CHAPTER 62

Contents

1. Introduction 489
2. Steady states in shadow system case 491
2.1. Reduction to single equation 491
2.2. Subcritical case: spikes to (2.4) 492
2.3. Localized energy method (LEM) 495
2.4. Bubbles to (2.4): the critical case 512
2.5. Bubbles to (2.4): slightly supercritical case 514
2.6. Concentration on higher-dimensional sets 514
2.7. Robin boundary condition 516
3. Stability and instability in the shadow system case 519
3.1. Small eigenvalues for L_{ϵ} 519
3.2. A reduction lemma 522
3.3. Large eigenvalues: NLEP method 523
3.4. Uniqueness of Hopf bifurcations 535
3.5. Finite ϵ case 537
3.6. The stability of boundary spikes for the Robin boundary condition 541
4. Full Gierer-Meinhardt system: One-dimensional case 542
4.1. Bound states: the case of $\Omega=\mathbb{R}^{1}$ 543
4.2. The bounded domain case: Existence of symmetric K-spikes 543
4.3. The bounded domain case: existence of asymmetric K-spikes 544
4.4. Classification of asymmetric patterns 551
4.5. The stability of symmetric and asymmetric K-spikes 555
5. The full Gierer-Meinhardt system: Two-dimensional case 557
5.1. Bound states: spikes on polygons 557
5.2. Existence of symmetric K-spots 561
5.3. Existence of multiple asymmetric spots 563
5.4. Stability of symmetric K-spots 570 40
5.5. Stability of asymmetric K-spots 575 41
HANDBOOK OF DIFFERENTIAL EQUATIONS 4342
Stationary Partial Differential Equations, volume 5 44
Edited by M. Chipot
© 2008 Elsevier B.V. All rights reserved 45 45
6. High-dimensional case: $N \geqslant 3$ 576
7. Conclusions and remarks 580
Acknowledgments 581
References 581
435
8. Introduction 1

It is a common belief that diffusion is a smoothing and trivializing process. Indeed, this is the case for a single diffusion equation. Consider the heat equation

$$
\begin{cases}u_{t}=\Delta u & \text { in } \Omega \times(0,+\infty) \tag{1.1}\\ u(x, 0)=u_{0}(x) \geqslant 0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega \times(0,+\infty)\end{cases}
$$

Assume that $u_{0}(x)$ is continuous. It is known that $u(x, t)$ is smooth for $t>0$ (smoothing), and $u(x, t) \rightarrow \frac{1}{|\Omega|} \int_{\Omega} u_{0}(x) d x$ as $t \rightarrow+\infty$ (trivializing). A similar result holds when a source/sink term (or a reaction term) is present. Namely, for the problem

$$
\begin{cases}u_{t}=\Delta u+f(u) & \text { in } \Omega \times(0,+\infty) \tag{1.2}\\ u(x, 0)=u_{0}(x) \geqslant 0 & \text { in } \Omega \\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega \times(0,+\infty)\end{cases}
$$

it is known that when Ω is convex, the only stable solutions are constants [5,46]. Thus there are only trivial patterns (constant solutions) for single reaction-diffusion equations (on convex domains).

On the other hand, it is important to be able to use diffusion (and reaction) to model pattern formations in various branches of science (e.g., biology and chemistry). One important question is: can we get non-trivial patterns (stable non-trivial solutions) for systems of reaction-diffusion equations?

Let us consider the following system of reaction-diffusion equations:

$$
\left\{\begin{array}{lll}
u_{t}=D_{u} \Delta u+f(u, v) & \text { in } \Omega \times(0,+\infty), & \\
v_{t}=D_{v} \Delta v+g(u, v) & \text { in } \Omega \times(0,+\infty), & \\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x) & \text { in } \Omega, & \\
\frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \text { on } \partial \Omega \times(0,+\infty) . &
\end{array}\right.
$$

In 1957, Turing [68] proposed a mathematical model for morphogenesis, which describes the development of complex organisms from a single shell. He speculated that localized peaks in concentration of a chemical substance, known as an inducer or morphogen, could be responsible for a group of cells developing differently from the surrounding cells. He then demonstrated, with linear analysis, how a non-linear reaction diffusion system like (1.3) could possibly generate such isolated peaks. Later in 1972, Gierer and Meinhardt [21] demonstrated the existence of such solution numerically for the following (so-called Gierer-Meinhardt system)

$$
(\mathrm{GM}) \begin{cases}\frac{\partial a}{\partial t}=\epsilon^{2} \Delta a-a+\frac{a^{p}}{h^{q}}, & x \in \Omega, t>0 \\ \tau \frac{\partial h}{\partial t}=D \Delta h-h+\frac{a^{r}}{h^{s}}, & x \in \Omega, t>0 \\ \frac{\partial a}{\partial v}=\frac{\partial h}{\partial v}=0, & x \in \partial \Omega\end{cases}
$$

Here, the unknowns $a=a(x, t)$ and $h=h(x, t)$ represent the respective concentrations at point $x \in \Omega \subset \mathbb{R}^{N}$ and at time t of the biochemical called an activator and an inhibitor; $\epsilon>0, D>0, \tau>0$ are all positive constants; $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$ is the Laplace operator in $\mathbb{R}^{N} ; \Omega$ is a smooth bounded domain in $\mathbb{R}^{N} ; \nu(x)$ is the unit outer normal at $x \in \partial \Omega$. The exponents (p, q, r, s) are assumed to satisfy the condition

$$
p>1, \quad q>0, \quad r>0, \quad s \geqslant 0, \quad \text { and } \quad \gamma:=\frac{q r}{(p-1)(s+1)}>1 .
$$

Gierer-Meinhardt system was used in [21] to model head formation in the hydra. Hy$d r a$, an animal of a few millimeters in length, is made up of approximately 100,000 cells of about fifteen different types. It consists of a "head" region located at one end along its length. Typical experiments on hydra involve removing part of the "head" region and transplanting it to other parts of the body column. Then, a new "head" will form if and only if the transplanted area is sufficiently far from the (old) head. These observations have led to the assumption of the existence of two chemical substances-a slowly diffusing (i.e., $\epsilon \ll 1$) activator a and a fast diffusing (i.e., $D \gg \epsilon$) inhibitor h.

To understand the dynamics of (GM), it is helpful to consider first its corresponding "kinetic system"

$$
\left\{\begin{array}{l}
a_{t}=-a+a^{p} / h^{q} \tag{1.4}\\
\tau h_{t}=-h+a^{r} / h^{s} .
\end{array}\right.
$$

This system has a unique constant steady state $a \equiv 1, h \equiv 1$. For $0<\tau<\frac{q r}{(p-1)(s+1)}$ it is easy to see that the constant solution $a \equiv 1, h \equiv 1$ is stable as a steady state of (ODE).

However, if $\frac{\epsilon}{\sqrt{D}}$ is small, it is not hard to see that the constant steady state $a \equiv 1, h \equiv$ 1 of (GM) becomes unstable and bifurcation may occur. This phenomenon is generally referred to as Turing's diffusion-driven instability. (A general criteria for this can be found in Murray's book [47].)
There are many other reaction-diffusion systems which exhibit Turing's diffusiondriven instability: they include Gray-Scott model from chemical reactor theory, Schnakenberg model, Sel'kov model, Lengyl-Epstein model, Thomas model, Keener-Tyson model, Brusselator, Oregonator, etc. For introduction and discussion on these general Turing models, we refer to the book [47]. A survey of mathematical modeling of biological and chemical phenomena using reaction-diffusion systems is given in [38]. Mathematical modeling of patterns in biological morphogenesis using extensions of GM model are discussed in [36] and [48].

Several common characteristics of Turing type reaction-diffusion systems include: first, they are non-variational, i.e., they do not have Lyapunov or energy functional so standard variational (or energy) method cannot be applied; second, they are non-cooperative, i.e., they do not have Maximum Principles so sub-super-solution method cannot be applied; third, they support finite-amplitude spatial-temporal patterns of remarkable diversity and complexity, such as stable spikes, layers, stripes, spot-splitting, traveling waves, etc. (See [63].) The study of these RD systems not only increases our knowledge on Turing patterns,
but also induces new tools and techniques to deal with other problems which may share similar characteristics.

The most interesting phenomena associated with (GM) is the existence of stable spikes and stripes. The numerical studies of [21] and more recent those of [31] have revealed that in the limit $\epsilon \rightarrow 0$, the (GM) system seems to have stable stationary solutions with the property that the activator concentration is localized around a finite number of points in $\bar{\Omega}$. Moreover, as $\epsilon \rightarrow 0$, the pattern exhibits a "spike layer phenomenon" by which we mean that the activator concentration is localized in narrower and narrower regions around some points and eventually shrinks to a certain number of points as $\epsilon \rightarrow 0$, whereas the maximum value of the activator concentration diverges to $+\infty$.

Such kind of point-condensation phenomena has generated a lot of interests both mathematically and biologically in recent years. The purpose of this paper is to report on the current trend and status of such studies (up to June, 2006). We shall not give most of proofs. For more details, please see the references and therein.

In the study of spiky patterns (or concentration phenomena), two fundamental methods emerge. The first one is the so-called "Localized Energy Method", or LEM in short. LEM is a combination of traditional Lyapunov-Schmidt reduction method with variational techniques. This is a very useful tool to construct solutions with various concentration behavior, such as spikes, layers, or vortices. The second method is the so-called "Nonlocal Eigenvalue Problem Method", or NLEP in short. This deals with eigenvalue problems which are non-selfadjoint. It plays fundamental role in the study of stability of spike patterns. In this survey, I shall illustrate these two methods in details in the hope that they may find applications in other problems.

Throughout this paper, unless otherwise stated, we always assume that

$$
\begin{equation*}
\epsilon \ll 1, \quad D \text { is finite, } \quad \tau \geqslant 0 \tag{1.5}
\end{equation*}
$$

2. Steady states in shadow system case

2.1. Reduction to single equation

In general, the full (GM) system is very difficult to study. A very useful idea, which goes back to Keener and Nishiura, is to consider the so-called shadow system. Namely, we let $D \rightarrow+\infty$ first. Suppose that the quantity $-h+a^{p} / h^{q}$ remains bounded, then we obtain

$$
\begin{equation*}
\Delta h \rightarrow 0, \quad \frac{\partial h}{\partial v}=0 \quad \text { on } \partial \Omega \tag{2.1}
\end{equation*}
$$

Thus $h(x, t) \rightarrow \xi(t)$, a constant. To derive the equation for $\xi(t)$, we integrate both sides of the equation for h over Ω and then we obtain the following so-called shadow system

$$
\left\{\begin{array}{l}
a_{t}=\epsilon^{2} \Delta a-a+a^{p} / \xi^{q} \quad \text { in } \Omega \tag{2.2}\\
\tau \xi_{t}=-\xi+\frac{1}{|\Omega|} \int_{\Omega} a^{r} d x / \xi^{s} \\
a>0 \quad \text { in } \Omega \quad \text { and } \quad \frac{\partial a}{\partial \nu}=0 \text { on } \partial \Omega
\end{array}\right.
$$

The advantage of shadow system is that by a simple scaling,

$$
\begin{equation*}
a=\xi^{\frac{q}{p-1}} u, \quad \xi=\left(\frac{1}{|\Omega|} \int_{\Omega} u^{r}\right)^{\frac{p-1}{(p-1)(s+1)-q r}} \tag{2.3}
\end{equation*}
$$

the stationary shadow system can be reduced to a single equation

$$
\left\{\begin{array}{l}
\epsilon^{2} \Delta u-u+u^{p}=0 \quad \text { in } \Omega \tag{2.4}\\
u>0 \quad \text { in } \Omega \quad \text { and } \quad \frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

whose energy functional is given by

$$
\begin{align*}
J_{\epsilon}[u] & :=\int_{\Omega}\left(\frac{\epsilon^{2}}{2}|\nabla u|^{2}+\frac{1}{2} u^{2}-\frac{1}{p+1} u_{+}^{p+1}\right) d x \\
\text { where } u_{+} & =\max (u, 0) \tag{2.5}
\end{align*}
$$

for $u \in H^{1}(\Omega)$.
First we give some definitions on solutions to (2.4). A family of solutions $\left\{u_{\epsilon}\right\}$ to (2.4) are called concentrated solutions if there exists a subset $\Gamma \subset \bar{\Omega}$ such that $u_{\epsilon} \rightarrow 0$ in $C_{\text {loc }}^{0}(\bar{\Omega} \backslash \Gamma)$ and $\max _{x \in \Gamma} u_{\epsilon}(x) \geqslant c_{0}>0$. If Γ consists of only points in $\bar{\Omega}$, these kind solutions are called point condensations. Among point condensations, there are two kinds: spikes and bubbles. Spikes are those concentrated solutions such that $\max _{x \in \bar{\Omega}} u_{\epsilon} \leqslant C$, while bubbles are those with $\max _{x \in \bar{\Omega}} u_{\epsilon} \rightarrow+\infty$. If the dimension of Γ is positive, concentrated solutions are also called layers. (Similar definitions can also be given for solutions of the full Gierer-Meinhardt system by considering the activator a only.)

In the following, we discuss the existence of all kinds of concentrated solutions to (2.4).

2.2. Subcritical case: spikes to (2.4)

Let us assume first that $1<p<\left(\frac{N+2}{N-2}\right)_{+}\left(=\frac{N+2}{N-2}\right.$ if $N \geqslant 3 ;=+\infty$ when $\left.N=1,2\right)$. In this case, problem (2.4) can be studied by traditional variational methods, for example, Mountain-Pass method, or Nehari's solution manifold method. For Mountain-Pass method, by taking a function $e(x) \equiv k$ for some constant k in Ω, and choosing k large enough, we have $J_{\epsilon}(e)<0$, for all $\epsilon \in(0,1)$. Then for each $\epsilon \in(0,1)$, we can define the so-called mountain-pass value

$$
\begin{equation*}
c_{\epsilon}=\inf _{h \in \Gamma} \max _{0 \leqslant t \leqslant 1} J_{\epsilon}[h(t)] \tag{2.6}
\end{equation*}
$$

where $\Gamma=\left\{h:[0,1] \rightarrow H^{1}(\Omega)| | h(t)\right.$ is continuous, $\left.h(0)=0, h(1)=e\right\}$.
It is easy to see that (Lemma 2.1 of [57]), c_{ϵ} can be characterized by

$$
\begin{equation*}
c_{\epsilon}=\inf _{u \neq 0, u \in H^{1}(\Omega)} \sup _{t>0} J_{\epsilon}[t u], \tag{2.7}
\end{equation*}
$$

which can be shown to be the least among all non-zero critical values of J_{ϵ}. (This formulation (2.7) is sometimes referred to as the Nehari manifold technique.) Moreover, c_{ϵ} is attained by some function u_{ϵ} which is then called a least-energy solution.

In a series of papers [57] and [58], Ni and Takagi studied the so-called least energy solutions and proved the following theorem

THEOREM 2.1. (See [57,58].) For ϵ sufficiently small, there exists a mountain-pass solution u_{ϵ} which is also least-energy solution such that u_{ϵ} has only one local maximum point $P_{\epsilon} \in \partial \Omega$ and $u_{\epsilon} \rightarrow 0$ in $C_{\text {loc }}^{2}\left(\bar{\Omega} \backslash\left\{P_{\epsilon}\right\}\right)$. Moreover, as $\epsilon \rightarrow 0$,
where $H(P)$ is the mean curvature function for $P \in \partial \Omega$, and $u_{\epsilon}\left(P_{\epsilon}+\epsilon y\right) \rightarrow w(y)$ uniformly in $\Omega_{\epsilon, P_{\epsilon}}=\left\{y \mid P_{\epsilon}+\epsilon y \in \Omega\right\}$, where $w(y)$ is the unique solution of the following

$$
\begin{cases}\Delta w-w+w^{p}=0, & w>0 \text { in } \mathbb{R}^{N} \tag{2.8}\\ w(0)=\max _{y \in \mathbb{R}^{N}} w(y), & w \rightarrow 0 \text { at } \infty\end{cases}
$$

REMARK 2.2.1. The existence of ground state to (2.8) is well known. The radial symmetry of w follows from the famous Gidas-Ni-Nirenberg theorem [22]. The uniqueness of w is proved in [39].

REMARK 2.2.2. The proof of Theorem 2.1 is by expansion of energy:

$$
\begin{equation*}
c_{\epsilon}=\epsilon^{N}\left[\frac{1}{2} I[w]-c_{1} \epsilon H\left(P_{\epsilon}\right)+o(\epsilon)\right] \tag{2.9}
\end{equation*}
$$

where

$$
I[w]=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}\left(|\nabla w|^{2}+w^{2}\right)-\frac{1}{p+1} w^{p+1}\right)
$$

is the energy of the ground state. A further expansion of c_{ϵ} up to the ϵ^{2} order is given by [90]

$$
\begin{equation*}
c_{\epsilon}=\epsilon^{N}\left[\frac{1}{2} I[w]-c_{1} \epsilon H\left(P_{\epsilon}\right)+\epsilon^{2}\left[c_{2}\left(H\left(P_{\epsilon}\right)\right)^{2}+c_{3} R\left(P_{\epsilon}\right)\right]+o\left(\epsilon^{2}\right)\right] \tag{2.10}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are generic constants and $R\left(P_{\epsilon}\right)$ is the scalar curvature at P_{ϵ}. In particular $c_{1}, c_{3}>0$. (When $N=2$, a further expansion to the order of ϵ^{3} is also given in [91].) Some applications of the formula (2.10) are given in [90].

Since then there has been a lot of studies on problem (2.4). A general principle is that boundary spike solutions are related to the boundary mean-curvature $H(P), P \in \partial \Omega$, while interior spike solutions are related to the distance function $d(P, \partial \Omega)$. Note also that
while interior spike solutions are related to the distance function $d(P, \partial \Omega)$. Note also that
for boundary spike the order is usually $O(\epsilon)$ while for interior spikes the order is $O\left(e^{-\frac{d}{\epsilon}}\right) \quad{ }^{1}$ for some $d>0$.

Let me mention some results on multiple boundary and interior peaked solutions.
For single and multiple boundary spikes, Gui [26] first constructed multiple boundary spike solutions at multiple local maximum points of $H(P)$, using variational method. Wei [73], Wei and Winter [82,83] (independently by Bates, Dancer and Shi [4]) constructed single and multiple boundary spike solutions at multiple non-degenerate critical points of $H(P)$, using Lyapunov-Schmidt reduction method. Y.Y. Li [41], del Pino, Felmer and Wei [16] constructed single and multiple boundary spikes in the degeneracy case. Using Localized Energy method (LEM), a clustered solution is also constructed by Gui, Wei and Winter [29] (independently by Dancer and Yan [9]).

Theorem 2.2. (See [9,29].) Let Γ be a subset of $\partial \Omega$, where it holds

$$
\begin{equation*}
\min _{\partial \Gamma} H(P)>\min _{\Gamma} H(P) . \tag{2.11}
\end{equation*}
$$

Then for any fixed positive integer k, there exists ϵ_{k} such that for $\epsilon<\epsilon_{k}$, problem (2.4) has a solution u_{ϵ} with k boundary local maximum points $P_{j, \epsilon} \in \Gamma$. Furthermore, $H\left(P_{j, \epsilon}\right) \rightarrow$ $\min _{\Gamma} H(P)$.

The energy expansion for K-boundary spikes is

$$
\begin{align*}
J_{\epsilon}\left[u_{\epsilon}\right]= & \epsilon^{N}\left[\frac{K}{2} I[w]-c_{1} \epsilon \sum_{j=1}^{K} H\left(P_{j, \epsilon}\right)\right. \\
& \left.-\sum_{i \neq j}\left(\gamma_{0}+o(1)\right) w\left(\frac{\left|P_{i, \epsilon}-P_{j, \epsilon}\right|}{\epsilon}\right)\right] . \tag{2.12}
\end{align*}
$$

For single and multiple interior peaked solutions, the situation is quite different, as the errors are exponentially small. Wei $[79,74]$ first constructed single interior peak solution at a strictly local maximum point of $d(P, \partial \Omega)$. Gui and Wei [27] proved the following

Theorem 2.3. (See [27].) For any fixed positive integer k, there exists ϵ_{k} such that for $\epsilon<\epsilon_{k}$, problem (2.4) has a solution u_{ϵ} with k interior local maximum points $P_{j, \epsilon} \in \Omega$. Moreover, $\left(P_{1, \epsilon}, \ldots, P_{k, \epsilon}\right)$ approaches a limiting sphere-packing position, i.e.,

$$
\begin{equation*}
\varphi_{k}\left(P_{1, \epsilon}, \ldots, P_{k, \epsilon}\right) \rightarrow \max _{\left(P_{1}, \ldots, P_{k}\right) \in \Omega^{k}} \varphi_{k}\left(P_{1}, \ldots, P_{k}\right) \tag{2.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{k}\left(P_{1}, \ldots, P_{k}\right)=\min _{i, j, l, i \neq j}\left(\left|P_{i}-P_{j}\right|, 2 d\left(P_{l}, \partial \Omega\right)\right) \tag{2.14}
\end{equation*}
$$

The energy expansion for K-interior spikes is $\quad 1$

$$
2
$$

$$
\begin{aligned}
J_{\epsilon}\left[u_{\epsilon}\right]= & \epsilon^{N}\left[K I[w]-\gamma_{0} \sum_{j=1}^{K} e^{-\frac{2 d\left(P_{j, \epsilon}, \partial S_{i}\right.}{\epsilon}}\right. \\
& \left.-\gamma_{1} \sum_{i \neq j} w\left(\frac{\left|P_{i, \epsilon}-P_{j, \epsilon}\right|}{\epsilon}\right)\right] .
\end{aligned}
$$

$$
3
$$

Grossi, Pistoia and Wei [30] further showed that there is an one-to-one correspondence between the (sub-differential) critical points of φ_{k} and k-interior peaked solutions.

Concerning the existence of mixed-boundary-interior-spikes, the following theorem gives a complete answer.

Theorem 2.4. (See [28].) For any two fixed positive integers k, l, there exists $\epsilon_{k, l}$ such that for $\epsilon<\epsilon_{k, l}$, problem (2.4) has a solution u_{ϵ} with k interior local maximum points and l boundary maximum points.

Theorems 2.2, 2.3 and 2.4 imply that the number of solutions to (2.4) goes to infinity as $\epsilon \rightarrow 0$. Recently, the following lower bound on number of solutions is obtained:

THEOREM 2.5. (See [44].) There exists an $\epsilon_{0}>0$ such that for $0<\epsilon<\epsilon_{0}$ and for each integer K bounded by
$1 \leqslant K \leqslant \frac{\alpha_{N, \Omega, f}}{\epsilon^{N}(|\ln \epsilon|)^{N}}$
where $\alpha_{N, \Omega, p}$ is a constant depending on N, Ω and p only, there exists a solution with K interior peaks. (An explicit formula for $\alpha_{N, \Omega, p}$ is also given.) As a consequence, we obtain that for ϵ sufficiently small, there exists at least $\left[\frac{\alpha_{N, \Omega, p}}{\epsilon^{N}(|\ln \epsilon|)^{N}}\right]$ number of solutions. Moreover, $\begin{aligned} & 29 \\ & 30\end{aligned}$ for each $\beta \in(0, N)$ there exists solution with energy in the order of $\epsilon^{N-\beta}$.

Theorems 2.2, 2.3, 2.4 and 2.5 can all be proved by the powerful method—Localized ${ }_{33}$ Energy Method—which was first introduced in [27]. We shall discuss it next. 34
2.3. Localized energy method (LEM) ${ }_{37}^{37}$

We illustrate a general method in finding solutions with concentrating behavior-the so- 39 called Localized Energy Method, or LEM in short. The advantage of such method is that it can be applied to subcritical, critical or supercritical problems, as long as the limiting solution is well analyzed. This method was introduced in Gui and Wei [27] in dealing with spikes.

In the following, we show how to prove Theorem 2.5 by LEM. We need to introduce some notation first.

Theorem 2.5 actually holds for a slightly more general equation than (2.4), namely,

$$
\begin{cases}\epsilon^{2} \Delta u-u+f(u)=0 & \text { in } \Omega \tag{2.16}\\ u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

We will always assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is of class $C^{1+\sigma}$ for some $0<\sigma \leqslant 1$ and satisfies the following conditions (f1)-(f2):
(f1) $f(u) \equiv 0$ for $u \leqslant 0, f(0)=f^{\prime}(0)=0$.
(f2) The following equation

$$
\begin{cases}\Delta w-w+f(w)=0, & w>0 \text { in } \mathbb{R}^{N} \tag{2.17}\\ w(0)=\max _{y \in \mathbb{R}^{N}} w(y), & w \rightarrow 0 \text { at } \infty\end{cases}
$$

has a unique solution $w(y)$ and w is non-degenerate, i.e.,

$$
\begin{equation*}
\operatorname{Kernel}\left(\Delta-1+f^{\prime}(w)\right)=\operatorname{span}\left\{\frac{\partial w}{\partial y_{1}}, \ldots, \frac{\partial w}{\partial y_{N}}\right\} . \tag{2.18}
\end{equation*}
$$

One typical example of f is: $f(u)=u^{p}-a u^{q}$, where $a \geqslant 0,1<q<p<\left(\frac{N+2}{N-2}\right)_{+}$. For the uniqueness of w, see [39] and [40]. The proof of non-degeneracy is given in [58].

Without loss of generality, we may assume that $0 \in \Omega$. By the following rescaling:

$$
\begin{equation*}
x=\epsilon z, \quad z \in \Omega_{\epsilon}:=\{z| | \epsilon z \in \Omega\}, \tag{2.19}
\end{equation*}
$$

equation (2.16) becomes

$$
\left\{\begin{array}{l}
\Delta u-u+f(u)=0 \quad \text { in } \Omega_{\epsilon}, \tag{2.20}\\
u>0 \quad \text { in } \Omega_{\epsilon}, \quad \text { and } \quad \frac{\partial u}{\partial \nu}=0 \quad \text { in } \partial \Omega_{\epsilon} .
\end{array}\right.
$$

For $u \in H^{2}\left(\Omega_{\epsilon}\right)$, we put

$$
\begin{equation*}
S_{\epsilon}[u]=\Delta u-u+f(u) \tag{2.21}
\end{equation*}
$$

Then (2.20) is equivalent to

$$
\begin{equation*}
S_{\epsilon}[u]=0, \quad u \in H^{2}\left(\Omega_{\epsilon}\right), \quad u>0 \quad \text { in } \Omega_{\epsilon}, \quad \frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega_{\epsilon} . \tag{2.22}
\end{equation*}
$$

Associated with problem (2.20) is the following energy functional

$$
\begin{equation*}
\tilde{J}_{\epsilon}[u]=\frac{1}{2} \int_{\Omega_{\epsilon}}\left(|\nabla u|^{2}+u^{2}\right)-\int_{\Omega_{\epsilon}} F(u), \quad u \in H^{1}\left(\Omega_{\epsilon}\right) . \tag{2.23}
\end{equation*}
$$

We define two inner products:

$$
\begin{align*}
& \langle u, v\rangle_{\epsilon}=\int_{\Omega_{\epsilon}} u v, \quad \text { for } u, v \in L^{2}\left(\Omega_{\epsilon}\right) \tag{2.24}\\
& (u, v)_{\epsilon}=\int_{\Omega_{\epsilon}}(\nabla u \nabla v+u v), \quad \text { for } u, v \in H^{1}\left(\Omega_{\epsilon}\right) . \tag{2.25}
\end{align*}
$$

Let σ be the Hölder exponent of f^{\prime} and

$$
\begin{equation*}
M>\frac{6+2 \sigma}{\sigma} K \tag{2.26}
\end{equation*}
$$

be a fixed positive constant. Now we define a configuration space:

$$
\begin{equation*}
\Lambda:=\left\{\left(Q_{1}, \ldots, Q_{K}\right) \in \Omega^{K}\left|\varphi_{K}\left(Q_{1}, \ldots, Q_{K}\right) \geqslant M \epsilon\right| \ln \epsilon \mid\right\} \tag{2.27}
\end{equation*}
$$

where φ_{K} is defined at (2.14).
Let w be the unique solution of (2.17). By the well-known result of Gidas, Ni and Nirenberg [22], w is radially symmetric: $w(y)=w(|y|)$ and strictly decreasing: $w^{\prime}(r)<0$ for $r>0, r=|y|$. Moreover, we have the following asymptotic behavior of w :

$$
\begin{align*}
& w(r)=A_{N} r^{-\frac{N-1}{2}} e^{-r}\left(1+O\left(\frac{1}{r}\right)\right), \\
& w^{\prime}(r)=-A_{N} r^{-\frac{N-1}{2}} e^{-r}\left(1+O\left(\frac{1}{r}\right)\right) \tag{2.28}
\end{align*}
$$

for r large, where $A_{N}>0$ is a constant. Let $K(r)$ be the fundamental solution of $-\Delta+1$ centered at 0 . Then we have

$$
\begin{align*}
& w(r)=\left(A_{0}+O\left(\frac{1}{r}\right)\right) K(r) \\
& w^{\prime}(r)=\left(-A_{0}+O\left(\frac{1}{r}\right)\right) K(r), \quad \text { for } r \geqslant 1 \tag{2.29}
\end{align*}
$$

where A_{0} is a positive constant.
The idea of $L E M$ is to look for solutions of (2.16) of the following type:

$$
\begin{equation*}
u=\sum_{j=1}^{K} w\left(z-\frac{Q_{j}}{\epsilon}\right)+\phi \tag{2.30}
\end{equation*}
$$

where ϕ is solved first by Lyapunov-Schmidt reduction process, and (Q_{1}, \ldots, Q_{K}) are adjusted so as to achieve a solution. $L E M$ is a method of reducing the infinite-dimensional problem of finding a critical point of \tilde{J}_{ϵ} to a finite-dimensional problem of $\left(Q_{1}, \ldots, Q_{K}\right)$. In general, it consists of the following five steps:

STEP 1. Find out good approximate functions.
This step contains most of the important computations. The idea is to choose good approximate functions such that the error S_{ϵ} is small.

For $Q \in \Omega$, we define $w_{\epsilon, Q}$ to be the unique solution of

$$
\begin{equation*}
\Delta v-v+f\left(w\left(\cdot-\frac{Q}{\epsilon}\right)\right)=0 \quad \text { in } \Omega_{\epsilon}, \quad \frac{\partial v}{\partial v}=0 \quad \text { on } \partial \Omega_{\epsilon} . \tag{2.31}
\end{equation*}
$$

Let $\mathbf{Q}=\left(Q_{1}, \ldots, Q_{K}\right) \in \Lambda$. We then define the approximate solution as

$$
\begin{equation*}
w_{\epsilon, \mathbf{Q}}=\sum_{j=1}^{K} w_{\epsilon, Q_{j}} . \tag{2.32}
\end{equation*}
$$

We first analyze $w_{\epsilon, Q}$. To this end, set

$$
\varphi_{\epsilon, Q}(x)=w\left(\frac{|x-Q|}{\varepsilon}\right)-w_{\epsilon, Q}\left(\frac{x}{\epsilon}\right) .
$$

We state the following useful lemmas on the properties of $\varphi_{\epsilon, Q}$, whose proof can be found in [44].

Lemma 2.6. Assume that $\frac{M}{2} \epsilon|\ln \epsilon| \leqslant d(Q, \partial \Omega) \leqslant \delta$ where δ is sufficiently small. We have

$$
\begin{equation*}
\varphi_{\epsilon, Q}=-\left(A_{0}+o(1)\right) K\left(\frac{\left|x-Q^{*}\right|}{\epsilon}\right)+O\left(\epsilon^{\sqrt{2} M+N+1}\right) \tag{2.33}
\end{equation*}
$$

where $K(r)$ is the (radially symmetric) fundamental solution of $-\Delta+1$ in $\mathbb{R}^{N}, Q^{*}=$ $Q+2 d(Q, \partial \Omega) \nu_{\bar{Q}}, v_{\bar{Q}}$ denotes the unit outer normal at $\bar{Q} \in \partial \Omega$ and \bar{Q} is the unique point on $\partial \Omega$ such that $d(\bar{Q}, Q)=d(Q, \partial \Omega)$.

The next lemma analyze $w_{\epsilon, \mathbf{Q}}$ in Ω_{ϵ}. To this end, we divide Ω_{ϵ} into $K+1$-parts:
$\Omega_{\epsilon, j}=\left\{\left|z-\frac{Q_{j}}{\epsilon}\right| \leqslant \frac{1}{2 \epsilon} \varphi_{K}(\mathbf{Q})\right\}, \quad j=1, \ldots, K$,
$\Omega_{\epsilon, K+1}=\Omega_{\epsilon} \backslash \bigcup_{j=1}^{K} \Omega_{\epsilon, j}$.
Lemma 2.7. For $z \in \Omega_{\epsilon, j}, j=1, \ldots, K$, we have

$$
\begin{equation*}
w_{\epsilon, \mathbf{Q}}=w_{\epsilon, Q_{j}}+O\left(K \epsilon^{\frac{M}{2}}\right)=w\left(z-\frac{Q_{j}}{\epsilon}\right)+O\left(K \epsilon^{\frac{M}{2}}\right) \tag{2.35}
\end{equation*}
$$

For $z \in \Omega_{\epsilon, K+1}$, we have ,

$$
\begin{equation*}
w_{\epsilon, \mathbf{Q}}=O\left(K \epsilon^{\frac{M}{2}}\right) \tag{2.36}
\end{equation*}
$$

Proof. For $k \neq j$ and $z \in \Omega_{\epsilon, j}$, we have 6

$$
2
$$

PROOF For $k \neq j$ and $z \in \Omega_{\epsilon, j}$ we have
PROOF For $k \neq j$ and $z \in \Omega_{\epsilon, j}$ we have
$w_{\epsilon, Q_{k}}=w\left(z-\frac{Q_{k}}{\epsilon}\right)-\varphi_{\epsilon, Q_{k}}(\epsilon z)$ 8 9
$=O\left(e^{-\left|z-\frac{Q_{k}}{\epsilon}\right|}+e^{-\left|z-\frac{Q_{k}^{*}}{\epsilon}\right|}+\epsilon^{M+N+1}\right)=O\left(\epsilon^{\frac{M}{2}}\right)$
10
and so

$$
\sum_{k \neq j} w_{\epsilon, Q_{k}}=O\left(K \epsilon^{\frac{M}{2}}\right)
$$15

which proves (2.35). The proof of (2.36) is similar.
Next we state a useful lemma about the interactions of two w 's. ${ }_{2}^{20}$
LEMMA 2.8. For $\xlongequal{\left|Q_{1}-Q_{2}\right|}$ large, it holds 22
LEMMA 2.8. For $\frac{\left|Q_{1}-Q_{2}\right|}{\epsilon}$ large, it holds 23

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f\left(w\left(z-\frac{Q_{1}}{\epsilon}\right)\right) w\left(z-\frac{Q_{2}}{\epsilon}\right)=\left(\gamma_{0}+o(1)\right) w\left(\frac{\left|Q_{1}-Q_{2}\right|}{\epsilon}\right) \tag{2.37}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{0}=\int_{\mathbb{R}^{N}} f(w(y)) e^{-y_{1}} d y \tag{2.38}
\end{equation*}
$$

Remark. Note that $\gamma_{0}>0$. See Lemma 4.7 of [61]. 32
Proof. By (2.28), we have for $|\epsilon y| \ll\left|Q_{1}-Q_{2}\right|$, 34

$$
w\left(y+\frac{Q_{1}-Q_{2}}{\epsilon}\right)=\left(A_{N}+o(1)\right)\left(\frac{\epsilon}{\left|\epsilon y+Q_{1}-Q_{2}\right|}\right)^{\frac{N-1}{2}} e^{-\left|y+\frac{Q_{1}-Q_{2}}{\epsilon}\right|}
$$

$$
=w\left(\frac{\left|Q_{1}-Q_{2}\right|}{\epsilon}\right) e^{-\left\langle y, \frac{Q_{1}-Q_{2}}{\left|Q_{1}-Q_{2}\right|}\right\rangle+o(|y|)}
$$

Thus by Lebesgue's Dominated Convergence Theorem 42

$$
\int_{w N} f\left(w\left(z-\frac{Q_{1}}{r}\right)\right) w\left(z-\frac{Q_{2}}{r}\right)
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{N}} f(w(y)) w\left(y+\frac{Q_{1}-Q_{2}}{\epsilon}\right) \\
& =(1+o(1)) w\left(\frac{\left|Q_{1}-Q_{2}\right|}{\epsilon}\right) \int_{\mathbb{R}^{N}} f(w(y)) e^{-\left\langle y, \frac{Q_{1}-Q_{2}}{\left|Q_{1}-Q_{2}\right\rangle}\right\rangle} d y \\
& =\left(\gamma_{0}+o(1)\right) w\left(\frac{\left|Q_{1}-Q_{2}\right|}{\epsilon}\right)
\end{aligned}
$$

Let us define several quantities for later use:

$$
\begin{equation*}
B_{\epsilon}\left(Q_{j}\right)=-\int_{\Omega_{\epsilon}} f\left(w_{j}\right) \varphi_{\epsilon, Q_{j}}, B_{\epsilon}\left(Q_{i}, Q_{j}\right)=\int_{\Omega_{\epsilon}} f\left(w_{i}\right) w_{j} \tag{2.39}
\end{equation*}
$$

Then we have

$$
2
$$

(15

$$
\text { LEMMA 2.9. For } \mathbf{Q}=\left(Q_{1}, \ldots, Q_{K}\right) \in \Lambda \text {, it holds }
$$

$$
\begin{align*}
& B_{\epsilon}\left(Q_{j}\right)=\left(\gamma_{0}+o(1)\right) w\left(\frac{2 d\left(Q_{j}, \partial \Omega\right)}{\epsilon}\right)+o(w(M|\ln \epsilon|)) \tag{2.40}\\
& B_{\epsilon}\left(Q_{i}, Q_{j}\right)=\left(\gamma_{0}+o(1)\right) w\left(\frac{\left|Q_{i}-Q_{j}\right|}{\epsilon}\right)+o(w(M|\ln \epsilon|)) . \tag{2.41}
\end{align*}
$$

Proof. Note that

$$
A_{0} K\left(\frac{\left|x-Q^{*}\right|}{\epsilon}\right)=(1+o(1)) w\left(\frac{\left|x-Q^{*}\right|}{\epsilon}\right)
$$

and by Lemma 2.6

$$
\begin{aligned}
B_{\epsilon}\left(Q_{j}\right) & =(1+o(1)) \int_{\Omega_{\epsilon}} f\left(w_{j}\right) w\left(z-\frac{Q_{j}^{*}-Q_{j}}{\epsilon}\right)+O\left(\epsilon^{\sqrt{2} M+N+1}\right) \\
& =(\gamma+o(1)) w\left(\frac{\left|Q_{j}-Q_{j}^{*}\right|}{\epsilon}\right)+o(w(M|\ln \epsilon|)) \\
& =(\gamma+o(1)) w\left(\frac{2 d\left(Q_{j}, \partial \Omega\right)}{\epsilon}\right)+o(w(M|\ln \epsilon|))
\end{aligned}
$$

(2.40) follows from Lemma 2.6. To prove (2.41), we note that

$$
\begin{aligned}
B_{\epsilon}\left(Q_{i}, Q_{j}\right)= & \int_{\mathbb{R}^{N}} f(w) w\left(y-\frac{Q_{i}-Q_{j}}{\epsilon}\right) \\
& -\int_{\mathbb{R}^{N} \backslash \Omega_{\epsilon, Q_{i}}} f(w) w\left(y-\frac{Q_{i}-Q_{j}}{\epsilon}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(\gamma+o(1)) w\left(\frac{\left|Q_{i}-Q_{j}\right|}{\epsilon}\right)+O\left(e^{-\left(1+\frac{\sigma}{2}\right) \frac{d\left(Q_{i}, \partial \Omega\right)}{\epsilon}} e^{-\frac{d\left(Q_{j}, \partial \Omega\right)}{\epsilon}}\right) \\
& =(\gamma+o(1)) w\left(\frac{\left|Q_{i}-Q_{j}\right|}{\epsilon}\right)+o(w(M|\ln \epsilon|))
\end{aligned}
$$

$$
3
$$

We then have the following which provides the key estimates on the energy expansion $\quad 7$ and error estimates. 8 8
9

Lemma 2.10. For any $\mathbf{Q}=\left(Q_{1}, \ldots, Q_{K}\right) \in \Lambda$ and ϵ sufficiently small we have ${ }_{10}^{10}$

$$
\tilde{J}_{\epsilon}\left[\sum_{i=1}^{K} w_{\epsilon, Q_{j}}\right]=K I[w]-\frac{1}{2} \sum_{i=1}^{K} B_{\epsilon}\left(Q_{i}\right)
$$

$$
\begin{equation*}
-\frac{1}{2} \sum_{i, j=1, \ldots, K, i \neq j} B_{\epsilon}\left(Q_{i}, Q_{j}\right)+o(w(M|\ln \epsilon|)) \tag{2.42}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{\epsilon}\left[\sum_{j=1}^{K} w_{\epsilon, Q_{j}}\right]\right\|_{L^{q}\left(\Omega_{\epsilon}\right)} \leqslant C K^{\frac{q+1}{q}+\sigma} \epsilon^{\frac{M(1+\sigma)}{2}} \tag{2.43}
\end{equation*}
$$

for any $q>\frac{N}{2}$.

