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Abstract

We study ground states of the N coupled fermionic quantum system with the
Coulomb potential V (x) in the L2-critical case, which admits a parameter a > 0 to
describe the attractive strength of the quantum particles. For any given N ∈ N+, we
prove that the system admits ground states, if and only if the attractive strength a
satisfies 0 < a < a∗N , where the critical constant 0 < a∗N <∞ is the same as the best
constant of a dual finite-rank Lieb-Thirring inequality. By developing the so-called
blow-up analysis of many-body fermionic systems, we also analyze the limiting mass
concentration behavior of ground states for the system as a↗ a∗N .
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1 Introduction

It is known (cf. [11, 13]) that a system of N identical quantum particles with spin s
(such as photons, electrons and neutrons) is usually described by an energy functional
of the corresponding N -body normalized wave functions Ψ ∈

⊗N
i=1 L

2(R3,C2s+1). In
this paper we study ground states of N spinless (i.e., s = 0) fermions with the Coulomb
potential in the L2-critical case, which can be described by (cf. [11]) the minimizers of
the following constraint variational problem

Ea(N) := inf
{
Ea(Ψ) : ‖Ψ‖22 = 1, Ψ ∈ ∧NL2(R3,C) ∩H1(R3N ,C)

}
, a > 0, (1.1)

where the energy functional Ea(Ψ) satisfies

Ea(Ψ) :=
N∑
i=1

∫
R3N

(
|∇xiΨ|2 −

K∑
k=1

1

|xi − yk|
|Ψ|2

)
dx1 · · · dxN − a

∫
R3

ρ
5
3
Ψ(x)dx. (1.2)

Here y1, y2, · · · , yK ∈ R3 are different from each other, the parameter a > 0 represents the
attractive strength of the quantum particles, ∧NL2(R3,C) is the subspace of L2(R3N ,C)
consisting of all antisymmetric wave functions, and the one-particle density ρΨ of Ψ is
defined as

ρΨ(x) := N

∫
R3(N−1)

|Ψ(x, x2 · · · , xN )|2dx2 · · · dxN .

We refer [4, 7, 11, 13] and the references therein for detailed physical motivations of the
variational problem (1.1).

Following the spectral theorem (see [7] and the references therein), we denote the
non-negative self-adjoint operator γ =

∑N
i=1 ni|ui〉〈ui| on L2(R3,C) by

γϕ(x) =
N∑
i=1

niui(x)(ϕ, ui)L2(R3,C), ∀ ϕ ∈ L2(R3,C), (1.3)

where both ni ≥ 0 and ui ∈ L2(R3,C) hold for i = 1, · · · , N . Moreover, we use

ργ(x) =
N∑
i=1

ni|ui(x)|2 (1.4)

to denote the corresponding density of γ. Similar argument of [1, Appendix A and
Lemma 2.3] then yields that the problem (1.1) can be reduced equivalently to the fol-
lowing form

Ea(N) = inf
{
Ea(γ) : γ =

N∑
i=1

|ui〉〈ui|, ui ∈ H1(R3,R),

(ui, uj)L2 = δij , i, j = 1, · · · , N
}
, a > 0, N ∈ N+,

(1.5)

where the energy functional Ea(γ) satisfies

Ea(γ) := Tr
(
−∆ + V (x)

)
γ − a

∫
R3

ρ
5
3
γ dx, (1.6)
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and the function V (x) ≤ 0 is the Coulomb potential of the form

V (x) := −
K∑
k=1

1

|x− yk|
(1.7)

containing different singular points y1, · · · , yK ∈ R3. Throughout the paper we focus on
the analysis of the variational problem Ea(N) defined in (1.5), instead of (1.1). As a
continuation of [1], which handles the L2−subcritical case of Ea(N), the main purpose
of the present paper is to analyze the limiting concentration behavior of minimizers for
Ea(N). As far as we know, this is the first work on investigating the limiting behavior
of ground states for L2-critical many-body fermionic systems.

For any given N ∈ N+, we now consider the following minimization problem

0 < a∗N := inf
{‖γ‖ 2

3 Tr(−∆γ)∫
R3 ρ

5/3
γ dx

: γ =

N∑
i=1

ni|ui〉〈ui| 6= 0,

ui ∈ H1(R3,C), (ui, uj)L2 = δij , ni ≥ 0
}
,

(1.8)

where ργ is as in (1.4), and ‖γ‖ > 0 denotes the norm of the operator γ. The proof
of [4, Theorem 6] gives essentially that for any N ∈ N+, the best constant a∗N ∈ (0,+∞)
of (1.8) is attained, and any minimizer γ(N) of a∗N can be written in the form

γ(N) = ‖γ(N)‖
RN∑
i=1

|Qi〉〈Qi|, (Qi, Qj) = δij for i, j = 1, · · · , RN , (1.9)

where the positive integer RN ∈ [1, N ], and the orthonormal family Q1, · · · , QRN solves
the following fermionic nonlinear Schrödinger system

[
−∆− 5

3
a∗N

( RN∑
j=1

|Qj |2
) 2

3
]
Qi = µ̂iQi in R3, i = 1, · · · , RN . (1.10)

Here µ̂1 < µ̂2 ≤ · · · ≤ µ̂RN < 0 are the RN first eigenvalues (counted with multiplicity)
of the operator

Ĥγ(N) := −∆− 5

3
a∗N

( RN∑
j=1

|Qj |2
) 2

3
in R3.

We note from Mathieu Lewin1 that any optimizer γ(N) of the problem (1.8) is essentially
a real-valued operator on L2(R3,R), see Lemma 2.2 below for more details. Moreover,
it was proved in [4, Proposition 11] that

a∗N > a∗2N holds for any N ∈ N+, (1.11)

and thus there exists an infinite sequence of integers N1 = 1 < N2 = 2 < N3 < · · · such
that

a∗Nm−1 > a∗Nm , m = 2, 3, 4, · · · , (1.12)

1Private communications.
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which further implies that any minimizer γ(Nm) of a∗Nm satisfying (1.12) must satisfy

Rank
(
γ(Nm)

)
= Nm. We also comment that the uniqueness of minimizers for a∗N is still

open for any N ≥ 2.
The minimization problem Ea(1) defined in (1.5) is essentially an L2-critical con-

straint variational problem, which was investigated widely over the past few years, start-
ing from the earlier work [8]. Moreover, we expect that for any N ∈ N+, the minimizers
of Ea(N) are connected with ground states of a fermionic nonlinear Schrödinger system,
in the sense that

Definition 1.1. (Ground states). A system (u1, · · · , uN ) ∈
(
H1(R3)

)N
with (ui, uj)L2

= δij is called a ground state of

HV ui :=
[
−∆ + V (x)− 5a

3

( N∑
j=1

|uj |2
) 2

3
]
ui = µiui in R3, i = 1, · · · , N, (1.13)

if it solves the system (1.13), where µ1 < µ2 ≤ · · · ≤ µN < 0 are the N first eigenvalues
(counted with multiplicity) of the operator HV .

1.1 Main results

The purpose of this subsection is to introduce the main results of the present paper.
Motivated by [4,8], in this paper we first prove the following existence and nonexistence
of minimizers for Ea(N).

Theorem 1.1. For any fixed N ∈ N+, suppose Ea(N) is defined in (1.5), and let
0 < a∗N <∞ be defined by (1.8). Then

1. If 0 < a < a∗N , then Ea(N) admits at least one minimizer. Moreover, any min-

imizer γ of Ea(N) can be written as γ =
∑N

i=1 |ui〉〈ui|, where (u1, · · · , uN ) is a
ground state of the following fermionic nonlinear Schrödinger system

HV ui :=
[
−∆ + V (x)− 5a

3

( N∑
j=1

u2
j

) 2
3
]
ui = µiui in R3, i = 1, · · · , N. (1.14)

Here the Coulomb potential V (x) ≤ 0 is as in (1.7), and µ1 < µ2 ≤ · · · ≤ µN < 0
are the N first eigenvalues, counted with multiplicity, of the operator HV in R3.

2. If a ≥ a∗N , then Ea(N) does not admit any minimizer, and Ea(N) = −∞.

We remark that for any fixed N ∈ N+, Theorem 1.1 provides a complete classification
on the existence and nonexistence of minimizers for Ea(N) in terms of a > 0. Moreover,
the proof of Theorem 1.1 implies that Theorem 1.1 can be naturally extended not only
to the general singular potential V (x) = −

∑K
k=1 |x − yk|−sk with 0 < sk < 2, but also

to the generally dimensional case Rd with d ≥ 3, if the exponent 5
3 in the last term of

(1.6) is replaced by 1 + 2
d . On the other hand, in order to prove Theorem 1.1, in Section

2 we shall derive the boundedness, monotonicity and some other analytical properties
of the energy Ea(N) in terms of N > 0 and a > 0. Furthermore, the existence proof
of Theorem 1.1 is based on an adaptation of the classical concentration compactness
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principle (cf. [14] [15, Section 3.3]). Towards this purpose, the key step is to prove in
Subsection 2.1 that the following strict inequality holds for any fixed 0 < λ < N ,

Ea(N) < Ea(λ), if Ea(λ) admits minimizers, (1.15)

where Ea(λ) is defined by (2.1) below, see (2.61) for more details.
By developing the so-called blow-up analysis of many-body fermionic systems, in the

following we focus on exploring the limiting concentration behavior of minimizers for
Ea(N) as a ↗ a∗N . For simplicity, we first address the particular case N = 2, where
a∗1 > a∗2 holds true in view of (1.11).

Theorem 1.2. Let γa =
∑2

i=1 |uai 〉〈uai | be a minimizer of Ea(2) for 0 < a < a∗2, where
the orthonormal system (ua1, u

a
2) is a ground state of (1.14). Then for any sequence {an}

satisfying an ↗ a∗2 as n → ∞, there exist a subsequence, still denoted by {an}, of {an}
and a point yk∗ ∈ {y1, · · · , yK} given by (1.7) such that

wani (x) : = ε
3
2
anu

an
i

(
εanx+ yk∗

)
→ wi(x) strongly in H1(R3) ∩ L∞(R3) as n→∞, i = 1, 2,

(1.16)

and

lim
n→∞

εanEan(2) = −
∫
R3

ρ5/3
γ dx, (1.17)

where εan := a∗2−an > 0, and γ :=
∑2

i=1 |wi〉〈wi| satisfying (wi, wj) = δij is an optimizer
of a∗2.

Remark 1.1. (1). As a byproduct of Theorem 1.2, we shall derive in (3.57) that the
following identities hold true:

1

a∗2
Tr
(
−∆γ

)
=

∫
R3

ρ5/3
γ dx =

1

2

∫
R3

|x|−1ργdx, (1.18)

where γ =
∑2

i=1 |wi〉〈wi| given by (1.16) is an optimizer of a∗2.
(2). The proof of Theorem 1.2 shows that Theorem 1.2 actually holds true for any

Ea(N), provided that 2 ≤ N ∈ N+ satisfies a∗N−1 > a∗N , see Remark 3.1 for more details.
(3). The L∞-uniform convergence (1.16) presents the following mass concentration

behavior of minimizers γan =
∑2

i=1 |u
an
i 〉〈u

an
i | for Ean(2) as an ↗ a∗2:

γan(x, y) ≈
(
a∗2 − an

)−3
γ
(x− yk∗
a∗2 − an

,
y − yk∗
a∗2 − an

)
as an ↗ a∗2, (1.19)

where γ(x, y) =
∑2

i=1wi(x)wi(y) denotes the integral kernel of γ, and yk∗ ∈ {y1, · · · , yK}
is as in Theorem 1.2. This implies that the mass of the minimizers for Ean(2) as an ↗ a∗2
concentrates at a global minimum point yk∗ ∈ {y1, · · · , yK} of the Coulomb potential
V (x) = −

∑K
k=1 |x − yk|−1. It is still interesting to further address the exact point yk∗

among the set {y1, · · · , yK}.
We now follow three steps to explain briefly the general strategy of proving Theorem

1.2:
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The first step of proving Theorem 1.2 is to derive the precise upper bound (3.16) of
the energy Ea(2) as a↗ a∗2, which further implies the estimates of Lemma 3.1. Due to
the orthonormal constrained conditions, it however seems difficult to borrow the existing
methods (e.g. [8]) of analyzing the L2−critical variational problems. In order to overcome
this difficulty, in Lemma 3.1 we shall construct a new type of test operators involved
with the complicated analysis.

