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ABSTRACT. We construct a radially smooth positive ancient solution for energy critical semi-linear
heat equation in Rn, n ≥ 7. It blows up at the origin with the profile of multiple Talenti bubbles in the
backward time infinity.
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1. INTRODUCTION

1.1. Motivation. This paper deals with the analysis of ancient solutions that exhibit infinite time
blow-up in the energy critical semi-linear heat equation.

ut = ∆u+ |u|p−1u in Rn × (−∞, 0) (1.1)

where n ≥ 3 and p is the critical Sobolev exponent pS := n+2
n−2 . We are interested in the positive

solutions u(x, t) globally defined for ancient time such that

lim
t→−∞

‖u(·, t)‖L∞(Rn) = +∞. (1.2)
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Problem (1.1) has a more popular counterpart in the forward direction, namely{
ut = ∆u+ |u|p−1u in Rn × (0, T ),

u(x, 0) = u0(x) in Rn.
(1.3)

The energy functional associated to (1.3) is

J(u) :=

�
Rn

1

2
|∇u|2 − 1

p+ 1
|u|p+1. (1.4)

The scaling u(x, t) 7→ λ2/(p−1)u
(
λx, λ2t

)
keeps the equation invariant and transforms J(u) to

λ
4
p−1

+2−n
J(u). Evidently, (1.3) is energy critical when p = pS .

Problem (1.3) has been extensively studied in the literature. It is well-known that for a large
class of initial data, say bounded continuous, there is a unique maximal classical solution u(x, t) for
t ∈ (0, T ). If T is finite, then u will blow up at T . There are two types of blow-up depending on the
rate

Type I : lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖L∞(Rn) <∞, (1.5)

Type II : lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖L∞(Rn) =∞. (1.6)

The blow-up is almost completely understood in the sub-critical range p < pS , for instance, by
[11, 14, 15, 16, 28, 33]. The solution always blows up in type I in this range. The existence of type II
blow-up has been established in various settings, for instance by [19, 20, 25] when p > pJL, where

pJL =

{
∞ if n ≤ 10,

1 + 4
n−4−2

√
n−1

if n ≥ 11.
(1.7)

Recently, there are active researches in the energy critical case p = pS by [12, 30, 3, 6, 8, 7, 17, 18].
These works found that u can exhibit type II blow-up in finite time in lower dimensions, while Wang
and Wei [34] precluded this fast blow-up for n ≥ 7.

Ancient solutions play an important role in studies of singularities and long-time behavior of so-
lutions of many evolution problems, for instance in the mean curvature flow, Ricci flow and Yamabe
flow. Comparing to the forward direction, the studies to ancient solutions of semi-linear heat equation
(1.1) are quite limited. In the sub-critical case, Merle and Zaag [24] first established the following
result.

Theorem 1.1 ([24]). Let p < pS and u be a positive solution of (1.1) satisfying

‖u(·, t)‖L∞(Rn) ≤ C(−t)−1/(p−1) as t→ −∞.

Then there exists T ∗ ≥ 0 such that u(x, t) = (p− 1)−1/(p−1) (T ∗ − t)−1/(p−1).

The above result about ancient solutions has some interesting and important consequences in the
study of the (forward) blow-up behavior of solutions of (1.3) when p < pS . See [24] for details.

For the super-critical case, one knows that there exists one-parameter radially positive steady states
{φα} for each α > 0. Furthermore, if p > pJL, then these solutions are ordered as φα < φβ for
α < β and φβ → φ∞ as β →∞, where (see [29, 35])

φ∞(x) := L|x|−2/(p−1), L :=

(
2

(p− 1)2
((n− 2)p− n)

) 1
p−1

.
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The following Liouville-type results are known by Fila and Yanagida [10, Theorem 2.4] and Poláčik
and Yanagida [26, Theorem 1.2].

Theorem 1.2 ([10, 26]). Let u be a non-negative radial solution of (1.1).

(1) Assume pS ≤ p < pJL and u(·, t) ≤ φ∞ for all t ≤ 0. Then u ≡ 0.
(2) Assume p > pJL and φα ≤ u(·, t) ≤ φ∞ for some α > 0 and all t ≤ 0. Then u(·, t) ≡ φγ

for some γ ≥ α.

Without this φ∞ bound, [10] also constructed some radially positive bounded solutions which do
depend on time. Poláčik and Quittner [27] classified all radially positive ancient solutions under some
further conditions for the super-critical regime.

We are interested in the energy-critical case p = pS . The steady states of the equation (1.3) satisfy

∆u+ |u|
4

n−2u = 0 in Rn. (1.8)

We recall that all positive entire solutions of the equation are given by the family of Aubin-Talenti
solitons [1, 32, 13]

Uµ,ξ(x) = µ−
n−2
2 U

(
x− ξ
µ

)
(1.9)

where U(y) is the standard bubble soliton

U(y) = αn

(
1

1 + |y|2

)n−2
2

, αn = [n(n− 2)]
n−2
4 . (1.10)

This family of solitons are also called Aubin-Talenti ground state solitary wave of the energy func-
tional J . Collot et al. [2] classified the ancient solutions near the ground states.

Theorem 1.3 ([2]). Let n ≥ 7 and p = pS . There exist two strictly positive, C∞ radial solutions of
(1.1), Q+ and Q− such that limt→−∞ ‖Q± − U‖Ḣ1 = 0. Conversely, there exists 0 < δ � 1 such
that if u is a solution of (1.1) with

sup
t≤0

inf
µ>0,ξ∈Rn

‖u(t)− Uµ,ξ‖Ḣ1 ≤ δ,

then u = Q± or u = U up to the symmetry of the flow.

They also pointed out the forward behavior: Q+ explodes according to type I blow-up in finite
time, and Q− is global and dissipates Q− → 0 as t→∞ in Ḣ1(Rn).

A natural question is whether we have multiple Aubin-Talenti solitons in the backward limit. In the
forward direction, Del Pino et al. [9] constructed an initial condition u0 such that (1.3) blows up in
infinite time exactly at the origin. The solutions constructed in [9] consist of sign-changing bubbling
towers in the forward limit t→ +∞. In this paper, we investigate the possibility of such phenomenon
in the backward direction.

Recall that for any Palais-Smale sequence {u(x, tn)}∞n=1 ≥ 0 of the energy functional J , Struwe’s
profile decomposition [31] tells us that passing to a subsequence, there are positive scalars {µj(tn)}kj=1

and points {ξj(tn)}kj=1 such that

µi(tn)

µj(tn)
+
µj(tn)

µi(tn)
+
|ξi − ξj |2

µiµj
(tn)→∞ as n→∞ (1.11)
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and

u(x, tn) =

k∑
j=1

1

µj(tn)
n−2
2

U

(
x− ξj(tn)

µj(tn)

)
+ o(1) as n→∞ (1.12)

where (after some permutation) µk(t) ≤ · · · ≤ µ1(t). Our main result is the following existence of
bubbling-tower solution in the backward limit t→ −∞:

Theorem 1.4. Let n ≥ 7, k ≥ 2. There exists a radially smooth positive solution of (1.1) that blows
up backward in infinite time exactly at 0 with a profile of the form

u(x, t) =
(
1 +O(|t|−ε)

) k∑
j=1

µj(t)
−n−2

2 U

(
x

µj(t)

)
for all t ≤ t0 (1.13)

where O(|t|−ε) denotes some function g(x, t) satisfying ‖g(·, t)‖L∞(Rn) . |t|−ε. Furthermore, we
have

‖u(x, t)−
k∑
j=1

µj(t)
−n−2

2 U

(
x

µj(t)

)
‖H1(Rn) . |t|−ε for all t ≤ t0. (1.14)

Here ε > 0 is small,

µj(t) = βj(−t)−αj (1 +O(|t|−σ)), αj =
1

2

(
n− 2

n− 6

)j−1

− 1

2
, j = 1, . . . , k,

where βj , σ are certain positive constants.

One interesting question is the forward behavior of the ancient solution we construct. Either u(x, t)
is an eternal solution, or it will blow up in type I in some later time.

There are some other related results. [5] studied the ancient solution in Allen-Cahn equation.
Daskalopoulos et al. [4] constructed the ancient bubbling-tower solution for Yamabe flow. For con-
struction of radially symmetric bubbling-towers in NLS and energy-critical wave equations, we refer
to [21, 23, 22].

1.2. Sketch of the proof. The method of this paper is close in spirit to the analysis in the works [3, 9],
where the inner-outer gluing method is employed. That approach consists of reducing the original
problem to solving a basically uncoupled system, which depends in subtle ways on the parameter
choices (which are governed by relatively simple ODE systems).

We start with the ansatz solution Ū =
∑k

j=1 Uj =
∑k

j=1 µj(t)
−n−2

2 U(x/µj(t)) and search for
ϕ(x, t) such that Ū + ϕ is a solution for

S[u] := −ut + ∆u+ |u|p−1u = 0 in Rn × (−∞, t0) . (1.15)

Because of the specific form of Ū , we anticipate ϕ ≈
∑k

j=1 µ
−n−2

2
j φ(x/µj(t))χj with some cut-off

function χj supporting in the region where Uj dominates other Ul, l 6= j. Plugging in Ū + ϕ, we
found that in the support of χj , the linearized operator of ϕ is ∆ + pUp−1

j and the leading error is
−∂tUj + pUp−1

j Uj−1(0). Making a change of variable y = x/µj(t), we will choose the φ satisfying

∆yφ+ pU(y)p−1φ+ hj(y, t) = 0 in Rn, φ(y)→ 0 as |y| → ∞ (1.16)

where

hj(y, t) = µjµ̇jZn+1(y) + pU(y)p−1

(
µj
µj−1

)n−2
2

U(0). (1.17)
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One knows that (1.16) is solvable if and only if
�
Rn hj(y, t)Zn+1(y)dy = 0. Using the above expres-

sion of hj , it implies that µjµ̇j = c∗(µj/µj−1)
n−2
2 (see (2.17)). This implies µj(t) = βj(−t)−αj .

We will denote it as µ0j , because the above process is the first approximation.

Next we will start with u∗ = Ū +
∑k

j=1 µ0j(t)
−n−2

2 φ0j(x/µ0j(t))χj and search for ϕ with the
form

ϕ =
k∑
j=1

µ
−n−2

2
j φj(

x

µj(t)
, t)ηj + Ψ(x, t)

such that u∗ + ϕ is a solution of (1.15) and µj(t) = µ0j(t) + µ1j(t). Plugging in u∗ + ϕ to (1.15)
can deduce the following equations of φj and Ψ

µ2
j∂tφj = ∆yφj + pU(y)p−1φj +Hj [Ψ, ~µ1](y, t) in B8R × (−∞, t0), j = 1, . . . , k, (1.18)

∂tΨ = ∆xΨ + G[~φ,Ψ, ~µ1](x, t) in Rn × (−∞, t0), (1.19)

whereHj is defined in (3.13) and G is defined in (3.14), ~µ1(t) = (µ11, · · · , µ1k) and ~φ = (φ1, · · · , φk).
(1.18) is the so-called inner problem and (1.19) is the so-called outer problem. One will see that these
two problems are weakly coupled in the sense that the dependence ofHj on Ψ and G on ~φ is small in
appropriate norm. The strategy to solve (1.18) and (1.19) is: for each fixed ~φ and ~µ1, one can solve
(1.19) for Ψ = Ψ[~φ, ~µ1]. Next, inserting such Ψ to (1.18) and using fixed point theorem to find ~φ and
~µ1.

The foundation of this process lies on a clear understanding of the linearized problem of (1.18)
and (1.19) respectively. The study to linearized equation of inner problem (1.18) has been done in
[3] for the forward direction. For the backward direction, one encounters new difficulty when taking
subsequences. We establish a uniqueness statement to make sure that different subsequences will
give the same limit function. The linearized equation of the outer problem (1.19) occupies the bulk of
this paper. Notice (1.19) actually can be thought of nonhomogenous heat equation, we leverage the
Duhamel’s formula to get a solution Ψ. The main difficulty is to find a suitable topology for the outer
problem due to bubble tower phenomenon. We spend a great deal of effort to find a good space to put
G. Check Remark 4.3.1 and 4.7.1 for further explanation. Having set up the right space, we apply the
Schauder fixed point theorem to prove the existence of ancient solution of (1.1).

Here is the structure of the paper. In Section 2, we derive first approximation from the ansatz
solution. Section 3 is devoted to splitting the flow equation to a system of inner problem and outer
problem. In Section 4, we study the linear problem of the inner one and outer one respectively. We
put off some tedious computations to Appendix A and B. Section 5 is used to derive the orthogonal
equations ~µ1 should satisfy. In the last section, we put everything together and solve the problem by
using Schauder’s fixed point theorem.

1.3. Notations. Throughout this paper, we denote a . b if a ≤ Cb for some positive constant C.
Denote a ≈ b if a . b . a. χ(s) denotes a smooth cut-off function such that 0 ≤ χ(s) ≤ 1,

χ(s) =

{
1 if s ≤ 1,
0 if s ≥ 2.

For a set Ω ⊂ Rn,1Ω denotes the characteristic function defined as

1Ω(x) =

{
1 if x ∈ Ω,
0 if x ∈ Rn\Ω.
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For j = 1, . . . , k, µj , µ0j are some positive functions about t. We will use the notation

~µ = (µ1, . . . , µk) , Ū :=
k∑
j=1

Uj (1.20)

where

Uj(x, t) = µj(t)
−n−2

2 U

(
x

µj(t)

)
(1.21)

and U(y) is given by (1.10). We denote

µ̄j :=
√
µjµj−1, µ̄0j :=

√
µ0jµ0,j−1, j = 2, · · · , k (1.22)

and make the convention that

µ̄1 = µ̄01 = (−t)δ, µ̄k+1 = µ̄0,k+1 = 0. (1.23)

where δ > 0 is a small constant. We write 〈x〉 =
√

1 + x2.

2. A FIRST APPROXIMATION AND THE ANSATZ

Problem (1.1) is equivalent to

S[u] := −ut + ∆u+ |u|p−1u = 0 in Rn × (−∞, t0) (2.1)

where t0 is a very negative constant. After some translation in time, we can assume the solution lives
up to t = 0.

For any integer k ≥ 2, let us consider k positive functions

µk(t) < µk−1(t) < · · · < µ1(t) in (−∞, t0)

which will be chosen later, such that as t→ −∞,

µ1(t)→ 1,
µj+1(t)

µj(t)
→ 0 for all j = 1, . . . , k − 1. (2.2)

We assume that for j = 1, . . . , k, µ0j is the leading order of µj and has the similar property of µj
above. µ0j will be determined later. We will get an accurate first approximation to a solution of (2.1)
of the form Ū + ϕ0 that reduces the part of the error S[Ū ] created by the interaction of the bubbles
Uj and Uj−1, j = 2, · · · , k. To get the correction ϕ0, we will need to fix the parameters µj at main
order around certain explicit values.

Let us introduce the cut-off functions

χj(x, t) =

{
χ (2 |x|/µ̄0j)− χ (2|x|/µ̄0,j+1) j = 2, . . . , k − 1,

χ (2 |x|/µ̄0k) j = k.
(2.3)

One readily sees that

χj(x, t) =


0 if |x| ≤ 1

2 µ̄0,j+1,

1 if µ̄0,j+1 ≤ |x| ≤ 1
2 µ̄0j ,

0 if |x| ≥ µ̄0j .

(2.4)

We define our approximate solution to be given by

u∗ = Ū + ϕ0. (2.5)
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The correction ϕ0 has the form

ϕ0 =

k∑
j=2

ϕ0jχj (2.6)

where

ϕ0j(x, t) = µj(t)
−n−2

2 φ0j

(
x

µj(t)
, t

)
(2.7)

for certain functions φ0j(y, t) defined in entire y ∈ Rn which we will suitably determine. Let us write

S (u∗) = Ē1 + LŪ [ϕ0] +NŪ [ϕ0] (2.8)

where

LŪ [ϕ0] = −∂tϕ0 + ∆xϕ0 + pŪp−1ϕ0, (2.9)

NŪ [ϕ0] =
∣∣Ū + ϕ0

∣∣p−1 (
Ū + ϕ0

)
− pŪp−1ϕ0 − Ūp, (2.10)

Ē1 = −
k∑
j=1

∂tUj + Ūp −
k∑
j=1

Upj . (2.11)

Next we write LŪ [ϕ0] using the form of ϕ0 in (2.6) as follows

LŪ [ϕ0] =

k∑
j=2

(
∆xϕ0j + pUp−1

j ϕ0j

)
χj +

k∑
j=2

p
(
Ūp−1 − Up−1

j

)
ϕ0jχj

+

k∑
j=2

(2∇xϕ0j · ∇xχj + ∆x (χj)ϕ0j)−
k∑
j=2

∂t (ϕ0jχj) .