The proof of Lemma 2.10 is technical and tedious. We refer to [44] for the computations.

STEP 2. Obtain a priori estimates for a linear problem.

This is the fundamental step in reducing an infinite-dimensional problem to finitedimensional one. The key result we need here is the non-degeneracy assumption (f2).

Fix $\mathbf{Q} \in \Lambda$. We define the following functions

$$
\begin{align*}
Z_{i, j} & =(\Delta-1)\left[\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right], \quad \text { where } \chi_{i}(z)=\chi\left(\frac{2\left|\epsilon z-Q_{i}\right|}{(M-1) \epsilon|\ln \epsilon|}\right) \\
i & =1, \ldots, K, j=1, \ldots, N \tag{2.44}
\end{align*}
$$

where $\chi(t)$ is a smooth cut-off function such that $\chi(t)=1$ for $|t|<1$ and $\chi(t)=0$ for $|t|>\frac{M^{2}}{M^{2}-1}$. Note that the support of $Z_{i, j}$ belongs to $B_{\frac{M^{2}-1}{2 M}|\ln \epsilon|}\left(\frac{Q_{i}}{\epsilon}\right)$.

In this step, we consider the following linear problem: Given $h \in L^{2}\left(\Omega_{\epsilon}\right)$, find a function ϕ satisfying

$$
\left\{\begin{array}{l}
L_{\epsilon}[\phi]:=\Delta \phi-\phi+f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi=h+\sum_{k, l} c_{k, l} Z_{k, l} ; \tag{2.45}\\
\left\langle\phi, Z_{i, j}\right\rangle_{\epsilon}=0, \quad i=1, \ldots, K, j=1, \ldots, N, \quad \text { and } \\
\frac{\partial \phi}{\partial \nu}=0 \quad \text { on } \partial \Omega_{\epsilon},
\end{array}\right.
$$

\square
for some constants $c_{k, l}, k=1, \ldots, K, l=1, \ldots, N$.

To this purpose, we define two norms

$$
\begin{equation*}
\|\phi\|_{*}=\|\phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}, \quad\|f\|_{* *}=\|f\|_{L^{q}\left(\Omega_{\epsilon}\right)} \tag{2.46}
\end{equation*}
$$

where $q>\frac{N}{2}$ is a fixed number.
We have the following result:
Proposition 2.11. Let ϕ satisfy (2.45). Then for ϵ sufficiently small and $\mathbf{Q} \in \Lambda$, we have

$$
\begin{equation*}
\|\phi\|_{*} \leqslant C\|h\|_{* *} \tag{2.47}
\end{equation*}
$$

where C is a positive constant independent of ϵ, K and $\mathbf{Q} \in \Lambda$.
Proof. Arguing by contradiction, assume that

$$
\begin{equation*}
\|\phi\|_{*}=1 ; \quad\|h\|_{* *}=o(1) \tag{2.48}
\end{equation*}
$$

We multiply (2.45) by $\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)$ and integrate over Ω_{ϵ} to obtain

$$
\begin{align*}
& \sum_{k, l} c_{k, l}\left\langle Z_{k, l}, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon} \\
& \quad=-\left\langle h, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}+\left\langle\Delta \phi-\phi+f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon} \tag{2.49}
\end{align*}
$$

From the exponential decay of w one finds

$$
\left\langle h, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}=o(1)
$$

Observe that $\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)$ satisfies

$$
\begin{align*}
& \Delta\left(\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right)-\left(\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right)+f^{\prime}\left(w_{i}\right)\left(\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right) \\
& \quad=2 \nabla_{z} \frac{\partial w_{i}}{\partial z_{j}} \nabla_{z} \chi_{i}+\left(\Delta \chi_{i}\right) \frac{\partial w_{i}}{\partial z_{j}} \tag{2.50}
\end{align*}
$$

39

Integrating by parts and using Lemma 2.7, we deduce

$$
\left\langle\Delta \phi-\phi+f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}
$$

$$
\left.=l\left(f^{\prime}\left(w_{,} \mathbf{o}\right)-f^{\prime}\left(w_{j}\right)\right) \frac{\partial w_{i}}{} \gamma_{i}(z), \phi\right)+O\left(\epsilon^{\left.\frac{M-1}{2}\|\phi\|_{\omega}\right)}\right.
$$

$$
=\left\langle\left(f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right)-f^{\prime}\left(w_{i}\right)\right) \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z), \phi\right\rangle_{\epsilon}+O\left(\epsilon^{\frac{M-1}{2}}\|\phi\|_{*}\right)
$$

$$
=O\left(K^{\sigma} \epsilon^{\frac{M \sigma}{2}}\|\phi\|_{*}\right)=o\left(\|\phi\|_{*}\right)=o(1)
$$

where we have used the fact that $M>\frac{6+2 \sigma}{\sigma} N$ and that

$$
\left\|\left(f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right)-f^{\prime}\left(w_{i}\right)\right) \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}\right\|_{* *} \leqslant C\left\|\left|w_{\epsilon, \mathbf{Q}}-w_{i}\right|^{\sigma}\left|\frac{\partial w_{i}}{\partial z_{j}} \chi_{i}\right|\right\|_{*} \leqslant K^{\sigma} \epsilon^{\frac{M \sigma}{2}}
$$

It is easy to see that

$$
\begin{equation*}
\left\langle Z_{i, j}, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}=-\int_{\mathbb{R}^{N}} f^{\prime}(w)\left(\frac{\partial w}{\partial y_{j}}\right)^{2} d y+o(1) \tag{2.51}
\end{equation*}
$$

On the other hand, for $k \neq i$ we have

$$
\begin{equation*}
\left\langle Z_{k, l}, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}=0 \tag{2.52}
\end{equation*}
$$

and for $k=i$ and $l \neq j$, we have
It is easy to see that 16

$$
\begin{equation*}
\left\langle Z_{i, l}, \frac{\partial w_{i}}{\partial z_{j}} \chi_{i}(z)\right\rangle_{\epsilon}=O\left(\epsilon^{M}\right) \tag{2.53}
\end{equation*}
$$

The left hand side of (2.49) becomes

$$
20
$$

$$
c_{i, j}+\sum_{l \neq j} O\left(\epsilon^{M} c_{i, l}\right)=o(1)
$$33

and hence

$$
\begin{equation*}
c_{i, j}=o(1), \quad i=1, \ldots, K, j=1, \ldots, N \tag{2.54}
\end{equation*}
$$

$\begin{array}{ll}\text { To obtain a contradiction, we define the following cut-off functions: } & 39 \\ 40\end{array}$

$$
\begin{equation*}
\phi_{i}=\phi \chi_{i}^{\prime}, \quad \text { where } \chi_{i}^{\prime}=\chi\left(\frac{2\left|\epsilon z-Q_{i}\right|}{\left(M-M^{-1}\right) \epsilon|\ln \epsilon|}\right), i=1, \ldots, K \tag{2.55}
\end{equation*}
$$

Note that $\chi_{i}^{\prime}=1$ for $z \in B_{\frac{M^{2}-1}{2 M}|\ln \epsilon|}\left(\frac{Q_{i}}{\epsilon}\right)$ and the support of ϕ belongs to $B_{\frac{M}{2}|\ln \epsilon|}\left(\frac{Q_{i}}{\epsilon}\right)$. $\quad 44$
(

Then the conditions $\left\langle\phi, Z_{i, j}\right\rangle_{\epsilon}=0$ is equivalent to

$$
\begin{equation*}
\left\langle\phi_{i}, Z_{i, j}\right\rangle_{\epsilon}=0 \tag{2.56}
\end{equation*}
$$

The equation for ϕ_{i} becomes

$$
\begin{equation*}
\Delta \phi_{i}-\phi_{i}+f^{\prime}\left(w_{\epsilon, \mathbf{Q})}\right) \phi_{i}=\sum_{j} c_{i, j} Z_{i, j}+h \chi_{i}^{\prime}+2 \nabla \phi \nabla \chi_{i}^{\prime}+\left(\Delta \chi_{i}^{\prime}\right) \phi \tag{2.57}
\end{equation*}
$$

Lemma 2.7 yields

$$
\begin{equation*}
f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi_{i}=\left(f\left(w_{i}\right)+o\left(\epsilon^{M / 2-N}\right)\right) \phi_{i} \tag{2.58}
\end{equation*}
$$

Using (2.56) and (2.58), a contradiction argument similar to that of Proposition 3.2 of [27] gives

$$
\begin{equation*}
\left\|\phi_{i}\right\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q} \leqslant C\left\|h \chi_{i}^{\prime}\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q}+C\left\|2 \nabla \phi \nabla \chi_{i}^{\prime}+\left(\Delta \chi_{i}^{\prime}\right) \phi\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q} . \tag{2.59}
\end{equation*}
$$

Next, we decompose

$$
\begin{equation*}
\phi=\sum_{i=1}^{K} \phi_{i}+\Phi \tag{2.60}
\end{equation*}
$$

where $\Phi=\phi\left(1-\sum_{i=1}^{K} \chi_{i}^{\prime}\right)$. Then the equation for Φ becomes

$$
\begin{align*}
& \Delta \Phi-\Phi+f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \Phi \\
& \quad=h\left(1-\sum_{i=1}^{K} \chi_{i}^{\prime}\right)-2 \sum_{i=1}^{K} \nabla \phi \nabla \chi_{i}^{\prime}-\sum_{i=1}^{K}\left(\Delta \chi_{i}^{\prime}\right) \phi \tag{2.61}
\end{align*}
$$

By Lemma 2.7, $f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \Phi=o(1) \Phi$. Standard regularity theorem gives

$$
\begin{align*}
\|\Phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q} \leqslant & C\left\|h\left(1-\sum_{i=1}^{K} \chi_{i}^{\prime}\right)\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q} \\
& +C\left\|2 \sum_{i=1}^{K} \nabla \phi \nabla \chi_{i}^{\prime}+\sum_{i=1}^{K}\left(\Delta \chi_{i}^{\prime}\right) \phi\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q} . \tag{2.62}
\end{align*}
$$

(Observe that the constant C in the L^{p}-regularity is independent of $\epsilon<1$. The case of Dirichlet boundary condition has been proved in Lemma 6.4 of [61]. The case of Neumann boundary condition can be proved similarly.)

Combining (2.60), (2.59) and (2.62), we obtain

$$
\|\phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q} \leqslant C\left\|\sum_{i=1}^{K} \phi_{i}\right\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q}+C\|\Phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q}
$$

$$
\sum^{K}
$$

$$
\leqslant C \sum_{i=1}^{\Lambda}\left\|\phi_{i}\right\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q}+C\|\Phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q}
$$

$$
/ K
$$

$$
\leqslant C\left(\sum^{K}\left\|h \chi_{i}^{\prime}\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q}+\left\|h\left(1-\sum^{K} \chi_{i}^{\prime}\right)\right\|^{q}\right)
$$

$$
\square-12
$$

$$
K
$$

$$
+C \sum_{i=1}^{\Lambda}\left\|2 \nabla \phi \nabla \chi_{i}^{\prime}+\left(\Delta \chi_{i}^{\prime}\right) \phi\right\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q}
$$

$$
\leqslant C\|h\|_{L^{q}\left(\Omega_{\epsilon}\right)}^{q}+O\left(|\ln \epsilon|^{-1}\right)\|\phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}^{q}
$$

$$
\begin{array}{ll}
\text { since } & 18 \\
10
\end{array}
$$

$$
\begin{equation*}
\sum_{i=1}^{K}\left(\chi_{i}^{\prime}\right)^{q}+\left(1-\sum_{i=1}^{K} \chi_{i}^{\prime}\right)^{q} \leqslant 2, \quad\left|\nabla \chi^{\prime}\right|+\left|\Delta \chi^{\prime}\right| \leqslant C(|\ln \epsilon|)^{-1} \tag{2.63}
\end{equation*}
$$

This gives ${ }^{23}$
This gives 24

$$
\begin{equation*}
\|\phi\|_{W^{2, q}\left(\Omega_{\epsilon}\right)}=o(1) \tag{2.64}
\end{equation*}
$$

A contradiction to (2.48).
From Proposition 2.11, we derive the following existence result: $\quad 29$
PROPOSITION 2.12. There exists $\epsilon_{0}>0$ such that for any $0<\epsilon<\epsilon_{0}$ the follow- 31 ing property holds true. Given $h \in W^{2, q}\left(\Omega_{\epsilon}\right)$, there exist s a unique pair $(\phi, \mathbf{c})=$ $\left(\phi,\left\{c_{i, j}\right\}_{i=1, \ldots, K, j=1, \ldots, N}\right)$ such that

$$
\begin{equation*}
L_{\epsilon}[\phi]=h+\sum_{i, j} c_{i, j} Z_{i, j} \tag{2.65}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\phi, Z_{i, j}\right\rangle_{\epsilon}=0, \quad i=1, \ldots, K, j=1, \ldots, N, \quad \frac{\partial \phi}{\partial v}=0 \quad \text { on } \partial \Omega_{\epsilon} . \tag{2.66}
\end{equation*}
$$

Moreover, we have 41

$$
\begin{equation*}
\|\phi\|_{*} \leqslant C\|h\|_{* *} \tag{2.67}
\end{equation*}
$$

for some positive constant C.

Proof. The bound in (2.67) follows from Proposition 2.11 and (2.54). Let us now prove the existence part. Set

$$
\mathcal{H}=\left\{u \in H^{1}\left(\Omega_{\epsilon}\right) \mid\left(u,(\Delta-1)^{-1} Z_{i, j}\right)_{\epsilon}=0\right\}
$$

where we define the inner product on $H^{1}\left(\Omega_{\epsilon}\right)$ as

$$
(u, v)_{\epsilon}=\int_{\Omega_{\epsilon}}(\nabla u \nabla v+u v) .
$$

Note that, integrating by parts, one has

$$
\psi \in \mathcal{H} \quad \text { if and only if } \quad\left\langle\psi, Z_{i, j}\right\rangle_{\epsilon}=0, \quad i=1, \ldots, K, j=1, \ldots, N .
$$

$$
\int_{\Omega_{\epsilon}}(\nabla \phi \nabla \psi+\phi \psi)-\left\langle f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi, \psi\right\rangle_{\epsilon}=\langle h, \psi\rangle_{\epsilon}, \quad \forall \psi \in \mathcal{H} .
$$

$$
\begin{equation*}
\phi+\mathcal{S}(\phi)=\bar{h} \quad \text { in } \mathcal{H}, \tag{2.68}
\end{equation*}
$$

where \bar{h} is defined by duality and $\mathcal{S}: \mathcal{H} \rightarrow \mathcal{H}$ is a linear compact operator.
Using Fredholm's alternative, showing that equation (2.68) has a unique solution for each \bar{h}, is equivalent to showing that the equation has a unique solution for $\bar{h}=0$, which in turn follows from Proposition 2.11 and our proof is complete.

In the following, if ϕ is the unique solution given in Proposition 2.12, we set

$$
\begin{equation*}
\phi=\mathcal{A}_{\epsilon}(h) . \tag{2.69}
\end{equation*}
$$

Note that (2.67) implies

$$
\begin{equation*}
\left\|\mathcal{A}_{\epsilon}(h)\right\|_{*} \leqslant C\|h\|_{* *} . \tag{2.70}
\end{equation*}
$$

STEP 3. A non-linear Lyapunov-Schmidt reduction.
For ϵ small and for $\mathbf{Q} \in \Lambda$, we are going to find a function $\phi_{\epsilon, \mathbf{Q}}$ such that for some constants $c_{i, j}, j=1, \ldots, N$, the following equation holds true

$$
\left\{\begin{array}{l}
\Delta\left(w_{\epsilon, \mathbf{Q}}+\phi\right)-\left(w_{\epsilon, \mathbf{Q}}+\phi\right)+f\left(w_{\epsilon, \mathbf{Q}}+\phi\right)=\sum_{k, l} c_{k, l} Z_{k, l} \quad \text { in } \Omega_{\epsilon}, \tag{2.71}\\
\left\langle\phi, Z_{i, j}\right\rangle_{\epsilon}=0, \quad j=1, \ldots, N, \quad \frac{\partial \phi}{\partial \nu}=0 \quad \text { on } \partial \Omega_{\epsilon} .
\end{array}\right.
$$

The first equation in (2.71) can be written as

$$
\Delta \phi-\phi+f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi=\left(-S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]\right)+N_{\epsilon}[\phi]+\sum c_{i, j} Z_{i, j}
$$

where 6

$$
\begin{equation*}
N_{\epsilon}[\phi]=-\left[f\left(w_{\epsilon, \mathbf{Q}}+\phi\right)-f\left(w_{\epsilon, \mathbf{Q}}\right)-f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi\right] . \tag{2.72}
\end{equation*}
$$

Lemma 2.13. For $\mathbf{Q} \in \Lambda$ and ϵ sufficiently small, we have for $\|\phi\|_{*}+\left\|\phi_{1}\right\|_{*}+\left\|\phi_{2}\right\|_{*} \leqslant 1, \quad 10$

$$
\begin{equation*}
\left\|N_{\epsilon}[\phi]\right\|_{* *} \leqslant C\|\phi\|_{*}^{1+\sigma} \tag{2.73}
\end{equation*}
$$

$$
\begin{equation*}
\left\|N_{\epsilon}\left[\phi_{1}\right]-N_{\epsilon}\left[\phi_{2}\right]\right\|_{* *} \leqslant C\left(\left\|\phi_{1}\right\|_{*}^{\sigma}+\left\|\phi_{2}\right\|_{*}^{\sigma}\right)\left\|\phi_{1}-\phi_{2}\right\|_{*} \tag{2.74}
\end{equation*}
$$

Proof. Inequality (2.73) follows from the mean-value theorem. In fact, for all $z \in \Omega_{\epsilon} \quad{ }_{16}$ there holds

$$
f\left(w_{\epsilon, \mathbf{Q}}+\phi\right)-f\left(w_{\epsilon, \mathbf{Q}}\right)=f^{\prime}\left(w_{\epsilon, \mathbf{Q}}+\theta \phi\right) \phi
$$Since f^{\prime} is Hölder continuous with exponent σ, we deduce20

$\left|f\left(w_{\epsilon, \mathbf{Q}}+\phi\right)-f\left(w_{\epsilon, \mathbf{Q}}\right)-f^{\prime}\left(w_{\epsilon, \mathbf{Q}}\right) \phi\right| \leqslant C|\phi|^{1+\sigma}$, 2223
which implies (2.73). The proof of (2.74) goes along the same way.
Proposition 2.14. For $\mathbf{Q} \in \Lambda$ and \in sufficienty small, there exists 25

Proposition 2.14. For $\mathbf{Q} \in \Lambda$ and ϵ sufficiently small, there exists a unique $\phi=\phi_{\epsilon, \mathbf{Q}} \quad 27$ such that (2.71) holds. Moreover, $\mathbf{Q} \mapsto \phi_{\epsilon, \mathbf{Q}}$ is of class C^{1} as a map into $W^{2, q}\left(\Omega_{\epsilon}\right) \cap \mathcal{H}, \quad{ }_{28}$ and we have

$$
\begin{equation*}
\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*} \leqslant r K^{\frac{q+1}{q}+\sigma} \epsilon^{\frac{M(1+\sigma)}{2}} \tag{2.75}
\end{equation*}
$$

for some constant $r>0$.

34Proof. Let \mathcal{A}_{ϵ} be as defined in (2.69). Then (2.71) can be written as

$$
\begin{equation*}
\phi=\mathcal{A}_{\epsilon}\left[\left(-S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]\right)+N_{\epsilon}[\phi]\right] . \tag{2.76}
\end{equation*}
$$

Let r be a positive (large) number, and set 39
$\mathcal{F}_{r}=\left\{\phi \in \mathcal{H} \cap W^{2, q}\left(\Omega_{\epsilon}\right):\|\phi\|_{*}<r K^{\frac{q+1}{q}+\sigma} \epsilon^{\frac{M(1+\sigma)}{2}}\right\}$. 40

Define now the map $\mathcal{G}_{\epsilon}: \mathcal{F}_{r} \rightarrow \mathcal{H} \cap W^{2, q}\left(\Omega_{\epsilon}\right)$ as ${ }_{43}^{43}$

$$
\mathcal{G}_{\epsilon}[\phi]=\mathcal{A}_{\epsilon}\left[\left(-S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]\right)+N_{\epsilon}[\phi]\right]
$$

Solving (2.71) is equivalent to finding a fixed point for \mathcal{G}_{ϵ}. By Lemmas 2.10 and 2.13, for ϵ sufficiently small and r large we have

$$
\begin{aligned}
& \left\|\mathcal{G}_{\epsilon}[\phi]\right\|_{*} \leqslant C\left\|S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}]}\right]\right\|_{* *}+C\left\|N_{\epsilon}[\phi]\right\|_{* *}<r K^{\frac{q+1}{q}+\sigma} \epsilon^{\frac{M(1+\sigma)}{2}}, \\
& \left\|\mathcal{G}_{\epsilon}\left[\phi_{1}\right]-\mathcal{B}_{\epsilon}\left[\phi_{2}\right]\right\|_{*} \leqslant C\left\|N_{\epsilon}\left[\phi_{1}\right]-N_{\epsilon}\left[\phi_{2}\right]\right\|_{*}<\frac{1}{2}\left\|\phi_{1}-\phi_{2}\right\|_{*},
\end{aligned}
$$

which shows that \mathcal{G}_{ϵ} is a contraction mapping on \mathcal{F}_{r}. Hence there exists a unique $\phi=$ $\phi_{\epsilon, \mathbf{Q}} \in \mathcal{F}_{r}$ such that (2.71) holds.

Now we come to the differentiability of $\phi_{\epsilon, \mathbf{Q}}$. Consider the following map $H_{\epsilon}: \Lambda \times \mathcal{H} \cap$ $W^{2, q}\left(\Omega_{\epsilon}\right) \times R^{N K} \rightarrow \mathcal{H} \cap W^{2, q}\left(\Omega_{\epsilon}\right) \times R^{N K}$ of class C^{1}

$$
H_{\epsilon}(\mathbf{Q}, \phi, \mathbf{c})=\left(\begin{array}{c}
(\Delta-1)^{-1}\left(S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}+\phi\right]\right)-\sum_{i, j} c_{i, j}(\Delta-1)^{-1} Z_{i, j} \tag{2.77}\\
\left(\phi,(\Delta-1)^{-1} Z_{1,1}\right)_{\epsilon} \\
\vdots \\
\left(\phi,(\Delta-1)^{-1} Z_{K, N}\right)_{\epsilon}
\end{array}\right)
$$

Equation (2.71) is equivalent to $H_{\epsilon}(\mathbf{Q}, \phi, \mathbf{c})=0$. We know that, given $\mathbf{Q} \in \Lambda$, there is a unique local solution $\phi_{\epsilon, \mathbf{Q}}, c_{\epsilon, \mathbf{Q}}$ obtained with the above procedure. We prove that the linear operator

$$
\left.\left.\frac{\partial H_{\epsilon}(\mathbf{Q}, \phi, \mathbf{c})}{\partial(\phi, \mathbf{c})}\right|_{\left(\mathbf{Q}, \phi_{\epsilon}, \mathbf{Q}, \mathbf{c}_{\epsilon}, \mathbf{Q}\right.}\right): \mathcal{H} \cap W^{2, q}\left(\Omega_{\epsilon}\right) \times R^{N K} \rightarrow \mathcal{H} \cap W^{2, q}\left(\Omega_{\epsilon}\right) \times R^{N K}
$$

is invertible for ϵ small. Then the C^{1}-regularity of $\mathbf{Q} \mapsto\left(\phi_{\epsilon, \mathbf{Q}}, c_{\epsilon, \mathbf{Q}}\right)$ follows from the Implicit Function Theorem. Indeed we have

$$
\left.\frac{\partial H_{\epsilon}(\mathbf{Q}, \phi, \mathbf{c})}{\partial(\phi, \mathbf{c})}\right|_{\left(\mathbf{Q}, \phi_{\epsilon, \mathbf{Q},}, \mathbf{c}_{\epsilon, \mathbf{Q}}\right)}[\psi, \mathbf{d}]
$$

$$
=\left(\begin{array}{c}
(\Delta-1)^{-1}\left(S^{\prime}\left[w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right](\psi)\right)-\sum_{i, j} d_{i j}(\Delta-1)^{-1} Z_{i, j} \\
\left(\psi,(\Delta-1)^{-1} Z_{1,1}\right)_{\epsilon} \\
\vdots \\
\left(\psi,(\Delta-1)^{-1} Z_{K, N}\right)_{\epsilon}
\end{array}\right)
$$

Since $\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*}$ is small, the same proof as in that of Proposition 2.11 shows that

$$
\left.\frac{\partial H_{\epsilon}(\mathbf{Q}, \phi, \mathbf{c})}{\partial(\phi, \mathbf{c})}\right|_{\left(\mathbf{Q}, \phi_{\epsilon}, \mathbf{Q}, \mathbf{c}_{\epsilon, \mathbf{Q}}\right)}
$$

is invertible for ϵ small.
This concludes the proof of Proposition 2.14.
In some cases (e.g., critical or nearly critical exponent problems), we need to obtain further differentiability of $\phi_{\epsilon, \mathbf{Q}}$ (e.g., C^{2} in $\left.\mathbf{Q}\right)$. This will be achieved by further reduction. See [13,65] and [66] for such arguments.

Step 4. A reduction lemma.

Fix $\mathbf{Q} \in \Lambda$. Let $\phi_{\epsilon, \mathbf{Q}}$ be the solution given by Proposition 2.14. We define a new functional

$$
\begin{equation*}
\mathcal{M}_{\epsilon}(\mathbf{Q})=\tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right]: \Lambda \rightarrow R . \tag{2.78}
\end{equation*}
$$

Then we have the following reduction lemma
Lemma 2.15. If \mathbf{Q}_{ϵ} is critical point of $\mathcal{M}_{\epsilon}(\mathbf{Q})$ in Λ, then $u_{\epsilon}=w_{\epsilon, \mathbf{Q}_{\epsilon}}+\phi_{\epsilon, \mathbf{Q}_{\epsilon}}$ is a critical point of $\tilde{J}_{\epsilon}[u]$.
point $\tilde{J}_{\epsilon}[u]$. 19
Proof. By Proposition 2.14, there exists ϵ_{0} such that for $0<\epsilon<\epsilon_{0}$ we have a C^{1} map which, to any $\mathbf{Q} \in \Lambda$, associates $\phi_{\epsilon, \mathbf{Q}}$ such that

$$
S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right]=\sum_{k=1, \ldots, K ; l=1, \ldots, N} c_{k l} Z_{k, l}
$$

$$
\begin{equation*}
\left\langle\phi_{\epsilon, \mathbf{Q}}, Z_{i, j}\right\rangle_{\epsilon}=0 \tag{2.79}
\end{equation*}
$$

$$
\text { for some constants } c_{k l} \in R^{K N}
$$

Let $\mathbf{Q}^{\epsilon} \in \Lambda$ be a critical point of \mathcal{M}_{ϵ}. Set $u_{\epsilon}=w_{\epsilon, \mathbf{Q}^{\epsilon}}+\phi_{\epsilon, \mathbf{Q}^{\epsilon}}$. Then we have $\quad{ }_{30}^{29}$

$$
D_{Q_{i, j}} \mid Q_{i}=Q_{i}^{\epsilon} \mathcal{M}_{\epsilon}\left(\mathbf{Q}^{\epsilon}\right)=0, \quad i=1, \ldots, K, j=1, \ldots, N
$$

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} & {\left[\left.\nabla u_{\epsilon} \nabla \frac{\partial\left(w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right)}{\partial Q_{i, j}}\right|_{Q_{i}=Q_{i}^{\epsilon}}+\left.u_{\epsilon} \frac{\partial\left(w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right)}{\partial Q_{i, j}}\right|_{Q_{i}=Q_{i}^{\epsilon}}\right.} \\
& \left.-\left.f\left(u_{\epsilon}\right) \frac{\partial\left(w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right)}{\partial Q_{i, j}}\right|_{Q_{i}=Q_{i}^{\epsilon}}\right]=0
\end{aligned}
$$

which gives
42

$$
\begin{equation*}
\left.\sum_{k=1, \ldots, K ; l=1, \ldots, N} c_{k l} \int_{\Omega_{\epsilon}} Z_{k, l} \frac{\partial\left(w_{\epsilon, \mathbf{Q}}+\phi_{\epsilon, \mathbf{Q}}\right)}{\partial Q_{i, j}}\right|_{Q_{i}=Q_{i}^{\epsilon}}=0 . \tag{2.80}
\end{equation*}
$$

We claim that (2.80) is a diagonally dominant system. In fact, since $\left\langle\phi_{\epsilon, \mathbf{Q}}, Z_{i, j}\right\rangle_{\epsilon}=0$, we have that

$$
\int_{\Omega_{\epsilon}} Z_{k, l} \frac{\partial \phi_{\epsilon, \mathbf{Q}^{\epsilon}}}{\partial Q_{i, j}^{\epsilon}}=-\int_{\Omega_{\epsilon}} \phi_{\epsilon, \mathbf{Q}^{\epsilon}} \frac{\partial Z_{k, l}}{\partial Q_{i, j}^{\epsilon}}=0 \quad \text { if } k \neq i .
$$

If $k=i$, we have

$$
\begin{aligned}
\int_{\Omega_{\epsilon}} Z_{k, l} \frac{\partial \phi_{\epsilon, \mathbf{Q}^{\epsilon}}}{\partial Q_{k, j}^{\epsilon}} & =-\int_{\Omega_{\epsilon}} \frac{\partial Z_{k, l}}{\partial Q_{k, j}^{\epsilon}} \phi_{\epsilon, \mathbf{Q}^{\epsilon}}=\left\|\frac{\partial Z_{k, l}}{\partial Q_{k, j}^{\epsilon}}\right\|_{* *}\left\|\phi_{\epsilon, \mathbf{Q}^{\epsilon}}\right\|_{* *} \\
& =O\left(K^{\frac{q+1}{q}+\sigma} \epsilon^{\frac{M(1+\sigma)}{2}-1}\right)=O\left(\epsilon^{\frac{M(1+\sigma)}{2}-\left(\frac{q+1}{q}+\sigma\right) N-1}\right) \\
& =O\left(\epsilon^{\frac{M}{2}}\right) .
\end{aligned}
$$

For $k \neq i$, we have

$$
\int_{\Omega_{\epsilon}} Z_{k, l} \frac{\partial w_{\epsilon, Q_{i}^{\epsilon}}}{\partial Q_{i, j}^{\epsilon}}=\int_{\Omega_{\epsilon} \cap B_{\frac{M}{2}|\ln \epsilon|}\left(\frac{Q_{k}^{\epsilon}}{\epsilon}\right)} Z_{k, l} \frac{\partial w_{\epsilon, Q_{i}^{\epsilon}}}{\partial Q_{i, j}^{\epsilon}}=O\left(\epsilon^{M}\right)
$$

For $k=i$, we have

$$
\int_{\Omega_{\epsilon}} Z_{k, l} \frac{\partial w_{\epsilon, Q_{k}^{\epsilon}}}{\partial Q_{k, j}^{\epsilon}}=\int_{\Omega_{\epsilon} \cap B_{\frac{M}{2}|\ln \epsilon|}\left(\frac{Q_{k}^{\epsilon}}{\epsilon}\right)} Z_{k, l} \frac{\partial w_{\epsilon, Q_{k}^{\epsilon}}}{\partial Q_{k, j}^{\epsilon}}
$$

$$
=-\epsilon^{-1} \delta_{l j} \int_{\mathbb{R}^{N}} f^{\prime}(w)\left(\frac{\partial w}{\partial y_{j}}\right)^{2}+O(1)
$$

For each (k, l), the off-diagonal term gives ${ }_{30}$

$$
O\left(\epsilon^{\frac{M}{2}}\right)+\sum_{k \neq i} \epsilon^{M}+\sum_{k=i, l \neq j} O(\epsilon)=O\left(\epsilon^{\frac{M}{2}}+K \epsilon^{M}+\epsilon\right)=o(1)
$$

by our choice of $M>\frac{6+2 \sigma}{\sigma} N$. 36
Thus equation (2.80) becomes a system of homogeneous equations for $c_{k l}$ and the matrix 37
of the system is non-singular. So $c_{k l} \equiv 0, k=1, \ldots, K, l=1, \ldots, N$. 38
Hence $u_{\epsilon}=\sum_{i=1}^{K} w_{\epsilon, Q_{i}^{\epsilon}}+\phi_{\epsilon, Q_{1}^{\epsilon}, \ldots, Q_{K}^{\epsilon}}$ is a solution of (2.20). 39

STEP 5. Using variational arguments to find critical points for the finite-dimensional re- duced problem.

By Lemma 2.15, we just need to find a critical point for the reduced energy functional $\mathcal{M}_{\epsilon}(\mathbf{Q})$. Depending on the asymptotic behavior of the reduced energy functional,
one can use either local minimization, or local maximization [29], or saddle point techniques [66]. Here there is no compactness problem since the reduced problem is already finite-dimensional.