As the second step of proving Theorem 1.2, we shall prove Lemma 3.2 on the H1-
uniform convergence of the sequence {wani }n as an ↗ a∗2 for i = 1, 2, where wani is defined
by

wani (x) := ε
3
2
anu

an
i

(
εanx+ yk∗

)
, εan := a∗2 − an > 0, (1.20)

and γan =
∑2

i=1 |u
an
i 〉〈u

an
i | is a minimizer of Ean(2). To reach this aim, in Section 3 we

shall apply the following finite-rank Lieb-Thirring inequality

L∗N

∫
R3

W
5
2 (x)dx ≥

N∑
i=1

∣∣λi(−∆−W (x))
∣∣, ∀ 0 ≤W (x) ∈ L

5
2 (R3)\{0}, (1.21)

where the best constant L∗N ∈ (0,+∞) is attainable (cf. [5, Corollary 2]), and λi
(
−∆−

W (x)
)
≤ 0 denotes the ith negative eigenvalue (counted with multiplicity) of −∆−W (x)

in L2(R3) when it exists, and zero otherwise. We point out that by proving

a∗N
(
L∗N
) 2

3 =
3

5

(2

5

) 2
3
, (1.22)

it was addressed in [3–5] that the corresponding inequality of (1.8) is dual to the finite
rank Lieb-Thirring inequality (1.21). Applying the energy estimates of the first step, to-
gether with the above dual relationship and the strict inequality a∗1 > a∗2, we shall prove

the crucial L
5
3 -uniform convergence of the density sequence {ρn} :=

{∑2
i=1 |w

an
i |2

}
as

an ↗ a∗2. Since any minimizer γ(2) of a∗2 satisfies γ(2) = ‖γ(2)‖
∑2

i=1 |Qi〉〈Qi| with
(Qi, Qj) = δij , in Lemma 3.2 we are then able to establish finally the H1-uniform con-
vergence of {wani }n as an ↗ a∗2.

The third step of proving Theorem 1.2 is to establish the energy estimate (1.17) and
the L∞-uniform convergence of {wani }n as an ↗ a∗2. Actually, employing the energy

estimates and the L
5
3 -uniform convergence of the previous two steps, we can analyze the

exact leading term of Ean(2) as an ↗ a∗2, which then helps us prove the energy limit
(1.17). On the other hand, to prove the L∞-uniform convergence of {wani }n, we shall
prove the following uniformly exponential decay(

|wan1 (x)|2 + |wan2 (x)|2
)
≤ C(θ)e−θ|x| uniformly in R3 as n→∞, (1.23)

where the constants θ > 0 and C(θ) > 0 are independent of n > 0, see Lemma 3.3 for
more details. Unfortunately, the exponential decay (1.23) cannot be established by the
standard comparison principle, due to the singularity of the Coulomb potential V (x).
For this reason, we shall prove (1.23) by employing Green’s functions. The complete
proof of Theorem 1.2 is given in Section 3.

In order to discuss the general case of Ea(N), we next analyze the limiting concen-
tration behavior of minimizers for Ea(3) as a ↗ a∗3, where a∗1 > a∗2 ≥ a∗3 holds true in
view of (1.8) and (1.11).
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Theorem 1.3. Let γa =
∑3

i=1 |uai 〉〈uai | be a minimizer of Ea(3) for 0 < a < a∗3, where
the orthonormal system (ua1, u

a
2, u

a
3) is a ground state of (1.14). Then for any sequence

{an} satisfying an ↗ a∗3 as n → ∞, there exist a subsequence, still denoted by {an}, of
{an} and a point yk∗ ∈ {y1, · · · , yK} given by (1.7) such that

wani (x) := ε
3
2
anu

an
i

(
εanx+yk∗

)
→ wi strongly in L∞(R3) as n→∞, i = 1, 2, 3, (1.24)

where εan := a∗3 − an > 0, and γ :=
∑3

i=1 |wi〉〈wi| is an optimizer of a∗3. Furthermore,
we have

1. If either a∗2 > a∗3, or a∗2 = a∗3 and Rank(γ) = 3, then (wi, wj) = δij holds for
i, j = 1, 2, 3.

2. If a∗2 = a∗3 and Rank(γ) = 2, then (wi, wj) = δij holds for i, j = 1, 2, and w3(x) ≡ 0
in R3.

Remark 1.2. (1). As for Theorem 1.3 (1), the similar proof of Theorem 1.2 can further
yield the H1-strong convergence of {wani } defined in (1.24) as n→∞, where i = 1, 2, 3.

(2). We expect that the argument of Theorem 1.3 can further yield the following
general results: For any given N ≥ 3, if γan =

∑N
i=1 |u

an
i 〉〈u

an
i | is a minimizer of Ean(N),

where the orthonormal system (ua1, · · · , uaN ) is a ground state of (1.14) and an ↗ a∗N as

n→∞, then there exist a point yk∗ ∈ {y1, · · · , yK} and a minimizer γ :=
∑N

i=1 |wi〉〈wi|
of a∗N such that, up to a subsequence if necessary,

wani (x) := ε
3
2
anu

an
i

(
εanx+ yk∗

)
→ wi strongly in L∞(R3) as n→∞ (1.25)

holds for i = 1, 2, · · · , N , where Rank(γ) = dim
(
span{w1, · · · , wN}

)
:= RN ∈ [2, N ],

and wRN+1(x) ≡ · · · ≡ wN (x) ≡ 0 in R3.

We next explain, totally by five steps, the general strategy of proving Theorem 1.3,
which can be summarized as the blow-up analysis of many-body fermionic systems. The
first three steps of proving Theorem 1.3 are similar to those of proving Theorem 1.2,
which then yield the L∞-uniform convergence of (1.24) in view of (1.11). Moreover,
since Theorem 1.3 (1) focuses essentially on the cases where dim span{wan1 , wan2 , wan3 } =
dim span{w1, w2, w3}, and

∑3
i=1 |wi〉〈wi| is an optimizer of a∗3, where wi is as in (1.24),

the above analysis procedure also yields that (wi, wj) = δij , i, j = 1, 2, 3, holds in this
case. This proves Theorem 1.3 (1).

Since Theorem 1.3 (2) is concerned with the case where a∗2 = a∗3 and Rank(γ) = 2,
we first note that

3 = dim span
{
wan1 , wan2 , wan3

}
> dim span{w1, w2, w3} = 2, (1.26)

where wi is given by (1.24), and γ :=
∑3

i=1 |wi〉〈wi| is an optimizer of a∗3. This implies
that there exist two different cases:

either wi 6≡ 0 holds for all i = 1, 2, 3, (1.27)

or there exists exactly one i∗ ∈ {1, 2, 3} such that wi∗ ≡ 0 in R3. (1.28)

7



The fourth step of proving Theorem 1.3 is to exclude the above case (1.27). Actually,
similar to the proof of Theorem 1.2, one can establish the following convergence:

3∑
i=1

|wani |
2 →

3∑
i=1

w2
i strongly in L

5
3 (R3) as n→∞, (1.29)

where wani is as in (1.24) and satisfies

−∆wani + ε2anV
(
εanx+ yk∗

)
wani −

5

3
an

( 3∑
j=1

|wanj |
2
) 2

3
wani = ε2anµ

an
i w

an
i in R3, (1.30)

and µan1 < µan2 ≤ µan3 < 0. Following the facts that
∫
R3 w

an
1 wani dx = 0 for i = 2, 3, we

shall prove in (4.20) that for the case (1.27),

w1 and wi are linearly independent for i = 2, 3, (1.31)

which further yields from (1.26) that w2 and w3 are linearly dependent. On the other

hand, since the first eigenvalue of the operator −∆ − 5
3a
∗
3

(∑3
j=1w

2
j

) 2
3

in R3 is simple,

and
∑3

i=1 |wi〉〈wi| is an optimizer of a∗3, we shall prove that once w2 and w3 are linearly
dependent, then

−∞ < lim
n→∞

ε2anµ
an
2 = lim

n→∞
ε2anµ

an
3 < 0. (1.32)

However, the same argument of (1.31) gives from (1.32) that w2 and w3 are linearly
independent, a contradiction. This finishes the fourth step of proving Theorem 1.3.

The fifth step of proving Theorem 1.3 is to complete the proof of Theorem 1.3 (2).
Since it necessarily has (1.28) in view of the previous step, the challenging point of this
step is to further show that w1(x) 6≡ 0 and w2(x) 6≡ 0 in R3. We shall prove this result as
follows. Similar to the proof of Theorem 1.2, one can establish the following convergence:

|∇wani | → |∇wi| strongly in L2(R3) as n→∞, i = 1, 2, 3. (1.33)

By contradiction, we next suppose that wi∗(x) ≡ 0 in R3 for some i∗ ∈ {1, 2}. By
deriving some energy estimates of uani and µani as n → ∞, we shall derive from (1.24),
(1.29), (1.30) and (1.33) that

lim
n→∞

3∑
i=1

ε2anµ
an
i = lim

n→∞

3∑
i 6=i∗

ε2anµ
an
i , lim

n→∞
ε2anµ

an
i∗
< 0, (1.34)

a contradiction, which yields that wi∗(x) 6≡ 0 in R3 for any i∗ ∈ {1, 2}. This completes
the proof of Theorem 1.3 (2). For the detailed proof of Theorem 1.3, we refer the reader
to Section 4.

This paper is organized as follows. Section 2 is devoted to the proof of Theorem
1.1 on the existence and nonexistence of minimizers for Ea(N). In Section 3, we shall
address Theorem 1.2 on the limiting concentration behavior of minimizers for Ea(2) as
a ↗ a∗2. The proof of Theorem 1.3 is given in Section 4, which is concerned with the
limiting concentration behavior of minimizers for Ea(N) in the case N = 3.
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2 Existence of Minimizers for Ea(N)

In this section, we mainly prove Theorem 1.1 on the existence and nonexistence of
minimizers for Ea(N) defined by (1.5), where N ∈ N+ is arbitrary. Towards this purpose,
we need to introduce the following general minimization problem

Ea(λ) := inf
{
Ea(γ) : γ =

N ′∑
i=1

|ui〉〈ui|+ (λ−N ′)|uN ′〉〈uN ′ |,

ui ∈ H1(R3,R), (ui, uj)L2 = δij , i, j = 1, · · · , N ′
}
, a > 0, λ > 0, (2.1)

where the energy functional Ea(γ) is defined by (1.6), and N ′ is the smallest integer such
that λ ≤ N ′. One can note that when λ = N ′ ∈ N+, (2.1) coincides with Ea(N

′) defined
in (1.5).

We first address the analytical properties of Ea(λ). Denoting B
(
L2(R3)

)
the set of

bounded linear operators on L2(R3), we then have the following equivalence of Ea(λ).

Lemma 2.1. Suppose the problem Ea(λ) is defined by (2.1) for a > 0 and λ > 0. Then
we have

Ea(λ) = inf
γ′∈Kλ

Ea(γ′), (2.2)

where the functional Eα(γ′) is as in (1.6), and Kλ is defined by

Kλ =
{
γ′ ∈ B

(
L2(R3)

)
: 0 ≤ γ′ = (γ′)∗ ≤ 1, Tr(γ′) = λ, Tr(−∆γ′) <∞

}
. (2.3)

Moreover, if inf
γ′∈Kλ

Ea(γ′) admits minimizers, then Ea(λ) also admits minimizers.

Since Lemma 2.1 can be proved by a similar approach of [7, Lemma 11] and [1, Lemma
2.3], we omit the detailed proof for simplicity. The following lemma, whose proof is due
to Mathieu Lewin, shows that even though the minimization problem (1.8) is defined in
the complex-valued range, it is essentially attained by the real-valued operators.

Lemma 2.2. For any N ∈ N+, suppose γ(N) is an optimizer of the problem (1.8). Then
we have γ(N) ∈ B(L2(R3,R)).

Proof. For any N ∈ N+, since γ(N) is an optimizer of the problem (1.8), we obtain
from [4, Theorem 6] that γ(N) = ‖γ(N)‖

∑RN
j=1 |Qj〉〈Qj | holds for some positive integer

RN ∈ [1, N ], where the orthonormal family Q1, · · · , QRN ∈ H1(R3,C) satisfies

Hγ(N)Qk :=
[
−∆− 5

3
a∗N

( RN∑
j=1

|Qj |2
) 2

3
]
Qk = µ̂kQk in R3, k = 1, · · · , RN . (2.4)

Here µ̂1 < µ̂2 ≤ · · · ≤ µ̂RN < 0 are the RN first eigenvalues (counted with multiplicity)
of the operator Hγ(N) in R3. In order to establish Lemma 2.2, we only need to prove
that for any j ∈ {1, · · · , RN},

either Re(Qj) ≡ 0 in R3, or Im(Qj) ≡ 0 in R3. (2.5)

We next address (2.5) as follows.
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If RN < N , then it follows from [4, Theorem 6 (ii)] that the operator Hγ(N) in R3

has exactly RN negative eigenvalues, counted with multiplicity. This thus implies from
(2.4) that

dim
( RN⋃
k=1

ker
(
Hγ(N) − µ̂kI

))
= RN , (2.6)

where I denotes the identity operator on L2(R3,C). On the contrary, suppose (2.5) is
false. Then there exists some k∗ ∈ {1, · · · , RN} such that Qk∗ = Q1k∗ + iQ2k∗ holds,
where Q1k∗ , Q2k∗ ∈ H1(R3,R)\{0}. We thus deduce from (2.4) that Q1k∗ is also an
eigenfunction associated to µ̂k∗ , where Q1k∗ and Qk are linear independent for any k ∈
{1, · · · , RN}. This further implies that dim

(⋃RN
k=1 ker

(
Hγ(N) − µ̂kI

))
> RN , which

however contradicts with (2.6). Therefore, (2.5) holds true for the case where RN < N .
If RN = N , we denote by µ̂N+1 to be the (N + 1)th min-max level of the operator

Hγ(N) in R3. Note from [4, Theorem 6 (ii)] that the function 5
3a
∗
N

(∑N
j=1 |Qj |2

)2/3
is an

optimizer of the Lieb-Thirring inequality (1.21). We then deduce from [5, Theorem 3]
that µ̂N < µ̂N+1, where µ̂N is the Nth negative eigenvalue (counted with multiplicity)
of Hγ(N) in R3. This further yields that (2.6) holds true for RN = N . Thus, the same
argument as before also gives that (2.5) holds true for the case where RN = N . This
therefore completes the proof of Lemma 2.2.