In the end, we have the error expansion

S (u∗) =− ∂tU1 +
k∑
j=2

(
∆xϕ0j + pUp−1

j ϕ0j − ∂tUj + pUp−1
j Uj−1(0)

)
χj

+ Ē11 +
k∑
j=2

p
(
Ūp−1 − Up−1

j

)
ϕ0jχj

+
k∑
j=2

(2∇xϕ0j · ∇xχj + ∆xχjϕ0j)−
k∑
j=2

∂t (ϕ0jχj) +NŪ [ϕ0]

(2.12)

where

Ē11 = Ūp −
k∑
j=1

Upj −
k∑
j=2

pUp−1
j Uj−1(0)χj −

k∑
j=2

(1− χj)∂tUj . (2.13)

The function ϕ0j is chosen to eliminate at main order the terms in the first line of (2.12), after
conveniently restricting the range of variation of ~µ,

Ej [ϕ0j , ~µ] := ∆xϕ0j + pUp−1
j ϕ0j − ∂tUj + pUp−1

j Uj−1(0)

=µ
−n+2

2
j

[
∆yφ0j + pU(y)p−1φ0j + µjµ̇jZn+1(y) + pUp−1(y)

(
µj
µj−1

)n−2
2

U(0)
]
y= x

µj

(2.14)
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where Zn+1(y) = n−2
2 U(y) + y · ∇U(y). The elliptic equation (for a radially symmetric function

φ(y))

∆yφ+ pU(y)p−1φ+ hj(y, t) = 0 in Rn (2.15)
where

hj(y, t) = µjµ̇jZn+1(y) + pU(y)p−1

(
µj
µj−1

)n−2
2

U(0) (2.16)

has a solution with φ(y)→ 0 as |y| → ∞ if and only if hj satisfies the solvability condition�
Rn
hj(y, t)Zn+1(y)dy = 0.

The latter conditions hold if the parameters µj(t) satisfy the following relations:

µ1 = 1, µjµ̇j = c∗λ
n−2
2

j , λj =
µj
µj−1

for all j = 2, . . . , k (2.17)

where

c∗ = −U(0)
p
�
Rn U

p−1Zn+1dy�
Rn Z

2
n+1dy

= U(0)
n− 2

2

�
Rn U

pdy�
Rn Z

2
n+1dy

> 0. (2.18)

Let ~µ0 = (µ01, . . . µ0k) be the solution of (2.17) in (−∞, t0) given by

µ0j(t) = βj(−t)−αj , t ∈ (−∞, t0) (2.19)

where

αj =
1

2

(
n− 2

n− 6

)j−1

− 1

2
, j = 1, . . . , k

and the numbers βj are determined by the recursive relations

β1 = 1, βj = (αjc
−1
∗ )

2
n−6β

n−2
n−6

j−1 . (2.20)

From (2.17), we set

λ0j(t) =
µ0j

µ0,j−1
(t). (2.21)

We have
hj (y, t) = λ

n−2
2

0j h̄(y), h̄(y) = h̄(|y|) = pU(0)U(y)p−1 + c∗Zn+1(y).

Since
�
Rn h̄Zn+1dy = 0, there exists a radially symmetric solution φ̄(y) to the equation

∆φ̄+ pU(y)p−1φ̄+ h̄(|y|) = 0 in Rn

such that φ̄(y) = O(|y|−2) as |y| → +∞.

Then we define φ0j(y, t) as

φ0j(y, t) = λ
n−2
2

0j φ̄(y). (2.22)

In what follows we let the parameters µj(t) in (2.2) have the form ~µ = ~µ0 + ~µ1, namely

µj(t) = µ0j(t) + µ1j(t), (2.23)

where the parameters µ1j(t) to be determined satisfy

|µ1j(t)| . µ0j(t)(−t)−σ (2.24)

for some small and fixed constant 0 < σ < 1. We ansatz 3
4 ≤

|µj |
|µ0j | ≤

4
3 for j = 1, . . . , k.
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We observe that for some positive number cj we have

λ0j(t) = cj(−t)−
2

n−6(n−2
n−6)

j−2

.

With these choices, the expression Ej [ϕ0j ; ~µ] in (2.14) can be decomposed as

Ej [ϕ0j , ~µ0 + ~µ1] = µ
−n+2

2
j

[
(µjµ̇j − µ0jµ̇0j)Zn+1 (yj) +

(
λ
n−2
2

j − λ
n−2
2

0j

)
pUp−1 (yj)U(0)

]
= µ

−n+2
2

j Dj [~µ1] (yj , t) + µ
−n+2

2
j Θj [~µ1] (yj , t), yj =

x

µj(t)

where j = 2, · · · , k and

Dj [~µ1](yj , t) = (µ̇0jµ1j + µ0jµ̇1j)Zn+1 (yj) +
n− 2

2
pUp−1 (yj)U(0)λ

n−2
2

0j

(
µ1j

µ0j
− µ1,j−1

µ0,j−1

)
,

Θj [~µ1](yj , t) =µ1jµ̇1jZn+1 (yj) + pUp−1 (yj)λ
n−2
2

0j O

(
|µ1j |
µ0j

+
|µ1,j−1|
µ0,j−1

)2

.

(2.25)

Here we have used the fact that

λ
n−2
2

j − λ
n−2
2

0j =
n− 2

2
λ
n−2
2

0j

(
µ1j

µ0j
− µ1,j−1

µ0,j−1

)
+ λ

n−2
2

0j O

(
|µ1j |
µ0j

+
|µ1,j−1|
µ0,j−1

)2

. (2.26)

We also introduce the notation

D1[~µ1](y1, t) = (1 + µ11)µ̇11Zn+1 (y1) , y1 =
x

µ1
, (2.27)

which is derived from

−∂tU1 = µ
−n+2

2
1 D1[~µ1]. (2.28)

3. THE INNER-OUTER GLUING SYSTEM

We consider the approximation u∗ = u∗[~µ1] in (2.5) built in the previous section and want to find
a solution of equation (2.1) in the form u = u∗+ϕ. By Lemma A.2, we have u∗ > 0 when t0 is very
negative. The problem becomes

S [u∗ + ϕ] = −ϕt + ∆ϕ+ pup−1
∗ ϕ+Nu∗ [ϕ] + S [u∗] = 0 in Rn × (−∞, t0) (3.1)

where
Nu∗ [ϕ] = |u∗ + ϕ|p−1 (u∗ + ϕ)− up∗ − pup−1

∗ ϕ.

We consider the cut-off functions ηj , ζj , j = 1, . . . , k, defined as

ηj(x, t) = χ

(
|x|

2Rµ0j(t)

)
(3.2)

and

ζj(x, t) =


χ

(
|x|

Rµ0j(t)

)
− χ

(
R |x|
µ0j(t)

)
j = 1, · · · , k − 1,

χ

(
|x|

Rµ0k(t)

)
j = k.

(3.3)
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We observe that ηiζi = ζi, because

ηj(x, t) =

{
1 for |x| ≤ 2Rµ0j(t),
0 for |x| ≥ 4Rµ0j(t).

and

ζj(x, t) =

{
1 for 2R−1µ0j(t) ≤ |x| ≤ Rµ0j(t),
0 for |x| ≥ 2Rµ0j(t) or |x| ≤ R−1µ0j(t).

j = 1, . . . , k − 1. (3.4)

ζk(x, t) =

{
1 for |x| ≤ Rµ0k(t),
0 for |x| ≥ 2Rµ0k(t).

(3.5)

Here R is a large constant to be determined later. In fact, we fix R first, then take t0 very negative.

We consider functions φj(y, t), j = 1, · · · , k defined in B8R × (−∞, t0) and a function Ψ(x, t)
defined in Rn × (−∞, t0). We look for the ϕ(x, t) in (3.1) of the form

ϕ(x, t) =

k∑
j=1

ϕjηj(x, t) + Ψ(x, t) (3.6)

where

ϕj(x, t) = µ
−n−2

2
j φj

(
x

µj(t)
, t

)
. (3.7)

Let us substitute ϕ given by (3.6) into equation (3.1). We get

S [u∗ + ϕ] =
k∑
j=1

ηjµ
−n+2

2
j

(
− µ2

j∂tφj(yj , t) + ∆yφj(yj , t) + pU(yj)
p−1φj(yj , t)

+ µ
n−2
2

j ζjpU(yj)
p−1Ψ +Dj [~µ1]

)
−Ψt + ∆xΨ + VΨ +B[~φ] +N [~φ,Ψ, ~µ1] + Eout.

Here we denote for ~φ = (φ1, . . . , φk), ~µ = (µ1, . . . , µk) and

B[~φ] =

k∑
j=1

2∇xηj · ∇xϕj + (−∂tηj + ∆xηj)ϕj + p
(
up−1
∗ − Up−1

j

)
ϕjηj − µ̇j

∂

∂µj
ϕjηj , (3.8)

N [~φ,Ψ, ~µ1] = Nu∗

 k∑
j=1

ϕjηj + Ψ

 , V = pup−1
∗ −

k∑
j=1

ζjpU
p−1
j , (3.9)

Eout = S [u∗]−
k∑
j=1

µ
−n+2

2
j Dj [~µ1]ηj , (3.10)

where Dj [~µ1] are defined in (2.25) and (2.27). We will have that S [u∗ + ϕ] = 0 if the following
system of k + 1 equations are satisfied.

µ2
j∂tφj = ∆yφj + pU(y)p−1φj +Hj [Ψ, ~µ1](y, t) in B8R × (−∞, t0), j = 1, . . . , k, (3.11)

∂tΨ = ∆xΨ + G[~φ,Ψ, ~µ1](x, t) in Rn × (−∞, t0), (3.12)
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where

Hj [Ψ, ~µ1](y, t) = µ
n−2
2

j ζj(µjy)pU(y)p−1Ψ(µjy, t) +Dj [~µ1](y, t), (3.13)

G[~φ,Ψ, ~µ1](x, t) = VΨ +B[~φ] +N [~φ,Ψ, ~µ1] + Eout. (3.14)

In the next sections we will solve this system in a well-designed topology with suitable choice of
parameters ~µ1.

4. THE LINEAR EQUATIONS

In order to solve the system (3.11)-(3.12), we need to study their linear equations respectively. The
linear estimates of this section are crucial to the fixed point argument.

4.1. The linear inner problem. First, we consider the linear theory of (3.11).

µj(t)
2∂tφ = ∆yφ+ pU(y)p−1φ+ h(y, t), B8R × (−∞, t0). (4.1)

where µj(t) ≈ (−t)−αj and R is a sufficiently large constant. We aim to solve (4.1) by finding a
linear mapping φ = φ[h] that keeps the spatial decay property of h, provided that certain solvability
condition for h is satisfied. Making change of variables

τ(t) = τ0 +

� t

t0

µj(s)
−2ds ≈ −(−t)2αj+1,

where τ0 is a suitably chosen that τ0 ≈ −(−t0)2αj+1, transforms (4.1) into

∂τφ = ∆yφ+ pU(y)p−1φ+ h(y, τ), B8R × (−∞, τ0). (4.2)

In order to solve this equation, we need to know the space h(y, τ) belongs to. This amounts to
examining the decay of Hj in (3.13). Inspired by the estimate of |Hj(y, t)| in Lemma 6.1, we define
the following norms

‖h‖inν(τ),2+a := sup
s<τ0

sup
y∈B8R

ν−1(s)〈y〉2+a|h(y, s)|, (4.3)

‖φ‖in,∗ν(τ),a := sup
s<τ0

sup
y∈B8R

R−(n+1−a)ν−1(s)〈y〉n+1|φ(y, s)|. (4.4)

where 0 < a < 1 and ν(τ) : (−∞, τ0)→ R+ is a positive C1 function satisfying

lim
τ→−∞

ν(τ) = 0, and ∂τν ≈
ν(τ)

−τ
for τ ≤ τ0. (4.5)

Lemma 4.1. Consider

∂τφ = ∆φ+ pUp−1φ+ h(y, τ) in B8R × (−∞, τ0). (4.6)

For all sufficiently large R > 0, if τ0 = τ0(R) is very negative, ‖h‖inν(τ),2+a < +∞, and h(y, τ)

satisfies �
B8R

h(y, τ)Zj(y)dy = 0 for all τ ∈ (−∞, τ0) (4.7)

j = 1, . . . , n+ 1, where Zj(y) = ∂yjU(y) and Zn+1(y) = n−2
2 U(y) + y · ∇U(y). Then there exists

a linear mapping

φ = T inν(τ)[h] (4.8)
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which solves (4.6) and satisfies the estimate

‖〈y〉∇yφ‖in,∗ν(τ),a + ‖φ‖in,∗ν(τ),a ≤ C
in
ν(τ),a‖h‖

in
ν(τ),2+a, (4.9)

where Cinν(τ),a is a constant depending on ν(τ) and a.

Remark 4.1.1. Since we consider radial scheme throughout this paper,
�
B8R

h(y, τ)Zj(y)dy = 0,
j = 1, . . . , n, are satisfied automatically.

The proof inherits the spirit of [3]. First, we consider the linear problem (4.6) in a finite time region
(s, τ0) and get a uniform estimate independent of the initial time s. Second, we make s go to −∞
and get an ancient solution by the compaction argument, like [4]. We need to use some Liouville
type theorem to guarantee the uniqueness of the ancient solution derived from this operation, which
deduces the existence of the desired linear mapping.

Since the proof is very similar to the linear theory in [3], we only stress the difference due to taking
subsequence as s→ −∞. We have to prove no matter what convergent subsequence we choose, the
limit function is the same.

First we need the following preparation lemma.

Lemma 4.2. Given L(u) = ∆u + c(x)u defined in a bounded domain Ω, if L has a positive super-
solution w ∈ C2(Ω)∩C(Ω̄), that is L(w) ≤ 0 in Ω and w > 0 in Ω̄, then for all φ ∈ C2(Ω)∩C(Ω̄)
with φ = 0 on ∂Ω, the corresponding energy

Q(φ, φ) :=

�
Ω

(
|∇φ|2 − c(x)φ2

)
dy ≥ 0.

Proof. Since w > 0 in Ω̄, ∃ψ ∈ C2(Ω) ∩ C0(Ω̄) such that φ = wψ. Then

Q(φ, φ) =

�
Ω

(
−wψ2∆w − 2wψ∇w · ∇ψ − w2ψ∆ψ − c(x)w2ψ2

)
dy

=

�
Ω

[
− (∆w + c(x)w)wψ2 − 2wψ∇w · ∇ψ − w2ψ∆ψ

]
dy.

(4.10)

Using the assumption Lw ≤ 0 and w > 0, we have

Q(φ, φ) ≥
�

Ω

(
−2wψ∇w · ∇ψ − w2ψ∆ψ

)
dy

=

�
Ω

[
−2wψ∇w · ∇ψ +∇ψ · ∇(w2ψ)

]
dy =

�
Ω
|∇ψ|2w2 dy ≥ 0.

�

We take the following typical lemma, whose counterpart is given in Lemma 7.3 in [3], to illustrate
the difference with the linear theory in [3] due to taking subsequence. Define χM (y) = χ(|y| −M).

Lemma 4.3. Consider{
φτ = ∆φ+ pUp−1(1− χM )φ+ h(y, τ) in B8R × (−∞, τ0),

φ = 0 on ∂B8R × (−∞, τ0),
(4.11)

where ‖h‖ν,a < +∞, 0 ≤ a < n. If M is a large constant, there exists a very negative constant τ̃0.
If τ0 ≤ τ̃0, there exists a linear map φ∗[h] satisfying (4.11) and the following estimate:

|φ∗[h]| .M ν(τ)Θ0
Ra(|y|)‖h‖ν,a, (4.12)
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where

Θ0
Ra(r) =


(1 + r)2−a if 2 < a < n

lnR if a = 2

R2−a if 0 ≤ a < 2.

Proof. First we consider
φsτ = ∆φs + pUp−1(1− χM )φs + h(y, τ) in B8R × (−∞, τ0),

φs = 0 on ∂B8R × (−∞, τ0),

φs(·, s) = 0 in B8R.

By the same method in Lemma 7.3 in [3], we have

|φs∗[h]| .M ν(τ)Θ0
Ra(|y|)‖h‖ν,a. (4.13)

Notice this estimate is independent of s. By parabolic estimate, Arzelà-Ascoli theorem and diago-
nalization argument, taking s → −∞, we find a weak solution φ∗[h] to (4.11) with the following
estimate

|φ∗[h]| .M ν(τ)Θ0
Ra(|y|)‖h‖ν,a. (4.14)

Next, we need to demonstrate this operation is really a mapping. That is, if the operation gives two
functions φ1

∗[h], φ2
∗[h] due to the different choices of subsequences, we need to prove φ1

∗[h] = φ2
∗[h].