We first obtain an asymptotic formula for $\mathcal{M}_{\epsilon}(\mathbf{Q})$. In fact for any $\mathbf{Q} \in \Lambda$, we have

$$
\begin{aligned}
\mathcal{M}_{\epsilon}(\mathbf{Q})= & \tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]+\int_{\Omega_{\epsilon}}\left(\nabla w_{\epsilon, \mathbf{Q}} \nabla \phi_{\epsilon, \mathbf{Q}}+w_{\epsilon, \mathbf{Q}} \phi_{\epsilon, \mathbf{Q}}\right) \\
& -\int_{\Omega_{\epsilon}} f\left(w_{\epsilon, \mathbf{Q}}\right) \phi_{\epsilon, \mathbf{Q}}+O\left(\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*}^{2}\right) \\
= & \tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]+\int_{\Omega_{\epsilon}}\left(-S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]\right) \phi_{\epsilon, \mathbf{Q}}+O\left(\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*}^{2}\right) \\
= & \tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]+O\left(\left\|S_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]\right\|_{* *}\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*}\right)+O\left(\left\|\phi_{\epsilon, \mathbf{Q}}\right\|_{*}^{2}\right) \\
= & \tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]+O\left(K^{2+\frac{2}{q}+2 \sigma}{ }_{\epsilon} M(1+\sigma){ }_{7}\right)=\tilde{J}_{\epsilon}\left[w_{\epsilon, \mathbf{Q}}\right]+O(w(M|\ln \in|))
\end{aligned}
$$

by Lemma 2.10, Proposition 2.14 and the choice of M at (2.26).
By Lemma 2.10, we obtain

$$
\begin{align*}
\mathcal{M}_{\epsilon}(\mathbf{Q})= & K I[w]-\frac{1}{2}\left(\gamma_{0}+o(1)\right) \sum_{i=1}^{K} w\left(\frac{2 d\left(Q_{i}, \partial \Omega\right)}{\epsilon}\right) \\
& -\frac{1}{2}\left(\gamma_{0}+o(1)\right) \sum_{i \neq j} w\left(\frac{\left|Q_{i}-Q_{j}\right|}{\epsilon}\right)+o(w(M|\ln \epsilon|)) . \tag{2.81}
\end{align*}
$$

We shall prove

Proposition 2.16. For ϵ small, the following maximization problem

$$
\begin{equation*}
\max \left\{\mathcal{M}_{\epsilon}(\mathbf{Q}): \mathbf{Q} \in \Lambda\right\} \tag{2.82}
\end{equation*}
$$

has a solution $\mathbf{Q}^{\epsilon} \in \Lambda^{\circ}$-the interior of Λ.
Proof. First, we obtain a lower bound for \mathcal{M}_{ϵ} : Recall that $K_{\Omega}(r)$ is the maximum number of non-overlapping balls with equal radius r packed in Ω. Now we choose K such that

$$
\begin{equation*}
1 \leqslant K \leqslant K_{\Omega}\left(\frac{M+2 N}{2} \epsilon|\ln \epsilon|\right) . \tag{2.83}
\end{equation*}
$$

Let $\mathbf{Q}^{0}=\left(Q_{1}^{0}, \ldots, Q_{K}^{0}\right)$ be the centers of arbitrary K balls among those $K_{\Omega}\left(\frac{M+2 N}{2} \times\right.$ $\epsilon|\ln \epsilon|$) balls. Certainly $\mathbf{Q}^{0} \in \Lambda$. Then we have

$$
w\left(\frac{2 d\left(Q_{i}^{0}, \partial \Omega\right)}{\epsilon}\right) \leqslant e^{-\frac{2 d\left(Q_{i}^{0}, \partial \Omega\right)}{\epsilon}} \leqslant \epsilon^{M+2 N}, \quad w\left(\frac{\left|Q_{i}^{0}-Q_{j}^{0}\right|}{\epsilon}\right) \leqslant \epsilon^{M+2 N}
$$

\qquad

$$
\begin{align*}
& \text { and hence } \\
& \mathcal{M}_{\epsilon}\left(\mathbf{Q}^{\epsilon}\right) \geqslant \mathcal{M}_{\epsilon}\left(\mathbf{Q}^{0}\right) \geqslant K I[w]-\frac{K}{2}\left(\gamma_{0}+o(1)\right) \epsilon^{M+2 N} \\
& -\frac{K^{2}}{2}\left(\gamma_{0}+o(1)\right) \epsilon^{M+2 N}+o(w(M|\ln \epsilon|)) \\
& \geqslant K I[w]-K^{2}\left(\gamma_{0}+o(1)\right) \epsilon^{M+2 N}+o(w(M|\ln \epsilon|)) \text {. } \tag{2.84}
\end{align*}
$$

On the other hand, if $\mathbf{Q}^{\epsilon} \in \partial \Lambda$, then either there exists (i, j) such that $\left|Q_{i}^{\epsilon}-Q_{j}^{\epsilon}\right|={ }^{10}$
$M \epsilon|\ln \epsilon|$, or there exists a k such that $d\left(Q_{k}^{\epsilon}, \partial \Omega\right)=\frac{M}{2} \epsilon|\ln \epsilon|$. In both cases we have

$$
\begin{equation*}
\mathcal{M}_{\epsilon}\left(\mathbf{Q}^{\epsilon}\right) \leqslant K I[w]-\frac{1}{2}\left(\gamma_{0}+o(1)\right) w(M|\ln \epsilon|)+o(w(M|\ln \epsilon|)) . \tag{2.85}
\end{equation*}
$$

Combining (2.85) and (2.84), we obtain

$$
\begin{equation*}
w(M|\ln \epsilon|) \leqslant 2 K^{2} \epsilon^{M+2 N} \leqslant C \epsilon^{M}(|\ln \epsilon|)^{-2 N} \tag{2.86}
\end{equation*}
$$

which is impossible.
We conclude that $\mathbf{Q}^{\epsilon} \in \Lambda$. This completes the proof of Proposition 2.16.
Completion of Proof of Theorem 2.5. Theorem 2.5 follows from Proposition $2.16 \quad 24$ and the reduction Lemma 2.15.

Let $p=\frac{N+2}{N-2}$. By suitable scaling, (2.4) becomes the following problem

$$
\left\{\begin{array}{l}
\Delta u-\mu u+u^{\frac{N+2}{N-2}}=0 \quad \text { in } \Omega \tag{2.87}\\
u>0 \quad \text { in } \Omega \quad \text { and } \quad \frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

where $\mu=\frac{1}{\epsilon^{2}}$ is large.
It is well known that the solutions to

$$
\begin{equation*}
\Delta U+U^{\frac{N+2}{N-2}}=0 \tag{2.88}
\end{equation*}
$$

are given by the following

$$
\begin{equation*}
U_{\Lambda, \xi}=c_{N}\left(\frac{1}{\Lambda^{2}+|x-\xi|^{2}}\right)^{\frac{N-2}{2}}, \quad \text { where } \Lambda>0, \xi \in \mathbb{R}^{N} \tag{2.89}
\end{equation*}
$$

2.4. Bubbles to (2.4): the critical case 28

A notable difference here is that the linearized operator $\Delta+\left(\frac{N+2}{N-2}\right) U_{\Lambda, \xi}^{\frac{4}{N-2}}$ has $(N+1)-$ dimensional kernels. Namely,

$$
\begin{equation*}
\operatorname{Kernel}\left(\Delta+\frac{N+2}{N-2} U_{\Lambda, \xi}^{\frac{4}{N-2}}\right)=\operatorname{span}\left\{\frac{\partial U_{\lambda, \xi}}{\partial \Lambda}, \frac{\partial U_{\Lambda, \xi}}{\partial \xi_{1}}, \ldots, \frac{\partial U_{\lambda, \xi}}{\partial \xi_{N}}\right\} . \tag{2.90}
\end{equation*}
$$

Thus when we apply LEM, we need also to take care of the scaling parameters. See [$13,43,65,66]$ and the references therein.

Concerning boundary bubbles, the existence of mountain-pass solutions was first proved in Wang [69] and Adimurthi and Mancini [1]. Ni, Takagi and Pan [55] showed the least energy solutions develop a bubble at the maximum point of the mean curvature (thereby establishing results similar to Theorem 2.1). Local mountain-pass solutions concentrating on one or separated boundary points are established in [23]. At non-degenerate critical points of the positive mean curvature, single boundary bubbles exist [2]. Lin, Wang and Wei [43] established results similar to Theorem 2.2 for dimension $N \geqslant 7$, at a non-degenerate local minimum point of the mean curvature with positive value:

THEOREM 2.17. Suppose the following two assumptions hold:
(H1) $\quad N \geqslant 7$,
(H2) $Q_{0}=0$ is a non-degenerate minimum point of $H(Q)$ and $H\left(Q_{0}\right)>0$. ${ }_{22}^{21}$
Let $K \geqslant 2$ be a fixed integer. Then there exists a $\mu_{K}>0$ such that for $\mu>\mu_{K}$, problem (2.87) has a non-trivial solution u_{μ} with the following properties
where $\Lambda_{j} \rightarrow \Lambda_{0}:=A_{0} H\left(Q_{0}\right)>0, j=1, \ldots, K$, and
(2) $\hat{\mathbf{Q}}^{\mu}:=\left(\hat{Q}_{1}^{\mu}, \ldots, \hat{Q}_{K}^{\mu}\right)$ approach an optimal configuration in the following problem:
(*) Find out the optimal configuration $\left(\hat{Q}_{1}, \ldots, \hat{Q}_{K}\right)$ that minimizes the functional $R\left[\hat{Q}_{1}, \ldots, \hat{Q}_{K}\right]$.
Here for $\hat{\mathbf{Q}}=\left(\hat{Q}_{1}, \ldots, \hat{Q}_{K}\right) \in R^{(N-1) K}, \hat{Q}_{i} \neq \hat{Q}_{j}$, we define
$R\left[\hat{Q}_{1}, \ldots, \hat{Q}_{K}\right]:=c_{1} \sum_{j=1}^{K} \varphi\left(\hat{Q}_{j}\right)+c_{2} \sum_{i \neq j} \frac{1}{\left|\hat{Q}_{i}-\hat{Q}_{j}\right|^{N-2}}$
where $\varphi(Q)=\sum_{k, l} \partial_{k} \partial_{l} H\left(Q_{0}\right) Q_{k} Q_{l}, c_{1}$ and c_{2} are two generic constants.
Theorem 2.17 is proved by $L E M$. Here the computation is more complicated, since the interaction between bubbles is very involved.

Concerning interior bubbles, under some assumptions, it is proved in [24] and [64] that there are no interior bubble solutions. However interior bubble solutions can be recovered if one add the boundary layers. (The boundary layer solution has been constructed in [50] (see Section 2.6).) The following result establishes the existence of multiple interior bubbles in dimension $N=3,4,5$.

Theorem 2.18. (See $[71,92]$.) Let $N=3,4,5$. For any fixed integer k, then problem

 (2.87) has a solution (at least along a subsequence $\epsilon_{k} \rightarrow 0$) with k interior bubbles and one boundary layer.2.5. Bubbles to (2.4): slightly supercritical case

In the slightly supercritical case, we let $p=\frac{N+2}{N-2}+\delta$ where $\delta>0$. Consider

$$
\begin{cases}\Delta u-\mu u+u^{p}=0 & \text { in } \Omega, \tag{2.92}\\ u>0 \quad \text { in } \Omega & \text { and } \quad \frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega .\end{cases}
$$

The following result was proved by [66] and [14] through the use of LEM.
THEOREM 2.19. Let $N \geqslant 3$. Then $\delta>0$ sufficiently small, problem (2.92) admits a boundary bubble solution.

In fact, in the slightly supercritical case, there is also the phenomena of bubble-towers. A bubble-tower is a sum of bubbles centered at the same point

$$
\begin{equation*}
\sum_{j=1}^{K} U_{\Lambda_{j}, \xi}, \quad \text { where } \Lambda_{1}, \frac{\Lambda_{j+1}}{\Lambda_{j}} \rightarrow+\infty, j=1, \ldots, K-1 \tag{2.93}
\end{equation*}
$$

This has been discussed in [15] and [25].
It is completely open whether or not point condensation solutions exist for (2.92) when $p>\frac{N+2}{N-2}+\delta$. In fact, let Ω be the unit ball. Using Pohozaev's identity, it is not difficult to show that there exists a positive constant c_{0}, independent of $\epsilon \leqslant 1$, such that

$$
\begin{equation*}
\inf _{\Omega} u \geqslant c_{0} \tag{2.94}
\end{equation*}
$$

for all radial solution u of (2.4). This marks a basic difference between the behavior of solutions of these two cases $p \leqslant \frac{N+2}{N-2}$ and $p>\frac{N+2}{N-2}$. It eliminates the possibility of the existence of a radial spiky solution which approaches zero in measure as ϵ approaches zero in the supercritical case $p>\frac{N+2}{N-2}$.

The following conjecture has been made by $\mathrm{Ni}[53,54]$.

Fig. 1. Lines intersecting with $\partial \Omega$ orthogonally.

CONJECTURE. Given any integer $0 \leqslant k \leqslant n-1$, there exists $p_{k} \in(1, \infty)$ such that for $1<p<p_{k}$, (2.4) possesses a solution with k-dimensional concentration set, provided that ϵ is sufficiently small.

Progress in this direction has only been made very recently. In [49] and [50], Malchiodi and Montenegro proved that for $N \geqslant 2$, there exists a sequence of numbers $\varepsilon_{k} \rightarrow 0$ such that problem (2.4) has a solution $u_{\varepsilon_{k}}$ which concentrates at boundary of $\partial \Omega$ (or any component of $\partial \Omega)$. Such a solution has the following energy bound

$$
\begin{equation*}
J_{\varepsilon_{k}}\left[u_{\varepsilon_{k}}\right] \sim \varepsilon_{k}^{N-1} \tag{2.95}
\end{equation*}
$$

In [48], Malchiodi showed the concentration phenomena for (2.4) along a closed nondegenerate geodesic of $\partial \Omega$ in three-dimensional smooth bounded domain Ω. F. Mahmoudi and A. Malchiodi in [51] prove a full general concentration of solutions along k-dimensional $(1 \leqslant k \leqslant n-1)$ non-degenerate minimal sub-manifolds of the boundary for $n \geqslant 3$ and $1<p<\frac{n-k+2}{n-k-2}$. When $\Omega=B_{1}(0)$, there are also multiple (radially symmetric) clustered interfaces near the boundary [52].

For concentrations on lines intersecting with the boundary, Wei and Yang [93] made the first attempt in the two-dimensional case. Let $\Gamma \subset \Omega \subset \mathbb{R}^{2}$ be a curve satisfying the following assumptions: The curvature of Γ is zero and Γ intersects $\partial \Omega$ at exactly two points, saying, γ_{1}, γ_{0} and at these points $\Gamma \perp \partial \Omega$. Let $-k_{1}$ and k_{0} are the curvatures of the boundary $\partial \Omega$ at the points γ_{1} and γ_{0} respectively. A picture of Γ and Ω is as follows:

We define a geometric eigenvalue problem

$$
\begin{align*}
& -f^{\prime \prime}(\theta)=\lambda f(\theta), \quad 0<\theta<1, \\
& f^{\prime}(1)+k_{1} f(1)=0, \\
& f^{\prime}(0)+k_{0} f(0)=0 . \tag{2.96}
\end{align*}
$$

We say that Γ is non-degenerate if (2.96) does not have a zero eigenvalue. This is equivalent to the following condition:

$$
\begin{equation*}
k_{0}-k_{1}+k_{0} k_{1}|\Gamma| \neq 0 \tag{2.97}
\end{equation*}
$$

where $|\Gamma|$ denotes the length of Γ. 1
Moreover, we set up the gap condition that there exists a small constant $c>0$
$\left|\lambda_{0}-\frac{k^{2} \pi^{2}}{|\Gamma|^{2}} \varepsilon^{2}\right| \geqslant c \varepsilon, \quad \forall k \in \mathbb{N}$.

In [93], the following result was proved In [33], the 7

THEOREM 2.20. We assume that the line segment Γ satisfies the non-degenerate condition (2.97). Given a small constant c, there exists ε_{0} such that for all $\varepsilon<\varepsilon_{0}$ satisfying the gap condition (2.98), problem (2.4) has a positive solution u_{ε} concentrating along a curve Γ_{ϵ} near Γ. Moreover, there exists some number c_{0} such that u_{ε} satisfies globally,

$$
u_{\varepsilon}(x) \leqslant \exp \left[-c_{0} \varepsilon^{-1} \operatorname{dist}\left(x, \Gamma_{\epsilon}\right)\right]
$$

and the curve Γ_{ϵ} will collapse to Γ as $\varepsilon \rightarrow 0$.
REMARK 2.6.1. The geometric eigenvalue problem (2.96) was first introduced by M. Kowalczyk in [37] where he constructed layered solution concentrating on a line for the Allen-Cahn equation.

REMARK 2.6.2. Theorem 2.20 is proved using the infinite-dimensional LyapunovSchmidt reduction technique introduced in [18].

REMARK 2.6.3. One can also constructed multiple clustered line concentrating solutions, using the Toda system. See [94]. This follows from earlier work in [19], where multiple clustered interfaces are constructed at non-minimizing lines for the Allen-Cahn equation. It is quite interesting to see the connection between Toda system

$$
\begin{equation*}
q_{j}^{\prime \prime}+e^{q_{j}-q_{j+1}}-e^{q_{j-1}-q_{j}}=0 \tag{2.99}
\end{equation*}
$$

and clustered interfaces.
REMARK 2.6.4. It will be interesting to construct solutions concentrating on surfaces which intersect with $\partial \Omega$ orthogonally.

2.7. Robin boundary condition

Robin boundary conditions are particularly interesting in biological models where they often arise. We refer the reader to [10] for this aspect.

In [3], Berestycki and Wei discussed the existence and asymptotic behavior of least energy solution for following singularly perturbed problem with Robin boundary condition:

$$
\begin{cases}\epsilon^{2} \Delta u-u+u^{p}=0, u>0 & \text { in } \Omega \tag{2.100}\\ \epsilon \frac{\partial u}{\partial v}+\lambda u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda>0$. Similar to [57], we can define the following energy functional associated with (2.100):

$$
\begin{equation*}
J_{\epsilon}[u]:=\frac{\epsilon^{2}}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2} \int_{\Omega} u^{2}-\int_{\Omega} F(u)+\frac{\epsilon \lambda}{2} \int_{\partial \Omega} u^{2}, \tag{2.101}
\end{equation*}
$$

where $F(u)=\int_{0}^{u} f(s) d s, f(s)=s^{p}, u \in H^{1}(\Omega)$.
Similarly, for $\epsilon \in(0,1)$, we can define the so-called mountain-pass value

$$
\begin{equation*}
c_{\epsilon, \lambda}=\inf _{h \in \Gamma} \max _{0 \leqslant t \leqslant 1} J_{\epsilon}[h(t)] \tag{2.102}
\end{equation*}
$$

where $\Gamma=\left\{h:[0,1] \rightarrow H^{1}(\Omega) \mid h(t)\right.$ is continuous, $\left.h(0)=0, h(1)=e\right\}$.
For fixed ϵ small, as λ moves from 0 (which is Neumann BC) to $+\infty$ (which is Dirichlet BC), by the results of [57,58] and [61], the asymptotic behavior of $u_{\epsilon, \lambda}$ changes dramatically: a boundary spike is displaced to become an interior spike. The question we shall answer is: where is the borderline of λ for spikes to move inwards?

Note that when $N=1$, by ODE analysis, it is easy to see that the borderline is exactly at $\lambda=1$. In fact, we may assume that $\Omega=(0,1)$, and a s $\epsilon \rightarrow 0$, the least energy solution converges to a homoclinic solution of the following ODE:

$$
\begin{equation*}
w^{\prime \prime}-w+w^{p}=0 \quad \text { in } \mathbb{R}^{1}, \quad w(y) \rightarrow 0 \quad \text { as }|y| \rightarrow+\infty \tag{2.103}
\end{equation*}
$$

Then it follows that

$$
\begin{equation*}
\left(w^{\prime}\right)^{2}=w^{2}-\frac{2}{p+1} w^{p+1}, \quad\left|w^{\prime}\right|<w \tag{2.104}
\end{equation*}
$$

As $\epsilon \rightarrow 0$, the limiting boundary condition (2.100) becomes $w^{\prime}(0)-\lambda w(0)=0$. We see from (2.104) that this is possible if and only if $\lambda<1$.

When $N=2$, the situation changes dramatically. To understand the location of the spikes at the boundary, an essential role is played by the analogous problem in a half space with Robin boundary condition on the boundary. Thus we first consider

$$
\left\{\begin{array}{l}
\Delta u-u+f(u)=0, u>0 \quad \text { in } \mathbb{R}_{+}^{N}, \tag{2.105}\\
u \in H^{1}\left(\mathbb{R}_{+}^{N}\right), \quad \frac{\partial u}{\partial v}+\lambda u=0 \quad \text { on } \partial \mathbb{R}_{+}^{N}
\end{array}\right.
$$

where $\mathbb{R}_{+}^{N}=\left\{\left(y^{\prime}, y_{N}\right) \mid y_{N}>0\right\}$ and v is the outer normal on $\partial \mathbb{R}_{+}^{N}$.
Let

$$
\begin{equation*}
I_{\lambda}[u]=\int_{\mathbb{R}_{N}^{+}}\left(\frac{1}{2}|\nabla u|^{2}+\frac{1}{2} u^{2}\right)-\int_{\mathbb{R}_{N}^{+}} F(u)+\frac{\lambda}{2} \int_{\partial \mathbb{R}_{N}^{+}} u^{2} \tag{2.106}
\end{equation*}
$$

As before, we define a mountain-pass vale for I_{λ} :

$$
\begin{equation*}
c_{\lambda}=\inf _{v \neq 0, v \in H^{1}\left(\mathbb{R}_{N}^{+}\right)} \sup _{t>0} I_{\lambda}[t v] . \tag{2.107}
\end{equation*}
$$

Our first result deals with the half space problem:
THEOREM 2.21 .
(1) For $\lambda \leqslant 1, c_{\lambda}$ is achieved by some function w_{λ}, which is a solution of (2.105).
(2) For λ large enough, c_{λ} is never achieved.
(3) Set

$$
\begin{equation*}
\lambda_{*}=\inf \left\{\lambda \mid c_{\lambda} \text { is achieved }\right\} \tag{2.108}
\end{equation*}
$$

Then $\lambda_{*}>1$ and for $\lambda \leqslant \lambda_{*}, c_{\lambda}$ is achieved, and for $\lambda>\lambda_{*}, c_{\lambda}$ is not achieved.
The proof of Theorem 2.21 is by the method of concentration-compactness, and the method of vanishing viscosity.

Now consider the problem in a bounded domain.
THEOREM 2.22. Let $\lambda \leqslant \lambda_{*}$ and $u_{\epsilon, \lambda}$ be a least energy solution of (2.100). Let $x_{\epsilon} \in \Omega$ be a point where $u_{\epsilon, \lambda}$ reaches its maximum value. Then after passing to a subsequence, $x_{\epsilon} \rightarrow x_{0} \in \partial \Omega$ and
(1) $d\left(x_{\epsilon}, \partial \Omega\right) / \epsilon \rightarrow d_{0}$, for some $d_{0}>0$,
(2) $v_{\epsilon, \lambda}(y)=u_{\epsilon, \lambda}\left(x_{\epsilon}+\epsilon y\right) \rightarrow w_{\lambda}(y)$ in C^{1} locally, where w_{λ} attains c_{λ} of (2.107) (and thus is a solution of (2.105)),
(3) the associated critical value can be estimated as follows:

$$
\begin{equation*}
c_{\epsilon, \lambda}=\epsilon^{N}\left\{c_{\lambda}-\epsilon \bar{H}\left(x_{0}\right)+o(\epsilon)\right\} \tag{2.109}
\end{equation*}
$$

where c_{λ} is given by (2.107), and $\bar{H}\left(x_{0}\right)$ is given by the following

$$
\begin{equation*}
\bar{H}\left(x_{0}\right)=\max _{w_{\lambda} \in \mathcal{S}_{\lambda}}\left[-\int_{\mathbb{R}_{N}^{+}} y^{\prime} \cdot \nabla^{\prime} w_{\lambda} \frac{\partial w_{\lambda}}{\partial y_{N}} H\left(x_{0}\right)\right] \tag{2.110}
\end{equation*}
$$

where \mathcal{S}_{λ} is the set of all solutions of (2.105) attaining c_{λ}, and $y^{\prime}=\left(y_{1}, \ldots, y_{N-1}\right)$, $\nabla^{\prime}=\left(\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{N-1}}\right)$,
(4) $\bar{H}\left(x_{0}\right)=\max _{x \in \partial \Omega} \bar{H}(x)$.

On the other hand, when $\lambda>\lambda_{*}$, a different asymptotic behavior appears.
THEOREM 2.23. Let $\lambda>\lambda_{*}$ and $u_{\epsilon, \lambda}$ be a least energy solution of (2.100). Let $x_{\epsilon} \in \Omega$ be a point where $u_{\epsilon, \lambda}$ reaches its maximum value. Then after passing a subsequence, we have
(1) $d\left(x_{\epsilon}, \partial \Omega\right) \rightarrow \max _{x \in \Omega} d(x, \partial \Omega)$,
(2) $v_{\epsilon, \lambda}(y):=u_{\epsilon, \lambda}\left(x_{\epsilon}+\epsilon y\right) \rightarrow w(y)$ in C^{1} locally, where w is the unique solution of (2.8),
(3) the associated critical value can be estimated as follows:

$$
\begin{equation*}
c_{\epsilon, \lambda}=\epsilon^{N}\left[I[w]+\exp \left(-\frac{2 d\left(x_{\epsilon}, \partial \Omega\right)}{\epsilon}(1+o(1))\right)\right] . \tag{2.111}
\end{equation*}
$$

3. Stability and instability in the shadow system case

As we have already seen in Section 2 that there are many single and multiple spike solutions for the shadow system (2.2). The question is: are they all stable with respect to the shadow system (2.2)? Unfortunately, as we will show below, only one of them is stable.

Let u_{ϵ} be a (boundary or interior) spike solution. Then it is easy to see that $\left(a_{\epsilon}, \xi_{\epsilon}\right)$ defined by the following

$$
\begin{equation*}
a_{\epsilon}=\xi_{\epsilon}^{q /(p-1)} u_{\epsilon}, \quad \xi_{\epsilon}=\left(\frac{1}{|\Omega|} \int_{\Omega} u_{\epsilon}^{r} d x\right)^{-(p-1) /(q r-(p-1)(s+1))} \tag{3.1}
\end{equation*}
$$

is a solution pair of the stationary problem to the shadow system (2.2).
In this section, we analyze the following linearized eigenvalue problem

$$
\left\{\begin{array}{l}
\epsilon^{2} \Delta \phi_{\epsilon}-\phi_{\epsilon}+p \frac{a_{\epsilon}^{p-1}}{\xi_{\epsilon}^{q}} \phi_{\epsilon}-q \frac{a_{\epsilon}^{p}}{\xi_{\epsilon}^{q+1}} \eta=\alpha_{\epsilon} \phi_{\epsilon}, \quad \frac{\partial \phi_{\epsilon}}{\partial \nu}=0 \quad \text { on } \partial \Omega, \tag{3.2}\\
\frac{r}{\tau|\Omega|} \int_{\Omega} \frac{a_{\epsilon}^{r-1} \phi_{\epsilon}}{\xi_{\epsilon}^{s}} d x-\frac{1+s}{\tau} \eta=\alpha_{\epsilon} \eta .
\end{array}\right.
$$

By using (3.1), it is easy to see that the eigenvalues of problem (3.2) in $H^{2}(\Omega) \times L^{\infty}(\Omega)$ are the same as the eigenvalues of the following eigenvalue problem

$$
\begin{align*}
& \epsilon^{2} \Delta \phi-\phi+p u_{\epsilon}^{p-1} \phi-\frac{q r}{s+1+\tau \alpha_{\epsilon}} \frac{\int_{\Omega} u_{\epsilon}^{r-1} \phi}{\int_{\Omega} u_{\epsilon}^{r}} u_{\epsilon}^{p}=\alpha_{\epsilon} \phi, \\
& \quad \phi \in H^{2}(\Omega) . \tag{3.3}
\end{align*}
$$

A simple argument [8] shows that
THEOREM 3.1. Any multiple-spike solution is linearly unstable for the shadow system (2.2).

Let

$$
\begin{align*}
& L_{\epsilon}(\phi)=\epsilon^{2} \Delta \phi-\phi+p u_{\epsilon}^{p-1} \phi, \\
& \mathcal{L}_{\epsilon}(\phi)=L_{\epsilon}(\phi)-\frac{q r}{s+1+\tau \lambda} \frac{\int_{\Omega} u_{\epsilon}^{r-1} \phi}{\int_{\Omega} u_{\epsilon}^{r}} u_{\epsilon}^{p} . \tag{3.4}
\end{align*}
$$

Thus we can only concentrate on the study of stability for single-spike solutions. The study of stability and instability of single spike solutions can be divided into two parts: small eigenvalues and large eigenvalues.
3.1. Small eigenvalues for L_{ϵ}

In [73], it was proved that single boundary spike must concentrate at a critical point of the mean curvature function $H(P)$. On the other hand, at a non-degenerate critical point of
$H(P)$, there is also a single boundary spike. Furthermore, in [76], it is proved that the single boundary spike at a non-degenerate critical point of $H(P)$ is actually non-degenerate.
Next we study the eigenvalue estimates associated with the linearized operator at u_{ϵ} : $L_{\epsilon}=\epsilon^{2} \Delta-1+p u_{\epsilon}^{p-1}$. (Here the domain of L_{ϵ} is $H^{2}(\Omega)$.) We first note the following result.

LEMMA 3.2. The following eigenvalue problem

$$
\begin{equation*}
\Delta \phi-\phi+p w^{p-1} \phi=\mu \phi \quad \text { in } \mathbb{R}^{N}, \phi \in H^{1}\left(\mathbb{R}^{N}\right) \tag{3.5}
\end{equation*}
$$

admits the following set of eigenvalues:

$$
\begin{equation*}
\mu_{1}>0, \quad \mu_{2}=\cdots=\mu_{N+1}=0, \quad \mu_{N+2}<0, \ldots \tag{3.6}
\end{equation*}
$$

Moreover, the eigenfunction corresponding to μ_{1} is radial and of constant sign.
Proof. This follows from Theorem 2.12 of [42] and Lemma 4.2 of [58].
The small eigenvalues for L_{ϵ} were characterized completely in [76].
Theorem 3.3. (See [76].) For ϵ sufficiently small, the following eigenvalue problem

$$
\begin{cases}\epsilon^{2} \Delta \phi_{\epsilon}-\phi_{\epsilon}+p u_{\epsilon}^{p-1} \phi_{\epsilon}=\tau_{\epsilon} \phi_{\epsilon} & \text { in } \Omega, \tag{3.7}\\ \frac{\partial \phi_{\epsilon}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

admits exactly $(N-1)$ eigenvalues $\tau_{\epsilon}^{1} \leqslant \tau_{\epsilon}^{2} \leqslant \cdots \leqslant \tau_{\epsilon}^{N-1}$ in the interval $\left[\frac{\mu_{N+1}}{2}, \frac{\mu_{1}}{2}\right]$, where μ_{1} and μ_{N+1} are given by Lemma 3.2.

Moreover, we have the following asymptotic behavior of τ_{ϵ}^{j} :

$$
\begin{equation*}
\frac{\tau_{\epsilon}^{j}}{\epsilon^{2}} \rightarrow \eta_{0} \lambda_{j}, \quad j=1, \ldots, N-1 \tag{3.8}
\end{equation*}
$$

where $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{N-1}$ are the eigenvalues of the matrix $G_{b}\left(P_{0}\right):=\left(\partial_{i} \partial_{j} H\left(P_{0}\right)\right)$, and

$$
\begin{equation*}
\eta_{0}=\frac{N-1}{N+1} \frac{\int_{R_{+}^{N}}\left(w^{\prime}(|z|)\right)^{2} z_{N} d z}{\int_{R_{+}^{N}}\left(\frac{\partial w}{\partial z_{1}}\right)^{2} d z}>0 \tag{3.9}
\end{equation*}
$$

(Here $w^{\prime}(|z|)$ denotes the radial derivative of w with respect to $|z|$.)
Furthermore the eigenfunction corresponding to $\tau_{\epsilon}^{j}, j=1, \ldots, N-1$, is given by the following:

$$
\begin{equation*}
\phi_{j}^{\epsilon}=\sum_{i=1}^{N-1}\left(a_{i j}+o(1)\right) \frac{\partial w_{\epsilon, P_{\epsilon}}}{\partial \tau_{i}\left(P_{\epsilon}\right)} \tag{3.10}
\end{equation*}
$$

where P_{ϵ} is the local maximum point of $u_{\epsilon}, \vec{a}_{j}=\left(a_{1 j}, \ldots, a_{(N-1) j}\right)^{T}$ is the eigenvector corresponding to λ_{j}, namely

$$
\begin{equation*}
G_{b}\left(P_{0}\right) \vec{a}_{j}=\lambda_{j} \vec{a}_{j}, \quad j=1, \ldots, N-1 . \tag{3.11}
\end{equation*}
$$

For single interior spikes, we obtain similar results. But it becomes more involved since now the error is exponentially small.

The existence of interior spike solutions depends highly on the geometry of the domain. In [74] and [75], the author first constructed a single interior spike solution. To state the result, we need to introduce some notations. Let

$$
\begin{equation*}
d \mu_{P_{0}}(z)=\lim _{\varepsilon \rightarrow 0} \frac{e^{-\frac{2\left|z-P_{0}\right|}{\varepsilon}} d z}{\int_{\partial \Omega} e^{-\frac{2\left|z-P_{0}\right|}{\varepsilon}} d z} \tag{3.12}
\end{equation*}
$$

It is easy to see that the support of $d \mu_{P_{0}}(z)$ is contained in $\bar{B}_{d\left(P_{0}, \partial \Omega\right)}\left(P_{0}\right) \cap \partial \Omega$.
A point P_{0} is called "non-degenerate peak point" if the followings hold: there exists $a \in \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\int_{\partial \Omega} e^{\left\langle z-P_{0}, a\right\rangle}\left(z-P_{0}\right) d \mu_{P_{0}}(z)=0 \tag{H1}
\end{equation*}
$$

and

$$
\left(\int_{\partial \Omega} e^{\left\langle z-P_{0}, a\right\rangle}\left(z-P_{0}\right)_{i}\left(z-P_{0}\right)_{j} d \mu_{P_{0}}(z)\right):=G_{i}\left(P_{0}\right) \quad \text { is non-singular. (H2) } \quad{ }^{23}
$$

Such a vector a is unique. Moreover, $G_{i}\left(P_{0}\right)$ is a positive definite matrix. A geometric characterization of a non-degenerate peak point P_{0} is the following:

$$
P_{0} \in \text { interior (convex hull of support }\left(d \mu_{P_{0}}(z)\right) .
$$

For a proof of the above facts, see Theorem 5.1 of [74].
In [75] and [74], the author proved the following theorem.
THEOREM 3.4. Suppose that P_{0} is a non-degenerate peak point. Then for $\epsilon \ll 1$, there exists a single interior spike solution u_{ϵ} concentrating at P_{0}. Furthermore, u_{ϵ} is locally unique. Namely, if there are two families of single interior spike solutions $u_{\epsilon, 1}$ and $u_{\epsilon, 2}$ of (2.4) such that $P_{\epsilon}^{1} \rightarrow P_{0}, P_{\epsilon}^{2} \rightarrow P_{0}$ where

$$
u_{\epsilon, 1}\left(P_{\epsilon}^{1}\right)=\max _{P \in \bar{\Omega}} u_{\epsilon}(P), \quad u_{\epsilon, 2}\left(P_{\epsilon}^{2}\right)=\max _{P \in \bar{\Omega}} u_{\epsilon, 2}(P)
$$

then $P_{\epsilon}^{1}=P_{\epsilon}^{2}, u_{\epsilon, 1}=u_{\epsilon, 2}$. Moreover, $\quad{ }_{42}^{41}$
$P_{\epsilon}^{1}=P_{\epsilon}^{2}=P_{0}+\epsilon\left(\frac{1}{2} d\left(P_{0}, \partial \Omega\right) a+o(1)\right) \quad$ as $\epsilon \rightarrow 0$.
Let $w_{\epsilon, P}$ and $\varphi_{\epsilon, P}$ be defined as in Section 2.3. (It was proved in [75] and [74] that $-\epsilon \log \left[-\varphi_{\epsilon, P}(P)\right] \rightarrow 2 d(P, \partial \Omega)$ as $\epsilon \rightarrow 0$.)
Similarly, we obtain the following eigenvalue estimates for u_{ϵ}

THEOREM 3.5. The following eigenvalue problem

$$
\begin{equation*}
\epsilon^{2} \Delta \phi-\phi+p u_{\epsilon}^{p-1} \phi=\tau^{\epsilon} \phi \quad \text { in } \Omega, \quad \frac{\partial \phi}{\partial v}=0 \quad \text { on } \partial \Omega \tag{3.13}
\end{equation*}
$$

admits the following set of eigenvalues:

$$
\begin{aligned}
& \tau_{1}^{\epsilon}=\mu_{1}+o(1), \quad \tau_{j}^{\epsilon}=\left(c_{0}+o(1)\right) \varphi_{\epsilon, P_{0}}\left(P_{0}\right) \lambda_{j-1}, \quad j=2, \ldots, N+1, \\
& \tau_{l}^{\epsilon}=\mu_{l}+o(1), \quad l \geqslant N+2
\end{aligned}
$$

-

$$
\begin{equation*}
c_{0}=2 d^{-2}\left(P_{0}, \partial \Omega\right) \frac{\int_{\mathbb{R}^{N}} p w^{p-1} w^{\prime} u_{*}^{\prime}(r)}{\int_{\mathbb{R}^{N}}\left(\frac{\partial w}{\partial y_{1}}\right)^{2} d y}<0 \tag{3.14}
\end{equation*}
$$

where $u_{*}(r)$ is the unique radial solution of the following problem

$$
\begin{equation*}
\Delta u-u=0, \quad u(0)=1, \quad u=u(r) \quad \text { in } \mathbb{R}^{N} \tag{3.15}
\end{equation*}
$$

Furthermore, the eigenfunction (suitably normalized) corresponding to $\tau_{j}^{\epsilon}, j=2, \ldots$, $N+1$, is given by the following:

$$
\begin{equation*}
\phi_{j}^{\epsilon}=\left.\sum_{l=1}^{N}\left(a_{j-1, l}+o(1)\right) \epsilon \frac{\partial w_{\epsilon, P}}{\partial P_{l}}\right|_{P=P_{\epsilon}}, \tag{3.16}
\end{equation*}
$$

where $\vec{a}_{j}=\left(a_{j, 1}, \ldots, a_{j, N}\right)^{t}$ is the eigenvector corresponding to λ_{j}, namely

$$
G_{i}\left(P_{0}\right) \vec{a}_{j}=\lambda_{j} \vec{a}_{j}, \quad j=1, \ldots, N
$$

Let α_{ϵ} be an eigenvalue of (3.3). Then the following holds. (The proof of it is routine. See Appendix of [77].)
Lemma A.
(1) $\alpha_{\epsilon}=o(1)$ if and only if $\alpha_{\epsilon}=(1+o(1)) \tau_{j}^{\epsilon}$ for some $j=2, \ldots, N+1$, where τ_{j}^{ϵ} is given by Theorem 3.3 or Theorem 3.5.
(2) If $\alpha_{\epsilon} \rightarrow \alpha_{0} \neq 0$. Then α_{0} is an eigenvalue of the following eigenvalue problem

$$
\begin{align*}
& \Delta \phi-\phi+p w^{p-1} \phi-\frac{q r}{s+1+\tau \alpha_{0}} \frac{\int_{\mathbb{R}^{N}} w^{r-1} \phi}{\int_{\mathbb{R}^{N}} w^{r}} w^{p}=\alpha_{0} \phi \\
& \quad \phi \tag{3.17}\\
& \quad \in H^{2}\left(\mathbb{R}^{N}\right)
\end{align*}
$$

A direct application of Theorem 3.5 is the following corollary. 8
Corollary 3.6. For $\epsilon \ll 1,\left(a_{\epsilon}, \xi_{\epsilon}\right)$ is unstable with respect to the shadow system (2.2). 10

3.3. Large eigenvalues: NLEP method

This section is devoted to the study of the non-local eigenvalue problem (3.17). By [77] and [78], if problem (3.17) admits an eigenvalue λ with positive real part, then all single point-condensation solutions are unstable, while if all eigenvalues of problem (3.17) have negative real part, then all single point-condensation solutions are either stable or metastable. (Here we say that a solution is metastable if the eigenvalues of the associated linearized operator either are exponentially small or have strictly negative real parts.) Therefore it is vital to study problem (3.17).