Applying the equivalent version (2.2) of Ea(λ), one can obtain the following properties
of Ea(λ).

Lemma 2.3. For any fixed N ∈ N+, suppose the constant 0 < a∗N < ∞ is defined by
(1.8). Then the energy Ea(λ) defined in (2.1) admits the following properties:

1. If 0 < a < a∗N , then −∞ < Ea(λ) < 0 holds for all λ ∈ (0, N ].

2. If 0 < a ≤ a∗N , then Ea(λ) is decreasing in λ ∈ (0, N ].

3. If a ≥ a∗N , then Ea(N) = −∞.

Proof. 1. For λ ∈ (0, N ], set

γ :=

N ′∑
i=1

|ui〉〈ui|+ (λ−N ′)|uN ′〉〈uN ′ |, ui ∈ H1(R3), (ui, uj)L2 = δij , (2.7)

where N ′ is the smallest integer such that λ ≤ N ′. Since λ ∈ (0, N ], we have N ′ ≤ N .
By the definition of a∗N defined in (1.8), we then get from Lemma 2.2 that

Tr(−∆γ) ≥ ‖γ‖
2
3 Tr(−∆γ) ≥ a∗N

∫
R3

ρ
5
3
γ dx, (2.8)

where ργ , representing the density of γ, is defined by (1.4). By Hardy’s inequality, we
have

|x|−1 ≤ ε
(
−∆

)
+ 4ε−1, where ε > 0 is arbitrary. (2.9)

It then yields that

V (x) = −
K∑
k=1

|x− yk|−1 ≥ −εK(−∆)− 4ε−1K holds for any ε > 0. (2.10)
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For simplicity, we denote n1 = · · · = nN ′−1 = 1 and nN ′ = λ−N ′ + 1, so that

γ =

N ′∑
i=1

ni|ui〉〈ui|, ργ =

N ′∑
i=1

niu
2
i . (2.11)

By the definitions of (1.3) and Trace, it then follows from (2.10) that

Tr
(
−∆ + V (x)

)
γ =

N ′∑
i=1

ni

((
−∆ + V (x)

)
ui, ui

)

≥ (1− εK)
N ′∑
i=1

ni
(
−∆ui, ui

)
− 4ε−1K

N ′∑
i=1

ni(ui, ui)

= (1− εK)Tr(−∆γ)− 4ε−1Kλ, ε > 0.

(2.12)

For 0 ≤ a < a∗N , taking ε > 0 so that εK = 1
2

(
1− a

a∗N

)
> 0, we further obtain from (2.8)

and (2.12) that

Ea(γ) =Tr
(
−∆ + V (x)

)
γ − a

∫
R3

ρ
5
3
γ dx

≥ (1− εK)Tr(−∆γ)− a

a∗N
Tr(−∆γ)− 4ε−1Kλ

=
1

2

(
1− a

a∗N

)
Tr(−∆γ)−

8λK2a∗N
a∗N − a

≥ −
8λK2a∗N
a∗N − a

.

(2.13)

Since γ is arbitrary, we obtain from (2.13) that Ea(λ) > −∞ holds for any 0 < λ ≤ N
and 0 ≤ a < a∗N .

Associated to (2.7), we define

γt :=

N ′∑
i=1

t3|ui(t·)〉〈ui(t·)|+ (λ−N ′)t3|uN ′(t·)〉〈uN ′(t·)|, t > 0. (2.14)

Similar to the first identity of (2.12), one can calculate from (1.7) that

Ea(γt) = t2Tr(−∆γ)− at2
∫
R3

ρ
5
3
γ dx− t

K∑
k=1

∫
R3

|x− tyk|−1ργdx, (2.15)

where γ and ργ are as in (2.11). Since

lim
t→0

∫
R3

|x− tyk|−1ργdx =

∫
R3

|x|−1ργdx > 0, k = 1, · · · ,K,

we obtain from (2.15) that if 0 ≤ a < a∗N and 0 < λ ≤ N , then Ea(γt) < 0 holds for
sufficiently small t > 0. This further implies that Ea(λ) < 0 holds for any 0 ≤ a < a∗N
and 0 < λ ≤ N .

2. For any given 0 < λ1 < λ ≤ N , consider any operators γ1 and γ2 satisfying the
following constraint conditions

γ1 :=

N1∑
i=1

|ϕi〉〈ϕi|+ (λ1 −N1)|ϕN1〉〈ϕN1 |, ϕi ∈ H1(R3),

(ϕi, ϕi′)L2 = δii′ , i, i′ = 1, 2, · · · , N1,

(2.16)
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γ2 :=

N2∑
j=1

|ψj〉〈ψj |+ (λ− λ1 −N2)|ψN2〉〈ψN2 |, ψj ∈ H1(R3),

(ψj , ψj′)L2 = δjj′ , j, j′ = 1, 2, · · · , N2,

(2.17)

where N1, N2 ∈ N+ are the smallest integers such that λ1 ≤ N1 and λ − λ1 ≤ N2,
respectively. For any fixed τ > 0, we define

ψτj (x) := ψj(x− τe1), j = 1, · · · , N2, e1 = (1, 0, 0),

and consider the Gram matrix Gτ of the family ϕ1, · · · , ϕN1 , ψ
τ
1 , · · · , ψτN2

, i.e.,

Gτ :=

(
IN1 Aτ

A∗τ IN2

)
, Aτ = (aτij)N1×N2 , aτij = (ϕi, ψ

τ
j ), (2.18)

where INi denotes the Ni-order identity matrix.
Since

aτ := max
i,j
|(ϕi, ψτj )| = o(1) as τ →∞, (2.19)

it yields that Gτ is positive definite for sufficiently large τ > 0. Hence, the identity

IN1+N2 = G
− 1

2
τ

(
IN1 Aτ

A∗τ IN2

)
G
− 1

2
τ (2.20)

holds for sufficiently large τ > 0. We next set

(ϕ̃τ1 , · · · , ϕ̃τN1
, ψ̃τ1 , · · · , ψ̃τN2

) := (ϕ1, · · · , ϕN1 , ψ
τ
1 , · · · , ψτN2

)G
− 1

2
τ , τ > 0, (2.21)

and

γτ :=

N1∑
i=1

|ϕ̃τi 〉〈ϕ̃τi |+ (λ1 −N1)|ϕ̃τN1
〉〈ϕ̃τN1

|

+

N2∑
j=1

|ψ̃τj 〉〈ψ̃τj |+ (λ− λ1 −N2)|ψ̃τN2
〉〈ψ̃τN2

|, τ > 0.

(2.22)

It then follows from (2.20) that the system (ϕ̃τ1 , · · · , ϕ̃τN1
, ψ̃τ1 , · · · , ψ̃τN2

) is an orthonormal
family in L2(R3) for sufficiently large τ > 0, and hence γτ ∈ Kλ defined by (2.3) holds
for sufficiently large τ > 0.

We now calculate Ea(γτ ) as τ →∞. Since it follows from (2.18) and (2.19) that

G
− 1

2
τ =

(
IN1 0

0 IN2

)
− 1

2

(
0 Aτ

A∗τ 0

)
+O(a2

τ ) as τ →∞, (2.23)

one can calculate from (2.21) and (2.22) that

γτ = γ1 + γτ2 −
N1∑
i=1

N2∑
j=1

aτij
(
|ϕi〉〈ψτj |+ |ψτj 〉〈ϕi|

)
12



− 1

2
(λ1 −N1)

N2∑
j=1

aτN1j

(
|ϕN1〉〈ψτj |+ |ψτj 〉〈ϕN1 |

)
(2.24)

− 1

2
(λ− λ1 −N2)

N1∑
i=1

aτiN2

(
|ϕi〉〈ψτN2

|+ |ψτN2
〉〈ϕi|

)
+O(a2

τ ) as τ →∞,

where γ1 is as in (2.16), and γτ2 =
∑N2

j=1 |ψτj 〉〈ψτj | + (λ − λ1 − N2)|ψτN2
〉〈ψτN2

|. We thus
deduce from (2.19) that

Tr(−∆γτ ) = Tr(−∆γ1) + Tr(−∆γ2) + o(1) as τ →∞, (2.25)

and ∫
R3

∣∣ργτ − ργ1 − ργ2(x− τe1)
∣∣dx = o(1) as τ →∞, (2.26)

where ργ2(x−τe1) = ργτ2 (x). Recall (cf. [10]) the following Hoffmann-Ostenhof inequality

Tr(−∆γτ ) ≥
∫
R3

|∇√ργτ |2dx. (2.27)

Applying Sobolev’s embedding theorem, we then get from (2.25) that {ργτ } is bounded
uniformly in Lr(R3) for all r ∈ [1, 3] as τ → ∞. Combining this with (2.26), one can
deduce from the interpolation inequality that

ργτ (x)− ργ1(x)− ργ2(x− τe1)→ 0 strongly in Lr(R3) as τ →∞, r ∈ [1, 3),

which further implies from (1.7) that

lim
τ→∞

∫
R3

V (x)ργτdx = lim
τ→∞

∫
R3

V (x)
(
ργ1(x) + ργ2(x− τe1)

)
dx

=

∫
R3

V (x)ργ1dx,

(2.28)

and

lim
τ→∞

∫
R3

ρ
5
3
γτdx = lim

τ→∞

∫
R3

(
ργ1(x) + ργ2(x− τe1)

) 5
3
dx

=

∫
R3

(
ρ

5
3
γ1 + ρ

5
3
γ2

)
dx.

(2.29)

Applying Lemma 2.1, we now conclude from (2.25), (2.28) and (2.29) that

Ea(λ) = inf
γ′∈Kλ

Ea(γ′) ≤ lim
τ→∞

Ea(γτ )

= Ea(γ1) + Tr(−∆γ2)− a
∫
R3

ρ
5
3
γ2dx.

(2.30)

Since γ1 and γ2 are arbitrary, the above inequality further implies that

Ea(λ)
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≤Ea(λ1) + inf
{

Tr(−∆γ)− a
∫
R3

ρ
5
3
γ dx : γ =

N2∑
i=1

|ui〉〈ui|+ (λ− λ1 −N2)|uN2〉〈uN2 |,

ui ∈ H1(R3), (ui, uj)L2 = δij , i, j = 1, · · · , N2

}
:=Ea(λ1) + E∞a (λ− λ1) (2.31)

holds for any 0 < λ1 < λ ≤ N .
For fixed 0 ≤ a ≤ a∗N , it then follows from (1.8) that E∞a (λ − λ1) ≥ 0. Similar to

(2.14) and (2.15), where γt is replaced by (γ2)t, we obtain that

E∞a (λ− λ1) ≤ lim
t→0

t2
(

Tr(−∆γ2)− a
∫
R3

ρ
5
3
γ2dx

)
= 0, 0 < λ1 < λ ≤ N,

and hence E∞a (λ − λ1) = 0. Together with (2.31), this shows that if 0 ≤ a ≤ a∗N , then
Ea(λ) ≤ Ea(λ1) holds for any 0 < λ1 < λ ≤ N . Therefore, if 0 ≤ a ≤ a∗N , then Ea(λ) is
decreasing in λ ∈ (0, N ].

3. Following (1.9), let γ(N) =
∑RN

i=1 |Qi〉〈Qi| be a minimizer of a∗N , where N ≥ RN ∈
N+, and the system (Q1, · · · , QRN ) satisfies (Qi, Qj) = δij . Since the above analysis
gives that Ea∗N (λ) is decreasing in λ ∈ (0, N ], we have

Ea∗N (N) ≤ Ea∗N (RN ) ≤ lim
t→∞
Ea∗N

(
γ

(N)
t

)
≤ − lim

t→∞
t

∫
R3

|x|−1ργ(N)dx = −∞,

where

γ
(N)
t :=

RN∑
i=1

t3
∣∣Qi(t(· − y1)

)
〉〈Qi

(
t(· − y1)

)∣∣,
and y1 ∈ R3 is given in (1.7). By the definition of Ea(N), we then deduce from above
that

Ea(N) ≤ Ea∗N (N) ≤ −∞, ∀ a ≥ a∗N ,

which completes the proof of Lemma 2.3.

