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ABSTRACT. We consider a reaction-diffusion system for color pattern formation with two acti-
vators and one inhibitor. Each of the activators models one of the colors being switched on, for
example the first activator could represent the color blue and the second activator the color yel-
low. If both colors are present the pattern will have green color since the color green is achieved
by a mixture of the colors blue and yellow. We prove rigorous results on the existence and sta-
bility of spikes for which one of the colors or both of them are switched on. We classify the
different types of solutions which can exist depending on the choice of interaction parameters
between the components and we show which of them are stable or unstable. In particular, so-
lutions with spikes for both activators in the same position can be stable when cross-activation
dominates over self-activation. On the other hand, solutions with a spike for only one activator
and zero concentration for the other activator can be stable when self-activation dominates over
cross-activation. The rigorous approach is based on analytical methods such as Green’s func-
tion, Liapunov-Schmidt reduction and nonlocal eigenvalue problems. The analytical results are
confirmed by numerical simulations.
2020 AMS Subject Classification: Primary 35B35, 92C15; Secondary 35B40, 92C37.
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1. INTRODUCTION

We study a reaction-diffusion system with two activators and one inhibitor modeling color
pattern formation. Many mechanisms play a role for color pattern formation. For a recent
survey we refer to [13]. Color patterns in reptiles, amphibians, and fish are determined by
chromatophores. They result from the spatial variation in chromatophore types, properties,
and spatial arrangements.

In zebrafish the chromatophores are the pigment cells melanophores, iridophores, and xan-
thophores. Recent molecular genetic studies have shown that interactions between the pigment
cells play major roles in pattern formation [11, 22]. The color for chameleons can be changed
through active tuning of a lattice of guanine nanocrystals inside a layer of dermal iridophores.
This has been confirmed by using osmotic pressure experiments and theoretical optical model-
ing [23].

Stripes in zebrafish have been modeled using an agent-based approach [25]. It has been
shown that iridophores can act as a stabilizer of zebrafish stripes [26]. Topological analysis of
zebrafish patterns has been performed in [21].

In this paper, we will prove the existence and study the stability of spike solutions for the
system with two activators which display self-interaction and cross-interaction, coupled with
one global inhibitor.

Spike solutions for other large reaction-diffusion with more than two components have been
studied before, including the hypercycle of Eigen and Schuster [32, 34, 35] or mutual exclusion
of spikes [37].
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The reaction-diffusion model for color pattern formation is similar to the hypercycle but with
different interaction between activators. For the hypercycle, there is only activator interaction
with nearest neighbors, the interaction is not symmetric and there is no self-interaction.

The activator interaction in our system is a special case of the interaction for Schrödinger
systems but the Schrödinger systems have no inhibitor. For Schrödinger systems, the existence
and Morse index of spike solutions have been studied extensively by Wei and Lin, see [14, 15,
16, 17, 18, 19] and references therein. The uniqueness of positive ground states has been shown
in [40] and the nondegeneracy of ground states has been proved in [2], while the Morse indices
of ground state solutions for Schrödinger systems with an arbitrary number of components
have been considered in [42]. For Schrödinger systems the type of solutions considered here
are unstable with Morse index 1 or 2. Due to the presence of the inhibitor, it is possible to
stabilize some of these solutions.

The activator-inhibitor system under investigation can be stated as follows:






u1,t = ǫ2u1,xx − u1 +
µ1u3

1 + βu1u2
2

v
, u2,t = ǫ2u2,xx − u2 +

µ2u3
2 + βu2

1u2

v
,

τvt = Dvxx − v + µ1u3
1 + βu1u2

2 + µ2u3
2 + βu2

1u2.
(1.1)

Here 0 < ǫ ≪ 1 and D > 0 are diffusion constants, µ1, µ2, β > 0 are positive constants for the
self- and cross-activation of the activators, respectively, and τ is a nonnegative time-relaxation
constant.

The positive constants µ1, µ2 model the strength of self-activation of each activator and β
represents the strength of cross-activation.

The x-indices indicate spatial derivatives. We will derive results for the system (1.2) on a
bounded interval Ω = (−L, L) for L > 0 with Neumann boundary conditions.

This system represents a simple biological cellular or genetic signaling network for color
pattern formation in which all activator components interact with themselves and each other,
and the interaction parameters can be tuned arbitrarily.

By rescaling the amplitudes of u1 and u2 we can always achieve that the mixed terms have
the same coefficient β, so we can make this assumption without loss of generality.

We rescale the unknown functions as follows to achieve amplitudes of order O(1):

û1(x) = ǫu1(x), û2(x) = ǫu2(x), v̂(x) = ǫ2v(x).

In terms of the rescaled functions, the system can be restated as follows:






û1,t = ǫ2û1,xx − û1 +
µ1û3

1 + βû1û2
2

v̂
, û2,t = ǫ2û2,xx − û2 +

µ2û3
2 + βû2

1û2

v̂
,

τv̂t = Dv̂xx − v̂ +
(

µ1û3
1 + βû1û2

2 + µ2û3
2 + βû2

1û2

)

ǫ−1.
(1.2)

It is known that these patterns are unstable without inhibitor (see for example [2, 3, 42]). In
fact, without inhibitor, the Morse index of a single spike solution will be 1 or 2, depending on
the β-µ condition. Here we will show that with global inhibition it is possible to get stable spiky
patterns. Depending on the β-µ condition, at a certain location either both activators can have
a spike forming a local pattern, or only one of the activators has a spike and the other activator
zero values. Both of these types of solutions can be stable or unstable, depending on the β-µ
condition.

The system (1.2) is similar to a hypercycle with cubic terms and two activators, and Gierer-
Meinhardt kinetics instead of Gray-Scott kinetics, see [34]. For the study of spiky solutions of
the hypercycle with quadratic interaction terms we refer the readers to [32, 35].
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The feedback mechanism in (1.2) is a generalization of the well-known Gierer-Meinhardt
system [6, 20] which has one local activator coupled to an inhibitor. We recall that the classical
Gierer-Meinhardt system as well as the three-component system considered here are both Tur-
ing systems [24] as they allow spatial patterns to arise out of a homogeneous steady state by
the so-called Turing instability. Some analytical results for the existence and stability of spiky
Turing pattern for the Gierer-Meinhardt system have been obtained for example in [4], [5], [10],
[27], [31], [33], [36], [38]. The results have been reviewed in [39].

Next we are going to state the rigorous results on the existence and stability of stationary
spiky patterns for the system (1.2).

We prove the existence of three types of spiky pattern solutions:
A solution of Type 1 which has a spike for u1 and spike for u2, both located at zero.
A solution of Type 2 which has a spike for u1 located at zero and u2 = 0.
A solutions of Type 3 which has a spike for u2 located at zero and u1 = 0.
The spikes for u1 and u2 in a solution of Type 1 have the same profile except for possibly

their amplitudes. To determine the amplitudes of the activator spikes we have to solve a sys-
tem which depends on the coefficients of the reaction terms of the self-interaction and cross-
interaction of activators. We will see that these amplitudes depend on the size of inhibitor and
for larger inhibitor we need larger activator amplitudes to balance the interaction (as in the
classical Gierer-Meinhardt system).

Let us also mention that the combinations of Type 2 and Type 3 solutions in a different system
with reaction kinetics of Klausmeier type have been studied in [8].

Let w(y) be the unique positive and even homoclinic solution of the equation

wyy − w + w3 = 0 (1.3)

on the real line decaying to zero at ±∞. Let H2
N,ev(−L, L) be the space of functions in H2(−L, L)

which satisfy Neumann boundary conditions and are even.
The main results are as follows:

Theorem 1. Assume that ǫ > 0 is small enough and

β > max(µ1, µ2) or β < min(µ1, µ2).

