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Abstract. By developing a unified approach based on integral representations, we establish
sharp quantitative stability estimates of the fractional and higher-order Sobolev inequalities,

induced by the embedding Ḣs(Rn) ↪→ L
2n

n−2s (Rn) for any s ∈ (0, n
2
), in the critical point setting.

1. Introduction

Given n ∈ N and s ∈ R, let Ḣs(Rn) be the homogeneous Sobolev space of fractional order s
defined as

Ḣs(Rn) :=

{
u ∈ S ′(Rn) : Fu ∈ L1

loc(Rn), ∥u∥Ḣs(Rn) :=

(∫
Rn

|ξ|2s|Fu(ξ)|2dξ
) 1

2

<∞

}
where Fu is the Fourier transform of u, and S ′(Rn) is the space of tempered distributions, i.e.,

the continuous dual space of the Schwartz space S(Rn). As shown in [4], Ḣs(Rn) is a Hilbert
space if and only if s < n

2 . Moreover, if u ∈ S(Rn), then

∥u∥2
Ḣs(Rn) =

∥∥∥(−∆)
s
2u
∥∥∥2
L2(Rn)

=

∫
Rn
u(−∆)su where F ((−∆)su) (ξ) := |ξ|2sû(ξ).

The space Ḣs(Rn) with s < n
2 is realized as the completion of S(Rn) under the norm ∥ · ∥Ḣs(Rn).

For any s ∈ (0, n2 ), there is an optimal constant Sn,s > 0 depending only on n and s such that

Sn,s∥u∥Lp+1(Rn) ≤ ∥u∥Ḣs(Rn) for all u ∈ Ḣs(Rn) where p :=
n+ 2s

n− 2s
, (1.1)

referred to as the fractional Sobolev inequality. Lieb [46] proved that the set of the extremizers
of (1.1) consists of non-zero constant multiples of the functions (often called the bubbles)

U [z, λ](x) = αn,s

(
λ

1 + λ2|x− z|2

)n−2s
2

for x ∈ Rn (1.2)

where αn,s := 2
n−2s

2 [Γ(n+2s
2 )/Γ(n−2s

2 )]
n−2s
4s .

According to the standard theory of calculus of variations, an extremizer of (1.1) always solves

(−∆)su = µ|u|p−1u in Rn, u ∈ Ḣs(Rn) (1.3)
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where µ ∈ R is a Lagrange multiplier. Chen et al. [16] classified all positive solutions to (1.3),
showing that they must assume the form in (1.2) up to a constant multiple. Furthermore, Dávila
et al. [23] deduced that if s ∈ (0, 1), then the solution space of a linearized equation of (1.3)

(−∆)sZ − pU [z, λ]p−1Z = 0 in Rn, Z ∈ L∞(Rn). 1 (1.4)

is spanned by

Za[z, λ] =
1

λ

∂U [z̄, λ]

∂z̄a

∣∣∣∣
z̄=z

for a = 1, . . . , n and Zn+1[z, λ] = λ
∂U [z, λ̄]

∂λ̄

∣∣∣∣
λ̄=λ

,

where z̄ = (z̄1, . . . , z̄n) ∈ Rn. In [45, Lemma 5.1], Li and Xiong extended this non-degeneracy
theorem to all s ∈ (0, n2 ). The condition Z ∈ L∞(Rn) in [45, Lemma 5.1] can be replaced with

Z ∈ Ḣs(Rn), as shown in Lemma A.1.
For a further understanding of (1.1), one can naturally consider its quantitative stability, as

proposed by Brezis and Lieb [8]. Bianchi and Egnell [7] proved the existence of a constant
CBE > 0 depending only on n such that

inf
z∈Rn, λ>0, c∈R

∥u− cU [z, λ]∥2
Ḣ1(Rn) ≤ CBE

(
∥u∥2

Ḣ1(Rn) − S2
n,s∥u∥2Lp+1(Rn)

)
(1.5)

for any u ∈ Ḣ1(Rn). Later, their result was generalized by Chen et al. [15], who found a constant
CCFW > 0 depending only on n and s such that

inf
z∈Rn, λ>0, c∈R

∥u− cU [z, λ]∥2
Ḣs(Rn) ≤ CCFW

(
∥u∥2

Ḣs(Rn) − S2
n,s∥u∥2Lp+1(Rn)

)
(1.6)

for any u ∈ Ḣs(Rn).
Another way to address the stability issue on (1.1) is to consider the qualitative stability

for solutions to equation (1.3), which is the main objective of this paper. This problem is
difficult because it requires controlling the quantitative behavior of approximate solutions with
arbitrarily high energy. The starting point is the following Struwe-type profile decompositions
for (1.1) derived by Gérard [38, Théorème 1.1]. Refer also to Palatucci and Pisante [49, Theorem
1.1] and Fang and González [31, Theorem 1.3].

Theorem A. Suppose that n ∈ N, ν ∈ N, s ∈ (0, n2 ), p = n+2s
n−2s , and Sn,s > 0 is the constant in

(1.1). Let {um}m∈N be a sequence of non-negative functions in Ḣs(Rn) such that
(
ν − 1

2

)
Snn,s ≤

∥um∥2Ḣs(Rn) ≤
(
ν + 1

2

)
Snn,s. If it satisfies

∥(−∆)sum − upm∥Ḣ−s(Rn) → 0 as k → ∞,

then there exist a sequence {(z1,m, . . . , zν,m)}m∈N of ν-tuples of points in Rn and a sequence
{(λ1,m, . . . , λν,m)}m∈N of ν-tuples of positive numbers such that∥∥∥∥∥um −

ν∑
i=1

U [zi,m, λi,m]

∥∥∥∥∥
Ḣs(Rn)

→ 0 as m→ ∞.

In addition, let Ui,m := U [zi,m, λi,m] for i = 1, . . . , ν. Then there exists m0 ∈ N such that the
sequence {(U1,m, . . . , Uν,m)}m≥m0 of ν-tuples of bubbles is δ-interacting in the following sense: If
we define the quantity

qij = q(zi, zj , λi, λj) =

(
λi
λj

+
λi
λj

+ λiλj |zi − zj |2
)−n−2s

2

for i, j = 1, . . . , ν, (1.7)

1More precisely, (1.4) is understood as the corresponding integral equation Z = Φn,s ∗
(
pU [z, λ]p−1Z

)
in Rn

where Φn,s is the Riesz potential in (1.10).
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then
max

i,j=1,...,ν,
i ̸=j

q (zi,m, zj,m, λi,m, λj,m) ≤ δ for all m ≥ m0.

If s = 1, the above theorem is reduced to one obtained by Struwe [56]. Also, the corresponding
pointwise theory was established by Druet, Hebey, and Robert [29].

In this paper, we establish sharp quantitative stability estimates of the above decomposition
provided any n ∈ N and s ∈ (0, n2 ).

Theorem 1.1. Let n ∈ N, ν ∈ N, s ∈ (0, n2 ), and p = n+2s
n−2s . There exist a small constant δ > 0

and a large constant C > 0 depending only on n, s, and ν such that the following statement
holds: If u ∈ Ḣs(Rn) satisfies ∥∥∥∥∥u−

ν∑
i=1

U [z̃i, λ̃i]

∥∥∥∥∥
Ḣs(Rn)

≤ δ (1.8)

for some δ-interacting family {U [z̃i, λ̃i]}νi=1, then there is a family {U [zi, λi]}νi=1 of bubbles such
that ∥∥∥∥∥u−

ν∑
i=1

U [zi, λi]

∥∥∥∥∥
Ḣs(Rn)

≤ C


Γ(u) for ν = 1,

Γ(u) for 2s < n < 6s and ν ≥ 2,

Γ(u)| log Γ(u)|
1
2 for n = 6s and ν ≥ 2,

Γ(u)
p
2 for n > 6s and ν ≥ 2

(1.9)

where Γ(u) := ∥(−∆)su− |u|p−1u∥Ḣ−s(Rn).

Furthermore, estimate (1.9) is sharp for n > 2s and ν ≥ 2 in the sense that the power of Γ(u)
(| log Γ(u)|, respectively) cannot be substituted with a larger (smaller, resp.) one.

As in the proof of [32, Corollary 3.4], we can combine Theorems A and 1.1 to find

Corollary 1.2. Let n ∈ N, ν ∈ N, and s ∈ (0, n2 ). For any non-negative function u ∈ Ḣs(Rn)
such that

(
ν − 1

2

)
Snn,s ≤ ∥u∥Ḣs(Rn) ≤

(
ν + 1

2

)
Snn,s, there exist ν bubbles {U [zi, λi]}νi=1 such that

(1.9) holds.

The quantitative stability for functional and geometric inequalities is a fascinating subject
that has captivated researchers for decades. Brezis and Nirenberg [9] and Brezis and Lieb [8] be-

gan this research direction, examining the Sobolev embeddings H1(Ω) ↪→ L
2n
n−2 (Ω) for bounded

domains Ω in Rn. Later, Bianchi and Egnell [7] obtained the optimal solution for the embedding

Ḣ1(Rn) ↪→ L
2n
n−2 (Rn). After these seminal works, numerous results of a similar nature appeared

in the literature, and the following represents only a fraction of them; for the Sobolev inequalities

Ẇ 1,p(Rn) ↪→ L
np
n−p (Rn) in the non-Hilbert setting (for p ̸= 2) [18, 34, 35], the fractional Sobolev

inequalities and the Hardy-Littlewood-Sobolev (HLS) inequalities [15, 26], the conformally in-
variant Sobolev inequalities on Riemannian manifolds [30, 36], the isoperimetric inequalities
[37, 33, 19, 17, 20], and so on. Besides, the smallest possible constants CBE, CCFW > 0 in
(1.5)–(1.6) were estimated in [27, 42, 43, 13, 14].

In contrast, the quantitative stability of almost solutions (specifically, functions u with Γ(u)
small in our setting) to the Euler-Lagrange equations of functional and geometric inequalities
has been less explored. However, recent advancements in [21, 32, 24] fully addressed when the

Sobolev inequality Ḣ1(Rn) ↪→ L
2n
n−2 (Rn) was considered: Ciraolo et al. [21] studied the one-

bubble case (ν = 1) for n ≥ 3, Figalli and Glaudo [32] did the multi-bubble case (ν ≥ 2) for
n = 3, 4, 5, and Deng et al. [24] did the multi-bubble case for n ≥ 6. In related research, de Nitti
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and König [25] estimated the smallest possible constant C > 0 in (1.9) for n ∈ N, s ∈ (0, n2 ),
and ν = 1. Additionally, Aryan [3] deduced the stability result for the Euler-Lagrange equations

of the fractional Sobolev inequalities Ḣs(Rn) ↪→ L
2n
n−2s (Rn) with s ∈ (0, 1). Analogous results

for other inequalities can be found in, e.g., [57, 58, 6, 47, 52, 12]. In this paper, we treat the
fractional and higher-order Sobolev inequalities for all n ∈ N, s ∈ (0, n2 ), and ν ∈ N, thereby
fully extending all the previous results [21, 32, 24, 3].

While numerous results in the literature investigated the existence and qualitative behavior
of solutions to fractional elliptic problems (−∆)su = f(u) when s ∈ (0, 1) and f : R → R is a
certain function, studying the case s ∈ (1, n2 ) is still at the beginning stage. Refer to a few works
such as [16, 40, 41, 10, 2, 25, 42, 43, 48]. In fact, a study for the operator (−∆)s for s > 1 is
an interesting research topic per se; refer to the extension results in [59, 11, 22], a recent survey
paper of Abatangelo [1], and references therein. We believe that our results may facilitate further
researches on higher-order local and non-local elliptic problems.

Novelty of the proof. Here, we outline the new features of our proof of Theorem 1.1. They
mainly originate from the fact that we allow s > 1.

(1) Our method, primarily based on [24], offers a unified approach for any choice of n ∈ N and
s ∈ (0, n2 ). The choice of the norms with which we work depends on n: In what follows, we say
that the dimension n is high if n ≥ 6s and low if 2s < n < 6s. For the high-dimensional case,
we use weighted L∞(Rn)-type norms; refer to Definition 3.1. For the low-dimensional case, we

utilize the standard Ḣs(Rn)-norm and L
2n
n+2s (Rn)-norm; see Definition 5.1.

(2) In Proposition 2.2, we derive a spectral inequality that holds for all s ∈ (0, n2 ) and δ-interacting
families with δ > 0 small. We do not use bump functions that appeared in the proof of Figalli
and Glaudo [32] and Aryan [3] for the case s ∈ (0, 1], resulting in a simpler proof.2 Some key
ingredients are the fractional Leibniz rule [39] and Li’s Kenig-Ponce-Vega estimate [44].

(3) Proving Proposition 3.3 (linear theory) is one of the most delicate parts of the paper.

- We need to first ensure that the ∗-norm of f is finite when the ∗∗-norm of h is finite,
because our domain Rn is unbounded. We will deduce the result for every s ∈ (0, n2 )
simultaneously by repeatedly applying the integral representation of f along with the
HLS inequality.

- When s ∈ (0, 1], one can employ the barrier argument based on the maximum principle
for narrow domains to control f in the neck region, as described in [24, 3]. However,
extending this approach to large s > 1 is extremely challenging. In this study, we
introduce a totally different method based on potential analysis, which simplifies the
overall argument and allows us to handle the case s ∈ (0, n2 ) at the same time.

- To estimate f in the core region, we require a Hölder continuity for the rescaled function
f̂ , as mentioned in Lemma 4.6 and (4.37). While the standard theory of elliptic regularity
is applicable for s ∈ (0, 1] or s ∈ (1, n2 ) ∩ N, it is not yet available for s ∈ (1, n2 ) \ N. We

will directly analyze the representation of f̂ to ensure that it has Hölder continuity or
even higher-order differentiability.

- To deduce the limit equation (4.40), we have to analyze integrals on Rn. We need to
divide Rn into three distinct parts: the singular part, the uniformly convergent part, and
the exterior part. Although this approach is relatively standard, the interaction between
different bubbles necessitates a more refined analysis; see Appendix B.2 for further details.
The same strategy can be applied in the derivation of (4.41); see Appendix B.3.

2Applying the idea developed in this paper, the first two authors obtained an analogous inequality in the setting
of the Yamabe problem on compact Riemannian manifolds in [12].
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(4) In Appendix A, we prove the non-degeneracy of the bubble in Ḣs(Rn) and the removability
of singularities for nonlocal equations. They hold for all s ∈ (0, n2 ), are of independent interest,
and may also be helpful in other contexts.

Organization of the paper. In Section 2, we derive a spectral inequality for δ-interacting
families. In Sections 3–5, we prove Theorem 1.1: The cases n ≥ 6s and 2s < n < 6s are treated
in Sections 3–4 and 5, respectively. In Appendix A, we obtain the auxiliary results described in
(4) above. In Appendix B, we carry out technical computations needed in the proof.