Remark 2.1. Consider any fixed N ≥ 2, so that 0 < a∗N < a∗1 holds in view of [4]: If a > 0
satisfies (a∗N <)a < a∗1, then it follows from Lemma 2.3 (1) that −∞ < Ea(λ) < 0 holds
for λ = 1 < N ; If a > 0 satisfies a > a∗1 > a∗N , then it follows from Lemma 2.3 (3) that
Ea(λ) = −∞ holds for λ = 1 < N . On the other hand, consider N = 3 and let a > 0 be
fixed so that a∗3 ≤ a∗2 < a < a∗1: We obtain from Lemma 2.3 (1) that −∞ < Ea(λ) < 0
holds for any 0 < λ ≤ 1 < N ; it however follows from Lemma 2.3 (3) that Ea(λ) = −∞
holds for λ = 2 < N . These examples show that for any given N ∈ N+, if a ≥ a∗N
and λ ∈ (0, N), then Ea(λ) can be either bounded or unbounded, which depends on the
exact values of a and λ ∈ (0, N).

Applying Lemmas 2.1 and 2.3, one can obtain the following analytical properties of
minimizers for Ea(λ).

Lemma 2.4. For any fixed N ∈ N+, let Ea(λ) be defined by (2.1), where a ∈
(
0, a∗N

)
,

λ ∈ (0, N ], and V (x) < 0 is as in (1.7). Suppose γ is a minimizer of Ea(λ). Then we
have
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1. The minimizer γ can be written as γ =
∑N ′

i=1 |ui〉〈ui|+ (λ−N ′)|uN ′〉〈uN ′ |, where
N ′ denotes the smallest integer such that λ ≤ N ′, and (u1, · · · , uN ′) is a ground
state of the following system[
−∆ + V (x)− 5

3
a
( N ′∑
j=1

u2
j + (λ−N ′)u2

N ′

) 2
3
]
ui = µiui in R3, i = 1, · · · , N ′.

Here µ1 < µ2 ≤ · · · ≤ µN ′ < 0 are the N ′ first eigenvalues, counted with multiplic-
ity, of the operator

HV := −∆ + V (x)− 5

3
a
( N ′∑
j=1

u2
j + (λ−N ′)u2

N ′

) 2
3

in R3.

2. (u1, · · · , uN ′) decays exponentially in the sense that

C−1(1 + |x|)−1e−
√
|µ1||x| ≤ u1(x) ≤ C(1 + |x|)

K√
|µ1|
−1
e−
√
|µ1||x| in R3, (2.32)

and

|ui(x)| ≤ C(1 + |x|)
K√
|µi|
−1
e−
√
|µi||x| in R3, i = 2, · · · , N ′, (2.33)

where the constant K > 0 is as in (1.7), and C > 0 depends on ‖ργ‖L3(R3).

Since the proof of Lemma 2.4 is similar to that of [1, Lemma 2.3], we omit the details
for simplicity.

2.1 Proof of Theorem 1.1

This subsection is devoted to the proof of Theorem 1.1, for which we shall make full use
of Lemmas 2.3 and 2.4.

Proof of Theorem 1.1. In view of Lemmas 2.3 and 2.4, we only need to prove the
existence of minimizers for Ea(N), where N ∈ N+ and 0 < a < a∗N .

Consider any fixed N ∈ N+ and 0 < a < a∗N . It follows from Lemma 2.3 that Ea(N)

is finite. Let {γn} be a minimizing sequence of Ea(N) with γn =
∑N

i=1 |uni 〉〈uni |, where
(uni , u

n
j )L2 = δij , i, j = 1, 2, · · · , N . The inequality (2.13) yields that the sequence

{
Tr(−∆γn)

}
=
{ N∑
i=1

∫
R3

|∇uni |2dx
}

is bounded uniformly in n, and thus {uni }∞n=1 is bounded uniformly in H1(R3) for all
i = 1, · · · , N . Hence, one can assume that, up to a subsequence if necessary, there exists
ui ∈ H1(R3) such that

uni ⇀ ui weakly in H1(R3) as n→∞, i = 1, · · · , N, (2.34)

and

ργn =
N∑
i=1

|uni |2 → ργ :=
N∑
i=1

u2
i strongly in Lrloc(R3) as n→∞, 1 ≤ r < 3, (2.35)
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where γ =
∑N

i=1 |ui〉〈ui|.
We first claim that if

ργn → ργ strongly in L1(R3) as n→∞, (2.36)

then γ is a minimizer of Ea(N). Actually, using the weak lower semicontinuity, together
with the fact that (uni , u

n
j ) = δij , i, j = 1, · · · , N , we deduce from (2.36) that

uni → ui strongly in L2(R3) as n→∞, and (ui, uj) = δij , i, j = 1, · · · , N, (2.37)

which yields that

Ea(γ) ≥ Ea(N), where γ =

N∑
i=1

|ui〉〈ui|.

Using the interpolation inequality and the boundedness of {ργn} in L3(R3), we derive
from (2.36) that

ργn → ργ strongly in Lr(R3) as n→∞, 1 ≤ r < 3.

Therefore, we have

Ea(N) = lim inf
n→∞

Ea(γn)

≥ Tr(−∆γ) +

∫
R3

V (x)ργdx− a
∫
R3

ρ
5
3
γ dx

= Ea(γ) ≥ Ea(N),

which implies that γ is a minimizer of Ea(N).
As a consequence, in order to prove Theorem 1.1, the rest is to prove (2.36). Applying

the Brézis-Lieb Lemma (cf. [17]), we note from (2.34) that if
∫
R3 ργdx = N , then (2.36)

holds true. Therefore, the rest proof of Theorem 1.1 is to prove by two steps that the
case λ :=

∫
R3 ργdx ∈ [0, N) cannot occur. We shall denote ρn := ργn for convenience.

Step 1. We first prove that the case λ :=
∫
R3 ργdx = 0 cannot occur. On the contrary,

suppose λ = 0. It then follows from (2.35) that

lim
n→∞

∫
R3

V (x)ρndx = −
K∑
k=1

lim
n→∞

∫
R3

|x− yk|−1ρndx = 0.

We thus get from (1.8) that

Ea(N) = lim
n→∞

Ea(γn)

= lim
n→∞

[
Tr(−∆γn)− a

∫
R3

ρ
5
3
ndx

]
+ lim
n→∞

∫
R3

V (x)ρndx

≥
(

1− a

a∗N

)
lim inf
n→∞

Tr(−∆γn) ≥ 0,

which however contradicts with Lemma 2.3 (1). Thus, the case λ = 0 cannot occur.
Step 2. We next prove that the case 0 < λ :=

∫
R3 ργdx < N cannot occur, either.

By contradiction, suppose 0 <
∫
R3 ργdx = λ < N . By an adaptation of the classical
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dichotomy result (cf. [15, Section 3.3]), up to a subsequence of {ρn} if necessary, then
there exists a sequence {Rn} with Rn →∞ as n→∞ such that

0 < lim
n→∞

∫
|x|≤Rn

ρndx =

∫
R3

ργdx < N, lim
n→∞

∫
Rn≤|x|≤6Rn

ρndx = 0. (2.38)

Choose χ ∈ C∞0 (R3, [0, 1]) satisfying χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2, and

define χRn(x) := χ(x/Rn), ηRn(x) :=
√

1− χ2
Rn

(x),

u1n
i := χRnu

n
i , u2n

i := ηRnu
n
i , i = 1, · · · , N, (2.39)

and

γ1n :=
N∑
i=1

|u1n
i 〉〈u1n

i |, γ2n :=
N∑
i=1

|u2n
i 〉〈u2n

i |. (2.40)

We now follow above to estimate the energy Ea(γn) as n → ∞. It is easy to verify
from (2.34) and (2.39) that

u1n
i ⇀ ui weakly in H1(R3) as n→∞, i = 1, · · · , N. (2.41)

Using the weak lower semicontinuity of norm, together with the Brézis-Lieb Lemma
(cf. [17]), one can deduce from (2.38) and (2.41) that

lim inf
n→∞

Tr(−∆γ1n) ≥ Tr(−∆γ), (2.42)

and
ρ1n := ργ1n → ργ strongly in L1(R3) as n→∞. (2.43)

Moreover, we have
ρn = χ2

Rnρn + η2
Rnχ

2
3Rnρn + η2

3Rnρn, (2.44)

and
η2
Rnχ

2
3Rnρn → 0 strongly in L1(R3) as n→∞, (2.45)

due to the estimate (2.38). Following the uniform boundedness of {ρn} in L1(R3) ∩
L3(R3), we derive from (2.43) and (2.45) that

ρ1n := ργ1n → ργ , η2
Rnχ

2
3Rnρn → 0 strongly in Lr(R3) as n→∞, r ∈ [1, 3). (2.46)

We thus obtain from (2.44) and (2.46) that for ρ2n := ργ2n ,∫
R3

V (x)ρndx =

∫
R3

V (x)ρ1ndx+

∫
R3

V (x)ρ2ndx

=

∫
R3

V (x)ργdx+ o(1) as n→∞,
(2.47)

and ∫
R3

ρ
5
3
ndx =

∫
R3

(
χ2
Rnρn + η2

3Rnρn
) 5

3 dx+ o(1)

=

∫
R3

[ (
χ2
Rnρn

) 5
3 +

(
η2

3Rnρn
) 5

3

]
dx+ o(1)

=

∫
R3

[ (
χ2
Rnρn

) 5
3 +

(
η2
Rnχ

2
3Rnρn + η2

3Rnρn
) 5

3

]
dx+ o(1)

=

∫
R3

(
ρ

5
3
γ + ρ

5
3
2n

)
dx+ o(1) as n→∞.

(2.48)
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Since it follows from [2, Theorem 3.1] that

−∆ = χRn(−∆)χRn + ηRn(−∆)ηRn − |∇χRn |2 − |∇ηRn |2,

we have

Tr(−∆γn) = Tr(−∆γ1n) + Tr(−∆γ2n)−
∫
R3

(|∇χRn |2 + |∇ηRn |2)ρndx

≥ Tr(−∆γ1n) + Tr(−∆γ2n)− CR−2
n N,

(2.49)

where C > 0 is independent of n > 0. We therefore conclude from (2.42) and (2.47)–
(2.49) that

Ea(N) = lim
n→∞

Ea(γn) ≥ Ea(γ) + lim inf
n→∞

(
Tr(−∆γ2n)− a

∫
R3

ρ
5
3
2ndx

)
. (2.50)

Note from (2.35) that γ =
∑N

i=1 |ui〉〈ui| ∈ Kλ, where λ =
∫
R3 ργdx and Kλ is defined

by Lemma 2.1. We thus get from Lemma 2.1 that

Ea(γ) ≥ inf
γ′∈Kλ

Ea(γ′) = Ea(λ). (2.51)

Applying Lemma 2.3 (2), we further obtain from (2.50) and (2.51) that

Ea(λ) ≥ Ea(N) ≥ Ea(γ) + lim inf
n→∞

(
Tr(−∆γ2n)− a

∫
R3

ρ
5
3
2ndx

)
≥ inf

γ′∈Kλ
Ea(γ′) + lim inf

n→∞

(
Tr(−∆γ2n)− a

∫
R3

ρ
5
3
2ndx

)
= Ea(λ) + lim inf

n→∞

(
Tr(−∆γ2n)− a

∫
R3

ρ
5
3
2ndx

)
≥ Ea(λ) + lim inf

n→∞

(
1− a‖γ2n‖

2
3

a∗N

)
Tr(−∆γ2n)

≥ Ea(λ) +
(

1− a

a∗N

)
lim inf
n→∞

Tr(−∆γ2n),

(2.52)

where the last inequality follows from the fact that ‖γ2n‖ ≤ ‖γn‖ = 1. Thus, if
lim inf
n→∞

Tr(−∆γ2n) > 0, then we get a contradiction from (2.52), and thus the case

0 < λ :=
∫
R3 ργdx < N cannot occur, which therefore completes the proof of Theo-

rem 1.1.
If lim inf

n→∞
Tr(−∆γ2n) = 0, we derive from (2.52) that

Ea(λ) = Ea(N), (2.53)

and γ is a minimizer of inf
γ′∈Kλ

Ea(γ′). This further implies from Lemma 2.1 that Ea(λ)

possesses minimizers, where 0 < λ :=
∫
R3 ργdx < N . We next consider two different

cases.
Case 1: N = 1. For the case N = 1, since

∫
R3 ργdx =

∫
R3 u

2
1dx = λ, we deduce from

(2.53) that for ϕ := λ−
1
2u1,

Ea(1) = Ea(λ) = inf
γ′∈Kλ

Ea(γ′) = Ea(γ)
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=

∫
R3

(
|∇u1|2 + V (x)u2

1 − au
10
3

1

)
dx

=λ

∫
R3

(
|∇ϕ|2 + V (x)ϕ2 − aλ

2
3ϕ

10
3

)
dx

=λEa(|ϕ〉〈ϕ|) + aλ
(
1− λ

2
3
) ∫

R3

ϕ
10
3 dx

≥λEa(1) + aλ
(
1− λ

2
3
) ∫

R3

ϕ
10
3 dx.