We first consider the simple case when $\tau=0$. Namely, we study the following NLEP:

$$
\begin{equation*}
\Delta \phi-\phi+p w^{p-1} \phi-\gamma(p-1) \frac{\int_{\mathbb{R}^{N}} w^{r-1} \phi}{\int_{\mathbb{R}^{N}} w^{r}} w^{p}=\lambda \phi, \quad \phi \in H^{2}\left(\mathbb{R}^{N}\right), \tag{3.18}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma:=\frac{q r}{(s+1)(p-1)} \\
& \lambda \in \mathcal{C}, \quad \lambda \neq 0, \quad \phi(x)=\phi(|x|) \tag{3.19}
\end{align*}
$$

For problem (3.18), it is known that when $\gamma=0$, there exists an eigenvalue $\lambda=\mu_{1}>0$ (Lemma 3.2). An important property of (3.18) is that non-local term can push the eigenvalues of problem (3.18) to become negative so that the point-condensation solutions of the Gierer-Meinhardt system become stable or metastable.

A major difficulty in studying problem (3.18) is that the left-hand side operator is not self-adjoint if $r \neq p+1$. (In the classical Gierer-Meinhardt system, $r=2, p=2$.) Therefore it may have complex eigenvalues or Hopf bifurcations. Many traditional techniques do not work here.

In [78] and [77], the eigenvalues of problem (3.18) in the following two cases

$$
r=2, \quad \text { or } \quad r=p+1
$$

are studied and the following results are proved.

ThEOREM 3.7.
(1) If (p, q, r, s) satisfies
(A) $\quad \gamma=\frac{q r}{(s+1)(p-1)}>1$,
and
(B) $r=2, \quad 1<p \leqslant 1+\frac{4}{N} \quad$ or $r=p+1,1<p<\left(\frac{N+2}{N-2}\right)_{+}$, where $\left(\frac{N+2}{N-2}\right)_{+}=\frac{N+2}{N-2}$ when $N \geqslant 3$ and $\left(\frac{N+2}{N-2}\right)_{+}=+\infty$ when $N=1,2$.

Then $\operatorname{Re}(\lambda)<-c_{1}<0$ for some $c_{1}>0$, where $\lambda \neq 0$ is an eigenvalue of problem (3.18).
(2) If $\gamma<1$, problem (3.18) has an eigenvalue $\lambda_{1}>0$.
(3) If
(C) $\quad r=2, \quad p>1+\frac{4}{N} \quad$ and $\quad 1<\gamma<1+c_{0}$,
for some $c_{0}>0$. Then problem (3.18) has an eigenvalue $\lambda_{1}>0$.
We give a complete proof of Theorem 3.7 since this is the key element in all the stability result later on.

The proof of Theorem 3.7 is based on the following important inequalities which are new and interesting.

Lemma 3.8. Let w be the unique solution to (2.8).
(1) If $1<p<1+\frac{4}{N}$, then there exists a positive constant $a_{1}>0$ such that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left(|\nabla \phi|^{2}+\phi^{2}-p w^{p-1} \phi^{2}\right)+\frac{2(p-1) \int_{\mathbb{R}^{N}} w \phi \int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}} \\
& \quad-(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p+1}}{\left(\int_{\mathbb{R}^{N}} w^{2}\right)^{2}}\left(\int_{\mathbb{R}^{N}} w \phi\right)^{2} \\
& \quad \geqslant a_{1} d_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}\left(\phi, X_{1}\right), \tag{3.20}
\end{align*}
$$

for all $\phi \in H^{1}\left(\mathbb{R}^{N}\right)$, where $X_{1}:=\operatorname{span}\left\{w, \frac{\partial w}{\partial y_{j}}, j=1, \ldots, N\right\}$.
(2) If $p=1+\frac{4}{N}$, then there exists a positive constant $a_{2}>0$ such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(|\nabla \phi|^{2}+\phi^{2}-p w^{p-1} \phi^{2}\right)+\frac{2(p-1) \int_{\mathbb{R}^{N}} w \phi \int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}} \\
& \quad-(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p+1}}{\left(\int_{\mathbb{R}^{N}} w^{2}\right)^{2}}\left(\int_{\mathbb{R}^{N}} w \phi\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
\geqslant a_{2} d_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}\left(\phi, X_{2}\right), \tag{3.21}
\end{equation*}
$$

for all $\phi \in H^{1}\left(\mathbb{R}^{N}\right)$, where $X_{2}:=\operatorname{span}\left\{w, \frac{1}{p-1} w+\frac{1}{2} y \nabla w(y), \frac{\partial w}{\partial y_{j}}, j=1, \ldots, N\right\}$.

$$
3
$$

(3) There exists a positive constant $a_{3}>0$ such that

$$
\begin{align*}
& \int_{\mathbb{R}^{N}}\left(|\nabla \phi|^{2}+\phi^{2}-p w^{p-1} \phi^{2}\right)+\frac{(p-1)\left(\int_{\mathbb{R}^{N}} w^{p} \phi\right)^{2}}{\int_{\mathbb{R}^{N}} w^{p+1}} \\
& \quad \geqslant a_{3} d_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}\left(\phi, X_{1}\right), \quad \forall \phi \in H^{1}\left(\mathbb{R}^{N}\right) . \tag{3.22}
\end{align*}
$$

Proof of Lemma 3.8. To this end, we first introduce some notations and make some preparations. Set

$$
L \phi:=L_{0} \phi-\gamma(p-1) \frac{\int_{\mathbb{R}^{N}} w^{r-1} \phi}{\int_{\mathbb{R}^{N}} w^{r}} w^{p}, \quad \phi \in H^{2}\left(\mathbb{R}^{N}\right)
$$

1

$$
2
$$

where $\gamma=\frac{q r}{(p-1)(s+1)}$ and $L_{0}:=\Delta-1+p w^{p-1}$. Note that L is not selfadjoint if $r \neq p+1$.
Let

$$
X_{0}:=\operatorname{kernel}\left(L_{0}\right)=\operatorname{span}\left\{\left.\frac{\partial w}{\partial y_{j}} \right\rvert\, j=1, \ldots, N\right\} .
$$

Then

$$
\begin{equation*}
L_{0} w=(p-1) w^{p}, \quad L_{0}\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)=w \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w\right) w=\int_{\mathbb{R}^{N}} w\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)=\left(\frac{1}{p-1}-\frac{N}{4}\right) \int_{\mathbb{R}^{N}} w^{2} \tag{3.24}
\end{equation*}
$$

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w\right) w^{p} & =\int_{\mathbb{R}^{N}} w^{p}\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right) \\
& =\int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w\right) \frac{1}{p-1} L_{0} w=\frac{1}{p-1} \int_{\mathbb{R}^{N}} w^{2} \tag{3.25}
\end{align*}
$$

Since L is not selfadjoint, we introduce a new operator as follows:

$$
\begin{align*}
L_{1} \phi:= & L_{0} \phi-(p-1) \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{N}} w^{2}} w^{p}-(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}} w \\
& +(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p+1} \int_{\mathbb{R}^{N}} w \phi}{\left(\int_{\mathbb{R}^{N}} w^{2}\right)^{2}} w . \tag{3.26}
\end{align*}
$$

By (3.26), L_{1} is selfadjoint. Next we compute the kernel of L_{1}. It is easy to see that $w, \frac{\partial w}{\partial y_{j}}, j=1, \ldots, N, \in \operatorname{kernel}\left(L_{1}\right)$. On the other hand, if $\phi \in \operatorname{kernel}\left(L_{1}\right)$, then by (3.23)

$$
\begin{aligned}
L_{0} \phi & =c_{1}(\phi) w+c_{2}(\phi) w^{p} \\
& =c_{1}(\phi) L_{0}\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)+c_{2}(\phi) L_{0}\left(\frac{w}{p-1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& c_{1}(\phi)=(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}}-(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p+1} \int_{\mathbb{R}^{N}} w \phi}{\left(\int_{R^{N}} w^{2}\right)^{2}}, \\
& c_{2}(\phi)=(p-1) \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{N}} w^{2}}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\phi-c_{1}(\phi)\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)-c_{2}(\phi) \frac{1}{p-1} w \in \operatorname{kernel}\left(L_{0}\right) . \tag{3.27}
\end{equation*}
$$

Note that

$$
\begin{aligned}
c_{1}(\phi)= & (p-1) c_{1}(\phi) \frac{\int_{\mathbb{R}^{N}} w^{p}\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)}{\int_{\mathbb{R}^{N}} w^{2}} \\
& -(p-1) c_{1}(\phi) \frac{\int_{\mathbb{R}^{N}} w^{p+1} \int_{\mathbb{R}^{N}} w\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)}{\left(\int_{\mathbb{R}^{N}} w^{2}\right)^{2}} \\
= & c_{1}(\phi)-c_{1}(\phi)\left(\frac{1}{p-1}-\frac{N}{4}\right) \frac{\int_{\mathbb{R}^{N}} w^{p+1}}{\int_{\mathbb{R}^{N}} w^{2}}
\end{aligned}
$$

by (3.24) and (3.25). This implies that $c_{1}(\phi)=0$. By (3.27) and Lemma 3.2, this shows that the kernel of L_{1} is exactly X_{1}.

Now we prove (3.20). Suppose (3.20) is not true, then there exists (α, ϕ) such that (i) α is real and positive, (ii) $\phi \perp w, \phi \perp \frac{\partial w}{\partial y_{j}}, j=1, \ldots, N$, and (iii) $L_{1} \phi=\alpha \phi$.

We show that this is impossible. From (ii) and (iii), we have

$$
\begin{equation*}
\left(L_{0}-\alpha\right) \phi=(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}} w \tag{3.28}
\end{equation*}
$$

We first claim that $\int_{\mathbb{R}^{N}} w^{p} \phi \neq 0$. In fact if $\int_{\mathbb{R}^{N}} w^{p} \phi=0$, then $\alpha>0$ is an eigenvalue of L_{0}. By Lemma 3.2, $\alpha=\mu_{1}$ and ϕ has constant sign. This contradicts with the fact that $\phi \perp w$. Therefore $\alpha \neq \mu_{1}, 0$, and hence $L_{0}-\alpha$ is invertible in X_{0}^{\perp}. So (3.28) implies

$$
\phi=(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}}\left(L_{0}-\alpha\right)^{-1} w
$$

Thus

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} w^{p} \phi=(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{2}} \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right) w^{p} \\
& \int_{\mathbb{R}^{N}} w^{2}=(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right) w^{p} \\
& \int_{\mathbb{R}^{N}} w^{2}=\int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right)\left(\left(L_{0}-\alpha\right) w+\alpha w\right) \\
& 0=\int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right) w . \tag{3.29}
\end{align*}
$$

Let $h_{1}(\alpha)=\int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right) w$, then

$$
h_{1}(0)=\int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w\right) w=\int_{\mathbb{R}^{N}}\left(\frac{1}{p-1} w+\frac{1}{2} x \cdot \nabla w\right) w
$$

$$
=\left(\frac{1}{p-1}-\frac{N}{4}\right) \int_{\mathbb{R}^{N}} w^{2}>0
$$

since $1<p<1+\frac{4}{N}$. Moreover $\quad 21$

$$
h_{1}^{\prime}(\alpha)=\int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-2} w\right) w=\int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w\right)^{2}>0
$$

This implies $h_{1}(\alpha)>0$ for all $\alpha \in\left(0, \mu_{1}\right)$. Clearly, also $h_{1}(\alpha)<0$ for $\alpha \in\left(\mu_{1}, \infty\right)$ (since $\left.\lim _{\alpha \rightarrow+\infty} h_{1}(\alpha)=0\right)$. This is a contradiction to (3.29)!

This proves the inequality (3.20).
The proof of (3.21) is similar. In this case we have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w\right) w=\int_{\mathbb{R}^{N}} w\left(\frac{1}{p-1} w+\frac{1}{2} x \nabla w\right)=0 \tag{3.30}
\end{equation*}
$$

Thus the kernel of L_{1} is X_{2}. The rest of the proof is exactly the same as before.
To prove (3.22), we introduce

$$
\begin{equation*}
L_{3} \phi:=L_{0} \phi-(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{p+1}} w^{p} \tag{3.31}
\end{equation*}
$$

Similar as before, the kernel of L_{3} is exactly X_{1}. ${ }_{39}$
Suppose (3.22) is not true, then there exists (α, ϕ) such that (a) α is real and positive, ${ }_{40}$ (b) $\phi \perp w, \phi \perp \frac{\partial w}{\partial y_{j}}, j=1, \ldots, N$, and (c) $L_{3} \phi=\alpha \phi$.

We show that this is impossible. From (a) and (c), we have

$$
\begin{equation*}
\left(L_{0}-\alpha\right) \phi=\frac{(p-1) \int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{p+1}} w^{p} . \tag{3.32}
\end{equation*}
$$

Similar to the proof of (3.20), we have that $\int_{\mathbb{R}^{N}} w^{p} \phi \neq 0, \alpha \neq \mu_{1}, 0$, and hence $L_{0}-\alpha$ is invertible in X_{0}^{\perp}. So (3.32) implies

$$
\phi=\frac{(p-1) \int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{p+1}}\left(L_{0}-\alpha\right)^{-1} w^{p} .
$$

Thus

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} w^{p} \phi=(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p} \phi}{\int_{\mathbb{R}^{N}} w^{p+1}} \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w^{p}\right) w^{p} \\
& \int_{\mathbb{R}^{N}} w^{p+1}=(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w^{p}\right) w^{p} \tag{3.33}
\end{align*}
$$

Let

$$
h_{3}(\alpha)=(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w^{p}\right) w^{p}-\int_{\mathbb{R}^{N}} w^{p+1}
$$

then

$$
h_{3}(0)=(p-1) \int_{\mathbb{R}^{N}}\left(L_{0}^{-1} w^{p}\right) w^{p}-\int_{\mathbb{R}^{N}} w^{p+1}=0
$$

Moreover

$$
h_{3}^{\prime}(\alpha)=(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-2} w^{p}\right) w^{p}=(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\alpha\right)^{-1} w^{p}\right)^{2}>0 .
$$

This implies $h_{3}(\alpha)>0$ for all $\alpha \in\left(0, \mu_{1}\right)$. Clearly, also $h_{3}(\alpha)<0$ for $\alpha \in\left(\mu_{1}, \infty\right)$. A contradiction to (3.33)!
Using Lemma 3.8, we can prove Theorem 3.7(i).

Proof of Theorem 3.7(I). We divide the proof into three cases.
CASE 1. $r=2,1<p<1+\frac{4}{N}$.
Let $\alpha_{0}=\alpha_{R}+i \alpha_{I}$ and $\phi=\phi_{R}+i \phi_{I}$. Since $\alpha_{0} \neq 0$, we can choose $\phi \perp \operatorname{kernel}\left(L_{0}\right)$. Then we obtain two equations

$$
\begin{align*}
& L_{0} \phi_{R}-(p-1) \gamma \frac{\int_{\mathbb{R}^{N}} w \phi_{R}}{\int_{\mathbb{R}^{N}} w^{2}} w^{p}=\alpha_{R} \phi_{R}-\alpha_{I} \phi_{I} \tag{3.34}\\
& L_{0} \phi_{I}-(p-1) \gamma \frac{\int_{\mathbb{R}^{N}} w \phi_{I}}{\int_{\mathbb{R}^{N}} w^{2}} w^{p}=\alpha_{R} \phi_{I}+\alpha_{I} \phi_{R} . \tag{3.35}
\end{align*}
$$

Multiplying (3.34) by ϕ_{R} and (3.35) by ϕ_{I} and adding them together, we obtain

$$
\begin{aligned}
& -\alpha_{R} \int_{\mathbb{R}^{N}}\left(\phi_{R}^{2}+\phi_{I}^{2}\right) \\
& \quad=L_{1}\left(\phi_{R}, \phi_{R}\right)+L_{1}\left(\phi_{I}, \phi_{I}\right)
\end{aligned}
$$

$$
+(p-1)(\gamma-2) \frac{\int_{\mathbb{R}^{N}} w \phi_{R} \int_{\mathbb{R}^{N}} w^{p} \phi_{R}+\int_{\mathbb{R}^{N}} w \phi_{I} \int_{\mathbb{R}^{N}} w^{p} \phi_{I}}{\int_{\mathbb{R}^{N}} w^{2}}
$$

$$
+(p-1) \frac{\int_{\mathbb{R}^{N}} w^{p+1}}{\left(\int_{\mathbb{R}^{N}} w^{2}\right)^{2}}\left[\left(\int_{\mathbb{R}^{N}} w \phi_{R}\right)^{2}+\left(\int_{\mathbb{R}^{N}} w \phi_{I}\right)^{2}\right]
$$

Set

$$
\phi_{R}=c_{R} w+\phi_{R}^{\perp}, \phi_{R}^{\perp} \perp X_{1}, \quad \phi_{I}=c_{I} w+\phi_{I}^{\perp}, \quad \phi_{I}^{\perp} \perp X_{1} .
$$

Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} w \phi_{R}=c_{R} \int_{\mathbb{R}^{N}} w^{2}, \quad \int_{\mathbb{R}^{N}} w \phi_{I}=c_{I} \int_{\mathbb{R}^{N}} w^{2}, \\
& d_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}\left(\phi_{R}, X_{1}\right)=\left\|\phi_{R}^{\perp}\right\|_{L^{2}}^{2}, \quad d_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}\left(\phi_{I}, X_{1}\right)=\left\|\phi_{I}^{\perp}\right\|_{L^{2}}^{2}
\end{aligned}
$$

By some simple computations we have

$$
\begin{aligned}
& L_{1}\left(\phi_{R}, \phi_{R}\right)+L_{1}\left(\phi_{I}, \phi_{I}\right) \\
& \quad+(\gamma-1) \alpha_{R}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{2}+(p-1)(\gamma-1)^{2}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{p+1} \\
& \quad+\alpha_{R}\left(\left\|\phi_{R}^{\perp}\right\|_{L^{2}}^{2}+\left\|\phi_{I}^{\perp}\right\|_{L^{2}}^{2}\right)=0 .
\end{aligned}
$$

By Lemma 3.8 (1)

$$
(\gamma-1) \alpha_{R}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{2}
$$

$$
+(p-1)(\gamma-1)^{2}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{p+1}
$$

$$
+\left(\alpha_{R}+a_{1}\right)\left(\left\|\phi_{R}^{\perp}\right\|_{L^{2}}^{2}+\left\|\phi_{I}^{\perp}\right\|_{L^{2}}^{2}\right) \leqslant 0
$$

Since $\gamma>1$, we must have $\alpha_{R}<0$, which proves Theorem 3.7 in Case 1.
CASE 2. $r=2, p=1+\frac{4}{N}$.
Set

$$
\begin{equation*}
w_{0}=\frac{1}{p-1} w+\frac{1}{2} x \nabla w \tag{3.38}
\end{equation*}
$$

We just need to take care of w_{0}.
Suppose that $\alpha_{0} \neq 0$ is an eigenvalue of L. Let $\alpha_{0}=\alpha_{R}+i \alpha_{I}$ and $\phi=\phi_{R}+i \phi_{I}$. Since $\alpha_{0} \neq 0$, we can choose $\phi \perp \operatorname{kernel}\left(L_{0}\right)$. Then similar to Case 1 , we obtain two equations (3.34) and (3.35). We now decompose

$$
\begin{aligned}
& \phi_{R}=c_{R} w+b_{R} w_{0}+\phi_{R}^{\perp}, \quad \phi_{R}^{\perp} \perp X_{1}, \\
& \phi_{I}=c_{I} w+b_{I} w_{0}+\phi_{I}^{\perp}, \quad \phi_{I}^{\perp} \perp X_{1} .
\end{aligned}
$$

$$
\text { Similar to Case } 1, \text { we obtain }
$$

$$
\begin{aligned}
& L_{1}\left(\phi_{R}, \phi_{R}\right)+L_{1}\left(\phi_{I}, \phi_{I}\right) \\
& \quad+(\gamma-1) \alpha_{R}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{2}+(p-1)(\gamma-1)^{2}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{p+1}
\end{aligned}
$$

By Lemma 3.8(2) 10

$$
\begin{aligned}
& (\gamma-1) \alpha_{R}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{2}+(p-1)(\gamma-1)^{2}\left(c_{R}^{2}+c_{I}^{2}\right) \int_{\mathbb{R}^{N}} w^{p+1} \\
& \quad+\alpha_{R}\left(b_{R}^{2}\left(\int_{\mathbb{R}^{N}} w_{0}^{2}\right)^{2}+b_{I}^{2}\left(\int_{\mathbb{R}^{N}} w_{0}^{2}\right)^{2}\right)+\left(\alpha_{R}+a_{2}\right)\left(\left\|\phi_{R}^{\perp}\right\|_{L^{2}}^{2}+\left\|\phi_{I}^{\perp}\right\|_{L^{2}}^{2}\right) \\
& \quad \leqslant 0
\end{aligned}
$$

If $\alpha_{R} \geqslant 0$, then necessarily we have

$$
2
$$

$$
+\alpha_{R}\left(b_{R}^{2}\left(\int w_{0}^{2}\right)^{2}+b_{I}^{2}\left(\int w_{0}^{2}\right)^{2}+\left\|\phi_{P}^{\perp}\right\|^{2}+\left\|\phi_{I}^{\perp}\right\|_{T}^{2}\right) \leqslant 0
$$

$\begin{array}{ll}\text { By Lemma 3.8(2) } & 11\end{array}$1213141516
$c_{R}=c_{I}=0, \quad \phi_{R}^{\perp}=0, \quad \phi_{I}^{\perp}=0$. 211922
Hence $\phi_{R}=b_{R} w_{0}, \phi_{I}=b_{I} w_{0}$. This implies that 2324
$b_{R} L_{0} w_{0}=\left(b_{R}-b_{I}\right) w_{0}, \quad b_{I} L_{0} w_{0}=\left(b_{R}+b_{I}\right) w_{0}$, 26
which is impossible unless $b_{R}=b_{I}=0$. A contradiction! 27
29
CASE 3. $r=p+1,1<p<\left(\frac{N+2}{N-2}\right)_{+}$. 30
Let $r=p+1$. L becomes 32
34$L=L_{0}-\frac{q r}{s+1} \frac{\int_{\mathbb{R}^{N}} w^{p}}{\int_{\mathbb{R}^{N}} w^{p+1}} w^{p}$.3536

We will follow the proof of Case 1 37

Let $\alpha_{0}=\alpha_{R}+i \alpha_{I}$ and $\phi=\phi_{R}+i \phi_{I}$. Since $\alpha_{0} \neq 0$, we can choose $\phi \perp \operatorname{kernel}\left(L_{0}\right)$. 38

Then similarly we obtain two equations39

$$
\begin{align*}
& L_{0} \phi_{R}-(p-1) \gamma \frac{\int_{\mathbb{R}^{N}} w^{p} \phi_{R}}{\int_{\mathbb{R}^{N}} w^{p+1}} w^{p}=\alpha_{R} \phi_{R}-\alpha_{I} \phi_{I} \tag{3.39}\\
& L_{0} \phi_{I}-(p-1) \gamma \frac{\int_{\mathbb{R}^{N}} w^{p} \phi_{I}}{\int_{\mathbb{R}^{N}} w^{p+1}} w^{p}=\alpha_{R} \phi_{I}+\alpha_{I} \phi_{R} \tag{3.40}
\end{align*}
$$

Multiplying (3.39) by ϕ_{R} and (3.40) by ϕ_{I} and adding them together, we obtain

$$
\begin{aligned}
-\alpha_{R} \int_{\mathbb{R}^{N}}\left(\phi_{R}^{2}+\phi_{I}^{2}\right)= & L_{3}\left(\phi_{R}, \phi_{R}\right)+L_{3}\left(\phi_{I}, \phi_{I}\right) \\
& +(p-1)(\gamma-1) \frac{\left(\int_{\mathbb{R}^{N}} w^{p} \phi_{R}\right)^{2}+\left(\int_{\mathbb{R}^{N}} w^{p} \phi_{I}\right)^{2}}{\int_{\mathbb{R}^{N}} w^{p+1}}
\end{aligned}
$$

By Lemma 3.8(3)

$$
\begin{aligned}
& \alpha_{R} \int_{\mathbb{R}^{N}}\left(\phi_{R}^{2}+\phi_{I}^{2}\right)+a_{3} d_{L^{2}}^{2}\left(\phi, X_{1}\right) \\
& \quad+(p-1)(\gamma-1) \frac{\left(\int_{\mathbb{R}^{N}} w^{p} \phi_{R}\right)^{2}+\left(\int_{\mathbb{R}^{N}} w^{p} \phi_{I}\right)^{2}}{\int_{\mathbb{R}^{N}} w^{p+1}} \leqslant 0
\end{aligned}
$$

which implies $\alpha_{R}<0$ since $\gamma>1$.
Theorem 3.7(i) in Case 3 is thus proved.
Proof of Theorem 3.7(iI). Assume that $\gamma<1$. To prove Theorem 3.7(ii), we introduce the following function:

$$
\begin{equation*}
h_{4}(\lambda):=\int_{\mathbb{R}^{N}} w^{r}-\gamma(p-1) \int_{\mathbb{R}^{N}}\left(\left(L_{0}-\lambda\right)^{-1} w^{p}\right) w^{r-1} . \tag{3.41}
\end{equation*}
$$

Note that $h_{4}(\lambda)$ is well defined in $\left(0, \mu_{1}\right)$, where μ_{1} is the unique positive eigenvalue of L_{0}. Let us denote the corresponding eigenfunction by Φ_{0}. Since μ_{1} is a principal eigenvalue, we may assume that $\Phi_{0}>0$.

It is easy to see that to prove Theorem 3.7(ii), it is enough to find a positive zero of $h_{4}(\lambda)$.

First we have

$$
\begin{equation*}
h_{4}(0)=\int_{\mathbb{R}^{N}} w^{r}-\gamma(p-1) \int_{\mathbb{R}^{N}} L_{0}^{-1} w^{p} w^{r-1}=(1-\gamma) \int_{\mathbb{R}^{N}} w^{r}>0 . \tag{3.42}
\end{equation*}
$$

Set $\Phi_{\lambda}=\left(L_{0}-\lambda\right)^{-1} w^{p}$. Then Φ_{λ} satisfies

$$
\begin{equation*}
\left(L_{0}-\lambda\right) \Phi_{\lambda}=w^{p} \tag{3.43}
\end{equation*}
$$

Multiplying (3.43) by Φ_{0} and integrating by parts, we have

$$
\left(\mu_{1}-\lambda\right) \int_{\mathbb{R}^{N}} \Phi_{\lambda} \Phi_{0}=\int_{\mathbb{R}^{N}} \Phi_{0} w^{p}
$$

which implies that

$$
\int_{\mathbb{R}^{N}} \Phi_{\lambda} \Phi_{0}=\frac{1}{\mu_{1}-\lambda} \int_{\mathbb{R}^{N}} \Phi_{0} w^{p}
$$

Let

$$
\begin{equation*}
\Phi_{\lambda}=\left(\frac{1}{\left(\mu_{1}-\lambda\right) \int_{\mathbb{R}^{N}} \Phi_{0}^{2}} \int_{\mathbb{R}^{N}} \Phi_{0} w^{p}\right) \Phi_{0}+\Phi_{\lambda}^{\perp}, \quad \Phi_{\lambda}^{\perp} \perp \Phi_{0} \tag{3.44}
\end{equation*}
$$

Then as $\lambda \rightarrow \mu_{1}, \lambda<\mu_{1}$, we have that $\left\|\Phi_{\lambda}^{\perp}\right\|_{L^{2}\left(\mathbb{R}^{N}\right)}$ is uniformly bounded and by (3.44)

$$
\int_{\mathbb{R}^{N}} \Phi_{\lambda} w^{r-1} \rightarrow+\infty
$$

which implies that

$$
\begin{equation*}
h_{4}(\lambda) \rightarrow-\infty \quad \text { as } \lambda \rightarrow \mu_{1}, \lambda<\mu_{1} . \tag{3.45}
\end{equation*}
$$

By (3.42) and (3.45), there is a $\lambda_{0} \in\left(0, \mu_{1}\right)$ such that $h_{4}\left(\lambda_{0}\right)=0$.
This proves (ii) of Theorem 3.7.
Proof of Theorem 3.7(iII). Similarly, we just need to find a zero of

$$
\begin{equation*}
h_{5}(\lambda):=\int_{\mathbb{R}^{N}} w^{2}-\gamma(p-1) \int_{\mathbb{R}^{N}} w\left(L_{0}-\lambda\right)^{-1} w^{p} \tag{3.46}
\end{equation*}
$$

We write it as

$$
h_{5}(\lambda)=(1-\gamma) \int_{\mathbb{R}^{N}} w^{2}-\gamma(p-1) \lambda \int_{\mathbb{R}^{N}} w\left[\left(L_{0}-\lambda\right)^{-1}(w)\right]
$$

$$
=(1-\gamma) \int_{\mathbb{R}^{N}} w^{2}-\gamma(p-1) \lambda \int_{\mathbb{R}^{N}} w L_{0}^{-1}(w)+O\left(\lambda^{2}\right)
$$

Since $\int_{\mathbb{R}^{N}} w L_{0}^{-1}(w)<0$, we see that for $0<\gamma-1$ small, there is a small $\lambda_{0}>0$ such $\quad{ }_{30}$ that $h_{5}\left(\lambda_{0}\right)>0$.

For general r, the author in [80] proved the following: ${ }_{33}$
THEOREM 3.9. 35
(1) If $\quad 36$

$$
\begin{equation*}
D(r):=\frac{(p-1) \int_{\mathbb{R}^{N}} L_{0}^{-1} w^{r-1} w^{r-1} \int_{\mathbb{R}^{N}} w^{2}}{\left(\int_{\mathbb{R}^{N}} w^{r}\right)^{2}}>0 \tag{3.47}
\end{equation*}
$$

$$
\begin{equation*}
1+\frac{1}{\sqrt{1+\rho_{0}}}<\gamma<1+\frac{1}{\sqrt{1-\rho_{0}}} \tag{3.48}
\end{equation*}
$$

 where \(\rho_{0}>0\) is given by 1
 $$
\begin{equation*}
\rho_{0}:=\frac{\int_{\mathbb{R}^{N}} w^{p+1}}{\sqrt{\int_{\mathbb{R}^{N}} w^{2 p} \int_{\mathbb{R}^{N}} w^{2}}}<1 . \tag{3.49}
\end{equation*}
$$

Then for any non-zero eigenvalue λ of problem (3.18), we have $\operatorname{Re}(\lambda)<-c_{1}<0$ for some $c_{1}>0$.
(2) If (p, q, r, s) satisfies

$$
\begin{equation*}
1+\frac{2 r}{N}<p<\left(\frac{N+2}{N-2}\right)_{+} \quad \text { and } \quad \gamma<1+c_{0} \tag{3.50}
\end{equation*}
$$

for some $c_{0}>0$. Then problem (3.18) has a real eigenvalue $\lambda_{1}>0$.
Generally speaking, $D(r)$ is very difficult to compute. A recent result of the author and L. Zhang partially solved this problem and moreover we obtained more general and explicit result. For example the following result are proved [81].

Theorem 3.10. Let

$$
F(r)=1-\frac{p-1}{2 r} N .
$$

$$
\begin{align*}
& \text { Suppose } 2<r<p+1,1<p<1+\frac{2 r}{N} \text { and } \\
& \qquad F(r) \geqslant \frac{\gamma-2}{\gamma} F(p+1)+\frac{|\gamma-2|}{\gamma} \sqrt{F(p+1)(F(p+1)-F(2))}, \tag{3.51}
\end{align*}
$$

then for any non-zero eigenvalue λ of problem (3.18), we have $\operatorname{Re}(\lambda)<-c_{1}<0$ for some $c_{1}>0$.

REMARK. Condition (3.51) holds if $2<r<p+1, F(r) \geqslant 0$ (i.e., $1<p \leqslant 1+\frac{2 r}{N}$) and $1<\gamma \leqslant 2$. Thus in this case we obtain the stability of the non-zero eigenvalues of (3.18). This is the first explicit result for the case when $r \notin\{2, p+1\}$. For $\gamma>2$, we need

$$
F(r) \geqslant \frac{\gamma-2}{\gamma}[F(p+1)-\sqrt{F(p+1)(F(p+1)-F(2))}]
$$

Going back to the shadow system case, the following result was proved in [77].
THEOREM 3.11. Assume that $\epsilon \ll 1$ and τ is small. If (p, q, r, s) satisfy (A) and (B) in Theorem 3.7, then
(1) single boundary spike solution at a non-degenerate local maximum point of mean curvature is stable, and
where $\rho_{0}>0$ is given by 1
(2) single interior spike solution is metastable. 43

Related work can also be found in [59] and [60].

3.4. Uniqueness of Hopf bifurcations

In Section 3.3, we have discussed the NLEP (3.17) when $\tau=0$. It is easy to see that when τ small, results in Theorem 3.7 still hold. On the other hand, for τ large, it is easy to see that there is an unstable eigenvalue [8] to (3.17). (In fact, as $\tau \rightarrow+\infty$, there is a positive eigenvalue near $\mu_{1}>0$.) Therefore, as τ varies from 0 to ∞, Hopf bifurcation may occur. In this section, we show that in some special cases, Hopf bifurcation is actually unique.

We consider the following non-local eigenvalue problem (putting $r=p=2, s=0$ in (3.17))

$$
\begin{equation*}
L \phi:=\Delta \phi-\phi+2 w \phi-\frac{\gamma}{1+\tau \lambda_{0}} \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{2}} w^{2}} w^{2}=\lambda_{0} \phi, \quad \phi \in H^{2}\left(\mathbb{R}^{N}\right) \tag{3.52}
\end{equation*}
$$

THEOREM 3.12. Let L be defined by (3.52). Assume that $N \leqslant 3$ and $\gamma>1$. Then there exists a unique $\tau=\tau_{1}>0$ such that for $\tau<\tau_{1}$, (3.52) admits a positive eigenvalue, and for $\tau>\tau_{1}$, all non-zero eigenvalues of problem (3.52) satisfy $\operatorname{Re}(\lambda)<0$. At $\tau=\tau_{1}$, L has a Hopf bifurcation.

