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To the memory of Haı̈m Brezis with admiration

ABSTRACT. In 2023, H. Brezis [2] published a list of his “favorite open problems”, which he
described as challenges he had “raised throughout his career and has resisted so far”. In this
paper, we shall provide a partial answer to this question by presenting the existence of sign-
changing solutions to the equation whenever the parameter is small enough. Our construction
is based on the building blocks of Del Pino-Musso-Pacard-Pistoia sign-changing solutions to
Yamabe problem.

1. INTRODUCTION

In 1983, Brezis and Nirenberg [3] proposed the problem

(1.1)

{
∆u+ λu+ |u|

4
n−2u = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth, bounded domain in Rn. In their landmark study [3], they established
the existence of at least one positive solution under the conditions: 0 < λ < λ1 for n ≥ 4,
and 0 < λ∗ < λ < λ1 for n = 3, with λ1 as the first eigenvalue of the Laplacian and
λ∗ a domain-dependent constant, later quantified by Druet [16] via Robin functions. When
Ω is the unit ball in Rn, they showed λ∗ = λ1

4
, and positive solutions exist exactly when

λ ∈ (λ1

4
, λ1). Additionally, using Pohozaev’s identity, they proved that no solutions exist

if λ ≤ 0 and Ω is star-shaped. Since its debut, this problem has drawn significant interest
and stands as a pivotal work in the study of nonlinear elliptic partial differential equations
(PDEs) with critical Sobolev exponents; see [4, 8, 6, 5, 7, 14, 22] and references therein
for the developments of this problem. Notably, the three-dimensional case remains largely
unresolved, particularly the question of whether nontrivial solutions to (1.1) exist for λ ∈
(0, λ∗). For the unit ball case, H. Brezis [2] posed it as Open Problem 1.1. Consider Ω = B,
the unit ball in R3, with the problem:

(1.2)

{
∆u+ λu+ u5 = 0 in B,
u = 0 on ∂B.

H. Brezis’ first open problem is as follows:

Open Problem 1.1 (Implicit in [3]) Assume that

(1.3) 0 < λ <
λ1
4
.
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Does there exist a non-trivial solution u ̸≡ 0 to (1.2)?

In a concurrent study, the authors of this paper provide a complete answer to this question.
Specifically, the following conclusion is obtained:

Theorem A. [23, Theorem 1.1] Assume that 0 < λ < +∞. Then there are infinitely many
(sign-changing) solutions to (1.2).

In the proof of Theorem A, two key factors play important role. First, we rely on a nodal
solution to the Yamabe problem. Unlike most of the existing literature, which typically
utilizes the standard positive Talenti bubble, we instead choose sign-changing solutions to
the Yamabe equation:

(1.4) ∆u+ |u|
4

n−2u = 0 in Rn,

as constructed by Del Pino-Musso-Pacard-Pistoia [11]. Regarding sign-changing solutions
to (1.4), it is remarkable to mention that Ding [15] pioneered the use of variational methods
to derive an infinite family of conformally distinct sign-changing solutions with finite en-
ergy. This breakthrough spurred ongoing research into the existence of such solutions across
Rn. In [11], Del Pino-Musso-Pacard-Pistoia introduced an innovative construction method,
yielding sign-changing solutions characterized by high energy. Their solution resembles a
positive bubble adorned with m negative spikes arranged in a regular polygon of radius 1,
earning it the designation ”crown solution” due to its distinctive geometry. Notably, this
crown-type solution exhibits invariance under both rotational and Kelvin transformations.
We define Σ as the set of nonzero finite-energy solutions to (1.4):

(1.5) Σ :=
{
Q ∈ D1,2(Rn \ {0}) : ∆Q+ |Q|

4
n−2Q = 0

}
.

It is straightforward to verify that equation (1.4) is invariant under four transformations:
translation, dilation, orthogonal transformation, and Kelvin transformation; explicit defi-
nitions are provided in Section 2. Using the crown solution q(z) and this invariance, we
propose the following ansatz:

ε
1
2

|z − y|
q

(
εRβ(z − y)

|z − y|2
+ ξ

)
,

where Rβ ∈ SO(3) and ξ is a zero of q(z). A novel aspect of this construction is that the so-
lution now exhibits a decay of 1/|z|2, a significant improvement over the decay of the ansatz
based on the standard bubble. Second, we need the crown solution is non-degenerate. Once a
suitable building block has been identified, our next step is to seek a perturbation that, when
added to the ansatz, yields an exact solution to the Brezis-Nirenberg problem. The process
of incorporating this perturbation is intricate and hinges on a critical requirement: the lin-
earized operator must be non-degenerate in the sense of Duyckaerts-Kenig-Merle [17]. This
non-degeneracy condition stipulates that the kernel space of the linearized operator precisely
coincides with the space spanned by the four transformations—translation, dilation, orthog-
onal transformation, and Kelvin transformation—previously discussed. Consider this issue,
Musso-Wei [19] established that the crown solution satisfies this non-degeneracy property
through rigorous analysis. This key result unlocks significant opportunities for further study.
For instance, using the non-degeneracy of the crown solution, Musso-Wei [20] constructed
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a sign-changing solution to the Bahri-Coron problem. Beyond this, the non-degeneracy of
crown solution has proven instrumental in a broader range of investigations into critical ex-
ponent problems, we refer the readers to [12, 13].

Once the building block is determined, the subsequent task is to decide the placement of
the configurations and formulate an appropriate approximate solution. In [23], by using the
symmetry of the unit ball we separate it into K subdomains, with K being a sufficiently
large even integer that acts as the perturbation parameter in our analysis. Within each sector,
we position a crown bubble in an alternating fashion, creating a necklace-like pattern of
Del Pino-Musso-Pacard-Pistoia bubbles near the boundary. The interactions between these
bubbles, as well as their mirror images relative to the boundary (arising from the Dirichlet
boundary condition) are notably intense. This intensity results in a complex interplay among
the parameters defining the approximate solution. By meticulously computing the energy of
solution and pinpointing its precise leading-order terms, we can locate the critical point via
minimization. This approach, combined with the classical reduction lemma, enables us to
establish the existence of a solution to (1.2).

In contrast to the studies of [23] that employed K as the perturbation parameter, this study
takes a different approach by selecting λ as the perturbation parameter. When λ is assumed to
be sufficiently small, we establish the space for the six parameters defined in the approximate
solution. Different from the strategy in [23], we place the crown bubble close to the center of
the unit ball. Given that the center of crown bubble is nearly equidistant from the boundary of
B, we do not need an inner-outer gluing method to study the associated linearized problem.
Instead, we can tackle the linearized problem directly, as the influence from the boundary
remains negligible. Following this, by evaluating the corresponding energy and determining
the critical points of the reduced energy functional, we show that the Lagrange multipliers
vanish. This allows us to confirm the existence of a solution to (1.2) for sufficiently small λ.
Moreover, we extend this result further.

To state the main result, let us first introduce some notations. Suppose that G(z, p) is the
Green’s function for Ω in R3. We denote byHΩ(z, p) the regular part of the Green’s function,
namely

HΩ(z, p) = 4π

(
1

4π|z − p|
−G(z, p)

)
.(1.6)

Recall that the Robin function is defined by

τΩ(z) = HΩ(z, z).

We will assume the following conditions for Ω. Assume Ω is symmetric with respect to the
plane z3 = 0. After some translation if needed, assume 0 ∈ Ω and

∇τΩ(0) = 0.(C-1)

For any w ∈ S1 ⊂ R3, i.e. w = (w1, w2, 0) ∈ R3 with w2
1 + w2

2 = 1,

wT∇2
z,pHΩ(0, 0)w > 0(C-2)

There exists θ0 ≥ 2, r0 > 0 and C > 0 such that for any w ∈ S1 ⊂ R3 and |b| < r0,

wT (∇2
z,pHΩ(b, b)−∇2

z,pHΩ(0, 0))w ≥ C|b|θ0 .(C-3)

This finding is encapsulated in the following theorem:
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Theorem 1.1. Suppose that Ω ⊂ R3 is a bounded smooth domain which is symmetric with
respect to the plane z3 = 0. Assume that (C-1), (C-2), and (C-3) hold for its HΩ. Then
there exists λ0 = λ0(Ω) > 0 small such that for any λ ∈ (0, λ0) there are infinitely many
sign-changing solutions to (1.1).

The necessity of condition (C-1) is very natural. The solution we construct concentrates
at the origin, it is reasonable to expect the origin is a critical point of the Robin function
τΩ. Moreover, (C-2) and (C-3) imply that wT∇2

z,pHΩ(b, b)w has a positive and strict local
minimum at b = 0 for any fixed w ∈ S1 ⊂ R3. The local minimum is non-degenerate if
and only if θ0 = 2, and in this case, (C-3) is equivalent to ∇2

b(w
T∇2

z,pHΩ(b, b)w)|b=0 being
positive definite for any w ∈ S1 ⊂ R3.

It is well-known that in the unit ball case

HB(z, p) =

∣∣∣∣|z|p− z

|z|

∣∣∣∣−1

=
1√

1− 2z · p+ |z|2|p|2
.(1.7)

Consequently,

τB(z) =
1

1− |z|2
, ∂zipjHB(b, b) =

δij + bibj
(1− |b|2)3

, wT∇2
z,pHB(b, b)w =

|w|2 + (b · w)2

(1− |b|2)3
.

It is easy to see that wT∇2
z,pHB(b, b)w takes a positive and non-degenerate global minimum

at b = 0 for any given w ∈ S2 ⊂ R3. More precisely, one has the following

wT [∇2
z,pHB(b, b)−∇2

z,pHB(0, 0)]w =
1 + (b · w)2

(1− |b|2)3
− 1 ≥ C|b|2.

Thus B satisfies (C-1), (C-2), and (C-3). Therefore Theorem 1.1 implies that (1.2) has
infinitely many sign-changing solutions when λ is small.