If 0 < λ :=
∫
R3 ργdx < 1 = N , then one has Ea(1) > λEa(1), which however contradicts

with the fact that Ea(1) < 0. Therefore, if N = 1, then 0 < λ :=
∫
R3 ργdx < N cannot

occur.
Case 2: N ≥ 2. As for the case 2 ≤ N ∈ N+, there exists an integer N ′ ∈ [1, N ] such

that λ ∈ [N ′ − 1, N ′). Let

γ1 :=
N ′∑
i=1

|ϕi〉〈ϕi|+ (λ−N ′)|ϕN ′〉〈ϕN ′ | (2.54)

be a minimizer of Ea(λ), where (ϕi, ϕj) = δij . Consider

γ2 :=
N−N ′+1∑
j=1

|ψj〉〈ψj |+ (N ′ − λ− 1)|ψN−N ′+1〉〈ψN−N ′+1|,

where the functions ψ1, · · · , ψN−N ′+1 ∈ C∞0 (R3, [0, 1]) satisfy (ψi, ψj) = δij . Denote

ψτj (x) := τ−3/2ψj(τ
−1x), where τ > 0, j = 1, · · · , N −N ′ + 1. (2.55)

Since γ1 is a minimizer of Ea(λ), it follows from (2.54) and Lemma 2.4 that there exist
constants C > 0 and θ > 0 such that

|ϕi(x)| ≤ Ce−θ|x| in R3, i = 1, · · · , N ′, (2.56)

which yields from (2.55) that

0 ≤ aτ := max
i,j

{
|(ϕi, ψτj )|

}
≤ C1τ

− 3
2 as τ →∞, (2.57)

where C1 > 0 is independent of τ > 0. We thus can define the same operator γτ ∈ KN
as in (2.22), where τ > 0 is sufficiently large.

Similar to (2.24), one can get that

γτ = γ1 + γτ2 −
N ′∑
i=1

N−N ′+1∑
j=1

aτij
(
|ϕi〉〈ψτj |+ |ψτj 〉〈ϕi|

)
− 1

2
(λ−N ′)

N−N ′+1∑
j=1

aτN ′j
(
|ϕN ′〉〈ψτj |+ |ψτj 〉〈ϕN ′ |

)
(2.58)

− 1

2
(N ′ − λ− 1)

N ′∑
i=1

aτi,N−N ′+1

(
|ϕi〉〈ψτN−N ′+1|+ |ψτN−N ′+1〉〈ϕi|

)
+O(a2

τ )
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:=γ1 + γτ2 − γAτ as τ →∞,

where aτij := (ϕi, ψ
τ
j ), aτ := max

i,j

{
|(ϕi, ψτj )|

}
and

γτ2 :=

N−N ′+1∑
j=1

|ψτj 〉〈ψτj |+ (N ′ − λ− 1)|ψτN−N ′+1〉〈ψτN−N ′+1|.

Applying Lemma 2.4, we thus deduce from (2.56)–(2.58) that

Tr(−∆ + V (x))γτ = Tr(−∆ + V (x))(γ1 + γτ2 ) +O(a2
τ )

= Tr(−∆ + V (x))γ1 + τ−2Tr(−∆γ2)

− τ−1
K∑
k=1

∫
R3

∣∣x− τ−1yk
∣∣−1

ργ2dx+O(a2
τ )

≤ Tr(−∆ + V (x))γ1 − C2τ
−1 as τ →∞,

(2.59)

and ∫
R3

ρ5/3
γτ dx ≥

∫
R3

(
ργ1 − |ργAτ |

)5/3
dx

=

∫
R3

ρ5/3
γ1 dx−

5

3

(
1 + o(1)

) ∫
R3

ρ2/3
γ1 |ργAτ |dx (2.60)

=

∫
R3

ρ5/3
γ1 dx−O(a2

τ ) ≥
∫
R3

ρ5/3
γ1 dx− C2τ

−3 as τ →∞,

where C2 > 0 is independent of τ > 0, and the operator γAτ is defined in (2.58). As a
consequence, we conclude from (2.2), (2.59) and (2.60) that

Ea(N) = inf
γ′∈KN

Ea(γ′) ≤ Ea(γτ ) ≤ Ea(λ)− C2

2
τ−1 < Ea(λ) as τ →∞, (2.61)

which however contradicts with the identity (2.53). This shows that if N ≥ 2, then
0 < λ :=

∫
R3 ργdx < N cannot occur, either. The proof of Theorem 1.1 is therefore

complete.

3 N = 2: Limiting Behavior of Minimizers as a↗ a∗2

In this section, we address the proof of Theorem 1.2 on the limiting concentration be-
havior of minimizers for Ea(N) with N = 2 as a↗ a∗2, where a∗2 > 0 is defined by (1.8).
Towards this purpose, we shall employ the first three steps from the so-called blow-up
analysis of many-body fermionic systems, which is described in Subsection 1.1.

Throughout the rest part of this paper, we follow Lemma 2.2 and [4, Theorem 6 and
Proposition 11] to suppose that

γ(2) =
2∑
i=1

|Qi〉〈Qi| with (Qi, Qj) = δij (3.1)
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is an optimizer of a∗2, where Qi ∈ C∞(R3,R) satisfies

|∇Qi(x)|, |Qi(x)| = O(e−
√
|µ̂i||x|) as |x| → ∞, i = 1, 2, (3.2)

and (µ̂i, Qi) denotes the ith eigenpair (counted with multiplicity) of−∆−5
3a
∗
2

(∑2
j=1Q

2
j

)2/3

in R3.
We start with the following energy estimates of Ea(2) as a↗ a∗2.

Lemma 3.1. Suppose γa is a minimizer of Ea(2) defined by (1.5), where 0 < a < a∗2.
Then there exist some constants 0 < M1 < M2, 0 < M ′1 < M ′2, 0 < M ′′1 and 0 < M ′′′1 ,
independent of 0 < a < a∗2, such that

M1 ≤ −εaEa(2) ≤M2, M ′1 ≤ −εa
∫
R3

V (x)ργadx ≤M ′2 as a↗ a∗2, (3.3)

and

0 ≤ ε2aTr(−∆γa) ≤M ′′1 , 0 ≤ ε2a
∫
R3

ρ
5
3
γadx ≤M ′′′1 as a↗ a∗2, (3.4)

where εa := a∗2 − a > 0, and the potential V (x) = −
∑K

k=1 |x− yk|−1 < 0 is as in (1.7).

Proof. Take a cut-off function ϕ ∈ C∞0 (R3, [0, 1]) satisfying ϕ(x) = 1 for |x| ≤ 1 and
ϕ(x) = 0 for |x| ≥ 2. Define for τ > 0,

Qτi (x) := Aτi τ
3
2ϕ(x− y1)Qi

(
τ(x− y1)

)
, i = 1, 2, (3.5)

where Qi ∈ C∞(R3) and y1 ∈ R3 are given by (3.1) and (1.7), respectively, and Aτi > 0
is chosen such that

∫
R3 |Qτi (x)|2dx = 1, i = 1, 2. The exponential decay of Qi in (3.2)

then gives that

Aτi = 1 + o(τ−∞) and aτ :=
(
Qτ1 , Q

τ
2

)
= o(τ−∞) as τ →∞, (3.6)

where o(τ−∞) means lim
τ→∞

o(τ−∞)τ s = 0 for any s ≥ 0. This implies that the following

Gram matrix

Gτ :=

(
Qτ1

Qτ2

)(
Qτ1 , Q

τ
2

)
=

[
1

(
Qτ1 , Q

τ
2

)(
Qτ2 , Q

τ
1

)
1

]
=

[
1 aτ
aτ 1

]
(3.7)

is positive definite for sufficiently large τ > 0.
We now define for τ > 0, (

Q̃τ1 , Q̃
τ
2

)
:=
(
Qτ1 , Q

τ
2

)
G
− 1

2
τ . (3.8)

It then follows from (3.7) that for sufficiently large τ > 0,(
Q̃τi , Q̃

τ
j

)
= δij , i, j = 1, 2. (3.9)

Similar to (2.23), one can obtain from (3.7) the Taylor’s expansion of Gτ as τ → ∞.
Thus we also derive from (3.8) that(

Q̃τ1 , Q̃
τ
2

)
=
(
Qτ1 , Q

τ
2

)
− 1

2
aτ
(
Qτ2 , Q

τ
1

)
+O(a2

τ ) as τ →∞. (3.10)
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Setting

γ̃(2)
τ :=

2∑
i=1

|Q̃τi 〉〈Q̃τi |,

we can compute from (3.6) and (3.10) that

Ea(γ̃(2)
τ ) =Tr

(
−∆ + V (x)

)
γ̃(2)
τ − a

∫
R3

ρ
5
3

γ̃
(2)
τ

dx

=
2∑
i=1

∫
R3

|∇Q̃τi |2dx+
2∑
i=1

∫
R3

V (x)|Q̃τi |2dx− a
∫
R3

( 2∑
i=1

|Q̃τi |2
) 5

3
dx

=
2∑
i=1

∫
R3

|∇Qτi |2dx+
2∑
i=1

∫
R3

V (x)|Qτi |2dx− a
∫
R3

( 2∑
i=1

|Qτi |2
) 5

3
dx

− 2aτ

∫
R3

∇Qτ1 · ∇Qτ2dx− 2aτ

∫
R3

V (x)Qτ1Q
τ
2dx (3.11)

+
10

3
aaτ

∫
R3

( 2∑
i=1

|Qτi |2
) 2

3
Qτ1Q

τ
2dx+O(a2

τ )

=

2∑
i=1

∫
R3

|∇Qτi |2dx+

2∑
i=1

∫
R3

V (x)|Qτi |2dx− a
∫
R3

( 2∑
i=1

|Qτi |2
) 5

3
dx

+ o(τ−∞) as τ →∞,

where the second identity follows from the orthonormality of (3.9).
To estimate the right hand side of (3.11), we calculate from (3.2) and (3.5) that

2∑
i=1

∫
R3

|∇Qτi |2dx =

2∑
i=1

|Aτi |2τ3

∫
R3

∣∣∣Qi(τ(x− y1)
)
∇ϕ(x− y1)

+ τϕ(x− y1)∇Qi
(
τ(x− y1)

)∣∣∣2dx (3.12)

=τ5
2∑
i=1

∫
R3

ϕ2(x− y1)
∣∣∇Qi(τ(x− y1)

)∣∣2dx+ o(τ−∞)

=τ2
2∑
i=1

∫
R3

∣∣∇Qi(x)
∣∣2dx+ o(τ−∞) as τ →∞,

and

2∑
i=1

∫
R3

V (x)|Qτi |2dx ≤−
2∑
i=1

∫
R3

|x− y1|−1|Qτi |2dx

=− τ
2∑
i=1

∫
R3

|x|−1|Aτi |2ϕ2(τ−1x)Q2
i (x)dx (3.13)

=− τ
2∑
i=1

∫
R3

|x|−1Q2
i (x)dx+ o(τ−∞) as τ →∞.
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As for the nonlinear term, one has∫
R3

( 2∑
i=1

|Qτi |2
) 5

3
dx =τ2

∫
R3

ϕ
10
3
(
τ−1x

)( 2∑
i=1

|Aτi |2Q2
i (x)

) 5
3
dx

=τ2

∫
R3

( 2∑
i=1

|Aτi |2Q2
i (x)

) 5
3
dx

− τ2

∫
R3

( 2∑
i=1

|Aτi |2Q2
i (x)

) 5
3
[
1− ϕ

10
3 (τ−1x)

]
dx (3.14)

=τ2

∫
R3

( 2∑
i=1

|Aτi |2Q2
i (x)

) 5
3
dx+ o(τ−∞)

=τ2

∫
R3

( 2∑
i=1

Q2
i (x)

) 5
3
dx+ o(τ−∞) as τ →∞.

