂nA = 0, x ∈ ∂Ω.

(4.34)

By studying the signs of eigenvalues in (4.34), we establish the following proposition:

Proposition 4.4. Assume all statements in Proposition 4.3 hold. If there exists m such that S (1)
m,χ =

c02 +O( 1
√
χ
) or S (2)

m,χ = c02 +O( 1
√
χ
), then we have the steady states (ū∗, v̄∗) given in Proposition 4.3 are

unstable; otherwise they are stable. Furthermore, there exist c∗ and θ̃∗ such that for c ∈ (1, c∗) and
θ ∈ (0, θ̃∗), the other steady states (û∗, v̂∗) are always unstable.

Proof. To study the stability of (ū∗, v̄∗), without loss of generality, we assume v̄∗ ∼ 0 in the cut-off
region Ωη containing xm. Since we have the fact that

gu(x, u + v) = 1 + θ − 2(u + v), gu(x, u + v) = gv(x, u + v),

then the linearized eigenvalue problem of steady states (ū∗, v̄∗) becomes{
λφ̄ = ∇ · (∇φ̄ − χφ̄∇A) + ū∗(1 + θ − 2ū∗)φ̄ + ū∗(1 + θ − 2ū∗)ψ̄ + g(x, ū∗)φ̄, x ∈ Ωη,
λψ̄ = ∇ · (∇ψ̄ − cχψ̄∇A) + g(x, ū∗)ψ̄, x ∈ Ωη.

(4.35)

It is similar as the proof in Proposition 4.2, we have the eigen-vector ψ̄ = 0 in Ωη for χ large. We next
simplify the φ-equation in (4.35) to get

λφ̄ = ∇ · (∇φ̄ − χφ̄∇A) + ū∗(1 + θ − 2ū∗)φ̄ + g(x, ū∗)φ̄, x ∈ Ωη. (4.36)

By applying the same argument in Section 3 to (4.36), we can determine the signs of eigenvalues
correspond to the local cut-off regions, which imply the stability properties of (ū∗, v̄∗) stated in Propo-
sition 4.4.

The rest proof is devoted to the stability analysis of the steady states (û∗, v̂∗). Thanks to Propo-
sition 3.3, we have for χ large, the eigen-vectors (φ̄, ψ̄) satisfy φ̄ ≈ C2,me−χ

∑n
i=1 h(i)

m (x(i)−x(i)
m )2

and ψ̄ ≈

C3,me−cχ
∑n

i=1 h(i)
m (x(i)−x(i)

m )2
in the cut-off region containing xm, where C2,m and C3,m are positive constants.

We substitute them into (4.34) and integrate the φ̄-equation and the ψ̄-equation over the cut-off region
Ωη to obtain  C2,m

∫
Ωη

û∗gu|(û∗+v̂∗)û∗dx +C3,m

∫
Ωη

û∗gu|(û∗+v̂∗)v̂∗dx = λmC2,m

∫
Ωη

û∗dx

C2,m

∫
Ωη

v̂∗gu|(û∗+v̂∗)û∗dx +C3,m

∫
Ωη

v̂∗gu|(û∗+v̂∗)v̂∗dx = λmC3,m

∫
Ωη

v̂∗dx.
(4.37)

We have from (4.37) that the signs of eigenvalues λm are determined by the following matrices:

Bm :=


∫
Ωη

û∗gu|(û∗+v̂∗)û∗dx
∫
Ωη

û∗gu|(û∗+v̂∗)v̂∗dx∫
Ωη

v̂∗gu|(û∗+v̂∗)û∗dx
∫
Ωη

v̂∗gu|(û∗+v̂∗)v̂∗dx

 .
In particular, if the matrix Bm has a positive eigenvalue, then we have the corresponding λm satisfies
λm > 0, which implies the instability of (û∗, v̂∗). We next analyze the properties satisfied by the matrix
Bm. On the one hand, we define y = x−xm

ϵ
to obtain that for χ large,

(Bm)1,1 =

∫
Ωη

û∗gu|(û∗+v̂∗)û∗dx ≈ D1S ∗1
2[(1 + θ)2−

n
2 − 2S ∗13−

n
2 − 2S ∗2(2 + c)−

n
2 ], (4.38)
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(Bm)1,2 = (Bm)2,1 =