Proof of Theorem 3.12. Let $\gamma>1$. As in [8], we may consider radially symmetric functions only. By Theorem 1.4 of [77], for $\tau=0$ (and by perturbation, for τ small), all eigenvalues lie on the left half plane. By [8], for τ large, there exist unstable eigenvalues.

Note that the eigenvalues will not cross through zero: in fact, if $\lambda_{0}=0$, then we have

$$
L_{0} \phi-\gamma \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{N}} w^{2}} w^{2}=0
$$

which implies that

$$
L_{0}\left(\phi-\gamma \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{N}} w^{2}} w\right)=0
$$

and hence by Lemma 3.2

$$
\phi-\gamma \frac{\int_{\mathbb{R}^{N}} w \phi}{\int_{\mathbb{R}^{N}} w^{2}} w \in X_{0}
$$

This is impossible since ϕ is radially symmetric and $\phi \neq c w$ for all $c \in R$.
Thus there must be a point τ_{1} at which L has a Hopf bifurcation, i.e., L has a purely imaginary eigenvalue $\alpha=\sqrt{-1} \alpha_{I}$. To prove Theorem 3.12, all we need to show is that τ_{1} is unique. That is

Lemma 3.13. Let $\gamma>1$. Then there exists a unique $\tau_{1}>0$ such that L has a Hopf bifurcation.

Proof. Let $\lambda_{0}=\sqrt{-1} \alpha_{I}$ be an eigenvalue of L. Without loss of generality, we may assume that $\alpha_{I}>0$. (Note that $-\sqrt{-1} \alpha_{I}$ is also an eigenvalue of L.) Let $\phi_{0}=\left(L_{0}-\right.$ $\left.\sqrt{-1} \alpha_{I}\right)^{-1} w^{2}$. Then (3.52) becomes

$$
\begin{equation*}
\frac{\int_{\mathbb{R}^{N}} w \phi_{0}}{\int_{\mathbb{R}^{N}} w^{2}}=\frac{1+\tau \sqrt{-1} \alpha_{I}}{\gamma} . \tag{3.53}
\end{equation*}
$$

Let $\phi_{0}=\phi_{0}^{R}+\sqrt{-1} \phi_{0}^{I}$. Then from (3.53), we obtain the two equations

$$
\begin{align*}
& \frac{\int_{\mathbb{R}^{N}} w \phi_{0}^{R}}{\int_{\mathbb{R}^{2}} w^{N}}=\frac{1}{\gamma}, \tag{3.54}\\
& \frac{\int_{\mathbb{R}^{N}} w \phi_{0}^{I}}{\int_{\mathbb{R}^{2}} w^{N}}=\frac{\tau \alpha_{I}}{\gamma} . \tag{3.55}
\end{align*}
$$

Note that (3.54) is independent of τ.
Let us now compute $\int_{\mathbb{R}^{N}} w \phi_{0}^{R}$. Observe that $\left(\phi_{0}^{R}, \phi_{0}^{I}\right)$ satisfies

$$
L_{0} \phi_{0}^{R}=w^{2}-\alpha_{I} \phi_{0}^{I}, \quad L_{0} \phi_{0}^{I}=\alpha_{I} \phi_{0}^{R} . \quad 18
$$

So $\phi_{0}^{R}=\alpha_{I}^{-1} L_{0} \phi_{0}^{I}$ and

$$
\begin{equation*}
\phi_{0}^{I}=\alpha_{I}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}, \quad \phi_{0}^{R}=L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2} . \tag{3.56}
\end{equation*}
$$

Substituting (3.56) into (3.54) and (3.55), we obtain

$$
\begin{align*}
& \frac{\int_{\mathbb{R}^{N}}\left[w L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}\right]}{\int_{\mathbb{R}^{N}} w^{2}}=\frac{1}{\gamma}, \tag{3.57}\\
& \frac{\int_{\mathbb{R}^{N}}\left[w\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}\right]}{\int_{\mathbb{R}^{2}} w^{2}}=\frac{\tau}{\gamma} . \tag{3.58}
\end{align*}
$$

Let

$$
h_{6}\left(\alpha_{I}\right)=\frac{\int_{\mathbb{R}^{N}} w L_{0}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}}{\int_{\mathbb{R}^{2}} w^{2}}
$$

Then integration by parts gives

$$
h_{6}\left(\alpha_{I}\right)=\frac{\int_{\mathbb{R}^{N}} w^{2}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-1} w^{2}}{\int_{\mathbb{R}^{N}} w^{2}}
$$

Note that

$$
h_{6}^{\prime}\left(\alpha_{I}\right)=-2 \alpha_{I} \frac{\int_{\mathbb{R}^{N}} w^{2}\left(L_{0}^{2}+\alpha_{I}^{2}\right)^{-2} w^{2}}{\int_{\mathbb{R}^{N}} w^{2}}<0 .
$$

So since 1

$$
h_{6}(0)=\frac{\int_{\mathbb{R}^{N}} w\left(L_{0}^{-1} w^{2}\right)}{\int}>0,
$$

$h_{6}\left(\alpha_{I}\right) \rightarrow 0$ as $\alpha_{I} \rightarrow \infty$, and $\gamma>1$, there exists a unique $\alpha_{I}>0$ such that (3.57) holds. $\quad 6$ Substituting this unique α_{I} into (3.58), we obtain a unique $\tau=\tau_{1}>0$. 7

Lemma 3.13 is thus proved.

3.5. Finite ϵ case

In all the previous sections, it is always assumed that ϵ is small. However, in practical ap- ${ }^{15}$ plications, it is vital to know how small ϵ should be. The finite ϵ case has been completely 16 characterized in one-dimensional case by Wei and Winter [89]. We summarize the results 17 here.

Without loss of generality, we may assume that $\Omega=(0,1)$. That is, we consider 18

$$
\left\{\begin{array}{l}
a_{t}=\epsilon^{2} a_{x x}-a+\frac{a^{p}}{\xi^{q}}, \quad 0<x<1, t>0, \\
\tau \xi_{t}=-\xi+\xi^{-s} \int_{0}^{1} a^{r} d x, \\
a>0, \quad a_{x}(0, t)=a_{x}(1, t)=0 .
\end{array}\right.
$$

The steady-state problem of (3.59) is equivalent to the following problem for the trans-
and

$$
\text { 10 } \quad 32
$$

$$
\epsilon^{2} u_{x x}-u+u^{p}=0, \quad
$$

$$
\begin{equation*}
u_{x}(x)<0,0<x<1, \quad u_{x}(0)=u_{x}(1)=0 . \tag{3.60}
\end{equation*}
$$

Letting $\quad 37$

$$
\begin{equation*}
L:=\frac{1}{\epsilon} \tag{3.61}
\end{equation*}
$$

and rescaling $u(x)=w_{L}(y)$, where $y=L x$, we see that w_{L} satisfies the following ODE:

$$
\begin{align*}
& w_{L}^{\prime \prime}-w_{L}+w_{L}^{p}=0 \\
& w_{L}^{\prime}(y)<0,0<y<L, \quad w_{L}^{\prime}(0)=w_{L}^{\prime}(L)=0 \tag{3.62}
\end{align*}
$$

Since (3.62) is an autonomous ODE, it is easy to see that a non-trivial solution exists if and only if

$$
\begin{equation*}
\epsilon<\frac{\sqrt{p-1}}{\pi} \quad\left(\text { or } L>\frac{\pi}{\sqrt{p-1}}\right) . \tag{3.63}
\end{equation*}
$$

The stability of steady-state solutions to (3.59) has been a subject of study in the last few years. A recent result of [56] (see Theorem 1.1 of [56]) says that a stable solution to (3.59) must be asymptotically monotone. More precisely, if $(A(x, t), \xi(t)), t \geqslant 0$ is a solution to (3.59) that is linearly neutrally stable, then there is a $t_{0}>0$ such that

$$
\begin{equation*}
a_{x}\left(x, t_{0}\right) \neq 0 \quad \text { for all }(x, t) \in(0,1) \times\left[t_{0},+\infty\right) \tag{3.64}
\end{equation*}
$$

Thus all non-monotone steady-state solutions are linearly unstable. Therefore we focus our attention on monotone solutions. There are two monotone solutions-the monotone increasing one and the monotone decreasing one. Since these two solutions differ by reflection, we consider the monotone decreasing function only. This solution is then called u_{ϵ} and it has the least energy among all positive solutions of (3.60), see [60]. If $L \leqslant \frac{\pi}{\sqrt{p-1}}$, then $w_{L}=1$. We also denote the corresponding solutions to (3.59) by

$$
\begin{equation*}
a_{L}(x)=\xi_{L}^{\frac{q}{p-1}} w_{L}(L x), \quad \xi_{L}^{1+s-\frac{q r}{p-1}}=\int_{0}^{1} w_{L}^{r}(L x) d x \tag{3.65}
\end{equation*}
$$

Before stating our results, we first introduce some notation. Let $I=(0, L)$ and $\phi \in$ $H^{2}(I)$. We define the following operator:

$$
\begin{equation*}
\mathcal{L}[\phi]=\phi^{\prime \prime}-\phi+p w_{L}^{p-1} \phi . \tag{3.66}
\end{equation*}
$$

It is proved [89] that \mathcal{L} has the spectrum

$$
\begin{equation*}
\lambda_{1}>0, \quad \lambda_{j}<0, \quad j=2,3, \ldots . \tag{3.67}
\end{equation*}
$$

Hence for the map \mathcal{L} from $H^{2}(I)$ to $L^{2}(I)$ we know that \mathcal{L}^{-1} exists, where \mathcal{L}^{-1} is the inverse of \mathcal{L}. This implies that $\mathcal{L}^{-1} w_{L}$ is well defined.

Then we have the following theorem
Theorem 3.14. Assume that $L>\frac{\pi}{\sqrt{p-1}}$ and either

$$
\begin{equation*}
r=2, \quad \int_{0}^{L} w_{L} \mathcal{L}^{-1} w_{L} d y>0 \tag{3.68}
\end{equation*}
$$

or

$$
\begin{equation*}
r=p+1 \tag{3.69}
\end{equation*}
$$

Then $\left(a_{L}, \xi_{L}\right)$ (given by (3.65)) is a linearly stable steady state to (3.59) for τ small.

This theorem reduces the issue of stability to the computation of the integral

$$
\int_{0}^{L} w_{L} \mathcal{L}^{-1} w_{L} d y
$$

This integral is quite difficult to compute for general L.
For τ finite, we have the following theorem.

THEOREM 3.15. Let (3.68) be true and $L>\frac{\pi}{\sqrt{p-1}}$. Then there exists a unique $\tau_{c}>0$ such that for $\tau<\tau_{c},\left(a_{L}, \xi_{L}\right)$ is stable and for $\tau>\tau_{c},\left(a_{L}, \xi_{L}\right)$ is unstable. At $\tau=\tau_{c}$, there exists a unique Hopf bifurcation. Furthermore, the Hopf bifurcation is transversal, namely, we have

$$
\begin{equation*}
\left.\frac{d \lambda_{R}}{d \tau}\right|_{\tau=\tau_{c}}>0 \tag{3.70}
\end{equation*}
$$

where λ_{R} is the real part of the eigenvalue.

Using Weierstrass $p(z)$ functions and Jacobi elliptic integrals, one can show that $\int_{0}^{L} w_{L} \mathcal{L}^{-1} w_{L} d y>0$ for all $L>\pi$ in the cases $r=2, p=2,3$. The original GiererMeinhardt system $((p, q, r, s)=(2,1,2,0))$ falls into this class. Thus for the shadow system of the original Gierer-Meinhardt system, we have a complete picture of the stability of (a_{L}, ξ_{L}) for any $\tau>0$ and any $L>0$, by the following theorem

THEOREM 3.16. Assume that $L>\frac{\pi}{\sqrt{p-1}}$ and $r=2, p=2$ or 3 . Then there exists a unique $\tau_{c}>0$ such that for $\tau<\tau_{c},\left(a_{L}, \xi_{L}\right)$ is stable and for $\tau>\tau_{c},\left(A_{L}, \xi_{L}\right)$ is unstable. At $\tau=\tau_{c}$, there exists a Hopf bifurcation. Furthermore, the Hopf bifurcation is transversal.

Theorem 3.16 gives a complete picture of the stability of non-trivial monotone solutions in terms of L since for $L \leqslant \frac{\pi}{\sqrt{p-1}}$ we necessarily have $w_{L} \equiv 1$. Combining this with the results of [56], we have completely classified stability and instability of all steady-state solutions for all $\epsilon>0$ for the shadow system of the original Gierer-Meinhardt system.

We do not know if the Hopf bifurcation in Theorem 3.15 is subcritical or supercritical. This is related to another interesting question: is there time-periodic solution $(a(x, t), \xi(x, t))$ to (3.59) at the Hopf bifurcation point $\tau=\tau_{c}$? If so, is it stable or unstable?

We can also extend this idea to general domains in $\mathbb{R}^{N}, N \geqslant 2$. Namely we consider

$$
\left\{\begin{array}{l}
a_{t}=\Delta a-a+\frac{a^{p}}{\xi^{q}}, \quad x \in \Omega_{L}, \quad t>0 \tag{3.71}\\
\tau \xi_{t}=-\xi+\xi^{-s} \frac{1}{\left|\Omega_{L}\right|} \int_{\Omega_{L}} a^{r} \\
a>0, \quad \frac{\partial a}{\partial v}=0 \quad \text { on } \partial \Omega_{L}
\end{array}\right.
$$27

where we have scaled the ϵ into the domain through $\Omega_{L}=\frac{1}{\epsilon} \Omega$. In this case, let us assume that $\Omega_{L} \subset \mathbb{R}^{N}$ is a smooth and bounded domain, and the exponents (p, q, r, s) satisfy the following condition

$$
p>1, \quad q>0, \quad r>0, \quad s \geqslant 0, \quad \gamma:=\frac{q r}{(p-1)(s+1)}>1,
$$

and p is subcritical:

$$
1<p<\frac{N+2}{N-2} \quad \text { if } N \geqslant 3 ; \quad 1<p<+\infty \quad \text { if } N=2
$$

The steady state solution of (3.71) is given by

$$
\begin{equation*}
a=\xi^{\frac{q}{p-1}} u, \quad \xi^{1+s-\frac{q r}{p-1}}=\frac{1}{\left|\Omega_{L}\right|} \int_{\Omega_{L}} u^{r} \tag{3.72}
\end{equation*}
$$

where u is a solution of the following problem:

$$
\begin{cases}\Delta u-u+u^{p}=0, & u>0 \tag{3.73}\\ \frac{\text { in } \Omega_{L}}{\partial v}=0 & \text { on } \partial \Omega_{L} .\end{cases}
$$

We again consider the minimizer solution $w_{L}(x)$ which satisfies (3.73) and

$$
\begin{equation*}
E\left[w_{L}\right]=\inf _{u \in H^{1}\left(\Omega_{L}\right), u \neq 0} E[u] \tag{3.74}
\end{equation*}
$$

where

$$
E[u]=\frac{\int_{\Omega_{L}}\left(|\nabla u|^{2}+u^{2}\right)}{\left(\int_{\Omega_{L}} u^{p+1}\right)^{\frac{2}{p+1}}} .
$$

Then $\lambda_{1}>0$ and $\lambda_{2} \leqslant 0$. 1
We now put two important assumptions: 3
We first assume that 4
(A1) \mathcal{L}^{-1} exists.
7
Under (A1), we assume that 8
9
(A2) $\int_{\Omega_{L}} w_{L}\left(\mathcal{L}^{-1} w_{L}\right)>0$. 10 11 12
We can now state the following theorem 13 14
Theorem 3.18. Assume that either 1617
$r=p+1, \quad$ and (A1) holds, 1819
or 2021
$r=2, \quad$ and (A1) and (A2) hold. 2223
Then $\left(a_{L}, \xi_{L}\right)$ is linearly stable for τ small. 24
In the case of $r=2$, there exists a unique $\tau=\tau_{c}$ such that $\left(a_{L}, \xi_{L}\right)$ is stable for $\tau<\tau_{c}$,unstable for $\tau>\tau_{c}$, and there is a Hopf bifurcation at $\tau=\tau_{c}$. Furthermore, the Hopf26
bifurcation is transversal.2728
29The proof of Theorem (3.18) is similar to the one-dimensional case.
30It remains an interesting and difficult question as to verify (A1) and (A2) analytically. If
L is large, the assumption (A1) is verified in [76] and assumption (A2) holds true if 31
$1<p<1+\frac{4}{N}$. 33 34 35
This recovers the results of [77]. 36
It is difficult to verify (A1) and (A2) in general domains. One may ask: does (A1) hold 38true for generic domains?

- 39
3.6. The stability of boundary spikes for the Robin boundary condition 42
The stability of least energy solution in the Robin boundary condition case is quite com- 44
plicated. We state the following result which deals with one-dimensional case only: 45

Theorem 3.19. (See [45].) Consider the following

$$
\left\{\begin{array}{l}
a_{t}=\epsilon^{2} a_{x x}-a+\frac{a^{p}}{\xi^{q}}, \quad 0<x<1, t>0 \tag{3.78}\\
\tau \xi_{t}=-\xi+\xi^{-s} \int_{0}^{1} a^{r} d x \\
a>0, \quad \epsilon a_{x}(0, t)+\lambda a(0, t)=\epsilon a_{x}(1, t)+\lambda a(1, t)=0 \\
h_{x}(0, t)=h_{x}(1, t)=0
\end{array}\right.
$$

Assume that $r=2,1<p \leqslant 3$ or $r=p+1,1<p<+\infty$. Then for each $\lambda \in(0,1)$ the least energy solution is stable for $\tau<\tau_{1}$ and unstable for $\tau>\tau_{1}$. At τ_{1}, there is a Hopf bifurcation.

The main idea of the proof is similar to that of Theorem 3.14. Here we have to study an NLEP on a half line with Robin boundary condition:

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}-\phi+p w_{x_{0}}^{p-1} \phi-\gamma(p-1) \frac{\int_{0}^{\infty} w_{x_{0}} \phi}{\int_{0}^{\infty} w_{x_{0}}^{2}} w_{x_{0}}^{p}=\alpha \phi, \quad 0<y<+\infty \tag{3.79}\\
\phi^{\prime}(0)-\lambda \phi(0)=0
\end{array}\right.
$$

where $w_{x_{0}}=w\left(y-x_{0}\right)$ with $w^{\prime}\left(-x_{0}\right)=\lambda w\left(-x_{0}\right)$. Let $L_{x_{0}}(\phi)=\phi^{\prime \prime}-\phi+p w_{x_{0}}^{p-1} \phi$. Then we need to show that

$$
\begin{equation*}
\int_{0}^{\infty} w_{x_{0}}\left[L_{x_{0}}^{-1}\left(w_{x_{0}}\right)\right]>0 \tag{3.80}
\end{equation*}
$$

By some lengthy computations, we can show that the function $\int_{0}^{\infty} w_{x_{0}}\left[L_{x_{0}}^{-1}\left(w_{x_{0}}\right)\right]$ is an increasing function in x_{0} when $p<3$, and a constant when $p=3$, and an decreasing function when $p>3$.

REMARK 3.6.1. An interesting phenomena is the case of $3<p<5$. In this case, one can show that there exists a $a_{0} \in(0,1)$ such that the boundary spike is stable when $a \in$ $\left(0, a_{0}\right)$ and unstable when $a \in\left(a_{0}, 1\right)$. It is quite interesting to see that the Robin boundary condition can also introduce some instability.

4. Full Gierer-Meinhardt system: One-dimensional case

In this section, we study the full Gierer-Meinhardt system in the one-dimensional case.
Unlike the shadow system case, where one can reduce the existence of solutions to a variational elliptic problem, there is no variational structure for the full Gierer-Meinhardt system. This is the major problem, which is also the source of all interesting new phenomena.

We begin with the steady-state problem in the full space case.
4.1. Bound states: the case of $\Omega=\mathbb{R}^{1}$

Let $\Omega=\mathbb{R}^{1}$. By a change of variables the steady-state problem for (GM) can be conveniently written as follows

$$
\begin{cases}\Delta a-a+\frac{a^{p}}{h^{q}}=0, a>0 & \text { in } \mathbb{R}^{1}, \tag{4.1}\\ \Delta h-\sigma^{2} h+\frac{a^{r}}{h^{s}}=0, h>0 & \text { in } \mathbb{R}^{1}, \\ a(x), h(x) \rightarrow 0 & \text { as }|x| \rightarrow+\infty\end{cases}
$$

where

$$
\sigma^{2}=\frac{\epsilon^{2}}{D} \ll 1
$$

The existence of multiple spikes solutions to (4.1) is referred to as "symmetry-breaking" phenomena. This was proved in [12] (by dynamical system techniques) and [7] (by PDE methods). We will sketch the PDE methods in Section 5.1.

TheOrem 4.1. (See [7,12].) For each fixed positive integer k, there exists $\sigma_{k}>0$ such that problem (4.1) has a solution ($a_{\epsilon}, h_{\epsilon}$) with the following properties

$$
\begin{equation*}
a_{\epsilon}(x) \sim \frac{c_{k}}{\sigma}\left(\sum_{j=1}^{k} w\left(x-\xi_{j}^{\sigma}\right)\right) \tag{4.2}
\end{equation*}
$$

where $c_{k}>0$ is a generic constant and

$$
\begin{equation*}
\xi_{j}^{\sigma}=\left(j-\frac{k+1}{2}\right) \log \frac{1}{\sigma}+O\left(\log \log \frac{1}{\sigma}\right), \quad j=1, \ldots, k \tag{4.3}
\end{equation*}
$$

4.2. The bounded domain case: Existence of symmetric K-spikes

Without loss of generality, we may assume that $\Omega=(-1,1)$. We consider the following elliptic system

$$
\left\{\begin{array}{l}
\epsilon^{2} a^{\prime \prime}-a+\frac{a^{p}}{h^{q}}=0, \quad-1<x<1, \tag{4.4}\\
D h^{\prime \prime}-h+\frac{a^{r}}{h^{s}}=0, \quad-1<x<1, \\
a^{\prime}(\pm 1)=h^{\prime}(\pm 1)=0
\end{array}\right.
$$

In this case, the existence of multiple-peaked solutions was first obtained by I. Takagi in [67].

THEOREM 4.2. (See [67].) Fix any positive integer K. If $\frac{\epsilon}{\sqrt{D}}$ sufficiently small, there exists a K-peaked solution $\left(a_{\epsilon, K}, h_{\epsilon K}\right)$ to (4.4) such that $\left(a_{\epsilon, K}, h_{\epsilon, K}\right)$ has exactly K local 45
maximum points $-1<x_{1}<x_{2}<\cdots<x_{K}<1$ which are equally distributed. In fact, we have

$$
x_{j}=-1+\frac{2 j-1}{K}, \quad j=1, \ldots, K
$$

Takagi's proof uses the symmetry of the problems: by reflection, one can reduce the existence of multiple symmetric spikes solutions to studying the existence of one boundary spike solution. Namely, we just need to study the following system

$$
\left\{\begin{array}{l}
\epsilon^{2} a^{\prime \prime}-a+\frac{a^{p}}{h^{q}}=0, \quad 0<x<\frac{1}{2 K}, \tag{4.5}\\
D h^{\prime \prime}-h+\frac{a^{r}}{h^{s}}=0, \quad 0<x<\frac{1}{2 K}, \\
a(x) \sim \xi \frac{q}{p-1} w\left(\frac{x}{\epsilon}\right), \quad h(0)=\xi \\
a^{\prime}(0)=a^{\prime}\left(\frac{1}{2 K}\right)=h^{\prime}(0)=h^{\prime}\left(\frac{1}{2 K}\right)=0
\end{array}\right.
$$

For the one boundary spike solution, one can use the Implicit Function Theorem, since the linearized operator is invertible in the space of functions with Neumann boundary conditions. (The last statement follows from the fact that the kernel of the operator $\Delta-1+p w^{p-1}$ consists exactly those of partial derivatives of w. See Lemma 3.2.)

4.3. The bounded domain case: existence of asymmetric K-spikes

In the bounded domain case, as D is getting smaller, more and more new solutions appear. By using the same matched asymptotic analysis in [34], M. Ward and Wei in [70] discovered that for $D<D_{K}$, where D_{K} is given by (4.67) below, problem (4.4) has asymmetric K-peaked steady-state solutions. Such asymmetric solutions are generated by two types of peaks-called type \mathbf{A} and type \mathbf{B}, respectively. Type \mathbf{A} and type \mathbf{B} peaks have different heights. They can be arranged in any given order

ABAABBB...ABBBA...B
to form an K-peaked solution. The existence of such solutions is surprising. It shows that the solution structure of (4.4) is much more complicated than one would expect. The stability of such asymmetric K-peaked solutions is also studied in [70], through a formal approach. We remark that asymmetric patterns can also be obtained for the Gierer-Meinhardt system on the real line, see [12].

In this and next section, we present a rigorous and unified theoretic foundation for the existence and stability of general K-peaked (symmetric or asymmetric) solutions. In particular, the results of [34] and [70] are rigorously established. Moreover, we show that if the K peaks are separated, then they are generated by peaks of type \mathbf{A} and type \mathbf{B}, respectively. This implies that there are only two kinds of K-peaked patterns: symmetric K-peaked solutions constructed in [67] and asymmetric K-peaked patterns constructed in [70].

The existence proof is based on Lyapunov-Schmidt reduction. Stability is proved by first separating the problem into the case of large eigenvalues which tend to a non-zero limit and the case of small eigenvalues which tend to zero in the limit $\epsilon \rightarrow 0$. Large eigenvalues are then explored by studying non-local eigenvalue problems using results in Section 3.3 and employing an idea of Dancer [8]. Small eigenvalues are calculated explicitly by an 5 asymptotic analysis with rigorous error estimates.

In this section, we present the existence part.
Before we state our main results, we introduce some notation. Let $G_{D}(x, z)$ be the Green function of

$$
\left\{\begin{array}{l}
D G_{D}^{\prime \prime}(x, z)-G_{D}(x, z)+\delta_{z} i(x)=0 \quad \text { in }(-1,1) \tag{4.6}\\
G_{D}^{\prime}(-1, z)=G_{D}^{\prime}(1, z)=0
\end{array}\right.
$$

We can calculate explicitly

$$
G_{D}(x, z)= \begin{cases}\frac{\theta}{\sinh (2 \theta)} \cosh [\theta(1+x)] \cosh [\theta(1-z)], & -1<x<z \tag{4.7}\\ \frac{\theta}{\sinh (2 \theta)} \cosh [\theta(1-x)] \cosh [\theta(1+z)], & z<x<1\end{cases}
$$

where

$$
\theta=D^{-1 / 2}
$$

We set

$$
\begin{equation*}
K_{D}(|x-z|)=\frac{1}{2 \sqrt{D}} e^{-\frac{1}{\sqrt{D}}|x-z|} \tag{4.8}
\end{equation*}
$$

to be the singular part of $G_{D}(x, z)$ and by $G_{D}=K_{D}-H_{D}$ we define the regular part H_{D} of G_{D}. Note that H_{D} is C^{∞} in both x and z.

Let $-1<t_{1}^{0}<\cdots<t_{j}^{0}<\cdots<t_{K}^{0}<1$ be K points in $(-1,1)$ and w be the unique solution of (2.8).
Put

$$
\begin{equation*}
\xi_{\epsilon}:=\left(\epsilon \int_{R} w^{r}(z) d z\right)^{\frac{p-1}{(p-1)(s+1)-q r}} \tag{4.9}
\end{equation*}
$$

We introduce several matrices for later use: For $\mathbf{t}=\left(t_{1}, \ldots, t_{K}\right) \in(-1,1)^{K}$, let

$$
\begin{equation*}
\mathcal{G}_{D}(\mathbf{t})=\left(G_{D}\left(t_{i}, t_{j}\right)\right) \tag{4.10}
\end{equation*}
$$

Let us denote $\frac{\partial}{\partial t_{i}}$ as $\nabla_{t_{i}}$. When $i \neq j$, we can define $\nabla_{t_{i}} G\left(t_{i}, t_{j}\right)$ in the classical way. ${ }_{41}^{40}$
When $i=j, K_{D}\left(\left|t_{i}-t_{j}\right|\right)=K_{D}(0)=\frac{1}{2 \sqrt{D}}$ is a constant and we define $\quad 42$

$$
\nabla_{t_{i}} G_{D}\left(t_{i}, t_{i}\right):=-\left.\frac{\partial}{\partial x}\right|_{x=t_{i}} H\left(x, t_{i}\right)
$$

Similarly, we define

$$
\nabla_{t_{i}} \nabla_{t_{j}} G_{D}\left(t_{i}, t_{j}\right)= \begin{cases}\left.\left.\frac{\partial}{\partial x}\right|_{x=t_{i}} \frac{\partial}{\partial y}\right|_{y=t_{i}} H_{D}(x, y) & \text { if } i=j, \tag{4.11}\\ \nabla_{t_{i}} \nabla_{t_{j}} G_{D}\left(t_{i}, t_{j}\right) & \text { if } i \neq j .\end{cases}
$$

Now the derivatives of \mathcal{G} are defined as follows:

$$
\begin{align*}
& \nabla \mathcal{G}_{D}(\mathbf{t})=\left(\nabla_{t_{i}} G_{D}\left(t_{i}, t_{j}\right)\right), \tag{4.12}\\
& \nabla^{2} \mathcal{G}_{D}(\mathbf{t})=\left(\nabla_{t_{i}} \nabla_{t_{j}} G_{D}\left(t_{i}, t_{j}\right)\right) \tag{4.13}
\end{align*}
$$

We now have our first assumption:
(H1) There exists a solution $\left(\hat{\xi}_{1}^{0}, \ldots, \hat{\xi}_{N}^{0}\right)$ of the following equation

$$
\begin{equation*}
\sum_{j=1}^{N} G_{D}\left(t_{i}^{0}, t_{j}^{0}\right)\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s}=\hat{\xi}_{i}^{0}, \quad i=1, \ldots, N \tag{4.14}
\end{equation*}
$$

Next we introduce the following matrix

$$
\begin{equation*}
b_{i j}=G_{D}\left(t_{i}^{0}, t_{j}^{0}\right)\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s-1}, \quad \mathcal{B}=\left(b_{i j}\right) \tag{4.15}
\end{equation*}
$$

Our second assumption is the following:

(H2) It holds that 25

$$
\begin{equation*}
\frac{p-1}{q r-s(p-1)} \notin \sigma(\mathcal{B}) \tag{4.16}
\end{equation*}
$$

where $\sigma(\mathcal{B})$ is the set of eigenvalues of \mathcal{B}.

REmARK 4.3.1. Since the matrix \mathcal{B} is of the form $\mathcal{G}_{D} \mathcal{D}$, where \mathcal{G}_{D} is symmetric and \mathcal{D} is ${ }_{32}$ a diagonal matrix, it is easy to see that the eigenvalues of \mathcal{B} are real.
By the assumption (H2) and the implicit function theorem, for $\mathbf{t}=\left(t_{1}, \ldots, t_{K}\right)$ near $\mathbf{t}_{0}=\left(t_{1}^{0}, \ldots, t_{K}^{0}\right)$, there exists a unique solution $\hat{\xi}(\mathbf{t})=\left(\hat{\xi}_{1}(\mathbf{t}), \ldots, \hat{\xi}_{K}(\mathbf{t})\right)$ for the following equation

$$
\begin{equation*}
\sum_{j=1}^{K} G_{D}\left(t_{i}, t_{j}\right) \hat{\xi_{j}} \frac{q r}{p-1}-s=\hat{\xi}_{i}, \quad i=1, \ldots, K \tag{4.17}
\end{equation*}
$$

Set

$$
\begin{equation*}
\mathcal{H}(\mathbf{t})=\left(\hat{\xi}_{i}(\mathbf{t}) \delta_{i j}\right) \tag{4.18}
\end{equation*}
$$

We define the following vector field:

$$
F(\mathbf{t})=\left(F_{1}(\mathbf{t}), \ldots, F_{K}(\mathbf{t})\right),
$$

where

$$
F_{i}(\mathbf{t})=\sum^{K} \nabla_{t_{i}} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s}
$$

$$
9
$$

$$
=-\nabla_{t_{i}} H_{D}\left(t_{i}, t_{i}\right) \hat{\xi}_{i}^{\frac{q r}{p-1}-s}+\sum_{l \neq i} \nabla_{t_{i}} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s}
$$

$$
\begin{equation*}
i=1, \ldots, K \tag{4.19}
\end{equation*}
$$

Set

$$
\begin{equation*}
\mathcal{M}(\mathbf{t})=\left(\hat{\xi}_{i}^{-1} \nabla_{t_{j}} F_{i}(\mathbf{t})\right) \tag{4.20}
\end{equation*}
$$

Our final assumption concerns the vector field $F(\mathbf{t})$.
(H3) We assume that at $\mathbf{t}_{0}=\left(t_{1}^{0}, \ldots, t_{K}^{0}\right)$:

$$
\begin{equation*}
F\left(\mathbf{t}_{0}\right)=0 \tag{4.21}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{M}\left(\mathbf{t}_{0}\right)\right) \neq 0 \tag{4.22}
\end{equation*}
$$

Let us now calculate $\mathcal{M}\left(\mathbf{t}^{0}\right)$: Therefore we first compute the derivatives of $\hat{\xi}$. It is easy to 25 see that $\hat{\xi}(\mathbf{t})$ is C^{1} in \mathbf{t}. We can calculate: 27

$$
\nabla_{t_{j}} \hat{\xi}_{i}=\left(\frac{q r}{p-1}-s\right) \sum_{l=1}^{K} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s-1} \nabla_{t_{j}} \hat{\xi}_{l}
$$

$$
+\sum_{l=1}^{K} \frac{\partial}{\partial t_{j}}\left(G_{D}\left(t_{i}, t_{l}\right)\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s} .
$$

$$
32
$$

$$
33
$$34

For $i \neq j$, we have $\quad 36$ $\nabla_{t} \hat{\xi}_{i}=\left(\frac{q r}{p-1}-s\right) \sum_{l=1}^{N} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s-1} \nabla_{t_{j}} \hat{\xi}_{l}+\nabla_{t_{j}} G_{D}\left(t_{i}, t_{j}\right) \hat{\xi}_{j}^{\frac{q r}{p-1}-s}$ 37

For $i=j$, we have

$$
\nabla_{t_{j}} \hat{\xi}_{i}=\left(\frac{q r}{p-1}-s\right) \sum_{l=1}^{K} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s-1} \nabla_{t_{i}} \hat{\xi}_{l}+\sum_{l=1}^{K} \frac{\partial}{\partial t_{i}}\left(G_{D}\left(t_{i}, t_{l}\right)\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s}
$$

$$
=\left(\frac{q r}{p-1}-s\right) \sum_{l=1}^{K} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s-1} \nabla_{t_{i}} \hat{\xi}_{l}+\nabla_{t_{i}} G_{D}\left(t_{i}, t_{i}\right) \hat{\xi}_{i}^{\frac{q r}{p-1}-s}
$$

$$
+\sum_{l=1}^{K} \nabla_{t_{i}} G_{D}\left(t_{i}, t_{l}\right) \hat{\xi}_{l}^{\frac{q r}{p-1}-s}
$$

$$
\text { since } \frac{\partial}{\partial t_{i}} G_{D}\left(t_{i}, t_{i}\right)=2 \nabla_{t_{i}} G_{D}\left(t_{i}, t_{i}\right) \text {. }
$$

Note that

$$
\left(\nabla_{t_{j}} G_{D}\left(t_{i}, t_{j}\right)\right)=\left(\nabla \mathcal{G}_{D}\right)^{T}
$$

Therefore if we denote the matrix

$$
\begin{equation*}
\nabla \xi=\left(\nabla_{t_{j}} \hat{\xi}_{i}\right) \tag{4.23}
\end{equation*}
$$

then we have

REMARK 4.3.2. In the case of symmetric K-peaked solutions, conditions (H2) and (H3) are not needed, as in the construction of solutions one can restrict the function space to the class of symmetric functions (see for example [67]). Note that for small ϵ (and not only in the limit $\epsilon \rightarrow 0$) the peaks are placed equidistantly.

REMARK 4.3.3. Our results here can be applied to give a rigorous proof for the existence and stability of K-peaked solutions consisting of peaks with different heights.

In [70], by using matched asymptotic analysis, Ward and the first author constructed such solutions and studied their stability. We now summarize their main ideas. First (4.4) is solved in a small interval $(-l, l)$:

$$
\begin{cases}\epsilon^{2} a^{\prime \prime}-a+\frac{a^{p}}{h^{q}}=0 & \text { in }(-l, l), \tag{4.29}\\ D h^{\prime \prime}-h+\frac{a^{\prime}}{h^{s}}=0 & \text { in }(-l, l), \\ a(x)>0, h(x)>0 & \text { in }(-l, l), \\ a^{\prime}(-l)=a^{\prime}(l)=h^{\prime}(-l)=h^{\prime}(l)=0 . & \end{cases}
$$

Then the single interior symmetric spike solution is considered which was constructed by I. Takagi [67]. By some simple computations based on (4.6), we have that

$$
\begin{equation*}
h(l) \sim c(D) b\left(\frac{l}{\sqrt{D}}\right) \tag{4.30}
\end{equation*}
$$

where $c(D)$ is some positive constant depending on D only and the function $b(z)$ is given by

$$
\begin{equation*}
b(z):=\frac{\tanh ^{\alpha}(z)}{\cosh (z)}, \quad \alpha:=\frac{(p-1)}{q r-(s+1)(p-1)} . \tag{4.31}
\end{equation*}
$$

The idea now is that we fix l and try to find another $\bar{l} \neq l$ such that the following holds

$$
\begin{equation*}
b\left(\frac{l}{\sqrt{D}}\right)=b\left(\frac{\bar{l}}{\sqrt{D}}\right), \quad 0<l<\bar{l}<1, \tag{4.32}
\end{equation*}
$$

which will imply that $h(l)=h(\bar{l})$. This shows that if there exists a solution to (4.32), we may match up $h(l)$ and $h(\bar{l})$. In other words, we may match up solutions of (4.29) in different intervals.