In fact, set Φ∗ = φ1
∗[h]− φ2

∗[h]. By (4.11), (4.14), Φ∗ satisfies
∂τΦ∗ = ∆Φ∗ + pUp−1(1− χM )Φ∗ in B8R × (−∞, τ0),

Φ∗ = 0 on ∂B8R × (−∞, τ0),

|Φ∗| .M ν(τ)Θ0
Ra(|y|)‖h‖ν,a.

(4.15)

By parabolic regularity theory, Φ∗ is smooth. Multiplying Φ∗ for both sides and integrating by part,
we have

1

2
∂τ

�
B8R

|Φ∗|2 dx =

�
B8R

[
−|∇Φ∗|2 + pUp−1(1− χM )Φ2

∗
]

dx ≤ 0. (4.16)

The inequality is due to Lemma 4.2 since LM (φ) = ∆φ+ pUp−1(y)(1−χM )φ has a positive kernel
g2(|y|) given in Lemma 7.3 of [3].

By the upper bound of |Φ∗|,

�
B8R

|Φ∗|2 dx . ‖h‖2ν,aν2(τ)Rn


1 if 2 < a < n,

ln2(R) if a = 2,

R4−2a if 0 ≤ a < 2.

Thus �
B8R

|Φ∗|2 dx→ 0 as τ → −∞, (4.17)

we have
�
B8R
|Φ∗|2 dx ≡ 0, which implies Φ∗ ≡ 0.

By the same argument, we can prove that φ∗[h] is a linear mapping. That is, for all functions f , g
satisfying ‖f‖ν,a, ‖g‖ν,a <∞, we have φ∗[f + g] = φ∗[f ] + φ∗[g]. �

Since we aim to find ancient solutions. The initial value given in the linear theory of [3] will
disappear as s→ −∞.
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4.2. The linear outer problem. We consider the solution of

ψt = ∆xψ + g(x, t), in Rn × (−∞, t0). (4.18)

It is well-known that the above equation has a solution which is given by Duhamel’s formula

ψ(x, t) = T out[g](x, t) :=
1

(4π)
n
2

� t

−∞

ds

(t− s)
n
2

�
Rn
e
− |x−y|

2

4(t−s) g(y, s)dy (4.19)

whenever the integral is well-defined.

In order to design a topology to solve the outer problem (3.12), we define three types of weights.

w11(x, t) =
|t|−1−σ

1 + |x|2+α
1{|x|≤µ̄01} + |t|−1−σµ̄n−2−α

01 |x|−1−n1
{µ̄01≤|x|≤|t|

1
2 }

≈ |t|γ11{|x|≤1} + |t|γ1 |x|−2−α1{1≤|x|≤µ̄01} + |t|γ1 µ̄n−2−α
01 |x|−1−n1

{µ̄01≤|x|≤|t|
1
2 }
,

w1j(x, t) =
|t|−σ

µ
n+2
2

0j

λ
n−2
2

0j

1 + ( |x|µ0j )2+α
1{|x|≤µ̄0j}

≈ µ−2
0j |t|

γj1{|x|≤µ0j} + µα0j |t|γj |x|−2−α1{µ0j≤|x|≤µ̄0j},
(4.20)

where γ1 = −1− σ and γj = n−2
2 αj−1 − σ for j = 2, . . . , k.

w21(x, t) = |t|−2σµ
n
2
−2

02 µ−1
01 |x|

2−n1{µ̄02≤|x|≤1},

w2j(x, t) = |t|−2σµ
n
2
−2

0,j+1µ
−1
0j |x|

2−n1{µ̄0,j+1≤|x|≤µ̄0j}, for j = 2, . . . , k − 1.
(4.21)

and
w3(x, t) = R|t|−1−σ|x|2−n1{|x|≥µ̄01}, (4.22)

where δ > 0 is a small constant.

Remark 4.3.1. These ad hoc weights are used to control the behavior of G in (3.14). There are four
terms in G, namely B[~φ] (the influence of inner problem), VΨ (linear term on Ψ), Eout (error comes
from ansatz Ū and mainly depends on ~µ1), N (higher order nonlinear term). Roughly speaking,
w1j will be used to control B[~φ] in the support of χj . Specially, w11 is also designed to control the
influence of w∗11 in {|x| ≥ µ̄01}. The regions between the support of χj of B[~φ] is controlled by w2j .
Also notice the support of B[~φ] is contained in {|x| ≤ 4Rµ01}. w3 is designed for controlling Eout

in {|x| ≥ µ̄01}. See Remark 4.7.1 how to control the other three terms.

Lemma 4.4. For j = 1, . . . , k, we have the following estimate:

T out [w1j ] . w
∗
1j :=


|t|γj if |x| ≤ µ0j ,

|t|γjµα0j |x|−α if µ0j ≤ |x| ≤ µ̄0j ,

|t|γjµα0jµ̄
n−2−α
0j |x|2−n if µ̄0j ≤ |x| ≤ |t|

1
2 ,

|x|2γ
∗
j+2−n if |x| ≥ |t|

1
2 .

(4.23)

where γ∗j = (1− n
2 )αj − α

2 (αj − αj−1)− σ for j = 2, . . . , k and γ∗1 = γ1 + (n− 2− α)δ.

Here γ∗j satisfies |t|γjµα0jµ̄
n−2−α
0j ≈ |t|γ

∗
j for simplicity. Approximately, w∗1j is like a radially

non-increasing function about |x| for every fixed t up to a constant multiplicity, that is

w∗1j ≈ min{|t|γj , |t|γj−ααj |x|−α, |t|γ
∗
j |x|2−n, |x|2γ

∗
j+2−n}. (4.24)
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Similarly, we have the following fact.

Lemma 4.5. We have the following estimates:

T out[w21] . w∗21 :=


|t|−2σ if |x| ≤ µ̄02,

|t|−2σµ̄n−4
02 |x|4−n if µ̄02 ≤ |x| ≤ 1,

|t|−2σµ̄n−4
02 |x|2−n if 1 ≤ |x| ≤ |t|

1
2 ,

(|x|2)−2σ−(n
2
−2)α2 |x|2−n if |x| ≥ |t|

1
2 .

(4.25)

and for j = 2, . . . , k − 1,

T out[w2j ] . w
∗
2j :=



|t|−2σµ
1−n

2
0j if |x| ≤ µ̄0,j+1,

|t|−2σµ
n
2
−2

0,j+1µ
−1
0j |x|

4−n if µ̄0,j+1 ≤ |x| ≤ µ̄0j ,

|t|−2σµ
n
2
−2

0,j+1µ0,j−1|x|2−n if µ̄0j ≤ |x| ≤ |t|
1
2 ,

(|x|2)−2σ−(n
2
−2)αj+1−αj−1 |x|2−n if |x| ≥ |t|

1
2 .

(4.26)

Lemma 4.6. For δ ≤ 1
2 , we have the following estimate:

T out[w3] . w∗3 := R


|t|−1−σµ̄4−n

01 if |x| ≤ µ̄01,

|t|−1−σ|x|4−n if µ̄01 ≤ |x| ≤ |t|
1
2 ,

|t|−σ|x|2−n if |x| ≥ |t|
1
2 .

(4.27)

Remark 4.6.1. Just like (4.24), w∗2j , j = 1, . . . , k − 1, w∗3 are approximate to some non-increasing
functions about |x| for every fixed t.

The proofs of Lemma 4.4, 4.5 and 4.6 are deferred to subsection B.2 in the appendix.

For a function h = h(x, t), we define the weighted L∞ norm ‖h‖outα,σ, ‖h‖out,∗α,σ as the following
form respectively.

‖h‖outα,σ := inf

K ∣∣∣ |h(x, t)| ≤ K

 k∑
j=1

w1j +
k−1∑
j=1

w2j + w3

 (x, t), Rn × (−∞, t0)

 .

(4.28)

‖h‖out,∗α,σ := inf

K ∣∣∣ |h(x, t)| ≤ K

 k∑
j=1

w∗1j +

k−1∑
j=1

w∗2j + w∗3

 (x, t), Rn × (−∞, t0)

 .

(4.29)

Using Lemma 4.4, 4.5 4.6 and Lemma A.3-A.8, we get the following proposition:

Proposition 4.7. Suppose that σ, ε > 0 is chosen small enough, ‖~µ1‖σ ≤ 1 and t0 is negative enough.
Then there exists a constant Cout > 0, independent of R and t0, such that ∂tψ = ∆xψ + G[~φ,Ψ, ~µ1]

has a solution T out[G[~φ,Ψ, ~µ1]] in Rn × (−∞, t0) satisfying

‖T out[G[~φ,Ψ, ~µ1]]‖out,∗α,σ ≤ CoutRα−a
(

1 + ‖~φ‖in,∗a,σ + ‖Ψ‖out,∗α,σ + (‖~φ‖in,∗a,σ )p + (‖Ψ‖out,∗α,σ )p
)

where G is defined in (3.14) and T out[g] is given by (4.19).

Remark 4.7.1. There are some subtlety to bound VΨ. Some term in VΨ can not be much smaller
thanw1j in the sense ofL∞(see (A.37)). Thanks to its narrow support, we could still get the smallness
when applying T out to it. The estimate of N and Eout are straightforward.
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5. ORTHOGONAL EQUATIONS

In this section, we deal with the orthogonal equations�
B8R

Hj [Ψ, ~µ1](y, t)Zn+1(y)dy = 0, for j = 1, . . . , k. (5.1)

Lemma 5.1. (5.1) is equivalent to{
µ̇11 = M1[Ψ, ~µ1](t),

µ̇1j + n−4
2

αj
t µ1j − n−2

2
αj
t λ0jµ1,j−1 = Mj [Ψ, ~µ1](t), for j = 2, . . . , k,

(5.2)

where Mj are given in (5.4) and (5.7).

Proof. For j = 1, using (3.13) and (2.27), (5.1) is equivalent to

µ̇11 = M1[Ψ, ~µ1](t), (5.3)

where

M1[Ψ, ~µ1](t) = − µ
n−2
2

1

1 + µ11

�
B8R

ζ1(µ1y)pU(y)p−1Zn+1(y)Ψ(µ1y, t)dy�
B8R

Z2
n+1(y)dy

. (5.4)

For j = 2, . . . , k, by (3.13) and (2.25), (5.1) is equivalent to

µ̇0jµ1j(t) + µ0jµ̇1j(t) +
n− 2

2

U(0)
�
B8R

pUp−1(y)Zn+1(y)dy�
B8R

Z2
n+1(y)dy

λ
n−2
2

0j

(
µ1j

µ0j
− µ1,j−1

µ0,j−1

)

= −
µ
n−2
2

j

�
B8R

ζj(µjy)pU(y)p−1Zn+1(y)Ψ(µjy, t) dy�
B8R

Z2
n+1(y) dy

. (5.5)

Since |Zn+1(y)| . 〈y〉2−n,�
B8R

pUp−1(y)Zn+1(y)dy =

�
Rn
pUp−1(y)Zn+1(y)dy +O

(
R−2

)
,

�
B8R

Z2
n+1(y)dy =

�
Rn
Z2
n+1(y)dy +O

(
R4−n) .

It follows that

−
U(0)

�
B8R

pUp−1(y)Zn+1(y)dy�
B8R

Z2
n+1(y)dy

= c∗ +O
(
R−2

)
,

where c∗ is the positive constant defined in (2.18). Notice the fact that

µ̇0j

µ0j
=
αj
−t
,

c∗λ
n−2
2

0j

µ2
0j

=
µ̇0j

µ0j
for j = 2, . . . , k.

We can simplify (5.5) to

µ̇1j +
n− 4

2

αj
t
µ1j −

n− 2

2

αj
t
λ0jµ1,j−1 = Mj [Ψ, ~µ1](t), (5.6)

where

Mj [Ψ, ~µ1](t) = −
µ
n−2
2

j

µ0j

�
B8R

ζj(µjy)pU(y)p−1Zn+1(y)Ψ(µjy, t) dy�
B8R

Z2
n+1(y) dy

+µ̇0j

(
µ1j

µ0j
− µ1,j−1

µ0,j−1

)
O(R−2).

(5.7)
�
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In order to solve (5.2) by the fixed point theorem, we reformulate (5.2) as the following mapping.
Let us define ~S[Ψ, ~µ1] = (S1[Ψ, ~µ1], . . . ,Sk[Ψ, ~µ1]) where and

S1[Ψ, ~µ1](t) =

� t

−∞
M1[Ψ, ~µ1](s) ds,

Sj [Ψ, ~µ1](t) = (−t)−
n−4
2
αj

� t

t0

(−s)
n−4
2
αj

(
n− 2

2

αj
s
λ0j(s)Sj−1[Ψ, ~µ1](s) +Mj [Ψ, ~µ1](s)

)
ds,

(5.8)
for j = 2, . . . , k.

For a constant b and a function g(t), we define

‖g‖#b := sup
t≤t0
|(−t)bg(t)|. (5.9)

We introduce the norm about ~µ1:

‖~µ1‖σ :=
k∑
i=1

(
‖µ̇1i‖#1+αi+σ

+ ‖µ1i‖#αi+σ
)
, (5.10)

where σ > 0.

Lemma 5.2. Suppose Ψ and ~µ1 satisfy ‖Ψ‖out,∗α,σ <∞, ‖~µ1‖σ ≤ 1, 0 < σ < 1 respectively, when t0
is very negative, there exists CS such that

‖ ~S[Ψ, ~µ1]‖σ ≤ CS(‖Ψ‖out,∗α,σ +O(R−2)). (5.11)

Proof. Note that the support of ζ1 is contained in {R−1µ01 ≤ |x| ≤ 2Rµ01}. By Lemma A.5 and
A.6, we have |Ψ| . (w∗11 + w∗12 + w∗21)‖Ψ‖out,∗α,σ . |t|−1−σ‖Ψ‖out,∗α,σ . Then using (5.4), we have

|M1[Ψ, ~µ1]| . |t|−1−σ‖Ψ‖out,∗α,σ . (5.12)

By (5.8), we have

‖Ṡ1[Ψ, ~µ1]‖#1+σ + ‖S1[Ψ, ~µ1]‖#σ . ‖Ψ‖out,∗α,σ . (5.13)

Similarly, for j = 2, . . . , k, the support of ζj is contained in {R−1µ0j ≤ |x| ≤ 2Rµ0j}. By Lemma
A.5 and A.6, we have

|Ψ| . (w∗1j + w∗1,j+1 + w∗2j + w∗2,j−1)‖Ψ‖out,∗α,σ . |t|γj‖Ψ‖out,∗α,σ ,

where w∗1,j+1, w∗2j are vacuum if j = k.

Then using (5.7), we have

|Mj [Ψ, ~µ1]| . |t|−σµ−1
0j λ

n−2
2

0j ‖Ψ‖
out,∗
α,σ + |t|−1−αj−σO(R−2) . |t|−αj−1−σ(‖Ψ‖out,∗α,σ +O(R−2)),

(5.14)

where we have used that µ0jµ̇0j = c∗λ
n−2
2

0j .

We will prove

‖Ṡj [Ψ, ~µ1]‖#1+αj+σ
+ ‖Sj [Ψ, ~µ1]‖#αj+σ . ‖Ψ‖

out,∗
α,σ +O(R−2), (5.15)

by induction. The case j = 1 has been proved.
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Suppose we have proved ‖Ṡj−1[Ψ, ~µ1]‖#1+αj−1+σ + ‖Sj−1[Ψ, ~µ1]‖#αj−1+σ . ‖Ψ‖
out,∗
α,σ +O(R−2)

by induction. Consequently
∣∣s−1λ0j(s)Sj−1(s)

∣∣ . (−s)−αj−1−σ
(
‖Ψ‖out,∗α,σ +O(R−2)

)
. Now us-

ing (5.8) and (5.14),

|Sj [Ψ, ~µ1]| . (−t)−
n−4
2
αj

� t

t0

(−s)
n−4
2
αj (−s)−αj−1−σds(‖Ψ‖out,∗α,σ +O(R−2))

. (−t)−αj−σ(‖Ψ‖out,∗α,σ +O(R−2)),

(5.16)

where we have used σ < 1 = min2≤j≤k{n−6
2 αj}. Similarly, we can get

|Ṡj [Ψ, ~µ1]| . (−t)−1−αj−σ(‖Ψ‖out,∗α,σ +O(R−2)).

This completes the induction. �

6. THE SCHAUDER FIXED POINT ARGUMENT

In this section, we will solve the system (3.11)-(3.12) by fixed point argument. We need to set
up appropriate topology and operators. Recall (4.4), (4.3) and (4.8) in the previous section. When

ν(τ) = (−t)γjµ
n−2
2

0j , we write

‖〈y〉∇φ‖in,∗ν(τ),a + ‖φ‖in,∗ν(τ),a = ‖φ‖in,∗j,a,σ, ‖h‖inν(τ),a = ‖h‖inj,a,σ, T inν(τ) = T inj (6.1)

for short, where 0 < a < 1, γ1 = −1− σ and γj = n−2
2 αj−1 − σ, j = 2, . . . , k.