Then there exist spiky steady states to (1.2) in H2
N,ev(−L, L) such that

uǫ
1(x) = t1

√

vǫ(0)w
(x

ǫ

)

χ(x)(1 + O(ǫ)), uǫ
2(x) = t2

√

vǫ(0)w
(x

ǫ

)

χ(x)(1 + O(ǫ)) (1.4)

where ti > 0 is a constant which satisfies (2.10), vǫ(0) is given by (2.11) and χ(x) is a cutoff function
defined in (3.1).

Similarly, we can show the existence of Type 2 solutions with a spike for u1 and u2 = 0.

Theorem 2. Assume that ǫ > 0 is small enough and β 6= µ1. Then there exist spiky steady states to
(1.2) in H2

N,ev(−L, L) such that

uǫ
1(x) = t1

√

vǫ(0)w
(x

ǫ

)

χ(x)(1 + O(ǫ)), uǫ
2(x) = 0, (1.5)

where t1 = 1√
µ1

, vǫ(0) is given by (2.15) and χ(x) is a cutoff function defined in (3.1).

Remark 1. By symmetry, Theorem 2 is still valid if u1 is swapped with u2 and µ1 is swapped with µ2,
which implies the existence of Type 3 spike solutions when β 6= µ2.

The stability properties of the spiky solutions are as follows:
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Theorem 3. The steady states to (1.2) given in Theorem 1 are linearly stable if β > max(µ1, µ2). They
are linearly unstable if β < min(µ1, µ2).

Theorem 4. The steady states to (1.2) given in Theorem 2 are linearly stable if β < µ1. They are
linearly unstable if β > µ1.

Remark 2. For µ1 < β < µ2 the solution with u1 6= 0 and u2 6= 0 does not exist, in the same way as
for Schrödinger systems without v component, see [40].

Remark 3. In case µ1 < µ2 there is a transcritical bifurcation at β = µ1 and β = µ2, respectively. For
β = µ1 there is a bifurcation of the Type 1 solution from the Type 2 solution, and for β = µ2 there is a
bifurcation of the Type 1 solution from the Type 3 solution.

What do these mathematical results tell us about biological applications? The two activators
u1 and u2 represent different colors in the living organism. For example, u1 can represent the
color blue and u2 the color yellow. Then a spike with only u1 positive indicates a blue spot
and a spike with only u2 positive indicates a yellow spot. Finally, a spike with both u1 and u2

positive represents a green spot since the color green is achieved by a mixture of the colors blue
and yellow.

To summarize, suppose β < µ1 < µ2. Then Type 1 solutions are unstable, Type 2 and
3 solutions are stable. Stable patterns can have blue spots or yellow spots. Green spots are
possible but they are unstable.

For µ1 < β < µ2, Type 1 solutions do not exist. Type 3 solutions are stable and Type 2
solutions are unstable. Stable patterns can have yellow spots. Blue spots are possible but they
are unstable. Green spots are impossible.

For µ1 < µ2 < β, Type 1 solutions are stable, whereas both Type 2 and 3 solutions are
unstable. Stable patterns can have green spots. Blue spots or yellow spots are possible but they
are unstable.

Remark 4. By choosing the parameters suitably it is possible to achieve stable Type 1 solutions with
any proportion of mixing between blue and yellow color. We can see this as follows: We first compute

t2

t1
=

√

β − µ1

β − µ2
.

Therefore, varying parameters in the range µ1 < µ2 < β we can get any ratio for t2/t1 in the interval

1 <
t2

t1
< ∞

and varying parameters in the range µ2 < µ1 < β we can get any ratio for t2/t1 in the interval

0 <
t2

t1
< 1.

(Note that we can keep µ1 and µ2 fixed and vary β accordingly.)

Choosing µ1 = µ2 we get t1 = t2 and so t2
t1
= 1. (If we keep µ fixed and vary β then we get t2

t1
= 1

for any β.)

In summary, we can achieve any value for t2
t1

in the range

0 <
t2

t1
< ∞.

The paper is organized as follows: In Section 2, we compute the amplitudes of spikes. In
Section 3, we show the existence of solutions. In Section 4, we first derive the eigenvalue
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problem. Then we compute the large (i.e. O(1)) eigenvalues and we derive sufficient conditions
for the stability of solutions with respect to these. In Section 5, we consider the small (i.e. o(1))
eigenvalues. We outline how to rigorously compute them to leading order and state the main
criterion on the stability of solutions with respect to small eigenvalues. Sufficient conditions
for this stability are derived. In Section 6, our results are confirmed by numerical simulations.
In Section 7 we discuss our results.

Acknowledgements: The work of W. Ao is supported by NSFC no. 12471111 and National
key research and development program of China no. 2022YFA1006800. The research of J.
Wei is partially supported by Hong Kong General Research Fund ”New frontiers in singu-
larity analysis of nonlinear partial differential equation”. M. Winter thanks the Department
of Mathematics at Wuhan University and at Chinese University of Hong Kong for their kind
hospitality.

2. COMPUTING THE AMPLITUDES

In this section, we will consider spiky steady states of (1.2) of the following three types:
Type 1: spike for u1 and spike for u2, both located at zero,
Type 2: spike for u1 located at zero and u2 = 0.
Type 3: spike for u2 located at zero and u1 = 0.

Since Type 3 is symmetric to Type 2 by inter-changing u1 and u2, and µ1 and µ2, we will only
consider Type 1 and Type 2 solutions.

We first construct steady states of the form

u1(x) = t1

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)), u2(x) = t2

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)), (2.1)

where w(y) is the unique positive and even homoclinic solution of the equation

wyy − w + w3 = 0 (2.2)

on the real line decaying to zero at ±∞.
From the first two equations to (1.2), we will choose t1 and t2 such that

µ1t2
1 + βt2

2 = 1, µ2t2
2 + βt2

1 = 1. (2.3)

All functions used throughout the paper belong to the Hilbert space H2(−L, L) and the error
terms are taken in the norm H2(−L, L) unless otherwise stated. After integrating (1.3) over R,
we get the relation

ˆ

R

w(y) dy =

ˆ

R

w3(y) dy (2.4)

which will be used frequently, often without explicitly stating it.
Note that u1 and u2 are spatially small-scale variables, as ǫ ≪ 1, and vǫ is a spatially large-

scale variable. For steady states, using Green’s functions, the slow variable v, to leading order,
can be expressed by an integral representation.

To get this representation, by (2.1) the nonlinear terms in the last equation of (1.2) can be
expanded as

µ1u3
1(x) + βu1(x)u

2
2(x) = t1 (vǫ(0))

3/2 ǫ

(
ˆ

R

w3

)

δ0(x) + O(ǫ2),

µ2u3
2(x) + βu2

1(x)u2(x) = t2 (vǫ(0))
3/2 ǫ

(
ˆ

R

w3

)

δ0(x) + O(ǫ2),

where δ0(x) is the Dirac delta distribution centered at 0.
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Using the Green’s function GD(x, y) which is defined as the unique solution of the equation

D∆GD(x, y)− GD(x, y) + δy(x) = 0, −L < x < L, GD,x(−L, y) = GD,x(L, y) = 0, (2.5)

we can represent vǫ(x) by using the third equation of (1.2) as

vǫ(x) = (t1 + t2)(vǫ(0))
3/2

(
ˆ

R

w3(y)dy

)

GD(x, 0) + O(ǫ). (2.6)

An elementary calculation gives

GD(x, y) =







θ
sinh(2θL)

cosh θ(L + x) cosh θ(L − y), −L < x < y < L,

θ
sinh(2θL)

cosh θ(L − x) cosh θ(L + y), −L < y < x < L
(2.7)

with θ = 1/
√

D. Note that

GD(x, y) =
1

2
√

D
e−|x−y|/

√
D − HD(x, y), (2.8)

where HD is the regular part of the Green’s function GD. In particular, for L = ∞, we have

GD(x, y) =
1

2
√

D
e−|x−y|/

√
D =: KD(x, y). (2.9)

We first compute t1 and t2 from (2.3). Considering (2.3) as a linear system with the unknowns
t2
1 and t2

2, we get

t2
1 =

β − µ2

β2 − µ1µ2
, t2

2 =
β − µ1

β2 − µ1µ2
. (2.10)

It remains to derive vǫ(0). From (2.6), for x = 0 we get

vǫ(0) = (vǫ(0))
3/2(t1 + t2)GD(0, 0)

(
ˆ

R

w3(y)dy

)

+ O(ǫ).