We are mainly concerned with the multi-bubble case ν ≥ 2, as the single-bubble case ν = 1
and s ∈ (0, n2 ) has already treated in [25]. For the sake of brevity, we often omit proofs if there
is a suitable reference to quote. In particular, we borrow several estimates obtained in [24] for
s = 1, whenever similar estimates hold for all s ∈ (0, n2 ).

Notations. We collect some notations used in the paper.

- Let ⌊s⌋ be the greatest integer that does not exceed s.

- Let (A) be a condition. We set 1(A) = 1 if (A) holds and 0 otherwise.

- For x ∈ Rn and r > 0, we write B(x, r) = {ω ∈ Rn : |ω − x| < r} and B(x, r)c = {ω ∈ Rn :
|ω − x| ≥ r}.

- Given n ∈ N and s ∈ (0, n2 ), let Φn,s be the Riesz potential

Φn,s(x) =
γn,s

|x|n−2s
for x ∈ Rn \ {0} where γn,s :=

Γ
(
n−2s
2

)
πn/222sΓ(s)

. (1.10)

- Given a function u ∈ Ḣs(Rn), let Fu be the Fourier transform of u. The notation û is reserved
for other use, e.g., a suitable rescaling of u.

- We use the Japanese bracket notation ⟨x⟩ =
√
1 + |x|2 for x ∈ Rn.

- Unless otherwise stated, C > 0 is a universal constant that may vary from line to line and even
in the same line. We write a1 ≲ a2 if a1 ≤ Ca2, a1 ≳ a2 if a1 ≥ Ca2, and a1 ≃ a2 if a1 ≲ a2 and
a1 ≳ a2.

2. The spectral inequality

As a preparation step for the proof of Theorem 1.1, we derive a spectral inequality (2.4) which
will be employed in the proof of Propositions 3.5 and 5.5. It was deduced in [5, Proposition 3.1]
and [32, Proposition 3.10] when s = 1, and in [3, Lemma 2.5] when s ∈ (0, 1). Here, we present
a proof based on a blow-up argument.

Definition 2.1. We write Ui = U [zi, λi] for i = 1, . . . , ν. For ν ≥ 2, let qij be the quantity in
(1.7) and

Q = max{qij : i, j = 1, . . . , ν, i ̸= j} (2.1)

so that the ν-tuple (U1, . . . , Uν) of bubbles is δ-interacting if and only if Q ≤ δ. We also set

Rij = max

{√
λi
λj
,

√
λj
λi
,
√
λiλj |zi − zj |

}
≃ q

− 1
n−2s

ij for i, j = 1, . . . , ν, i ̸= j (2.2)

and

R =
1

2
min{Rij : i, j = 1, . . . , ν, i ̸= j} ≃ Q− 1

n−2s . (2.3)
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Proposition 2.2. Let n ∈ N, ν ∈ N, s ∈ (0, n2 ), and δ0 > 0 is sufficiently small. Suppose that
the ν-tuple (U1, . . . , Uν) of bubbles is δ

′-interacting for some δ′ ∈ (0, δ0). If ϱ = ϱ(x) is a function

in Ḣs(Rn) that satisfies∫
Rn

(−∆)
s
2 ϱ (−∆)

s
2Uidx =

∫
Rn

(−∆)
s
2 ϱ (−∆)

s
2Zai dx = 0

for all i = 1, . . . , ν and a = 1, . . . , n+ 1, then there exists a constant c0 ∈ (0, 1) such that∫
Rn
σp−1ϱ2dx ≤ c0

p
∥ϱ∥2

Ḣs(Rn) (2.4)

where σ =
∑ν

i=1 Ui.

Proof. The case ν = 1 is clear. In the sequel, we assume that ν ≥ 2.

To the contrary, suppose that there exist sequences of small positive numbers {δ′m}m∈N, δ
′
m-

interacting ν-tuples of bubbles {(U1,m, . . . , Uν,m)}m∈N, functions {ϱm}m∈N in Ḣs(Rn), and num-
bers {cm}m∈N in (0, 1] such that δ′m → 0 and cm → 1 as m→ ∞,

∥ϱm∥Ḣs(Rn) = 1,

∫
Rn
σp−1
m ϱ2mdx = sup

{∫
Rn
σp−1
m ϱ2dx : ∥ϱ∥Ḣs(Rn) = 1

}
≥ cm

p
, (2.5)

and ∫
Rn
Upi,mϱmdx =

∫
Rn
Up−1
i,m Zai,mϱmdx = 0 (2.6)

for m ∈ N, i = 1, . . . , ν, and a = 1, . . . , n+ 1. Here, σm :=
∑ν

i=1 Ui,m and Zai,m := Za[zi,m, λi,m].

In view of (2.5)–(2.6), we know that

(−∆)sϱm − µmσ
p−1
m ϱm =

ν∑
i=1

µi,mU
p
i,m +

ν∑
i=1

n+1∑
a=1

µai,mU
p−1
i,m Zai,m in Rn (2.7)

where µm, µi,m, µ
a
i,m ∈ R are Lagrange multipliers. Testing (2.7) with ρm and using (2.6) yield

µm =

(∫
Rn
σp−1
m ϱ2mdx

)−1

∈
[
c(n, s, ν), c−1

m p
]

(2.8)

where the lower bound c(n, s, ν) is positive and dependent only on n, s, and ν. Hence, we may
assume that µm → µ∞ ∈ [c(n, s, ν), p] as m→ ∞.

Let qij,m, Qm, Rij,m, and Rm be the quantities introduced in (1.7), (2.1), (2.2), and (2.3),
respectively, where (zi, zj , λi, λj) is replaced with (zi,m, zj,m, λi,m, λj,m). We present the rest of
the proof by dividing it into three steps.

Step 1. We claim that

ν∑
i=1

|µi,m|+
ν∑
i=1

n+1∑
a=1

∣∣µai,m∣∣→ 0 as m→ ∞. (2.9)

Testing (2.7) with Uj,m for j = 1, . . . , ν and employing (2.6), we obtain

−µm
∫
Rn
σp−1
m Uj,mϱmdx =

ν∑
i=1

µi,m

∫
Rn
Upi,mUj,mdx+

ν∑
i=1

n+1∑
a=1

µai,m

∫
Rn
Up−1
i,m Zai,mUj,mdx.

On the other hand, [32, Proposition B.2] tells us that∫
Rn
Uαi U

β
j dx ≃ q

min{α,β}
ij for any i, j = 1, . . . , ν, i ̸= j (2.10)
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provided α, β ≥ 0, α ̸= β, and α+ β = p+ 1. By (2.6) and (2.10), we have∫
Rn
Upi,mUj,mdx =


∫
Rn
Up+1
1,0 dx if i = j,

O(qij,m) if i ̸= j,∫
Rn
Up−1
i,m Zai,mUj,mdx =

{
0 if i = j,

O(qij,m) if i ̸= j,

and ∫
Rn
σp−1
m Uj,mϱmdx =

∫
Rn

(
σp−1
m − Up−1

j,m

)
Uj,mϱmdx

= O

 ∑
i=1,...,ν,
i ̸=j

[∥∥∥Up−1
i,m Uj,m

∥∥∥
L
p+1
p (Rn)

+
∥∥∥Up−2

i,m U2
j,m

∥∥∥
L
p+1
p (Rn)

1n<6s

]
= O

(
qp−1
ij,m + q

min{p−2,1}
ij,m 1n<6s

)
.

Thus

O
(
Qp−1
m + Qmin{p−2,1}

m 1n<6s

)
=

[∫
Rn
Up+1
1,0 dx

]
µj

+
∑

i=1,...,ν,
i ̸=j

O(qij,m)µi +
∑

i=1,...,ν,
i ̸=j

n+1∑
a=1

O(qij,m)µ
a
i . (2.11)

Similarly, by testing (2.7) with Zbj,m, we get

O
(
Qp−1
m + Qmin{p−2,1}

m 1n<6s

)
=

∑
i=1,...,ν,
i ̸=j

O(qij,m)µi

+
∑

i=1,...,ν,
i ̸=j

n+1∑
a=1

O(qij,m)µ
a
i +

[∫
Rn
Up−1
1,0

(
Zb1,0

)2
dx

]
µbj . (2.12)

Claim (2.9) follows from (2.11), (2.12), and the fact that Qm → 0 as m→ ∞.

Step 2. We verify

lim
m→∞

∫
Bi,m

Up−1
i,m ϱ2mdx = 0 for each i = 1, . . . , ν. (2.13)

Let χ : Rn → [0, 1] be an arbitrary smooth radial function such that χ = 1 in B(0, 1) and 0
on B(0, 2)c. Also, fixing i = 1, . . . , ν and a sequence {rm}m∈N ⊂ (0,∞) of positive numbers such
that rm → ∞ as m→ ∞, we set

ϱ̂i,m(y) = χm(y)λ
−n−2s

2
i,m ϱm

(
λ−1
i,my + zi,m

)
for y ∈ Rn where χm(y) := χ

(
2y

rm

)
.

By (2.7),

(−∆)sϱ̂i,m − µm

{
λ
−n−2s

2
i,m σm

(
λ−1
i,m ·+zi,m

)}p−1

ϱ̂i,m
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= χmλ
−n+2s

2
i,m

 ν∑
j=1

µj,mU
p
j,m +

ν∑
j=1

n+1∑
a=1

µaj,mU
p−1
j,m Zaj,m

(λ−1
i,m ·+zi,m

)
+Ri,m in Rn (2.14)

where

Ri,m(y) := [(−∆)sϱ̂i,m] (y)− χm(y)λ
−n+2s

2
i,m [(−∆)sϱm]

(
λ−1
i,my + zi,m

)
for y ∈ Rn.

In addition,

∥ϱ̂i,m∥Ḣs(Rn) ≲
∥∥∥(−∆)

s
2χm

∥∥∥
L
n
s (Rn)

∥ϱm∥
L

2n
n−2s (Rn)

+ ∥χm∥L∞(Rn)∥ϱm∥Ḣs(Rn)

≲
∥∥∥(−∆)

s
2χ
∥∥∥
L
n
s (Rn)

+ 1 ≲ 1.
(2.15)

Here, we applied a fractional Leibniz rule (see e.g. [39, Theorem 1]) for the first inequality, and
(1.1) and (2.5) for the second inequality. Also, we employed the Hausdorff-Young inequality, the
assumption that n > 2s, and Fχ ∈ S(Rn) for the last inequality. Therefore, we may assume
that

ϱ̂i,m ⇀ ϱ̂i,∞ weakly in Ḣs(Rn) and ϱ̂i,m → ϱ̂i,∞ a.e. as m→ ∞

for some ϱ̂i,∞ ∈ Ḣs(Rn). By (2.6),∫
Rn
U [0, 1]pϱ̂i,∞dy =

∫
Rn
U [0, 1]p−1Za[0, 1]ϱ̂i,∞dy = 0 for all a = 1, . . . , n+ 1. (2.16)

Let ψ ∈ C∞
c (Rn) be a test function. Then∫

Rn

{
λ
−n−2s

2
i,m σm

(
λ−1
i,my + zi,m

)}p−1

ϱ̂i,mψ dy

=

∫
Rn

U [0, 1]p−1ϱ̂i,mψ dy +O

 max
α∈

{
p+1
p
, p

2−1
p

} ∑
k=1,...,ν,
k ̸=i

∥∥∥∥λ−n−2s
2

i,m Uk,m
(
λ−1
i,m ·+zi,m

)∥∥∥∥ αp
p+1

Lα(suppψ∩B(0,rm))


→
∫
Rn

U [0, 1]p−1ϱ̂i,∞ψ dy as m→ ∞,

because if we set zki,m = λk,m(zi,m − zk,m), then(
λk,m
λi,m

)α(n−2s)
2

∫
suppψ∩B(0,rm)

dy

⟨(λk,m/λi,m)y + zki,m⟩α(n−2s)

=

(
λk,m
λi,m

)α(n−2s)
2

−n ∫
B(zki,m,

λk,m
λi,m

r0)

dY

⟨Y ⟩α(n−2s)

≲



(
λk,m
λi,m

)α(n−2s)
2

= o(1) if lim
m→∞

λk,m
λi,m

= 0,(
λk,m
λi,m

)α(n−2s)
2

−n
+
(
λk,m
λi,m

)−α(n−2s)
2

= o(1) if lim
m→∞

λk,m
λi,m

= ∞,

1

R
α(n−2s)
ki,m

= o(1) if lim
m→∞

λk,m
λi,m

∈ (0,∞) (so that Rki,m ≃ |zki,m|)

for α ∈ {p+1
p , p

2−1
p }, provided suppψ ⊂ B(0, r0) for some r0 > 0 and rm ≥ r0. Furthermore,

Hölder’s inequality and (2.9) give
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∫
Rn
χmλ

−n+2s
2

i,m

 ν∑
j=1

µj,mU
p
j,m +

ν∑
j=1

n+1∑
a=1

µaj,mU
p−1
j,m Zaj,m

(λ−1
i,my + zi,m

)
ψ dy

∣∣∣∣∣∣
≤

 ν∑
j=1

|µj,m|+
ν∑
j=1

n+1∑
a=1

∣∣µaj,m∣∣
 ∥U [0, 1]∥p

L
2n
n−2s (Rn)

∥ψ∥
L

2n
n−2s (Rn)

= o(1).

Writing

ϱ̃i,m(y) = λ
−n−2s

2
i,m ϱm

(
λ−1
i,my + zi,m

)
and F(Ds,ηψ)(ξ) = i−|η|∂ηξ (|ξ|

s)(Fψ)(ξ)

where η is an n-dimensional multi-index, and invoking the generalized Kenig-Ponce-Vega estimate
due to Li [44, Theorem 1.2], we deduce∣∣∣∣∫

Rn
Ri,mψ dy

∣∣∣∣ ≤ ∫
Rn

|ϱ̃i,m(y)| |[(−∆)s(χmψ)] (y)− χm(y) [(−∆)sψ] (y)| dy

≤ ∥ϱm∥
L

2n
n−2s (Rn)

∥(−∆)s(χmψ)− χm [(−∆)sψ] ∥
L
n
s (Rn)

≲ ∥(−∆)sχm∥
L

2n
s (Rn)

∥ψ∥
L

2n
s (Rn)

+
∑

1≤|η|≤2s

∥∥∂ηχmD2s,ηψ
∥∥
L
n
s (Rn)

≲ r
− 3s

2
m + r−1

m = o(1).

Here, the empty summation
∑

1≤|η|≤2s is understood as zero for s ∈ (0, 12).

Accordingly, by taking the limit m→ ∞ on (2.14), we find

(−∆)sϱ̂i,∞ − µ∞U [0, 1]p−1ϱ̂i,∞ = 0 in Rn (2.17)

where µ∞ ∈ [c(n, s, ν), p]. From (2.16), (2.17), the fact that U [0, 1] is an extremizer of (1.1), and
Lemma A.1 (b), we conclude that ϱ̂i,∞ = 0 in Rn. This and (2.15) imply∫

Bi,m

Up−1
i,m ϱ2mdx ≤

∫
Rn
U [0, 1]p−1ϱ̂2i,mdy ≲

(∫
Rn
U [0, 1]pϱ̂i,mdy

) p
p−1

→ 0 as m→ ∞,

which reads (2.13).