Now we state precisely the topology we are going to use. Suppose σ is small enough and 0 < α <
a < 1. Define

‖~φ‖in,∗a,σ :=
k∑
j=1

‖φj‖in,∗j,a,σ. (6.2)

We will cope with ~φ, Ψ, ~µ1 in the topology (6.2), (4.29) and (5.10) respectively.

The following lemma justifies why we choose ν(τ) = (−t)γjµ
n−2
2

0j .

Lemma 6.1. For any R > 0 large, there exists t0 negative enough such that for t < t0 one has

|Hj(x, t)| ≤ CHµ
n−2
2

0j (−t)γj 〈yj〉−4(‖~µ1‖σ + ‖Ψ‖out,∗α,a ), j = 1, · · · , k. (6.3)

Proof. By (5.10), we have

|D1[~µ1]| .|µ̇11Zn+1(y1)| . (−t)γ1〈y1〉2−n‖~µ1‖σ,

|Dj [~µ1]| .λj(t)
n−2
2 (−t)−σ(|Zn+1(yj)|+ 〈yj〉−4)‖~µ1‖σ . µ

n−2
2

0j (−t)γj 〈yj〉−4‖~µ1‖σ,
(6.4)

for j = 2, . . . , k. By the same estimate in Lemma 5.2, we have

|ζjU(yj)
p−1µ

n−2
2

j Ψ| . µ
n−2
2

0j (−t)γj 〈yj〉−4‖Ψ‖out,∗α,a , j = 1, . . . , k. (6.5)

�

We reformulate the inner-outer gluing system and the orthogonal equation into the mapping ~T :

(~φ,Ψ, ~µ1) = ~T [~φ,Ψ, ~µ1], (6.6)
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where ~T = (~T 1, T 2, ~T 3), ~T 1 = (~T 1
1 , . . . ,

~T 1
k ), ~T 3 = (~T 3

1 , . . . ,
~T 3
k ), with the following expressions,

~T 1
j [Ψ, ~µ1] = T inj [Hj [Ψ, ~µ1]− cj [Ψ, ~µ1]Zn+1], j = 1, . . . , k, (6.7)

T 2[~φ,Ψ, ~µ1] = T out[G[~φ,Ψ, ~µ1]], (6.8)
~T 3
j [Ψ, ~µ1] = Sj [Ψ, ~µ1], j = 1, . . . , k. (6.9)

where cj [Ψ, ~µ1] (t) = ‖Zn+1‖−2
L2(B8R)

�
B8R
Hj [Ψ, ~µ1] (y, t)Zn+1(y) dy. Here T inj in (6.7) is ob-

tained from (4.8). It is well-defined becauseHj − cjZn+1 satisfies (4.7). Denote

Bout = {Ψ | ‖Ψ‖out,∗α,σ ≤ R−2ρ}, Bin = {~φ | ‖~φ‖in,∗a,σ ≤ 1}, Bmu = {~µ1 | ‖~µ1‖σ ≤ R−ρ},
(6.10)

where 0 < 2ρ ≤ a−α
2 is a small constant.

Proof of Theorem 1.4: • Existence part. Fix 0 < α < a < 1. We choose σ, ε > 0 small enough such
that Proposition 4.7 holds. Let B = Bin × Bout × Bmu, then we claim that ~T maps B to B provided
taking R large enough and t0 negative enough.

First, for any fixed Ψ ∈ Bout, ~µ1 ∈ Bmu. Applying (4.9) with h = Hj and ν(τ) = (−t)γjµ
n−2
2

0j ,
Lemma 6.1 implies that

‖~T 1[Ψ, ~µ1]‖in,∗a,σ ≤
k∑
j=1

Cinj,aC
H(R−ρ +R−2ρ) ≤ 1 (6.11)

provided taking R large enough.

Second, for any fixed ~φ ∈ Bin, ~µ1 ∈ Bmu, by Proposition 4.7, there exists t0 = t0(R) negative
enough such that

‖T 2[~φ,Ψ, ~µ1]‖out,∗α,σ ≤ CoutRα−a(3 + 2e−ρ) ≤ R−2ρ.

Third, for any fixed ~φ ∈ Bin, Ψ ∈ Bout. It follows from Lemma 5.2 that

‖~T 3[Ψ, ~µ1]‖σ ≤ CS(R−2ρ +O(R−2)) ≤ R−ρ. (6.12)

Therefore ~T : B → B.

Next we need to show ~T is a compact mapping. Thus for any sequence (~φm,Ψm, ~µm1 ) ∈ B,
where ~φm = (φm1 , . . . , φ

m
k ), ~µm1 = (µm1 , . . . , µ

m
k ), we have to show ~T [~φm,Ψm, ~µm1 ] has a convergent

subsequence. Let us consider first the sequence φ̃mj = T inj [Hj [Ψm, ~µm1 ] − cj [Ψm, ~µm1 ]Zn+1]. It
satisfies

∂τ φ̃
m
j = ∆yφ̃

m
j + hmj (y, τ), hmj = Hj [Ψm, ~µm1 ]− cj [Ψm, ~µm1 ]Zn+1.

Using Lemma 6.1 and interior estimate of parabolic equations, we get that in any compact set K ⊂
B8R × (−∞, t0), we have φ̃mj ∈ C1+γ, 1+γ

2 in K for each fixed γ ∈ (0, 1). Thus φ̃mj and ∇yφ̃mj
are equi-continuous in K. By Arzelà-Ascoli theorem, going to a subsequence if necessary, φ̃mj will
converge uniformly in compact sets of B8R × (−∞, t0). Since φ̃mj ∈ Bin, then the limit will also
belong to Bin.

Second, consider Ψ̃m = T out[G[~φm,Ψm, ~µm1 ]]. Since G[~φm,Ψm, ~µm1 ] are uniformly bounded, Ψ̃m

have a uniform C1+γ, 1+γ
2 bound in compact sets of Rn × (−∞, t0). By Arzelà-Ascoli theorem, Ψ̃m

(up to a subsequence) converges uniformly to a function Ψ̃ ∈ Bout.
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Third, consider S[Ψm, ~µm1 ]. Note that (5.4) and (5.7) imply M1[Ψm, ~µm1 ] and Mj [Ψ
m, ~µm1 ] are

C1(−∞, t0). Thus S[Ψm, ~µm1 ] ∈ C2(−∞, t0). Consequently S[Ψm, ~µm1 ] has a convergent subse-
quence in Bmu.

By Schauder’s fixed point theorem, ~T : B → B has a fixed point (~φ,Ψ, ~µ1). Then (6.9) implies
cj [Ψ, ~µ1] = 0 and consequently (~φ,Ψ, ~µ1) makes (3.11) and (3.12) hold.

We have constructed a bubble tower solution for (1.1). Recall that u = Ū +ϕ0 +
∑k

j=1 ϕjηj + Ψ.
One can see (1.20), (2.6) and (3.6) for their respective definitions. We shall prove that Ū dominates
in the sum in the sense of L∞ and H1 when t0 is negative enough.

• Convergence in L∞(Rn) and positiveness. It is easy to see the first approximation and inner
solutions are smaller than Ū . Namely, by Lemma A.2, we know |ϕ0| . |t|−εŪ . For j = 1, . . . , k, by
(A.12) and (6.10),∣∣∣∣µ−n−2

2
j φj(

x

µj
, t)ηj

∣∣∣∣ . |t|γjRn+1−a〈yj〉−n−11{|x|≤4Rµ0j}

≈ µ
n−2
2

j |t|γjRn+1−a〈yj〉−31{|x|≤4Rµ0j}Uj(x, t) . |t|
−σUj(x, t).

The solution Ψ in the outer problem is more involved to estimate. First, by (6.10), we have

|Ψ| .
k∑
j=1

w∗1j +

k−1∑
j=1

w∗2j + w∗3.

We will estimate it in several regions. We will use Lemma A.5 and A.6 repeatedly in the following
argument.

In {|x| ≤ µ̄0k}, we have

|Ψ| . w∗1k + w∗2,k−1 . |t|γk ≈ |t|γkµ
n−2
2

k 〈yk〉n−2Uk(x, t) . |t|−σUk(x, t).

In {µ̄0,i+1 ≤ |x| ≤ µ̄0i}, i = 2, . . . k − 1, we have

|Ψ| . w∗1i + w∗1,i+1 + w∗2i + w∗2,i−1

≈ (w∗1i + w∗1,i+1 + w∗2i + w∗2,i−1)µ
n−2
2

i 〈yi〉n−2Ui(x, t) . |t|−σUi(x, t).

This is because

w∗1iµ
n−2
2

i 〈yi〉n−2 . |t|γiµ
n−2
2

i (
µ̄0i

µi
)n−2 . |t|−σ,

w∗1,i+1µ
n−2
2

i 〈yi〉n−2 . |t|γi+1 µ̄n−2
i+1 |x|

2−nµ
n−2
2

i 〈yi〉n−2 . |t|γi+1 µ̄n−2
i+1 µ

n−2
2

i µ̄2−n
0,i+1 . |t|

−σ,

w∗2iµ
n−2
2

i 〈yi〉n−2 ≈ |t|−2σµ
n
2
−2

i+1 µ
n
2
−2

i |x|4−n〈yi〉n−2

. |t|−2σµ
n
2
−2

i+1 µ
n
2
−2

i

(
µ̄4−n

0,i+1 + µ̄2
0iµ

2−n
i

)
. |t|−2σ,

w∗2,i−1µ
n−2
2

i 〈yi〉n−2 . |t|−2σµ
1−n

2
i−1 µ

n−2
2

i (
µ̄0i

µi
)n−2 . |t|−2σ.

In {µ̄02 ≤ |x| ≤ µ̄01}, similarly, we have

|Ψ| . (w∗11 + w∗12 + w∗21)(1 + |x|)n−2U1(x, t) . |t|−σU1(x, t),
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since for δ ≤ (n− 2− α)−1,

w∗11(1 + |x|)n−2 . |t|γ1〈x〉−α(1 + |x|)n−2 . |t|γ1 |t|δ(n−2−α) = |t|−σ,
w∗12(1 + |x|)n−2 . |t|γ2 µ̄n−2

2 |x|2−n(1 + |x|)n−2 . |t|−σ,
w∗21(1 + |x|)n−2 . |t|−2σµ̄n−4

2 |x|2−n min{1, |x|2}(1 + |x|)n−2 . |t|−2σ.

In {µ̄01 ≤ |x| ≤ |t|
1
2 },

|Ψ| . w∗11 + w∗3 . |t|−
σ
2U1(x, t).

In {|x| ≥ |t|
1
2 },

|Ψ| . w∗3 . |t|−
σ
2U1(x, t).

Therefore |Ψ| . |t|−
σ
2 Ū .

Combining the above analysis, we have u = Ū(1 + O(|t|−ε)) > 0. By the parabolic regularity
theory, we improve the regularity of u to be smooth.

• Convergence in H1(Rn). The solution we construct is u = Ū + ϕ0 + ϕ, where ϕ0 is from (2.6)
and ϕ is from (3.6). Set ϕ̄ = ϕ0 +ϕ. We have already proved |ϕ̄| . |t|−εŪ . Formally, we can expect
|∇xϕ̄| . |t|−ε|∇xŪ |. Note that ϕ̄ satisfies

∂tϕ̄ = ∆xϕ̄+ f(x, t) (6.13)

where f(x, t) =
(
Ū + ϕ̄

)p −∑k
j=1 U

p
j −

∑k
j=1 ∂tUj . It follows that

|f(x, t)| .


|t|−εµ−

n+2
2

0k 〈y0k〉−n−2 + µ
−n

2
0k |µ̇0k|〈y0k〉2−n if |x| ≤ µ̄0k,

|t|−εµ−
n+2
2

0j 〈y0j〉−n−2 + µ
−n

2
0j |µ̇0j |〈y0j〉2−n if µ̄0,j+1 ≤ |x| ≤ µ̄0j , j = 2, . . . , k − 1,

|t|−ε〈x〉−n−2 + |t|−1−σ〈x〉2−n if |x| ≥ µ̄02,

≈



|t|−εµ−
n+2
2

0k if |x| ≤ µ0k,

|t|−εµ−
n+2
2

0j if µ̄0,j+1 ≤ |x| ≤ µ0j , j = 2, . . . , k − 1,

|t|−εµ
n+2
2

0j |x|−n−2 if µ0j ≤ |x| ≤ µ̄0j , j = 2, . . . , k,

|t|−ε if µ̄02 ≤ |x| ≤ 1,

|t|−ε|x|−n−2 + |t|−1−σ|x|2−n if 1 ≤ |x|.

since |t|−εµ−
n+2
2

0j 〈y0j〉−n−2 & µ
−n

2
0j |µ̇0j |〈y0j〉2−n in {µ̄0,j+1 ≤ |x| ≤ µ̄0j}, j = 2, . . . , k when ε is

small.

By the similar argument about uniqueness in Corollary 4.3, we know

ϕ̄ = T out[f ].

Then

|∇xϕ̄| . T d[|f |], (6.14)

where

T d[g] :=

� t

−∞

ds

(t− s)
n
2

+1

�
Rn
e
− |x−y|

2

4(t−s) |x− y|g(y, s) dy ds.

Claim:

|∇xϕ̄| . |t|−ε
n∑
j=1

µ
−n

2
0j 〈y0j〉1−n. (6.15)
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Notice µ
−n

2
0j 〈y0j〉1−n is approximate to |∇xUj(x, t)|. Once we complete the proof of (6.15), it is

straightforward to have ‖u(·, t)− Ū‖H1(Rn) = O(|t|−ε).

By Lemma B.6, for j = 2, . . . , k − 1, we get

T d[|t|−εµ−
n+2
2

0j 1{µ̄0,j+1≤|x|≤µ0j}] .


|t|−εµ−

n
2

0j if |x| ≤ µ0j ,

|t|−εµ
n
2
−1

0j |x|1−n if µ0j ≤ |x| ≤ |t|
1
2 ,

(|x|2)−ε−αj(
n
2
−1)|x|1−n if |t|

1
2 ≤ |x|.

. |t|−εµ−
n
2

0j 〈y0j〉1−n.

Similarly,

T d[|t|−εµ−
n+2
2

0k 1{|x|≤µ0k}] . |t|
−εµ

−n
2

0k 〈y0k〉1−n,

T d[|t|−ε1{µ̄02≤|x|≤1}] . |t|−εµ
−n

2
01 〈y01〉1−n.

For j = 2, . . . , k,

T d[|t|−εµ
n+2
2

0j |x|
−n−21{µ0j≤|x|≤µ̄0j}] .


|t|−εµ−

n
2

0j if |x| ≤ µ0j ,

|t|−εµ
n
2
−1

0j |x|1−n if µ0j ≤ |x| ≤ |t|
1
2 ,

(|x|2)−ε−αj(
n
2
−1)|x|1−n if |x| ≥ |t|

1
2 ,

. |t|−εµ−
n
2

0j 〈y0j〉1−n.

Similarly,

T d[|t|−ε|x|−n−21
{1≤|x|≤|t|

1
2 }

] . |t|−εµ−
n
2

01 〈y01〉1−n.

The left part can be transformed into the estimate in Appendix.

T d[
[
|t|−ε|x|−n−21

{|t|
1
2≤|x|}

+ |t|−1−σ|x|2−n1{1≤|x|}
]
]

.
� t

−∞

ds

(t− s)
n+1
2

�
Rn
e
− |x−y|

2

8(t−s)
[
(−s)−ε|y|−n−31

{(−s)
1
2≤|y|}

+ (−s)−1−σ|y|1−n1{1≤|y|}
]
|y|dy ds

.
(
|t|−1−ε + |t|−σ

)
µ
−n

2
01 〈y01〉1−n,

whose estimate process is similar to the convolution of Gaussian kernel in Rn+1.

This completes the proof of (6.15). �
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APPENDIX A. ESTIMATES FOR THE DATA IN THE OUTER PROBLEM

We will prove Proposition 4.7 in this section. Throughout this section, we assume ‖Ψ‖out,∗α,σ +

‖~φ‖in,∗a,σ <∞, ‖~µ1‖σ ≤ 1.

The parameters are determined in the following order. First, we choose R as a large fixed positive
constant. Second, we choose σ > 0 small. Third, we choose δ > 0 small. Fourth, we choose



BUBBLE TOWERS IN THE ANCIENT SOLUTION 23

ε > 0 small. Finally, we take t0 very negative such that µj ≈ µ0j , for j = 1, . . . , k, µ̇j ≈ µ̇0j for
j = 2, . . . , k.

We introduce the notation yj = x/µj , ȳj = x/µ̄j , y0j = x/µ0j , ȳ0j = x/µ̄0j for j = 1, . . . , k.
One readily sees that |yj | ≈ |y0j |, |ȳj | ≈ |ȳ0j | for j = 1, . . . , k.