Corollary 1.2. There exists λ0 > 0 small such that for any λ ∈ (0, λ0) there are infinitely
many sign-changing solutions to (1.2).

Furthermore, Theorem 1.1 can be applied to ensure the existence of sign-changing solu-
tions to problem (1.1) when Ω is a cuboid and λ is any positive number.

Theorem 1.3. Let Ω be a cuboid, there are infinitely many sign-changing solutions to (1.1)
for any positive λ.

Considering the problem (1.1) in domains with less symmetry, we can also establish the
existence of sign-changing solutions when the domain is sufficiently close to a ball in an
appropriate sense. Suppose m ≥ 0 and 0 < α < 1. Recall that Cm,α(Ω) consists of u such
that ∥u∥Cm,α(Ω) <∞ where

∥u∥Cm,α(Ω) :=
m∑
k=0

∥Dku∥C0(Ω) + sup
x,y∈Ω,x ̸=y

|Dmu(x)−Dmu(y)|
|x− y|α

.

Definition 1.4. Assume Ω1 and Ω2 are smooth bounded domains in Rn which are Cm,α

diffeomorphic to each other up to the boundary, that is, there exists a Cm,α-diffeomorphism
G : Ω̄1 → Ω̄2 such that G

(
Ω̄1

)
= Ω̄2. If

∥G− id∥Cm,α(Ω1) ≤ ε
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then we say that Ω2 is ε-close to Ω1 in Cm,α-sense.

It has been proved by [1] that the dependence of HΩ on the variation of domain Ω is at
least C1. More precisely, it implies that

∥HΩ(x, y)−HG(Ω)(G(x), G(y))∥Cm,α(Ω) ≤ C∥G− id∥Cm,α(Ω)(1.8)

provided ∥G− id∥Cm,α(Ω) < ρ(Ω) is small. Here C depends on Ω, m and α.
Since τB(z) and wT∇2

z,pHB(b, b)w takes a positive and non-degenerate global minimum at
near 0 for any given w ∈ S2, these properties will be preserved by the small variation of the
unit ball considering (1.8).

Corollary 1.5. If Ω ⊂ R3 is a smooth bounded domain. If Ω is C4,α-close to a ball, then
(C-1), (C-2), and (C-3) hold for HΩ. Consequently, if, Ω is also symmetric with respect to
the plane z3 = 0, there exists λ0(Ω) > 0 such that for any λ ∈ (0, λ0) there are infinitely
many sign-changing solutions to (1.1).

The paper is organized as follows: In Section 2, we present some preliminary results on the
nodal solution to the Yamabe problem and its non-degeneracy. In Sections 3 and 4 we define
the approximate solution with correction terms and compute the energy for the approximate
solution. In Section 5 we study the linear and nonlinear problems. While in Section 6 we
reduce the infinite dimensional problem to a finite one and resolve the reduced problem by
identifying the local minimum of the reduced energy and provide the proof of Theorem 1.1.
In last section, we provide the proof of Theorem 1.3.

2. PRELIMINARY RESULTS

In this section, we will outline the preliminary results utilized in this paper. To begin with,
as highlighted in the introduction, it is essential to confirm that the range of ξ forms a smooth
manifold. As demonstrated in [23], we have provided an in-depth analysis of the nodal set
for the crown solution, which was introduced by Del Pino-Musso-Pacard-Pistoia in [11].
This step guarantees the robustness for the reduction process of the problem. Additionally,
we require the crown solution to be non-degenerate in the sense of Duyckaerts-Kenig-Merle
(see [17]), and we will interpret it within this section.

Let m0 be a sufficiently large positive integer, for any m > m0, the crown solution estab-
lished by Del Pino-Musso-Pacard-Pistoia takes the following form:

qm(z) = U∗(z) + ϕ(z),(2.1)

where

U∗ = U(z)−
m∑
j=1

Uj(z) = U(z)−
m∑
j=1

µ
− 1

2
m U

(
z − ξj
µm

)

= 3
1
4

(
1

1 + |z|2

) 1
2

− 3
1
4

m∑
j=1

µ
− 1

2
m

(
1

1 + µ−2
m |z − ξj|2

) 1
2

,

and

ϕ(z) =
m∑
j=1

ϕ̃j(z) + ψ(z).
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For U∗, the parameters µm and ξj, j = 1, · · · ,m are given as following:

(2.2) ξj =
√

1− µ2
m

(
cos

2(j − 1)π

m
, sin

2(j − 1)π

m
, 0

)
,

and (for the choice of dm, see [11, Page 2590])

(2.3) µm =
d2m

m2(logm)2
and dm =

√
2

m logm∑m−1
j=1 csc jπ

m

+O

(
1

m logm

)
.

The error terms ϕ̃j, j = 1, · · · ,m, and ψ satisfy

(2.4) |∇ℓϕ̃j(z)| ≤
C

1 + µ−1
m |z − ξj|ℓ+1

, ℓ = 0, 1, 2, j = 1, · · · ,m,

and

(2.5) |ψ(z)| ≤ C

logm
and |∇ψ(z)|+ |∇2ψ(z)| ≤ C.

For the derivation of (2.4)-(2.5), we refer the readers to [23] and the references therein.
Consider the solution qm we have the following theorem, see [23, Theorem 2.1]

Theorem 2.1. [23, Theorem 2.1.] Whenm is large enough, qm has a smooth embedding and
compact nodal set N (qm) such that qm(z) = 0 and ∇qm(z) ̸= 0 for any z ∈ N (qm). Near
the center of each bump ξj , N (qm) ∩ {z3 = 0} ∼ {|z − ξj| ∼ 1/m}. 1

We prove Theorem 2.1 via the following steps. First, we must derive a precise expansion
of ψ, which represents the outer error of the solution qm. As established in [11], ψ is of
the order 1

logm
, however, for our purposes, we need to determine its explicit value near the

center of each negative bubble at this order. Second, we must identify the locations where
qm equals zero. According to [23, Lemma 2.2], the distance from any zero of qm to the set
{ξ1, . . . , ξm} is of the order of O

(
1
m

)
. Moreover, between two adjacent points ξj and ξj+1,

we define the midpoint as

ξj+ 1
2
=
√

1− µ2
m

(
cos

(2j − 1)π

m
, sin

(2j − 1)π

m
, 0

)
,

and there exists a small positive constant c0 such that qm has no zeros within the ball
Bc0/m(ξj+ 1

2
) for j = 1, . . . ,m. Here, ξm+ 1

2
denotes the midpoint between ξ0 and ξm, given

by √
1− µ2

m

(
cos

(2m− 1)π

m
, sin

(2m− 1)π

m
, 0

)
.

This information implies that, topologically, the nodal set of qm in the z1z2-plane forms a
circle around each ξj for j = 1, . . . ,m. Finally, we must prove that for any point p in the
nodal set of qm, the gradient ∇qm(p) ̸= 0. This is achieved by choosing a suitable direction
and verifying that the derivative of qm along this direction is non-zero, as shown in [23,
Lemma 2.3]. For more details, we refer the readers to [23, Sections 2.1–2.2].

1Indeed, we can prove that near the center of each bump ξj , the distance between the zero point z of qm and
ξj is on the order of 1/m. However, it is neither possible nor necessary for our proof to show that the nodal set
resembles a ball in topology; it suffices to confirm that it is a smooth Riemannian manifold.
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Another important ingredient of our proof is the non-degeneracy of solution. We denote
by Σ the solution set of Yamabe equation

(2.6) ∆q + q5 = 0 in R3.

We choose m large enough and fix a function q = qm and assume that its nodal set is a
smooth Riemannian manifold. It is known that the solution set Σ is invariant under the
following transformation:

(1) the translation Ty : z → z + y where y ∈ R3,
(2) the dilation Dε : z → εz for ε > 0,
(3) the rotation Rβ : z → Rβz for Rβ ∈ SO(3),
(4) the inversion J : z → z

|z|2 ,
(5) the translation under inversion ψξ = J ◦ Tξ ◦ J .

For any set of parameters A = (y,Rβ, ε, ξ) ∈ R3 × SO(3) × R+ × R3, we define the
transformation TA = T−y ◦ Rβ ◦Dε ◦ ψξ. Then ΘA(z) = | det(T ′

A(z))|
1
6 q(TA(z)) is also a

solution to the Yamabe equation (2.6). Using Jq = q, we have

ΘA(z) =
ε

1
2

|z − y|
q

(
εRθ(z − y)

|z − y|2
+ ξ

)
.

Choosing A near to (0, Id, 1, 0), it generates a family of solutions near q. Taking the deriva-
tives on each parameter in A, we obtain 10 functions

− zjq + |z|2∂zjq − 2zjz · ∇q, ∂zjq, 1 ≤ j ≤ 3,(
zj∂zℓ − zℓ∂zj

)
q, 1 ≤ j < ℓ ≤ 3,

1

2
q + z · ∇q.

(2.7)

Obviously, we have Lqf = 0 for any f in the above, where Lq is linearized operator near q

Lq = −∆− 5q4.

We denote by Zq the function space spanned by the 10 functions in (2.7) and define the
kernel space of Lq by

Z̃q = {f ∈ D1,2(R3) : Lqf = 0}.

Musso-Wei [19] proved that Z̃q = Zq. Together with the fact that

−z3q + |z|2∂z3q − 2z3z · ∇q = ∂z3q,

we can re-state their result as the following form:

Proposition 2.2 (Non-degeneracy). When m is large enough, qm is non-degenerate and

dim Zqm = 9,

where qm is the one constructed in [11] in R3. The nine functions in (2.7) (removing ∂z3q)
are linearly independent.