This implies

vǫ(0) =
1

GD(0, 0)2(t1 + t2)2
(´

R
w3
)2

+ O(ǫ). (2.11)

In the following, we state the first main result of this section on the amplitudes of Type 1
solutions:

Lemma 1. Assume that ǫ > 0 is small enough and

β > max(µ1, µ2) or β < min(µ1, µ2).

Then for spike-solutions of (1.2) of the type

u1(x) = t1

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)), u2(x) = t2

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)),

where w(y) is the unique solution of (2.2), the amplitudes t1 and t2 are given by (2.10), and vǫ(0)
satisfies (2.11), where the Green’s function GD is defined in (2.5).

Next, we consider the Type 2 spike solutions. We will construct solutions of the form

u1(x) = t1

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)), u2(x) = 0. (2.12)

From the first equation of (1.2), we get in leading order

t1 = µ1t3
1
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which implies

t1 =
1√
µ1

. (2.13)

From the third equation of (1.2), we get

vǫ(x) = t1(vǫ(0))
3/2

(
ˆ

R

w3

)

GD(x, 0) + O(ǫ). (2.14)

From (2.14), for x = 0 we get

vǫ(0) = (vǫ(0))
3/2t1GD(0, 0)

(
ˆ

R

w3

)

+ O(ǫ).

Together with (2.13) this implies

vǫ(0) =
1

GD(0, 0)2t2
1

(´

R
w3
)2

+ O(ǫ). (2.15)

With these in hand, we finally state the second main result of this section on the amplitude
of Type 2 spike solutions:

Lemma 2. Assume that ǫ > 0 is small enough. Then for spike-solutions of (1.2) of the type

u1(x) = t1

√

vǫ(0)w
(x

ǫ

)

(1 + O(ǫ)), u2(x) = 0,

where w(y) is the unique solution of (2.2), the amplitude t1 is given by (2.13), and vǫ(0) satisfies (2.15),
where the Green’s function GD is defined in (2.5).

3. EXISTENCE OF SPIKE SOLUTIONS

In this section, we use the contraction mapping principle to rigorously prove the existence of
spiky solutions.

The issue to handle here is that the linear operator obtained by the linearization of system
(1.2) around (2.1) has a nontrivial approximate kernel. This comes from the fact that taking a
derivative of the equation (2.2) with respect to y implies

(wy)yy − wy + 3w2wy = 0.

Thus, wy belongs to the kernel of the linearization of (2.2) around w. Note that the function wy

represents the translation mode of w. To eliminate the approximate kernel from the function
space we will construct solutions in spaces of even functions. Since the approximate kernel
consists of odd functions, we will be able to show in this section first that the linear operator
restricted to even functions is uniformly invertible for ǫ small enough. Using this result, we
can then complete the proof.

Recall that for given u1, u2 ∈ H2
N(Ωǫ), where Ωǫ = (−L/ǫ, L/ǫ) and H2

N(Ωǫ) denotes the

space of all functions in H2(Ωǫ) satisfying Neumann boundary conditions, since the third equa-
tion of (1.2) is linear in v, the inhibitor v is uniquely determined for given u1, u2. Therefore, the
steady state problem can be reduced to solving the first two equations.

We are looking for solutions which satisfy

u1(x) = t1

√

vǫ(0)w
(x

ǫ

)

χ(x)(1 + O(ǫ)), u2(x) = t1

√

vǫ(0)w
(x

ǫ

)

χ(x)(1 + O(ǫ))

which are even functions, i.e. ui(x) = ui(−x), i = 1, 2. To this end, we assume that χ is a
smooth and even cut-off function such that

χ(x) = 1 for |x| ≤ L/3
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and
χ(x) = 0 for |x| ≥ 2L/3. (3.1)

To construct a solution which consists of even functions we will be working in Sobolev spaces
of even functions.

We are now going to derive a solution by using the contraction mapping principle. Denoting
the r.h.s. of the first two equation of (1.2) by

Sǫ[t1

√

vǫ(0)wχ + a1, t2

√

vǫ(0)wχ + a2],

our problem can be re-written as follows: Find a1 and a2 such that

Sǫ[t1

√

vǫ(0)wχ + a1, t2

√

vǫ(0)wχ + a2] = 0,

where
Sǫ : (H2

N,ev(Ωǫ))
2 → (L2

ev(Ωǫ))
2.

Here the index “ev” stands for the restriction of the function spaces to even functions, i.e.

L2
ev(Ωǫ) = {u ∈ L2(Ωǫ), u(y) = u(−y) for all y ∈ Ωǫ},

H2
N,ev(Ωǫ) = {u ∈ H2

N(Ωǫ), u(y) = u(−y) for all y ∈ Ωǫ}.

To this end, we need to study the linearized operator

Lǫ : (H2
N,ev(Ωǫ))

2 → (L2(Ωǫ))
2

defined by

Lǫφ := DSǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]φ,

where DSǫ[·] denotes the Fréchet derivative of the operator Sǫ at (t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ)T .
Then we have the following key result about the uniform invertibility of the linearized oper-

ator Lǫ.

Proposition 1. There exist positive constants ǭ, c such that we have for all ǫ ∈ (0, ǭ),

‖Lǫφ‖L2(Ωǫ) ≥ c ‖φ‖H2(Ωǫ) for all φ = (φ1, φ2)
T ∈ (H2

N,ev(Ωǫ))
2. (3.2)

Further, the linear mapping Lǫ is surjective.

Proof. We prove by contradiction. Suppose that (3.2) is false. Then there exist sequences

{ǫk}, {φk} with ǫk → 0, φk = φǫk
∈ (H2

N,ev(Ωǫ))2, k = 1, 2, . . . such that

‖Lǫk
φk‖(L2(Ωǫk

))2 → 0, as k → ∞, ‖φk‖(H2(Ωǫk
))2 = 1, k = 1, 2, . . . . (3.3)

At first (after rescaling) φǫk
is only defined on Ωǫk

. However, by a standard result (compare

[7]) it can be extended to R such that its norm in H2(R) is still bounded by a constant inde-
pendent of ǫk for ǫk small enough. It is then a standard procedure to show that this extension
converges strongly in H2(Ωǫ) to some limit φ∞ with ‖φ∞‖(H2(R))2 = 1. For the functional-

analytic details of the argument, we refer to [9].
Then φ∞ = (φ1, φ2)

T solves the system

∆φ1 − φ1 + [(2µ1t2
1 + 1)φ1 + 2βt1t2φ2]w

2

− t1

t1 + t2

[

(2µ1t2
1 + 1 + 2βt1t2)

ˆ

R

w2φ1 dy + (2µ2t2
2 + 1 + 2βt1t2)

ˆ

R

w2φ2 dy

]

w3
´

R
w3 dy

= 0,

(3.4)
∆φ2 − φ2 + [(2µ2t2

2 + 1)φ2 + 2βt1t2φ1]w
2
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− t2

t1 + t2

[

(2µ2t2
2 + 1 + 2βt1t2)

ˆ

R

w2φ2 dy + (2µ1t2
1 + 1 + 2βt1t2)

ˆ

R

w2φ1 dy

]

w3
´

R
w3 dy

= 0.

(3.5)
This system is the special case with λ = 0 of (4.5) and (4.6) derived in Section 4. To avoid

repetition of the derivations we refer to Section 4, where the derivation will be made in a more
general case.