Consequently, we obtain from (3.11)–(3.14) that

Ea(γ̃(2)
τ ) ≤τ2

2∑
i=1

∫
R3

∣∣∇Qi(x)
∣∣2dx− τ 2∑

i=1

∫
R3

|x|−1Q2
i (x)dx

− aτ2

∫
R3

( 2∑
i=1

Q2
i (x)

) 5
3
dx+ o(τ−∞) (3.15)

=τ2Tr(−∆γ(2))− τ
∫
R3

|x|−1ργ(2)dx− aτ
2

∫
R3

ρ
5
3

γ(2)
dx+ o(τ−∞)

=τ2
(
a∗2 − a

) ∫
R3

ρ
5
3

γ(2)
dx− τ

∫
R3

|x|−1ργ(2)dx+ o(τ−∞) as τ →∞,

where the last identity follows from the fact that γ(2) given in (3.1) is an optimizer of a∗2.
Taking

τ = tε−1
a := t(a∗2 − a)−1, t > 0,

we then conclude from (3.15) that

lim
a↗a∗2

εaEa(2) ≤ lim
a↗a∗2

εaEa(γ̃(2)
τ ) ≤ inf

t>0

∫
R3

(
t2ρ

5
3

γ(2)
− t|x|−1ργ(2)

)
dx

=− 1

4

(∫
R3

ρ
5
3

γ(2)
dx
)−1(∫

R3

|x|−1ργ(2)dx
)2

:= −2M1 < 0,

(3.16)

and hence,

−M1ε
−1
a ≥ Ea(2) = Ea(γa) ≥

∫
R3

V (x)ργa(x)dx as a↗ a∗2, (3.17)

where γa =
∑2

i=1 |uai 〉〈uai | is a minimizer of Ea(2). Moreover, similar to (2.13), we have

Ea(2) +

∫
R3

V (x)ργadx = Ea(γa) +

∫
R3

V (x)ργadx

≥ a∗2 − a
2a∗2

Tr(−∆γa)−
64K2a∗2
a∗2 − a

as a↗ a∗2,

(3.18)
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where K ∈ N+ is given by (1.7). It then follows from (3.17) and (3.18) that

−M1ε
−1
a ≥

∫
R3

V (x)ργadx ≥ Ea(2) +

∫
R3

V (x)ργadx

≥ εa
2a∗2

Tr(−∆γa)− 64K2a∗2ε
−1
a

≥ 1

2
εa

∫
R3

ρ
5
3
γadx− 64K2a∗2ε

−1
a

≥− 64K2a∗2ε
−1
a as a↗ a∗2.

(3.19)

Together with (3.16) and (3.17), this completes the proof of Lemma 3.1.

Let γan =
∑2

i=1 |u
an
i 〉〈u

an
i | be a minimizer of Ean(2), where an ↗ a∗2 as n →

∞. Note from (3.4) that the sequence
{
ε2anTr(−∆γan)

}
=
{
ε2an
∑2

i=1

∫
R3 |∇uani |2dx

}
is bounded uniformly in n, where εan := a∗2 − an > 0. This yields that the sequence{
ε
3/2
an u

an
i (εanx)

}∞
n=1

is bounded uniformly in H1(R3), which thus admits a weak limit
wi ∈ H1(R3) for i = 1, 2. The following lemma shows that, after suitable transforma-
tions, the operator |w1〉〈w1|+ |w2〉〈w2| is actually a minimizer of a∗2.

Lemma 3.2. Let γan =
∑2

i=1 |u
an
i 〉〈u

an
i | be a minimizer of Ean(2), where the system

(uan1 , uan2 ) satisfies (1.14), and an ↗ a∗2 as n→∞. Then there exist a subsequence, still
denoted by {uani }∞n=1, of {uani }∞n=1 and a point yk∗ ∈ {y1, · · · , yK} given by (1.7) such
that for i = 1, 2,

wani (x) := ε3/2an u
an
i (εanx+ yk∗)→ wi(x) strongly in H1(R3) as n→∞, (3.20)

where εan := a∗2 − an > 0, and γ :=
∑2

i=1 |wi〉〈wi| is a minimizer of a∗2.

Proof. We shall carry out the proof by three steps.
Step 1. In this step, we mainly establish the weak convergence (3.26) of {uani }∞n=1

after transformations, where i = 1, 2.
Note from (1.7) and (3.3) that

εan

K∑
k=1

∫
R3

|x− yk|−1ργandx = −εan
∫
R3

V (x)ργandx ≥M
′
1 > 0 as n→∞.

This gives that there exists some point yk∗ ∈ {y1, · · · , yK} such that

εan

∫
R3

|x− yk∗ |−1ργandx ≥
M ′1
K

> 0 as n→∞. (3.21)

Set

wani (x) := ε
3
2
anu

an
i (εanx+ yk∗), γ̃an :=

2∑
i=1

|wani 〉〈w
an
i |, εan := a∗2 − an > 0, (3.22)

where the point yk∗ ∈ {y1, · · · , yK} is as in (3.21). We then have (wani , wanj ) = δij ,

Tr(−∆γ̃an) =
2∑
i=1

∫
R3

|∇wani |
2dx = ε2anTr(−∆γan), (3.23)
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and ∫
R3

ρ
5
3
γ̃an

dx =

∫
R3

( 2∑
i=1

|wani |
2
) 5

3
dx = ε2an

∫
R3

ρ
5
3
γandx. (3.24)

By the uniform boundedness of the sequence
{
ε2anTr(−∆γan)

}
in n > 0, we obtain from

(3.23) that {
wani

}∞
n=1

is bounded uniformly in H1(R3), i = 1, 2. (3.25)

Hence, up to a subsequence if necessary, there exists wi ∈ H1(R3) such that

wani ⇀ wi weakly in H1(R3) as n→∞, i = 1, 2, (3.26)

and

ργ̃an → ργ := w2
1 + w2

2 strongly in Lrloc(R3) as n→∞, 1 ≤ r < 3, (3.27)

where γ :=
∑2

i=1 |wi〉〈wi|. We thus deduce from (3.21), (3.22) and (3.27) that, up to a
subsequence if necessary,

0 < lim
n→∞

εan

∫
R3

|x− yk∗ |−1ργandx = lim
n→∞

∫
R3

|x|−1ργ̃andx =

∫
R3

|x|−1ργdx, (3.28)

which indicates that
∫
R3 ρ

5/3
γ dx > 0.

Step 2. This step is to prove that

ργ̃an → ργ strongly in L
5
3 (R3) as n→∞, (3.29)

By the Brézis-Lieb Lemma (cf. [17]), we only need to prove that lim
n→∞

∫
R3 ρ

5/3
γ̃an

dx =∫
R3 ρ

5/3
γ dx.

We first claim that

{Wn} :=
{5

3
a∗2ρ

2/3
γ̃an

}
is a maximizing sequence of the best constant L∗2, (3.30)

where

L∗2 := sup
0≤W∈L5/2(R3)\{0}

∑2
j=1 |λj(−∆−W )|∫
R3 W 5/2(x)dx

(3.31)

is attainable (cf. [5, Corollary 2]). Here λj(−∆ − W ) ≤ 0 denotes the ith negative
eigenvalue (counted with multiplicity) of −∆−W (x) in L2(R3) when it exists, and zero
otherwise. Recall from Theorem 1.1 that the function uani satisfies

Han
V uani :=

[
−∆ + V (x)− 5

3
an

( 2∑
j=1

|uanj |
2
) 2

3
]
uani = µani u

an
i in R3, i = 1, 2,

where µani < 0 is the ith eigenvalue (counted with multiplicity) of the operator Han
V . We

thus deduce from (3.22) that wani solves the following system

−∆wani + ε2anV
(
εanx+ yk∗

)
wani −

5

3
an

( 2∑
j=1

|wanj |
2
) 2

3
wani = ε2anµ

an
i w

an
i in R3, (3.32)
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where i = 1, 2. Applying Lemma 3.1, we derive from (3.32) that

Tr
(
−∆γ̃an

)
− 5

3
a∗2

∫
R3

ρ
5
3
γ̃an

dx =
2∑
i=1

ε2anµ
an
i + o(1) as n→∞, (3.33)

where γ̃an =
∑2

i=1 |w
an
i 〉〈w

an
i | is defined by (3.22). Moreover, it follows from (3.3), (3.23)

and (3.24) that

o(1) = ε2an

(
Ean(2)−

∫
R3

V (x)ργandx
)

= Tr
(
−∆γ̃an

)
− an

∫
R3

ρ
5
3
γ̃an

dx as n→∞.
(3.34)

We thus conclude from (3.33) and (3.34) that

lim inf
n→∞

(
−

2∑
i=1

ε2anµ
an
i

)
=

2

3
a∗2 lim inf

n→∞

∫
R3

ρ
5
3
γ̃an

dx ≥ C
∫
R3

ρ
5
3
γ dx > 0, (3.35)

where C > 0 is independent of n > 0. Thus, up to a subsequence if necessary, by the
min-max principle of [12, Sect. 12.1], we deduce from (3.33) that

2∑
j=1

λj
(
−∆−Wn

)
≤

2∑
j=1

((
−∆−Wn

)
wanj , wanj

)

=
2∑
j=1

ε2anµ
an
j + o(1)

= −2

3
a∗2

∫
R3

ρ
5
3
γ̃an

dx+ o(1) as n→∞,

where Wn = 5
3a
∗
2ρ

2/3
γ̃an

is defined by (3.30). This further indicates that∑2
j=1 |λj(−∆−Wn)|∫

R3 W
5/2
n dx

=
(5

3
a∗2

)− 5
2

∑2
j=1 |λj(−∆−Wn)|∫

R3 ρ
5/3
γ̃an

dx

≥ 2

5

(3

5

) 3
2 (
a∗2
)− 3

2 + o(1)

= L∗2 + o(1) as n→∞,

where the last identity follows from (1.22). By the definition of L∗2 in (3.31), we then

obtain that {Wn} =
{

5
3a
∗
2ρ

2/3
γ̃an

}
is a maximizing sequence of L∗2, and the claim (3.30) is

thus established.
We now denote

α := lim
n→∞

∫
R3

ρ
5/3
γ̃an

dx and β :=

∫
R3

ρ5/3
γ dx,

where α ≥ β > 0 holds true in view of (3.28). To establish Step 2, on the contrary,
suppose that α > β > 0. By an adaptation of the classical dichotomy result (cf. [15, Sect.
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3.3]), there exist a subsequence, still denoted by {ργ̃an}, of {ργ̃an} and a sequence {Rn}
with Rn →∞ as n→∞ such that

0 < lim
n→∞

∫
|x|≤Rn

ρ
5
3
γ̃an

dx = β, lim
n→∞

∫
Rn≤|x|≤2Rn

ρ
5
3
γ̃an

dx = 0.

Thus, the argument of [5, Lemma 17] yields that there exists some s ∈ {0, 1, 2} such
that

2∑
j=1

∣∣λj(−∆−Wn)
∣∣ =

s∑
j=1

∣∣λj(−∆−Wn1BRn
)∣∣

+
2−s∑
j=1

∣∣λj(−∆−Wn1R3\B2Rn

)∣∣+ o(1) as n→∞,

(3.36)

where Wn = 5
3a
∗
2ρ

2/3
γ̃an

for all n > 0. Recall from (1.21) that the best constant L∗s of the
finite rank Lieb-Thirring inequality is defined as

L∗s := sup
0≤W∈L5/2(R3)\{0}

∑s
j=1 |λj(−∆−W )|∫
R3 W 5/2(x)dx

, ∀ s ∈ N.

According to the above definition, it is obvious that L∗s is increasing in s > 0. Together
with (3.36), one hence gets from the claim (3.30) that for some s ∈ {0, 1, 2},(5

3
a∗2

) 5
2
αL∗2 = L∗2 lim

n→∞

∫
R3

W
5
2
n (x)dx

= lim
n→∞

2∑
j=1

∣∣λj(−∆−Wn

)∣∣ (3.37)

≤ L∗s lim
n→∞

∫
R3

(
Wn1BRn

) 5
2dx+ L∗2−s lim

n→∞

∫
R3

(
Wn1R3\B2Rn

) 5
2dx

=
(5

3
a∗2

) 5
2
[
L∗sβ + L∗2−s(α− β)

]
≤
(5

3
a∗2

) 5
2
αL∗2,

where the last inequality follows from the fact that L∗2−s ≤ L∗2 and L∗s ≤ L∗2 hold for
s ∈ {0, 1, 2}. Since α > β > 0, we obtain from (3.37) that L∗s = L∗2−s = L∗2, where
s ∈ {0, 1, 2} is as in (3.37). However, recalling from (1.12) (or see [4, Theorem 6])
that a∗1 > a∗2 > 0, one can conclude from (1.22) that 0 < L∗1 < L∗2, which gives that
s 6= 1. Moreover, because L∗0 = 0, it further yields that s 6= 0, 2. These thus lead to a

contradiction, if α > β > 0. This implies that lim
n→∞

∫
R3 ρ

5/3
γ̃an

dx =
∫
R3 ρ

5/3
γ dx, and Step 2

is therefore established.
Step 3. Since Step 2 gives that ργ̃an → ργ strongly in L

5
3 (R3) as n → ∞, we derive

from (3.26) and (3.34) that

a∗2

∫
R3

ρ
5
3
γ dx = a∗2 lim

n→∞

∫
R3

ρ
5
3
γ̃an

dx = lim inf
n→∞

Tr(−∆γ̃an)

≥ Tr(−∆γ) ≥ a∗2‖γ‖−
2
3

∫
R3

ρ
5
3
γ dx (3.38)
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≥ a∗2

∫
R3

ρ
5
3
γ dx,

where we have used the definition of a∗2, together with the fact that ‖γ‖ ≤ lim inf
n→∞

‖γ̃an‖ =

1. This further shows that ‖γ‖ = 1, γ is an optimizer of a∗2, and

|∇wani | → |∇wi| strongly in L2(R3) as n→∞, i = 1, 2. (3.39)

Since γ is an optimizer of a∗2, using again the fact (cf. [4, Proposition 11]) that
0 < a∗2 < a∗1, we obtain that Rank(γ) = 2. This further implies from (1.9) that∫

R3

ργdx = ‖γ‖Rank(γ) = 2. (3.40)

We thus deduce from (3.26) and (3.40) that

ργ̃an =

2∑
i=1

|wani |
2 → ργ =

2∑
i=1

w2
i strongly in L1(R3) as n→∞, (3.41)

where γ =
∑2

i=1 |wi〉〈wi| is a minimizer of a∗2. Using again the Brézis-Lieb Lemma
(cf. [17]), one can deduce from (3.26) and (3.41) that

wani → wi strongly in L2(R3) as n→∞, i = 1, 2. (3.42)

Together with (3.39), this proves the H1−convergence of (3.20), and we are therefore
done.