It follows from Proposition 2.2 that QA is non-degenerate for any A and the kernel of
Z̃A := Z̃QA

has 9 dimensions. Indeed, v ∈ Z̃q if and only if | det(T ′
A(z))|

1
6v(TA(z) ∈ Z̃A

where TA = T−y ◦Rβ ◦Dε ◦ ψξ.
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By assuming the symmetry of Ω, we can reduce the complexity of the problem and do not
need to use the full parameters of invariance. We shall construct a solution which is even on
z3. To that end, we define

Γ = N (q) ∩ {x ∈ R3 : (z1, z2, 0)}(2.8)

the intersection of the nodal set of qm with z1z2-plane.
We redefine the set of parameters A = (ε, ξ, a, b, β) ∈ R× Γ× R× R2 × S, and

QA(z) =
ε

1
2

|z − b|
q

(
εRβ(z − b)

|z − b|2
+ ξ + aν(ξ)

)
(2.9)

where ν(ξ) = ∇q(ξ)
|∇q(ξ)| is the unit normal to N (q), Rβ ∈ SO(2) ∼= S is the 2D rotation group.

Using the symmetry of q, we have ν(ξ) ∈ R2, i.e., ν3(ξ) = 0. The parameter space A is six
dimensional, where ε ∈ R is the dilation, b ∈ R2 is the translation, ξ + aν(ξ) ∈ R2 is the
translation under inversion, Rβ ∈ SO(2) is the rotation.

Due to the selection of the base point ξ, when the remaining parameters are fixed, we
observe that QA(z) = O(|z|−2) as |z| → ∞, uniformly for ξ ∈ Γ and β ∈ S when a = 0.
This property is critical in the construction of solutions to the Brezis-Nirenberg problem.

In Section 5 and 6, we need a basis of the kernel Z̃QA
. One way is using (2.7) and making

appropriate translations as mentioned above. The other way is differentiating QA on the
parameters A directly. We follow the second approach and list the relevant expression of
them.

Z0(z) =
∂

∂ε
QA|ε=1,b=0,a=0 =

1

2|z|
q

(
Rβ

z

|z|2
+ ξ

)
+

1

|z|3
RT

β∇q
(
Rβ

z

|z|2
+ ξ

)
·

z1z2
0

 ,

Z1(z) =
∂

∂a
QA|ε=1,b=0,a=0 =

1

|z|
qν(ξ)

(
Rβ

z

|z|2
+ ξ

)
,

Z2(z) =
∂

∂ξ
QA|ε=1,b=0,a=0 =

1

|z|
qξ

(
Rβ

z

|z|2
+ ξ

)
,

Z3(z) =
∂

∂b1
QA|ε=1,b=0,a=0 =

2z1
|z|2

∂QA

∂ε
− 1

|z|2
∂QA

∂a
=

2z1
|z|2

Z0 −
1

|z|2
Z1,

Z4(z) =
∂

∂b2
QA|ε=1,b=0,a=0,β=θ∗ =

2z2
|z|2

∂QA

∂ε
− 1

|z|2
∂QA

∂ξ
=

2z2
|z|2

Z0 −
1

|z|2
Z2,

Z5(x) =
∂

∂β
QA|ε=1,b=0,a=0,β=θ∗ =

z1
|z|2

∂QA

∂ξ
− z2

|z|2
∂QA

∂a
=

z1
|z|2

Z2 −
z2
|z|2

Z1.

There are three functions we did not list here, which come from the differentiation of trans-
lation in z3, rotation in z1z3-plane, and rotation in z2z3-plane. They are all odd in z3 and play
no role in our proof.
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3. APPROXIMATE SOLUTIONS

In this section, we shall modify the family of bubbles QA, defined at (2.9), to satisfy
a similar equation to the Brezis-Nirenberg problem in Ω and Dirichlet boundary conditions.
This is the first step in the gluing process. More precisely, we define the approximate solution
PQA (or the projection of QA) to be

(3.1)

{
∆PQA + λPQA +Q5

A = 0 in Ω,

PQA = 0 on ∂Ω.

At the end of this section, we will prove PQA isQA summing other terms with good control.
We shall use the following family of bubbles described in (2.9) in the Section 2,

QA(z) =
ε

1
2

|z − b|
q

(
εRβ(z − b)

|z − b|2
+ ξ + aν(ξ)

)
,

where A = (ε, ξ, a, b, β).
We will make some constraints on the parameters of A. The rationale for selecting these

constraints is to make sure some functional (see Ψ(A) in (4.12)) has an infimum achieved
inside it. It will become clear throughout the computations in sections 3 and 4, culminating
in the proof of Theorem 6.2. Denote b = |b|eiαb . We make the following constraint.

ε ∈ [δλ, δ−1λ], |a| ≤ δ−1ε3/2, |b|θ0 ≤ δ−4ε, ξ ∈ Γ, β ∈ S(3.2)

where δ ∈ (0, 1) is some fixed small number that will be determined later. We always assume
that λ ≪ δ such that the above constraints imply that ε ≪ 1, |a| ≪ 1 and |b| < r0. All the
constants C are independent of λ and δ.

Under these constraints, we have

|q(ξ̂)| ≤ C|a| ≤ Cλ, dist(b, ∂Ω) ≥ 1

2
.

Hereafter, we adopt the following notations for the remainder of this paper.

ξ̂ = ξ + aν(ξ), w = RT
β∇q(ξ̂), W = RT

β∇2q(ξ̂)Rβ.(3.3)

Note that C−1 ≤ |w| = |∇q(ξ̂)| ≤ C and |W | = |∇2q(ξ̂)| ≤ C for a constant C just depend
on q.

To get PQA in (3.1), we first solve φA from

(3.4)

{
∆φA = 0 in Ω,

φA = QA on ∂Ω,

Lemma 3.1. Under the constraint (3.2), for any z ∈ Ω, one has

φA(z) = ε
1
2 q(ξ̂)HΩ(z, b) + ε

3
2w · ∇pHΩ(z, b) +

1

6
ε

5
2Wij∂

2
pipj

HΩ(z, b) +O(ε
7
2 ),(3.5)

where HΩ(z, p) is defined in (1.6). In particular, one has |φA(z)| = O(ε
3
2 ).
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Proof. When z ∈ ∂Ω, one has ε/|z − b| ≤ Cε≪ 1. Using Taylor expansion of q near ξ̂, we
have the expansion of Q(z) for any z satisfying |z − b| ≥ ε

QA(z) =
ε

1
2

|z − b|

[
q(ξ̂) +

εw · (z − b)

|z − b|2
+
ε2(z − b)TW (z − b)

2|z − b|4
+O

(
ε3

|z − b|3

)]
.(3.6)

Recall that HΩ(z, p) = |z − p|−1 when z ∈ ∂Ω and p ∈ Ω. It is easy to verify the following
for z ∈ ∂Ω,

∇pjHΩ(z, b) =
(z − b)j
|z − b|3

, ∇2
pjpℓ

HΩ(z, b) =
−δjℓ

|z − b|3
+

3(z − b)j(z − b)ℓ
|z − b|5

.

Comparing the expansion of QA(z) in (3.6), we found that QA on ∂Ω can be approximated
by HΩ(z, b) and its derivatives. Thus if we let

φA = ε
1
2 q(ξ̂)HΩ(z, b) + ε

3
2w · ∇pHΩ(z, b) +

1

6
ε

5
2Wij∂

2
pipj

HΩ(z, b) + fA(z),

then fA satisfies ∆fA(z) = 0 in Ω and

fA(z) = QA(z)−
ε

1
2 q(ξ̂)

|z − b|
− ε

3
2w · (z − b)

|z − b|3
− 1

6

ε
5
2 (z − b)TW (z − b)

|z − b|5
− 1

6

ε
5
2∆q(ξ̂)

|z − b|3

for z ∈ ∂Ω. Note that on ∂Ω,

|fA(z)| ≤ C
ε

5
2 |∆q(ξ̂)|
|z − b|3

+
ε

7
2

|z − b|4
≤ Cε

5
2 |q(ξ̂)|5 + Cε

7
2 ≤ Cε

7
2 .

Thus by maximum principle, we have |fA(z)| = O(ε
7
2 ) for z ∈ Ω. □

Let PQA = QA − φA − ψA. Using the above equation and the one of PQA in (3.1), ψA

must satisfy {
∆ψA + λψA = λ(QA − φA) in Ω,

ψA = 0 on ∂Ω.
(3.7)

We want to get the estimates of ψA.

Lemma 3.2. Under the constraint (3.2), for any z ∈ Ω, one has |ψA(z)| = O(λε
3
2 | log ε|).

Proof. Let y = (z − b)/ε. Consider ψA(z) = ε
3
2 ψ̃((z − b)/ε), then ∆zψA + λψA =

ε−
1
2 [∆yψ̃+λε2ψ̃]. Thus ψ̃(y) satisfies the following equation in Ωε := {y = (z− b)/ε : z ∈

Ω}, {
∆yψ̃ + λε2ψ̃ = λF̃ (y) in Ωε,

ψ̃ = 0 on ∂Ωε,

where

F̃ (y) =
1

|y|
q

(
y

|y|2
+ ξ̂

)
− ε

1
2φA(εy + b, b).

By the constraint (3.2), for any y in Ωε,
1

|y|

∣∣∣∣q( y

|y|2
+ ξ̂
)∣∣∣∣ ≤ Cχ+ C(|q(ξ̂)||y|−1 + |y|−2)(1− χ) ≤ C|a|⟨y⟩−1 + C⟨y⟩−2
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where χ(x) is a cut-off function support at B2(0) and ⟨y⟩ =
√
1 + |y|2. Define K :=

diam(Ω) + 1. If y ∈ Ωε, then ⟨y⟩ ≤ Kε−1. Thus

|F̃ (y)| ≤ Cε⟨y⟩−1 + C⟨y⟩−2 + Cε2 ≤ C⟨y⟩−2, for y ∈ Ωε.