Step 3. Finally, we prove that

lim
m→∞

∫
Rn
σp−1
m ϱ2mdx = 0. (2.18)

Its validity will imply that (2.4) holds, because it contradicts (2.8).
Given any number L > 0, let Bi,m = B(zi,m,

L
λi,m

) and Bc
i,m be its complement. It holds that∫

Bci,m

Up−1
i,m ϱ2mdx ≤ ∥Ui,m∥p−1

Lp+1(Bci,m)
≲ L−2s (2.19)

for i = 1, . . . , ν. It follows from (2.13) and (2.19) that∫
Rn
σp−1
m ϱ2mdx ≲

ν∑
i=1

∫
Rn
Up−1
i,m ϱ2mdx ≤

ν∑
i=1

[∫
Bi,m

Up−1
i,m ϱ2mdx+

∫
Bci,m

Up−1
i,m ϱ2mdx

]
≲ o(1) + L−2s,

which yields (2.18), because L > 0 can be taken arbitrarily large. □
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3. Quantitative stability estimate for dimension n ≥ 6s (1)

In this section, we establish Theorem 1.1 assuming that n ≥ 6s. From now on, we always
assume that ν ≥ 2.

The following two weighted L∞(Rn)-norms were devised in [24] (for the case s = 1) to cap-
ture the precise pointwise behavior of the bubbles, which is crucial on determining the optimal
exponents of Γ(u) in the right-hand side of (1.9).

Definition 3.1. Recall the number R > 0 in (2.3) and write yi = λi(x− zi) ∈ Rn. We define

∥h∥∗∗ = sup
x∈Rn

|h(x)|V−1(x) and ∥ρ∥∗ = sup
x∈Rn

|ρ(x)|W−1(x)

with

V(x) :=
ν∑
i=1

(
vini + vouti

)
(x) and W(x) :=

ν∑
i=1

(
win
i + wout

i

)
(x) (3.1)

where
vini (x) := λ

n+2s
2

i

R2s−n

⟨yi⟩4s
1{|yi|<R}(x), vouti (x) := λ

n+2s
2

i

R−4s

|yi|n−2s
1{|yi|≥R}(x),

win
i (x) := λ

n−2s
2

i

R2s−n

⟨yi⟩2s
1{|yi|<R}(x), wout

i (x) := λ
n−2s

2
i

R−4s

|yi|n−4s
1{|yi|≥R}(x)

(3.2)

for n > 6s and i = 1, . . . , ν, and
vini (x) := λ4si

R−4s

⟨yi⟩4s
1{|yi|<R2}(x), vouti (x) := λ4si

R−2s

|yi|5s
1{|yi|≥R2}(x),

win
i (x) := λ2si

R−4s

⟨yi⟩2s
1{|yi|<R2}(x), wout

i (x) := λ2si
R−2s

|yi|3s
1{|yi|≥R2}(x)

(3.3)

for n = 6s and i = 1, . . . , ν.

Clearly, the norms ∥ · ∥∗ and ∥ · ∥∗∗ depend on the choice of zi ∈ Rn and λi ∈ (0,∞). If we keep
using vouti and wout

i in (3.2) for n = 6s, their slow decay, specifically |yi|−4s and |yi|−2s, causes
additional technical complexity that does not arise when using (3.3).

By utilizing the above norms, we will derive (1.9) for all n ≥ 6s and small δ > 0. The
derivation is split into three steps.

Step 1. Let σ =
∑ν

i=1 U [zi, λi] =
∑ν

i=1 Ui be such that

∥u− σ∥Ḣs(Rn) = inf
(z̃1,...,z̃ν , λ̃1,...,λ̃ν)∈Rnν×(0,∞)ν

∥∥∥∥∥u−
ν∑
i=1

U [z̃i, λ̃i]

∥∥∥∥∥
Ḣs(Rn)

≤ δ.

We also set ρ = u − σ ∈ Ḣs(Rn) and Zai = Za[zi, λi] for a = 1, . . . , n + 1. Because of (1.8),
the family {Ui}i=1,...,ν is δ′-interacting for some δ′ > 0 where δ′ → 0 as δ → 0. The function ρ
satisfies

(−∆)sρ−
[
|σ + ρ|p−1(σ + ρ)− σp

]
=

(
σp −

ν∑
i=1

Upi

)
+
[
(−∆)su− |u|p−1u

]
(3.4)

in Rn and∫
Rn

(−∆)
s
2 ρ (−∆)

s
2Zai dx =

∫
Rn
ρUp−1

i Zai dx = 0 for all i = 1, . . . , ν and a = 1, . . . , n+1. (3.5)
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Consider the equation
(−∆)sρ0 −

[
|σ + ρ0|p−1(σ + ρ0)− σp

]
=

(
σp −

ν∑
i=1

Upi

)
+

ν∑
i=1

n+1∑
a=1

caiU
p−1
i Zai in Rn,

ρ0 ∈ Ḣs(Rn), c11, . . . , cn+1
ν ∈ R,∫

Rn
ρ0U

p−1
i Zai dx = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1.

(3.6)
To solve (3.6), we will use a pointwise estimate on the error term σp −

∑ν
i=1 U

p
i .

Lemma 3.2. There exists a constant C > 0 depending only on n, s, and ν such that∥∥∥∥∥σp −
ν∑
i=1

Upi

∥∥∥∥∥
∗∗

≤ C (3.7)

provided δ > 0 small.

Proof. The proof is essentially the same as that of [24, Proposition 3.4], which we omit. □

In addition, we analyze an associated inhomogeneous equation
(−∆)sf − p σp−1f = h+

ν∑
i=1

n+1∑
a=1

caiU
p−1
i Zai in Rn,

f ∈ Ḣs(Rn), c11, . . . , cn+1
ν ∈ R,∫

Rn
fUp−1

i Zai dx = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1.

(3.8)

Proposition 3.3. If ∥h∥∗∗ <∞ and f satisfies (3.8), then ∥f∥∗ <∞. Moreover, there exists a
constant C > 0 depending only on n, s, and ν such that

∥f∥∗ ≤ C∥h∥∗∗ (3.9)

provided δ > 0 small.

Deducing the above proposition is the most challenging part of the entire proof. Because of its
complexity and length, we will put it off until Section 4.

From Lemma 3.2 and Proposition 3.3, we establish the unique existence of a solution to (3.6).

Proposition 3.4. Assume that δ > 0 is small enough. Equation (3.6) has a solution ρ0 and a
family {cai }i=1,...,ν, a=1,...,n+1 of numbers such that

∥ρ0∥∗ ≤ C (3.10)

where C > 0 depends only on n, s, and ν. Besides,

∥ρ0∥Ḣs(Rn) ≤ C

{
Q

p
2 for n > 6s,

Q| logQ|
1
2 for n = 6s

(3.11)

where Q > 0 is the value in (2.1).

Proof. A priori estimate (3.9) and the Fredholm alternative imply that a solution f to (3.8)
uniquely exists for a given h with ∥h∥∗∗ <∞. Therefore, relying on Lemma 3.2 and the fact that
the main order term of |σ+ ρ0|p−1(σ+ ρ0)−σp is p σp−1ρ0, we can apply a fixed point argument
to yield the unique existence of ρ0 and {cai } satisfying (3.6) and (3.10). By testing (3.4) with ρ0
and employing (3.10), we also discover (3.11). For details, refer to the proof of Lemma 5.2 and
Propositions 5.3, 5.4, and 6.1 in [24] in which the case s = 1 is treated. □
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Step 2. Set ρ1 = ρ− ρ0. In light of (3.4), (3.5), and (3.6), we have

(−∆)sρ1 −
[
|σ + ρ0 + ρ1|p−1(σ + ρ0 + ρ1)− |σ + ρ0|p−1(σ + ρ0)

]
=
[
(−∆)su− |u|p−1u

]
−

ν∑
i=1

n+1∑
a=1

caiU
p−1
i Zai

in Rn,

ρ1 ∈ Ḣs(Rn), c11, . . . , cn+1
ν ∈ R,∫

Rn
ρ1U

p−1
i Zai dx = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1.

(3.12)

Proposition 3.5. Assume that δ > 0 is small enough. There exists a constant C > 0 depending
only on n, s, and ν that

∥ρ1∥Ḣs(Rn) ≤ C
(
Γ(u) + Q2

)
(3.13)

where Γ(u) = ∥(−∆)su− |u|p−1u∥Ḣ−s(Rn).

Proof. Applying the spectral inequality (2.4), one can adapt the argument in the proof of Lemmas
6.2, 6.3, and Proposition 6.4 in [24]. The details are omitted. □

Putting (3.11) and (3.13) together leads

∥ρ∥Ḣs(Rn) ≤ C

{
Γ(u) + Q

p
2 for n > 6s,

Γ(u) + Q| logQ|
1
2 for n = 6s.

(3.14)

Step 3. Thanks to (3.14), we only need to check that Q ≲ Γ(u) to establish (1.9).

Since σ > 0, ρ ∈ R, and 1 < p ≤ 2 for n ≥ 6s, it holds that∣∣|σ + ρ|p−1(σ + ρ)− σp − p σp−1ρ
∣∣ ≲ min

{
σp−2ρ2, |ρ|p

}
≲ σp−2ρ2. (3.15)

For any j = 1, . . . , ν and a = 1, . . . , n+ 1,(
σp−1 − Up−1

j

) ∣∣Zaj ∣∣ ≲ (σp−1 − Up−1
j

)
Uj ≲

ν∑
i=1

(
σp−1 − Up−1

i

)
Ui = σp −

ν∑
i=1

Upi , (3.16)

so ∫
Rn

(
σp−1 − Up−1

j

)
|ρ0|

∣∣∣Zn+1
j

∣∣∣dx ≲
∫
Rn

(
σp −

ν∑
i=1

Upi

)
|ρ0|dx

≲
∫
Rn

VWdx ≤ ∥V∥
L
p+1
p (Rn)

∥W∥Lp+1(Rn)

≲

{
R−n+2s

2 · R−n+2s
2 ≃ Qp for n > 6s,

R−8s logR ≃ Q2| logQ| for n = 6s.

(3.17)

Here, the second inequality in (3.17) is a consequence of (3.7) and (3.10), and the fourth inequality
can be achieved through straightforward computations; refer to [24, Lemma 3.7] for s = 1. We
also used (2.3) in the last line.

By testing (3.4) with Zn+1
j for any fixed j = 1, . . . , ν, and applying (3.15), (3.17), Hölder’s

inequality, (1.1), (3.13), and (3.14), we observe∣∣∣∣∣
∫
Rn

(
σp −

ν∑
i=1

Upi

)
Zn+1
j dx

∣∣∣∣∣
≲
∫
Rn

(
σp−1 − Up−1

j

)
|ρ0|

∣∣∣Zn+1
j

∣∣∣dx+

∫
Rn
σp−1|ρ1|

∣∣∣Zn+1
j

∣∣∣ dx+

∫
Rn
σp−2ρ2

∣∣∣Zn+1
j

∣∣∣ dx+ Γ(u)
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≲
∫
Rn

(
σp −

ν∑
u=1

Upi

)
|ρ0|dx+

∫
Rn
σp|ρ1|dx+

∫
Rn
σp−1ρ2dx+ Γ(u) (3.18)

≲

{
Qp for n > 6s,

Q2| logQ| for n = 6s

}
+ ∥ρ1∥Ḣs(Rn) + ∥ρ∥2

Ḣs(Rn) + Γ(u)

≲ Γ(u) +

{
Qp for n > 6s,

Q2| logQ| for n = 6s.

Furthermore, the proof of [24, Lemma 2.1] shows∫
Rn

(
σp −

ν∑
i=1

Upi

)
Zn+1
j dx =

∑
i=1,...,ν,
i ̸=j

∫
Rn
Upi λj∂λjUjdx+ o(Q) for all j = 1, . . . , ν, (3.19)

which together with (3.18) yields∣∣∣∣∣ ∑
i=1,...,ν,
i ̸=j

∫
Rn
Upi λj∂λjUjdx

∣∣∣∣∣ ≲ Γ(u) + o(Q) for all j = 1, . . . , ν (3.20)

where o(Q) is a term such that o(Q)/Q → 0 as Q → 0. As can be seen in the proof of [24,
Lemma 2.3], one can draw the desired inequality Q ≲ Γ(u) from (3.20). This completes the
proof of (1.9) for n ≥ 6s under the validity of Proposition 3.3.

The sharpness of (1.9) can be proven as in [24, Section 7], which we omit.

4. Quantitative stability estimate for dimension n ≥ 6s (2)

This section is devoted to the proof of Proposition 3.3 for n ≥ 6s. We divide it into three
substeps.

Substep 1. We verify the first claim in the statement of Proposition 3.3.

Lemma 4.1. If ∥h∥∗∗ <∞ and f satisfies (3.8), then ∥f∥∗ <∞.

Proof. Suppose first that n > 6s. It suffices to confirm that

f ∈ L
2n
n−2s (Rn) and

∥∥∥⟨ · ⟩n−2s h
∥∥∥
L∞(Rn)

<∞ ⇒
∥∥∥⟨ · ⟩n−4s f

∥∥∥
L∞(Rn)

<∞. (4.1)

Following the proof of [16, Theorem 4.5] and exploiting n > 4s to control the term h, we get
the integral representation of f from (3.8):

f = Φn,s ∗

(
p σp−1f + h+

ν∑
i=1

n+1∑
a=1

caiU
p−1
i Zai

)
in Rn (4.2)

where Φn,s is the Riesz potential in (1.10). By virtue of the hypothesis on h in (4.1), there exists
a large constant c > 0 depending only on n, s, ν, h, zi, λi, and c

a
i such that

|f(x)| ≤
∫
Rn

c

|x− ω|n−2s

[
|f(ω)|
⟨ω⟩4s

+
1

⟨ω⟩n−2s

]
dω for x ∈ Rn.

Since ∫
Rn

1

|x− ω|n−2s

dω

⟨ω⟩n−2s ≲
1

|x|n−4s
for all x ∈ Rn with d :=

|x|
2

≥ 1, (4.3)
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we have

|f(x)| ≤ c

[∫
Rn

1

|x− ω|n−2s

|f(ω)|
⟨ω⟩4s

dω +
1

⟨x⟩n−4s

]
for x ∈ Rn. (4.4)

Hence, by the HLS inequality,

∥f∥Lt∗ (Rn) ≲ c

(∥∥∥∥|f | ∗ 1

| · |n−2s

∥∥∥∥
Lt∗ (Rn)

+

∥∥∥∥ 1

⟨ · ⟩n−4s

∥∥∥∥
Lt∗ (Rn)

)
≲ c

(
∥f∥Lt(Rn) + 1

)
(4.5)

for any t ∈ [ 2n
n−2s ,

n
2s) (which is a non-empty interval for n > 6s) and t∗ = nt

n−2st . By employing

(4.5) and arguing as follows, we can show that f ∈ Lt̃(Rn) for all t̃ ≥ 2n
n−2s :

- We take t = t1 := 2n
n−2s in (4.5). Then f ∈ Lt2(Rn) for t∗ = t2 := nt1

n−2st1
, and so

f ∈ Lt̃(Rn) for all t̃ ∈ [t1, t2]. We check whether t2 ≥ n
2s or not.