Next we prove φ1 = φ2 = 0. This can be done using similar arguments as in Section 4, by
first showing that −t2φ1 + t1φ2 = 0, and then that t1φ1 + t2φ2 = 0. Thus, φ1 = φ2 = 0. To avoid
repetition, here we refer to the detailed calculations given below in the proof of Proposition 2.

This contradicts the assumption ‖φ‖H2(Ωǫ) = 1. Therefore, (3.2) must be true.

In order to show its surjectivity, we need to show that the kernel of the adjoint operator is
trivial, namely that the following system has only the zero solution φ = (φ1, φ2)

T :

∆φ1 − φ1 + [(2µ1t2
1 + 1)φ1 + 2βt1t2φ2]w

2

−2µ1t2
1 + 1 + 2βt1t2

t1 + t2

[

t1

ˆ

R

w3φ1 dy + t2

ˆ

R

w3φ2 dy

]

w2
´

R
w3 dy

= 0, (3.6)

∆φ2 − φ2 + [(2µ2t2
2 + 1)φ2 + 2βt1t2φ1]w

2

−2µ2t2
2 + 1 + 2βt1t2

t1 + t2

[

t2

ˆ

R

w3φ2 dy + t1

ˆ

R

w3φ1 dy

]

w2
´

R
w3 dy

= 0. (3.7)

Combining (3.6), (3.7) and using (2.3) implies that φ̂1 = t1φ1 + t2φ2 satisfies

∆φ̂1 − φ̂1 + 3φ̂1w2 − 3

ˆ

w3φ̂1 dy
w2

´

w3 dy
= 0. (3.8)

Multiplying (3.8) by w, integrating and using (1.3), we get
ˆ

w3φ̂1 dy = 0.

Thus the nonlocal term in (3.8) vanishes and we have

∆φ̂1 − φ̂1 + 3φ̂1w2 = 0.

This implies φ̂1 = 0 by Lemma 4.1 in [28] since it is an even function.
Thus, the nonlocal terms in (3.6), (3.7) vanish. Then for φ̂2 = t2φ1 − t1φ2, we get

∆φ̂2 − φ̂2 + (3 − 2β(t2
1 + t2

2))φ̂2w2 = 0

which implies φ̂2 = 0 by Lemma 4.1 of [28]. Going back to the original eigenfunctions, we have
φ1 = φ2 = 0.

By the Closed Range Theorem it follows that the map Lǫ is surjective. (The details are given
for example in [9].)

�

Proof of Theorem 1:
The main existence result Theorem 1 can now be shown as follows:
We first compute Sǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]. From the first equation of (1.2), we get

ǫ2u1,xx − u1 +
µ1u3

1 + βu1u2
2

vǫ
= t1

√

vǫ(0)(w
′′ − w + w3) + t1

√

vǫ(0)w
3

(

vǫ(0)

vǫ(ǫy)
− 1

)

+ O(ǫ3)

= 0 + t1

√

vǫ(0)w
3

(

−v′′ǫ (0)ǫ
2y2

2vǫ(0)
+ O(ǫ3|y|3)

)

= O(ǫ2y2w3(y)).
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Here we have used that vǫ(ǫy) is an even function and so v′ǫ(0) = 0 and the O(ǫ) term vanishes.
Since

Sǫ[t1

√

vǫ(0)wχ+ a1, t2

√

vǫ(0)wχ+ a2] = Sǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]+ Lǫ(a1, a2)+G(a1 , a2),

where

‖Sǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]‖(L2(Ωǫ))2 = O(ǫ2)

and
‖G(a1, a2)‖(L2(Ωǫ))2 = O((‖(a1 , a2)‖(L2(Ωǫ))2)2)

we can re-write

Sǫ[t1

√

vǫ(0)wχ + a1, t2

√

vǫ(0)wχ + a2] = 0

as

(a1, a2) = −L−1
ǫ Sǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]− L−1
ǫ G(a1, a2).

In other words, we need to find a fixed point (a1, a2) ∈ H2,ev(Ωǫ) of the mapping

−L−1
ǫ Sǫ[t1

√

vǫ(0)wχ, t2

√

vǫ(0)wχ]− L−1
ǫ G(a1, a2) : H2,ev(Ωǫ) 7→ H2,ev(Ωǫ).

The existence of this fixed point is guaranteed by the contraction mapping principle. The de-
tails follow closely the analysis for the Gierer-Meinhardt system, see for example Section 3 in
[30] or Section 5 in [38]. The existence of Type 1 solutions follows. �

For the existence of Type 2 solutions, the proof is similar and is omitted. The nonlocal eigen-
value problem is given in (4.15) and (4.16) and no transformation of eigenfunctions is required.
The result about the kernel of the nonlocal eigenvalue problem is given in Proposition 3. As for
Type 1 solutions it has to be shown that the kernel of the adjoint operator is trivial. To prove
this result we have to consider the same NLEP as in (3.8) but now applied to φ1 instead of φ̂1.
The proof concludes in the same way as for Type 1 solutions.

In the next two sections we consider the stability or instability of these solutions.

4. STABILITY I: THE EIGENVALUE PROBLEM AND THE LARGE EIGENVALUES

Now we study the (linearized) stability of this even steady state. To this end, we first derive
the linearized operator around the steady state (uǫ

1, uǫ
2, vǫ) given in Theorem 1.

We perturb the steady state as follows:

u1 = uǫ
1 + φǫ

1eλt, u2 = uǫ
2 + φǫ

2eλt, v = vǫ + ψǫeλt.

By linearization, we obtain the following eigenvalue problem (dropping superscripts and
subscripts ǫ):






















λǫφ1 = ǫ2φ1,xx − φ1 +
3µ1u2

1φ1 + βu2
2φ1 + 2βu1u2φ2

v
− µ1u3

1 + βu1u2
2

v2
ψ,

λǫφ2 = ǫ2φ2,xx − φ2 +
3µ2u2

2φ2 + βu2
1φ2 + 2βu1u2φ1

v
− µ2u3

2 + βu2
1u2

v2
ψ,

τλǫψ = Dψxx − ψ + (3µ1u2
1φ1 + βu2

2φ1 + 2βu1u2φ2 + 3µ2u2
2φ2 + βu2

1φ2 + 2βu1u2φ1)ǫ
−1,

(4.1)
where all components belong to the space H2

N(Ω).
We now analyze the case λǫ → λ0 6= 0 (large eigenvalues). We rescale x = ǫy, take the

limit ǫ → 0 in (4.1), and note that φi converges locally in H2(Ωǫ). Then we get for the first two
components, using the approximations of u1 and u2 given in Theorem 1:
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λǫφ1 ∼ φ1,yy − φ1 +
3µ1u2

1φ1 + βu2
2φ1 + 2βu1u2φ2

v(0)
− µ1u3

1 + βu1u2
2

v(0)2
ψ(0),

λǫφ2 ∼ φ2,yy − φ2 +
3µ2u2

2φ2 + βu2
1φ2 + 2βu1u2φ1

v(0)
− µ2u3

2 + βu2
1u2

v(0)2
ψ(0),

(4.2)

where v(0) is given by (2.11).
Now we calculate the term ψ(0). We consider the special case τ = 0 using the Green’s

function GD given in (2.7).

Remark 5. The case of small τ can be considered using a small perturbation of the case τ = 0 as it can
be shown that |λǫ| ≤ C for all eigenvalues such that λǫ > −c0 with some small c0 > 0, for example
using a characterization of the eigenvalues by quadratic forms [29]. Alternatively, one could consider
the case of arbitrary τ using a more general Green’s function.

From the third equation of (4.1) we get

ψ(0) ∼ v(0)

[

[3µ1t2
1 + βt2

2 + 2βt1t2]

ˆ

R

w2φ1 dy + [2βt1t2 + 3µ2t2
2 + βt2

1]

ˆ

R

w2φ2 dy

]

GD(0, 0).