It is easy to verify that ψ̄(y) = log(K2ε−1)− log⟨y⟩ is a super-solution if λ is small. Namely

∆ψ̄ + λε2ψ̄ ≤ −1

2
⟨y⟩−2 in Ωε

ψ̄(y) ≥ logK on ∂Ωε

(3.8)

Thus there exists some uniform constantC large enough such that ∆(Cλψ̄±ψ̃A)+λε
2(Cλψ̄±

ψ̃A) ≤ 0 on Ωε and Cλψ̄± ψ̃A > 0 on ∂Ωε. Thus we have Cλψ̄ as a barrier function for ψ̃A.
Note that the first eigenvalue is λ1(Ωε) = ε2λ1(Ω). Thus ∆y + λε2 satisfies the maximum

principle on Ωε when λ is small enough. Therefore |ψ̃A(y)| ≤ Cλ|ψ̄| = O(λ| log ε|). The
proof is complete. □

To summarize Lemma 3.1 and Lemma 3.2, we have the following proposition.

Proposition 3.3. Assume that A satisfies the constraint (3.2). The solution of (3.1) can be
written as PQA = QA − φA − ψA where

|φA + ψA| ≤ Cε
3
2 .(3.9)

Remark 3.4. By elliptic theory, it is not hard to show that the dependence of φA + ψA on
the parameters in A is at least C1.

4. ENERGY EXPANSION

In this section, we shall compute the energy of the approximate solution and find its
leading-order term with respect to the parameters.

Define the energy of PQA as

J(PQA) =
1

2

ˆ
Ω

(|∇PQA|2 − λ|PQA|2)dz −
1

6

ˆ
Ω

(PQA)
6dz

=
1

2

ˆ
Ω

Q5
APQAdz −

1

6

ˆ
Ω

(PQA)
6dz.

For the first term on the right-hand sideˆ
Ω

Q5
APQAdz =

ˆ
Ω

Q6
Adz −

ˆ
Ω

Q5
A(φA + ψA)dz,

For the second termˆ
Ω

(PQA)
6dz =

ˆ
Ω

(QA − φA − ψA)
6dz =

ˆ
Ω

(
Q6

A − 6Q5
A(φA + ψA)

)
dz + I,

where

I =

ˆ
Ω

15Q4
A(φA + ψA)

2 − 20Q3
A(φA + ψA)

3 + 15Q2
A(φA + ψA)

4

− 6QA(φA + ψA)
5 + (φA + ψA)

6dz.

To estimate each term, we need the following lemma.
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Lemma 4.1. Assuming the constraints (3.2), we haveˆ
Ω

|QA|ℓdz ≤ C

{
ε

3
2 + ε

1
2 |a| if ℓ = 1,

ε3−
ℓ
2 if ℓ = 2, 3, 4, 5,

(4.1)

ˆ
Ω

Q6
Adz =

ˆ
R3

q(z)6dz +O(ε9),(4.2)
ˆ
Ω

Q5
Adz = ε

1
24πq(ξ̂) +O(ε

15
2 ),(4.3)

ˆ
Ω

Q5
A(z)(z − b)dz = ε

3
24πRT

β∇q(ξ̂) +O(ε
15
2 ),(4.4)

ˆ
Ω

|QA|5|z − b|2dz = O(ε
5
2 ).(4.5)

Proof. To prove (4.1). Since q is Kelvin invariant, then q(z) = O(|z|−1) as |z| → ∞. When
|z − b| < ε, one has ∣∣∣∣q(ε(z − b)

|z − b|2
+ ξ̂

)∣∣∣∣ ≤ C
|z − b|
ε

thus |QA(z)| ≤ ε−
1
2 and ˆ

|z−b|<ε

|QA|ℓdz ≤ Cε3−
ℓ
2 .

When ε < |z − b|, (3.6) leads to

|QA(z)| ≤
ε

1
2 |a|

|z − b|
+ C

ε
3
2

|z − b|2
, for any |z − b| ≥ ε.(4.6)

One can integrate its right-hand side respectively.

ε
3
2
ℓ

ˆ
{z∈Ω:|z−b|>ε}

dz

|z − b|2ℓ
≤

{
Cε

3
2 if ℓ = 1,

Cε3−
ℓ
2 if ℓ ≥ 2.

ε
ℓ
2 |a|ℓ

ˆ
{z∈Ω:|z−b|>ε}

dz

|z − b|ℓ
≤


Cε

1
2 |a| if ℓ = 1,

Cε|a|2 if ℓ = 2,

Cε
3
2 |a|3| log ε| if ℓ = 3,

Cε3−
ℓ
2 |a|ℓ if ℓ = 4, 5.

The proof of (4.1) is complete by combining the above three equations.
To prove (4.2) and (4.3), we split the integral

´
Ω
Qℓ

Adz =
´
R3 Q

ℓ
Adz −

´
R3\ΩQ

ℓ
Adz for

ℓ = 5, 6. On the one hand, we use (4.6) to getˆ
R3\Ω

Qℓ
Adz ≤ Cε

3ℓ
2 + Cεℓ|a|ℓ ≤ Cε

3ℓ
2 , ℓ = 5, 6.

On the other hand, making a change of variables, z = b+ ε
RT

β x

|x|2 , one obtains thatˆ
R3

Q6
Adz =

ˆ
R3

q(z + ξ̂)6dz =

ˆ
R3

q(z)6dz.
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and ˆ
R3

Q5
Adz =

ˆ
R3

ε
5
2

|z − b|5
(
q
(

ε(z−b)
|z−b|2 + ξ̂

))5
dz

= ε
1
2

ˆ
R3

1

|z|
[q(z + ξ̂)]5dz = ε

1
2

ˆ
R3

1

|z − ξ̂|
q(z)5dz = ε

1
24πq(ξ̂).

where we have used ˆ
R3

1

|z − ξ|
q(z)5dz = 4πq(ξ)

for any ξ in the last step. This completes (4.2) and (4.3).
The proof of (4.4) and (4.5) is similar to the previous proofs. We omit it.

□

It follows from (3.9) and (4.1) that I = O(ε4). Therefore

J(PQA) =
1

3

ˆ
Ω

Q6
Adz +

1

2

ˆ
Ω

Q5
A(φA + ψA)dz +O(ε4).(4.7)

We will compute the first two terms on the right-hand side.

Lemma 4.2. Under the constraint (3.2), we have
1

4π

ˆ
Ω

Q5
AφAdz = ε[q(ξ̂)]2τΩ(b) + ε2q(ξ̂)w · ∇τΩ(b) + ε3wT∇2

z,pHΩ(b, b)w +O(ε4).

Proof. Recall the expansion of φA in (3.5). Applying Lemma 4.1 yieldsˆ
Ω

Q5
AφAdz = ε

1
2 q(ξ̂)

ˆ
Ω

Q5
AHΩ(z, b)dz + ε

3
2w ·
ˆ
Ω

Q5
A∇pHΩ(z, b)dz

+
1

6
ε

5
2Wij

ˆ
Ω

Q5
A∂

2
pipj

HΩ(z, b)dz +O(ε4).

(4.8)

Let us compute each term on the right-hand side. Using (1.7), one has the Taylor expansion

HΩ(z, b) = HΩ(b, b) +∇zHΩ(b, b) · (z − b) +O(|z − b|2).
Applying (4.3)-(4.5), we haveˆ

Ω

Q5
AHΩ(z, b)dz = HΩ(b, b)

ˆ
Ω

Q5
Adz +∇zHΩ(b, b) ·

ˆ
Ω

Q5
A(z − b)dz +O(ε

5
2 )

= ε
1
24πq(ξ̂)HΩ(b, b) + ε

3
24πw · ∇zHΩ(b, b) +O(ε

5
2 ).

Similarly, using ∇pHΩ(z, b) = ∇pHΩ(b, b) +∇2
z,pHΩ(b, b) · (z − b) +O(|z − b|2),ˆ

Ω

Q5
A∇pHΩ(z, b)dz = ∇pHΩ(b, b)

ˆ
Ω

Q5
Adz +∇2

z,pHΩ(b, b) ·
ˆ
Ω

Q5
A(z − b)dz +O(ε

5
2 )

= ε
1
24πq(ξ̂)∇pHΩ(b, b) + ε

3
24π∇2

z,pHΩ(b, b)R
T
β∇q(ξ̂) +O(ε

5
2 )

andˆ
Ω

Q5
A∂

2
pipj

HΩ(z, b)dz =

ˆ
Ω

Q5
A∂

2
pipj

HΩ(b, b)dz +∇z∂
2
pipj

HΩ(b, b) ·
ˆ
Ω

Q5
A(z − b)dz +O(ε

5
2 )

= O(ε
1
2 |q(ξ̂)|) +O(ε

3
2 ) +O(ε

5
2 ) = O(ε

3
2 ).
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Inserting the above three estimates back to (4.8), and using ∇zHΩ(b, b) = ∇pHΩ(b, b) =
1
2
∇τΩ(b), we can get the conclusion. □

Lemma 4.3. Under the constraint (3.2), we haveˆ
Ω

Q5
AψAdz = −λ

ˆ
Ω

Q2
Adz +O(λε3).

Proof. Using (3.1) and (3.7)ˆ
Ω

Q5
AψAdz = −

ˆ
Ω

(∆PQA + λPQA)ψAdz = −
ˆ
Ω

PQA(∆ψA + λψA)dz

= −λ
ˆ
Ω

(QA − φA − ψA)(QA − φA)dz

= −λ
ˆ
Ω

Q2
Adz + λ

ˆ
Ω

QA(2φA + ψA)dz − λ

ˆ
Ω

φA(φA + ψA)dz.

(4.9)

Recall (3.9), Lemma 3.1 and (4.1),∣∣∣∣ˆ
Ω

QA(2φA + ψA)dz

∣∣∣∣ ≤ Cε
3
2

ˆ
Ω

|QA|dz ≤ Cε3.