Lemma A.1. Consider the Uj defined in (1.21). For j = 1, · · · , k − 1, one has

Uj < Uj+1 in {|x| < µ̄j+1} and Uj > Uj+1 in {|x| > µ̄j+1}. (A.1)

In {|x| ≤ µ̄0k},
Uk & Uk−1 > Uk−2 > · · · > U1. (A.2)

In {|x| ≥ µ̄02},
U1 & U2 > U3 > · · · > Uk. (A.3)

In {µ̄0,j+1 ≤ |x| ≤ µ̄0j}, j = 2, . . . , k − 1,

Uj & Uj+1 > Uj+2 > · · · > Uk, Uj & Uj−1 > Uj−2 > · · · > U1. (A.4)

Moreover
Uj+1

Uj
≈ λ−

n−2
2

j+1 〈yj+1〉−(n−2)1{|x|≤µ0j} + λ
n−2
2

j+1 1{|x|>µ0j} for j = 1, . . . , k − 1, (A.5)

Uj−1

Uj
≈ λ

n−2
2

j 〈yj〉n−21{|x|≤µ0,j−1} + λ
−n−2

2
j 1{|x|>µ0,j−1} for j = 2, . . . , k. (A.6)

Proof. (A.1)-(A.4) follow from that Uj+1

Uj
is strictly decreasing about |x| and Uj+1

Uj
(µ̄j+1) = 1, (see

Figure 1). Up to a multiplicity of the constant αn, Uj = µ
2−n
2

j (1 + |yj |2)
2−n
2 and

Uj+1 =
µ
n−2
2

j+1

(µ2
j+1 + |x|2)

n−2
2

=
µ
n−2
2

j+1 µ
2−n
j

(λ2
j+1 + |yj |2)

n−2
2

, (A.7)

then

Uj+1

Uj
= λ

n−2
2

j+1

(1 + |yj |2)
n−2
2

(λ2
j+1 + |yj |2)

n−2
2

≈ λ−
n−2
2

j+1 〈yj+1〉−(n−2)1{|x|≤µ0j} + λ
n−2
2

j+1 1{|x|>µ0j}, (A.8)

for j = 1, . . . , k − 1. This finishes the proof of (A.5). Similarly,

Uj−1

Uj
= λ

−n−2
2

j

(λ2
j + |yj−1|2)

n−2
2

(1 + |yj−1|2)
n−2
2

≈ λ
n−2
2

j 〈yj〉n−21{|x|≤µ0,j−1} + λ
−n−2

2
j 1{|x|>µ0,j−1} (A.9)

for j = 2, . . . , k. Then (A.6) holds. �

Lemma A.2. Consider ϕ0 defined in (2.6). One has |ϕ0| .
k∑
i=2

λiUiχi.

Proof. By (2.6) and (2.22), we have

|ϕ0| .
k∑
i=2

µ
−n−2

2
i−1 〈yi〉

−2χi. (A.10)

It follows from (2.4) that the support of χi are disjoint. More precisely, the support of χi is contained

in {λ
1
2
i+1 ≤ |yi| ≤ λ

− 1
2

i }. It is easy to verify that µ
−n−2

2
i−1 〈yi〉−2 . λiUi in this set. �
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FIGURE 1. Relation for three bubbles.

Lemma A.3. For 0 < α < a < 1, there existsR large enough and t0 negative enough such thatB[~φ]
defined in (3.8) satisfies

‖B[~φ ]‖outα,σ . R
α−a‖~φ‖in,∗a,σ (A.11)

Proof. By the definition (6.1) and (4.4),

〈yj〉|∇yjφj(yj , t)|+ |φj(yj , t)| . |t|γjµ
n−2
2

0j Rn+1−a〈yj〉−n−1‖φj‖in,∗j,a,σ. (A.12)

• First, using (3.7)

|µ̇j
∂ϕj
∂µj

ηj | =
∣∣∣∣µ̇jµ−n2j

(
n− 2

2
φj(yj , t) + yj · ∇yjφj(yj , t)

)
ηj

∣∣∣∣
. |µ̇j |µ−1

j (−t)γjRn+1−a〈yj〉−n−1ηj‖φj‖in,∗j,a,σ

. |t0|−εRn+1−aw1j‖φj‖in,∗j,a,σ.

(A.13)

Here we choose ε small such that |µ̇jµj | . |t|−ε for j = 1, . . . , k. We have used (4.20) in the last
step.

• Second, (A.12) implies that

|ϕj(x, t)| . |t|γjR−a‖φj‖in,∗j,a,σ for 2R ≤ |yj | ≤ 4R. (A.14)

Using (3.2), we obtain

|∆ηjϕj | . (Rµj)
−2|t|γjR−a‖φj‖in,∗j,a,σ1{2R≤|yj |≤4R} . R

α−aw1j‖φj‖in,∗j,a,σ. (A.15)

Similarly, we have

|∇xηj · ∇xϕj | . R−1µ−1
j |t|

γjµ−1
j R−1−a‖φj‖in,∗j,a,σ1{2Rµj≤|x|≤4Rµj} . R

α−aw1j‖φj‖in,∗j,a,σ (A.16)
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and

|∂tηjϕj | . R−1µ−2
j |µ̇j ||t|

γjR−a‖φj‖in,∗j,a,σ1{2R≤|yj |≤4R} . R
1+α−a|µ̇j |w1j‖φj‖in,∗j,a,σ

. R1+α−a|t0|−εw1j‖φj‖in,∗j,a,σ,
(A.17)

when |µ̇j | . |t|−ε for j = 1, . . . , k.

• Third, to estimate
∣∣∣p(up−1

∗ − Up−1
j )ϕjηj

∣∣∣. We only give calculation details for j = 2, . . . , k − 1

since the case j = 1 and j = k can be dealt with similarly. Consider it in {µ̄0,j+1 ≤ |x| ≤ 4Rµ0j}.
By Lemma A.1 and Lemma A.2,

U−1
j

∑
i 6=j

Ui + ϕ0

 ≥ 2−1U−1
j

∑
i 6=j

Ui

− λ 1
2
j > −

1

2
,

when t0 is very negative. Consequently u∗ > 1
2Uj . Thus by the mean value theorem and (A.5) and

(A.6),

|up−1
∗ − Up−1

j | . Up−1
j

(
Uj+1

Uj
+
Uj−1

Uj
+ λj

)
. µ−2

j 〈yj〉
−4

(
λ
−n−2

2
j+1 〈yj+1〉2−n1{µ̄0,j+1≤|x|≤µ0j} + λ

n−2
2

j+1 + λ
n−2
2

j 〈yj〉n−2 + λj

)
.

(A.18)

Therefore, using |ϕj | . |t|γjRn+1−a‖φj‖in,∗j,a,σ,∣∣∣p(up−1
∗ − Up−1

j )ϕjηj

∣∣∣1{µ̄0,j+1≤|x|≤4Rµj}

. Rn+1−aµ−2
j |t|

γjλ
−n−2

2
j+1 〈yj+1〉2−n1{µ̄0,j+1≤|x|≤µ0j}‖φj‖

in,∗
j,a,σ

+Rn+1−a(λ
n−2
2

j+1 + λ
n−2
2

j Rn−2 + λj)w1j‖φj‖in,∗j,a,σ

. Rn+1−a|t0|−ε(w2j + w1j)‖φj‖in,∗j,a,σ.

(A.19)

Here we have used the following fact.

Rn+1−aµ−2
j |t|

γjλ
−n−2

2
j+1 〈yj+1〉2−n1{µ̄0,j+1≤|x|≤µ0j}

≈ Rn+1−aλj+1λ
n
2
−1

j |t|σ|t|−2σµ
n
2
−2

j+1 µ
−1
j |x|

2−n1{µ̄0,j+1≤|x|≤µ0j}

. Rn+1−a|t0|−εw2j .

In {µ̄0,m+1 ≤ |x| ≤ µ̄0m}, m = j + 1, · · · , k, one has |up−1
∗ −Up−1

j | . Up−1
m ≈ µ−2

m 〈ym〉−4 and
|ϕj | . (−t)γjRn+1−a‖φj‖in,∗j,a,σ. Then it is easy to see∣∣∣p(up−1

∗ − Up−1
j )ϕjηj

∣∣∣ . Rn+1−a|t|γj−γmw1m‖φj‖in,∗j,a,σ . R
n+1−a|t0|−εw1m‖φj‖in,∗j,a,σ.

Taking t0 very negative such that |t0|−ε < Rα−n−1, we obtain (A.11). �

Recall Eout defined in (3.10). We reorganize the terms as the following.

Eout = Ē11 + Ē2 + Ē3 + Ē4 + Ē5 (A.20)
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where Ē11 is defined in (2.13), and

Ē2 =µ
−n+2

2
1 D1[~µ1](1− η1) +

k∑
j=2

µ
−n+2

2
j Dj [~µ1](χj − ηj) +

k∑
j=2

µ
−n+2

2
j Θj [~µ1]χj (A.21)

Ē3 =

k∑
j=2

p(Ūp−1 − Up−1
j )ϕ0jχj (A.22)

Ē4 =

k∑
j=2

(2∇xϕ0j · ∇xχj + ∆xχjϕ0j)−
k∑
j=2

∂t (ϕ0jχj) (A.23)

Ē5 =NŪ [ϕ0]. (A.24)

Lemma A.4. There exist σ, ε > 0 small and t0 negative enough, such that

Eout . R−1

 k∑
j=1

w1j +
k−1∑
j=1

w2j + w3

 .

Proof. • Estimate of Ē2. Consider the first term in Ē2. The support of 1− η1 is {|y01| ≥ 2R}. Since
we assume ‖~µ‖σ < 1, one has |µ̇11| ≤ ‖~µ1‖σ|t|−1−σ ≤ |t|−1−σ. Then using (2.27)

|µ−
n−2
2

1 D1[~µ1](1− η1)| . |t|−1−σ|x|2−n1{|x|≥2R} . R
4+α−nw11 +R−1w3 . R

−1 (w11 + w3) .

For j ≥ 2, the support of χj − ηj is contained in {|x| ≤ µ̄0,j+1} ∪ {2Rµ0j ≤ |x| ≤ µ̄0j}. In the
first set (it is vacuum if j = k), one has |χj − ηj | ≤ χ(2ȳ0,j+1) and 〈y0j〉 ≈ 1. It follows from (6.4)
that ∣∣∣∣µ−n+2

2
j Dj [~µ1](χj − ηj)

∣∣∣∣ . µ−2
j |t|

γjχ(2ȳ0,j+1) . |t|−εw1,j+1.

In the second set, since |y0j | ≥ 2R, then∣∣∣∣µ−n+2
2

j Dj [~µ1](χj − ηj)
∣∣∣∣ . µ−2

j |t|
γj |yj |−4 . R−1w1j .

It is straightforward to have

|µ−
n+2
2

j Θj [~µ1]χj | . |t|−σµ−2
j |t|

γj 〈yj〉−4χj . |t|−σw1j .

• Estimate of Ē3. In the support of χj , by Lemma (A.1), we have

|Ūp−1 − Up−1
j | . Up−1

j (
Uj+1

Uj
+
Uj−1

Uj
).

It follows from (2.7) and (2.22) that ϕ0j ≤ |t|γj+σ〈yi〉−2. Using (A.18), similar to (A.19), we get

|Ē3| .
k∑
j=2

λ
n−2
2

j |t|σw1j +
k−1∑
j=1

λj+1λ
n−2
2

j |t|2σw2j . |t0|−ε(
k∑
j=2

w1j +

k−1∑
j=1

w2j).

• Estimate of Ē4. Notice

|∇xχj | . µ̄−1
0j 1{ 1

2
µ̄0j<|x|<µ̄0j} + µ̄−1

0,j+11{ 1
2
µ̄0,j+1<|x|<µ̄0,j+1}.

|∆xχj | . µ̄−2
0j 1{ 1

2
µ̄0j<|x|<µ̄0j} + µ̄−2

0,j+11{ 1
2
µ̄0,j+1<|x|<µ̄0,j+1}.
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By (2.22), one has |ϕ0j | . |t|γj+σ〈yj〉−2, |∇xϕ0j | . λ
n−2
2

0j µ
−n

2
j 〈yj〉−3 ≈ µ−1

j |t|γj+σ〈yj〉−3, then

|∇xϕ0j · ∇xχj | . |t|σ
µj
µ̄j
w1j + |t|γj−γj+1+σ

(
µj+1

µj

) 1−α
2

w1,j+1 . |t0|−ε(w1j + w1,j+1).

|ϕ0j∆xχj | . |t|σ
µj
µ̄j
w1j + |t|

n−2
2

(αj−1−αj)+α
2

(αj+1−αj)+σw1,j+1 . |t0|−ε(w1j + w1,j+1).

where we have used that n−2
2 (αj−1 − αj) + α

2 (αj+1 − αj) = ( α
n−6 − 1)

(
n−2
n−6

)j−1
≤ α

n−6 − 1.

For ∂t(ϕ0jχj), we have

|∂t(ϕ0j)χj |+ |ϕ0j∂tχj | . |t|γj+σ−1〈yj〉−2 (χj + |∇xχj |) . |t|σ−1µ
2−α

2
j µ

α
2
j−1w1j . |t0|−εw1j .

• Estimate of Ē5. It follows from (2.10), (A.10) and p ∈ (1, 2) that

|NŪ [ϕ0]| . |ϕ0|p .
k∑
j=2

|t|(γj+σ)p〈yj〉−2pχpj ≈
k∑
j=2

|t|2(αj−1−αj)+σ〈yj〉2+α−2pµ−2
j |t|

γj 〈yj〉−2−αχpj .

If 2p ≥ 2 + α, it is easy to see |NŪ [ϕ0]| . |t0|−ε
∑k

j=2w1j .

If 2p < 2 + α,

|NŪ [ϕ0]| .
k∑
j=2

|t|
2−α+2p

2
(αj−1−αj)+σµ−2

j |t|
γj 〈yj〉−2−αχpj . |t0|

−ε
k∑
j=2

w1j .

• Estimate of Ē11. Regrouping the terms in (2.13), one obtain

Ē11 =
k∑
j=2

pUp−1
j

∑
l 6=j

Ul − Uj−1(0)

χj +
k∑
j=2

Ūp − k∑
i=1

Upi − pU
p−1
j

∑
l 6=j

Ul

χj
+

− k∑
j=2

(1− χj)∂tUj

+

Ūp − k∑
j=1

Upj

(1−
k∑
i=2

χi

)
:=J1 + J2 + J3 + J4.

(A.25)

Claim:

Ē11(x, t) . |t0|−ε
 k∑
j=1

w1j +

k−1∑
j=1

w2j + w3

 .

(1) Estimate of J1.

J1 =
k∑
j=2

pUp−1
j

 ∑
l 6=j,j−1

Ul

χj +

k∑
j=2

pUp−1
j (Uj−1 − Uj−1(0))χj .

We will bound each term in the above equation. Fix j ≥ 2. If i ≤ j − 2,

|pUp−1
j Uiχj | . µ−2

j 〈yj〉
−4µ

−n−2
2

j−2 χj . |t|−εw1j .
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If i ≥ j + 1, by Lemma A.1

|pUp−1
j Uiχj | . Upj

Uj+1

Uj
χj

. µ
−n+2

2
j 〈yj〉−n−2

(
λ
−n−2

2
j+1 〈yj+1〉2−n1{µ̄0,j+1≤|x|≤µ0j} + λ

n−2
2

j+1

)
χj

. µ
n−2
2

j+1 µ
−2
j |x|

2−n1{µ̄0,j+1≤|x|≤µ0j} + (
λj+1

λj
)
n−2
2 |t|σw1j

. |t|−ε(w2j + w1j)

(A.26)

when we choose σ small first and then chose ε small enough. Using |Uj−1 − Uj−1(0)|χj .
µ
−n−2

2
j−1 λj , we have

|pUp−1
j (Uj−1 − Uj−1(0))χj | . µ−2

j 〈yj〉
−4µ

−n−2
2

j−1 λjχj . |t|−εw1j . (A.27)

(2) Estimate of J2. By Lemma (A.1), we have∣∣∣∣∣∣Ūp −
k∑
i=1

Upi − pU
p−1
j

∑
l 6=j

Ul

∣∣∣∣∣∣χj .
(
Upj−1 + Upj+1

)
χj .

Therein,

Upj−1χj ≈ |t|
n+2
2
αj−1χj . |t|

n+2
2
αj−1µ2

j |t|−γj (
µ̄j
µj

)2+αw1jχj

≈ (
µj
µj−1

)
2−α
2 |t|σw1jχj . |t|−εw1j ,

and
Upj+1χj ≈ µ

n+2
2

j+1 |x|
−2−nχj . |t|2σµ3

j+1µj |x|−4w2jχj . |t|−εw2j ,

when we take σ small first and then take ε small enough.
(3) Estimate of J3. For j = 2, . . . , k, notice that

|∂tUj | = |µ̇jµ
−n

2
j Zn+1(yj)| . µ−2

j µ
−n−2

2
j−1 〈yj〉

2−n. (A.28)

The support of 1− χj is contained in {|x| ≤ µ̄0,j+1} ∪ {1
2 µ̄0j ≤ |x| < µ̄0j} ∪ {µ̄0j ≤ |x|}.