(4.3)
Recalling from (2.11) that

v(0) =
1

GD(0, 0)2(t1 + t2)2
(´

R
w3
)2

+ O(ǫ),

we get from (4.3)

ψ(0) ∼ 1

GD(0, 0)(t1 + t2)2(
´

R
w3dy)2

×
[

[3µ1t2
1 + βt2

2 + 2βt1t2]

ˆ

R

w2φ1 dy + [2βt1t2 + 3µ2t2
2 + βt2

1]

ˆ

R

w2φ2 dy

]

. (4.4)

Then (4.2) gives the following nonlocal eigenvalue problem (NLEP)

∆φ1 − φ1 + [(2µ1t2
1 + 1)φ1 + 2βt1t2φ2]w

2

− t1

t1 + t2

[

(2µ1t2
1 + 1 + 2βt1t2)

ˆ

R

w2φ1 dy + (2µ2t2
2 + 1 + 2βt1t2)

ˆ

R

w2φ2 dy

]

w3
´

R
w3 dy

= λφ1,

(4.5)
∆φ2 − φ2 + [(2µ2t2

2 + 1)φ2 + 2βt1t2φ1]w
2

− t2

t1 + t2

[

(2µ2t2
2 + 1 + 2βt1t2)

ˆ

R

w2φ2 dy + (2µ1t2
1 + 1 + 2βt1t2)

ˆ

R

w2φ1 dy

]

w3
´

R
w3 dy

= λφ2,

(4.6)
where φ1, φ2 ∈ H2(R).

We first diagonalize the local terms of the NLEP (4.5), (4.6). Written in vector form, the local
terms are

∆φ − φ + Bφw2, (4.7)

where φ = (φ1, φ2)
T and

B =

(

2µ1t2
1 + 1 2βt1t2

2βt1t2 2µ2t2
2 + 1

)

. (4.8)

Using (2.3), the eigenvalues of B are 3 and 3 − 2β(t2
1 + t2

2), with corresponding eigenvectors

(t1, t2)
T and (−t2, t1)

T, respectively.
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Thus, setting
φ̂1 = t1φ1 + t2φ2 (4.9)

and
φ̂2 = −t2φ1 + t1φ2, (4.10)

the NLEP is transformed to
∆φ̂1 − φ̂1 + 3φ̂1w2

−
[

3

ˆ

R

w2φ̂1 dy +
t1 − t2

t1 + t2
(3 − 2β(t2

1 + t2
2))

ˆ

R

w2φ̂2 dy

]

w3
´

w3 dy
= λφ̂1, (4.11)

and
∆φ̂2 − φ̂2 + (3 − 2β(t2

1 + t2
2))φ̂2w2 = λφ̂2. (4.12)

Note that the transformed NLEP has a special structure: the second equation is decoupled
from the first equation and it is a local equation. Therefore it can be considered first. Only the
first equation has a nonlocal term.

By Lemma 3.2 of [12] we have exact information about the eigenvalues of the NLEP

∆φ − φ + 3φw2 − 3

ˆ

R

w2φ dy
w3

´

w3 dy
= λφ. (4.13)

Using the identity L0w2 = 3w2, where L0φ = ∆φ − φ + 3φw2, it has been shown in [12] that
the the point spectrum for the non-selfadjoint problem (4.13) is real, and it can be determined
exactly. For the principal eigenvalue we have

λ = 3

(

1 −
´

R
w5 dy

´

R
w3 dy

)

= 3

(

1 − 3

2

)

= −3

2

using w(y) =
√

2 sech y. Further, the continuous spectrum of (4.13) is λ < −1. The kernel of
(4.13) equals span {wy}.

In (4.12) we rewrite
3 − 2β(t2

1 + t2
2) = 1 − 2g(β),

where g(β) = β(t2
1 + t2

2)− 1. For stability, it will be crucial to determine the sign of g(β). Using
(2.3), (2.10), we compute

g(β) = (β − µ2)t
2
2 =

(β − µ1)(β − µ2)

β2 − µ1µ2
.

Since t2
1t2

2 > 0, from (2.10) we get (β − µ1)(β − µ2) > 0. Therefore g(β) has the same sign as

β2 − µ1µ2. Therefore, g(β) > 0 if β > max(µ1, µ2) and g(β) < 0 if β < min(µ1, µ2).
Then for the kernel of the NLEP (4.5), (4.6) we have the following result:

Proposition 2. Suppose that

β > max(µ1, µ2) or β < min(µ1, µ2).

If λ = 0, we get for the NLEP (4.5), (4.6)

φ1 = t1αwy, φ2 = t2αwy, (with some real number α).

Proof. We apply Lemma 4.1 in [28] to the second equation of the transformed NLEP (4.11),
(4.12) and get φ̂2 = 0 since g(β) 6= 0. Then we apply Lemma 3.2 of [12] to the first equation and
get φ̂1 = αwy, where α is a real number.

Transforming back, for the kernel of the original NLEP (4.5), (4.6) we have

φ1 = t1αwy, φ2 = t2αwy, (with some real number α).
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�

In the next section, we will show that all the small eigenvalues must have negative real part.
Here we will show the following:
Proof of Theorem 3: We consider the eigenvalues of the transformed NLEP (4.11), (4.12). We
first consider the case β > max(µ1, µ2). Then we have g(β) > 0. If Re(λ) ≥ −c for some c > 0
small enough, and λ 6= 0, then by Lemma 4.1 (4) of [34] we have

φ̂2 = 0.

Since φ̂2 = 0, the first equation becomes

∆φ̂1 − φ̂1 + 3φ̂1w2 − 3

ˆ

w2φ̂1 dy
w3

´

w3 dy
= λφ̂1.

Therefore, φ̂1 satisfies (4.13). By Lemma 3.2 of [12] we have φ̂1 = 0. Transforming back, this
implies that φ1 = φ2 = 0, and there is no eigenvalue with Re(λ) ≥ −c for some c > 0 small
enough and λ 6= 0. The stability part of Theorem 3 follows.

If β < min(µ1, µ2), it follows that g(β) < 0 and we will show that the spike solutions are
unstable.

In fact, by Lemma 4.1 (3) of [34], for (4.16) there is an eigenfunction φ̂2 with λ > 0. Using this
eigenfunction φ̂2 we can compute φ̂1 as follows:

Let

Lφ̂1 = ∆φ̂1 − φ̂1 + 3φ̂1w2 − 3w3
´

w3 dy

ˆ

w2φ̂1 dy. (4.14)

Note that the operator L − λI : H2(R) → L2(R) is invertible by Lemma 3.2 of [12]. Then we
compute

φ̂1 = −(L − λI)−1 t1 − t2

t1 + t2
(3 − 2β(t2

1 + t2
2))

ˆ

w2φ̂2 dy
w3

´

w3 dy
.

Transforming back, we get an eigenfunction (φ1, φ2) with eigenvalue λ > 0.
Arguing as in the proof of Theorem 1 of [1] the eigenvalue problem (4.5), (4.6) captures

all converging sequences of eigenvalues λǫ of (4.1) which converge to an eigenvalue λ with
Re(λ) > −1. On the other hand, for any eigenvalue λ of (4.5), (4.6) with Re(λ) > −1 there is
a converging sequence of eigenvalues λǫ of (4.1) with λ as its limit. Therefore the eigenvalue
problem (4.1) is stable concerning eigenvalues sequences λǫ converging to a limit which is not
zero. The case of zero limiting eigenvalue will be studied in Section 5 below. The result is stated
in (5.20). Together, it follows that the proof of Theorem 3 is complete.