Similarly, ∣∣∣∣ˆ
Ω

φA(φA + ψA)dz

∣∣∣∣ ≤ Cε3.

Therefore, plugging in the above estimates back to (4.9),ˆ
Ω

Q5
AψAdz = −λ

ˆ
Ω

Q2
Adz +O(λε3).

□

Now, let us compute
´
Ω
Q2

Adz. We define

ρ(b) =
1

4π

ˆ
Ω

1

|z − b|2
dz.(4.10)

Note that ρ(b) is a smooth and bounded function for b ∈ Ω. Taking the derivative to b on
both sides, we get

∇ρ(b) = 1

4π
P.V.

ˆ
Ω

2(z − b)

|z − b|4
dz = − 1

4π
P.V.

ˆ
R3\Ω

2(z − b)

|z − b|4
dz.

Lemma 4.4. Assuming (3.2), we have

1

4π

ˆ
Ω

Q2
Adz = ε2P.V.

ˆ
R3

[q(z + ξ)]2

4π|z|4
dz +O(ε3 + |a|2ε+ ε2|a|).

Proof. Note that

1

4π

ˆ
Ω

Q2
Adz =

1

4π

ˆ
Ω

ε

|z − b|2
q
(

εRβ(z−b)

|z−b|2 + ξ̂
)2
dz.
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Notice that 1
4π

´
Ω

εq(ξ̂)2

|z−b|2dz = ε[q(ξ̂)]2ρ(b) = O(|a|2ε). It suffices to estimate

I =
1

4π

ˆ
Ω

ε

|z − b|2

(
q
(

εRβ(z−b)

|z−b|2 + ξ̂
)2

− q(ξ̂)2
)
dz.

Again, we split the integral into two on R3 and R3 \ Ω. First, using a change of variable,
ˆ
R3

ε

|z − b|2
[
q(

εRβ(z−b)

|z−b|2 + ξ̂)2 − q(ξ̂)2
]
dz = ε2P.V.

ˆ
R3

[q(z + ξ̂)]2 − [q(ξ̂)]2

|z|4
dz

= ε2P.V.

ˆ
R3

[q(z + ξ)]2

|z|4
dz + ε2P.V.

ˆ
R3

[q(z + ξ̂)]2 − [q(ξ̂)]2 − [q(z + ξ)]2

|z|4
dz

= ε2P.V.

ˆ
R3

[q(z + ξ)]2

|z|4
dz +O(ε2|a|).

Second, since ε/|z − b| ≲ 1 for z ∈ R3 \ Ω, then

q

(
εRβ(z − b)

|z − b|2
+ ξ̂

)2

− q(ξ̂)2 = 2q(ξ̂)∇q(ξ̂) · εRβ(z − b)

|z − b|2
+O(ε2|z − b|−2)

Therefore

1

4π

ˆ
R3\Ω

ε

|z − b|2

(
q

(
εRβ(z − b)

|z − b|2
+ ξ̂

)2

− q(ξ̂)2

)
dz

= ε2q(ξ̂)w · 1

2π
P.V.

ˆ
R3\Ω

(z − b)

|z − b|4
+O(ε3)

= −ε2q(ξ̂)w · ∇ρ(b) +O(ε3) = O(|a|ε2 + ε3).

Combining the two results, the proof is complete.
□

Inserting Lemma 4.2, Lemma 4.3 and Lemma 4.4 to (4.7), we obtain

Proposition 4.5.

J(PQA) =
1

3

ˆ
R3

q6dz + 2πΨ(A) +O(ε4 + λε3),(4.11)

where

Ψ(A) = ε[q(ξ̂)]2τΩ(b) + ε2q(ξ̂)w · ∇τΩ(b) + ε3wT∇2
z,pHΩ(b, b)w − λε2C∗(ξ).(4.12)

and

C∗(ξ) = P.V.

ˆ
R3

[q(z + ξ)]2

4π|z|4
dz.(4.13)

Remark 4.6. Clearly, Ψ(A) depends smoothly on the parameters of A. By elliptic theory
and Remark 3.4, it is not hard to show that the dependence of J(PQA) on the parameters in
A is at least C1.



16 LIMING SUN, JUN-CHENG WEI, AND WEN YANG

5. THE LINEAR AND NONLINEAR PROBLEM

From the discussion in the previous Section, we will consider

(5.1) PQA = QA − φA − ψA

as the approximate solution to our problem. Using PQA, we will present the results in-
vestigating the corresponding linearized and nonlinear problems. From which we obtain
a solution, up to some Lagrange multipliers. In the next Section, we shall find parame-
ters through the minimization method to make the coefficients of these Lagrange multipliers
vanish, thereby finding a genuine solution to the Brezis-Nirenberg problem.

Based on PQA, we introduce the following form of PQA for convenience

PQA′ = ε
1
2QA − ε

1
2φA − ε

1
2ψA

= QA′ − ε
1
2φA − ε

1
2ψA

=
1

|y − bε|
q

(
Rβ(y − bε)

|y − bε|2
+ ε−1ξ + ε−1aν(ξ)

)
− ε

1
2φA − ε

1
2ψA,

where y = z
ε

and bε = b
ε
. It is crucial to point out that the functions PQA′ and QA′ depend

on the parameters A′ = (Λ, ε−1a, ε−1ξ, bε, β). Particularly, the dependence of QA′ on Λ can
be understood as follows:

QA′ =
Λ

1
2

|y − bε|
q

(
RβΛ(y − bε)

|y − bε|2
+ ε−1ξ + ε−1aν(ξ)

)∣∣∣∣∣
Λ=1

.

Since we scale QA by ε for the space variable, so the parameter Λ does not appear in QA′

and we will not carry it in the expression of QA′ in the argument.
The Brezis-Nirenberg problem is equivalent to finding ϕ such that

(5.2) ∆y(PQA′ + ϕ) + λε2(PQA′ + ϕ) + (PQA′ + ϕ)5 = 0,

which can be rewritten as

(5.3)

{
∆yϕ+ λε2ϕ+ 5PQ4

A′ϕ = −E −Nε(ϕ) in Ωε,

ϕ = 0 on ∂Ωε,

where

E = ∆PQA′ + λε2PQA′ + PQ5
A′ = PQ5

A′ −Q5
A′

=− 5ε
1
2Q4

A′(φA + ψA) +O(ε4)Q3
A′ +O(ε6)Q2

A′ +O(ε8)QA′ +O(ε10),

and

Nε(ϕ) = (PQA′ + ϕ)5 − PQ5
A′ − 5PQ4

A′ϕ.

In order to study the problem (5.3), we will outline the findings concerning its linearized
problem as well as the nonlinear problem. Given that this part is now well-established and
follows standard procedures, we will present the result and refer the readers to [10, 20, 21,
23] and the references therein for details.



BREZIS-NIRENBERG PROBLEM 17

For the following linearized problem
∆ϕ+ λε2ϕ+ 5PQ4

A′ϕ = h+
5∑

j=0

cjPQ
4
A′Ẑj(y), in Ωε,

ϕ = 0 on ∂Ωε,´
B1/ε(0)

ϕPQ4
A′Ẑj(y)dy = 0, j = 0, 1, · · · , 5,

(5.4)

where A′ = (Λ, ε−1a, ε−1ξ, bε, β) and Ẑj(y) = χ(y)Zj(y). Here Zj(y) is the kernel function
introduced in section 2.3 2 and χ(y) is the characteristic function such that

χ(y) =

{
1, y ∈ B1/4ε(bε),

0, y ∈ B1/2ε(bε)
c.

To state the main result concerning the linearized problem, we introduce the following
weighted function space:

∥h∥∗∗ = sup
y∈B1/ε(0)

∣∣⟨y − bε⟩3+2σh(y)
∣∣ ,(5.5)

∥ϕ∥∗ = sup
y∈Ωε

|⟨y − bε⟩ϕ(y)|+ sup
y∈Ωε

|⟨y − bε⟩2∇ϕ(y)|,(5.6)

where σ is a sufficiently small positive number and ⟨y⟩ =
√

1 + |y|2. The first result of this
section is the following.

Proposition 5.1. [23, Proposition 6.1] Suppose that the parameters A and ε satisfy the rela-
tion in (3.2). Then there exists λ0 small enough such that for all λ < λ0 and all h ∈ Cα(Ωε)
which is even in z3, the problem (5.4) has a unique solution ϕ ≡ Lε(h) which is even in z3,
and

∥ϕ∥∗ ≤ C∥h∥∗∗, |cj| ≤ C∥h∥∗∗,

and
∥∇A′ϕ∥∗ ≤ C∥h∥∗∗.

Next, we shall solve the nonlinear problem

(5.7)

∆ϕ+ λε2ϕ+ 5PQ4
A′ϕ = −(Nε(ϕ) + E) +

5∑
j=0

cjPQ
4
A′Ẑj in Ωε(0),

ϕ = 0 on ∂Ωε(0).

Consider (5.7) we have the following proposition

Proposition 5.2. [23, Proposition 6.2] Suppose the constraints hold on the parameters A.
Then there exists a small constant λ0 such that for all λ < λ0, there is a unique solution ϕ to
problem (5.7) with

(5.8) ∥ϕ∥∗ ≤ Cε2, ∥∇A′ϕ∥∗ ≤ Cε2.

2The parameters (1, ξ, 0, 0, θ∗) are replaced by (Λ, ε−1ξ, ε−1a, bε, β).
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6. THE FINITE-DIMENSIONAL REDUCTION AND THE CRITICAL POINT

In this section, we will first set up the reduction that transforms the original infinite-
dimensional problem into a finite-dimensional one. Then, we will determine the critical
points of the energy with respect to the parameters, using these to establish the proof of
Theorem 1.1.