It turns out that for D small, (4.32) is always solvable. Now (4.32) has to be solved along with the following interval constraint:

$$
\begin{equation*}
K_{1} l+K_{2} \bar{l}=1, \quad K_{1}+K_{2}=K \tag{4.33}
\end{equation*}
$$

For a solution l of (4.60) and (4.33) and $j=1, \ldots, K$ we define

$$
\begin{equation*}
l_{j}=l \quad \text { or } \quad l_{j}=\bar{l} \tag{4.34}
\end{equation*}
$$

where the number of j 's such that $l_{j}=l$ is K_{1} (and consequently the number of j 's such that $l_{j}=\bar{l}$ is K_{2}). We call the small spike with $l_{j}=l$ type \mathbf{A} and the large spike with $l_{j}=\bar{l} \quad 2$ type B.

Then we choose t_{j}^{0} such that

$$
\left|t_{j}^{0}-t_{j+1}^{0}\right|=l_{j}+l_{j-1}, \quad j=0, \ldots, K
$$

where $t_{0}^{0}=-1, t_{K+1}^{0}=1$.
By using matched asymptotics, we now have K_{1} type \mathbf{A} and K_{2} type \mathbf{B} peaks. This ends the short review of the ideas in [70]. Let us now use Theorem 4.3 to give a rigorous proof of results of [70]. In order to apply Theorem 4.3, we have to check the three assumptions (H1), (H2) and (H3).

To this end, let us set

$$
\begin{equation*}
\hat{\xi}_{j}^{0}=(2 \sqrt{D}) \tanh \left(\theta_{j}\right), \quad j=1, \ldots, K, \tag{4.35}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{j}=\frac{l_{j}}{\sqrt{D}} \tag{4.36}
\end{equation*}
$$

It is difficult to check (H1) directly. Instead we note that \mathcal{G}_{D}^{-1} is a tridiagonal matrix. (See [34] and [70].) More precisely, we calculate

$$
\mathcal{G}_{D}^{-1}=\left(a_{i j}\right)=2 \sqrt{D}\left(\begin{array}{cccccc}
\gamma_{1} & \beta_{1} & 0 & \ddots & \ddots & 0 \\
\beta_{1} & \gamma_{2} & \beta_{2} & \ddots & \ddots & \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & \ddots & \beta_{j-1} & \gamma_{j} & \beta_{j} & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & 0 & \beta_{N-1} & \gamma_{N}
\end{array}\right)
$$

$$
\gamma_{j}=\operatorname{coth}\left(\theta_{j-1}+\theta_{j}\right)+\operatorname{coth}\left(\theta_{j}+\theta_{j+1}\right), \quad j=2, \ldots, K-1
$$

$$
\gamma_{K}=\operatorname{coth}\left(\theta_{K-1}+\theta_{K}\right)+\tanh \left(\theta_{K}\right)
$$

$$
\beta_{j}=-\operatorname{csch}\left(\theta_{j}+\theta_{j+1}\right), \quad j=1, \ldots, N-1
$$

$$
\text { and } \theta_{j} \text { was defined in (4.36). Note that } \quad{ }_{43}^{43}
$$

$$
\begin{equation*}
a_{i j}=2 \sqrt{D}\left(\beta_{j} \delta_{i(j-1)}+\gamma_{j} \delta_{i j}+\beta_{j+1} \delta_{i(j+1)}\right) \tag{4.37}
\end{equation*}
$$

Verifying (4.14) amounts to checking the following identity

$$
\begin{equation*}
\sum_{j=1}^{N} a_{i j} \hat{\xi}_{j}^{0}=\left(\hat{\xi}_{i}^{0}\right)^{\frac{q r}{p-1}-s} \tag{4.38}
\end{equation*}
$$

which is an easy exercise.
It remains to verify (H2) and (H3).
To this end, we need to know the eigenvalues of \mathcal{B} and \mathcal{M}. In the same way as for the matrix \mathcal{G}_{D}, one can show that \mathcal{B}^{-1} is a tridiagonal matrix. However, it is almost impossible to obtain an explicit formula for the eigenvalues. Numerical software for solving eigenvalue problems of large matrices is indispensable. Then (H2) has to be checked explicitly. Numerical computations in [70] do suggest that assumption (H3) is always satisfied.

4.4. Classification of asymmetric patterns

A natural question is the following: Are all K-peaked solution generated by two types of peaks as the solutions which were constructed in [70]?

Our next theorem gives an affirmative answer. It completely classifies all K-peaked solutions, provided that the K peaks are separated.

THEOREM 4.4. (See [84].) Suppose that for ϵ sufficiently small, there are solutions ($a_{\epsilon}, h_{\epsilon}$) of (4.4) such that

$$
\begin{equation*}
a_{\epsilon}(x) \sim \sum_{j=1}^{K} \xi_{\epsilon}^{\frac{q}{p-1}}\left(\hat{\xi}_{j}^{\epsilon}\right)^{\frac{q}{p-1}} w\left(\frac{x-t_{j}^{\epsilon}}{\epsilon}\right), \tag{4.39}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{\epsilon}\left(t_{i}^{\epsilon}\right) \sim \xi_{\epsilon} \hat{\xi}_{i}^{\epsilon}, \quad i=1, \ldots, K \tag{4.40}
\end{equation*}
$$

where ξ_{ϵ} is given by (4.9),

$$
\begin{equation*}
\hat{\xi}_{i}^{\epsilon} \rightarrow \hat{\xi}_{i}^{0}>0, \quad t_{i}^{\epsilon} \rightarrow t_{i}^{0}, \quad t_{i}^{0} \neq t_{j}^{0}, \quad i \neq j, i, j=1, \ldots, K \tag{4.41}
\end{equation*}
$$

Then necessarily, we have

$$
\begin{equation*}
l_{i}:=t_{i}^{0}-t_{i-1}^{0} \in\{l, \bar{l}\}, \quad i=1, \ldots, K \tag{4.42}
\end{equation*}
$$

where $t_{0}^{0}=-1, l$ and \bar{l} satisfy (4.32) and (4.33) with K_{1} being the number of i 's for which $l_{i}=l$ and K_{2} being the number of i 's for which $l_{i}=\bar{l}$ (hence $K_{1}+K_{2}=K$).

Theorem 4.4 shows that an K-peaked solution must be generated by exactly two types of peaks-type \mathbf{A} with shorter length l and type \mathbf{B} with larger length \bar{l}. This shows that the
solutions constructed in [70] (through a formal approach) exhaust all possible separated K-peaked solutions. In particular, it shows that there are at most $2^{K} K$-peaked solutions. If the assumptions (H1)-(H3) are met, then there are exactly $2^{K} K$-peaked solutions.

Proof of Theorem 4.4. First we make the following scaling

$$
a_{\epsilon}=\xi_{\epsilon}^{\frac{q}{p-1}} \hat{a}_{\epsilon}, \quad h_{\epsilon}=\xi_{\epsilon} \hat{h}_{\epsilon}
$$

where ξ_{ϵ} is defined at (4.9). Hence $\left(\hat{a}_{\epsilon}, \hat{h}_{\epsilon}\right)$ satisfies

$$
\begin{cases}\epsilon^{2} \Delta \hat{a}_{\epsilon}-\hat{a}_{\epsilon}+\frac{\hat{a}_{\epsilon}^{p}}{\hat{h}_{\epsilon}^{q}}=0, & -1<x<1, \tag{4.43}\\ D \Delta \hat{h}_{\epsilon}-\hat{h}_{\epsilon}+c_{\epsilon} \frac{\hat{a}_{\epsilon}^{r}}{\hat{h}_{\epsilon}^{s}}=0, & -1<x<1,\end{cases}
$$

Now (4.39) and (4.40) imply that

$$
\begin{equation*}
\hat{a}_{\epsilon} \sim \sum_{j=1}^{K}\left(\hat{\xi}_{j}^{\epsilon}\right)^{\frac{q}{p-1}} w\left(\frac{x-t_{j}^{\epsilon}}{\epsilon}\right), \quad \hat{h}_{\epsilon}\left(t_{j}^{\epsilon}\right)=\hat{\xi}_{j}^{\epsilon} \tag{4.44}
\end{equation*}
$$

Letting $\epsilon \rightarrow 0$, we assume that

$$
\hat{\xi}_{j}^{\epsilon} \rightarrow \hat{\xi}_{j}^{0}, \quad t_{j}^{\epsilon} \rightarrow t_{j}^{0}, \quad j=1, \ldots, K
$$

We see that $\hat{h}_{\epsilon} \rightarrow h_{0}(x)$ where $h_{0}(x)$ satisfies

$$
\left\{\begin{array}{l}
D \Delta h_{0}-h_{0}+\sum_{j=1}^{K}\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s} \delta\left(x-t_{j}^{0}\right)=0, \quad-1<x<1 \tag{4.45}\\
h_{0}^{\prime}(-1)=h_{0}^{\prime}(1)=0
\end{array}\right.
$$

In other words, we have

$$
\begin{equation*}
h_{0}(x)=\sum_{j=1}^{K}\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s} G_{D}\left(x, t_{j}^{0}\right) \tag{4.46}
\end{equation*}
$$

Since $h_{0}\left(t_{j}^{0}\right)=\hat{\xi}_{j}^{0}, j=1, \ldots, K$, we have from (4.46) that $\left(\hat{\xi}_{1}^{0}, \ldots, \hat{\xi}_{K}^{0}\right)$ must satisfy the following identity:

$$
\begin{equation*}
\sum_{j=1}^{K} G_{D}\left(t_{i}^{0}, t_{j}^{0}\right)\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s}=\hat{\xi}_{i}^{0}, \quad i=1, \ldots, K \tag{4.47}
\end{equation*}
$$

This is the same as (4.14).

Define

$$
\tilde{a}_{\epsilon, j}=\hat{a}_{\epsilon} \chi\left(\frac{x-t_{j}^{0}}{\tilde{r}_{0}}\right)
$$

where \tilde{r}_{0} is a very small number. Then $\tilde{a}_{\epsilon, j}$ is supported in the interval $I_{j}^{\epsilon}=\left(-\tilde{r}_{0}+t_{j}^{\epsilon}, \tilde{r}_{0}+\right.$ t_{j}^{ϵ}. We may choose \tilde{r}_{0} so small that $I_{i}^{\epsilon} \cap I_{j}^{\epsilon}=\emptyset$ for $i \neq j$. Then ${ }_{j}$)

$$
\hat{a}_{\epsilon}=\sum_{j=1}^{K} \tilde{a}_{\epsilon, j}+\text { e.s.t. } \quad 9
$$

Now we multiply the first equation in (4.43) by $\tilde{a}_{\epsilon, j}^{\prime}$ and integrate over $(-1,1)$. We ${ }_{14}$ obtain

$$
0=\int_{-1}^{1}\left[\left(\frac{\hat{a}_{\epsilon}^{p}}{\hat{h}_{\epsilon}^{q}}\right) \tilde{a}_{\epsilon, j}^{\prime}-\left(\frac{\hat{a}_{\epsilon}^{p}}{\hat{h}_{\epsilon}^{q}}\right)^{\prime} \tilde{a}_{\epsilon, j}\right]
$$

$=-2 \int_{I_{j}^{\epsilon}}\left(\frac{\hat{a}_{\epsilon}^{p}}{\hat{h}_{\epsilon}^{q}}\right)^{\prime} \hat{a}_{\epsilon}+$ e.s.t. $\quad 20$
$=-2 \int\left[\frac{p \hat{a}_{\epsilon}^{p} \hat{a}_{\epsilon}^{\prime}}{\hat{h}_{\epsilon}^{q}}-\frac{q \hat{a}_{\epsilon}^{p+1} \hat{h}_{\epsilon}^{\prime}}{\hat{h}_{\epsilon}^{q+1}}\right]+$ e.s.t. $\quad{ }_{2}^{23}$
$=\frac{q(p+2)}{p+1} \int_{I_{j}^{\epsilon}} \frac{\hat{a}_{\epsilon}^{p+1}}{\hat{h}_{\epsilon}^{q+1}} \hat{h}_{\epsilon}^{\prime}+$ e.s.t.
By the equation for \hat{h}_{ϵ}, we have that $\quad \begin{aligned} & 29 \\ & 30\end{aligned}$
$\hat{h}_{\epsilon}(x)=c_{\epsilon} \int_{-1}^{1} G_{D}(x, z) \frac{\hat{a}_{\epsilon}^{r}}{\hat{h}_{\epsilon}^{r}}$
$\hat{h}_{\epsilon}(x)=c_{\epsilon} \int_{-1} G_{D}(x, z) \frac{\hat{a}_{\epsilon}}{\hat{h}_{\epsilon}^{s}} \quad{ }_{32}^{32}$
and thus for $x \in I_{j}^{\epsilon}, \quad{ }_{35}^{35}$

$$
\hat{h}(r)-\sum^{K} G_{0}\left(x+t^{\epsilon}\right)\left(\hat{\xi}^{\epsilon}\right) \frac{q r}{p-1}-s+O(\epsilon) \quad 1 \begin{aligned}
& 37 \\
& 38
\end{aligned}
$$

$$
\hat{h}_{\epsilon}(x)=\sum_{k=1}^{K} G_{D}\left(x, t_{k}^{\epsilon}\right)\left(\hat{\xi}_{k}^{\epsilon}\right)^{\frac{q r}{p-1}-s}+O(\epsilon)
$$

and $\quad \begin{aligned} & 41 \\ & 42\end{aligned}$

$$
\begin{equation*}
\hat{H}_{\epsilon}^{\prime}\left(t_{j}^{\epsilon}\right)=\sum_{k=1}^{K} \nabla_{t_{j}^{\epsilon}} G_{D}\left(t_{j}^{\epsilon}, t_{k}^{\epsilon}\right)\left(\hat{\xi}_{k}^{\epsilon}\right)^{\frac{q r}{p-1}-s}+O(\epsilon) \tag{4.49}
\end{equation*}
$$

Substituting (4.49) into (4.48) and using (4.44), we obtain the following identity

$$
\begin{equation*}
\sum_{k=1}^{K} \nabla_{t_{j}^{\epsilon}} G_{D}\left(t_{j}^{\epsilon}, t_{k}^{\epsilon}\right)\left(\hat{\xi}_{k}^{\epsilon}\right)^{\frac{q r}{p-1}-s}=o(1) \tag{4.50}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{k=1}^{K} \nabla_{t_{j}^{0}} G_{D}\left(t_{j}^{0}, t_{k}^{0}\right)\left(\hat{\xi}_{k}^{0}\right)^{\frac{q r}{p-1}-s}=0, \quad j=1, \ldots, K \tag{4.51}
\end{equation*}
$$

which is the same as (4.21).
Note that by the expression for h_{0} in (4.46), (4.51) is equivalent to the following

$$
\begin{equation*}
h_{0}^{\prime}\left(t_{j}^{0}+\right)+h_{0}^{\prime}\left(t_{j}^{0}-\right)=0, \quad j=1, \ldots, K \tag{4.52}
\end{equation*}
$$

where $h_{0}^{\prime}\left(t_{j}^{0}+\right)$ is the right-hand derivative of h_{0} at t_{j}^{0} and $h_{0}^{\prime}\left(t_{j}^{0}-\right)$ is the left-hand derivative of h_{0} at t_{j}^{0}. On the other hand, from the equation for h_{0}, we have that

$$
\begin{equation*}
D\left(h_{0}^{\prime}\left(t_{j}^{0}+\right)-h_{0}^{\prime}\left(t_{j}^{0}-\right)\right)=-\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s}, \quad j=1, \ldots, K . \tag{4.53}
\end{equation*}
$$

Solving (4.52) and (4.53), we have that

$$
\begin{equation*}
h_{0}^{\prime}\left(t_{j}^{0}+\right)=-h_{0}^{\prime}\left(t_{j}^{0}-\right)=-\frac{1}{2 D}\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s}<0, \quad j=1, \ldots, K \tag{4.54}
\end{equation*}
$$

Since h_{0} satisfies $D h_{0}^{\prime \prime}=h_{0}>0$ in each interval $\left(t_{j-1}^{0}, t_{j}^{0}\right), j=2, \ldots, K$, we see that there exists a unique point $s_{j-1} \in\left(t_{j-1}^{0}, t_{j}^{0}\right)$ such that $h_{0}^{\prime}\left(s_{j-1}\right)=0$. Since $h_{0}^{\prime}(-1)=0$, by using symmetry, we see that

$$
\begin{equation*}
\frac{s_{j-1}+s_{j}}{2}=t_{j}^{0}, \quad j=1, \ldots, K \tag{4.55}
\end{equation*}
$$

where we take $s_{0}=-1, s_{K}=1$. Let $2 l_{j}=s_{j}-s_{j-1}, j=1, \ldots, K$.
Note that on each interval $\left(-l_{j}+t_{j}^{0}, l_{j}+t_{j}^{0}\right), h_{0}$ satisfies

$$
D \Delta h_{0}-h_{0}+\left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s} \delta\left(t-t_{j}^{0}\right)=0
$$

with Neumann boundary conditions at both ends. Thus from (4.6) it is easy to see that

$$
\begin{align*}
& \left(\hat{\xi}_{j}^{0}\right)^{\frac{q r}{p-1}-s-1}=2 \sqrt{D} \tanh \left(\frac{l_{j}}{\sqrt{D}}\right), \quad j=1, \ldots, K \tag{4.56}\\
& h_{0}\left(l_{j}\right)=\frac{\hat{\xi}_{j}^{0}}{\cosh \left(\frac{l_{j}}{\sqrt{D}}\right)} . \tag{4.57}
\end{align*}
$$

Since h_{0} is continuous on $(-1,1)$, we have

$$
h_{0}\left(l_{1}\right)=h_{0}\left(l_{2}\right)=\cdots=h_{0}\left(l_{K}\right)
$$

Using (4.56) and (4.57), we see that (4.58) is equivalent to

$$
b\left(\frac{l_{1}}{\sqrt{D}}\right)=b\left(\frac{l_{2}}{\sqrt{D}}\right)=\cdots=b\left(\frac{l_{K}}{\sqrt{D}}\right)
$$

where the function b was defined in (4.31). Suppose without loss of generality that $l_{1} \leqslant l_{2}$, then we take $l_{1}=l$ and (4.59) implies that $l_{2} \in\{l, \bar{l}\}$ and that $l_{j} \in\{l, \bar{l}\}$ for $j=2, \ldots, K$. Thus l must satisfy (4.60) and (4.33).

This finishes the proof of Theorem 4.4.

4.5. The stability of symmetric and asymmetric K-spikes

In this section, we present the stability of the K-peaked solutions constructed in Theorem 4.3.

To this end, we need to study the following linearized eigenvalue problem

$$
\mathcal{L}_{\epsilon}\binom{\phi_{\epsilon}}{\psi_{\epsilon}}=\binom{\epsilon^{2} \Delta \phi_{\epsilon}-\phi_{\epsilon}+p \frac{a_{\epsilon}^{p-1}}{H_{\epsilon}^{q}} \phi_{\epsilon}-q \frac{a_{\epsilon}^{p}}{h_{\epsilon}^{q+1}} \psi_{\epsilon}}{\frac{1}{\tau}\left(D \Delta \psi_{\epsilon}-\psi_{\epsilon}+r \frac{a_{\epsilon}^{r-1}}{h_{\epsilon}^{s}} \phi_{\epsilon}-s \frac{a_{\epsilon}^{r}}{h_{\epsilon}^{s+1}} \psi_{\epsilon}\right)}=\lambda_{\epsilon}\binom{\phi_{\epsilon}}{\psi_{\epsilon}}
$$

where $\left(a_{\epsilon}, h_{\epsilon}\right)$ is the solution constructed in Theorem 4.3 and $\lambda_{\epsilon} \in \mathcal{C}$ - the set of complex numbers.

We say that $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly stable if the spectrum $\sigma\left(\mathcal{L}_{\epsilon}\right)$ of \mathcal{L}_{ϵ} lies in the left half plane $\{\lambda \in \mathcal{C}: \operatorname{Re}(\lambda)<0\} .\left(a_{\epsilon}, h_{\epsilon}\right)$ is called linearly unstable if there exists an eigenvalue λ_{ϵ} of \mathcal{L}_{ϵ} with $\operatorname{Re}\left(\lambda_{\epsilon}\right)>0$. (From now on, we use the notations linearly stable and linearly unstable as defined above.)

THEOREM 4.5. Let $\left(a_{\epsilon}, h_{\epsilon}\right)$ be the solutions constructed in Theorem 4.3. Assume that $\epsilon \ll 1$.
(1) (Stability) If

$$
r=2,<p<5 \quad \text { or } \quad r=p+1,<p<+\infty
$$

and furthermore

$$
\left(\frac{q r}{p-1}-s\right) \min _{\sigma \in \sigma(\mathcal{B})} \sigma>1
$$

and

$$
\sigma(\mathcal{M}) \subseteq\{\sigma \mid \operatorname{Re}(\sigma)>0\}
$$

 there exists \(\tau_{0}>0\) such that \(\left(a_{\epsilon}, h_{\epsilon}\right)\) is linearly stable for \(0 \leqslant \tau<\tau_{0}\). \(\quad 1\)
 (2) (Instability) If 2
 \(\left(\frac{q r}{p-1}-s\right) \min _{\sigma \in \sigma(\mathcal{B})} \sigma<1\),
 there exists \(\tau_{0}>0\) such that \(\left(a_{\epsilon}, h_{\epsilon}\right)\) is linearly unstable for \(0 \geqslant \tau<\tau_{0}\). 7
 (3) (Instability) If there exists 8
 \(\sigma \in \sigma(\mathcal{M}), \quad \operatorname{Re}(\sigma)<0\),
 then $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly unstable for all $\tau>0$.
REMARK 4.5.1. In the original Gierer-Meinhardt model, $(p, q, r, s)=(2,1,2,0)$ or $(p, q, r, s)=(2,4,2,0)$. This means that condition (4.61) is satisfied.
REMARK 4.5.2. By Theorems 4.3 and 4.5 , the existence and stability of K-peaked solutions are completely determined by the two matrices \mathcal{B} and \mathcal{M}. They are related to the asymptotic behavior of large eigenvalues which tend to a non-zero limit and small eigenvalues which tend to zero as $\epsilon \rightarrow 0$, respectively. The computations of these two matrices are by no means easy. We refer to [34] and [70] for exact computations and numerics. Combining the results here and the computations in [34], the stability of symmetric K-peaked solutions is completely characterized and the following result is established rigorously.
THEOREM 4.6. (See $[34,84]$.) Let $\left(a_{\epsilon, K}, h_{\epsilon, K}\right)$ be the symmetric K-peaked solutions constructed in [67]. Assume that $\epsilon \ll 1$.
(a) (Stability) Assume that $0<\tau<\tau_{0}$ for some τ_{0} small and that

$$
\begin{equation*}
r=2,1<p<5 \quad \text { or } \quad r=p+1,1<p<+\infty \tag{4.66}
\end{equation*}
$$

and

$$
\begin{equation*}
D<D_{K}:=\frac{1}{K^{2}(\log (\sqrt{\alpha}+\sqrt{\alpha+1}))^{2}} \tag{4.67}
\end{equation*}
$$

where α is given by (4.31), then the symmetric K-peaked solution is linearly stable.
(b) (Instability) If

$$
\begin{equation*}
D>D_{K} \tag{4.68}
\end{equation*}
$$

where D_{K} is given by (4.67), then the symmetric K-peaked solution is linearly unstable for all $\tau>0$.
9

The proof of Theorem 4.5 consists of two parts: we have to compute both small and large eigenvalues. For large eigenvalues, we will arrive at the following system of nonlocal eigenvalue problems (NLEPs)

$$
\begin{align*}
& \Phi^{\prime \prime}-\Phi+p w^{p-1} \Phi \\
& \quad-\operatorname{qr}(I+s \mathcal{B})^{-1} \mathcal{B}\left(\int_{\mathbb{R}} w^{r-1} \Phi\right)\left(\int_{\mathbb{R}} w^{r}\right)^{-1} w^{p}=\lambda \Phi \tag{4.69}
\end{align*}
$$

where \mathcal{B} is given by (4.15) and

$$
\Phi=\left(\begin{array}{l}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{K}
\end{array}\right) \in\left(H^{2}(\mathbb{R})\right)^{K}
$$

By diagonalization, we may reduce it to K NLEPs of the form (3.17). Using the results ${ }_{17}$ of Theorem 3.7, we obtain the stability (or instability) of large eigenvalues. 18

For the study of small eigenvalues, we need to expand the eigenfunction up to the order $O\left(\epsilon^{2}\right)$ term. This computation is quite involved. In the end, the matrix \mathcal{B} and \mathcal{M} will appear.

A similar stability analysis for the Schnakenberg model has been carried out in [35].

5. The full Gierer-Meinhardt system: Two-dimensional case

Let us now consider the Gierer-Meinhardt system in a two-dimensional domain. The results are more complicated. To reduce the complexity and grasp the essential difficulties, we assume that $(p, q, r, s)=(2,1,2,0)$ in this section.

We start with the bound states.
5.1. Bound states: spikes on polygons

$$
\begin{cases}\Delta a-a+\frac{a^{2}}{h}=0, \quad a>0 & \text { in } \mathbb{R}^{2}, \tag{5.1}\\ \Delta h-\sigma^{2} h+a^{2}=0, \quad h>0 & \text { in } \mathbb{R}^{2}, \\ a(x), h(x) \rightarrow 0 & \text { as }|x| \rightarrow+\infty\end{cases}
$$

As we will see, a notable feature of this ground-state problem in the plane is the presence of solutions with any prescribed number of bumps in the activator as the parameter σ gets smaller. These bumps are separated from each other at a distance $O(|\log \log \sigma|)$ and approach a single universal profile given by the unique radial solution of (2.8). The multibump solutions correspond respectively to bumps arranged at the vertices of a k-regular

031
polygon and at those of two concentric regular polygons. These arrangements with one extra bump at the origin are also considered. This unveils a new side of the rich and complex structure of the solution set of the Gierer-Meinhardt system in the plane and gives rise to a number of questions.

Let us set

$$
\begin{equation*}
\tau_{\sigma}=\left(\frac{k}{2 \pi} \log \frac{1}{\sigma} \int_{\mathbb{R}^{2}} w^{2}(y) d y\right)^{-1} \tag{5.2}
\end{equation*}
$$

THEOREM 5.1. (See [17].) Let $k \geqslant 1$ be a fixed positive integer. There exists $\sigma_{k}>0$ such that, for each $0<\sigma<\sigma_{k}$, problem (5.1) admits a solution (a, h) with the following property:

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0}\left|\tau_{\sigma} a_{\sigma}(x)-\sum_{i=1}^{k} w\left(x-\xi_{i}\right)\right|=0 \tag{5.3}
\end{equation*}
$$

uniformly in $x \in \mathbb{R}^{2}$. Here the points ξ_{i} correspond to the vertices of a regular polygon centered at the origin, with sides of equal length l_{σ} satisfying

$$
\begin{equation*}
l_{\sigma}=\log \log \frac{1}{\sigma}+O\left(\log \log \log \frac{1}{\sigma}\right) \tag{5.4}
\end{equation*}
$$

Finally, for each $1 \leqslant j \leqslant k$ we have

$$
\lim _{\sigma \rightarrow 0}\left|\tau_{\sigma} h_{\sigma}\left(\xi_{j}+y\right)-1\right|=0
$$

uniformly on compact sets in y.
Our second result gives existence of a solution with bumps at vertices of two concentric polygons.
2. $\quad 2$

THEOREM 5.2. (See [17].) Let $k \geqslant 1$ be a fixed positive integer. There exists $\sigma_{k}>0$ such that, for each $0<\sigma<\sigma_{k}$, problem (5.1) admits a solution (a, h) with the following property:

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0}\left|\tau_{\sigma} a_{\sigma}(x)-\sum_{i=1}^{k}\left[w\left(x-\xi_{i}\right)+w\left(x-\xi_{i}^{*}\right)\right]\right|=0 \tag{5.5}
\end{equation*}
$$

uniformly in $x \in \mathbb{R}^{2}$. Here the points ξ_{i} and ξ_{i}^{*} are the vertices of two concentric regular polygons. They satisfy

$$
\xi_{j}=\rho_{\sigma} e^{\frac{2 j \pi}{k} i}, \quad \xi_{j}^{*}=\rho_{\sigma}^{*} e^{\frac{2 \pi j}{k} i}, \quad j=1, \ldots, k
$$

where

$$
\rho_{\sigma}=\frac{1}{\left|1-e^{\frac{2 \pi i}{k}}\right|} \log \log \frac{1}{\sigma}+O\left(\log \log \log \frac{1}{\sigma}\right)
$$

and

$$
\rho_{\sigma}^{*}=\left(1+\frac{1}{\left|1-e^{\frac{2 \pi i}{k}}\right|}\right) \log \log \frac{1}{\sigma}+O\left(\log \log \log \frac{1}{\sigma}\right)
$$

A similar assertion to (5.4) holds for h_{σ}, around each of the ξ_{i} and the ξ_{i}^{*} 's.
THEOREM 5.3. (See [17].) Let $k \geqslant 1$ be given. Then there exists solutions which are exactly as those in Theorems 5.1 and 5.2 but with an additional bump at the origin. More precisely, with $w(x)$ added to $\sum_{i=1}^{k} w\left(x-\xi_{i}\right)$ in (5.3) and added to $\sum_{i=1}^{k}\left[w\left(x-\xi_{i}\right)+\right.$ $\left.w\left(x-\xi_{i}^{*}\right)\right]$ in (5.5).

The method employed in the proof of the above results consists of a Lyapunov-Schmidt type reduction. The basic idea of solving the second equation in (5.1) for h first and then working with a non-local elliptic PDE rather than directly with the system. Let $T\left(a^{2}\right)$ be the unique solution of the equation

$$
\begin{array}{ll}
\Delta h-\sigma^{2} h+a^{2}=0 & \text { in } \mathbb{R}^{2} \\
h(x) \rightarrow 0 & \text { as }|x| \rightarrow+\infty \tag{5.6}
\end{array}
$$

for $a^{2} \in L^{2}\left(\mathbb{R}^{2}\right)$. Equation (5.3) can be solved via sub-super-solution method. Solving the second equation for h in (5.1) we get $h=T\left(a^{2}\right)$, which leads to the non-local PDE for a

$$
\begin{equation*}
\Delta a-a+\frac{a^{2}}{T\left(a^{2}\right)}=0 \tag{5.7}
\end{equation*}
$$

Fixing m points which satisfy the constraints

$$
\frac{2}{3} \log \log \frac{1}{\sigma} \leqslant\left|\xi_{j}-\xi_{i}\right| \leqslant 2 \log \log \frac{1}{\sigma}, \quad \text { for all } i \neq j
$$

We look for solutions to (5.7) of the form

$$
\begin{equation*}
a(x)=\frac{1}{\tau_{\sigma}}(W+\phi), \quad \text { where } W=\sum_{j=1}^{K} w\left(x-\xi_{j}\right) \tag{5.8}
\end{equation*}
$$

By using finite-dimensional reduction method, we first solve an auxiliary problem

$$
\left\{\begin{array}{l}
\Delta(W+\phi)-(W+\phi)+\frac{(W+\phi)^{2}}{T\left(\frac{1}{\tau_{\sigma}}(W+\phi)^{2}\right)}=\sum_{i, \alpha} c_{i \alpha} \frac{\partial W}{\partial \xi_{i, \alpha}} \tag{5.9}\\
\int_{\mathbb{R}^{2}} \phi \frac{\partial W}{\partial \xi_{i, \alpha}}=0, \quad i=1, \ldots, m, \alpha=1,2
\end{array}\right.
$$

Solutions satisfying the required conditions in Theorems $5.1-5.3$ will be precisely those satisfying a non-linear system of equations of the form

$$
c_{i \alpha}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right)=0, \quad i=1, \ldots, m, \alpha=1,2
$$

where for such a class of points the functions $c_{i \alpha}$ satisfy

$$
\begin{equation*}
c_{i \alpha}\left(\xi_{1}, \ldots, \xi_{k}\right)=\frac{\partial}{\partial \xi_{i \alpha}}\left[\sum_{i \neq j} F\left(\left|\xi_{j}-\xi_{i}\right|\right)\right]+\epsilon_{i \alpha} \tag{5.10}
\end{equation*}
$$

function $F: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is of the form

$$
F(r)=\frac{c_{7} \log r}{\log \frac{1}{\sigma}}+c_{8} w(r)
$$

c_{7} and c_{8} are universal constants and

$$
\epsilon_{i \alpha}=O\left(\frac{1}{\left(\log \frac{1}{\sigma}\right)^{1+\gamma}}\right)
$$

$$
\begin{aligned}
& 19 \\
& 20
\end{aligned}
$$

for some $\gamma>0$. Although (5.10) does not have a variational structure, solutions of the problem $c_{i \alpha}=0$ are close to critical points of the functional $\sum_{i \neq j} F\left(\left|\xi_{j}-\xi_{i}\right|\right)$. In spite of the simple form of this functional, its critical points are highly degenerate because of the invariance under rotations and translations of the problem. Thus, to get solutions using degree theoretical arguments, we need to restrict ourselves to classes of points enjoying symmetry constraints. This is how Theorems 5.1-5.3 are established. On the other hand, we believe strongly that finer analysis may yield existence of more complex patterns, such as honey-comb patterns, or lattice patterns.

REmARK 5.1.1. Similar method can also be used to prove Theorem 4.1. In that case, we have

$$
\begin{equation*}
c_{i}\left(\xi_{1}, \ldots, \xi_{k}\right)=\frac{\partial}{\partial \xi_{i}}\left[\sum_{i \neq j} F_{1}\left(\left|\xi_{j}-\xi_{i}\right|\right)\right]+O\left(\sigma^{1+\gamma}\right) \tag{5.11}
\end{equation*}
$$

function $F_{1}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is of the form 39
$F_{1}(r)=c_{9} \sigma r+c_{10} w(r), \quad{ }_{41}^{40}$
c_{9} and c_{10} are universal constants. It is easy to see that the critical points of $\sum_{i \neq j} F_{1}\left(\mid \xi_{i}-\right.$
5.2. Existence of symmetric K-spots

We look for solutions to the stationary GM on a two-dimensional domain with the following form

$$
\begin{equation*}
a_{\epsilon}(x) \sim \sum_{j=1}^{K} \xi_{\epsilon, j} w\left(\frac{x-P_{j}}{\epsilon}\right) \tag{5.12}
\end{equation*}
$$

where P_{j} are the locations of the K-spikes and $\xi_{\epsilon, j}$ is the height of the spike at P_{j}.
If all the heights are asymptotically equal, i.e.

$$
\lim _{\epsilon \rightarrow 0} \frac{\xi_{\epsilon, i}}{\xi_{\epsilon, j}}=1, \quad \text { for } i \neq j
$$

such solutions are called symmetric K-spots. Otherwise, they are called asymmetric K spots.

In this section, we discuss the existence of symmetric K-spots. It turns out in twodimensional case, we have to discuss two cases: the strong coupling case, $D \sim O(1)$, and the weak coupling case, $D \gg 1$.

We first have the following existence result in the strong coupling case
THEOREM 5.4. (See [86].) Let $\Omega \subset R^{2}$ be a bounded smooth domain and D be a fixed positive constant. Let $G_{D}(x, y)$ be the Green function of $-D \Delta+1$ in Ω (with Neumann boundary condition). Let $H_{D}(x, y)$ be the regular part of $G_{D}(x, y)$ and set $h_{D}(P)=H_{D}(P, P)$.

Set

$$
F_{D}\left(P_{1}, \ldots, P_{K}\right)=\sum_{i=1}^{K} H_{D}\left(P_{i}, P_{i}\right)-\sum_{j \neq l} G_{D}\left(P_{j}, P_{l}\right)
$$

Assume that $\left(P_{1}, \ldots, P_{K}\right) \in \Omega^{K}$ is a non-degenerate critical point of $F_{D}\left(P_{1}, \ldots, P_{K}\right)$. Then for ϵ sufficiently small, problem (GM) has a steady state solution $\left(a_{\epsilon}, h_{\epsilon}\right)$ with the following properties:
(1) $a_{\epsilon}(x)=\xi_{\epsilon}\left(\sum_{j=1}^{K} w\left(\frac{x-P_{j}^{\epsilon}}{\epsilon}\right)+o(1)\right)$ uniformly for $x \in \bar{\Omega}, P_{j}^{\epsilon} \rightarrow P_{j}^{0}, j=1, \ldots, K$, as $\epsilon \rightarrow 0$, and w is the unique solution of the problem (2.8).
(2) $h_{\epsilon}(x)=\xi_{\epsilon}\left(1+O\left(\frac{1}{|\log \epsilon|}\right)\right)$ uniformly for $x \in \bar{\Omega}$, where ${ }_{37}$
(3) $\xi_{\epsilon}^{-1}=\left(\frac{1}{2 \pi}+o(1)\right) \epsilon^{2} \log \frac{1}{\epsilon} \int_{\mathbb{R}^{2}} w^{2}$.