�

The proof of Theorem 4 follows the same strategy. For Type 2 spike solutions, using (4.2), the
NLEP becomes

∆φ1 − φ1 + 3φ1w2 −
[

3

ˆ

Ω

w2φ1 dy +
β

µ1

ˆ

Ω

w2φ2 dy

]

w3
´

Ω
w3 dy

= λφ1, (4.15)

∆φ2 − φ2 +
β

µ1
φ2w2 = λφ2, (4.16)

where φ1, φ2 ∈ H2(R).
The NLEP has a special structure: Only the first equation is a NLEP. The second equation is

a decoupled local equation. No transformation of the eigenfunctions is required.
First, we have the following result about the kernel of the NLEP (4.15), (4.16):
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Proposition 3. Suppose that
β

µ1
6= 1. If λ = 0, we get for the NLEP (4.15), (4.16) φ1 = αwy, φ2 = 0,

where α is a real number.

Proof. We apply Lemma 4.1 in [28] to the second equation and get φ2 = 0. Then we apply
Lemma 3.2 of [12] to the first equation and get φ1 = αwy, where α is a real number. �

Proof of Theorem 4: We consider the eigenvalues of the NLEP (4.15), (4.16). If Re(λ) ≥ −c for

some c > 0 small enough, and λ 6= 0, we get φ2 = 0, provided that
β

µ1
< 1, by using Lemma 4.1

(4) of [34]. Then we apply Lemma 3.2 of [12] to the first equation and get φ1 = 0. This implies
stability of the eigenvalue problem (4.15), (4.16).

On the other hand, if
β

µ1
> 1 we can construct an unstable eigenfunction, first for φ2, and

then also for φ1. In fact, by Lemma 4.1 (3) of [34], for (4.16) there is an eigenfunction φ2 with
λ > 0. Using this eigenfunction φ2 we can compute φ1 as follows:

Let L be the operator defined in (4.14) but now applied to φ1 instead of φ̂1. Recall that the
operator L− λI : H2(R) → L2(R) is invertible by Lemma 3.2 of [12]. Then we compute

φ1 = −(L− λI)−1 β

µ1

ˆ

w2φ2 dy
w3

´

w3 dy
.

Thus (φ1, φ2) is an eigenfunction for eigenvalue λ > 0.
Again, using the argument [1], the the eigenvalue problem (4.1) is stable concerning eigen-

value sequences λǫ whose limit is not zero. The case of zero limiting eigenvalue will be studied
in Section 5 below. The result is stated in (5.22). Together, it follows that the proof of Theorem
4 is complete.

�

In the next section we complete the proof of Theorems 3 and 4 by considering small eigen-
values λǫ which converge to zero.

5. STABILITY II: THE SMALL EIGENVALUES

Now we study the small eigenvalues for (4.1), namely those with λǫ → 0 as ǫ → 0. For
simplicity, we set τ = 0. Since τλǫ ≪ 1 the results in this section are also valid for τ finite.
The case of general τ > 0 can be treated as in Section 7 of [33]. We will show that the small
eigenvalues are of order O(ǫ2).

For given f ∈ L2(Ω), let T[ f ] be the unique solution in H2
N(Ω) of the problem

D∆(T[ f ]) − T[ f ] + ǫ−1 f = 0. (5.1)

We present the argument in detail for Type 1 solutions. We will explain the differences for
Type 2 and Type 3 solutions in Remark 6.

By Theorem 1 we have for the spiky steady states

uǫ
1 = t̂1wǫ + O(ǫ), uǫ

2 = t̂2wǫ + O(ǫ),

vǫ = T[µ1(u
ǫ
1)

3 + βuǫ
1(u

ǫ
2)

2 + µ2(u
ǫ
2)

3 + β(uǫ
1)

2uǫ
2], (5.2)

where

t̂i =
√

vǫ(0)ti. (5.3)
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After rescaling x = ǫy for the first two components, the eigenvalue problem (4.1) becomes

λǫφ1 = φ1,yy − φ1 +
3µ1(u

ǫ
1)

2φ1 + β(uǫ
2)

2φ1 + 2βuǫ
1uǫ

2φ2

vǫ
− µ1(u

ǫ
1)

3 + βuǫ
1(u

ǫ
2)

2

v2
ǫ

ψ,

λǫφ2 = φ2,yy − φ2 +
3µ2(u

ǫ
2)

2φ2 + β(uǫ
1)

2φ2 + 2βuǫ
1uǫ

2φ1

vǫ
− µ2(u

ǫ
2)

3 + β(uǫ
1)

2uǫ
2

v2
ǫ

ψ,

τλǫψ = Dψxx − ψ +
[

3µ1(u
ǫ
1)

2φ1 + β(uǫ
2)

2φ1 + 2βuǫ
1uǫ

2φ2 + 3µ2(u
ǫ
2)

2φ2 + β(uǫ
1)

2φ2 + 2βuǫ
1uǫ

2φ1

]

ǫ−1,
(5.4)

where the unknown functions φ1, φ2 are in H2
N(Ωǫ) and ψ is in H2

N(Ω).
Let us define

ũǫ,j(ǫy) = χ(ǫy)uǫ
j (ǫy), j = 1, 2, (5.5)

where χ is the smooth, even cut-off function defined in (3.1). Then

ũǫ,j(x) = uǫ
j (x) + e.s.t., j = 1, 2, (5.6)

where e.s.t. denotes an exponentially small term in H2
N(Ωǫ). We note that ũǫ,j, j = 1, 2 are even

functions.
Next we transform the eigenfunctions as in (4.9), (4.10):

φ̂1 = t1φ1 + t2φ2,

φ̂2 = −t2φ1 + t1φ2.

The transformed eigenvalue problem becomes in leading order

λǫφ̂1 = φ̂1,yy − φ̂1 + 3w2χ2φ̂1
vǫ(0)

vǫ
(1 + O(ǫ))− (t2

1 + t2
2)w

3χ3 (vǫ(0))3/2ψ̂

v2
ǫ

(1 + O(ǫ)),

λǫφ̂2 = φ̂2,yy − φ̂2 + (3 − 2β(t2
1 + t2

2))w
2χ2φ̂2

vǫ(0)

vǫ
(1 + O(ǫ)),

τλǫψ̂ = Dψ̂xx − ψ̂ +
[

3w2χ2φ̂1 +
t1−t2
t1+t2

(3 − 2β(t2
1 + t2

2))w
2χ2φ̂2

]

vǫ(0)ǫ−1(1 + O(ǫ)),

(5.7)

where all unknown functions φ̂1, φ̂2, ψ̂ are in H2
N(Ω).

Next we define the approximate kernel and co-kernel for the transformed eigenvalue prob-
lem (5.7)

Kǫ := span

{(

t1
d

dy
ũǫ,1(ǫy) + t2

d

dy
ũǫ,2(ǫy), 0

)}

⊂ (H2
N(Ωǫ))

2,

Cǫ := span

{(

t1
d

dy
ũǫ,1(ǫy) + t2

d

dy
ũǫ,2(ǫy), 0

)}

⊂ (L2(Ωǫ))
2,

where Ωǫ =
(

− L
ǫ , L

ǫ

)

.
Note that, by Theorem 1, ũǫ,j satisfies

∆yũǫ,j − ũǫ,j +
µjũ

3
ǫ,j + βũǫ,jũ

2
ǫ,3−j

vǫ
+ e.s.t = 0, j = 1, 2.

Thus ũ
′
ǫ,j :=

dũǫ,j

dy , v
′
ǫ := ǫ dvǫ(x)

dx satisfies

∆yyũ
′
ǫ,j − ũ

′
ǫ,j +

3µ1ũ2
ǫ,j + βũ2

ǫ,3−j

vǫ
ũ
′
ǫ,j +

2βũǫ,jũǫ,3−j

vǫ
ũ
′
ǫ,3−j −

µjũ
3
ǫ,j + βũǫ,jũ

2
ǫ,3−j

(vǫ)2
v
′
ǫ + e.s.t = 0.