Suppose that ϕA′ is the solution of (5.7). Let uε(y) = PQA′(y) + ϕA′(y), then

∆yuε(y) + λε2uε(y) + u5ε(y) =
5∑

j=0

cjPQ
4
A′Ẑj.

Note that uε will satisfy (5.2) if the Lagrange multiplier cj = 0 for j = 0, 1, · · · , 5. The
following reduction Lemma says that this is equivalent to the criticality of A′ in a finite-
dimensional space. Returning to the original variable z and A (before scaling), denoting
PQA(z) = ε−1/2PQA′(z/ε) and ϕA(z) = ε−1/2ϕA′(z/ε), then PQA(z) + ϕA(z) will be a
solution to the Brezis-Nirenberg problem under the criticality of A.

Lemma 6.1. uε = PQA′ +ϕA′(y) is a solution of problem (5.2) if and only if A′ is a critical
point of the energy

Jε(uε) :=
1

2

ˆ
Ωε

|∇yuε|2dy −
λε2

2

ˆ
Ωε

u2εdy −
1

6

ˆ
Ωε

u6εdy.

Equivalently, PQA(z) + ϕA(z) is a solution to (1.2) if and only if A is a critical point of the
energy J(PQA + ϕA) = Jε(uε) where

J(PQA + ϕA) :=
1

2

ˆ
Ω

|∇z(PQA + ϕA)|2dz −
λ

2

ˆ
Ω

(PQA + ϕA)
2dz

− 1

6

ˆ
Ω

(PQA + ϕA)
6dz.

Proof. Let A′
ℓ, Aℓ, ℓ = 0, · · · , 5 be the elements of A′ and A respectively. Considering the

derivative of J(PQA + ϕA) with respect to A, we see that ∂J(PQA+ϕA)
∂Aℓ

= 0 is equivalent to

say that ∂Jε(PQA′+ϕA′ )
∂A′

ℓ
= 0. Next we compute

∂

∂A′
ℓ

Jε(PQA′ + ϕA′) = DJε(PQA′ + ϕA′)

[
∂

∂A′
ℓ

PQA′ +
∂

∂A′
ℓ

ϕA′

]
.

On the other hand, one sees that
∂PQA′

∂A′
ℓ

= Ẑ2(y) + o(1).

Using Proposition 5.2 one can show∥∥∥∥∂ϕA′

∂A′
ℓ

∥∥∥∥
∗∗

= O(ε2) as λ→ 0,

then it implies that

(6.1) DJε(PQA′ + ϕA′)
[
Ẑℓ + o(1)

]
= 0, ∀ℓ = 0, · · · , 5.
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From the fact thatDJε(PQA′+ϕA′)[g] = 0 for all functions such that
´
ΣK,ε

PQ4
A′Ẑℓgdy = 0,

we can see that (6.1) can be written as

(6.2) DJε(PQA′ + ϕA′)
[
Ẑℓ + o(1)Ξ

]
= 0, ∀ℓ = 0, · · · , 5,

where Ξ is a uniformly bounded function, that belongs to the vector space generated by the
functions Ẑℓ. Thus,

DJε(PQA′ + ϕA′)[Ẑℓ] = 0, ∀ℓ = 0, · · · , 5.
By definition of cℓ in (5.7), then we readily derive that this is equivalent to cℓ = 0 for all ℓ
and it finishes the proof. □

In the following calculation, we shall the see the major in the expansion of J(PQA + ϕA)
is J(PQA).

J(PQA + ϕA) = Jε(PQA′ + ϕA′)

=
1

2

ˆ
Ωε

|∇y(PQA′ + ϕA′)|2dy − λε2

2

ˆ
Ωε

(PQA′ + ϕA′)2dy

− 1

6

ˆ
Ωε

(PQA′ + ϕA′)6dy.

By expanding all terms and grouping them, we get

(6.3)

Jε(PQA′ + ϕA′) = Jε(PQA′)−
ˆ
Ωε

(∆PQA′ + λε2PQA′ + PQ5
A′)ϕA′dy

− 1

2

ˆ
Ωε

(∆ϕA′ + λε2ϕA′ + 5PQ4
A′ϕA′)ϕA′dy

− 1

6

ˆ
Ωε

(20PQ3
A′ϕ3

A′ + 15PQ2
A′ϕ4

A′ + 6PQA′ϕ5
A′ + ϕ6

A′)dy.

It is known that ∥ϕA∥∗ ≤ Cε2, one can easily show that∣∣∣∣ˆ
Ωε

(20PQ3
A′ϕ3

A′ + 15PQ2
A′ϕ4

A′ + 6PQA′ϕ5
A′ + ϕ6

A′)dy

∣∣∣∣ ≤ Cε6.

Consider the second term on the right-hand side of (6.3), we have

(6.4) ∆PQA′ + λε2PQA′ + PQ5
A′ = E(PQA′),

where

E(PQA′) = PQ5
A′ −Q5

A′ =− 5ε
1
2Q4

A′(φA + ψA) +O(ε4)Q3
A′ +O(ε6)Q2

A′

+O(ε8)QA′ +O(ε10).

Then

(6.5)

ˆ
Ωε

(∆PQA′ + λε2PQA′ + PQ5
A′)ϕA′dy = −5

ˆ
Ωε

ε
1
2Q4

A′(φA + ψA)ϕA′dy +O(ε6)

= O(ε4)

ˆ
Ωε

Q4
A′dy +O(ε6) = O(ε4).
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While for the third term on the right hand side of (6.3),

(6.6) ∆ϕA′ + λε2ϕA′ + 5PQ4
A′ϕA′ = −E(PQA′)−N(ϕA′) +

5∑
j=0

cjPQ
4
A′Ẑj.

As the above computation,

(6.7)
ˆ
Ωε

E(PQA′)ϕA′dy = O(ε4).

While for the higher order term N(ϕA′), it is easy to see that

(6.8)
ˆ
Ωε

N(ϕA′)ϕA′dy = O(ε6).

The multiplicative of cjPQ4
AẐj abd ϕA′ is obvious zero due to the setting of ϕA′ . Therefore,

we conclude that

(6.9)
ˆ
Ωε

(∆ϕA′ + λε2ϕA′ + 5PQ4
A′ϕA′)ϕA′dy = O(ε4).

Thus we conclude that

(6.10) J(PQA + ϕA) = Jε(PQA′ + ϕA′) = Jε(PQA′) +O(ε4) = J(PQA) +O(ε4).

Theorem 6.2. There exists δ small such that for K large enough, the infA∈C J(PQA + ϕA)
is achieved in the interior of the set C defined by (3.2), i.e.

ε ∈ [δλ, δ−1λ], |a| ≤ δ−1ε3/2, |b|θ0 ≤ δ−4ε, ξ ∈ N (q), β ∈ S.(6.11)

Proof. Since the constraint set C is closed, the infimum of J(PQA + ϕA) over A ∈ C is
attained at some point A = (ε, ξ, a, d, αb, β) ∈ C . Note that since we denote b = |b|eiαb ,
then it is equivalent to write A = (ε, ξ, a, b, β).

We will prove that for each point on the boundary ∂C there is another interior point whose
value is strictly smaller than that. Thus, the infimum must be achieved in the interior. First,
let us recall that

J(PQA + ϕA) = J(PQA) +O(ε4) = Cq + 2πΨ(A) +O(ε4 + λε3).(6.12)

Here we denote Cq := 1
3

´
R3 q

6 is a constant and does not depend on A. We need to study
Ψ(A) where

Ψ(A) = ε[q(ξ̂)]2τΩ(b) + ε2q(ξ̂)w · ∇τΩ(b) + ε3wT∇2
z,pHΩ(b, b)w − λε2C∗(ξ).(6.13)

First, we notice that ξ and β belong to some smooth compact manifold respectively. Thus
the infimum of J(PQA + ϕA) is automatically achieved in the interior for these two param-
eters. We only need to consider ε, a, and b.

(1) Consider the variation of ε, and fix all the other variables in A. Thus one can think of
J(PQA + ϕA) = J1(ε) as a function of ε on [δλ, δ−1λ]. If ε = δλ, then using (6.12), (6.13),
and the definition of C in (6.11),

J1(δλ) ≥ Cq − 2πδ2λ3C∗(ξ) +O(δ3λ4).
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If ε = δ−1λ, then the same estimates yields

J1(δ
−1λ) ≥ Cq + 2π

(
δ−3λ3wT∇2

z,pHΩ(b, b)w − δ−2λ3C∗(ξ)
)
+O(δ−4λ4).

However, one can choose another ε∗ = δ∗λ with δ∗ = 2C∗(ξ)/(3w
T∇2

z,pHΩ(b, b)w) and
compute its energy. Notice that assumption (C-2) implies that δ∗ is uniformly bounded
when λ is small. Using the bounds in the constraint, we have |ε∗[q(ξ̂)]2τΩ(b)| ≤ Cε∗|a|2 ≤
Cδ−1

∗ λ4. Therefore

J1(δ∗K
−3) ≤ Cq + 2π

(
2

3
λ(ε∗)

2C∗(ξ)− λ(ε∗)
2C∗(ξ)

)
+O(δ−1

∗ λ4)

≤ Cq −
π

2
λ(ε∗)

2C∗(ξ) = Cq −
π

2
λ3δ2∗C∗(ξ).

Comparing the order λ3 of the above three cases, one can choose a sufficiently small δ
satisfying C−1δ < δ∗ < Cδ−1 and sufficiently small λ such that

J1(δ∗λ) < min{J1(δλ),J1(δ
−1λ)}.