∫
Ωη

v̂∗gu|(û∗+v̂∗)û∗dx

≈ S ∗1S ∗2D2[(1 + θ)(c + 1)−
n
2 − 2S ∗1(c + 2)−

n
2 − 2S ∗2(2c + 1)−

n
2 ], (4.39)

and

(Bm)2,2 =

∫
Ωη

v̂∗gu|(û∗+v̂∗)v̂∗dx ≈ S ∗2
2D3[(1 + θ)(2c)−

n
2 − 2S ∗1(2c + 1)−

n
2 − 2S ∗2(3c)−

n
2 ], (4.40)

where D1, D2, D3 > 0 are constants. On the other hand, one utilizes the same arguments in Section 3
to obtain that

(Bm)1,1 =
∂I1

∂S 1

∣∣∣∣∣
(S ∗1,S

∗
2)
, (Bm)1,2 = (Bm)2,1 =

∂I1

∂S 2

∣∣∣∣∣
(S ∗1,S

∗
2)

and (Bm)2,2 =
∂I2

∂S 2

∣∣∣∣∣
(S ∗1,S

∗
2)
. (4.41)

The signs of λm can be determined by the traces and determinants of Bm, which are

Tr(Bm) = (Bm)1,1 + (Bm)2,2. Det(Bm) = (Bm)1,1 · (Bm)2,2 − ((Bm)1,2)2.

(4.41) implies Tr(Bm) and Det(Bm) can be rewritten as

Tr(Bm) =
∂I1(S 1, S 2)

∂S 1

∣∣∣∣∣
(S ∗1,S

∗
2)
+
∂I2(S 1, S 2)

∂S 2

∣∣∣∣∣
(S ∗1,S

∗
2)

and

Det(Bm) =
∂I1(S 1, S 2)

∂S 1

∣∣∣∣∣
(S ∗1,S

∗
2)
·
∂I2(S 1, S 2)

∂S 2

∣∣∣∣∣
(S ∗1,S

∗
2)
−

(
∂I1(S 1, S 2)

∂S 2

∣∣∣∣∣
(S ∗1,S

∗
2)

)2

.

Thanks to Proposition 4.3, we have the fact that for some m, (S ∗1, S
∗
2) are determined by one of four

cases in (4.30). When one of case (ii), case (iii) and case (iv) in (4.30) holds, we claim that the
corresponding steady states (û∗, v̂∗) are unstable. We only exhibit the proof for case (ii) and the
arguments are the same in other two cases. Since (S ∗1, S

∗
2) is determined by g1(S 2) = g4(S 2), we

have from the same arugment in Proposition 4.2 that ∂I1
∂S 1

∣∣∣
(S ∗1,S

∗
2)
< 0 and ∂I2

∂S 2

∣∣∣
(S ∗1,S

∗
2)
> 0, which implies

Det(Bm) < 0 and whereby we can show the matrix Bm admits one positive eigenvalue. This finishes
the proof of our claim.

Now, we would like to analyze the stability of (û∗, v̂∗) when case (i) holds. First of all, it follows
from g1(S ∗2) = g3(S ∗2) that ∂I1

∂S 1

∣∣∣
(S ∗1,S

∗
2)

, ∂I2
∂S 2

∣∣∣
(S ∗1,S

∗
2)
< 0, which implies Tr(Bm) < 0. To investigate the sign

of Det(Bm), we calculate by using (4.38), (4.39) and (4.40) to get

Det(Bm) =4
(

1
(6c + 3)

n
2
−

1
(c + 2)n

)
S ∗1

2
+ 4S ∗1S ∗2

[ 1
(9c)

n
2
−

1
[(2 + c)(2c + 1)]

n
2

]
+ 2

[
−

1
6

n
2 c

n
2
−

1
(4c + 2)

n
2
+

2
(c + 2)

n
2 (c + 1)

n
2

]
(1 + θ)S ∗1

+ 4
[

1
(6c + 3c2)

n
2
−

1
(2c + 1)n

]
S ∗2

2
+

(
1

(4c)
n
2
−

1
(c + 1)n

)
(1 + θ)2

+ 2(1 + θ)S ∗2

[
2

(2c + 1)
n
2 (c + 1)

n
2
−

1
c

n
2 (4 + 2c)

n
2
−

1
6

n
2 c

n
2

]
:= I3(S ∗1, S

∗
2). (4.42)
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Define

α1 = 4
(

1
(c + 2)n −

1
(6c + 3)

n
2

)
, α2 = 4

[ 1
[(2 + c)(2c + 1)]

n
2
−

1
(9c)

n
2

]
,

α3 = 2
[

1
6

n
2 c

n
2
+

1
(4c + 2)

n
2
−

2
(c + 2)

n
2 (c + 1)

n
2

]
(1 + θ)

and

α4 = 4
[

1
(2c + 1)n −

1
(6c + 3c2)

n
2

]
, α5 = 2(1 + θ)

[
−

2
(2c + 1)

n
2 (c + 1)

n
2
+

1
c

n
2 (4 + 2c)

n
2
+

1
6

n
2 c

n
2

]
,

α6 =

(
1

(c + 1)n −
1

(4c)
n
2

)
(1 + θ)2,

to rewrite (4.42) as

I3(S ∗1, S
∗
2) = −α1S ∗1

2
− α2S ∗1S ∗2 − α3S ∗1 − α4S ∗2

2
− α5S ∗2 − α6.