REMARK 5.2.1. Theorem 5.4 shows that interior peaks solutions are related to the Green function (contrast to shadow system case). Thus in the strong coupling case, the peaks are produced by a different mechanism. It seems that the equation for h controls everything.

REMARK 5.2.2. In a general domain, the function $F_{D}(\mathbf{P})$ always has a global maximum point \mathbf{P}_{0} in $\Omega \times \cdots \times \Omega$. (A proof of this fact can be found in the Appendix of [86].)

The proof of Theorem 5.4 depends on fine estimates in the finite-dimensional reduction: the major problem is to sum up the errors of powers in terms of $\frac{1}{\log \frac{1}{\epsilon}}$.

Next, we discuss the weak coupling case. We assume that $\lim _{\epsilon \rightarrow 0} D=+\infty$. We first introduce a Green function G_{0} which we need to formulate our main results.

Let $G_{0}(x, \xi)$ be the Green function given by

$$
\begin{cases}\Delta G_{0}(x, \xi)-\frac{1}{|\Omega|}+\delta_{\xi}(x)=0 & \text { in } \Omega \tag{5.14}\\ \int_{\Omega} G_{0}(x, \xi) d x=0, & \\ \frac{\partial G_{0}(x, \xi)}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

and let

$$
\begin{equation*}
H_{0}(x, \xi)=\frac{1}{2 \pi} \log \frac{1}{|x-\xi|}-G_{0}(x, \xi) \tag{5.15}
\end{equation*}
$$

be the regular part of $G_{0}(x, \xi)$.
Denote $\mathbf{P} \in \Omega^{K}$, where \mathbf{P} is arranged such that18
20
$\mathbf{P}=\left(P_{1}, P_{2}, \ldots, P_{K}\right)$ 21
with 22
23
$P_{i}=\left(P_{i, 1}, P_{i, 2}\right) \quad$ for $i=1,2, \ldots, K$. 24 26
For $\mathbf{P} \in \Omega^{K}$ we define 27

$$
\begin{equation*}
F_{0}(\mathbf{P})=\sum_{k=1}^{K} H_{0}\left(P_{k}, P_{k}\right)-\sum_{i, j=1, \ldots, K,} G_{0}\left(P_{i}, P_{j}\right) \tag{5.16}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{0}(\mathbf{P})=\left(\nabla_{\mathbf{P}}^{2} F_{0}(\mathbf{P})\right) \tag{5.17}
\end{equation*}
$$

Here $M_{0}(\mathbf{P})$ is a $(2 K) \times(2 K)$ matrix with components $\frac{\partial^{2} F(\mathbf{P})}{\partial P_{i, j} \partial P_{k, l}}, i, k=1, \ldots, K, j, l=$ 1,2 (recall that $P_{i, j}$ is the j th component of P_{i}).

Set

$$
\begin{equation*}
D=\frac{1}{\beta^{2}}, \quad \eta_{\epsilon}:=\frac{\beta^{2}|\Omega|}{2 \pi} \log \frac{1}{\epsilon} \tag{5.18}
\end{equation*}
$$

Then $D \rightarrow+\infty$ is equivalent to $\beta \rightarrow 0$.

The stationary system for (GM) is the following system of elliptic equations:

$$
\begin{cases}\epsilon^{2} \Delta a-a+\frac{a^{2}}{h}=0, \quad a>0 & \text { in } \Omega \tag{5.19}\\ \Delta h-\beta^{2} h+\beta^{2} a^{2}=0, \quad h>0 & \text { in } \Omega \\ \frac{\partial a}{\partial \nu}=\frac{\partial h}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

The following concerns the existence of symmetric K-peaked solutions in a twodimensional domain which generalizes the one-dimensional result Theorem 4.2.

ThEOREM 5.5. (See [87].) Let $\mathbf{P}^{0}=\left(P_{1}^{0}, P_{2}^{0}, \ldots, P_{K}^{0}\right)$ be a non-degenerate critical point of $F_{0}(\mathbf{P})$ (defined by (5.16)). Moreover, we assume that the following technical condition holds

$$
\begin{equation*}
\text { if } K>1 \text {, then } \lim _{\epsilon \rightarrow 0} \eta_{\epsilon} \neq K \tag{5.20}
\end{equation*}
$$

where η_{ϵ} is defined by (5.18).
Then for ϵ sufficiently small and $D=\frac{1}{\beta^{2}}$ sufficiently large, problem (5.19) has a solution $\left(a_{\epsilon}, h_{\epsilon}\right)$ with the following properties:
$\left(a_{\epsilon}, h_{\epsilon}\right)$ with the following properties:
(1) $a_{\epsilon}(x)=\xi_{\epsilon}\left(\sum_{j=1}^{K} w\left(\frac{x-P_{j}^{\epsilon}}{\epsilon}\right)+O(k(\epsilon, \beta))\right)$ uniformly for $x \in \bar{\Omega}$. Here w is the
unique solution of (2.8) and

$$
\xi_{\epsilon}= \begin{cases}\frac{1}{K} \frac{|\Omega|}{\epsilon^{2} \int_{\mathbb{R}^{2} w^{2}(y) d y}} & \text { if } \eta_{\epsilon} \rightarrow 0 \\ \frac{1}{\eta_{\epsilon}} \frac{|\Omega|}{\epsilon^{2} \int_{\mathbb{R}^{2} w^{2}(y) d y}} & \text { if } \eta_{\epsilon} \rightarrow \infty \\ \frac{1}{K+\eta_{0}} \frac{|\Omega|}{\epsilon^{2} \int_{\mathbb{R}^{2} w^{2}(y) d y}} & \text { if } \eta_{\epsilon} \rightarrow \eta_{0}\end{cases}
$$

5.3. Existence of multiple asymmetric spots 39

Similar to the on dimensional case, there are also multiple asymmetric spots in a two- ${ }^{41}$ dimensional domain. But the existence of such patterns is only restricted when 42

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{D}{\log \frac{1}{\epsilon}}<+\infty \tag{5.23}
\end{equation*}
$$

$$
\text { and } 29
$$

$$
30
$$

$$
k(\epsilon, \beta):=\epsilon^{2} \xi_{\epsilon} \beta^{2}
$$

$$
\left(B y(5.21), k(\epsilon, \beta)=O\left(\min \left\{\frac{1}{\log \underline{1}}, \beta^{2}\right\}\right) .\right)
$$

$$
\text { Furthermore, } P_{i}^{\epsilon} \rightarrow P_{i}^{0} \text { as } \epsilon \rightarrow 0 \text { for } j=1, \ldots, K
$$

$$
\text { (2) } h_{\epsilon}(x)=\xi_{\epsilon}(1+O(k(\epsilon, \beta))) \text { uniformly for } x \in \bar{\Omega}
$$

We first derive the algebraic equations for the heights $\left(\xi_{\epsilon, 1}, \ldots, \xi_{\epsilon, K}\right)$.
For $\beta>0$ let $G_{\beta}(x, \xi)$ be the Green function given by

$$
\begin{cases}\Delta G_{\beta}-\beta^{2} G_{\beta}+\delta_{\xi}=0 & \text { in } \Omega \tag{5.24}\\ \frac{\partial G_{\beta}}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

 in (5.14).

In Section 2 of [87] a relation between G_{0} and G_{β} is derived as follows

$$
\begin{equation*}
G_{\beta}(x, \xi)=\frac{\beta^{-2}}{|\Omega|}+G_{0}(x, \xi)+O\left(\beta^{2}\right) \tag{5.25}
\end{equation*}
$$

in the operator norm of $\left.L^{2} \Omega\right) \rightarrow H^{2}(\Omega)$. (Note that the embedding of $H^{2}(\Omega)$ into $L^{\infty}(\Omega)$ is compact.)

We define cut-off functions as follows: Let $\mathbf{P} \in \Omega^{K}$. Introduce

$$
\begin{equation*}
\chi_{\epsilon, P_{j}}(x)=\chi\left(\frac{x-P_{j}}{\delta}\right), \quad x \in \Omega, j=1, \ldots, K m \tag{5.26}
\end{equation*}
$$

where χ is a smooth cut-off function which is equal to 1 in $B_{1}(0)$ and equal to 0 in $R^{2} \backslash \quad \begin{aligned} & 23 \\ & B_{2}(0)\end{aligned}$.
Let us assume the following ansatz for a multiple-spike solution $\left(a_{\epsilon}, h_{\epsilon}\right)$ of (GM): $\quad{ }^{25}$

$$
\left\{\begin{array}{l}
a_{\epsilon} \sim \sum_{i=1}^{K} \xi_{\epsilon, i} w\left(\frac{x-P_{i}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{i}}(x), \tag{5.27}\\
h_{\epsilon}\left(P_{i}^{\epsilon}\right) \sim \xi_{\epsilon, i},
\end{array}\right.
$$

where w is the unique solution of $(2.8), \xi_{\epsilon, i}, i=1, \ldots, K$, are the heights of the peaks, to be determined later, and $\mathbf{P}^{\epsilon}=\left(P_{1}^{\epsilon}, \ldots, P_{K}^{\epsilon}\right)$ are the locations of K peaks. 32

Then we can make the following calculations, which can be made rigorous with error ${ }_{33}$ terms of the order $O\left(\frac{1}{\log \frac{1}{\epsilon}}\right)$ in $H^{2}(\Omega)$.

From the equation for h_{ϵ},

$$
\Delta h_{\epsilon}-\beta^{2} h_{\epsilon}+\beta^{2} a_{\epsilon}^{2}=0
$$

we get, using (5.25),

$$
\begin{aligned}
h_{\epsilon}\left(P_{i}^{\epsilon}\right) & =\int_{\Omega} G_{\beta}\left(P_{i}^{\epsilon}, \xi\right) \beta^{2} a_{\epsilon}^{2}(\xi) d \xi \\
& =\int_{\Omega}\left(\frac{\beta^{-2}}{|\Omega|}+G_{0}\left(P_{i}^{\epsilon}, \xi\right)+O\left(\beta^{2}\right)\right) \beta^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\sum_{j=1}^{K} \xi_{\epsilon, j}^{2} w^{2}\left(\frac{\xi-P_{j}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{j}}(\xi)\right) d \xi \\
= & \int_{\Omega}\left(\frac{1}{|\Omega|}+\beta^{2} G_{0}\left(P_{i}^{\epsilon}, \xi\right)+O\left(\beta^{4}\right)\right) \\
& \times\left(\sum_{j=1}^{K} \xi_{\epsilon, j}^{2} w^{2}\left(\frac{\xi-P_{j}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{j}}(\xi)\right) d \xi
\end{aligned}
$$

$$
7
$$

Thus

$$
\begin{align*}
\xi_{\epsilon, i}= & \xi_{\epsilon, i}^{2} \frac{\epsilon^{2}}{|\Omega|} \int_{\mathbb{R}^{2}} w^{2}(y) d y+\xi_{\epsilon, i}^{2} \beta^{2} \int_{\Omega} G_{0}\left(P_{i}^{\epsilon}, \xi\right) w^{2}\left(\frac{\xi-P_{i}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{i}}(\xi) d \xi \\
& +\sum_{j \neq i}\left(\frac{1}{|\Omega|}+\beta^{2} G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right)\right) \xi_{\epsilon, j}^{2} \epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\sum_{j=1}^{K} \xi_{\epsilon, j}^{2}\left(O\left(\beta^{2} \epsilon^{4}\right)+O\left(\beta^{4} \epsilon^{2}\right)\right) \tag{5.28}
\end{align*}
$$ 12

$$
\int_{0} G_{0}\left(P_{i}^{\epsilon}, \xi\right) w^{2}\left(\frac{\xi-P_{j}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{j}}(\xi) d \xi
$$27

$=\epsilon^{2} \int_{\mathbb{R}^{2}} G_{0}\left(P_{i}^{\epsilon}, \epsilon y+P_{j}^{\epsilon}\right) w^{2}(y) d y+$ e.s.t. 28

$$
=\epsilon^{2} G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right) \int_{\mathbb{R}^{2}} w^{2}(y) d y
$$${ }^{3} \sum^{K} \partial G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right) \quad{ }_{3}^{2}$

$$
+\epsilon^{3} \sum_{l=1}^{K} \frac{\partial G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right)}{\partial P_{j, l}^{\epsilon}} \int_{\mathbb{R}^{2}} w^{2}(y) y_{l} d y+O\left(\epsilon^{4}\right)
$$

$$
=\epsilon^{2} G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right) \int_{\mathbb{R}^{2}} w^{2}(y) d y+O\left(\epsilon^{4}\right)
$$

$\begin{array}{ll}\text { (Note that we have set } y=\frac{\xi-P_{j}^{\epsilon}}{\epsilon} \text { and we have used the relation } & 39 \\ 40\end{array}$
which holds since w is radially symmetric.)

Using (5.15) in (5.28) gives

$$
\begin{align*}
\xi_{\epsilon, i}= & \xi_{\epsilon, i}^{2} \frac{\epsilon^{2}}{|\Omega|} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\xi_{\epsilon, i}^{2} \beta^{2} \int_{\Omega}\left(\frac{1}{2 \pi} \log \frac{1}{\left|P_{i}^{\epsilon}-\xi\right|}-H_{0}\left(P_{i}^{\epsilon}, \xi\right)\right) w^{2}\left(\frac{\xi-P_{i}^{\epsilon}}{\epsilon}\right) \chi_{\epsilon, P_{i}^{\epsilon}}(\xi) d \xi \\
& +\sum_{j \neq i}\left(\frac{1}{|\Omega|}+\beta^{2} G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right)\right) \xi_{\epsilon, j}^{2} \epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\sum_{j=1}^{K} \xi_{\epsilon, j}^{2}\left(O\left(\beta^{2} \epsilon^{4}\right)+O\left(\beta^{4} \epsilon^{2}\right)\right) \\
= & \xi_{\epsilon, i}^{2} \frac{\epsilon^{2}}{|\Omega|} \int_{\mathbb{R}^{2}} w^{2}(y) d y+\xi_{\epsilon, i}^{2} \frac{\beta^{2}}{2 \pi} \epsilon^{2} \log \frac{1}{\epsilon} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\xi_{\epsilon, i}^{2} \frac{\beta^{2}}{2 \pi}\left(\epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}(y) \log \frac{1}{|y|} d y-\epsilon^{2} H_{0}\left(P_{i}^{\epsilon}, P_{i}^{\epsilon}\right) \int_{\mathbb{R}^{2}} w^{2}(y) d y\right) \\
& +\sum_{j \neq i}\left(\frac{1}{|\Omega|}+\beta^{2} G_{0}\left(P_{i}^{\epsilon}, P_{j}^{\epsilon}\right)\right) \xi_{\epsilon, j}^{2} \epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\sum_{j=1}^{K} \xi_{\epsilon, j}^{2}\left(O\left(\beta^{2} \epsilon^{4}\right)+O\left(\beta^{4} \epsilon^{2}\right)\right) . \tag{5.29}
\end{align*}
$$

Recall that $H_{0} \in C^{2}(\bar{\Omega} \times \Omega)$.
Considering only the leading terms in (5.29) we get following

$$
\begin{align*}
\xi_{\epsilon, i}= & \sum_{j=1}^{K} \xi_{\epsilon, j}^{2} \frac{\epsilon^{2}}{|\Omega|} \int_{\mathbb{R}^{2}} w^{2}(y) d y+\xi_{\epsilon, i}^{2} \frac{\beta^{2}}{2 \pi} \epsilon^{2} \log \frac{1}{\epsilon} \int_{\mathbb{R}^{2}} w^{2}(y) d y \\
& +\sum_{j=1}^{K} \xi_{\epsilon, j}^{2} O\left(\beta^{2} \epsilon^{2}\right) \tag{5.30}
\end{align*}
$$

Let us rescale

$$
\begin{equation*}
\xi_{\epsilon, i}=\xi_{\epsilon} \hat{\xi}_{\epsilon, i}, \quad \text { where } \xi_{\epsilon}=\frac{|\Omega|}{\epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}} \tag{5.31}
\end{equation*}
$$

Then from (5.30) we get

$$
\xi_{\epsilon, i}=\left(\frac{1}{|\Omega|}+\frac{\eta_{\epsilon}}{|\Omega|}\right) \xi_{\epsilon, i}^{2} \epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}(y) d y
$$

$$
+\sum_{j \neq i} \xi_{\epsilon, j}^{2} \frac{\epsilon^{2}}{|\Omega|} \int_{\mathbb{R}^{2}} w^{2}(y) d y+\sum_{j=1}^{K} \xi_{\epsilon, j}^{2} O\left(\beta^{2} \epsilon^{2}\right)
$$

where η_{ϵ} was introduced in (5.18). Assuming that

$$
\begin{equation*}
\hat{\xi}_{\epsilon, i} \rightarrow \hat{\xi}_{i}, \quad \eta_{\epsilon} \rightarrow \eta_{0} \tag{5.32}
\end{equation*}
$$

we obtain the following system of algebraic equations

$$
\begin{equation*}
\hat{\xi}_{\epsilon, i}=\sum_{j=1}^{K} \hat{\xi}_{\epsilon, j}^{2}+\hat{\xi}_{\epsilon, i}^{2} \eta_{0}, \quad i=1, \ldots, K \tag{5.33}
\end{equation*}
$$

which can be determined completely.

In fact, let

$$
\begin{equation*}
\rho(t)=t-\eta_{0} t^{2} . \tag{5.34}
\end{equation*}
$$

Then (5.33) is equivalent to

$$
\begin{equation*}
\rho\left(\hat{\xi}_{i}\right)=\sum_{j=1}^{K} \hat{\xi}_{j}^{2}, \quad i=1, \ldots, K \tag{5.35}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\rho\left(\hat{\xi}_{i}\right)=\rho\left(\hat{\xi}_{j}\right) \quad \text { for } i \neq j \tag{5.36}
\end{equation*}
$$

That is

$$
\begin{equation*}
\left(\hat{\xi}_{i}-\hat{\xi}_{j}\right)\left(1-\eta_{0}\left(\hat{\xi}_{i}+\hat{\xi}_{j}\right)\right)=0 \tag{5.37}
\end{equation*}
$$

Hence for $i \neq j$ we have 32

$$
\begin{equation*}
\hat{\xi}_{i}-\hat{\xi}_{j}=0 \quad \text { or } \quad \hat{\xi}_{i}+\hat{\xi}_{j}=\frac{1}{\eta_{0}} \tag{5.38}
\end{equation*}
$$

The case of symmetric solutions ($\hat{\xi}_{i}=\hat{\xi}_{1}, i=2, \ldots, N$) has been studied in [86] and [87]. Let us now consider asymmetric solutions, i.e., we assume that there exists an $i \in\{2, \ldots, N\}$ such that $\hat{\xi}_{i} \neq \hat{\xi}_{1}$. Without loss of generality, let us assume that
$\hat{\xi}_{2} \neq \hat{\xi}_{1}$, 40
which implies that

$$
\begin{equation*}
\hat{\xi}_{1}+\hat{\xi}_{2}=\frac{1}{\eta_{0}} \tag{5.39}
\end{equation*}
$$

Let us calculate $\hat{\xi}_{j}, j=3, \ldots, K$. If $\hat{\xi}_{j} \neq \hat{\xi}_{1}$, then by (5.38), $\hat{\xi}_{j}+\hat{\xi}_{1}=\frac{1}{\eta_{0}}$, which implies that $\hat{\xi}_{j}=\hat{\xi}_{2}$.

Thus for $j \geqslant 3$, we have either $\hat{\xi}_{j}=\hat{\xi}_{1}$ or $\hat{\xi}_{j}=\hat{\xi}_{2}$.

Let k_{1} be the number of $\hat{\xi}_{1}$'s in $\left\{\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right\}$ and k_{2} be the number of $\hat{\xi}_{2}$'s in $\left\{\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right\}$. Then we have $k_{1} \geqslant 1, k_{2} \geqslant 1, k_{1}+k_{2}=K$.

This gives

$$
\begin{align*}
& \hat{\xi}_{1}-\eta_{0} \hat{\xi}_{1}^{2}=\sum_{j=1}^{K} \hat{\xi}_{j}^{2}=k_{1} \hat{\xi}_{1}^{2}+k_{2} \hat{\xi}_{2}^{2} \tag{5.40}\\
& \hat{\xi}_{2}=\frac{1}{\eta_{0}}-\hat{\xi}_{1} \tag{5.41}
\end{align*}
$$

Substituting (5.41) into (5.40), we obtain

$$
\begin{equation*}
\left(k_{1}+k_{2}+\eta_{0}\right) \hat{\xi}_{1}^{2}-\frac{2 k_{2}+\eta_{0}}{\eta_{0}} \hat{\xi}_{1}+\frac{k_{2}}{\eta_{0}^{2}}=0 \tag{5.42}
\end{equation*}
$$

Equation (5.42) has a solution if and only if

$$
\begin{equation*}
\frac{\left(2 k_{2}+\eta_{0}\right)^{2}}{\eta_{0}^{2}} \geqslant 4 \frac{k_{2}}{\eta_{0}^{2}}\left(k_{1}+k_{2}+\eta_{0}\right) \tag{5.43}
\end{equation*}
$$

The strict inequality of (5.43) is equivalent to

$$
\begin{equation*}
\eta_{0}>2 \sqrt{k_{1} k_{2}} \tag{5.44}
\end{equation*}
$$

It is easy to see that if (5.44) holds, then there are two different solutions to (5.42) which are given by $\left(\rho_{ \pm}, \eta_{ \pm}\right)$.

Therefore we arrive at the following conclusion.
LEMmA 5.6. Let $\eta_{0} \geqslant 2 \sqrt{k_{1} k_{2}}$. Then the solutions of (5.33) are given by $\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{N}\right) \in{ }_{41}$ $\left(\left\{\rho_{ \pm}, \eta_{ \pm}\right\}\right)^{K}$ where the number of $\rho_{ \pm}$'s is k_{1} and the number of $\eta_{ \pm}$'s is k_{2}. 42
If $\eta_{0}>2 \sqrt{k_{1} k_{2}}$, there exist two solutions $\left(\rho_{ \pm}, \eta_{ \pm}\right)$. ${ }_{43}$
If $\eta_{0}=2 \sqrt{k_{1} k_{2}}$, there exists one solution $\left(\rho_{ \pm}, \rho_{ \pm}\right)$.
If $\eta_{0}<2 \sqrt{k_{1} k_{2}}$, there are no solutions ($\rho_{ \pm}, \rho_{ \pm}$).

Let $\eta_{0}>2 \sqrt{k_{1} k_{2}}$ where $k_{1}+k_{2}=K, k_{1}, k_{2} \geqslant 1$. By Lemma 5.6, there are two solutions to (5.33). In fact, we can solve

$$
\begin{array}{ll}
\rho_{+}=\frac{2 k_{2}+\eta_{0}+\sqrt{\eta_{0}^{2}-4 k_{1} k_{2}}}{2 \eta_{0}\left(\eta_{0}+K\right)}, & \rho_{-}=\frac{2 k_{2}+\eta_{0}-\sqrt{\eta_{0}^{2}-4 k_{1} k_{2}}}{2 \eta_{0}\left(\eta_{0}+K\right)}, \\
\eta_{+}=\frac{2 k_{1}+\eta_{0}-\sqrt{\eta_{0}^{2}-4 k_{1} k_{2}}}{2 \eta_{0}\left(\eta_{0}+K\right)}, & \eta_{-}=\frac{2 k_{1}+\eta_{0}+\sqrt{\eta_{0}^{2}-4 k_{1} k_{2}}}{2 \eta_{0}\left(\eta_{0}+K\right)} . \tag{5.46}
\end{array}
$$

Note that

$$
\begin{equation*}
\rho_{+}+\eta_{+}=\frac{1}{\eta_{0}}, \quad \rho_{-}+\eta_{-}=\frac{1}{\eta_{0}} \tag{5.47}
\end{equation*}
$$

Let $(\rho, \eta)=\left(\rho_{+}, \eta_{+}\right)$or $(\rho, \eta)=\left(\rho_{-}, \eta_{-}\right)$. We drop " \pm" if there is no confusion.
Let $\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right) \in R_{+}^{K}$ be such that

$$
\begin{equation*}
\hat{\xi}_{j} \in\{\rho, \eta\}, \text { and the number of } \rho \text { 's in }\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right) \text { is } k_{1} . \tag{5.48}
\end{equation*}
$$

Then there are $k_{2} \eta$'s in $\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right)$.
Let $\mathbf{P}=\left(P_{1}, \ldots, P_{K}\right) \in \Omega^{K}$, where \mathbf{P} is arranged such that

$$
\mathbf{P}=\left(P_{1}, P_{2}, \ldots, P_{K}\right)
$$

with

$$
P_{i}=\left(P_{i, 1}, P_{i, 2}\right) \quad \text { for } i=1,2, \ldots, K
$$

For $\mathbf{P} \in \Omega^{K}$ we define

$$
\begin{equation*}
\hat{F}_{0}(\mathbf{P})=\sum_{k=1}^{K} H_{0}\left(P_{k}, P_{k}\right) \hat{\xi}_{k}^{4}-\sum_{i, j,=1, \ldots, K, i \neq j} G_{0}\left(P_{i}, P_{j}\right) \hat{\xi}_{i}^{2} \hat{\xi}_{j}^{2} \tag{5.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{M}_{0}(\mathbf{P})=\nabla_{\mathbf{P}}^{2} \tilde{F}_{0}(\mathbf{P}) \tag{5.50}
\end{equation*}
$$

Then we have the following theorem, which is on the existence of asymmetric K-peaked solutions.

THEOREM 5.7. (See [88].) Let $K \geqslant 2$ be a positive integer. Let $k_{1}, k_{2} \geqslant 1$ be two integers such that $k_{1}+k_{2}=K$. Let

$$
\beta^{2}=\frac{1}{D}, \quad \eta_{\epsilon}=\frac{\beta^{2}|\Omega|}{2 \pi} \log \frac{\sqrt{|\Omega|}}{\epsilon},
$$

(T2) $\quad \mathbf{P}^{0}=\left(P_{1}^{0}, P_{2}^{0}, \ldots, P_{K}^{0}\right)$ is a non-degenerate critical point of $\hat{F}_{0}(\mathbf{P}) \quad 7$
(defined by (5.49)).
Then for ϵ sufficiently small the stationary (GM) has a solution $\left(a_{\epsilon}, h_{\epsilon}\right)$ with the following properties:
(1) $a_{\epsilon}(x)=\sum_{j=1}^{K} \xi_{\epsilon, j}\left(w\left(\frac{x-P_{j}^{\epsilon}}{\epsilon}\right)+O\left(\frac{1}{D}\right)\right)$ uniformly for $x \in \bar{\Omega}$, where w is the unique solution of (2.8) and

$$
\begin{equation*}
\xi_{\epsilon, j}=\xi_{\epsilon} \hat{\xi}_{\epsilon, j}, \quad \xi_{\epsilon}=\frac{|\Omega|}{\epsilon^{2} \int_{\mathbb{R}^{2}} w^{2}} . \tag{5.51}
\end{equation*}
$$

Further, $\left(\hat{\xi}_{\epsilon, 1}, \ldots, \hat{\xi}_{\epsilon, K}\right) \rightarrow\left(\hat{\xi}_{1}, \ldots, \hat{\xi}_{K}\right)$ which is given by (5.48).
(2) $h_{\epsilon}\left(P_{j}^{\epsilon}\right)=\xi_{\epsilon, j}\left(1+\frac{1}{D}\right)$ in $H^{2}(\Omega), j=1, \ldots, K$.
(3) $P_{j}^{\epsilon} \rightarrow P_{j}^{0}$ as $\epsilon \rightarrow 0$ for $j=1, \ldots, K$.

5.4. Stability of symmetric K-spots

Next we study the stability and instability of the symmetric K-peaked solutions constructed in Theorems 5.4 and 5.5.
In the strong coupling case, it turns out all solutions are stable:

Theorem 5.8. (See [86].) Suppose $D=O(1)$. Let \mathbf{P}_{0} and $\left(a_{\epsilon}, h_{\epsilon}\right)$ be defined as in Theorem 5.4. Then for ϵ and τ sufficiently small $\left(a_{\epsilon}, h_{\epsilon}\right)$ is stable if all eigenvalues of the matrix $M_{D}\left(\mathbf{P}_{0}\right)=\left(\nabla_{\mathbf{P}_{0}}^{2} F_{D}\left(\mathbf{P}_{0}\right)\right)$ are negative. $\left(a_{\epsilon}, h_{\epsilon}\right)$ is unstable if one of the eigenvalues of the matrix $M_{D}\left(\mathbf{P}_{0}\right)$ is positive.

In the weak coupling case, the stability of symmetric K-peaked solutions in a bounded two-dimensional domain can be summarized as follows.

THEOREM 5.9. (See [87].) Let \mathbf{P}^{0} be a non-degenerate critical point of $F_{0}(\mathbf{P})$ and for ϵ sufficiently small and $D=\frac{1}{\beta^{2}}$ sufficiently large let $\left(a_{\epsilon}, h_{\epsilon}\right)$ be the K-peaked solutions constructed in Theorem 5.5 whose peaks approach \mathbf{P}^{0}.

Assume (5.20) holds and further that
(*) $\quad \mathbf{P}^{0}$ is a non-degenerate local maximum point of $F_{0}(\mathbf{P})$.
Then we have

Table 1

	Case 1	Case 2	Case $3\left(\eta_{0}<K\right)$	Case $3\left(\eta_{0}>K\right)$	2
$K=1, \tau$ small	stable	stable	stable	stable	3
$K=1, \tau$ finite	$?$	stable	$?$	$?$	4
$K=1, \tau$ large	unstable	stable	unstable	stable	5
$K>1, \tau$ small	unstable	stable	unstable	stable	6
$K>1, \tau$ finite	unstable	stable	unstable	$?$	7
$K>1, \tau$ large	unstable	stable	unstable	stable	8

CASE 1. $\eta_{\epsilon} \rightarrow 0$ (i.e., $\frac{2 \pi D}{|\Omega|} \gg \log \frac{1}{\epsilon}$).
If $K=1$ then there exists a unique $\tau_{1}>0$ such that for $\tau<\tau_{1},\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly stable,

CASE 2. $\eta_{\epsilon} \rightarrow+\infty$ (i.e., $\frac{2 \pi D}{|\Omega|} \ll \log \frac{1}{\epsilon}$).
$\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly stable for any $\tau>0$.
CASE 3. $\eta_{\epsilon} \rightarrow \eta_{0} \in(0,+\infty)\left(\right.$ i.e., $\frac{2 \pi D}{|\Omega|} \sim \frac{1}{\eta_{0}} \log \frac{1}{\epsilon}$).
If $K>1$ and $\eta_{0}<K$, then $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly unstable for any $\tau>0$. ${ }_{23}$
If $\eta_{0}>K$, then there exist $0<\tau_{2} \leqslant \tau_{3}$ such that $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly stable for $\tau<\tau_{2} \quad 24$ and $\tau>\tau_{3}$.

If $K=1, \eta_{0}<1$, then there exist $0<\tau_{4} \leqslant \tau_{5}$ such that $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly stable for ${ }_{26}$ $\tau<\tau_{4}$ and linearly unstable for $\tau>\tau_{5}$.

The statement of Theorem 5.9 is rather long. Let us therefore explain the results by the

REMARK 5.4.1. Assuming that condition $(*)$ holds, then for ϵ small the stability behavior of $\left(a_{\epsilon}, h_{\epsilon}\right)$ can be summarized in the following table:

REMARK 5.4.2. The condition $(*)$ on the locations \mathbf{P}^{0} arises in the study of small (o(1)) ${ }_{35}$ eigenvalues. For any bounded smooth domain Ω, the functional $F_{0}(\mathbf{P})$, defined by (5.16), always admits a global maximum at some $\mathbf{P}^{0} \in \Omega^{K}$. The proof of this fact is similar to the Appendix in [87]. We believe that in generic domains, this global maximum point \mathbf{P}^{0} is non-degenerate.

It is an interesting open question to numerically compute the critical points of $F_{0}(\mathbf{P})$ and link them explicitly to the geometry of the domain Ω.

We believe that for other types of critical points of $F_{0}(\mathbf{P})$, such as saddle points, the solution constructed in Theorem 5.5 should be linearly unstable. We are not able to prove this at the moment, since the operator \mathcal{L}_{ϵ} is not self-adjoint.

REmARK 5.4.3. Case 1 and Case 3 with $\eta_{0}<K$ resemble the shadow system and Case 2 and Case 3 with $\eta_{0}>K$ are similar to the strong coupling case.

From Case 2 and Case 3 of Theorem 5.9, we see that for multiple spikes ($K>1$) large τ may increase stability, provided that $\eta_{0}>K$. This is a new phenomenon in R^{2}. It is known that in R^{1}, large τ implies linear instability for multiple spikes [8,34,59,60].

REMARK 5.4.4. We conjecture that in Case $3, \tau_{2}=\tau_{3}$. This will imply that for any $\tau \geqslant 0$ and $\eta_{0}>K$, multiple spikes are stable, provided condition $(*)$ is satisfied. (It is possible to obtain explicit values for τ_{2} and τ_{3}.)

REMARK 5.4.5. Roughly speaking, assuming that condition ($*$) holds and that τ is small, then for $\epsilon \ll 1, D_{K}(\epsilon)=\frac{|\Omega|}{2 \pi K} \log \frac{1}{\epsilon}$ is the critical threshold for the asymptotic behavior of the diffusion coefficient of the inhibitor which determines the stability of K-peaked solutions.

The proof of Theorem 5.9 is again divided by two parts: large eigenvalues and small eigenvalues. For small eigenvalues, we relate them to the functional $F(\mathbf{P})$. For large eigenvalues, we obtain a system of NLEPs:

$$
\begin{align*}
& \Delta \phi_{i}-\phi_{i}+2 w \phi_{i} \\
& \quad-\frac{2\left[\left(1+\eta_{0}\left(1+\tau \lambda_{0}\right)\right) \int_{\mathbb{R}^{2}} w \phi_{i}+\sum_{j \neq i} \int_{\mathbb{R}^{2}} w \phi_{j}\right]}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right) \int_{\mathbb{R}^{2}} w^{2}} w^{2}=\lambda_{0} \phi_{i}, \\
& \quad i \tag{5.52}
\end{align*}=1, \ldots, K .
$$

By diagonalization, we obtain two NELPs:

$$
\begin{equation*}
\Delta \phi-\phi+2 w \phi-\frac{2 \eta_{0}}{\left(K+\eta_{0}\right) \int_{\mathbb{R}^{2}} w^{2}}\left[\int_{\mathbb{R}^{2}} w(y) \phi(y) d y\right] w^{2}=\lambda \phi \tag{5.53}
\end{equation*}
$$

and

$$
\begin{align*}
& \Delta \phi-\phi+2 w \phi-\frac{2\left(K+\eta_{0}\left(1+\tau \lambda_{0}\right)\right)}{\left(K+\eta_{0}\right)\left(1+\tau \lambda_{0}\right)} \frac{\int_{\mathbb{R}^{2}} w \phi}{\int_{\mathbb{R}^{2}} w^{2}} w^{2}=\lambda_{0} \phi \\
& \quad \phi \in H^{2}\left(\mathbb{R}^{2}\right) \tag{5.54}
\end{align*}
$$

where $0<\eta_{0}<+\infty$ and $0 \leqslant \tau<+\infty$.
Problem (5.53) is the same as (3.7). For problem (5.54), we have the following result
Theorem 5.10.
(1) If $\eta_{0}<K$, then for τ small problem (5.54) is stable while for τ large it is unstable.
(2) If $\eta_{0}>K$, then there exists $0<\tau_{2} \leqslant \tau_{3}$ such that problem (5.54) is stable for $\tau<\tau_{2}$ or $\tau>\tau_{3}$.

Proof. Let us set

$$
\begin{equation*}
f(\tau \lambda)=\frac{2\left(K+\eta_{0}(1+\tau \lambda)\right)}{\left(K+\eta_{0}\right)(1+\tau \lambda)} . \tag{5.55}
\end{equation*}
$$

We note that

$$
\lim _{\tau \lambda \rightarrow+\infty} f(\tau \lambda)=\frac{2 \eta_{0}}{K+\eta_{0}}=: f_{\infty}
$$

If $\eta_{0}<K$, then by Theorem 3.12(2), problem (3.52) with $\mu=f_{\infty}$ has a positive eigenvalue α_{1}. Now by perturbation arguments (similar to those in [8]), for τ large, problem (5.54) has an eigenvalue near $\alpha_{1}>0$. This implies that for τ large, problem (5.54) is unstable.

Now we show that problem (5.54) has no non-zero eigenvalues with non-negative real part, provided that either τ is small or $\eta_{0}>K$ and τ is large. (It is immediately seen that $f(\tau \lambda) \rightarrow 2$ as $\tau \lambda \rightarrow 0$ and $f(\tau \lambda) \rightarrow \frac{2 \eta_{0}}{\eta_{0}+K}>1$ as $\tau \lambda \rightarrow+\infty$ if $\eta_{0}>K$. Then Theorem 3.12 should apply. The problem is that we do not have control on $\tau \lambda$. Here we provide a rigorous proof.)