- If t2 ≥ n
2s , we put t = n

2s − ϵ for any small ϵ > 0 into (4.5). It implies that f ∈ Lt̃(Rn)
for all t̃ ≥ 2n

n−2s .

- If t2 <
n
2s , we plug t = t2 into (4.5). It gives that f ∈ Lt̃(Rn) for all t̃ ∈ [t2, t3] where

t3 :=
nt2

n−2st2
. We check whether t3 ≥ n

2s or not.

- We iterate the above process. It terminates in a finite step because tm+1 ≥ (1+ 4s
n−6s)tm

for all m.

Let us fix some t≫ 1 large enough. Computing as in (4.3) and writing the Hölder conjugate of
t as t′, we find

∫
Rn

1

|x− ω|n−2s

|f(ω)|
⟨ω⟩4s

dω ≲

(∫
Rn

1

|x− ω|(n−2s)t′
dω

⟨ω⟩4st′

) 1
t′

∥f∥Lt(Rn)

≲
1

⟨x⟩
n(t′−1)

t′ +2s
≲ 1 for x ∈ Rn.

(4.6)

From this and (4.4), we deduce that f ∈ L∞(Rn). Putting this fact into (4.4) and working as in
(4.3) produce

|f(x)| ≲ c

[∫
Rn

1

|x− ω|n−2s

dω

⟨ω⟩4s
+

1

⟨x⟩n−4s

]
≲

c

⟨x⟩min{2s,n−4s} for x ∈ Rn.

Feeding this back to (4.4), we further obtain that ∥ ⟨ · ⟩min{4s,n−4s} f∥L∞(Rn) < ∞. Repeating
this process finitely many times, we conclude that the estimate for f in (4.1) is true.

If n = 6s, we still have (4.4) with ⟨x⟩n−4s replaced by ⟨x⟩3s. However, we cannot proceed as

in (4.5), because [ 2n
n−2s ,

n
2s) = [3, 3) = ∅. Fortunately, thanks to f ∈ Ḣs(Rn) ⊂ L3(Rn), the HLS

inequality, and Hölder’s inequality, we see

∥f∥Lt∗ (Rn) ≲ c

(∥∥∥∥ |f |
⟨ · ⟩4s

∗ 1

| · |4s

∥∥∥∥
Lt∗ (Rn)

+

∥∥∥∥ 1

⟨ · ⟩3s

∥∥∥∥
Lt∗ (Rn)

)

≲ c

(∥∥∥∥ |f |
⟨ · ⟩4s

∥∥∥∥
Lζ2 (Rn)

+ 1

)
≲ c

(
∥f∥L3(Rn)

∥∥∥∥ 1

⟨ · ⟩4s

∥∥∥∥
Lζ1 (Rn)

+ 1

) (4.7)
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for ζ1 ∈ (3,∞), ζ2 = 3ζ1
ζ1+3 ∈ (32 , 3), and t

∗ = 3ζ2
3−ζ2 ∈ (3,∞). This means that f ∈ Lt̃(Rn) for all

t̃ ≥ 3.3 As in the case n > 6s, we conclude that ∥ ⟨ · ⟩3s f∥L∞(Rn) <∞. □

Substep 2. We estimate the coefficients cai ’s in (3.8).

Lemma 4.2. There is a constant C > 0 depending only on n, s, and ν such that

ν∑
i=1

n+1∑
a=1

|cai | ≤ C

∥h∥∗∗R2s−n + ∥f∥∗ ×

R−(n+2s) for n > 6s,

R−8s logR for n = 6s


 (4.8)

provided δ > 0 small.

Proof. The proof of (4.8) is essentially the same as that of [24, Lemma 5.2], so we skip it. □

Substep 3. We prove that (3.9) holds for δ > 0 sufficiently small.

Suppose that (3.9) is false. By virtue of Lemma 4.1, there exist sequences of small pos-
itive numbers {δ′m}m∈N, δ

′
m-interacting families {{Ui,m = U [zi,m, λi,m]}i=1,...,ν}m∈N, functions

{fm}m∈N ⊂ Ḣs(Rn) and {hm}m∈N, and numbers {cai,m}i=1,...,ν, a=1,...,n+1,m∈N such that

δ′m → 0 and ∥hm∥∗∗ → 0 as m→ ∞, ∥fm∥∗ = 1 for all m ∈ N, (4.9)

and 
(−∆)sfm − p σp−1

m fm = hm +

ν∑
i=1

n+1∑
a=1

cai,mU
p−1
i,m Zai,m in Rn,∫

Rn
Up−1
i,m Zai,mfmdx = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1.

(4.10)

Here, σm =
∑ν

i=1 Ui,m and Zai,m = Za[zi,m, λi,m]. By reordering the indices i, j = 1, . . . , ν and
taking a subsequence, one can assume that{

λ1,m ≤ λ2,m ≤ · · · ≤ λν,m for all m ∈ N,
either lim

m→∞
zij,m = zij,∞ ∈ Rn or lim

m→∞
|zij,m| → ∞ (4.11)

where zij,m := λi,m(zj,m − zi,m) ∈ Rn.
Let Vm =

∑ν
i=1(v

in
i,m+ vouti,m) and Wm =

∑ν
i=1(w

in
i,m+wout

i,m) be the functions V and W in (3.1)

with (zi, λi) = (zi,m, λi,m), respectively. To reach a contradiction, we will establish that(
|fm|W−1

m

)
(x) ≤ 1

2 for all x ∈ Rn (4.12)

provided m ∈ N large. Clearly, (4.12) implies ∥fm∥∗ ≤ 1
2 , which is absurd.

Tree structure: To prove (4.12), we will exploit the tree structure of δ-interacting ν-tuples
of bubbles as δ → 0, as described in Lemma 4.4 below. The bubble-tree structure for s = 1 was
investigated in e.g. [28, 53, 24]. The concept of bubble-trees dates back to the work of Parker
and Wolfson [51] for pseudo-holomorphic maps, and those of Parker [50] and Qing and Tian [54]
for harmonic maps on Riemann surfaces.

3Unlike (4.5), we cannot ignore the factor ⟨ω⟩−4s to get meaningful information through (4.7). On the other
hand, without appealing to the iteration process as in Substep 1 of the proof of Proposition 3.3, we can directly

achieve f ∈ Lt
∗
(Rn) for any large t∗ by choosing ζ1 > 0 large.
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Definition 4.3. Let ⪯ be a partial order on a set T , and ≺ the corresponding strict partial
order on T .

- A partially ordered set (T ,⪯) is called a directed tree if for each t ∈ T , the set {s ∈ T : s ⪯ t}
is well-ordered by the relation ⪯.

- A root is the least element of the set {s ∈ T : s ⪯ t} for some t ∈ T .

- A rooted tree is a directed tree with roots; a rooted forest is a disjoint union of rooted trees.

- A descendant of s ∈ T is any element t ∈ T such that s ≺ t. Let D(s) be the set of descendants
of s ∈ T , that is, D(s) = {t ∈ T : s ≺ t}.

Lemma 4.4. Recalling (4.11), we set a relation ≺ (and ≻) on I by

i ≺ j ⇔ j ≻ i ⇔
[
i < j and lim

m→∞
zij,m ∈ Rn

]
.

Then ≺ is a strict partial order (that corresponds to a non-strict order ⪯) and there is a number
ν∗ ∈ {1, . . . , ν} such that I can be expressed as a rooted forest.

Proof. A slight modification of the argument in [24, Subsection 4.2] works for any s ∈ (0, n2 ). □

Decomposition of Rn: We set yi,m = λi,m(x−zi,m) ∈ Rn and recall zij,m = λi,m(zj,m−zi,m) ∈
Rn. Given any L > 1 large and ε ∈ (0, 1) small, we define

Ωi,m;L,ε = {x ∈ Rn : |yi,m| ≤ L, |yi,m − zij,m| ≥ ε for all j ∈ D(i)}
and

Ai,m;L,ε =
⋃

j∈D(i)

[
{x ∈ Rn : |yi,m − zij,m| < ε} \

⋃
k∈D(i)

{x ∈ Rn : |yk,m| ≤ L}
]
.

Then Rn is decomposed into three disjoint subsets:

Rn = ΩExt,m;L ∪ ΩCore,m;L,ε ∪ ΩNeck,m;L,ε

where 

Exterior region: ΩExt,m;L =
ν⋂
i=1

{x ∈ Rn : |yi,m| > L},

Core region: ΩCore,m;L,ε =
ν⋃
i=1

Ωi,m;L,ε,

Neck region: ΩNeck,m;L,ε =
ν⋃
i=1

Ai,m;L,ε.

Preliminary estimates: Let Rij,m and Rm be the quantities in (2.2)–(2.3) where the param-
eter (zi,m, zj,m, λi,m, λj,m) is substituted for (zi, zj , λi, λj) so that Rm → ∞ as m → ∞. Then
(4.8) gives

ν∑
i=1

n+1∑
a=1

|cai,m| = o
(
R2s−n
m

)
= o(δ′m) → 0 as m→ ∞ (4.13)

where o(R2s−n
m )/R2s−n

m → 0 as m→ ∞. By (4.2), (4.9), and (4.13), we know

|fm(x)| ≲
∫
Rn

1

|x− ω|n−2s

[(
σp−1
m |fm|

)
(ω) + o(1)Vm(ω) + o

(
R2s−n
m

) ν∑
i=1

Upi,m(ω)

]
dω (4.14)

for x ∈ Rn.
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We readily observe that

∫
Rn

1

|x− ω|n−2s
Upi,m(ω)dω = γ−1

n,s

(
Φn,s ∗ Upi,m

)
(x) = γ−1

n,sUi,m(x) ≲
λ
n−2s

2
i,m

⟨yi,m⟩n−2s . (4.15)

Moreover, the following estimates are true.

Lemma 4.5. There exists a constant C > 0 depending only on n, s, and ν such that∫
Rn

1

|x− ω|n−2s

(
vinj,m + voutj,m

)
(ω)dω ≤ C

(
win
j,m + wout

j,m

)
(x) (4.16)

for j = 1, . . . , ν and

1

Wm(x)

∫
Rn

1

|x− ω|n−2s

(
σp−1
m Wm

)
(ω)dω (4.17)

≤ C


M3n

ν∑
i=1

(
1

⟨yi,m⟩2s
1{|yi,m|<Rm} +

log |yi,m|
|yi,m|2s 1{|yi,m|≥Rm}

)
+M4sR−2s

m +M−2s for n > 6s,

M3n
ν∑
i=1

(
log(2 + |yi,m|)

⟨yi,m⟩s 1{|yi,m|<R2
m} +

log |yi,m|
|yi,m|s 1{|yi,m|≥R2

m}

)
+M4sR−2s

m +M−2s for n = 6s

holds for any x ∈ Rn, M > 1, and m ∈ N large.

Proof. A minor variation of the proof of [24, Lemma 3.6] yields (4.16). Besides, if n > 6s, we
have the following interaction estimates as in [24, Lemma 4.1]: If λi,m ≤ λj,m, then

Up−1
j,m win

i,m ≲ R−2s
ij,mv

in
j,m + R−2s

m voutj,m + R−2s
m vini,m, (4.18)

Up−1
j,m wout

i,m ≲ R−2s
ij,mv

in
j,m + R−2s

m voutj,m + R−2s
m vouti,m, (4.19)

Up−1
i,m win

j,m ≲ R−2s
ij,mv

in
j,m, (4.20)

Up−1
i,m wout

j,m ≲ ⟨zij,m⟩−2s (vini,m + vouti,m + voutj,m

)
, (4.21)

and

Up−1
i,m wout

j,m ≲

[(
λi,m
λj,m

)2
+ ϵ2

]s
voutj,m if |yi,m − zij,m| ≤ ϵ, (4.22)

wout
j,m ≲ ⟨zij,m⟩2n−10s ϵ4s−n

(
win
i,m + wout

i,m

)
if |yi,m − zij,m| ≥ ϵ (4.23)

for any ϵ ∈ (0, 1) and m ∈ N large. Taking these estimates into account, one can mimic the proof
of [24, Proposition 4.3] to achieve (4.17).

If n = 6s, we can obtain (4.17) by deriving analogous inequalities to (4.18)–(4.23) as in [24,
Lemma 4.2]. We skip the details. □

In the remainder of this section, we restrict ourselves to the case n > 6s. The proof for the
case n = 6s goes through without serious modification, so we omit it for conciseness.

Suppose that for any given ζ ∈ (0, 1), there exists a number mζ ∈ N depending on ζ such that

m ≥ mζ ⇒
∫
Rn

1

|x− ω|n−2s

(
σp−1
m |fm|

)
(ω)dω ≤ ζWm(x) for all x ∈ Rn. (4.24)
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Then, owing to (4.14)–(4.16), the desired inequality (4.12) will hold. We have∫
Rn

1

|x− ω|n−2s

(
σp−1
m |fm|

)
(ω)dω

=

(∫
ΩExt,m;L

+

∫
ΩCore,m;L,ε

+

∫
ΩNeck,m;L,ε

)
1

|x− ω|n−2s

(
σp−1
m |fm|

)
(ω)dω

=: IExt,m;L(x) + ICore,m;L,ε(x) + INeck,m;L,ε(x) for all x ∈ Rn.

(4.25)

By choosing suitable L and ε, we shall estimate each terms IExt,m;L, ICore,m;L,ε, and INeck,m;L,ε

to deduce (4.24).

Estimate of IExt,m;L: By (4.9) and (4.14)–(4.17), there is a constant C0 > 0 depending only

on n, s, and ν such that

sup
x∈ΩExt,m;L

(
|fm|W−1

m

)
(x) ≤ C0

(
M3nL−2s logL+M4sR−2s

m +M−2s
)
+ o(1). (4.26)

In light of (4.26) and (4.17), there exists C1 > 0 depending only on n, s, and ν such that

IExt,m;L(x)

≤
[
C0

(
M3nL−2s logL+M4sR−2s

m +M−2s
)
+ o(1)

] ∫
Rn

1

|x− ω|n−2s

(
σp−1
m Wm

)
(ω)dω

≤ C1

[
C0

(
M3nL−2s logL+M4sR−2s

m +M−2s
)
+ o(1)

]
Wm(x)

for any x ∈ Rn and m ∈ N large. We pick numbers M0 and L0 so large that C1C0M
−2s
0 < ζ

12

and C1C0M
3n
0 L−2s

0 logL0 <
ζ
12 . Then

IExt,m;L0(x) ≤
ζ

3
Wm(x) (4.27)

for all x ∈ Rn and m ∈ N large.
By taking larger values for L0 if required, we can assume that

L0 > C∗ := 1 + max{|zij | : i, j = 1, . . . , ν, j ∈ D(i)}, (4.28)

which will be frequently used later. Hereafter, we fix L = L0 and omit the subscript L0 for
simplicity, writing e.g. ΩExt,m = ΩExt,m;L0 or ICore,m;ε = ICore,m;L0,ε.