In the first set, it is easy to see 1− χj = χ(2|x|/µ̄0,j+1), then

|(1− χj)∂tUj | . (
µj+1

µj
)
2−α
2 (

µj
µj−1

)
n−2
2 |t|σw1,j+1χ(2|x|/µ̄0,j+1) . |t|−εw1,j+1.

In the second set,

|∂tUj |1{ 1
2
µ̄0j≤|x|<µ̄0j} .

(
µj
µj−1

)n−4−α
2

|t|σw1j1{ 1
2
µ̄0j≤|x|<µ̄0j} . |t0|

−εw1j .

In the third set, we split it further to be {µ̄0j ≤ |x|} = ∪jm=2{µ̄0m ≤ |x| ≤ µ̄0,m−1}∪{µ̄01 ≤
|x|}.

Since |yj | is very large in the third set, (A.28) implies |∂tUj | . µn−4
j µ

−n−2
2

j−1 |x|2−n. Note

that µn−4
j µ

−n−2
2

j−1 decreases about j up to some constant multiplicity. Then in {µ̄0m ≤ |x| ≤
µ̄0,m−1}, m = 2 . . . , j,

|∂tUj | . µn−4
m µ

−n−2
2

m−1 |x|
2−n . |t|−εw2,m−1.
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In {µ̄01 ≤ |x|}, we have

|∂tUj | . µn−4
2 |x|2−n . |t|−εw3.

(4) Estimate of J4. Recall the definition of χi in (2.4), we have the support of J4 is contained in
the set ∪km=3{1

2 µ̄0m ≤ |x| ≤ µ̄0m} ∪ {1
2 µ̄02 ≤ |x|}.

In {1
2 µ̄0m ≤ |x| ≤ µ̄0m}, for m = 3, . . . , k, by Lemma A.1, one has Um ≈ Um−1 ≈

µ
−n−2

2
m−1 � Ui for i 6= m,m− 1. Therefore

|J4|1{ 1
2
µ̄0m≤|x|≤µ̄0m} . µ

−n+2
2

m−1 1{ 1
2
µ̄0m≤|x|≤µ̄0m} . (

µm−1

µm
)
α−2
2 |t|σw1m . |t0|−εw1m.

In {1
2 µ̄02 ≤ |x|}, by Lemma A.1, when σ < (n− 6)−1,

|J4| . Up−1
1 U2

≈ µ
n−2
2

2

(
|x|2−n1{ 1

2
µ̄02≤|x|≤µ̄02} + |x|2−n1{µ̄02≤|x|≤1} + |x|−2−n1{1≤|x|≤µ̄01} + |x|−2−n1{µ̄01≤|x|}

)
. |t0|−ε (w12 + w21 + w11 + w3) .

�

Lemma A.5. There exist σ > 0 small enough and t0 negative enough, such that for t < t0,

(1) In {|x| ≤ µ̄0i}, i = 1, . . . , k, we have w∗1j . w
∗
1i for j = 1, . . . , i− 1 (it is vacuum if i = 1)

(2) In {µ̄0i ≤ |x|}, i = 1, . . . , k, we have w∗1j . w
∗
1i for j = i+ 1, . . . , k (it is vacuum if i = k).

(3) In {|x| ≤ µ̄0j}, w∗3 . w∗1j for j = 1, . . . , k. In {|x| ≥ |t|
1
2 }, w∗3 & w∗1j for j = 1, . . . , k

when δ ≤ (n− 2− α)−1.

Consequently,

k∑
j=1

w∗1j + w∗3 .


w∗1k if |x| ≤ µ̄0k,

w∗1i + w∗1,i+1 if µ̄0,i+1 ≤ |x| ≤ µ̄0i, i = 1, · · · , k − 1,

w∗11 + w∗3 if µ̄01 ≤ |x| ≤ |t|
1
2 ,

w∗3 if |x| ≥ |t|
1
2 .

(A.29)

Proof. (1) For j = 1, . . . , i − 1, in {|x| ≤ µ̄0i}, we have w∗1j(x, t) = |t|γj ≤ |t|γi−1 and w∗1i ≥
|t|γiµαi µ̄

−α
i . It is easy to verify |t|γi−1 . |t|γiµαi µ̄

−α
i if α < n− 6.

(2) For j = i+1, . . . , k, in {µ̄0i ≤ |x| ≤ |t|
1
2 },w∗1j(x, t) = |t|γjµαj µ̄

n−2−α
j |x|2−n ≈ |t|γ

∗
j |x|2−n ≤

|t|γ∗i |x|2−n ≈ w∗1i(x, t), because γ∗j is strictly decreasing on j, i.e.

γ∗1 > γ∗2 > · · · > γ∗k .

In {|x| ≥ |t|
1
2 }, we have w∗1j . w

∗
1i by the same reason.

(3) Due to (1), we only need to check w∗3 . w∗11 in {|x| ≤ µ̄01}. It is straightforward to have
R|t|−1−σ+δ(4−n) . |t|−1−σ〈x〉−α in {|x| ≤ µ̄01}. Due to (2), in {|x| ≥ |t|

1
2 }, we only need to check

w∗3 & w
∗
11, which is easy to get when δ ≤ (n− 2− α)−1. �

Lemma A.6. There exists t0 negative enough such that

(1) In {µ̄0,i+1 ≤ |x|}, we have w∗2j . w
∗
2i for j = i+ 1, . . . , k− 1 (it is vacuum if i = k, k− 1).

In {|x| ≤ µ̄0i}, we have w∗2,i−1 & w
∗
2j for j = 1, . . . , i− 2 (it is vacuum if i = 1, 2).
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(2) In {|x| ≥ µ̄01}, w∗2j . w∗3 for j = 1, . . . , k − 1.

Consequently

k−1∑
j=1

w∗2j .


w∗2,k−1 if |x| ≤ µ̄0k,

w∗2i + w∗2,i−1 if µ̄0,i+1 ≤ |x| ≤ µ̄0i, for i = 2, . . . , k − 1,

w∗21 if µ̄02 ≤ |x| ≤ µ̄01,

w∗3 if |x| ≥ µ̄01.

(A.30)

Proof. (1) In {µ̄0,i+1 ≤ |x| ≤ µ̄0i}, it follows from (4.26) that w∗2j = |t|−2σµ
n
2
−2

0,j+1µ0,j−1|x|2−n for

j = i+ 1, . . . , k − 1 and w∗2i = |t|−2σµ
n
2
−2

0,i+1µ
−1
0i |x|4−n.

w∗2i
w∗2j
& (

µ0,i+1

µ0,i+2
)
n
2
−2µ0,i+1

µ0i
≈ |t|(

n
2
−2)(αi+2−αi+1)−(αi+1−αi) & 1

where we have used that (n2 −2)(αi+2−αi+1)−(αi+1−αi) = (n−4)2+4
(n−6)2

(n−2
n−6)i−1. Thus w∗2j . w

∗
2i.

It is easy to see that w∗2j . w∗2i also holds in {|x| > µ̄0i}. This deduces the first part. The second
parts holds obviously by (4.26).

(2) In {µ̄01 ≤ |x| ≤ |t|
1
2 }, by the definition (4.26) and (4.27), it is easy to see that w∗2j . w∗3 for

j = 1, . . . , k − 1 since w2j∗ have more time decay than w∗3. In {|x| ≥ |t|
1
2 }, we have w∗2j . w∗3 by

the similar reason. �

Remark A.6.1. Lemma A.5 and A.6 help us consider much less terms in the topology of the outer
problem in some special domains.

Lemma A.7. There exist σ, ε > 0 small and t0 negative enough such that

‖T out[VΨ]‖out,∗α,σ . R
−1‖Ψ‖out,∗α,σ . (A.31)

Proof. Without loss of generality, we assume ‖Ψ‖out,∗α,σ = 1. By (3.9), we rewrite V as

V = pup−1
∗ (1−

k∑
j=1

ζj) +

k∑
j=1

ζjp(u
p−1
∗ − Up−1

j ). (A.32)

We shall handle terms respectively.

Consider the first term in (A.32). Using (3.3), the support of 1 −
∑k

j=1 ζj is ∪ki=2{Rµ0i ≤ |x| ≤
2R−1µ0,i−1} ∪ {Rµ01 ≤ |x|}.

• In {Rµ01 ≤ |x|}, we have pup−1
∗ . µ2

1|x|−4 ≤ R−1|x|−3 by Lemma A.1 and A.2. Split the
region into {Rµ01 ≤ |x| ≤ µ̄01} ∪ {µ̄01 ≤ |x| ≤ |t|

1
2 } ∪ {|x| ≥ |t|

1
2 }. In the first set, one has

|Ψ| . w∗11 + w∗12 + w∗21 by (A.29) and (A.30). Notice w∗12 + w∗21 . w∗11 in {Rµ01 ≤ |x| ≤ µ̄01}.
Therefore ∣∣pup−1

∗ (1−
k∑
j=1

ζj)Ψ
∣∣ . R−1|x|−3w∗11 . R

−1w11. (A.33)

In the second set, by (A.29) and (A.30), one has |Ψ| . w∗11 + w∗3. Then∣∣pup−1
∗ (1−

k∑
j=1

ζj)Ψ
∣∣ . R−1|x|−3(w∗11 + w∗3) . R−1(w11 + w3). (A.34)
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In the third set, similarly we have

∣∣pup−1
∗ (1−

k∑
j=1

ζj)Ψ
∣∣ . R−1|x|−3w∗3 . R−1w3. (A.35)

• Consider the region {Rµ0i ≤ |x| ≤ 2R−1µ0,i−1}, i = 2, . . . , k. We divide it further into
two parts, {Rµ0i ≤ |x| ≤ µ̄0i} ∪ {µ̄0i ≤ |x| ≤ 2R−1µ0,i−1}. In {Rµ0i ≤ |x| ≤ µ̄0i}, we have
pup−1
∗ . µ2

i |x|−4 by Lemma A.1 and A.2. Moreover, one has |Ψ| ≤ w∗1i +w∗1,i+1 +w∗2,i−1 +w∗2i by
Lemma A.5 and A.6. One readily has w∗1,i+1 . w

∗
1i in {Rµ0i ≤ |x| ≤ µ̄0i}. Thus

∣∣pup−1
∗ (1−

k∑
j=1

ζj)Ψ
∣∣ . µ2

i |x|−4
(
w∗1i + w∗1,i+1 + w∗2,i−1 + w∗2i

)
. µ2

i |x|−4
(
w∗1i + w∗2,i−1 + w∗2i

)
. R−1 (w1i + w2i) ,

(A.36)

where we have used the fact that in {Rµ0i ≤ |x| ≤ µ̄0i},

µ2
i |x|−4w∗1i . |t|γiµ2+α

i |x|−4−α . R−2w1i,

µ2
i |x|−4w∗2,i−1 . µ

2
i |x|−4|t|−2σµ

1−n
2

i−1 . R
α−2|t|−σw1i,

µ2
i |x|−4w∗2,i . µ

2
i |x|−4|t|−2σµ

n
2
−2

i+1 µ
−1
i |x|

4−n . R−2w2i.

In the other part {µ̄0i ≤ |x| ≤ 2R−1µ0,i−1}, we have pup−1
∗ . Up−1

i−1 . µ
−2
i−1 and w∗2,i−2 . w

∗
1,i−1

(which is vacuum if i = 2). Then

∣∣pup−1
∗ (1−

k∑
j=1

ζj)Ψ
∣∣ . µ−2

i−1

(
w∗1,i−1 + w∗1i + w∗2,i−2 + w∗2,i−1

)
. µ−2

i−1

(
w∗1,i−1 + w∗1i + w∗2,i−1

)
.
(
µ−2
i−1|t|

γi−11{|x|≤2R−1µi−1} +R−2w2,i−1

)
,

(A.37)

where we have used the fact that in {µ̄0i ≤ |x| ≤ 2R−1µ0,i−1},

µ−2
i−1w

∗
2,i−1 . µ

−2
i−1|t|

−2σµ
n
2
−2

i µ−1
i−1|x|

4−n . R−2|t|−2σµ
n
2
−2

i µ−1
i−1|x|

2−n . R−2w2,i−1,

µ−2
i−1w

∗
1i ≤ µ−2

i−1|t|
γiµαi µ̄

n−2−α
i |x|2−n . |t|γi+2σµ

α
2

+1

i µ
n−4−α

2
i−1 w2,i−1 . |t|−εw2,i−1.

By Lemma B.2,

T out[µ−2
i−1|t|

γi−11{|x|≤2R−1µ0,i−1}]

.


|t|γi−1R−2 if |x| ≤ R−1µ0,i−1,

µ−2
i−1|t|γi−1(R−1µi−1)n|x|2−n if R−1µ0,i−1 ≤ |x| ≤ |t|

1
2 ,

R−n(|x|2)(2−n)αi−1+γi−1 |x|2−n if |x| ≥ |t|
1
2 .

. R−1w∗1,i−1.

(A.38)

Next we consider the second term in (A.32). Recall the support of ζj (3.4) is contained in {R−1µ0j ≤
|x| ≤ 2Rµ0j}, which are mutually disjoint.
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• For j = 1, we have |ζ1(up−1
∗ − Up−1

1 )| . Up−1
2 ζ1 . µ2

2|x|−41{R−1µ01≤|x|≤2Rµ01} since ϕ0 = 0
in the support of ζ1. Then∣∣∣ζ1(up−1

∗ − Up−1
j )Ψ

∣∣∣ . µ2
2|x|−41{R−1µ01≤|x|≤2Rµ01} (w∗11 + w∗12 + w∗21) . |t|−εw11, (A.39)

where we have used the fact that in {R−1µ01 ≤ |x| ≤ 2Rµ01},
µ2

2|x|−4w∗11 . µ
2
2|x|−4|t|γ1(1 + |x|)−α ≤ R4µ2

2w11 ≤ R4|t|−2εw11,

µ2
2|x|−4w∗21 . µ

2
2|x|−4|t|−2σµ

n
2
−2

2 |x|2−n . Rn+2|t|−2εw11,

µ2
2|x|−4w∗12 . µ

2
2|x|−4|t|γ2µα2 µ̄n−2−α

2 |x|2−n . Rn+2|t|−2εw11.

• For j = 2, . . . , k, we have |ζj(up−1
∗ − Up−1

j )| . (Up−1
j−1 + Up−1

j+1 + ϕp−1
0j )|ζj | . µ−2

j−1|ζj | where
we have used the fact that ϕ0 = ϕ0jχj in {R−1µ0j ≤ |x| ≤ 2Rµ0j} and Uj+1 is vacuum if j = k.
Then∣∣∣ζj(up−1

∗ − Up−1
j )Ψ

∣∣∣ . µ−2
j−1

(
w∗1j + w∗1,j+1 + w∗2,j−1 + w∗2j

)
|ζj | . |t|−ε (w1j + w2j) , (A.40)

where we have used the fact that in {R−1µ0j ≤ |x| ≤ 2Rµ0j}, w∗2,j−1 . w
∗
1j and

µ−2
j−1w

∗
1j . µ

−2
j−1|t|

γj . λ2
j 〈yj〉2+αw1j . R

2+α|t|−2εw1j ,

µ−2
j−1w

∗
1,j+1 . µ

−2
j−1|t|

γj+1µαj+1µ̄
n−2−α
j+1 |x|2−n . µ−2

j−1µ
1−α

2
j µ

1+α
2

j+1 |t|
σw2j . |t|−εw2j ,

µ−2
j−1w

∗
2j . µ

−2
j−1|t|

−2σµ
n
2
−2

j+1 µ
−1
j |x|

4−n . µ−2
j−1(Rµi)

2w2j . R
2|t|−2εw2j .

Combining the above calculations of the two terms in (A.32), we get the conclusion. �

Lemma A.8. There exist σ, ε > 0 small and t0 negative enough such that

‖N [~φ,Ψ, ~µ1]‖outα,σ . |t0|−ε
(
‖~φ‖in,∗a,σ + ‖Ψ‖out,∗α,σ

)p
.

Proof. By (3.9) and some elementary inequality

|N [~φ,Ψ, ~µ1]| .
k∑
j=1

µ
−n+2

2
j |φj |pηj + |Ψ|p. (A.41)

For the first part on the RHS, recalling (A.12), we obtain

µ
−n+2

2
j |φj |pηj . |t|γjp

R(n+1−a)p

〈yj〉(n+1)p
1{|x|≤4Rµ0j}

(
‖φj‖in,∗j,a,σ

)p
. R(n+1−a)p|t|−2εw1j

(
‖φj‖in,∗j,a,σ

)p
.