We apply the following inequality (Lemma 3.8(1)): for any (real-valued function) $\phi \in$ $H_{r}^{2}\left(R^{2}\right)$, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(|\nabla \phi|^{2}+\phi^{2}-2 w \phi^{2}\right)+2 \frac{\int_{\mathbb{R}^{2}} w \phi \int_{\mathbb{R}^{2}} w^{2} \phi}{\int_{\mathbb{R}^{2}} w^{2}} \\
& \quad-\frac{\int_{\mathbb{R}^{2}} w^{3}}{\left(\int_{\mathbb{R}^{2}} w^{2}\right)^{2}}\left(\int_{\mathbb{R}^{2}} w \phi\right)^{2} \geqslant 0, \tag{5.56}
\end{align*}
$$

where equality holds if and only if ϕ is a multiple of w.
Now let $\lambda_{0}=\lambda_{R}+\sqrt{-1} \lambda_{I}, \phi=\phi_{R}+\sqrt{-1} \phi_{I}$ satisfy (5.54). Then we have

$$
\begin{equation*}
L_{0} \phi-f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}^{2}} w \phi}{\int_{\mathbb{R}^{2}} w^{2}} w^{2}=\lambda_{0} \phi \tag{5.57}
\end{equation*}
$$

Multiplying (5.57) by $\bar{\phi}$-the conjugate function of ϕ-and integrating over R^{2}, we obtain that

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(|\nabla \phi|^{2}+|\phi|^{2}-2 w|\phi|^{2}\right) \\
& \quad=-\lambda_{0} \int_{\mathbb{R}^{2}}|\phi|^{2}-f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}^{2}} w \phi}{\int_{\mathbb{R}^{2}} w^{2}} \int_{\mathbb{R}^{2}} w^{2} \bar{\phi} \tag{5.58}
\end{align*}
$$

Multiplying (5.57) by w and integrating over \mathbb{R}^{2}, we obtain that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} w^{2} \phi=\left(\lambda_{0}+f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\right) \int_{\mathbb{R}^{2}} w \phi \tag{5.59}
\end{equation*}
$$

Taking the conjugate of (5.59) we have

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} w^{2} \bar{\phi}=\left(\overline{\lambda_{0}}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\right) \int_{\mathbb{R}^{2}} w \bar{\phi} \tag{5.60}
\end{equation*}
$$

Substituting (5.60) into (5.58), we have that

$$
\begin{align*}
& \int_{\mathbb{R}^{2}}\left(|\nabla \phi|^{2}+|\phi|^{2}-2 w|\phi|^{2}\right) \\
& \quad=-\lambda_{0} \int_{\mathbb{R}^{2}}|\phi|^{2}-f\left(\tau \lambda_{0}\right)\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\right) \frac{\left|\int_{\mathbb{R}^{2}} w \phi\right|^{2}}{\int_{\mathbb{R}^{2}} w^{2}} . \tag{5.61}
\end{align*}
$$

We just need to consider the real part of (5.61). Now applying the inequality (5.56) and using (5.60) we arrive at

$$
\begin{aligned}
& -\lambda_{R} \geqslant \operatorname{Re}\left(f\left(\tau \lambda_{0}\right)\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\right)\right) \\
& \quad-2 \operatorname{Re}\left(\bar{\lambda}_{0}+f\left(\tau \bar{\lambda}_{0}\right) \frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\right)+\frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}
\end{aligned}
$$

where we recall $\lambda_{0}=\lambda_{R}+\sqrt{-1} \lambda_{I}$ with $\lambda_{R}, \lambda_{I} \in R$.
Assuming that $\lambda_{R} \geqslant 0$, then we have

$$
\begin{equation*}
\frac{\int_{\mathbb{R}^{2}} w^{3}}{\int_{\mathbb{R}^{2}} w^{2}}\left|f\left(\tau \lambda_{0}\right)-1\right|^{2}+\operatorname{Re}\left(\bar{\lambda}_{0}\left(f\left(\tau \lambda_{0}\right)-1\right)\right) \leqslant 0 \tag{5.62}
\end{equation*}
$$

By the usual Pohozaev's identity for (2.8) (multiplying (2.8) by $y \cdot \nabla w(y)$ and integrating by parts), we obtain that

$$
\begin{equation*}
\int_{\mathbb{R}^{2}} w^{3}=\frac{3}{2} \int_{\mathbb{R}^{2}} w^{2} \tag{5.63}
\end{equation*}
$$

Substituting (5.63) and the expression (5.55) for $f(\tau \lambda)$ into (5.62), we have

$$
\begin{aligned}
& \frac{3}{2}\left|\eta_{0}+K+\left(\eta_{0}-K\right) \tau \lambda\right|^{2}+\operatorname{Re}\left((\eta _ { 0 } + K) (1 + \tau \overline { \lambda } _ { 0 }) \left(\left(\eta_{0}+K\right) \bar{\lambda}_{0}\right.\right. \\
& \left.\left.\quad+\left(\eta_{0}-K\right) \tau\left|\lambda_{0}\right|^{2}\right)\right) \leqslant 0
\end{aligned}
$$

which is equivalent to

$$
\begin{align*}
& \frac{3}{2}\left(1+\mu_{0} \tau \lambda_{R}\right)^{2}+\lambda_{R}+\left(\mu_{0} \tau+\tau+\mu_{0} \tau^{2}\left|\lambda_{0}\right|^{2}\right) \lambda_{R} \\
& \quad+\left(\frac{3}{2} \mu_{0}^{2} \tau^{2}+\mu_{0} \tau-\tau\right) \lambda_{I}^{2} \leqslant 0 \tag{5.64}
\end{align*}
$$

where we have introduced $\mu_{0}:=\frac{\eta_{0}-K}{\eta_{0}+K}$.
If $\eta_{0}>K$ (i.e., $\mu_{0}>0$) and τ is large, then 2

$$
\begin{equation*}
\frac{3}{2} \mu_{0}^{2} \tau^{2}+\mu_{0} \tau-\tau \geqslant 0 \tag{5.65}
\end{equation*}
$$

So (5.64) does not hold for $\lambda_{R} \geqslant 0$.
To consider the case when τ is small, we have to obtain an upper bound for λ_{I}. 8
From (5.58), we have 9

$$
\lambda_{I} \int_{\mathbb{R}^{2}}|\phi|^{2}=\operatorname{Im}\left(-f\left(\tau \lambda_{0}\right) \frac{\int_{\mathbb{R}^{2}} w \phi}{\int_{\mathbb{R}^{2}} w^{2}} \int_{\mathbb{R}^{2}} w^{2} \bar{\phi}\right)
$$

Hence

$$
\begin{equation*}
\left|\lambda_{I}\right| \leqslant\left|f\left(\tau \lambda_{0}\right)\right| \sqrt{\frac{\int_{\mathbb{R}^{2}} w^{4}}{\int_{\mathbb{R}^{2}} w^{2}}} \leqslant C \tag{5.66}
\end{equation*}
$$

Substituting (5.66) into (5.64), we see that (5.64) cannot hold for $\lambda_{R} \geqslant 0$, if τ is small.

Finally we study the stability or instability of the asymmetric K-peaked solutions con-26

structed in Theorem 5.7. structed in Theorem 5.7. 27
THEOREM 5.11. Let $\left(a_{\epsilon}, h_{\epsilon}\right)$ be the K-peaked solutions constructed in Theorem 5.7 for ϵ 29
sufficiently small, whose peaks are located near \mathbf{P}^{0}. Further assume that , 30
(*) $\quad \mathbf{P}^{0}$ is a non-degenerate local maximum point of $\hat{F}(\mathbf{P})$. 3233
Then we have: 34
(a) (Stability) 35 36
Assume that
$2 \sqrt{k_{1} k_{2}}<\eta_{0}<K$ 38and4142
$k_{1}>k_{2}, \quad(\rho, \eta)=\left(\rho_{+}, \eta_{+}\right)$. 4344
Then, for τ small enough, $\left(a_{\epsilon}, h_{\epsilon}\right)$ is stable. 45
(b) (Instability)

Assume that either

$$
\eta_{0}>K
$$

or
τ is large enough.
Then $\left(a_{\epsilon}, h_{\epsilon}\right)$ is linearly unstable.
A consequence of Theorem 5.11 is stable asymmetric patterns can exist in a twodimensional domain for a very narrow range of D, namely for

$$
\begin{equation*}
\frac{1}{2 \pi K} \log \frac{\sqrt{|\Omega|}}{\epsilon}<\frac{D}{|\Omega|}<\frac{1}{4 \pi \sqrt{k_{1} k_{2}}} \log \frac{\sqrt{|\Omega|}}{\epsilon} \tag{5.68}
\end{equation*}
$$

and ϵ small enough, where k_{1} and k_{2} are two integers satisfying $k_{1}+k_{2}=K, k_{1} \geqslant 1, k_{2} \geqslant$ 1. In most cases, asymmetric patterns are unstable.
6. High-dimensional case: $N \geqslant 3$

When $N \geqslant 3$, there are very few results on the full Gierer-Meinhardt system. The difference between $N \geqslant 3$ and $N \leqslant 2$ lies on the behavior of the Green function: when $N \leqslant 2$, the Green function is locally constant (when $N=2$, it is locally ∞). The limiting problem is still a single equation (2.8). But when $N \geqslant 3$, the Green function is like $\frac{1}{|x-y|^{N-2}}$. The limiting problem when $N \geqslant 3$ becomes

$$
\begin{cases}\Delta a-a+\frac{a^{p}}{h^{q}}=0 & \text { in } \mathbb{R}^{N} \tag{6.1}\\ \Delta h+\frac{a^{r}}{h^{s}}=0 & \text { in } \mathbb{R}^{N} \\ a, h>0, a, h \rightarrow 0 & \text { as }|y| \rightarrow+\infty\end{cases}
$$

Problem (6.1) seems out of reach at this moment. We believe that there should a radially symmetric solution to (6.1) which is also stable.

As far as the author knows, the only result in higher-dimensional case is the existence of radially symmetric layer solutions [62].

Let $\Omega=B_{R}$ be a ball of radius R in \mathbb{R}^{N}. By scaling, we may take $D=1$ and obtain formally the following elliptic system

$$
\begin{cases}\epsilon^{2} \Delta a-a+\frac{a^{p}}{h^{q}}=0 & \text { in } B_{R} \tag{6.2}\\ \Delta h-h+\frac{a^{m}}{h^{s}}=0 & \text { in } B_{R} \\ v s a>0, h>0 & \text { in } B_{R} \\ \frac{\partial a}{\partial v}=\frac{\partial a}{\partial v}=0 & \text { on } B_{R}\end{cases}
$$

where (p, q, m, s) satisfies

$$
\begin{equation*}
p>1, \quad q>0, \quad m>0, \quad s \geqslant 0, \quad \frac{q m}{(p-1)(s+1)}>1 . \tag{6.3}
\end{equation*}
$$

(The case of the whole \mathbb{R}^{N} is also included here, by taking $R=+\infty$.)
Note that in (6.2), we have replaced a^{r} by a^{m} since we will use $r=|x|$ to denote the radial variable.

We first define two functions, to be used later: let $J_{1}(r)$ be the radially symmetric solutions of the following problem

$$
\begin{equation*}
J_{1}^{\prime \prime}+\frac{N-1}{r} J_{1}^{\prime}-J_{1}=0, \quad J^{\prime}(0)=0, \quad J_{1}(0)=1, \quad J_{1}>0 . \tag{6.4}
\end{equation*}
$$

The second function, called $J_{2}(r)$, satisfies

$$
\begin{equation*}
J_{2}^{\prime \prime}+\frac{N-1}{r} J_{2}^{\prime}-J_{2}+\delta_{0}=0, \quad J_{2}>0, \quad J_{2}(+\infty)=0 \tag{6.5}
\end{equation*}
$$

where δ_{0} is the Dirac measure at 0 .
The functions $J_{1}(r)$ and $J_{2}(r)$ can be written in terms of modified Bessel's functions. In fact

$$
\begin{equation*}
J_{1}(r)=c_{1} r^{\frac{2-N}{2}} I_{\nu}(r), \quad J_{2}(r)=c_{2} r^{\frac{2-N}{2}} K_{v}(r), \quad v=\frac{N-2}{2} \tag{6.6}
\end{equation*}
$$

where c_{1}, c_{2} are two positive constants and I_{ν}, K_{v} are modified Bessel functions of order v. In the case of $N=3, J_{1}, J_{2}$ can be computed explicitly:

$$
\begin{equation*}
J_{1}=\frac{\sinh r}{r}, \quad J_{2}(r)=\frac{e^{-r}}{4 \pi r} \tag{6.7}
\end{equation*}
$$

Let $w(y)$ be the unique solution for ODE 2.103. Let $R>0$ be a fixed constant. We define

$$
\begin{equation*}
J_{2, R}(r)=J_{2}(r)-\frac{J_{2}^{\prime}(R)}{J_{1}^{\prime}(R)} J_{1}(r) \tag{6.8}
\end{equation*}
$$

and a Green function $G_{R}\left(r ; r^{\prime}\right)$

$$
\begin{equation*}
G_{R}^{\prime \prime}+\frac{N-1}{r} G_{R}^{\prime}-G_{R}+\delta_{r^{\prime}}=0, \quad G_{R}^{\prime}\left(0 ; r^{\prime}\right)=0, \quad G_{R}^{\prime}\left(R ; r^{\prime}\right)=0 \tag{6.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
J_{2, R}^{\prime}(R)=0, \quad \lim _{R \rightarrow+\infty} J_{2, R}(r)=J_{2}(r) \tag{6.10}
\end{equation*}
$$

For $t \in(0, R)$, set

$$
\begin{equation*}
M_{R}(t):=\frac{(N-1)(p-1)}{q t}+\frac{J_{1}^{\prime}(t)}{J_{1}(t)}+\frac{J_{2, R}^{\prime}(t)}{J_{2, R}(t)} \tag{6.11}
\end{equation*}
$$

When $R=+\infty, J_{2,+\infty}(r)=J_{2}(r)$. We denote $G_{+\infty}\left(r ; r^{\prime}\right)$ as $G\left(r ; r^{\prime}\right)$ and $M_{+\infty}(t)$ as $M(t)$. That is,

$$
\begin{align*}
& G\left(r ; r^{\prime}\right)=c_{0}\left(r^{\prime}\right)^{N-1} \begin{cases}J_{2}\left(r^{\prime}\right) J_{1}(r), & \text { for } r<r^{\prime}, \\
J_{1}\left(r^{\prime}\right) J_{2}(r), & \text { for } r>r^{\prime},\end{cases} \tag{6.12}\\
& M(t):=\frac{(N-1)(p-1)}{q t}+\frac{J_{1}^{\prime}(t)}{J_{1}(t)}+\frac{J_{2}^{\prime}(t)}{J_{2}(t)} . \tag{6.13}
\end{align*}
$$

Then we have the following existence result on layered solutions.
TheOrem 6.1. (See [62].) Let $N \geqslant 2$. Assume that there exist two radii $0<r_{1}<r_{2}<R$ such that

$$
\begin{equation*}
M_{R}\left(r_{1}\right) M_{R}\left(r_{2}\right)<0 \tag{6.14}
\end{equation*}
$$

Then for ϵ sufficiently small, problem (6.2) has a solution ($a_{\epsilon, R}, h_{\epsilon, R}$) with the following properties:
(1) $a_{\epsilon, R}, h_{\epsilon, R}$ are radially symmetric,
(2) $a_{\epsilon, R}(r)=\xi_{\epsilon, R}^{\frac{q}{p-1}} w\left(\frac{r-t_{\epsilon}}{\epsilon}\right)(1+o(1))$,
(3) $a_{\epsilon, R}(r)=\xi_{\epsilon, R}\left(G_{R}\left(t_{\epsilon} ; t_{\epsilon}\right)\right)^{-1} G_{R}\left(r ; t_{\epsilon}\right)(1+o(1))$, where $G_{R}\left(r ; t_{\epsilon}\right)$ satisfies (6.9), $\xi_{\epsilon, R}$ is defined by the following

$$
\begin{equation*}
\xi_{\epsilon, R}=\left(\epsilon\left(\int_{\mathbb{R}} w^{m}\right) G_{R}\left(t_{\epsilon} ; t_{\epsilon}\right)\right)^{\frac{(1+s)(p-1)-q m}{q m}} \tag{6.15}
\end{equation*}
$$

$$
\text { and } t_{\epsilon} \in\left(r_{1}, r_{2}\right) \text { satisfies } \lim _{\epsilon \rightarrow 0} M_{R}\left(t_{\epsilon}\right)=0
$$

It remains to check condition (6.14), which can be verified numerically. Under some conditions on p, q, we can obtain the following corollary.

COROLLARY 6.2. Assume that the following condition holds:

$$
\begin{equation*}
\frac{(N-2) q}{N-1}+1<p<q+1 \tag{6.16}
\end{equation*}
$$

Then there exists an $R_{0}>0$ such that for $R>R_{0}$ and ϵ sufficiently small, problem (6.2) has two radially symmetric solutions ($a_{\epsilon, R}^{i}, h_{\epsilon, R}^{i}$) concentrating on sphere $\left\{r=t_{i}\right\}$ with $M_{R}\left(t_{i}\right)=0, i=1,2$, and $0<t_{1}<t_{2}<R, i=1,2$.

We remark that Corollary 6.2 is the first rigorous result on the existence to (6.2) of positive solutions in dimension $N \geqslant 3$. Next we consider the existence of bound states. That is, we consider the following elliptic system in \mathbb{R}^{N} :

$$
\begin{cases}\epsilon^{2} \Delta a-a+\frac{a^{p}}{h^{q}}=0 & \text { in } \mathbb{R}^{N} \tag{6.17}\\ \Delta h-h+\frac{a^{m}}{h^{s}}=0 & \text { in } \mathbb{R}^{N} \\ a, h>0, \quad a, h \rightarrow 0 & \text { as }|x| \rightarrow+\infty\end{cases}
$$

1

$$
\begin{equation*}
M\left(r_{1}\right) M\left(r_{2}\right)<0 \tag{6.18}
\end{equation*}
$$

Then for ϵ sufficiently small, problem (6.17) has a solution $\left(a_{\epsilon}, h_{\epsilon}\right)$ with the following properties:
(1) $a_{\epsilon}, h_{\epsilon}$ are radially symmetric,
(2) $a_{\epsilon}(r)=\xi_{\epsilon}^{\frac{q}{p-1}} w\left(\frac{r-r_{\epsilon}}{\epsilon}\right)(1+o(1))$,
(3) $h_{\epsilon}(r)=\xi_{\epsilon}\left(G\left(r_{\epsilon} ; r_{\epsilon}\right)\right)^{-1} G\left(r ; r_{\epsilon}\right)(1+o(1))$, where ξ_{ϵ} is defined at the following

$$
\begin{equation*}
\xi_{\epsilon}=\left(\epsilon\left(\int_{\mathbb{R}} w^{m}\right) G\left(r_{\epsilon} ; r_{\epsilon}\right)\right)^{\frac{(1+s)(p-1)-q m}{q m}} \tag{6.19}
\end{equation*}
$$

and $r_{\epsilon} \in\left(r_{1}, r_{2}\right)$ satisfying $\lim _{\epsilon \rightarrow 0} M\left(r_{\epsilon}\right)=0$. $\quad \begin{aligned} & 28 \\ & 29\end{aligned}$
Similarly we have the following corollary. $\quad 31$
COROLLARY 6.4. Assume that $N \geqslant 2$ and that the condition (6.16) holds. Then for $\epsilon{ }^{33}$ sufficiently small, problem (6.2) has a radially symmetric bound state solution $\left(a_{\epsilon}, h_{\epsilon}\right){ }_{3}^{34}$ which concentrates on a sphere $\left\{r=t_{0}\right\}$ where $M\left(t_{0}\right)=0 . \quad \begin{aligned} & 35 \\ & 36\end{aligned}$

By using the same method, it is not difficult to generalize the results of Theorem 6.1 to ${ }_{38}$ other symmetric domains, such as annulus or the exterior of a ball. We omit the details. 39

Several interesting questions are left open. First, can multiple layered solutions to (6.2) $\quad 40$ exist? Second, it would be an interesting question to study the stability of these "ring-like" 41 solutions. Numerical computations in two dimension indicate that the "ring-like" solutions 42 constructed in Theorem 6.1 are unstable and will break into several spots due to angular ${ }^{43}$ fluctuations. Third, if we vary R from 0 to $+\infty$, what is the relation between the layered solution constructed in [52] for the single equation (2.4) and the solutions in Theorem 6.1?
7. Conclusions and remarks

In this chapter, I have surveyed the most recent results on the study of Gierer-Meinhardt system.

First, we consider the case $D=+\infty$. In this case, the state-state problem becomes a singularly perturbed elliptic Neumann problem (2.4). Using the LEM, we established various existence results on concentrating solutions. In particular, Theorem 2.5 gives a lower bound on the number of solutions to (2.4). Several interesting questions are associated with (2.4). First, is there a lower bound on the number of boundary spikes? What is the optimal bound on the number of solutions to (2.4)? The followings are just some related conjecturesConjecture 1. Suppose the mean curvature function $H(P)$ has l local minimum points.Then there is at least
$\frac{C}{\epsilon^{l(N-1)}}$number of boundary spikes to (2.4).Conjecture 2. Suppose the distance function $d(P, \partial \Omega)$ has l local maximum points.Then there is at least
$\frac{C}{\epsilon^{N l}}$21
number of interior spikes to (2.4).
Conjecture 3. Suppose we have the energy bound $J_{\epsilon}\left[u_{\epsilon}\right] \leqslant C \epsilon^{m}$ for some $m \leqslant N$. Assume that the concentration set $\Gamma_{\epsilon}=\left\{u_{\epsilon}>\frac{1}{2}\right\}$ is connected. Then the limiting set $\Gamma=$ $\lim _{\epsilon \rightarrow 0} \Gamma_{\epsilon}$ has Hausdorff dimension $N-m$.

Second, we consider the stability of spike solutions to the shadow system (2.2). By studying both small and large eigenvalues, we have completely characterized the stability (or instability) in the case of $r=2,1<p<1+\frac{4}{N}$ or $r=p+1$. The study of the NLEP (3.52) is not complete yet. Many interesting questions are still open: the case of general r, the case of large τ, the uniqueness of Hopf bifurcation, etc. The non-linear metastability of interior spike solutions is studied in [6]. The stability of boundary spikes is studied in [32], through a formal approach. It can be proved that when $D>D_{0}(\epsilon) \gg 1$, the full GiererMeinhardt system converges to the shadow system [59,60,77,78]. However, the critical threshold $D_{0}(\epsilon)$ seems unknown.

Third, we consider the one- and two-dimensional Gierer-Meinhardt systems. For steady states, we established the existence of symmetric and asymmetric K-peaked spikes. In 1D, the bifurcation of asymmetric K-spikes occur when $D<D_{K}$. In 2D, the bifurcation of asymmetric K-spikes occur when $D \sim \log \frac{1}{\epsilon}$. We also obtain critical thresholds for the stability of K-peaked solutions: If $\epsilon \ll 1$ there are stability thresholds

$$
D_{1}(\epsilon)>D_{2}(\epsilon)>D_{3}(\epsilon)>\cdots>D_{K}(\epsilon)>\cdots
$$

such that if

$$
\lim _{\epsilon \rightarrow 0} \frac{D_{K}(\epsilon)}{D}>1
$$

then the K-peaked solution is stable, and if 5

$$
\lim \frac{D_{K}(\epsilon)}{4}<1 \begin{aligned}
& 7 \\
& 8
\end{aligned}
$$

then the K-peaked solution is unstable. In 1D, the critical threshold is $D_{K} \sim \frac{1}{K^{2}}$. In 2D, the critical threshold is $\frac{\log \frac{\sqrt{|\Omega|}}{\epsilon}}{2 \pi K}$. In 1D, the small eigenvalues determine the critical thresholds, while in 2D, the large eigenvalues give the critical thresholds. An interesting question is to obtain the next order term in the critical threshold for 2D (which should be $O(1)$ and location-dependent). The dynamics of multiple spikes in 1D and 2D is completely open. In 1D, the dynamical equation for the positions of the spikes is a system of algebraic-differential-equations (ADE). A matched asymptotic analysis is given in [33]. In 2D, the dynamics of two well-separated spots is studied in [20] and it is shown that the two spots will repel each other, provided that the initial distance between the two spots is large enough. In a general two-dimensional domain, the dynamics of multiple spots should be governed by $\nabla F_{D}(\mathbf{P})$ or $\nabla F_{0}(\mathbf{P})$.

Finally, it is almost completely open as regards to three-dimensional Gierer-Meinhardt system. The main difficulty is the study of the coupled system (6.1) which requires some new insights. A layered bound state is constructed, but most likely it is unstable. An interesting question is to generalize Theorem 6.1 to general domains.

Although the analysis in this paper was carried out for the Gierer-Meinhardt system, the results can certainly be generalized to a much wide class of non-local reaction diffusion systems that have localized spike solutions.

Acknowledgments

I would like to thank Professor W.-M. Ni for introducing me to this subject and for his hearty encouragements and many valuable discussions. I also like to thank many of my collaborators for their patience and sharing with me their wonderful ideas: Professors H. Berestycki, S.-I. Ei, EN Dancer, M. del Pino, F.H. Lin, C. Gui, M. Kowalczyk, T. Kolokolnikov, D. Iron, W.-M. Ni, M. Ward, M. Winter, S. Yan and many others. The research is supported by an Earmarked Grant from RGC of HK.

References

[1] Adimurthi and G. Mancini, Geometry and topology of the boundary in the critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1-18.
[2] Adimurthi, F. Pacella and S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318-350.
[3] H. Berestycki and J. Wei, On singular perturbation problems with Robin boundary condition, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) II (2003), 199-230.
[4] P. Bates, E.N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higherdimension and instability, Adv. Diff. Eqns. 4 (1999), 1-69.
[5] R.G. Casten and C.J. Holland, Instability results for a reaction diffusion equation with Neumann boundary conditions, J. Diff. Eqns. 27 (1978), 266-273.
[6] X. Chen and M. Kowalczyk, Slow dynamics of interior spikes in the shadow Gierer-Meinhardt system, SIAM J. Math. Anal. 33 (1) (2001), 172-193.
[7] X. Chen, M. del Pino and M. Kowalczyk, The Gierer-Meinhardt system: the breaking of homoclinics and multi-bump ground states, Comm. Contemp. Math. 3 (3) (2001), 419-439.
[8] E.N. Dancer, On stability and Hopf bifurcations for chemotaxis systems, Methods Appl. Anal. 8 (2) (2001), 245-256.
[9] E.N. Dancer and S. Yan, Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999), 241-262.
[10] A. Dillon, P.K. Maini and H.G. Othmer, Pattern formation in generalized Turing systems, I. Steady-state patterns in systems with mixed boundary conditions, J. Math. Biol. 32 (1994), 345-393.
[11] A. Doelman, R.A. Gardner and T.J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Indiana Univ. Math. J. 49 (4) (2000).
[12] A. Doelman, T.J. Kaper and H. van der Ploeg, Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer-Meinhardt equation, Methods Appl. Anal. 8 (3) (2001), 387-414.
[13] M. Del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem, Calc. Var. Part. Diff. Equ. 16 (2003) 113-145.
[14] M. del Pino, M. Musso and A. Pistoia, Super-critical boundary bubbling in a semilinear Neumann problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (1) (2005), 45-82.
[15] M. del Pino, J. Dolbeault and M. Musso, The Brezis-Nirenberg problem near criticality in dimension 3, J. Math. Pures Appl. (9) 83 (12) (2004), 1405-1456.
[16] M. del Pino, P. Felmer and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), 63-79.
[17] M. del Pino, M. Kowalczyk and J. Wei, Multi-bump ground states of the Gierer-Meinhardt system in R^{2}, Ann. Non Linéaire Ann. Inst. H. Poincaré 20 (2003), 53-85.
[18] M. del Pino, M. Kowalczyk and J. Wei, Concentration on curve for nonlinear Schrödinger equation, Comm. Pure Appl. Math. (2006), in press.
[19] M. del, Pino, M. Kowalczyk and J. Wei, The Toda system and clustering interfaces in the Allen-Cahn equation, preprint, 2006.
[20] S.-I. Ei and J. Wei, Dynamics of interior spike solutions, Japan J. Industr. Appl. Math. 19 (2002), 181-226.
[21] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin) $\mathbf{1 2}$ (1972), 30-39.
[22] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R^{N}, Mathematical Analysis and Applications, Part A, L. Nachbin, ed., Adv. Math. Suppl. Stud., vol. 7, Academic Press, New York (1981), 369-402.
[23] C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), 443-474.
[24] N. Ghoussoub, C. Gui and M. Zhu, On a singularly perturbed Neumann problem with the critical exponent, Comm. Part. Diff. Equ. 26 (2001), 1929-1946.
[25] Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal. 221 (2) (2005), 251-302.
[26] C. Gui, Multi-peak solutions for a semilinear Neumann problem, Duke Math. J. 84 (1996), 739-769.
[27] C. Gui and J. Wei, Multiple interior peak solutions for some singular perturbation problems, J. Diff. Eqns. 158 (1999), 1-27.
[28] C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000), 522-538.
[29] C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 47-82.
[30] P. Grossi and J. Wei, Existence of multiple-peaked solutions in a semilinear elliptic Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000), 143-175.
[31] D.M. Holloway, Reaction-diffusion theory of localized structures with application to vertebrate organogenesis, PhD thesis, University of British Columbia (1995).
[32] D. Iron and M.J. Ward, A metastable spike solution for a non-local reaction-diffusion model, SIAM J. Appl. Math. 60 (3) (2000), 778-802.
[33] D. Iron and M. Ward, The dynamics of multispike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math. 62 (6) (2002), 1924-1951.
[34] D. Iron, M. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D: Nonlinear Phenomena 150 (1-2) (2001), 25-62.
[35] D. Iron, J. Wei and M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biology 49 (4) (2004), 358-390.
[36] A.J. Koch and H. Meinhardt, Biological pattern formation from basic mechanisms to complex structures, Rev. Mod. Phys. 66 (4) (1994), 1481-1507.
[37] M. Kowalcayk, On the existence and Morse index of solutions to the Allen-Cahn equation in two dimensions, Ann. Mat. Pura Appl. (4) 184 (1) (2005), 17-52.
[38] P.K. Maini, K.J. Painter and H. Chau, Spatial pattern formation in biological and chemical systems, J. Chem. Soc. Faraday Transactions 93 (20) (1997), 3601-3610.
[39] M.K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^{p}=0$ in R^{N}, Arch. Ration. Mech. Anal. 105 (1991), 243-266.
[40] M.K. Kwong and L. Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus, Diff. Int. Eqns. 4 (3) (1991), 583-599.
[41] Y.-Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998), 487-545.
[42] C.-S. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem, Calculus of Variations and Partial Differential Equations, Trento, 1986, Lecture Notes in Math. 1340, Springer, Berlin (1988), 160-174.
[43] C.S. Lin, L. Wang and J. Wei, Bubble accumulations in an elliptic Neumann problem with critical Sobolev exponent, preprint, 2005.
[44] F.H. Lin, W.M. Ni and J.C. Wei, On the number of solutions for some singularly perturbed Neumann problems, Comm. Pure Appl. Math. (2006), in press.
[45] P. Maini, J. Wei and M. Winter, On the Gierer-Meinhardt system with Robin boundary conditions, preprint (2006).
[46] H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Pub. Res. Inst. Math. Sci. 15 (1979), 224-243.
[47] J. Murray, Mathematical Biology, I: An Introduction, II: Spatial Models and Biomedical Applications, third ed., Springer-Verlag, New York (2001).
[48] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains, preprint (2004).
[49] A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002), 1507-1508.
[50] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J. 124 (1) (2004), 105-143.
[51] F. Mahmoudi and A. Malchiodi, Concentration on minimal submanifolds for a singularly perturbed Neumann problem, preprint, 2006.
[52] A. Malchiodi, W.M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 143-163.
[53] W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998), 9-18.
[54] W.-M. Ni, Qualitative properties of solutions to elliptic problems, Stationary Partial Differential Equations, vol. I, Handb. Differ. Equ., North-Holland, Amsterdam (2004), 157-233.
[55] W.N. Ni, X.B. Pan and I. Takagi, Singular behavior of least-energy solutions of a semi-linear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1-20.
[56] W.-M. Ni, P. Polacik and E. Yanagida, Monotonicity of stable solutions in shadow systems, Trans. Amer. Math. Soc. 353 (12) (2001), 5057-5069.
[57] W.-M. Ni and I. Takagi, On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991), 819-851.
[58] W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), 247-281.
[59] W.-M. Ni, I. Takagi and E. Yanagida, Stability analysis of point-condensation solutions to a reactiondiffusion system proposed by Gierer and Meinhardt, Tohoku Math. J., in press.
[60] W.-M. Ni, I. Takagi and E. Yanagida, Stability of least energy patterns of the shadow system for an activatorinhibitor mo del, Japan J. Industr. Appl. Math., in press.
[61] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731-768.
[62] W.-M. Ni and J. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system, J. Diff. Eqns. 221 (2006), 158-189.
[63] J.E. Pearson, Complex patterns in a simple system, Science 261 (1993), 189-192.
[64] O. Rey, The question of interior blow-up points for an elliptic Neumann problem: the critical case, J. Math. Pures Appl. 81 (2002) 655-696.
[65] O. Rey and J. Wei, Blow-up solutions for an elliptic Neumann problem with sub-or-supcritical nonlinearity, II: $N \geqslant 4$, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (4) (2005), 459-484.
[66] O. Rey and J. Wei, Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity, J. Eur. Math. Soc. 7 (4) (2005) 449-476.
[67] I. Takagi, Point-condensation for a reaction-diffusion system, J. Diff. Eqns. 61 (1986), 208-249.
[68] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond. B 237 (1952), 37-72.
[69] X.J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Equ. 93 (1991) 283-310.
[70] M.J. Ward and J. Wei, Asymmetric spike patterns for the one-dimensional Gierer-Meinhardt model: equilibria and stability, Europ. J. Appl. Math. 13 (2002), 283-320.
[71] L. Wang and J. Wei, Interior bubbles for a singularly perturbed problem in lower dimensions, preprint.
[72] L. Wang and J. Wei, Arbitrary many bubbles for Lin-Ni's problem in dimension four and six, preprint.
[73] J. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Diff. Eqns. 134 (1997), 104-133.
[74] J. Wei, On the interior spike layer solutions of singularly perturbed semilinear Neumann problem, Tohoku Math. J. 50 (2) (1998), 159-178.
[75] J. Wei, On the interior spike layer solutions for some singular perturbation problems, Proc. Royal Soc. Edinburgh Sect. A (Mathematics) 128 (1998), 849-874.
[76] J. Wei, Uniqueness and eigenvalue estimates of boundary spike solutions, Proc. Royal Soc. Edin. A 131 (2001), 1457-1480.
[77] J. Wei, On single interior spike solutions of Gierer-Meinhardt system: uniqueness and spectrum estimates, Eur. J. Appl. Math. 10 (1999), 353-378.
[78] J. Wei, Existence, stability and metastability of point condensation patterns generated by Gray-Scott system, Nonlinearity 12 (1999), 593-616.
[79] J. Wei, On the construction of interior spike layer solutions to a singularly perturbed semilinear Neumann problem, Partial Differential Equations: Theory and Numerical Solution, CRC Press LLC (1998), 336-349.
[80] J. Wei, On a nonlocal eigenvalue problem and its applications to point-condensations in reaction-diffusion systems, Int. J. Bifur. Chaos 10 (6) (2000), 1485-1496.
[81] J. Wei and L. Zhang, On a nonlocal eigenvalue problem, Ann. Sc. Norm. Sup. Pisa Cl. Sci. XXX (2001), 41-62.
[82] J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 459-492.
[83] J. Wei and M. Winter, Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), 585-606.
[84] J. Wei and M. Winter, Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R^{1}, preprint (2001).
[85] J. Wei and M. Winter, On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal. 30 (1999), 1241-1263.
[86] J. Wei and M. Winter, On multiple spike solutions for the two-dimensional Gierer-Meinhardt system; the strong coupling case, J. Diff. Eqns. 178 (2002), 478-518.
[87] J. Wei and M. Winter, On multiple spike solutions for the two-dimensional Gierer-Meinhardt system; the weak coupling case, J. Nonlinear Sci. 6 (2001), 415-458.
[88] J. Wei and M. Winter, Asymmetric Patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9) 83 (4) (2004), 433-476.
[89] J. Wei and M. Winter, Stability of monotone solutions for the shadow Gierer-Meinhardt system with finite diffusivity, Diff. Int. Eqns. 16 (2003), 1153-1180.
[90] J. Wei and M. Winter, Higher-order energy expansions and spike locations, Cal. Var. PDE 20 (2004), 403430.
[91] J. Wei, M. Winter and W. Yeung, A higher-order energy expansion to two-dimensional singularly perturbed Neumann problems, Asymptotic Analysis 43 (1-2) (2005), 75-110.
[92] J. Wei and S. Yan, Solutions with interior bubble and boundary layer for an elliptic Neumann problem with critical nonlinearity, submitted for publication.
[93] J. Wei and J. Yang, Concentration on curves for a singularly perturbed Neumann problem in two- 13 dimensional domain, preprint (2006).
[94] J. Wei and J. Yang, Clustered line condensations for a singularly perturbed Neumann problem in two- 14 dimensional domain, preprint (2006).