Estimate of ICore,m;ε: Fix any ε ∈ (0, 1). By employing the blow-up argument, we will first

show that

sup
x∈ΩCore,m;ε

(
|fm|W−1

m

)
(x) = o(1) as m→ ∞. (4.29)

If (4.29) is not true, we will have points xm ∈ ΩCore,m;ε for m ∈ N and a number θ0 ∈ (0, 1)
such that θ0 ≤ (|fm|W−1

m )(xm) ≤ 1 for all m ∈ N. By passing to a subsequence, we may assume
that xm ∈ Ωi0,m;ε for some i0 = 1, . . . , ν and all m ∈ N. The following lemma is crucial.

Lemma 4.6. Let f̂m be a function in Ḣs(Rn) defined as

f̂m(y) = W−1
m (xm)fm

(
λ−1
i0,m

y + zi0,m
)

for y ∈ Rn

and Z̃∞ = {zi0j,∞ : j ∈ D(i0)}. Then, up to a subsequence,

f̂m → 0 in C0
loc

(
Rn \ Z̃∞

)
as m→ ∞. (4.30)
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Proof. There are several lengthy technical calculations in this proof. To make the main strategy
of this proof clearer, we will postpone their derivations to Appendix B.

We set

Hm(y) = λ−2s
i0,m

W−1
m (xm)

[
hm +

ν∑
j=1

n+1∑
a=1

caj,mU
p−1
j,m Zaj,m

](
λ−1
i0,m

y + zi0,m
)

for y ∈ Rn. (4.31)

From (4.10), we see that
f̂m = Φn,s ∗

[
p

{
λ
−n−2s

2
i0,m

σm
(
λ−1
i0,m

·+zi0,m
)}p−1

f̂m +Hm

]
in Rn,∫

Rn
U [0, 1]p−1Za[0, 1]f̂mdy = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1.

(4.32)

We notice from (3.1) that

Wm(xm) ≥
λ
n−2s

2
i0

R2s−n
m

⟨λi0,m(xm − zi0,m)⟩
2s ≳ L−2s

0 λ
n−2s

2
i0

R2s−n
m . (4.33)

Furthermore, given any M > 0, the proof of [24, Lemma 4.7] shows the existence of a sequence
{ηM,m}m∈N ⊂ (0,∞) such that ηM,m → 0 as m→ ∞ and(

win
j,m + wout

j,m

) (
λ−1
i0,m

y + zi0,m
)
= ηM,mw

in
i0,m

(
λ−1
i0,m

y + zi0,m
)

(4.34)

for all y ∈ B(0,M), j /∈ D(i0), and m ∈ N large.4 Using the elementary inequality∑ν
i=1 ai∑ν
i=1 bi

≤ max

{
a1
b1
, . . . ,

aν
bν

}
≤

ν∑
i=1

ai
bi

for a1, . . . , aν ≥ 0 and b1, . . . , bν > 0,

(4.33), (4.34), and (4.28), we verify that

Wm

(
λ−1
i0,m

y + zi0,m
)

Wm(xm)
≤

[
(1 + νηM,m)win

i0,m +
∑
j∈D(i0)

(
win
j,m + wout

j,m

)] (
λ−1
i0,m

y + zi0,m
)[

win
i0,m

+
∑
j∈D(i0)

(
win
j,m + wout

j,m

)]
(xm)

(4.35)

≲ (1 + νηM,m)L2s
0 +

∑
j∈D(i0)

[
L2s

0

|y − zi0j,m|2s 1
{∣∣∣∣ λj,m

λi0,m
(y−zi0j,m)

∣∣∣∣<Rm

} +
Ln−4s

0

|y − zi0j,m|n−4s
1{∣∣∣∣ λj,m

λi0,m
(y−zi0j,m)

∣∣∣∣≥Rm

}
]

for y ∈ B(0,M) \ {zi0j,m : j ∈ D(i0)}. Given any l > 0, let

Kl :=
{
y ∈ Rn : |y| ≤ l, |y − zi0j,∞| ≥ l−1 for all j ∈ D(i0)

}
⊂ Rn \ Z̃∞.

Then there exists a large number ml ∈ N depending on l such that

y ∈ Kl, j ∈ D(i0), m ≥ ml ⇒
∣∣∣∣ λj,mλi0,m

(y − zi0j,∞)

∣∣∣∣ ≥ 1

2
l−1

√
λj,m
λi0,m

Rm ≫ Rm.

Thus (4.35) gives∣∣f̂m(y)∣∣ ≲ (1 + νηl,m)L
2s
0 +

∑
j∈D(i0)

Ln−4s
0

|y − zi0j,m|n−4s
uniformly in Kl for m ≥ ml. (4.36)

4In principle, we may have that lim infm→∞ supM>0 ηM,m = ∞ because of the presence of bubbles that belong

to a different bubble-tree than the one associated with the index i0.
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Let B and B′ be a bounded open ball such that B′ ⊂ B ⊂ Kl for some large l > 0, where B′

is the closure of B′. In Appendix B.1, we will directly use (4.32) to prove that if s ∈ (12 ,
n
2 ), then∥∥f̂m∥∥C1(B′) ≲ Ln−4s

0 for m ∈ N large. (4.37)

If s ∈ (0, 12 ], the standard elliptic regularity (see e.g. [55, Corollary 2.5]) combined with Remark

B.2, ∥f̂m∥L∞(B) ≲ Ln−4s
0 , and Hm → 0 in L∞(B) yields∥∥f̂m∥∥C0,α(B′) ≲

∥∥ ⟨·⟩−(n+2s) f̂m
∥∥
L1(Rn) +

∥∥f̂m∥∥L∞(B)

+

∥∥∥∥∥p
{
λ
−n−2s

2
i0,m

σm
(
λ−1
i0,m

·+zi0,m
)}p−1

f̂m +Hm

∥∥∥∥∥
L∞(B)

≲ Ln−4s
0 for m ∈ N large

(4.38)

provided α ∈ (0, 2s). Employing (4.37)–(4.38), a standard covering argument (to obtain the

C1(Kl) or C
0,α(Kl)-estimate for f̂m), and the diagonal argument (to take l → ∞), we obtain

f̂m → f̂∞ in C0
loc

(
Rn \ Z̃∞

)
as m→ ∞ (4.39)

for some function f̂∞.
From (4.36) and (4.39), we see that

∣∣f̂∞(y)
∣∣ ≲ L2s

0 +
∑

j∈D(i0)

Ln−4s
0

|y − zi0j,∞|n−4s
in Rn \ Z̃∞.

In Appendix B.2 and B.3, we will confirm

f̂∞ = Φn,s ∗
(
pU [0, 1]p−1f̂∞

)
in Rn \ Z̃∞ (4.40)

and ∫
Rn
U [0, 1]p−1Za[0, 1]f̂∞dy = 0 for all i = 1, . . . , ν and a = 1, . . . , n+ 1. (4.41)

Then, Lemma A.2 implies that each singularity zi0j,∞ of f̂∞ is removable, namely, f̂∞ extends

to a function in L∞(Rn) satisfying (4.40) in Rn. By Lemma A.1 (a), it follows that f̂∞ = 0 in
Rn. As a result, (4.30) must hold. □

Let Ym = λi0,m(xm − zi0,m) so that supm∈N |Ym| ≤ L0 < ∞. One can assume that Ym → Y∞
as m → ∞ for some Y∞ ∈ Rn such that |Y∞| ≤ L0 and |Y∞ − zi0j,∞| ≥ ε for all j ∈ D(i0).

By (4.30), one concludes that f̂m(Ym) → 0 as m → ∞, which is impossible because |f̂m(Ym)| =
(|fm|W−1

m )(xm) ≥ θ0 > 0. Therefore, (4.29) is true.

Now, from (4.29) and (4.17), we infer that

ICore,m;ε(x) = o(1)

∫
ΩCore,m;ε

1

|x− ω|n−2s

(
σp−1
m Wm

)
(ω)dω = o(1)Wm(x) (4.42)

for all x ∈ Rn and m ∈ N large.



SHARP STABILITY ESTIMATES FOR FRACTIONAL SOBOLEV INEQUALITIES 21

Estimate of INeck,m;ε: By reasoning as in Case 3 of the proof of [24, Lemma 5.1], we find that

for any fixed θ ∈ (0, 1) and i = 1, . . . , ν,

σp−1
m Wm ≲

[
(C∗)

2s(n−6s)
n−2s θ + L−2s

0 + o(1)

] ∑
j∈D(i)

(
vinj,m + voutj,m

)
+

[
(C∗)

2s(n−6s)
n−2s θ−

n−4s
2s + o(1)

]
vini,m in Ai,m;ε,

(4.43)

provided L0 > 3C∗ (see (4.28) for the definition of C∗) and m ∈ N large. By (4.43),

INeck,m;ε(x)

≤
ν∑
i=1

∫
Ai,m;ε

1

|x− ω|n−2s

(
σp−1
m Wm

)
(ω)dω

≲
ν∑
i=1

∫
Ai,m;ε

1

|x− ω|n−2s

[{
(C∗)2sθ + L−2s

0 + o(1)
}
Vm(ω) + (C∗)2sθ−

n−4s
2s vini,m(ω)

]
dω

≲ (C∗)2sθ−
n−4s
2s

ν∑
i=1

∫
Ai,m;ε

1

|x− ω|n−2s
vini,m(ω)dω

+
{
(C∗)2sθ + L−2s

0 + o(1)
}∫

Rn

1

|x− ω|n−2s
Vm(ω)dω.

Hence, by applying (4.16) and possibly increasing the value of L0, we achieve

INeck,m;ε(x) ≤ C(C∗)2sθ−
n−4s
2s

ν∑
i=1

∫
Ai,m;ε

1

|x− ω|n−2s
vini,m(ω)dω +

ζ

6
Wm(x) (4.44)

for any x ∈ Rn and θ ∈ (0, 1) small. Moreover,∫
Ai,m;ε

1

|x− ω|n−2s
vini,m(ω)dω

≤
∑
j∈D(i)

∫
B(zj,m,

ε
λi,m

)\∪k∈D(i)B(zk,m,
L0
λk,m

)

1

|x− ω|n−2s

λ
n+2s

2
i,m R2s−n

m

⟨λi,m(ω − zi,m)⟩4s
1B(zi,m,

Rm
λi,m

)(ω)dω︸ ︷︷ ︸
=:Ji,m;ε(x)

(4.45)

for x ∈ Rn. We will estimate Ji,m;ε(x) by considering three separate cases.

Case 1: Fixing any L′ ≥ 2C∗, we assume that |x− zj,m| ≥ L′

λi,m
for some j ∈ D(i).

Letting ỹij,m = λi,m(x−zj,m) and ω̃ij,m = λi,m(ω−zj,m), and recalling zij,m = λi,m(zj,m−zi,m),
we evaluate

Ji,m;ε(x) ≤
∫
B(zj,m,

ε
λi,m

)

1

|x− ω|n−2s

λ
n+2s

2
i,m R2s−n

m

⟨λi,m(ω − zi,m)⟩4s
1B(zi,m,

Rm
λi,m

)(ω)dω

≤ λ
n−2s

2
i,m R2s−n

m

∫
B(0,ε)

1

|ỹij,m − ω̃ij,m|n−2s

dω̃ij,m

⟨ω̃ij,m + zij,m⟩4s

≲ εnλ
n−2s

2
i,m R2s−n

m

1

|ỹij,m|n−2s

(4.46)
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where we used |ỹij,m− ω̃ij,m| ≥ 1
2 |ỹij,m|, which comes from |ỹij,m| ≥ L′, to get the last inequality.

Notice that |zij,m| ≤ 1
2 |ỹij,m| and

|ỹij,m| − |zij,m| ≤ λi,m|x− zi,m| ≤ |ỹij,m|+ |zij,m|,

which imply

1

2
|ỹij,m| ≤ |yi,m| = λi,m|x− zi,m| ≤

3

2
|ỹij,m|.

Thus

εnλ
n−2s

2
i,m R2s−n

m

1

|ỹij,m|n−2s

≲ εn

(L′)4s−n
λ
n−2s

2
i,m R2s−n

m

⟨yi,m⟩2s
1{|yi,m|<Rm} + (L′)−2sR6s−n

m

λ
n−2s

2
i,m R−4s

m

|yi,m|n−4s
1{|yi,m|≥Rm}


≤ εnWm(x).

Case 2: We assume that 2ε
λi,m

≤ |x− zj,m| ≤ L′

λi,m
for some j ∈ D(i).

As in (4.46), we compute

Ji,m;ε(x) ≤ λ
n−2s

2
i,m R2s−n

m

∫
B(0,ε)

1

|ỹij,m − ω̃ij,m|n−2s

dω̃ij,m

⟨ω̃ij,m + zij,m⟩4s

≲ ε2s−nλ
n−2s

2
i,m R2s−n

m

∫
B(0,ε)

dω̃ij,m ≲ ε2sλ
n−2s

2
i,m R2s−n

m

where we employed |ỹij,m− ω̃ij,m| ≥ |ỹij,m|− |ω̃ij,m| ≥ 2ε− ε = ε to obtain the second inequality.
Since

|yi,m| = λi,m|x− zi,m| ≤ λi,m(|x− zj,m|+ |zi,m − zj,m|) ≤ L′ + C∗ < Rm

for m ∈ N large, we see

ε2sλ
n−2s

2
i,m R2s−n

m ≲ ε2s
[
1 + (L′ + C∗)2s

] λn−2s
2

i,m R2s−n
m

⟨yi,m⟩2s
1{|yi,m|<Rm} ≲ ε2s(L′ + C∗)2sWm(x).

Case 3: We assume that |x− zj,m| ≤ 2ε
λi,m

for some j ∈ D(i).

We calculate

Ji,m;ε(x) ≤
∫
B(x, 3ε

λi,m
)

1

|x− ω|n−2s

λ
n+2s

2
i,m R2s−n

m

⟨λi,m(ω − zi,m)⟩4s
1B(zi,m,

Rm
λi,m

)(ω)dω

≤ λ
n+2s

2
i,m R2s−n

m

∫
B(x, 3ε

λi,m
)

1

|x− ω|n−2s
dω ≲ ε2sλ

n−2s
2

i,m R2s−n
m .