(5.8)
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This implies

(t1ũ
′
ǫ,1 + t2ũ

′
ǫ,2)yy − (t1ũ

′
ǫ,1 + t2ũ

′
ǫ,2) +

3w2χ2vǫ(0)

vǫ
(t1ũ

′
ǫ,1 + t2ũ

′
ǫ,2)

− (t2
1 + t2

2)χ
3w3(vǫ(0))3/2

(vǫ)2
v
′
ǫ + O(ǫ) = 0. (5.9)

Let us now decompose φ̂ǫ = (φ̂ǫ,1, φ̂ǫ,2), where

φ̂ǫ,1 = aǫ(t1ũ
′
ǫ,1 + t2ũ

′
ǫ,2) + φ⊥

ǫ , (5.10)

with complex numbers aǫ. Here the factor ǫ is for scaling purposes, to achieve that aǫ is of order
O(1), and

(φ⊥
ǫ , 0) ∈ K⊥

ǫ ,

where orthogonality is taken with respect to the scalar product of the product space (L2(Ωǫ))
2.

We will show that
‖φ⊥

ǫ ‖H2(Ωǫ) = O(ǫ2), ‖φ̂ǫ,2‖H2(Ωǫ) = O(ǫ2),

and so φ⊥
ǫ and φ̂ǫ,2 will not play a leading role in our results.

Suppose that ‖φǫ‖H2(Ωǫ) = 1. Then |aǫ| ≤ C.

Similarly, we decompose

ψǫ = aǫψǫ,1 + ψ⊥
ǫ , (5.11)

where ψǫ,1 satisfies

ψǫ,1 = T[3w2χ2(t1ũ
′
ǫ,1 + t2ũ

′
ǫ,2)]vǫ(0)(1 + O(ǫ)) (5.12)

and ψ⊥
ǫ is given by

ψ⊥
ǫ = T[3w2χ2φ⊥

ǫ +
t1 − t2

t1 + t2
(3 − 2β(t2

1 + t2
2))w

2χ2φ̂2]vǫ(0)(1 + O(ǫ)). (5.13)

By the second equation of (5.7) we get

φ̂ǫ,2,yy − (1 + λǫ)φ̂ǫ,2 + (3 − 2β(t2
1 + t2

2))w
2χ2φ̂ǫ,2

vǫ(0)

vǫ(ǫy)
(1 + O(ǫ)) = 0.

Since
vǫ(0)

vǫ(ǫy)
= 1 − 1

2(vǫ(0))
v′′ǫ (0)ǫ

2y2 + O(ǫ3|y|3) = 1 + O(ǫ2y2) (5.14)

we get ‖φ̂ǫ,2‖H2(Ωǫ) = O(ǫ2). Here we have used that vǫ(ǫy) is an even function and so v′ǫ(0) =
0 and the O(ǫ) term vanishes.

Substituting the decomposition of φ̂ǫ,1 and ψǫ as well as φ̂ǫ,2 into the first part of (5.7) we
have

ǫ

(

aǫ(t2
1 + t2

2)w
3χ3 vǫ(0)

3/2

v2
ǫ

v
′
ǫ − aǫ(t2

1 + t2
2)

w3χ3(vǫ(0))
3/2

v2
ǫ

ψǫ,1

)

+∆φ⊥
ǫ − φ⊥

ǫ + 3w2χ2 vǫ(0)

vǫ
φ⊥

ǫ − (t2
1 + t2

2)w
3χ3(vǫ(0))3/2

v2
ǫ

ψ⊥
ǫ − λǫφ⊥

ǫ + e.s.t

= λǫaǫ(t2
1 + t2

2)
√

vǫ(0)w
′(1 + o(1)), (5.15)

since t1ũ
′
ǫ,1 + t2ũ

′
ǫ,2 satisfies (5.9) and t1ũ

′
ǫ,1 + t2ũ

′
ǫ,2 ∼ (t2

1 + t2
2)
√

vǫ(0)w′.
Using ‖ψ⊥

ǫ ‖ = O(‖φǫ‖⊥) + O(ǫ2), we derive ‖φ⊥
ǫ ‖ = O(ǫ2) and ‖ψ⊥

ǫ ‖ = O(ǫ2) since the
operator L− λI with L defined in (4.14) is invertible by Lemma 3.2 of [12].
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Multiplying both sides of (5.15) by w′ and integrating, the l.h.s and the r.h.s of (5.15) become

l.h.s. = aǫ(t2
1 + t2

2)
√

vǫ(0)

ˆ

R

w3χ3 vǫ(0)

v2
ǫ

(v
′
ǫ − ψǫ,1)w

′ dy + O(ǫ3) (5.16)

and

r.h.s. = λǫaǫ(t2
1 + t2

2)
√

vǫ(0)

ˆ

R

(w
′
(y))2 dy (1 + o(1)), (5.17)

respectively.
Note that the integrals resulting from the second line of (5.15) are in leading order a product

of an even function of order O(ǫ2) and an odd function. Therefore, for the integrals the terms
of O(ǫ2) vanish and they can estimated by O(ǫ3).

Using the Green’s function representation of vǫ and ψǫ we compute using (2.7)

v′ǫ(ǫy)−ψǫ,1(ǫy) = −(t1 + t2)(vǫ(0))
3/2ǫ

ˆ

R

(

∇1HD(ǫy, ǫz)w3(z)− HD(ǫy, ǫz)
d

dz
w3(z)

)

dz+O(ǫ2)

= −(t1 + t2)(vǫ(0))
3/2ǫ

ˆ

R

(∇1HD(ǫy, ǫz) +∇2HD(ǫy, ǫz))w3(z) dz + O(ǫ2)

= −(t1 + t2)(vǫ(0))
3/2ǫ(∇1HD(ǫy, 0) +∇2HD(ǫy, 0))

ˆ

R

w3(z) dz + O(ǫ2),

where ∇1HD(P, Q) = ∂
∂P HD(P, Q) and ∇2HD(P, Q) = ∂

∂Q HD(P, Q).

We have used that the contribution from KD vanishes. This can be seen as follows: since
KD(x, y) = KD(|x − y|) we compute

ˆ

R

∂

∂y
KD(|ǫy − ǫz|)w3(z) dz = −

ˆ

R

(

∂

∂z
KD(|ǫy − ǫz|)

)

w3(z) dz

=

ˆ

R

KD(|ǫy − ǫz|) d

dz
w3(z) dz.

Compare Section 7 of [33].
For (5.16), we get

l.h.s. =

= −ǫaǫ(t2
1 + t2

2)
√

vǫ(0)

ˆ

R

(t1 + t2)
√

vǫ(0)w
′(y)w3(y)(∇1 HD(ǫy, 0) +∇2HD(ǫy, 0)) dy

×
ˆ

R

w3(z) dz + O(ǫ3)

= −ǫ2aǫ(t2
1 + t2

2)(t1 + t2)vǫ(0)

ˆ

R

w′(y)w3(y)y dy((∇1)
2HD(0, 0) +∇1∇2HD(0, 0))

×
ˆ

R

w3(z)dz + O(ǫ3)

= ǫ2aǫ(t2
1 + t2

2)(t1 + t2)vǫ(0)
(1

4

ˆ

R

w4(y) dy
)(

ˆ

R

w3(z) dz
)

×((∇1)
2HD(0, 0) +∇1∇2HD(0, 0)) + O(ǫ3)

= ǫ2aǫ(t2
1 + t2

2)(t1 + t2)vǫ(0)
(1

4

ˆ

R

w4 dy
)(

ˆ

R

w3 dz
)

×
(

∇2
PHD(P, Q)|P=Q=0 +∇P∇QHD(P, Q)|P=Q=0

)

+ O(ǫ3)

= ǫ2aǫ(t2
1 + t2

2)(t1 + t2)vǫ(0)
(1

8

ˆ

R

w4 dy
)(

ˆ

R

w3 dz
)

∇2
PHD(P, P)|P=0 + O(ǫ3). (5.18)
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Combining (5.17) and (5.18), the small eigenvalues λǫ satisfy

λǫ ∼ ǫ2(t1 + t2)
√

vǫ(0)
(1

8

ˆ

R

w4 dy
)(

ˆ

R

w3 dz
) 1
´

R
(w′)2 dy

∇2
PHD(P, P)|P=0. (5.19)

Using (2.11), we get

λǫ ∼ ǫ2

´

R
w4 dy

8
´

R
(w′)2 dy

∇2
PHD(P, P)|P=0

GD(0, 0)
. (5.20)

Since GD(0, 0) > 0 and ∇2
P HD(P, P) < 0 it follows that λǫ < 0. These inequalities follows

from (2.7) as follows:

GD(P, P) =
θ

sinh(2θL)
cosh θ(L + P) cosh θ(L − P),

GD(0, 0) =
θ

sinh(2θL)
cosh2(θL) =

θ

2
coth(θL) > 0,

∇2
P HD(P, P)|P=0 = −∇2

PGD(P, P)|P=0 = − 2θ3

sinh(2θL)
cosh2(2θP)|P=0 = − 2θ3

sinh(2θL)
< 0.