We claim that Det(Bm) = I3(S ∗1, S
∗
2) < 0. To prove this, we solve I3(S 1, S 2) = 0 to obtain

S 11 =
−(α2S 2 + α3) −

√
∆3

2α1
, S 12 =

−(α2S 2 + α3) +
√
∆3

2α1
, (4.43)

where ∆3 is defined by

∆3 := (α2
2 − 4α1α4)S 2

2 + 2(α2α3 − 2α1α5)S 2 + α
2
3 − 4α1α6.

Moreover, we expand αi at c = 1 to obtain

α1 = −
2n

3n+2 (c − 1)2 + O((c − 1)3), α2 = −
4n

3n+2 (c − 1)2 + O((c − 1)3),

α3 =
n(n + 26)
2

n
2+3 · 3

n
2+2

(c − 1)2(1 + θ) + O((c − 1)3); (4.44)

and

α4 = −
2n

3n+2 (c − 1)2 + O((c − 1)3), α5 = (1 + θ)
n(n + 26)
2

n
2+3 · 3

n
2+2

(1 + θ)(c − 1)2 + O((c − 1)3),

α6 = −
n

2n+3 (c − 1)2(1 + θ)2 + O((c − 1)3). (4.45)

Furthermore,
√
∆3 can be expanded as√

∆3 =

√
α2

3 − 4α1α6 + O((c − 1)3) =
n
√

(2 + n)(50 + n)
2

n
2+3 · 3

n
2+2

(c − 1)2(1 + θ) + O((c − 1)3). (4.46)

Substitute (4.44), (4.45) and (4.46) into (4.43) to obtain

S 11 = 2−5− n
2 · 3

n
2 (26 + n)(1 + θ) − S ∗2 + 2−5− n

2 · 3
n
2
√

(n + 2)(50 + n)(1 + θ) + O(c − 1), (4.47)

Similarly, we expand S ∗1 at c = 1 to obtain

S ∗1 =2−
n
2−1 · 3

n
2 (1 + θ) − S ∗2 + 2−1 · 3

n
2

√
2−nθ2 − (4 · 3−

n
2 − 21−n)θ + 2−n + O((c − 1)).
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Assume that θ is small, S ∗1 can be further expanded as

S ∗1 =2−
n
2 · 3

n
2 (1 + θ) − 2

n
2 θ + O(θ2) + O(c − 1). (4.48)

Since for any n ∈ N+,

2−
n
2 · 3

n
2 < 2−5− n

2 · 3
n
2 (26 + n) + 2−5− n

2 · 3
n
2
√

(n + 2)(50 + n),

we have from (4.47) and (4.48) that there exist c∗ and θ̃∗ such that for c ∈ (1, c∗) and θ ∈ (0, θ̃∗),
S ∗1 < S 11, which implies I3(S ∗1, S

∗
2) < 0. This finishes our claim and hence we obtain (û∗, v̂∗) is

unstable. Now, we completes the proof of Proposition 4.4.
□

By combining Proposition 4.3 and Proposition 4.4, we have Theorem 1.4 holds. This theorem in-
dicates that there does not coexist any positive stable non-trivial pattern in every local region contain-
ing the non-degenerate maximum point of A, and the biological explanation is interacting aggressive
species can not coexist in every local bump.

5 Numerical Studies and Discusion
In this section, several set of numerical simulations are presented to illustrate and highlight our theo-
retical analysis. We apply the finite element method in FLEXPDE7 [14] to system (1.1) with the error
is 10−4. Besides supporting our theoretical results, our numerical simulations show that system (1.1)
admits rich spatial-temporal dynamics.

Figure 3 and Figure 4 exhibit the pattern formation within system (1.1) when A has only one
local non-degenerate maximum point. These figures illustrate that the single interior spike given by
(1.15) with the height is c01 is linearly stable. Similarly, Figure 5 shows that the single interior spike
defined in (1.15) with the other positive height is unstable and some small perturbation will cause the
time-dependent solutions to (1.1) move away from it.