(A.42)
For the second part on the RHS of (A.41),

• In {|x| ≥ µ̄01}, by (A.29), we have |Ψ| . (w∗11 + w∗3)‖Ψ‖out,∗α,σ in {µ̄01 ≤ |x| ≤ |t|
1
2 } and

|Ψ| . w∗3‖Ψ‖
out,∗
α,σ in {|x| > |t|

1
2 }. Notice

(w∗3)p = Rp−1|t|1+(1−p)σ|x|−4w3 . |t|−1w3 if |x| > |t|
1
2 ,

(w∗3)p = Rp−1|t|−(1+σ)(p−1)|x|−
2n−12
n−2 w3 . |t|−εw3 if µ̄01 ≤ |x| ≤ |t|

1
2 ,

(w∗11)p = R−1|t|−
4

n−2
(1+σ)+δ(n−2−pα)w3 . |t|−εw3 if µ̄01 ≤ |x| ≤ |t|

1
2 ,

where we take δ ≤ 2(n− 2)−2 in the last formula. Thus

|Ψ|p . |t|−εw3

(
‖Ψ‖out,∗α,σ

)p
. (A.43)
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• In {1 ≤ |x| ≤ µ̄01}, we have |Ψ| . (w∗11 + w∗12 + w∗21)‖Ψ‖out,∗α,σ . w∗11‖Ψ‖
out,∗
α,σ since

(w∗12 + w∗21)1{1≤|x|≤µ̄01} . w
∗
11. Therefore

|Ψ|p . (w∗11)p
(
‖Ψ‖out,∗α,σ

)p
. |t|−(1+σ) 4

n−2
+2δw11

(
‖Ψ‖out,∗α,σ

)p
. |t|−εw11

(
‖Ψ‖out,∗α,σ

)p
, (A.44)

for δ ≤ (n− 2)−1.

• In {µ̄02 ≤ |x| ≤ 1}, we have

(w∗11)p . |t|−(1+σ)p . |t|−εw11,

(w∗12)p . |t|γ2pµ̄n+2
2 |x|−n−2 . |t|γ2pµ̄n−2

2 |x|2−n . |t|−εw21,

(w∗21)p . |t|−2σpµ
(n
2
−2)p

2 |x|(4−n)p . |t|−2σpµ
n
2
−1

2 |x|2−n . |t|−εw21,

where we have used n− 2 ≤ (n− 4)p when n ≥ 6 in the last inequality. Then

|Ψ|p . [(w∗11)p + (w∗12)p + (w∗21)p](‖Ψ‖out,∗α,σ )p . |t|−ε(w11 + w21)(‖Ψ‖out,∗α,σ )p. (A.45)

• In {µ̄0,i+1 ≤ |x| ≤ µ̄0i}, i = 2, . . . , k, we have

(w∗1i)
p . |t|γip〈yi〉−αp . µ2

i |t|γi(p−1)〈yi〉2+α−αpw1i . |t|−σ(p−1)µiµ
−1
i−1w1i . |t|−εw1i

provided ε < 2
n−6 .

(w∗1,i+1)p . |t|pγi+1 µ̄n+2
i+1 |x|

−n−2 . µ
−n+2

2
i |t|−σpµ̄n−2

i+1 |x|
2−n

≈ λi+1µ
n
2
−2

i+1 µ
−1
i |t|

−σp|x|2−n . |t|−εw2i

provided ε < −2σ + σp+ 2
n−6 .

(w∗2,i−1)p . |t|−2σpµ
−n+2

2
i−1 . |t|−2σpµ

−n+2
2

i−1 (
µ̄i
µi

)2+α〈yi〉−2−α (A.46)

. |t|−2σp(
µi
µi−1

)1−α
2 µ−2

i µ
1−n

2
i−1 〈yi〉

−2−α . |t|−εw1i (A.47)

provided ε < 1
n−6 .

(w∗2i)
p . |t|−2σpµ

(n
2
−2)p

i+1 µ−pi |x|
(4−n)p . |t|−2σpµ

(n
2
−2)p

i+1 µ−pi |x|
2−nµ̄

(4−n)p−(2−n)
i+1 (A.48)

≈ λj+1|t|−2σpµ
n
2
−2

i+1 µ
−1
i |x|

2−n . |t|−εw2i (A.49)

provide ε < 2
n−6 . Here we have used (4− n)p− (2− n) ≤ 0 when n ≥ 6.

Therefore, for i = 2, . . . , k,

|Ψ|p .
(
w∗1i + w∗1,i+1 + w∗2,i−1 + w∗2i

)p (‖Ψ‖out,∗α,σ

)p
. |t|−ε (w1i + w2i)

(
‖Ψ‖out,∗α,σ

)p
,

where w∗1,i+1, w
∗
2i are vacuum if i = k and w∗1,i+1 are vacuum if i = k, k − 1. �

Proof of Proposition 4.7. This is a combination of results in Lemma A.3, A.4, A.7, A.8 and Lemma
4.4, 4.5 4.6. �
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APPENDIX B. SOME ESTIMATES FOR THE OUTER PROBLEM

B.1. Basic estimates. Let G(x, t) denote the standard heat kernel on Rn, that is

G(x, t) =
1

(4πt)n/2
e−
|x|2
4t . (B.1)

Recall the T out[g](x, t) defined by (4.19).

Lemma B.1. Suppose n > 2, a ≥ 0, d1 ≤ d2 ≤ 1
2 and b satisfies{

n
2 − b+ d2(a− n) > 1 if a < n,
n
2 − b+ d1(a− n) > 1 if a ≥ n,

(B.2)

0 ≤ c1, c2 ≤ c∗∗. Then there exists C depending on n, a, b, d1, d2, c∗∗ such that for t < −1

T out
[
|t|b

|x|a
1{c1|t|d1≤|x|≤c2|t|d2}

]
(0, t) ≤ C


|t|b(c1|t|d1)2−a if a ∈ (2,∞),

|t|b ln(c2|t|d2/(c1|t|d1)) if a = 2,

|t|b(c2|t|d2)2−a if a ∈ [0, 2).

Proof. Using (B.1), we obtain

� t

−∞

�
Rn

1

(t− s)n/2
e
− |y|2

4(t−s)
|s|b

|y|a
1{c1|s|d1≤|y|≤c2|s|d2}dyds

≈
� t

−∞

� c2|s|d2

c1|s|d1

|s|b

(t− s)n/2
e
− r2

4(t−s) rn−1−adrds ≈
� t

−∞

� c22|s|
2d2

4(t−s)

c21|s|
2d1

4(t−s)

e−zz
n−a−2

2
|s|b

(t− s)a/2
dzds

=

� t

−∞

|s|b

(t− s)a/2
F

(
c2

1|s|2d1
4(t− s)

,
c2

2|s|2d2
4(t− s)

)
ds, (B.3)

where

F (A,B) :=

� B

A
e−zz

n−a−2
2 dz.

We shall split (B.3) into four integrals J1, J2, J3, J4 according to the regions of s. First, in the region
s ∈ [t− c2

1|t|2d1 , t], one has |s− t| ≤ c2
1|t| when t < −1. Therefore

J1 =

� t

t−c21|t|2d1

|s|b

(t− s)a/2
F

(
c2

1|s|2d1
4(t− s)

,
c2

2|s|2d2
4(t− s)

)
ds

. |t|b
� t

t−c21|t|2d1

1

(t− s)a/2
e
− c

2
1|t|

2d1

4(t−s) (1+c2∗∗)
2(d1)

−

ds

≈ c2−a
1 |t|b+d1(2−a)

� ∞
(1+c2∗∗)

2(d1)
−

4

e−s̃s̃
a
2
−2ds̃ . c2−a

1 |t|b+d1(2−a),

where (d1)− = min{0, d1}.
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Second, in the region s ∈ [t− c2
2|t|2d2 , t− c2

1|t|2d1 ],

J2 =

� t−c21|t|2d1

t−c22|t|2d2

|s|b

(t− s)a/2
F

(
c2

1|s|2d1
4(t− s)

,
c2

2|s|2d2
4(t− s)

)
ds

.
� t−c21|t|2d1

t−c22|t|2d2

|s|b

(t− s)a/2
F

(
c2

1|t|2d1(1 + c2
∗∗)

2(d1)−

4(t− s)
,
c2

2|t|2d2(1 + c2
∗∗)

2(d2)+

4(t− s)

)
ds

.
� t−c21|t|2d1

t−c22|t|2d2

|t|b

(t− s)a/2


1 if a < n,∣∣∣∣ln( c21|t|2d1 (1+c2∗∗)

2(d1)
−

4(t−s)

)∣∣∣∣ if a = n,(
c21|t|2d1
t−s

)n−a
2 if a > n,

ds

.


c2−a

1 |t|b+d1(2−a) if 2 < a,

|t|b log(c2/c1|t|2(d2−d1)) if a = 2,

c2−a
2 |t|b+d2(2−a) if 0 ≤ a < 2,

(B.4)

where (d2)+ = max{0, d2}.

Third, when s ∈ [2t− c2
2|t|2d2 , t− c2

2|t|2d2 ],

J3 =

� t−c22|t|2d2

2t−c22|t|2d2

|s|b

(t− s)a/2
F

(
c2

1|s|2d1
4(t− s)

,
c2

2|s|2d2
4(t− s)

)
ds

.
� t−c22|t|2d2

2t−c22|t|2d2

|t|b

(t− s)a/2
F

(
c2

1|t|2d1(2 + c2
∗∗)

2(d2)−

4(t− s)
,
c2

2|t|2d2(2 + c2
∗∗)

2(d2)+

4(t− s)

)
ds

.
� t−c22|t|2d2

2t−c22|t|2d2

|t|b

(t− s)a/2



(
c22|t|2d2
t−s

)n−a
2 if a < n,

ln

(
c22|t|2d2 (2+c2∗∗)

2(d2)
+

c21|t|2d1 (2+c2∗∗)
2(d2)

−

)
if a = n,(

c21|t|2d1
t−s

)n−a
2 if a > n,

ds

.


c2−a

2 |t|b+d2(2−a) if a < n,

c2−n
2 |t|b+d2(2−n) ln

(
c22|t|2d2 (2+c2∗∗)

2(d2)
+

c21|t|2d1 (2+c2∗∗)
2(d2)

−

)
if a = n,

|t|bcn−a1 |t|d1(n−a)c2−n
2 |t|d2(2−n) if a > n.

(B.5)

Fourth, when s ∈ (−∞, 2t− c2
2|t|2d2 ], we have −s2 ≤ t− s ≤ −s. For a < n,

J4 =

� 2t−c22|t|2d2

−∞

|s|b

(t− s)a/2
F

(
c2

1|s|2d1
4(t− s)

,
c2

2|s|2d2
4(t− s)

)
ds

.
� 2t−c22|t|2d2

−∞
|s|b−

a
2F

(
c2

1|s|2d1
4|s|

,
c2

2|s|2d2
2|s|

)
ds

.
� 2t−c22|t|2d2

−∞
|s|b−

a
2 cn−a2 |s|(2d2−1)n−a

2 ds

.cn−a2 |t|b+d2(n−a)−n
2

+1 . c2−a
2 |t|b+d2(2−a),



36 LIMING SUN, JUN-CHENG WEI, AND QIDI ZHANG

where (B.2) is needed to guarantee the integrability and the last step is using d2 ≤ 1/2, c2 ≤ c∗∗ and
n > 2. For a ≥ n, similarly we have

J4 .

{
cn−a1 |t|b+d1(n−a)+1−n

2 if a > n,

|t|b+1−a
2 ln

(
2c2|t|d2
c1|t|d1

)
if a = n,

.c2−a
1 |t|b+d1(2−a).

Collecting the estimates of J1 to J4, we get the conclusion. �

Remark B.1.1. After close examination of the proof, only (B.4) needs the comparison between a and
2. In fact, if a < 2, one can let c1 = 0 to get

T out
[
|t|b

|x|a
1{|x|≤c2|t|d2}

]
(0, t) ≤ Cc2−a2 |t|b+d2(2−a).

Lemma B.2. Suppose n > 2, a ≥ 0, d1 ≤ d2 ≤ 1
2 and b satisfies (B.2), 0 ≤ c1, c2 ≤ c∗∗. Denote

u(x, t) = T out
[
|t|b

|x|a
1{c1|t|d1≤|x|≤c2|t|d2}

]
(x, t).

Then there exists C depending on n, a, b, d1, d2, c∗∗ such that for t < −1

u(x, t) ≤ C

{
c2−a

1 |t|b+d1(2−a) if a ∈ (2,∞),

c2−a
2 |t|b+d2(2−a) if a ∈ [0, 2).

(B.6)

Moreover, when |x| > 2c2|2t|d2 , a < n,

u(x, t) ≤ Ccn−a2

{
|t|b+d2(n−a)|x|2−n if 2c2|2t|d2 ≤ |x| ≤ |t|

1
2 ,

|x|2b+2d2(n−a)+2−n if |x| ≥ |t|
1
2 .

(B.7)

When |x| ≥ 2c1|2t|d1 , a > n,

u(x, t) ≤ Ccn−a1

{
|t|b+d1(n−a)|x|2−n if 2c1|2t|d1 ≤ |x| ≤ |t|

1
2 ,

|x|2b+2d1(n−a)|x|2−n if |x| ≥ |t|
1
2 .

(B.8)

Proof. • Since

|t|b

|x|a
1{c1|t|d1≤|x|≤c2|t|d2} ≤ |t|

b min

{
1

ca1|t|d1a
,

1

|x|a

}
1{|x|≤c2|t|d2} = f(x, t),

then

u(x, t) .
� t

−∞

�
Rn
G(x− y, t− s)f(y, s)dyds.

Since G and f are both decreasing functions for each time slice, using Hardy-Littlewood rearrange-
ment inequality, then

u(x, t) ≤ u(0, t) = J1 + J2,

where

J1 =

� t

−∞

�
Rn
G(y, t− s)|s|b min

{
1

ca1|s|d1a
,

1

|y|a

}
1{|y|≤c1|s|d1}dyds, (B.9)

J2 =

� t

−∞

�
Rn
G(y, t− s)|s|b min

{
1

ca1|s|d1a
,

1

|y|a

}
1{c1|s|d1≤|y|≤c2|s|d2}dyds. (B.10)
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Applying Lemma B.1 and Remark B.1.1, we obtain

J1 . c
2−a
1 |t|b+d1(2−a), J2 .

{
c2−a

1 |t|b+d1(2−a) if a ∈ (2,∞),

c2−a
2 |t|b+d2(2−a) if a ∈ (0, 2).

Therefore (B.6) is established.

• Next we will establish (B.7) when d2 ≤ 0. In this case, for x > 2c2|t|d2 , one has

1

2
|x| ≤ |x− y| ≤ 2|x| for y with |y| ≤ |s|d2 and s ≤ t. (B.11)

Then

u(x, t) .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x|2

16(t−s)
|s|b

|y|a
1{c1|s|d1≤|y|≤c2|s|d2}dyds

≈
� t

−∞

� c2|s|d2

c1|s|d1

1

(t− s)n/2
e
− |x|2

16(t−s) |s|brn−1−adrds

.cn−a2

� t

−∞

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b+d2(n−a)ds ≤ cn−a2

(
max{|t|, |x|2}

)b+d2(n−a) |x|2−n.

The last step follows from the following two facts

� t

2t

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b+d2(n−a)ds ≈ |t|b+d2(n−a)

� t

2t

1

(t− s)n/2
e
− |x|2

16(t−s)ds

≈|t|b+d2(n−a)|x|2−n
� ∞
|x|2
16|t|

e−zz
n
2
−2dz .

|t|
b+d2(n−a)|x|2−n if |x| < |t|

1
2 ,

|t|b+d2(n−a)
�∞
|x|2
16|t|

e−zz
n
2
−2dz if |x| ≥ |t|

1
2 .

and
� 2t

−∞

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b+d2(n−a)ds ≈
� 2t

−∞
e
− |x|

2

16|s| |s|b+d2(n−a)−n
2 ds

≈|x|2b+2d2(n−a)−n+2

� |x|2
32|t|

0
e−zz−b−d2(n−a)+n

2
−2dz ≈

{
|t|b+d2(n−a)−n

2
+1 if |x| < |t|

1
2 ,

|x|2b+2d2(n−a)−n+2 if |x| ≥ |t|
1
2 ,

where−b−d2(n−a)+ n
2−2 > −1 is needed to guarantee the integrability. Thus (B.7) is established.