3.1 Proof of Theorem 1.2

The main purpose of this subsection is to complete the proof of Theorem 1.2. We first
establish the following uniformly exponential decay of the sequence {wani }∞n=1 as n→∞
for i = 1, 2.

Lemma 3.3. Suppose that the system
(
wan1 , wan2

)
is given by Lemma 3.2. Then there

exist constants θ > 0 and C(θ) > 0, which are independent of n > 0, such that for
sufficiently large n > 0,

|wani (x)| ≤ C(θ)e−θ|x| uniformly in R3, i = 1, 2. (3.43)

Proof. By the uniform boundedness (3.25) of {wani }∞n=1 in H1(R3) for i = 1, 2, and the

strong convergence (3.29) of {ργ̃an} =
{∑2

j=1 |w
an
j |2

}
in L

5
3 (R3), we first claim that, up

to a subsequence if necessary,

sup
n>0
‖ργ̃an‖∞ := sup

n>0

∥∥ 2∑
i=1

|wani |
2
∥∥
∞ < +∞, (3.44)

and

lim
|x|→∞

ργ̃an (x) = lim
|x|→∞

2∑
i=1

|wani |
2 = 0 uniformly for sufficiently large n > 0, (3.45)

28



where γ̃an =
∑2

i=1 |w
an
i 〉〈w

an
i |.

Actually, note from (3.32) that the function wani satisfies(
−∆− can(x)

)
wani = ε2anµ

an
i w

an
i in R3, i = 1, 2, (3.46)

where

can(x) = εan

K∑
k=1

∣∣x− ε−1
an (yk − yk∗)

∣∣−1
+

5

3
an

( 2∑
j=1

|wanj |
2
)2/3

,

and µan1 < µan2 < 0 holds for all n > 0. We then obtain from Kato’s inequality (cf. [16,
Theorem X.27]) that (

−∆− can(x)
)
|wani | ≤ 0 in R3, i = 1, 2. (3.47)

Following the uniform boundedness (3.25) of {wani }∞n=1 in H1(R3) for i = 1, 2, one can
verify that

‖can(x)‖Lr(B2(y)) ≤ C holds for any y ∈ R3,

where r ∈
(
3/2, 3

)
, and C > 0 is independent of n > 0 and y ∈ R3. Thus, applying De

Giorgi-Nash-Moser theory (cf. [9, Theorem 4.1]), we immediately conclude from (3.47)
that

‖wani ‖L∞(B1(y)) ≤ C1‖wani ‖L10/3(B2(y))

≤ C1‖ργ̃an‖
1/2

L5/3(B2(y))
for any y ∈ R3, i = 1, 2,

(3.48)

where ργ̃an =
∑2

i=1 |w
an
i |2, and C1 > 0 is independent of n > 0 and y ∈ R3. By the

strong convergence (3.29) of ργ̃an in L
5
3 (R3), we thus obtain from (3.48) that both (3.44)

and (3.45) hold true, and the above claim is therefore proved.
Furthermore, it follows from (3.46) that

2∑
i=1

ε2anµ
an
i = Tr(−∆γ̃an)− 5

3
an

∫
R3

ρ
5
3
γ̃an

dx

− εan
K∑
k=1

∫
R3

∣∣x− ε−1
an (yk − yk∗)

∣∣−1
ργ̃andx,

(3.49)

and

wani (x) =

∫
R3

Gani (x− y)
[
εan

K∑
k=1

∣∣y − ε−1
an (yk − yk∗)

∣∣−1
+

5

3
anρ

2
3
γ̃an

(y)
]
wani (y)dy, (3.50)

where ργ̃an =
∑2

j=1 |w
an
j |2, and Gani (x) denotes the Green’s function of the operator

−∆− ε2anµ
an
i in R3.

Using again the uniform boundedness of {wani }∞n=1 in H1(R3) for i = 1, 2, we derive
from (3.49) that the sequence

{∑2
i=1 ε

2
anµ

an
i

}
is bounded uniformly in n > 0. Since

µan1 < µan2 < 0, this implies that{
ε2anµ

an
i

}∞
n=1

is also bounded uniformly in n > 0, i = 1, 2. (3.51)
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Thus, up to a subsequence if necessary, we can assume that

lim
n→∞

ε2anµ
an
i = µ̂i ≤ 0.

Passing to the limit on both hand sides of (3.46) as n→∞, we then obtain from Lemma
3.2 that

−∆wi −
5

3
a∗2

( 2∑
j=1

w2
j

) 2
3
wi = µ̂iwi in R3, i = 1, 2, (3.52)

where wi is the strong limit of wani in H1(R3). Recall from Lemma 3.2 that the functions
w1 and w2 satisfy (wi, wj) = δij , and γ :=

∑2
i=1 |wi〉〈wi| is a minimizer of a∗2. We then

conclude from (1.10) (or [4, Theorem 6]) that µ̂i < 0 holds for i = 1, 2. As a consequence,
employing the fact (cf. [12, Theorem 6.23]) that

Gani (x) =
1

4π|x|
e−
√
|ε2anµ

an
i ||x| in R3,

we deduce from (3.50) that for any sufficiently large n > 0,

|wani (x)| ≤ C

∫
R3

|x− y|−1e−θ|x−y||wani (y)| (3.53)

·
(
εan

K∑
k=1

∣∣y − ε−1
an (yk − yk∗)

∣∣−1
+

5

3
a∗2ρ

2
3
γ̃an

(y)
)
dy in R3, i = 1, 2,

where θ := 1
2 min

{√
|µ̂1|,

√
|µ̂2|

}
> 0, and C > 0 is independent of n > 0.

Following (3.44), (3.45) and (3.53), the exponential decay of (3.43) can be proved in
a similar way of [1, Lemma 3.3], and we omit the detailed proof for simplicity. This ends
the proof of Lemma 3.3.

Proof of Theorem 1.2. Let γan =
∑2

i=1 |u
an
i 〉〈u

an
i | be a minimizer of Ean(2), and

suppose

γ̃an :=

2∑
i=1

|wani 〉〈w
an
i | :=

2∑
i=1

ε3an
∣∣uani (εan ·+yk∗)

〉〈
uani (εan ·+yk∗)

∣∣
is as in Lemma 3.2, where εan = a∗2 − an > 0 and an ↗ a∗2 as n→∞. The H1-uniform
convergence of (1.16) then follows directly from Lemma 3.2.

We now prove the energy estimate (1.17). Indeed, by the definition of a∗2, it follows
from (3.29) that

εanEan(2) =εanEan(γan)

≥εan
(
a∗2 − a

) ∫
R3

ρ
5
3
γandx− εan

∫
R3

K∑
k=1

|x− yk|−1ργandx

=

∫
R3

ρ
5
3
γ̃an

dx−
∫
R3

K∑
k=1

∣∣x+ ε−1
an (yk∗ − yk)

∣∣−1
ργ̃andx

=

∫
R3

ρ
5
3
γ dx−

∫
R3

|x|−1ργdx+ o(1) as n→∞,

(3.54)
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where yk∗ ∈ {y1, · · · , yK} and γ =
∑2

i=1 |wi〉〈wi| are as in Lemma 3.2. Since γ =∑2
i=1 |wi〉〈wi| satisfying (wi, wj) = δij is a minimizer of a∗2, we obtain from (3.16) and

(3.54) that∫
R3

(
ρ

5
3
γ − |x|−1ργ

)
dx = lim

n→∞
εanEan(2) = inf

t>0

∫
R3

(
t2ρ

5
3
γ − t|x|−1ργ

)
dx. (3.55)

Note that the right-hand side of (3.55) has exactly one optimizer

tmin =
(

2

∫
R3

ρ5/3
γ dx

)−1
∫
R3

|x|−1ργdx.

We thus conclude from (3.55) that

1 =
(

2

∫
R3

ρ5/3
γ dx

)−1
∫
R3

|x|−1ργdx, (3.56)

which further yields in turn that

lim
n→∞

εanEan(2) = −1

2

∫
R3

|x|−1ργdx = −
∫
R3

ρ5/3
γ dx = − 1

a∗2
Tr
(
−∆γ

)
. (3.57)

Here we have used ‖γ‖ = 1 and the fact that γ is a minimizer of a∗2. This proves (1.17).
We next prove the L∞-uniform convergence (1.16) of wani as n→∞, i.e.,

wani → wi strongly in L∞(R3) as n→∞, i = 1, 2, (3.58)

where the system (wan1 , wan2 ) is defined by Lemma 3.2. Note from (3.46) that wani satisfies

−∆wani =εan

K∑
k=1

∣∣x− ε−1
an (yk − yk∗)

∣∣−1
wani

+
5

3
an

( 2∑
j=1

|wanj |
2
) 2

3
wani + ε2anµ

an
i w

an
i (3.59)

:=fni (x) in R3, i = 1, 2,

and the sequence {fni (x)}∞n=1 is bounded uniformly in L2
loc(R3) for i = 1, 2 in view of

(3.25), (3.44) and (3.51). One hence gets from (3.59) and [6, Theorem 8.8] that for any
fixed R > 0,

‖wani ‖W 2,2(BR) ≤ C
(
‖wani ‖H1(BR+1) + ‖fni ‖L2(BR+1)

)
, i = 1, 2,

where C > 0 is independent of n > 0. This implies that {wani }∞n=1 is bounded uniformly
in W 2,2(BR) for i = 1, 2. Consequently, by the compact embedding theorem (cf. [6,
Theorem 7.26]) from W 2,2(BR) into L∞(BR), we obtain that there exists a subsequence,
still denoted by {wani }∞n=1, of {wani }∞n=1 such that for any fixed R > 0,

wani → wi strongly in L∞(BR) as n→∞, i = 1, 2. (3.60)
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On the other hand, since
∑2

i=1 |wi〉〈wi| is a minimizer of a∗2, we get from (3.45) and
the exponential decay (3.2) that for any ε > 0, there exists a sufficiently large constant
R := R(ε) > 0, which is independent of n > 0, such that for sufficiently large n > 0,

|wi(x)|, |wani (x)| < ε

4
in R3\BR, i = 1, 2, (3.61)

and hence,

sup
|x|≥R

∣∣wani (x)− wi(x)
∣∣ ≤ sup

|x|≥R

(
|wani (x)|+ |wi(x)|

)
<
ε

2
, i = 1, 2. (3.62)

Together with (3.60), we obtain from (3.62) that the convergence of (3.58) is true, and
the proof of Theorem 1.2 is therefore complete.

Remark 3.1. Generally, suppose there exists an integer 2 ≤ N ∈ N+ such that a∗N−1 > a∗N
holds, which is true at least for N = 2. It then follows from (1.9) that any minimizer
γ(N) of a∗N can be written in the form γ(N) = ‖γ(N)‖

∑N
i=1 |Qi〉〈Qi|, where (Qi, Qj) =

δij , i, j = 1, · · · , N . Since a∗k > a∗2k holds for any k ∈ N+ (see [4, Proposition 11]), the
same argument of proving Theorem 1.2 yields that Theorem 1.2 essentially holds true
for any Ea(N), as soon as 2 ≤ N ∈ N+ satisfies a∗N−1 > a∗N .

4 N = 3: Limiting Behavior of Minimizers as a↗ a∗3

In this section, we prove Theorem 1.3 on the limiting behavior of minimizers for Ea(3)
as a ↗ a∗3. Recall that the positive constants a∗2 and a∗3 are given by (1.8). The main
idea of the proof is called the blow-up analysis of many-body fermionic systems, which
is explained briefly in Subsection 1.1. We start with the following L∞−convergence of
minimizers as a↗ a∗3.

Proposition 4.1. Under the assumptions of Theorem 1.3, the L∞−convergence (1.24)
holds true.