Because

|yi,m| ≤ λi,m(|x− zj,m|+ |zi,m − zj,m|) ≤ 2ε+ C∗ < Rm

for m ∈ N large, we observe

ε2sλ
n−2s

2
i,m R2s−n

m ≲ ε2s(2ε+ C∗)2sWm(x).
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From the above analysis for the three cases and (4.44)–(4.45), we find

INeck,m;ε(x) ≤ C(C∗)2sθ−
n−4s
2s

ν∑
i=1

∑
j∈D(i)

Ji,m;ε(x) +
ζ

6
Wm(x)

≤
[
C(C∗)2sθ−

n−4s
2s ε2sWm(x) +

ζ

6

]
Wm(x) ≤

ζ

3
Wm(x)

(4.47)

for all x ∈ Rn, provided ε ∈ (0, 1) small and m ∈ N large.

Now, by inserting (4.27), (4.42), and (4.47) into (4.25), we obtain (4.24). Consequently, the
contradictory inequality (4.12) holds for all x ∈ Rn and large m ∈ N, implying the validity of
(3.9). This completes the proof of Proposition 3.3.

5. Quantitative stability estimate for dimension 2s < n < 6s

Having the spectral inequality (2.4) in hand, one may attempt to argue as in [32] to derive
(1.9) for 2s < n < 6s. Indeed, Aryan pursued this approach in [3, Section 2], getting the result
provided s ∈ (0, 1).

Here, we present an alternative proof of (1.9) whose scheme is close to those in the previous
sections. One can use standard integral norms at this time, and computations in the proof are
more straightforward than the high-dimensional case n ≥ 6s.

Definition 5.1. We redefine the ∗- and ∗∗-norms as

∥ρ∥∗ = ∥ρ∥Ḣs(Rn) and ∥h∥∗∗ = ∥h∥
L

2n
n+2s (Rn)

.

As before, the derivation of (1.9) is split into three steps.

Step 1. Assume that 2s < n < 6s. We set σ, ρ, and ρ0 as in Step 1 of Section 3.

Lemma 5.2. There exists a constant C > 0 depending only on n, s, and ν such that∥∥∥∥∥σp −
ν∑
i=1

Upi

∥∥∥∥∥
∗∗

≤ CQ (5.1)

where Q > 0 is the value in (2.1).

Proof. By elementary calculus, (2.10), and the condition n < 6s, we have∥∥∥∥∥σp −
ν∑
i=1

Upi

∥∥∥∥∥
L

2n
n+2s (Rn)

≲
∑

i,j=1,...,ν,
i ̸=j

∥∥∥Up−1
i Uj

∥∥∥
L

2n
n+2s (Rn)

=
∑

i,j=1,...,ν,
i ̸=j

(∫
Rn
U

2(p−1)n
n+2s

i U
2n
n+2s

j

)n+2s
2n

≲ Qmin{p−1,1} 2n
n+2s

·n+2s
2n = Q. □

We next analyze an associated inhomogeneous equation (3.8).

Proposition 5.3. If h ∈ L
2n
n+2s (Rn) and f satisfies (3.8), then there exists a constant C > 0

depending only on n, s, and ν such that

∥f∥∗ ≤ C∥h∥∗∗. (5.2)

Proof. Since the condition f ∈ Ḣs(Rn) was assumed in (3.8), we clearly have that ∥f∥∗ < ∞.
The proof consists of two substeps.
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Substep 1. We claim that there is a constant C > 0 depending only on n, s, and ν such that

ν∑
i=1

n+1∑
a=1

|cai | ≤ C (∥h∥∗∗ + Q∥f∥∗) . (5.3)

To show it, we test (3.8) with Zbj for any fixed j = 1, . . . , ν and b = 1, . . . , n + 1 and employ

(2.10), (3.16), (3.7), and (1.1). Then we arrive at

cbj

∫
Rn
U [0, 1]p−1Zb[0, 1]2 +

∑
i=1,...,ν,
i ̸=j

caiO(qij) = p

∫
Rn

(
Up−1
j − σp−1

)
fZbj −

∫
Rn
hZbj

= O

∥∥∥∥∥σp −
ν∑
i=1

Upi

∥∥∥∥∥
L

2n
n+2s (Rn)

∥f∥
L

2n
n−2s (Rn)

+O

(
∥h∥

L
2n
n+2s (Rn)

)
= O (Q∥f∥∗ + ∥h∥∗∗) ,

which implies (5.3).

Substep 2. We assert that (5.2) holds. Suppose not. There exist sequences of small pos-
itive numbers {δ′m}m∈N, δ

′
m-interacting families {{Ui,m = U [zi,m, λi,m]}i=1,...,ν}m∈N, functions

{hm}m∈N ⊂ L
2n
n+2s (Rn) and {fm}m∈N ⊂ Ḣs(Rn), and numbers {cai,m}i=1,...,ν, a=1,...,n+1,m∈N satis-

fying (4.9)–(4.10). By (5.3),

ν∑
i=1

n+1∑
a=1

∣∣cai,m∣∣→ 0 as m→ ∞. (5.4)

Testing (4.10) with fm and using Hölder’s inequality, (1.1), (4.9) and (5.4), we obtain

p

∫
Rn
σp−1
m f2m = ∥fm∥2Ḣs(Rn) +O

(
∥hm∥

L
2n
n+2s (Rn)

+

ν∑
i=1

n+1∑
a=1

∣∣cai,m∣∣
)

→ 1 as m→ ∞.

On the other hand, the argument in the proof of (2.18) demonstrates a contradictory result

lim
m→∞

∫
Rn
σp−1
m f2m = 0. (5.5)

Indeed, the sequence {fm}m∈N shares crucial properties of {ϱm}m∈N used in the proof of (2.18):

- Each fm solves an inhomogeneous problem (4.10) whose right-hand side tends to 0 in

Ḣ−s(Rn) as m→ ∞.

- ∥fm∥Ḣs(Rn) = 1 and fm ⊥ Zai,m in Ḣs(Rn) for allm ∈ N, i = 1, . . . , ν, and a = 1, . . . , n+1.

These, combined with Lemma A.1 (b), yield (5.5). We omit the details. □

A fixed point argument with Lemma 5.2 and Proposition 5.3 leads to the next result; cf.
Proposition 3.4.

Proposition 5.4. Equation (3.6) has a solution ρ0 and a family {cai }i=1,...,ν, a=1,...,n+1 of numbers
such that

∥ρ0∥∗ ≤ CQ and

ν∑
i=1

n+1∑
a=1

|cai | ≤ CQ (5.6)

where C > 0 depends only on n, s, and ν and Q > 0 is the value in (2.1).

The estimate for cai ’s in (5.6) results from (5.1)–(5.3), and the fixed point argument.

Step 2. Set ρ1 = ρ− ρ0. Then it satisfies (3.12).
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Proposition 5.5. There exists a constant C > 0 depending only on n, s, and ν that

∥ρ1∥∗ ≤ C
(
Γ(u) + Q2

)
(5.7)

where Γ(u) = ∥(−∆)su− |u|p−1u∥Ḣ−s(Rn).

Proof. As in the proof of Proposition 3.5, one can adapt the argument in the proof of Lemmas
6.2, 6.3, and Proposition 6.4 in [24], which uses the spectral inequality (2.4).

Compared to the high-dimensional case, we have more terms to treat here, because n < 6s
implies that p > 2 and so

∣∣|σ + ρ0 + ρ1|p−1(σ + ρ0 + ρ1)− |σ + ρ0|p−1(σ + ρ0)− p|σ + ρ0|p−1ρ1
∣∣

≲ |ρ1|p + |σ + ρ0|p−2|ρ1|2;∣∣(σ + ρ0)
p−1 − σp−1

∣∣ ≲ |ρ0|p−1 + σp−2|ρ0|;∣∣∣(σ + ρ0)
p−1 − Up−1

k

∣∣∣ ≲ ∑
i=1,...,ν,
i ̸=k

Up−1
i + |ρ0|p−1 + Up−2

k

( ∑
i=1,...,ν,
i ̸=k

Ui + |ρ0|

)
.

(5.8)

Fortunately, the additional terms such as |σ+ ρ0|p−2|ρ1|2 and σp−2|ρ0| in (5.8) can be controlled
well, and the bound (3.13) for ρ1 in Proposition 3.5 keeps unchanged. □

Putting (5.6) and (5.7) together leads

∥ρ∥Ḣs(Rn) ≤ ∥ρ0∥∗ + ∥ρ1∥∗ ≤ C (Γ(u) + Q) . (5.9)

Step 3. Thanks to (5.9), we only need to check that Q ≲ Γ(u) to establish (1.9).
Since n < 6s, it holds that p > 2. Hence∣∣|σ + ρ|p−1(σ + ρ)− σp − p σp−1ρ

∣∣ ≲ σp−2ρ2 + |ρ|p. (5.10)

Testing (3.4) with Zn+1
j for any fixed j = 1, . . . , ν, and employing (5.10), (3.16), Hölder’s in-

equality, (1.1), (5.1), (5.6), (5.7), (5.9), and p > 2, we observe∣∣∣∣∣
∫
Rn

(
σp −

ν∑
i=1

Upi

)
Zn+1
j

∣∣∣∣∣
≲
∫
Rn

(
σp −

ν∑
u=1

Upi

)
|ρ0|+

∫
Rn
σp|ρ1|+

∫
Rn
σp−1ρ2 +

∫
Rn

|ρ|p
∣∣∣Zn+1

j

∣∣∣+ Γ(u)

≲ Γ(u) + Q2 + ∥ρ1∥Ḣs(Rn) + ∥ρ∥2
Ḣs(Rn) + ∥ρ∥p

Ḣs(Rn)
≲ Γ(u) + Q2.

(5.11)

Besides, a suitable modification of the proof of [24, Lemma 2.1] gives (3.19) provided n < 6s.
During the derivation of (3.19), we need the estimate∫

Rn
Up−1
i UjUk ≲

(∫
Rn
U

3
2
(p−1)

i U
3
2
j

) 1
3
(∫

Rn
U

3
2
(p−1)

i U
3
2
k

) 1
3
(∫

Rn
U

3
2
j U

3
2
k

) 1
3

≲
√
qijqikqjk | log qjk|

1
3 ≲ Q

3
2 | logQ|

1
3 = o(Q),

which holds for any n < 6s and i, j, k = 1, . . . , ν such that i ̸= j, j ̸= k, and i ̸= k.
As a consequence, we deduce (3.20) from (5.11) and (3.19). The desired inequality Q ≲ Γ(u)

follows from (3.20). This completes the proof of (1.9) for 2s < n < 6s.
To derive the sharpness of (1.9), one can modify the argument in [12, Section 5.1]. We skip

it.
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Appendix A. Auxiliary results

A.1. Non-degeneracy result. We prove the non-degeneracy of the bubble U [z, λ], which is a
minor variation of ones in [23, 45]. We believe that it is of practical use elsewhere.

Lemma A.1. Let n ∈ N and s ∈ (0, n2 ). Assume that one of the followings hold:

(a) Z ∈ L∞(Rn) solves
Z = Φn,s ∗

(
pU [0, 1]p−1Z

)
in Rn. (A.1)

(b) If Z ∈ Ḣs(Rn) solves
(−∆)sZ − pU [0, 1]p−1Z = 0 in Rn. (A.2)

Then Z ∈ span{Z0[0, 1], Z1[0, 1], . . . , Zn+1[0, 1]}.

Proof. Case (a) was treated in [45, Lemma 5.1]. In the rest of the proof, we will prove that Case
(b) can be reduced to Case (a).

If Z ∈ Ḣs(Rn) solves (A.2), then (A.1) holds similarly to (4.2). Additionally, one can verify
that Z ∈ L∞(Rn) as follows:

- If n ≥ 6s, we apply the iteration process in Substep 1 of the proof of Proposition 3.3 to
(A.1).

- If 2s < n < 6s, then the HLS inequality and Hölder’s inequality imply

∥Z∥Lt∗ (Rn) ≲
∥∥∥∥ |Z|
⟨ · ⟩4s

∗ 1

| · |n−2s

∥∥∥∥
Lt∗ (Rn)

≲

∥∥∥∥ |Z|
⟨ · ⟩4s

∥∥∥∥
Lζ2 (Rn)

≲ ∥Z∥Lt(Rn)
∥∥∥∥ 1

⟨ · ⟩4s

∥∥∥∥
Lζ1 (Rn)

for t = 2n
n−2s , ζ1 ∈ ( n2s ,

2n
6s−n), ζ2 = tζ1

ζ1+t
, and t∗ = nζ2

n−2sζ2
∈ ( 2n

n−2s ,∞). This means that

Z ∈ Lt̃(Rn) for all t̃ ≥ 2n
n−2s . From (4.6), we conclude that Z ∈ L∞(Rn). □

A.2. Removability of singularity. We derive a result on the removability of singularities of
a solution to an integral equation, which will be used in the proof of Lemma 4.6.

Lemma A.2. Suppose that n ∈ N, s ∈ (0, n2 ), α ∈ (0, n), and β > 2s. Given any N ∈ N, let
y1, . . . , yN be distinct points in Rn. If f and V are functions such that

f = Φn,s ∗ (V f) in Rn \ {y1, . . . , yN},

|f(y)| ≤ C

(
1 +

N∑
i=1

1

|y − yi|α

)
, |V (y)| ≤ C

⟨y⟩β
for y ∈ Rn \ {y1, . . . , yN}

(A.3)

for some C > 0, then f ∈ L∞(Rn).

Proof. Let C∗∗ = 1 +maxi=1,...,N |yi|. By (A.3), f is clearly bounded in the set B(0, 4C∗∗)c.
Suppose that y ∈ B(0, 4C∗∗) \ {y1, . . . , yN}, it holds that

|f(y)| ≲
∫
Rn

1

|y − ω|n−2s

dω

⟨ω⟩β
+

N∑
i=1

∫
B(0,2C∗∗)c

1

|y − ω|n−2s

dω

|ω|α+β

+

N∑
i=1

∫
B(0,2C∗∗)

1

|y − ω|n−2s

dω

|ω − yi|α

≲
1 + log(2 + |y|)1{β=n}

⟨y⟩min{β,n}−2s
+

N∑
i=1

∫
B(0,2C∗∗)

1

|y − ω|n−2s

dω

|ω − yi|α

(A.4)

where the integrals on the first line were computed as in (4.3).
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We shall estimate the rightmost integral in (A.4). Fix any non-negative ζ ∈ (α−2s,min{α, n−
2s}]. By handling the cases {ω ∈ Rn : |ω − y| < 1

2 |y − yi|}, {ω ∈ Rn : |ω − yi| < 1
2 |y − yi|}, and

{ω ∈ Rn : min{|ω − y|, |ω − yi|} ≥ 1
2 |y − yi|} separately, one can derive

1

|y − ω|n−2s

1

|ω − yi|α
≤ c

|y − yi|ζ

(
1

|ω − y|n−2s+α−ζ +
1

|ω − yi|n−2s+α−ζ

)
(A.5)

where c > 0 is determined by n, s, α, and ζ. By (A.5) and the estimate∫
B(0,2C∗∗)

dω

|ω − yi|n−2s+α−ζ ≲
∫
{
|ω−yi|<

|yi|
2

} dω

|ω − yi|n−2s+α−ζ +
1

|yi|n−2s+α−ζ

∫
{
|ω|< |yi|

2

} dω

+

∫
{

|yi|
2

≤|ω|<2C∗∗
}
∩
{
|ω−yi|≥

|yi|
2

} dω

|ω|n−2s+α−ζ

≲ |yi|ζ−(α−2s) + |yi|ζ−(α−2s) + (C∗∗)ζ−(α−2s) ≲ (C∗∗)ζ−(α−2s),

we deduce ∫
B(0,2C∗∗)

1

|y − ω|n−2s

dω

|ω − yi|α
≲
c(C∗∗)ζ−(α−2s)

|y − yi|ζ

provided |y| < 4C∗∗.
Therefore,

|f(y)| ≤ C ′

(
1 +

N∑
i=1

1

|y − yi|ζ

)
for y ∈ Rn \ {y1, . . . , yN}

where C ′ > 0 is determined by n, s, α, β, ζ, C∗∗, and C in (A.3). Feeding back this information
into (A.4), we can iterate the above process until we get f ∈ L∞(Rn). □

Appendix B. Technical computations

Throughout this appendix, we assume that n > 6s.