Remark 6. For Type 2 and Type 3 spikes we can make similar computations for the small eigenvalues.
We do not have to make the transformation of the eigenfunctions and we use the same Green’s function
GD. We get

λǫ ∼ ǫ2t1

√

vǫ(0)
(1

8

ˆ

R

w4 dy
)(

ˆ

R

w3(z) dz
) 1
´

R
(w′)2 dy

∇2
PHD(P, P)|P=0. (5.21)

Using (2.15), we get

λǫ ∼
´

R
w4 dy

8
´

R
(w′)2 dy

∇2
PHD(P, P)|P=0

GD(0, 0)
. (5.22)

We can see that the small eigenvalues for the Type 2 and Type 3 solutions are the same as for the Type 1
solutions. Since GD(0, 0) > 0 and ∇2

PHD(P, P) < 0 it follows that λǫ < 0.

In the next section we present some numerical computations of the solutions.

6. NUMERICAL SIMULATIONS

For the numerical simulations we use the domain Ω = (−1, 1) and Neumann boundary
conditions for all components.

The pictures show the numerically obtained long-term limit of the three components u1, u2, v,
i.e. the state at t = 3, 000. It has been observed numerically that for larger times the solution
remains at this steady state and does not change anymore. This confirms the analytical result
that the steady state with spikes for the two activators is stable.

The choice of constants for the numerical simulations has been motivated by the analysis. In
particular, ǫ2 has to be rather small compared to D and µ1, µ2, β have to be chosen so that the
assumptions of the stability results Theorem 3 and Theorem 4, respectively, are satisfied.

Different types of stable solutions have been computed.
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Figure 1. Type 1 Solution (u1 > 0, u2 > 0), Color Green, Single Spike,

ǫ2 = 0.0001, D = 1, µ1 = 1, µ2 = 3, β = 5.

Figure 2. Type 1 Solution (u1 > 0, u2 > 0), Color Green, 2 Spikes,

ǫ2 = 0.0001, D = 0.1, µ1 = 1, µ2 = 3, β = 5.
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Figure 3. Type 1 Solution (u1 > 0, u2 > 0), Color Green, 7 Spikes,

ǫ2 = 0.0001, D = 0.01, µ1 = 1, µ2 = 3, β = 5.

Figure 4. Type 3 Solution (u1 = 0, u2 > 0), Color Yellow, Single Spike,

ǫ2 = 0.0001, D = 1, µ1 = 1, µ2 = 3, β = 2.
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Figure 5. Type 3 Solution (u1 = 0, u2 > 0), Color Yellow, 2 Spikes,

ǫ2 = 0.0001, D = 0.1, µ1 = 1, µ2 = 3, β = 2.

Figure 6. Type 3 Solution (u1 = 0, u2 > 0), Color Yellow, 6 Spikes,

ǫ2 = 0.0001, D = 0.01, µ1 = 1, µ2 = 3, β = 2.
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Figure 7. Type 2 Solution (u1 > 0, u2 = 0), Color Blue, Single Spike,

ǫ2 = 0.0001, D = 1, µ1 = 1, µ2 = 3, β = 0.5.

Figure 8. Type 2 Solution (u1 > 0, u2 = 0), Color Blue, 2 Spikes,

ǫ2 = 0.0001, D = 0.1, µ1 = 1, µ2 = 3, β = 0.5.



REACTION-DIFFUSION SYSTEM FOR COLOR PATTERN FORMATION 23

Figure 9. Type 2 Solution (u1 > 0, u2 = 0), Color Blue, 6 Spikes,

ǫ2 = 0.0001, D = 0.01, µ1 = 1, µ2 = 3, β = 0.5.

Figure 10. Type 2/3 Solution Combined, Colors Blue/Yellow, 1/1 Spikes in Different Loca-
tions,

ǫ2 = 0.0001, D = 0.001, µ1 = 1, µ2 = 3, β = 0.5.
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Figure 11. Type 2/3 Solution Combined, Colors Blue/Yellow, 6/6 Spikes in Different Loca-
tions,

ǫ2 = 0.0001, D = 0.01, µ1 = 1, µ2 = 3, β = 0.5.

7. DISCUSSION

In this final section, we discuss some possible generalisations, extensions and related topics.

Remark 7. The results can be generalized to the case of negative parameters. For the existence of Type
1 solutions, we need max(µ1, µ2) < β or β < min(µ1, µ2).

If β is negative, then µ1 and µ2 must both be positive, otherwise (2.3) is not possible. Thus we need
to have β < 0 < min(µ1, µ2). To satisfy (2.10), it is further required that β > −√

µ1µ2. In summary,
we need −√

µ1µ2 < β < 0 < min(µ1, µ2). Under this assumption, a Type 1 solution exists. We have
g(β) < 0, and so the solution is unstable.

If µ1 is negative, then by (2.3), β must be positive and so β − µ1 > 0. From (2.10), we get β2 −
µ1µ2 > 0 and β − µ2 > 0. This implies

β2

µ1
< µ2 < β. Note that µ2 can have either sign. Under these

conditions a Type 1 solution exists. Here g(β) > 0, and so the solution is stable.
For β < 0 and µ1 > 0, Type 2 solutions exist and they are stable. Analogously, for β < 0 and µ2 > 0,

Type 3 solutions exist and they are stable.

The following extensions will be interesting to consider: The activator interaction rates can
be changed to quadratic, quartic, etc. instead of cubic activator growth rates for activator inter-
action.

We expect Hopf bifurcation to occur for sufficiently large τ, resulting in oscillating spikes.
Our analysis covered only the case τ = 0 and we did not observe oscillations numerically for
τ = 1. The instabilities of the spikes which we encountered in the numerical calculations were
(i) disappearance of spikes when the amplitude becomes unstable (related to large eigenvalues)

– this happens if the ratio of the diffusion constants D
ǫ2 is too large (ii) movement of the spikes to
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the boundary when their positions became unstable (related to small eigenvalues) – this occurs
if D is too large.

Two-dimensional domains can be considered instead of an one-dimensional interval.
The analysis can be extended from single spikes to multiple spikes in different locations. If

the inhibitor diffusivity is small enough then stable combinations of spikes are expected. Stable
solutions should be possible for the following combinations: Type 1 multiple spikes only, Type
2 multiple spikes only, Type 3 multiple spikes only, combination of Type 2 and Type 3 multiple
spikes. This would be in agreement with the case studies in the numerical computations (see
Section 6). Combinations of Type 2 and Type 3 solutions in a different system with reaction
kinetics of Klausmeier type have been studied in [8].

Activator-inhibitor systems with N ≥ 3 activator components and a combination of self-
activation and cross-activation are an important extension. In particular, the results can be
extended to color pattern formation for more than two colors.
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