• Next we will establish (B.7) when d2 > 0. We do not have (B.11) anymore. In this case,
|x| ≥ 2c2|2t|d2 is equivalent to −( |x|2c2

)1/d2 ≤ 2t. We write

(−∞, t) = (−(
|x|
2c2

)1/d2 , t) ∪ (−(
2|x|
c2

)1/d2 ,−(
|x|
2c2

)1/d2) ∪ (−∞,−(
2|x|
c2

)1/d2)

and thus

u .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds = u1 + u2 + u3 (B.12)
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where u1, u2, u3 are the integrations according to the three intervals respectively. We shall verify that
u1, u2, u3 all satisfy (B.7). For u1, one has c2|s|d2 ≤ |x|/2 for such s. Then

u1 =

� t

−(|x|/2c2)1/d2

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds

.
� t

−(|x|/2c2)1/d2

�
Rn

1

(t− s)n/2
e
− |x|2

16(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds

.

(� t

2t
+

� 2t

−(|x|/2c2)1/d2

)�
Rn

1

(t− s)n/2
e
− |x|2

16(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds

.cn−a2

(
max{|t|, |x|2}

)b+d2(n−a) |x|2−n.
The last step follows from some easy integration which has been done many times in this section. For
u2,

u2 .
� −(|x|/2c2)1/d2

−(2|x|/c2)1/d2

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds

.(|x|/c2)b/d2
� −(|x|/2c2)1/d2

−(2|x|/c2)1/d2

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
1

|y|a
1{|y|≤2|x|}dyds

.c−b/d22 |x|b/d2+n−a
� −(|x|/2c2)1/d2

−(2|x|/c2)1/d2

1

(t− s)n/2
ds . c

(−b+n
2
−1)/d2

2 (|x|1/d2)b+d2(n−a)+1−n
2

.cn−a2

{
|t|b+d2(n−a)|x|2−n if 2c2|2t|d2 ≤ |x| < |t|

1
2 ,

|x|2b+2d2(n−a)+2−n if |x| ≥ |t|
1
2 .

The last step follows from 0 < d2 ≤ 1
2 and b+ d2(n− a) + 1− n

2 < 0. Similarly, for u3,

u3 .
� −(2|x|/c2)1/d2

−∞

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{|y|≤c2|s|d2}dyds

.(|x|/c2)(b+1−n
2

)/d2 |x|n−a +

� −(2|x|)1/d2

−∞

1

|s|
n
2

e
− |y|2

16(t−s)
|s|a

|y|b
1{2|x|≤|y|≤c2|s|d2}dyds

.c
(−b+n

2
−1)/d2

2 (|x|1/d2)b+d2(n−a)+1−n
2

.cn−a2

{
|t|b+d2(n−a)|x|2−n if 2c2|2t|d2 ≤ |x| < |t|

1
2 ,

|x|2b+2d2(n−a)+2−n if |x| ≥ |t|
1
2 .

Collecting the results of u1, u2, u3, we can get (B.7).

• By the similar calculation like (B.7), we will get (B.8). �

Lemma B.3. Suppose 2 < a < n, 0 ≤ d2 ≤ 1
2 , n2 − b > 1 and 0 < c2 ≤ c∗∗. Then there exists C

depending on n, a, b, d2, c∗∗ such that for t < −1,

T out
[
|t|b

|x|a
1{|x|≤c2|t|d2}

]
≤ C|t|b|x|2−a for |x| < c2|t|d2 . (B.13)

Proof. We divide u into three parts

u(x, t) =

� t

−∞

�
Rn
G(x− y, t− s) |s|

b

|y|a
1{|y|≤c2|s|d2}dyds = u1 + u2 + u3,
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where u1 is the term with 1{|y|≤ 1
2
|x|} inside the integrand, u2 is the one with 1{ 1

2
|x|≤|y|≤2|x|} and u3

is the one with {2|x| ≤ |y| ≤ c2|s|d2}. Since most of the calculation are similar to the proof of the
previous lemma. We omit some details here. For u1, we proceed as

u1 .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x|2

16(t−s)
|s|b

|y|a
1{|y|≤ 1

2
|x|}dyds

≈ |x|n−a
� t

−∞

1

(t− s)n/2
e
− |x|2

16(t−s) |s|bds

. |t|b|x|2−a
� ∞
|x|2

16(−t)

e−zz
n
2
−2dz + |x|2b+2−a

� |x|2
32(−t)

0
e−zz−b+

n
2
−2dz

.|t|b|x|2−a + |x|n−a|t|1−
n
2

+b,

where we have used the fact that n2 − b > 1. For u2, we have

u2 .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{ 1

2
|x|≤|y|≤2|x|}dyds

.|x|−a
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s) |s|b1{|x−y|≤3|x|}dydx

≈|x|−a
� t

−∞

� 3|x|

0

1

(t− s)n/2
e
− r2

4(t−s) |s|brn−1dyds ≈ |x|−a
� t

−∞

� 9|x|2
4(t−s)

0
|s|be−zz

n
2
−1dzds

≈|x|−a
� t

−∞
|s|b min

{
1,

(
|x|2

t− s

)n
2

}
ds ≈ |t|b|x|2−a + |t|1+b−n

2 |x|n−a.

For u3, we have

u3 .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s)
|s|b

|y|a
1{2|x|≤|y|≤c2|s|d2}dyds

.
� t

−∞

�
Rn

1

(t− s)n/2
e
− |y|2

16(t−s)
|s|b

|y|a
1{2|x|≤|y|≤c2|s|d2}dyds

≈
� t

−∞

� c2|s|d2

2|x|

1

(t− s)n/2
e
− r2

16(t−s) |s|brn−1−adrds

≈
� t

−∞

� c2|s|
d2

16(t−s)

|x|2
4(t−s)

(t− s)−
a
2 |s|be−zz

n−a
2
−1dzds . |t|b|x|2−a.

Combining the estimate of u1, u2, u3 and using the fact that |x|n−a|t|1−
n
2

+b ≤ |t|b|x|2−a because
|x| ≤ c2|t|d2 , we get (B.13). �

Corollary B.4. Suppose that n > 2, d1 ≤ d2 ≤ 1
2 , b satisfies (B.2), 0 ≤ c1, c2 ≤ c∗∗. Denote

u(x, t) = T out
[
|t|b|x|−a1{c1|t|d1≤|x|≤c2|t|d2}

]
.
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Then there exists C depending on n, a, b, d1, d2, c∗∗ such that for t < −1,
if 0 ≤ a < 2,

u(x, t) ≤ C


c2−a

2 |t|b+d2(2−a) if |x| ≤ c2|t|d2 ,
cn−a2 |t|b+d2(n−a)|x|2−n if c2|t|d2 ≤ |x| ≤ |t|

1
2 ,

cn−a2 |x|2b+2d2(n−a)+2−n if |x| ≥ |t|
1
2 .

(B.14)

If 2 < a < n,

u(x, t) ≤ C


c2−a

1 |t|b+d1(2−a) if |x| ≤ c1|t|d1 ,
|t|b|x|2−a if c1|t|d1 ≤ |x| ≤ c2|t|d2 ,
cn−a2 |t|b+d2(n−a)|x|2−n if c2|t|d2 ≤ |x| ≤ |t|

1
2 ,

cn−a2 |x|2b+2d2(n−a)+2−n if |x| ≥ |t|
1
2 .

(B.15)

If a > n,

u(x, t) ≤ C


c2−a

1 |t|b+d1(2−a) if |x| ≤ c1|t|d1 ,
cn−a1 |t|b+d1(n−a)|x|2−n if c1|t|d1 ≤ |x| ≤ |t|

1
2 ,

cn−a1 |x|2b+2d1(n−a)+2−n if |x| ≥ |t|
1
2 .

(B.16)

Proof. (B.14) and (B.16) follow Lemma B.2 directly. (B.15) follows from (B.7) and (B.13). �

Lemma B.5. Suppose that a2 − b > 1. Then

T out
[
|t|b|x|−a1

{|x|≥|t|
1
2 }

]

. |t|1+b−a
2 1
{|x|≤|t|

1
2 }

+ 1
{|x|≥|t|

1
2 }
|x|−a


|t|1+b, if b < −1,

1 + ln
(
|x|2
|t|

)
if b = −1,

|x|2+2b if b > −1.

(B.17)

Proof. Denote u(x, t) = T out
[
|t|b|x|−a1

[|x|≥|t|
1
2 ]

]
.

• For |x| ≤ 1
2 |t|

1
2 , we have |x− y| ≥ 1

2 |y| for |y| ≥ |s|
1
2 ≥ |t|

1
2 . Then

u(x, t) .
� t

−∞

�
Rn

1

(t− s)n/2
e
− |y|2

16(t−s) |s|b|y|−a1
{|y|≥|s|

1
2 }

dξ ds

.

(� 2t

−∞
+

� t

2t

)
|s|b(t− s)−a/2e−

(−s)
32(t−s) ds . |t|1+b−a

2 ,

(B.18)

where a
2 − b > 1 is used to guarantee the integrability in the last step.

• Consider |x| ≥ 4|t|
1
2 . We make the following decomposition.

u(x, t) =

(� t

− 1
4
|x|2

+

� − 1
4
|x|2

−4|x|2
+

� −4|x|2

−∞

)�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s) |s|b|y|−a1
{|y|≥|s|

1
2 }

dy ds

:= P1 + P2 + P3.

For P1, we divide it further to be

P1 =

� t

− 1
4
|x|2

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s) |s|b|y|−a1
{|y|≥|s|

1
2 }
dyds = P11 + P12 + P13
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where P11 is the term with 1
{|s|

1
2≤|y|≤ 1

2
|x|}

in the integrand, P12 is the one with 1{ 1
2
|x|≤|y|≤2|x|} and

P13 is the one with 1{2|x|≤|y|}. For P11, when a < n,

P11 .
� t

− 1
4
|x|2

�
Rn

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b|y|−a1
{|s|

1
2≤|y|≤ |x|

2
}

dy ds

.
� t

− 1
4
|x|2

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b|x|n−a ds

= |x|n−a
� t

− 1
4
|x|2

1

(t− s)n/2
e
− |x|2

16(t−s) |s|b ds . |x|2−a+2b.

(B.19)

When a ≥ n, by similar calculation, P11 . |x|2−a+2b still holds.

For P12,

P12 . |x|−a
� t

− 1
4
|x|2

�
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s) |s|b1{ |x|
2
≤|y|≤2|x|} dy ds

. |x|−a
(� t

2t
+

� 2t

− 1
4
|x|2

)� 3|x|

0

1

(t− s)n/2
e
− r2

4(t−s) |s|brn−1 dr ds

. |x|−a|t|1+b + |x|−a


|t|1+b if b < −1,

1 + ln
(
|x|2
−t

)
if b = −1,

(|x|2)1+b if b > −1.

(B.20)

For P13,

P13 .
� t

− 1
4
|x|2

�
Rn

1

(t− s)n/2
e
− |y|2

16(t−s) |s|b|y|−a1{2|x|≤|y|} dy ds

≈
� t

− 1
4
|x|2

� ∞
2|x|

(−s)b

(t− s)n/2
e
− r2

16(t−s) rn−1−a dr ds

=

(� t

2t
+

� 2t

− 1
4
|x|2

)� ∞
2|x|

(−s)b

(t− s)n/2
e
− r2

16(t−s) rn−1−a dr ds

. (−t)b|x|2−ae−
|x|2

16(−t) + |x|2+2b−a.

(B.21)

For P2, since −1
4 |x|

2 ≤ 4t in this case,

P2 .
� − 1

4
|x|2

−4|x|2

�
Rn

1

|s|n/2
e
− |x−y|

2

4(−s) |s|b|y|−a1{|y|≥ |x|
2
} dy ds

≈ |x|−n+2b

� − 1
4
|x|2

−4|x|2

�
Rn
e
− |x−y|

2

4(−s) |y|−a
(
1{ |x|

2
≤|y|≤2|x|} + 1{2|x|≤|y|}

)
dy ds

. |x|2+2b−a.

(B.22)
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For P3, in this case, |x| ≤ 1
2 |s|

1
2 ,

P3 .
� −4|x|2

−∞

�
Rn

1

(t− s)n/2
e
− |y|2

16(t−s) |s|b|y|−a1
{|y|≥|s|

1
2 }

dy ds

.
� −4|x|2

−∞

�
Rn

(−s)b−
n
2 e
− |y|2

16(−s) |y|−a1
{|y|≥|s|

1
2 }

dy ds . |x|2+2b−a,

(B.23)

where a
2 − b > 1 is required to guarantee the integrability. Combining the above estimates of P1, P2

and P3, we get, when |x| ≥ 4|t|
1
2

u(x, t) . |x|−a


|t|1+b if b < −1,

1 + ln
(
|x|2
−t

)
if b = −1,

|x|2+2b if b > −1.

(B.24)

• Consider the case 1
2 |t|

1
2 ≤ |x| ≤ 4|t|

1
2 ,

u(x, t) =

� t

−∞

�
Rn

1

(4π(t− s))n/2
e
− |x−y|

2

4(t−s) |s|b|y|−a1
[|y|≥|s|

1
2 ]

dy ds

.

(� t

64t
+

� 64t

−∞

) �
Rn

1

(t− s)n/2
e
− |x−y|

2

4(t−s) |s|b|y|−a1
{|y|≥|s|

1
2 }

dy ds

. |t|1+b−a
2 .

(B.25)

�

In order to get the gradient estimate of ϕ̄, we need the following lemma.

Lemma B.6. For d1 ≤ d2 ≤ 1
2 , n2 − b− d2n > 0, c1, c2 ≈ 1, we have

T d[|t|b1[c1|t|d1≤|x|≤c2|t|d2 ]] .


|t|b+d2 if |x| ≤ |t|d2 ,
|t|b+d2n|x|1−n if |t|d2 ≤ |x| ≤ |t|

1
2 ,

(|x|2)b+d2n|x|1−n if |x| ≥ |t|
1
2 .

(B.26)

For d1 ≤ d2 ≤ 1
2 , a > n, n2 − b− d1(n− a) > 0, c1, c2 ≈ 1, we have

T d[ |t|
b

|x|a
1[c1|t|d1≤|x|≤c2|t|d2 ]] .


|t|b+d1(1−a) if |x| ≤ |t|d1 ,
|t|b+d1(n−a)|x|1−n if |t|d1 ≤ |x| ≤ |t|

1
2 ,

(|x|2)b+d1(n−a)|x|1−n if |x| ≥ |t|
1
2 .

(B.27)

We omit the proof since it relies splitting integral domain like above.

B.2. Proofs of three lemmas in the outer problem.

Proof of Lemma 4.4. For j = 2, . . . , k, by Corollary B.4,

T out[µ−2
0j (t)|t|γj1{|x|≤µ0j}] .


|t|γj if |x| ≤ µ0j ,

|t|γjµn−2
0j |x|2−n if µ0j ≤ |x| ≤ |t|

1
2 ,

|x|2γj+(4−2n)αj+2−n if |x| ≥ |t|
1
2 ,
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T out[µα0j(t)|t|γj |x|−2−α1{µ0j≤|x|≤µ̄0j}] .


|t|γj if |x| ≤ µ0j ,

|t|γjµα0j |x|−α if µ0j ≤ |x| ≤ µ̄0j ,

|t|γjµα0jµ̄
n−2−α
0j |x|2−n if µ̄0j ≤ |x| ≤ |t|

1
2 ,

|x|2γ
∗
j+2−n if |x| ≥ |t|

1
2 .

Thus T out[w1j ] . w∗1j .

For j = 1, the first part of w11 can be dealt with by the same method above. For the rest part, by
Corollary B.4,

T out[|t|γ1 µ̄n−2−α
01 |x|−1−n1

{µ̄01≤|x|≤|t|
1
2 }

] .


|t|γ1 µ̄−1−α

01 if |x| ≤ µ̄01,

|t|γ1 µ̄n−3−α
01 |x|2−n if µ̄01 ≤ |x| ≤ |t|

1
2 ,

|x|2(γ1+δ(n−3−α))+2−n if |x| ≥ |t|
1
2 .

. w∗11.

�

Proof of Lemma 4.5. This just follows from (B.15). b = −2σ − (n2 − 2)αj+1 + αj , d2 = −1
2(αj +

αj−1), a = n− 2. �

Proof of Lemma 4.6. By Corollary B.4, we have

T out[|t|−1−σ|x|2−n1
{µ̄01≤|x|≤|t|

1
2 }

] .


|t|−1−σµ̄4−n

01 if |x| ≤ µ̄01,

|t|−1−σ|x|4−n if µ̄01 ≤ |x| ≤ |t|
1
2 ,

|x|2−2σ−n if |x| ≥ |t|
1
2 .

By Lemma B.5, we have

T out[|t|−1−σ|x|2−n1
{|x|≥|t|

1
2 }

] .

{
|t|1−σ−

n
2 if |x| ≤ |t|

1
2 ,

|t|−σ|x|2−n if |x| ≥ |t|
1
2 .

Then (4.27) follows when δ ≤ 1
2 . �
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