B.1. Derivation of (4.37). We recall that

fm(x) =

∫
Rn

γn,s
|x− ω|n−2s

(
p σp−1

m fm + hm +
ν∑
i=1

n+1∑
a=1

cai,mU
p−1
i,m Zai,m

)
(ω)dω for x ∈ Rn.

For s ∈ (12 ,
n
2 ), we will prove that

∇fm(x) = (2s− n)γn,s

∫
Rn

(x− ω)

|x− ω|n−2s+2

(
p σp−1

m fm + hm +

ν∑
i=1

n+1∑
a=1

cai,mU
p−1
i,m Zai,m

)
(ω)dω

(B.1)
for x ∈ Rn. It suffices to verify that the integral on the right-hand side of (B.1), denoted as
gm(x), is well-behaved in order to apply the Lebesgue dominated convergence theorem.

To analyze the integral, we decompose Rn into two subsets {|yi,m| ≤ 3
2Rm} and {|yi,m| >

3
2Rm}. Then one can examine∫

Rn

1

|x− ω|n−2s+1
Up−1
i,m (ω)

(
win
i,m + wout

i,m

)
(ω)dω

≲
λi,m

(
win
i,m + wout

i,m

)
(x)

⟨yi,m⟩

(
1

⟨yi,m⟩2s
1{|yi,m|<Rm} +

log |yi,m|
|yi,m|2s

1{|yi,m|≥Rm}

)
(B.2)
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and ∫
Rn

1

|x− ω|n−2s+1

(
vini,m + vouti,m

)
(ω)dω ≲

λi,m
⟨yi,m⟩

(
win
i,m + wout

i,m

)
(x). (B.3)

By applying (B.2)–(B.3) and (4.18)–(4.23), we observe that for any M > 1,∫
Rn

1

|x− ω|n−2s+1

(
p σp−1

m fm + hm
)
(ω)dω

≲
ν∑
i=1

λi,m

(
win
i,m + wout

i,m

)
(x)

⟨yi,m⟩

[
M3n

(
1

⟨yi,m⟩2s
1{|yi,m|<Rm} +

log |yi,m|
|yi,m|2s

1{|yi,m|≥Rm}

)
+M4sR−2s

m +M−2s + ∥hm∥∗∗
]

≲
ν∑
i=1

λi,m
⟨yi,m⟩

(
win
i,m + wout

i,m

)
(x).

This gives rise to

|gm(x)| ≲
ν∑
i=1

λi,m
⟨yi,m⟩

(
win
i,m + wout

i,m

)
(x) for x ∈ Rn,

since (4.8) implies∫
Rn

1

|x− ω|n−2s+1

∣∣∣∣∣
ν∑
i=1

n+1∑
a=1

cai,m(U
p−1
i,m Zai,m)(ω)

∣∣∣∣∣ dω
≲
(
∥hm∥∗∗R2s−n

m + ∥fm∥∗R−(n+2s)
m

) ν∑
i=1

λi,m
⟨yi,m⟩

Ui,m(x).

Therefore, (B.1) is valid.
Now, considering the relationship that∣∣∇f̂m(y)∣∣ = λ−1

i0,m
Wm(xm)

−1|∇fm(x)| for x = λ−1
i0,m

y + zi0,m

and λi0,m|xm − zi0,m| ≤ L0, we find∣∣∇f̂m(y)∣∣ ≲ 1

λi0,mWm(xm)

ν∑
j=1

λj,m〈
λj,mλ

−1
i0,m

(y − zi0j,m)
〉 (win

j,m + wout
j,m

) (
λ−1
i0,m

y + zi0,m
)

≲ L2s
0 + L2s

0

∑
j≺i0

(
λj,m
λi0,m

)n−2s
2

+1

+
∑
j≻i0

[
L2s
0

|y − zi0j,m|2s+1
1{∣∣∣∣ λj,mλi0,m

(y−zi0j,m)

∣∣∣∣<Rm

}

+
Ln−4s
0

|y − zi0j,m|n−4s+1
1{∣∣∣∣ λj,mλi0,m

(y−zi0j,m)

∣∣∣∣≥Rm

}
]

+
∑

{j: |zi0j,m|→∞}

 λj,m ⟨λj,m(xm − zj,m)⟩2s

λi0.m

〈
λj,m
λi0.m

(y − zi0j,m)
〉2s+11

{∣∣∣∣ λj,mλi0,m
(y−zi0j,m)

∣∣∣∣<Rm

}

+
λj,m|λj,m(xm − zj,m)|n−4s

λi0,m

∣∣∣ λj,mλi0.m
(y − zi0j,m)

∣∣∣n−4s+11
{∣∣∣∣ λj,mλi0,m

(y−zi0j,m)

∣∣∣∣≥Rm

}


≲ Ln−4s
0
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for y ∈ B′ and m ∈ N large, where B′ is any compact ball in Rn \ Z̃∞. This concludes the proof
of (4.37).

Remark B.1. Let γ be an integer such that γ ∈ [1, ⌊2s⌋] for s ∈ (12 ,
n
2 ) \

1
2N and γ ∈ [1, 2s− 1]

for s ∈ (12 ,
n
2 ) ∩

1
2N. The previous argument reveals that

∣∣∇γfm(x)
∣∣ ≲ ∣∣∣∣∣

∫
Rn

1

|x− ω|n−2s+γ

(
p σp−1

m fm + hm +

ν∑
i=1

n+1∑
a=1

cai,mU
p−1
i,m Zai,m

)
(ω)dω

∣∣∣∣∣
≲

ν∑
i=1

(
λi,m
⟨yi,m⟩

)γ (
win
i,m + wout

i,m

)
(x) for x ∈ Rn,

since n− 2s+ γ < n. Consequently, we have∥∥f̂m∥∥Cγ(B′)
≲ Ln−4s

0 for m ∈ N large.

B.2. Derivation of (4.40). Let B′ be a bounded open ball in Rn \ Z̃∞. We choose any y ∈ B′,
which will be fixed throughout this subsection. It follows directly from (4.35) that

Wm

(
λ−1
i0,m

y + zi0,m
)

Wm(xm)
≲ Ln−4s

0 (B.4)

for m ∈ N large. Arguing as in [24, Lemma 4.7], one has

Uj,m
(
λ−1
i0,m

y + zi0,m
)
= o(1)Ui0,m

(
λ−1
i0,m

y + zi0,m
)

for j /∈ D(i0) and y ∈ B′. (B.5)

Recalling (4.31), we infer from (4.16), (B.4), (4.15), (4.8), (4.9), and (B.5) that∫
Rn

1

|y − ω|n−2s
Hm(ω)dω

≲ ∥hm∥∗∗
Wm

(
λ−1
i0,m

y + zi0,m
)

Wm(xm)
+

1

Wm(xm)

ν∑
j=1

n+1∑
a=1

|caj,m|Uj,m
(
λ−1
i0,m

y + zi0,m
)
→ 0 (B.6)

as m→ ∞.
In the following, we will justify the equality

lim
m→∞

∫
Rn

1

|y − ω|n−2s

{
λ
−n−2s

2
i0,m

σm
(
λ−1
i0,m

ω + zi0,m
)}p−1

f̂m(ω)dω

=

∫
Rn

1

|y − ω|n−2s

(
U [0, 1]p−1f̂∞

)
(ω)dω

(B.7)

for each y ∈ B′. Indeed, if it is true, (4.40) will be an immediate consequence of (4.32), (4.39),
(B.6), and (B.7).

Given any M > 4C∗ large and ϵ ∈ (0, 1) small, we decompose Rn into

Rn =
(
∪i∈D(i0)B(zi0i,∞, ϵ)

)⋃[
B(0,M) \

(
∪i∈D(i0)B(zi0i,∞, ϵ)

)]⋃
B(0,M)c

=: Ω1 ∪ Ω2 ∪ Ω3.
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We set

I1,m(y) :=

∫
Rn

1

|y − ω|n−2s

(
U [0, 1]p−1f̂m

)
(ω)dω

=

∫
Ω1

· · ·+
∫
Ω2

· · ·+
∫
Ω3

· · · =: I11,m(y) + I12,m(y) + I13,m(y),

I2,m(y) :=

∫
Rn

1

|y − ω|n−2s

[{(
λ
−n−2s

2
i0,m

σm
(
λ−1
i0,m

·+zi0,m
))p−1

− U [0, 1]p−1

}
f̂m

]
(ω)dω

=

∫
Ω1

· · ·+
∫
Ω2

· · ·+
∫
Ω3

· · · =: I21,m(y) + I22,m(y) + I23,m(y).

(B.8)

It is sufficient to analyze integrals I11,m, . . . , I23,m separately.

Step 1. We take l > max{M, ϵ−1}. Following Claim 1 in the proof of [24, Lemma 5.1], one
can find

λ
−n−2s

2
i0,m

σm
(
λ−1
i0,m

·+zi0,m
)
→ U [0, 1] in L∞(Ω2) as m→ ∞

using the fact that Ω2 ⊂ Kl. Moreover, owing to (4.39), f̂m → f̂∞ uniformly in Ω2 as m → ∞,
so I12,m(y) →

∫
Ω2

1

|y − ω|n−2s

(
U [0, 1]p−1f̂∞

)
(ω)dω,

I22,m(y) → 0
as m→ ∞ (B.9)

for each fixed y ∈ B′.
Let us estimate I11,m(y). By using (4.33) and (4.34), we see that∣∣f̂m(ω)∣∣ ≲ L2s

0 +
1

Wm(xm)

∑
j∈D(i0)

(
win
j,m + wout

j,m

) (
λ−1
i0,m

ω + zi0,m
)

for ω ∈ Ω1 and m ∈ N large. Fix any i ∈ D(i0). If |y − zi0i,∞| ≤ 2ϵ, then∫
B(zi0i,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)dω ≲

∫
B(y,3ϵ)

1

|y − ω|n−2s
dω ≃ ϵ2s.

If |y − zi0i,∞| ≥ 2ϵ, then∫
B(zi0i,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)dω ≲ ϵ2s−n

∫
B(0,ϵ)

dω ≃ ϵ2s.

From (4.20), (4.22), (4.16), and (B.4), we know

1

Wm(xm)

∑
j∈D(i0)

∫
B(zi0j,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)

(
win
j,m + wout

j,m

) (
λ−1
i0,m

ω + zi0,m
)
dω

≲
1

λ2si0 Wm(xm)

∑
j∈D(i0)

∫
B(zi0j,m,2ϵ)

1

|y − ω|n−2s

[
R−2s
m vinj,m

(
λ−1
i0,m

ω + zi0,m
)

+

{(
λi0,m
λj,m

)2s

+ ϵ2s

}
voutj,m

(
λ−1
i0,m

ω + zi0,m
)]

dω

≲
1

Wm(xm)

∑
j∈D(i0)

[
R−2s
m +

(
λi0,m
λj,m

)2s

+ ϵ2s

] (
win
j,m + wout

j,m

) (
λ−1
i0,m

y + zi0,m
)
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≲ Ln−4s
0

∑
j∈D(i0)

[
R−2s
m +

(
λi0,m
λj,m

)2s

+ ϵ2s

]
≃ Ln−4s

0 ϵ2s + o(1)

for m ∈ N large. In addition,

1

Wm(xm)

∑
i, j∈D(i0),

zi0i,∞ ̸=zi0j,∞

∫
B(zi0i,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)

(
win
j,m + wout

j,m

) (
λ−1
i0,m

ω + zi0,m
)
dω

≲
∑

i, j∈D(i0),
zi0i,∞ ̸=zi0j,∞

∫
B(zi0i,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)

[
L2s
0

|ω − zi0j,m|2s
+

Ln−4s
0

|ω − zi0j,m|n−4s

]
dω

≲ Ln−4s
0

∑
i∈D(i0)

∫
B(zi0i,∞,ϵ)

1

|y − ω|n−2s
U [0, 1]p−1(ω)dω ≲ Ln−4s

0 ϵ2s

where we choose ϵ so small that ϵ < 1
2 min {|zi0i,∞ − zi0j,∞| : i, j ∈ D(i0) and zi0i,∞ ̸= zi0j,∞} for

the second inequality. Therefore,

|I11,m(y)| ≲ Ln−4s
0 ϵ2s + o(1) for y ∈ B′ and m ∈ N large. (B.10)

We next turn to the integral I13,m(y). If ω ∈ Ω3, or equivalently, |ω| ≥M , then∣∣f̂m(ω)∣∣ ≲ (L2s
0 M

−2s + Ln−4s
0 M−(n−4s)

)
+ L2s

0

+
1

Wm(xm)

∑
{j: |zi0j,m|→∞}

(
win
j,m + wout

j,m

) (
λ−1
i0,m

ω + zi0,m
)

(B.11)

for m ∈ N large. On one hand, it holds that∫
Ω3

1

|y − ω|n−2s
U [0, 1]p−1(ω)dω ≲M−s

∫
Ω3

1

|y − ω|n−2s

1

1 + |ω|3s
dω ≲

M−s

1 + |y|s
≲M−s.

On the other hand, by (4.18)–(4.21), (4.16), (4.33), and (4.34),

1

Wm(xm)

∑
{j: |zi0j,m|→∞}

∫
Ω3

1

|y − ω|n−2s
U [0, 1]p−1(ω)

(
win
j,m + wout

j,m

) (
λ−1
i0,m

ω + zi0,m
)
dω

≲
1

λ2s
i0
Wm(xm)

∑
{j: |zi0j,m|→∞}

∫
Ω3

R−2s
m + ⟨zi0j,m⟩−2s

|y − ω|n−2s

(
vini0,m + vouti0,m + vinj,m + voutj,m

) (
λ−1
i0,m

ω + zi0,m
)
dω

≲

(
R−2s
m +

∑
{j: |zi0j,m|→∞}

⟨zi0j,m⟩−2s

)

× 1

Wm(xm)

win
i0,m + wout

i0,m +
∑

{j: |zi0j,m|→∞}

(
win
j,m + wout

j,m

) (λ−1
i0,m

y + zi0,m
)

≲ L2s
0

(
R−2s
m +

∑
{j: |zi0j,m|→∞}

⟨zi0j,m⟩−2s

)
= o(1).