We next present the stability of multi-interior spikes defined in (1.15) when signal A admits two
local non-degenerate maximum points. Before that, the asymptotic profiles of them are shown in
Figure 6. Similar to the single interior spike, our numerical result shown in Figure 7 indicates that
those multiple spiky solutions whose every bump has the larger height are local linearly stable. In
contrast, once one of their bumps admits the smaller height, the stationary solutions will become
unstable, as shown in Figure 8.

Figure 9 and Figure 10 exhibit the large time behavior of solutions to (4.1) and (4.2), respectively.
From the viewpoint of population ecology, the numerical results shown in Figure 9 can be interpreted
that the conservative species will be better off in the long run when the Allee threshold is small. This
phenomenon is counter-intuitive since one might believe that the higher speed benefits the persistence
of a species, so that an aggressive species is more likely to survive. Our result demonstrates that
aggressive strategy is not always optimal and that an IFD strategy is preferable for species persistence
in some cases. A further qualitative result shown in Figure 10 is that competitive species does not like
to coexist and, instead, prefer to occupy all resources by themselves. Our interpretation of this result
is that aggressive species do not want to share any resources with each other.

5.1 Discussion
We have used the reduction method to construct and study the linear stability of localized solutions to
the single species models (1.1) and competition models (1.4) in the limit of an asymptotically large
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Figure 3: Dynamics of system (1.1) in a 1-D domain for different speeds χ with signal A = 5√
2π

e−25x2
, Allee threshold θ = 0.3

and initial data u0(x) = 1.1 + 0.001 cos(4πx), where the unit of time is second. We would like to mention that as t increases, the
solutions tend to be stable and finally converge to interior spikes and the solutions at t = 500 can represent steady states of (1.1).
This figure also shows that the “inner” region of steady states will shrink as χ→ ∞ , but the height keeps a constant 1.1339.

speed χ ≫ 1. Our main contribution has been the rigorous analysis of the existence of localized
patterns and their stability properties. Under the technical assumptions (A1), (A2) and (H1), (H2),
we shew that (1.1) admits many localized solutions when the potential A has multiple maximum
points. In particular, there are two possible heights for every local bump. Regarding the stability
properties, we proved that once some local bump has the small height, the spike will be unstable. We
next focused on the analysis of the population model (1.4). On the one hand, we proved the non-
coexistence of intra-species and inter-species who follow the aggressive strategy and IFD strategy,
respectively. Moreover, we found that when the Allee threshold θ = O(1), the species who follows
the aggressive strategy will persist in the long run; while θ = O

(
1
χ

n
2

)
, the aggressive strategy will lead

to the extinction of species in some cases. On the other hand, with the assumption that two species
both follow the aggressive strategy, we shew that even though the localized patterns might coexist in
local bumps, they are unstable and the more aggressive species will persist in the long term.

We would like to mention that there are also some open problems that deserve future explorations.
While discussing the existence of interior spike steady states, we impose some technical assumptions
on A; for instance, we assume that A has k non-degenerate maximum points. Whether or not these
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t=0s t=0.01s

t=0.1s t=1000s

Figure 4: Dynamics of problem (1.1) in a 2-D rectangle with potential A = 5√
2π

e−25[(x−12)2+(y− 1
2 ]2

, initial data u0 = 3+ cos(2x+
1) cos(2y+ 1), Allee threshold θ = 0.3 and conditional dispersal rate χ = 20. We can see that (1.1) admits the local stable interior
spikes in the rectangular area.
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Figure 5: θ = 0.3 and χ = 10. Left: the solution of system (1.1) in 1-D at t = 0, 0.009, 1 and 460s with initial data u0(x) =
0.46e−50χx2

+ 0.01 cos(2x); Right: the solution of system (1.1) in 1-D with initial data u0(x) = 0.46e−50χx2
+ 0.001 cos(2x). We

have u(x, t) at t = 460 can represent the steady state to (1.1) and it is shown that the single interior spike with the smaller height
is unstable and converges to either the steady state with the larger height or zero in a long term.
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Figure 6: For a 1-D domain, we have four types of interior spikes constructed in Theorem 1.1 with the height of each bump
is either c01 = 1.1339 or c02 = 0.4582 when potential A = 5√

2π
e−25(x−0.5)2

+ 5
2
√

2π
e−25(x+0.5)2

, Allee threshold θ = 0.3 and
conditional dispersal rate χ = 10. We find that (1.1) admits a variety of interior spikes when A has more than 1 local maximum
points.

assumptions can be removed remains an open problem. Besides the stable interior spikes, we believe
that (1.1) also admits the stable boundary spikes, and the rigorous analysis needs to be established.
Regarding the population system (1.4), we only study the influence of large advection on the popu-
lation evolution of interacting species. The effect of small diffusion d1 is apparently another delicate
problem that deserves probing in the future.
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