(2) Consider the variation of a, and fix all the other variables in A. Thus one can think of
J(PQA + ϕA) = J2(|a|) as a function of |a| on [0, δ−1ε3/2]. Notice that q(ξ̂) = a|∇q(ξ)|+
O(a2) and w = RT

β∇q(ξ) +O(|a|). Denote w0 := RT
β∇q(ξ). If |a| = δ−1ε3/2,

J2(δ
−1ε3/2) = Cq + 2π

(
δ−2ε4|∇q(ξ)|2τΩ(b) + ε3wT

0 ∇2
z,pHΩ(b, b)w0 − λε2C∗(ξ)

)
+O(ε4 + λε3).

However, if we choose a = 0 then

J2(0) ≤ Cq + 2π
(
ε3wT

0 ∇2
z,pHΩ(b, b)w0 − λε2C∗(ξ)

)
+O(ε4 + λε3).

Taking λ small enough and δ small enough, we have

J2(0) < J2(δ
−1ε3/2).

(3) Consider the variation of b, and fix all the other variables in A. Thus one can think of
J(PQA + ϕA) = J3(b) as a function of b with |b|θ0 ≤ δ−4ε. We assume that λ ≪ δ such
that δ−4ε < rθ00 where r0 is defined in (C-3).

1

2π
[J3(b)− J3(0)] = ε[q(ξ̂)]2(τΩ(b)− τΩ(0)) + ε2q(ξ̂)w · ∇τΩ(b)

+ ε3
[
wT∇2

z,pHΩ(b, b)w − wT∇2
z,pHΩ(0, 0)w

]
+O(ε4 + λε3)

Now take b such that |b|θ0 = δ−4ε. It is easy to see that |ε2q(ξ̂)w · ∇τΩ(b)| ≤ C|a||b| ≤
Cδ−3ε4. Moreover, assumption (C-2) implies that

ε3[wT∇2
z,pHΩ(b, b)w − wT∇2

z,pHΩ(0, 0)w] ≥ c0ε
3|b|θ0 |w|2 ≥ c̃0δ

−4ε4.

Therefore, for such b,
1

2π
[J3(b)− J3(0)] ≥ c̃0δ

−4ε4 − Cδ−3ε4 +O(ε4 + λε3) > 0

provided δ is chosen small and λ is small enough. Consequently, J3(0) < inf{b||b|θ0=δ−4ε} J3(b).
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Now, combining the previous (1)-(3) parts, we know that the infimum of J(PQA + ϕA)
must be achieved when the parameters ε, ξ, a, b, β are in the interior of the constraint set.
Hence we finish the whole proof. □

Proof of Theorem 1.1. By Theorem 6.2, it follows that infA∈C J(PQA + ϕA) is attained in
the interior of C . By Remark 4.6 and Proposition 5.1, J(PQA + ϕA) is at least C1 on
the parameters of A. Then the partial derivatives of J(PQA + ϕA) with respect to the six
parameters of A are zero at a minimum point in the interior of C . Then using Lemma 6.1,
we find a nontrivial solution to (1.1) and prove Theorem 1.1. □

7. THE GREEN FUNCTION OF CUBE AND THE PROOF OF THEOREM 1.3

In this section, we shall study the Green function of a cube and cuboid. In particular, we
shall prove that its Green function satisfies (C-1)-(C-3). Let G(z, p) be the Green function
satisfying

(7.1)

{
∆G(z, p) + δp(z) = 0 in [−1, 1]3,

G(z, p) = 0 on ∂ ([−1, 1]3) .

By the method of reflection, we can write the Green function and decompose it as

(7.2) G(z, p) =
1

4π

∞∑
l,m,n=−∞

(−1)l+m+n 1

|z − pl,m,n|
=

1

4π

1

|z − p|
− 1

4π
H(z, p).

where pl,m,n = (2l+(−1)lp1, 2m+(−1)mp2, 2n+(−1np3)) andH(z, p) denotes the regular
part. Given that the series convergence is at best conditional, we must first address the
summation order. Following [9, Section 5.15], we define

σn

(
1

|z − pl,m,n|

)
=

1

|z − pl,m,n+1|
− 1

|z − pl,m,n|
.

For fixed l,m, the inner sum over the index n in the series expression can be written as

(7.3) N ′(l,m) =
∑
n odd

σn

(
1

|z − pl,m,n|

)
= −

∑
n even

σn

(
1

|z − pl,m,n|

)
.

Clearly, N ′(l,m) → ∞ as l2 +m2 → ∞. Similarly, we define

N ′′(l) =
∑
m odd

σm (N ′(l,m)) = −
∑
n even

σm (N ′(l,m)) ,

and
G(z, p) =

∑
l odd

σl (N
′′(l)) = −

∑
n even

σl (N
′′(l)) ,

where

σm (N ′(l,m)) = N ′(l,m+ 1)−N ′(l,m), σl (N
′′(l)) = N ′′(l + 1)−N ′′(l).

Thus, we can express

(7.4) G(z, p) =
1

4π

∑
l odd

∑
m odd

∑
n odd

σlσmσn

(
1

|z − pl,m,n|

)
.
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For fixed z, p in cube and l2 +m2 + n2 large, we have∣∣∣∣σlσmσn( 1

|z − pl,m,n|

)∣∣∣∣ < c

(l2 +m2 + n2)2
.

For fixed z, p within a cube and large l2 +m2 + n2, we have∣∣∣∣σlσmσn( 1

|z − pl,m,n|

)∣∣∣∣ < c

(l2 +m2 + n2)2
.

As a result, the series in (7.4) is absolutely convergent, allowing term-by-term differentia-
tion. Furthermore, differentiating the Green function at least three times results in each term
decaying as (l2+m2+n2)−2, allowing the summation order to be disregarded due to absolute
convergence. One can verify that this summation order ensures G(z, p) is the intended func-
tion. Specifically, on the boundary of cube, the individual terms cancel pairwise, resulting in
the Green function vanishing.

Now we consider the regular part, expressed as

(7.5) H(z, p) = −
∑

l,m,n̸=(0,0,0)

(−1)l+m+n 1

|z − pl,m,n|
,

with the summation adhering to the previously specified order. Since our focus is on the
2× 2 submatrix, we compute the Hessian elements at z = p = b:

∂2H(z, p)

∂z1∂p1

∣∣∣∣
z=p=b

=
∑

(l,m,n)̸=(0,0,0)

(
(−1)m+n+1

|b(l,m, n)|3
+

3(−1)m+n(b1 − 2l − (−1)lb1)
2

|b(l,m, n)|5

)
,

∂2H(z, p)

∂z1∂p2

∣∣∣∣
z=p=b

=
∑

(l,m,n)̸=(0,0,0)

3(−1)l+n(b1 − 2l − (−1)lb1)(b2 − 2m− (−1)mb2)

|b(l,m, n)|5
,

∂2H(z, p)

∂z2∂p1

∣∣∣∣
z=p=b

=
∑

(l,m,n)̸=(0,0,0)

3(−1)m+n(b1 − 2l − (−1)lb1)(b2 − 2m− (−1)mb2)

|b(l,m, n)|5
,

∂2H(z, p)

∂z2∂p2

∣∣∣∣
z=p=b

=
∑

(l,m,n)̸=(0,0,0)

(
(−1)l+n+1

|b(l,m, n)|3
+

3(−1)l+n(b2 − 2m− (−1)mb2)
2

|b(l,m, n)|5

)
,

where

|b(l,m, n)| = |(b1 − 2l − (−1)lb1, b2 − 2m− (−1)mb2, b3 − 2n− (−1)nb3)|.

The Hessian matrix summation follows the previously defined order. To confirm the first
two assumptions about the regular part of the Green function, we refer to [18, Theorem 1.1].
Using the symmetry of the cube, it is evident that 0 is a critical point of the Robin function
τ(z) = H(z, z). Furthermore, Grossi showed that ∂2zτ(z)|z=0 is positive definite with zero
off-diagonal terms. Using this result and straightforward calculations, we obtain

(7.6) ∂2zjzlτ(z) = 2∂2zjzlH(z, z) + 2∂2zjplH(z, z).
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At z = 0, exploiting the symmetry and the fact that H(z, p) is a harmonic function with
respect to z, we find ∂2z1p1H(z, p)

∣∣
z=p=0

and ∂2z2p2H(z, p)
∣∣
z=p=0

are strictly positive. Sym-

metry also implies that the off-diagonal terms of the mixed Hessian matrix ∂2H(z,p)
∂zj∂pl

∣∣∣
z=p=0

are zero. Thus, we establish that ∇2
z,pH(0, 0) is positive definite.

It remains to check the third assumption. We set

fjl(b) =
∂2H(z, p)

∂zj∂pl
|z=p=b, j, l = 1, 2.

By direct computation, we have
∂f11

∂b1

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)m+n+1(1− (−1)l)

16

[
9l

(l2 +m2 + n2)
5
2

−
15l3

(l2 +m2 + n2)
7
2

]
,

∂f11

∂b2

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)m+n+1(1− (−1)m)

16

[
3l

(l2 +m2 + n2)
5
2

−
15l2m

(l2 +m2 + n2)
7
2

]
,

∂f12

∂b1

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)l+n+1(1− (−1)l)

16

[
3m

(l2 +m2 + n2)
5
2

−
15l2m

(l2 +m2 + n2)
7
2

]
,

∂f12

∂b2

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)l+n+1(1− (−1)m)

16

[
3l

(l2 +m2 + n2)
5
2

−
15lm2

(l2 +m2 + n2)
7
2

]
,

∂f21

∂b1

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)m+n+1(1− (−1)l)

16

[
3m

(l2 +m2 + n2)
5
2

−
15l2m

(l2 +m2 + n2)
7
2

]
,

∂f21

∂b2

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)m+n+1(1− (−1)m)

16

[
3l

(l2 +m2 + n2)
5
2

−
15lm2

(l2 +m2 + n2)
7
2

]
,

∂f22

∂b1

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)l+n+1(1− (−1)l)

16

[
3m

(l2 +m2 + n2)
5
2

−
15m2l

(l2 +m2 + n2)
7
2

]
,

∂f22

∂b2

∣∣∣∣
b=0

=
∑

(l,m,n)̸=(0,0,0)

(−1)l+n+1(1− (−1)m)

16

[
9m

(l2 +m2 + n2)
5
2

−
15m3

(l2 +m2 + n2)
7
2

]
.