Summing up, we discover

|I13,m(y)| ≲ L2s
0 M

−s + Ln−4s
0 M−(n−3s) + o(1) for y ∈ B′ and m ∈ N large. (B.12)

Furthermore, by employing the pointwise convergence

f̂m(ω) → f̂∞(ω) for ω ∈ Rn \ Z̃∞ as m→ ∞,



32 HAIXIA CHEN, SEUNGHYEOK KIM, AND JUNCHENG WEI

and Fatou’s Lemma, we deduce∫
Ω1

1

|y − ω|n−2s

(
U [0, 1]p−1|f̂∞|

)
(ω)dω ≤ lim inf

m→∞

∫
Ω1

1

|y − ω|n−2s

(
U [0, 1]p−1|f̂m|

)
(ω)dω

≲ Ln−4s
0 ϵ2s (B.13)

and ∫
Ω3

1

|y − ω|n−2s

(
U [0, 1]p−1|f̂∞|

)
(ω)dω ≤ lim inf

m→∞

∫
Ω3

1

|y − ω|n−2s

(
U [0, 1]p−1|f̂m|

)
(ω)dω

= L2s
0 M

−s + Ln−4s
0 M−(n−3s).

(B.14)

By collecting (B.9), (B.10), (B.12), and (B.13)–(B.14), we conclude

I1,m(y) =

∫
Rn

1

|y − ω|n−2s

(
U [0, 1]p−1f̂∞

)
(ω)dω

+O
(
Ln−4s
0 ϵ2s + L2s

0 M
−s + Ln−4s

0 M−(n−3s)
)
+ o(1) (B.15)

for each y ∈ B′ and m ∈ N large.

Step 2. We evaluate I2,m(y) for y ∈ B′. Direct computations similar to the previous step
yield

1

Wm(xm)

∫
Ω1

1

|y − ω|n−2s

[(∑
i≺i0

λ
−n−2s

2
i0,m

Ui,m

)p−1 (
win
i0,m + wout

i0,m

)] (
λ−1
i0,m

ω + zi0,m
)
dω

≲ L2s
0

∑
i≺i0

(
λi,m
λi0,m

)2s ∫
Ω1

1

|y − ω|n−2s
dω ≲ L2s

0

∑
i≺i0

(
λi,m
λi0,m

)2s

ϵ2s ≲ o(1)L2s
0 ϵ

2s

(
since

(
win
i0,m + wout

i0,m

) (
λ−1
i0,m

ω + zi0,m
)
≲ L2s

0 Wm(xm) for ω ∈ Ω1

)
,

1

Wm(xm)

∫
Ω1

1

|y − ω|n−2s

[(∑
i≻i0

λ
−n−2s

2
i0,m

Ui,m

)p−1 (
win
i0,m + wout

i0,m

)] (
λ−1
i0,m

ω + zi0,m
)
dω

≲ Ln−4s
0 R−2s

m = o(1) (by (4.18), (4.19), (4.16), and (B.4)),

1

Wm(xm)

∫
Ω1

1

|y − ω|n−2s

 ∑
{i: |zi0i,m|→∞}

λ
−n−2s

2
i0,m

Ui,m

p−1 (
win
i0,m + wout

i0,m

) (λ−1
i0,m

ω + zi0,m
)
dω

≲ L2s
0

(
R−2s
m +

∑
{i: |zi0i,m|→∞}

⟨zi0i,m⟩−2s

)
= o(1) (by (4.18)–(4.21), (4.16), (4.33), and (4.34)),

and

1

Wm(xm)

∫
Ω3

1

|y − ω|n−2s

∑
j ̸=i0

λ
−n−2s

2
i0,m

Uj,m

p−1 (
win
i0,m + wout

i0,m

) (λ−1
i0,m

ω + zi0,m
)
dω

≲
(
L2s

0 M
−2s + Ln−4s

0 M−(n−4s)
)∫

Rn

1

|y − ω|n−2s

∑
j ̸=i0

λ
−n−2s

2
i0,m

Uj,m

p−1 (
λ−1
i0,m

ω + zi0,m
)
dω

≲
(
L2s

0 M
−2s + Ln−4s

0 M−(n−4s)
)∑
j ̸=i0

1〈
λj,m

λi0,m
(y − zi0j,m)

〉2s
≲ L2s

0 M
−2s + Ln−4s

0 M−(n−4s)
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for m ∈ N large. Also, considering (4.18)–(4.23), (B.4), (4.33), and (4.34), we can derive, as in
(4.17), that

1

Wm(xm)

∫
Ω1∪Ω3

1

|y − ω|n−2s

∑
j ̸=i0

λ
−n−2s

2
i0,m

Uj,m

p−1 ∑
i ̸=i0

(
win
i,m + wout

i,m

) (λ−1
i0,m

ω + zi0,m
)
dω

≲
1

Wm(xm)

∑
i ̸=i0

(
win
i,m + wout

i,m

) (
λ−1
i0,m

y + zi0,m
)
·
[
M4s

1 R−2s
m +M−2s

1

+M3n
1

 1〈
λi,m

λi0,m
(y − zi0i,m)

〉2s
1{∣∣∣∣ λi,m

λi0,m
(y−zi0i,m)

∣∣∣∣<Rm

} +
log
∣∣∣ λi,m

λi0,m
(y − zi0i,m)

∣∣∣∣∣∣ λi,m

λi0,m
(y − zi0i,m)

∣∣∣2s 1{∣∣∣∣ λi,m
λi0,m

(y−zi0i,m)

∣∣∣∣≥Rm

}



≲ Ln−4s
0

(
M4s

1 R−2s
m +M−2s

1

)
+
o(1)M3n

1

Wm(xm)

(
win
i0,m + wout

i0,m

) (
λ−1
i0,m

y + zi0,m
)

+M3n
1

∑
i∈D(i0)

 L2s
0〈

λi,m

λi0,m
(y − zi0i,m)

〉2s
1{∣∣∣∣ λi,m

λi0,m
(y−zi0i,m)

∣∣∣∣<Rm

}

+
Ln−4s

0 log
∣∣∣ λi,m

λi0,m
(y − zi0i,m)

∣∣∣∣∣∣ λi,m

λi0,m
(y − zi0i,m)

∣∣∣2s 1{∣∣∣∣ λi,m
λi0,m

(y−zi0i,m)

∣∣∣∣≥Rm

}


≲ Ln−4s
0

(
M4s

1 R−2s
m +M−2s

1

)
+ o(1)L2s

0 M
3n
1 +M3n

1

∑
i∈D(i0)

[
L2s

0

(
λi,m
λi0,m

)−2s

+ Ln−4s
0

(
λi,m
λi0,m

)−2s ∣∣∣∣log λi,m
λi0,m

∣∣∣∣
]

≲ Ln−4s
0 M−2s

1 + o(1)Ln−4s
0 M3n

1

for any M1 > 1 and m ∈ N large. Hence, with (B.9), we have proven that

|I2,m(y)| ≲ o(1)L2s
0 ϵ

2s+o(1)+L2s
0 M

−2s+Ln−4s
0 M−(n−4s)+Ln−4s

0 M−2s
1 +o(1)Ln−4s

0 M3n
1 (B.16)

for y ∈ B′ and m ∈ N large.

By gathering (B.8), (B.15), and (B.16), selectingM, M1 > 0 sufficiently large and ϵ > 0 small,
and then taking m→ ∞, we establish (B.7).

B.3. Derivation of (4.41). We will adopt the strategy in Appendix B.2.

First, because f̂m → f̂∞ uniformly in Ω2 as m→ ∞, we have∫
Ω2

U [0, 1]p−1Za[0, 1]f̂mdy →
∫
Ω2

U [0, 1]p−1Za[0, 1]f̂∞dy as m→ ∞.

Also, in light of (4.35), we find that∫
Ω1

∣∣∣U [0, 1]p−1Za[0, 1]f̂m

∣∣∣ dy
≲
∫
Ω1

U [0, 1]p

[
L2s
0 +

∑
j∈D(i0)

(
L2s
0

|y − zi0j,m|2s
+

Ln−4s
0

|y − zi0j,m|n−4s

)]
dy

≲ Ln−4s
0

[∫
Ω1

dy +
∑

j∈D(i0)

∫
B(zi0j,∞,ϵ)

(
1

|y − zi0j,m|2s
+

1

|y − zi0j,m|n−4s

)
dy

+
∑

i, j∈D(i0),
zi0i,∞ ̸=zi0j,∞

∫
B(zi0i,∞,ϵ)

(
1

|y − zi0j,m|2s
+

1

|y − zi0j,m|n−4s

)
dy

]
≲ Ln−4s

0 ϵ4s
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for ϵ > 0 small and m ∈ N large.
Next, by carrying out computations with the help of (B.11), we obtain∫

Ω3

∣∣∣U [0, 1]p−1Za[0, 1]f̂m

∣∣∣dy
≲
∫
Ω3

U [0, 1]p(y)

[(
L2s

0 M
−2s + Ln−4s

0 M−(n−4s)
)
+ L2s

0

+
∑

{j: |zi0j,m|→∞}

(
|zi0j,m|2s

|y − zi0j,m|2s +
|zi0j,m|n−4s

|y − zi0j,m|n−4s

)]
dy

≲
(
L2s

0 + Ln−4s
0 M−(n−4s)

)
M−2s

+
∑

{j: |zi0j,m|→∞}

∫
B

(
zi0j,m,

|zi0j,m|
2

)
[

1

|zi0j,m|n
1

|y − zi0j,m|2s +
1

|zi0j,m|6s
1

|y − zi0j,m|n−4s

]
dy

+
∑

{j: |zi0j,m|→∞}

∫
B

(
zi0j,m,

|zi0j,m|
2

)c

∩Ω3

U [0, 1]p(y)

[
|zi0j,m|2s

|y − zi0j,m|2s +
|zi0j,m|n−4s

|y − zi0j,m|n−4s

]
dy

≲
(
L2s

0 + Ln−4s
0 M−(n−4s)

)
M−2s +

∑
{j: |zi0j,m|→∞}

|zi0j,m|−2s +M−2s

for m ∈ N large.
By making use of Fatou’s Lemma, we easily get∫

Ω1

∣∣∣U [0, 1]p−1Za[0, 1]f̂∞

∣∣∣dy ≲ Ln−4s
0 ϵ4s

and ∫
Ω3

∣∣∣U [0, 1]p−1Za[0, 1]f̂∞

∣∣∣dy ≲ L2s
0 M

−2s + Ln−4s
0 M−(n−2s).

All the information above and the second equality of (4.32) present

0 = lim
m→∞

∫
Rn
U [0, 1]p−1Za[0, 1]f̂mdy =

∫
Rn
U [0, 1]p−1Za[0, 1]f̂∞dy.

The proof of (4.41) is completed.

Remark B.2. This proof essentially gives∥∥∥⟨·⟩−(n+2s) f̂m

∥∥∥
L1(Rn)

≲ Ln−4s
0 ,

which is necessary to deduce (4.38).
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[42] T. König, On the sharp constant in the Bianchi-Egnell stability inequality, Bull. Lond. Math. Soc. 55 (2023),
2070–2075.

[43] , Stability for the Sobolev inequality: existence of a minimizer, to appear in J. Eur. Math. Soc.
[44] D. Li, On Kato-Ponce and fractional Leibniz, Rev. Mat. Iberoam. 35 (2019), 23–100.
[45] Y. Y. Li and J. Xiong, Compactness of conformal metrics with constant Q-curvature. I, Adv. Math. 345

(2019), 116–160.
[46] E. H. Lieb, Sharp constant in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983),

349–374.
[47] K. Liu, Q. Zhang, and W. Zou, On the stability of critical points of the Hardy-Littlewood-Sobolev inequality,

preprint, arXiv:2306.15862.
[48] M. Niu, Z. Tang, and N. Zhou, Compactness of solutions to higher-order elliptic equations, Int. Math. Res.

Not. IMRN (2023), 8703–8754.
[49] G. Palatucci and A. Pisante, A Global Compactness type result for Palais-Smale sequences in fractional Sobolev

spaces, Nonlinear Anal. 117 (2015), 1–7.
[50] T. H. Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), 595–633.
[51] T. H. Parker and J. G. Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993), 63–98.
[52] P. Piccione, M. Yang, and S. Zhao, Quantitative stability of a nonlocal Sobolev inequality, preprint,

arXiv:2306.16883.
[53] B. Premoselli, A priori estimates for finite-energy sign-changing blowing-up solutions of critical elliptic equa-

tions, Int. Math. Res. Not. IMRN (2024), 5212–5273.
[54] J. Qing and G. Tian, Bubbling of the heat flows for harmonic maps from surfaces, Comm. Pure Appl. Math.

50 (1997), 295–310.
[55] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,

J. Math. Pures Appl. 101 (2014), 275–302.
[56] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities,

Math. Z. 187 (1984), 511–517.
[57] J. Wei and Y. Wu, Stability of the Caffarelli-Kohn-Nirenberg inequality, Math. Ann. 384 (2022), 1509–1546.
[58] , Stability of the Caffarelli-Kohn-Nirenberg inequality along Felli-Schneider curve: Critical points at

infinity, preprint, arXiv:2407.19366.
[59] R. Yang, On higher order extensions for the fractional Laplacian, preprint, arXiv:1302.4413.



SHARP STABILITY ESTIMATES FOR FRACTIONAL SOBOLEV INEQUALITIES 37

(Haixia Chen) Department of Mathematics and Research Institute for Natural Sciences, College
of Natural Sciences, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic
of Korea

Email address: hxchen29@hanyang.ac.kr chenhaixia157@gmail.com

(Seunghyeok Kim) Department of Mathematics and Research Institute for Natural Sciences,
College of Natural Sciences, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763,
Republic of Korea, School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro
Dongdaemun-gu, Seoul 02455, Republic of Korea.

Email address: shkim0401@hanyang.ac.kr shkim0401@gmail.com

(Juncheng Wei) Department of Mathematics, Chinese University of Hong Kong, Shatin, NT, Hong
Kong

Email address: wei@math.cuhk.edu.hk


	1. Introduction
	2. The spectral inequality
	3. Quantitative stability estimate for dimension n 6s (1)
	4. Quantitative stability estimate for dimension n 6s (2)
	5. Quantitative stability estimate for dimension 2s < n < 6s
	Appendix A. Auxiliary results
	A.1. Non-degeneracy result
	A.2. Removability of singularity

	Appendix B. Technical computations
	B.1. Derivation of (4.37)
	B.2. Derivation of (4.40)
	B.3. Derivation of (4.41)

	References