It is evident that each term in the series now decays as 1
(l2+m2+n2)2

, ensuring absolute con-
vergence and allowing summation in any order. Using symmetry, all eight terms cancel out.
Next, we compute the Hessian matrix for each term fjl, j, l = 1, 2,

∂2f11

∂bjbl

∣∣∣∣
b=0

=



∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)l)2

32

[
9

(l2+m2+n2)
5
2

− 90l2

128(l2+m2+n2)
7
2

+ 105l4

512(l2+m2+n2)
9
2

]
, j = l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n+1(1−(−1)l)(1−(−1)m)
32

[
45lm

(l2+m2+n2)
7
2

− 105l3m

(l2+m2+n2)
9
2

]
, j = 1, l = 2,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n+1(1−(−1)l)(1−(−1)m)
32

[
45lm

(l2+m2+n2)
7
2

− 105l3m

(l2+m2+n2)
9
2

]
, j = 2, l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)m)2

32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = l = 2,

∂2f12

∂bjbl

∣∣∣∣
b=0

=



∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)l)2

32

[
− 45lm

(l2+m2+n2)
7
2

+ 105l3m

(l2+m2+n2)
9
2

]
, j = l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)l)(1−(−1)m)
32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = 1, l = 2,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)l)(1−(−1)m)
32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = 2, l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)m)2

32

[
− 45lm

(l2+m2+n2)
7
2

+ 105lm3

(l2+m2+n2)
9
2

]
, j = l = 2,
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∂2f21

∂bjbl

∣∣∣∣
b=0

=



∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)l)2

32

[
− 45lm

(l2+m2+n2)
7
2

+ 105l3m

(l2+m2+n2)
9
2

]
, j = l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)l)(1−(−1)m)
32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = 1, l = 2,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)l)(1−(−1)m)
32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = 2, l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1−(−1)m)2

32

[
− 45lm

(l2+m2+n2)
7
2

+ 105lm3

(l2+m2+n2)
9
2

]
, j = l = 2.

∂2f22

∂bjbl

∣∣∣∣
b=0

=



∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)l)2

32

[
3

(l2+m2+n2)
5
2

− 15(l2+m2)

(l2+m2+n2)
7
2

+ 105l2m2

(l2+m2+n2)
9
2

]
, j = l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n+1(1−(−1)l)(1−(−1)m)
32

[
45lm

(l2+m2+n2)
7
2

− 105lm3

(l2+m2+n2)
9
2

]
, j = 1, l = 2,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n+1(1−(−1)l)(1−(−1)m)
32

[
45lm

(l2+m2+n2)
7
2

− 105lm3

(l2+m2+n2)
9
2

]
, j = 2, l = 1,

∑
(l,m,n)̸=(0,0,0)

(−1)l+n(1−(−1)m)2

32

[
9

(l2+m2+n2)
5
2

− 90m2

(l2+m2+n2)
7
2

+ 105m4

(l2+m2+n2)
9
2

]
, j = l = 2,

As the gradient term, each single term in the series now decays like 1

(l2+m2+n2)
5
2

, confirming

absolute convergence and permitting arbitrary summation order. Symmetry reveals that the
off-diagonal terms of ∂2f11

∂bj∂bl
and ∂2f22

∂bj∂bl
are zero, as are the diagonal terms of ∂2f12

∂bj∂bl
and ∂2f21

∂bj∂bl
.

Using Mathematica or Matlab, we derive the value of the non-zero terms are

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1− (−1)l)2

32

[
9

(l2 +m2 + n2)
5
2

−
90l2

(l2 +m2 + n2)
7
2

+
105l4

(l2 +m2 + n2)
9
2

]
≈ 7.11,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1− (−1)m)2

32

[
3

(l2 +m2 + n2)
5
2

−
15(l2 +m2)

(l2 +m2 + n2)
7
2

+
105l2m2

(l2 +m2 + n2)
9
2

]
≈ 1.62,

∑
(l,m,n)̸=(0,0,0)

(−1)m+n(1− (−1)l)(1− (−1)m)

32

[
3

(l2 +m2 + n2)
5
2

−
15(l2 +m2)

(l2 +m2 + n2)
7
2

+
105l2m2

(l2 +m2 + n2)
9
2

]
≈ −0.97.

As a consequence, we have

∂2f11

∂bjbl

∣∣∣∣
b=0

≈
(
7.11 0

0 1.62

)
,

∂2f12

∂bjbl

∣∣∣∣
b=0

≈
(

0 −0.97

−0.97 0

)
,

∂2f11

∂bjbl

∣∣∣∣
b=0

≈
(

0 −0.97

−0.97 0

)
,

∂2f11

∂bjbl

∣∣∣∣
b=0

≈
(
1.62 0

0 7.11

)
.

In order to verify the assumption that wT ∂2H(z,p)
∂zj∂pl

∣∣∣
z=p=b

w has a local minimum at b = 0 for

any w ∈ S1, we compute:

(7.7)

wT ∂
2H(z, p)

∂zj∂pl

∣∣∣∣
z=p=b

w = f11(b)w
2
1 + f22(b)w

2
2 + f12(b)w1w2 + f21(b)w1w2

≈ wT

(
7.11b21 + 1.67b22 −1.94b1b2

−1.94b1b2 1.67b21 + 7.11b22

)
w +O(|b|4)

= (b1, b2)

(
7.11w2

1 + 1.62w2
2 −1.94w1w2

−1.94w1w2 1.62w2
1 + 7.11w2

2

)(
b1
b2

)
+O(|b|4).
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Clearly,(
7.11w2

1 + 1.62w2
2 −1.94w1w2

−1.94w1w2 1.62w2
1 + 7.11w2

2

)
is a positive definite matrix for any w ∈ S1.

This implies that wT ∂2H(z,p)
∂zj∂pl

∣∣∣
z=p=b

w has a local minimum at b = 0. Thus, all assumptions

are verified for the Green function of cube.
According to the above arguments, it is not difficult to see that if the cube is replaced by a

cuboid with the length of three sides a, b, c satisfying that

(7.8) 1 ≤ max

{
a

b
,
b

a
,
a

c
,
c

a
,
b

c
,
c

b

}
< 1 + ϵ,

we can still verify the assumptions (C-2)-(C-3) provided ϵ is sufficiently small. While the
first assumption (C-1) is a direct consequence following [18] and the symmetry of cuboid.

With the above preparation, we are able to provide the proof of Theorem 1.3

Proof of Theorem 1.3. Let the side lengths of a cuboid be denoted by L1, L2, L3. Suppose
the ratios L1

L2
, L2

L3
, L3

L1
are rational. Then, we can express the side lengths as

(7.9) L1 : L2 : L3 = p : q : r,

where p, q, r are positive integers.
We divide the cuboid’s sides into pN , qN , rN equal parts, respectively, for a sufficiently

large integer N . This decomposes the cuboid into pqrN3 smaller cubes, each with side
length

ℓ =
L1

pN
=

L2

qN
=

L3

rN
.

In each small cube, we study the problem (1.1). By rescaling the spatial variable x→ y = x
ℓ
,

this problem transforms into:

(7.10)

{
1
ℓ2
∆u+ λu+ u5 = 0 in [−1, 1]3,

u = 0 on ∂([−1, 1]3).

Introducing v = ℓ1/2u, the equation becomes:

(7.11)

{
∆v + λℓ2v + v5 = 0 in [−1, 1]3,

v = 0 on ∂([−1, 1]3).

For sufficiently large N , the side length ℓ is small, ensuring λℓ2 < λ0, where λ0 is given
by Theorem 1.1. Using Theorem 1.1 and the property of the Green function for the cuboid,
we establish a sign-changing solution to the rescaled equation. Scaling back to the original
variable and applying odd reflections across the boundaries of each small cube, we obtain a
sign-changing solution to the original problem (1.1).

If the ratios L1

L2
, L2

L3
, L3

L1
are not all rational, then we may assume that L1

L2
and L2

L3
are irra-

tional. We can find positive integers p1, p2, q1, q2 such that:

p1
q1
<
L1

L2

<
p1 + 1

q1
,

p2
q2
<
L2

L3

<
p2 + 1

q2
.
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We divide the the sides of cuboid into p1p2, q1p2, q1q2 equal parts, resulting in p1p
2
2q

2
1q2

smaller cuboids. Consider one such cuboid, denoted by C0, with side lengths a1 = L1

p1p2
,

a2 =
L2

q1p2
, a3 = L3

q1q2
. The ratios satisfy:

1 <
a1
a2

<
p1q1 + q1
p1q1

, 1 <
a2
a3

<
p2q2 + q2
p2q2

.

By choosing sufficiently large p1, p2, q1, q2, we ensure that

max

{
ai
aj
,
aj
ai

∣∣∣∣ i, j = 1, 2, 3, i ̸= j

}
< 1 + ϵ,

where ϵ is specified in (7.8). As a consequence, we see that the Green function of C0 satisfies
conditions (C-1)-(C-3). We further subdivide C0 into smaller cuboids by dividing each side
into an equal number of parts, construct a solution to (BN) in one of these using Theorem
1.1, and apply odd reflections to extend the solution to the entire cuboid. This completes the
proof of Theorem 1.3. □
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2(6):463–470, 1985.

[5] Alfonso Castro and Mónica Clapp. The effect of the domain topology on the number of minimal
nodal solutions of an elliptic equation at critical growth in a symmetric domain. Nonlinearity,
16(2):579, 2003.

[6] Giovanna Cerami, Donato Fortunato, and Michael Struwe. Bifurcation and multiplicity results
for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré
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