Proof. One can note from (1.8) that a∗2 ≥ a∗3. If a∗2 > a∗3, then it follows from Remark
3.1 that

Theorem 1.2 holds true for Ea(3). (4.1)

Thus, in the following it suffices to focus on the case where a∗2 = a∗3.
Suppose a∗2 = a∗3, and let γan =

∑3
i=1 |u

an
i 〉〈u

an
i | be a minimizer of Ean(3) with

an ↗ a∗3 as n→∞, where the orthonormal family (uan1 , uan2 , uan3 ) satisfies (1.14). Recall
from (3.16) that

lim
a↗a∗2

(a∗2 − a)Ea(2) ≤ inf
t>0

∫
R3

(
t2ρ

5
3

γ(2)
− t|x|−1ργ(2)

)
dx := −2M1 < 0, (4.2)

where M1 > 0 is independent of a ∈ (0, a∗2), and γ(2) is a minimizer of a∗2. Since we
consider the case where a∗2 = a∗3, by Lemma 2.3 (2), we obtain from (1.8) and (4.2) that

−M1ε
−1
an ≥ Ean(2) ≥ Ean(3) = Ean(γan) ≥

∫
R3

V (x)ργandx as n→∞, (4.3)
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where εan := a∗3 − an = a∗2 − an > 0 and ργan =
∑3

i=1 |u
an
i |2. Thus, similar to (3.18) and

(3.19), we can deduce from (4.3) that the estimates of Lemma 3.1 are also applicable to
γan as n→∞, and thus we particularly have

0 < M1 ≤ −εan
∫
R3

V (x)ργandx ≤M2 as n→∞, (4.4)

where 0 < M1 < M2 are independent of n > 0.
Therefore, using again the fact (cf. [4, Proposition 11]) that a∗k > a∗2k holds for any

k ∈ N+, the same arguments of proving (3.29) and (3.39) yield that, up to a subsequence
if necessary, there exist a point yk∗ ∈ {y1, · · · , yK} and wi ∈ H1(R3) such that for
εan := a∗3 − an > 0,

wani := ε
3
2
anu

an
i (εanx+ yk∗) ⇀ wi weakly in H1(R3) as n→∞, i = 1, 2, 3, (4.5)

ργ̃an =

3∑
i=1

|wani |
2 → ργ =

3∑
i=1

w2
i strongly in L

5
3 (R3) as n→∞, (4.6)

and

|∇wani | → |∇wi| strongly in L2(R3) as n→∞, i = 1, 2, 3, (4.7)

where γ̃an :=
∑3

i=1 |w
an
i 〉〈w

an
i |, and

γ :=

3∑
i=1

|wi〉〈wi| satisfying ‖γ‖ = 1 is an optimizer of a∗3. (4.8)

Similar to (3.45) and (3.58), applying the uniform boundedness of
{
wani

}∞
n=1

in H1(R3)
for i = 1, 2, 3, one can further derive from (4.6) that

lim
|x|→∞

ργ̃an (x) = lim
|x|→∞

2∑
i=1

|wani |
2 = 0 uniformly for sufficiently large n > 0, (4.9)

and thus

wani → wi strongly in L∞(R3) as n→∞, i = 1, 2, 3. (4.10)

This proves (1.24), and Proposition 4.1 is therefore proved.
Applying Proposition 4.1, we are now ready to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. In order to complete the proof of Theorem 1.3, we follow
Proposition 4.1 to get that the rest proof is to address the limiting function (w1, w2, w3).
If a∗2 > a∗3, then the same argument of Theorem 1.2 yields that Theorem 1.3 (1) holds
true. If a∗2 = a∗3 and γ =

∑3
i=1 |wi〉〈wi| is an optimizer of a∗3, then we conclude from

(1.11) that either Rank(γ) = 3 or Rank(γ) = 2. We next discuss separately the following
two different situations:
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1. a∗2 = a∗3 and Rank(γ) = 3. In this situation, we deduce from (1.9) and (4.8) that∫
R3

ργ̃andx =
3∑
i=1

∫
R3

|wani |
2dx =

3∑
i=1

∫
R3

|uani |
2dx

= 3 = ‖γ‖Rank(γ) =

∫
R3

ργdx =
3∑
i=1

∫
R3

w2
i dx.

(4.11)

We thus obtain from (4.5), (4.7) and (4.11) that

wani → wi strongly in H1(R3) as n→∞, i = 1, 2, 3, (4.12)

which then implies from (1.5) that the functions w1, w2 and w3 satisfy (wi, wj) = δij .
This therefore proves Theorem 1.3 (1).

2. a∗2 = a∗3 and Rank(γ) = 2. In this situation, recall from Theorem 1.1 and (4.5)
that uani satisfies

Han
V uani :=

[
−∆ +V (x)− 5

3
an

( 3∑
j=1

|uanj |
2
) 2

3
]
uani = µani u

an
i in R3, i = 1, 2, 3, (4.13)

and hence for i = 1, 2, 3,

−∆wani + ε2anV
(
εanx+ yk∗

)
wani −

5

3
an

( 3∑
j=1

|wanj |
2
) 2

3
wani = ε2anµ

an
i w

an
i in R3, (4.14)

where µan1 < µan2 ≤ µan3 < 0 are the 3-first eigenvalues (counted with multiplicity) of
Han
V in R3.

Similar to (3.35) and (3.52), we then deduce from (4.5) and (4.14) that

Ĥγwi :=
[
−∆− 5

3
a∗3

( 3∑
j=1

w2
j

) 2
3
]
wi = µ̂iwi in R3, i = 1, 2, 3, (4.15)

where µ̂i satisfies, up to a subsequence if necessary,

µ̂i = lim
n→∞

ε2anµ
an
i for i = 1, 2, 3, µ̂1 ≤ µ̂2 ≤ µ̂3 ≤ 0 and

3∑
i=1

µ̂i < 0. (4.16)

As a consequence of (4.15), we conclude that for any i ∈ {1, 2, 3},

either wi(x) ≡ 0 in R3 or (µ̂i, wi) is an eigenpair of Ĥγ . (4.17)

Since

2 = Rank(γ) = Rank
( 3∑
i=1

|wi〉〈wi|
)

= dim
(
span

{
w1, w2, w3

})
, (4.18)

we next proceed the proof by the following two steps:
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Step 1. We prove that there exists exactly one i∗ ∈ {1, 2, 3} such that wi∗(x) ≡ 0 in
R3. Arguing by contradiction, we suppose from (4.18) that

wi 6≡ 0 in R3 for all i = 1, 2, 3. (4.19)

We first claim that

w1 and wi are linearly independent for i = 2, 3. (4.20)

Actually, note from (4.16) that µ̂1 < 0. Using this fact and a similar argument of [1,
Lemma 3.3], we can deduce from (4.9) and (4.14) that there exist constants 0 < θ <√
|µ̂1| and C(θ) > 0, which are independent of n > 0, such that for sufficiently large

n > 0,
|wan1 (x)| ≤ C(θ)e−θ|x| uniformly in R3. (4.21)

Thus, if w1 ≡ ti∗wi∗ 6≡ 0 in R3 for some i∗ ∈ {2, 3} and ti∗ ∈ R\{0}, then it follows from
(4.5), (4.10) and (4.21) that

0 = lim
R→∞

lim
n→∞

∫
R3

wan1 wani∗ dx

= lim
R→∞

lim
n→∞

∫
BR

wan1 wani∗ dx+ lim
R→∞

lim
n→∞

∫
BcR

wan1 wani∗ dx (4.22)

=ti∗

∫
R3

w2
i∗dx 6= 0,

a contradiction. This proves the claim (4.20).
Since uan1 is the first eigenfunction of the operator Han

V defined in (4.13), and it
follows from (4.5) that

w1(x) = lim
n→∞

ε
3
2
anu

an
1 (εanx+ yk∗) a.e. in R3,

we derive that w1(x) ≥ 0 in R3. Since the first eigenvalue of the operator Ĥγ defined in
(4.15) is simple, we deduce from (4.15) and [12, Theorem 11.8] that (µ̂1, w1) is the first
eigenpair of Ĥγ in R3. Using again the simplicity of µ̂1, we then conclude from (4.15)
and (4.20) that

(w1, w2) = (w1, w3) = 0. (4.23)

We thus obtain from (4.18) and (4.23) that under the assumption (4.19), we have

w3(x) ≡ tw2(x) 6≡ 0 in R3 for some t ∈ R\{0}. (4.24)

Setting

w̃1 := w1, w̃2 :=
√

1 + t2w2, (4.25)

we then derive from (4.8) and (4.23) that

γ =

2∑
i=1

|w̃i〉〈w̃i| and 1 = ‖γ‖ = max
{
‖w̃1‖22, ‖w̃2‖22

}
. (4.26)
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On the other hand, since Rank(γ) = 2, we further deduce from (1.9), (4.8) and (4.26)
that

2 = ‖γ‖Rank(γ) =

∫
R3

ργdx =

∫
R3

(
w̃2

1 + w̃2
2

)
dx. (4.27)

We thus derive from (4.26) and (4.27) that

1 = ‖γ‖ = ‖w̃1‖22 = ‖w̃2‖22, (4.28)

which yields that (w̃i, w̃j) = δij for i, j = 1, 2. As a consequence, since γ =
∑2

i=1 |w̃i〉〈w̃i|
is an optimizer of a∗3, together with [4, Theorem 6], we deduce from (4.15) and (4.25)
that

µ̂1 < µ̂2 = µ̂3 < 0. (4.29)

Similar to (4.22), we therefore derive from (4.24) and (4.29) that

0 = lim
R→∞

lim
n→∞

∫
R3

wan2 wan3 dx

= lim
R→∞

lim
n→∞

∫
BR

wan2 wan3 dx+ lim
R→∞

lim
n→∞

∫
BcR

wan2 wan3 dx

=t

∫
R3

w2
2dx 6= 0,

a contradiction, which indicates that (4.19) cannot occur. Because Rank(γ) = 2, this
completes the proof of Step 1.

Step 2. We prove that (wi, wj) = δij holds for i, j ∈ {1, 2}, and w3(x) ≡ 0 in R3.
Since Step 1 gives that there exists exactly one i∗ ∈ {1, 2, 3} such that wi∗(x) ≡ 0 in R3,
we derive from (1.9), (4.5), (4.8) and (4.18) that

0 < ‖wi‖22 ≤ 1 for i 6= i∗, and
3∑

i 6=i∗

∫
R3

w2
i dx =

∫
R3

ργdx = ‖γ‖Rank(γ) = 2,

which yield that ‖wi‖22 = 1 holds for all i 6= i∗. Together with (4.7), one gets that

wani → wi strongly in H1(R3) as n→∞, i 6= i∗,

and hence
(wi, wj) = δij for i, j ∈ {1, 2, 3}\{i∗}. (4.30)

We now prove that i∗ 6= 2 holds for (4.30). On the contrary, suppose i∗ = 2. Then
it implies that w2(x) ≡ 0 in R3. This implies from (4.18) that γ = |w1〉〈w1| + |w3〉〈w3|
is a minimizer of a∗3 and satisfies (wi, wj) = δij for i, j = 1, 3. We thus obtain from [4,
Theorem 6] that µ̂1 < µ̂3 < 0, and µ̂1, µ̂3 are the first two eigenvalues of the operator

Ĥγ = −∆ − 5
3a
∗
3

(∑3
j 6=2w

2
j

)2/3
in R3. Together with (4.16), we further derive that

µ̂2 < 0, and hence
3∑
i=1

µ̂i <
3∑
i 6=2

µ̂i. (4.31)
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On the other hand, we calculate from (4.4), (4.14) and (4.16) that

3∑
i=1

µ̂i = lim
n→∞

3∑
i=1

ε2anµ
an
i

= lim
n→∞

[ 3∑
i=1

∫
R3

|∇wani |
2dx− 5

3
an

∫
R3

( 3∑
i=1

|wani |
2
) 5

3
dx
]
,

(4.32)

and
3∑
i 6=2

µ̂i = lim
n→∞

3∑
i 6=2

ε2anµ
an
i

= lim
n→∞

[ 3∑
i 6=2

∫
R3

|∇wani |
2dx− 5

3
an

∫
R3

( 3∑
i=1

|wani |
2
) 2

3
(
|wan1 |

2 + |wan3 |
2
)
dx
]

= lim
n→∞

[ 3∑
i 6=2

∫
R3

|∇wani |
2dx− 5

3
an

∫
R3

( 3∑
i=1

|wani |
2
) 5

3
dx (4.33)

+
5

3
an

∫
R3

( 3∑
i=1

|wani |
2
) 2

3 |wan2 |
2dx
]
.

Since w2(x) ≡ 0 in R3, applying (4.6) and (4.7), one can further derive from (4.32) and
(4.33) that

3∑
i=1

µ̂i =

3∑
i 6=2

∫
R3

|∇wi|2dx−
5

3
a∗3

∫
R3

( 3∑
i 6=2

w2
i

) 5
3
dx, (4.34)

and
3∑
i 6=2

µ̂i =
3∑
i 6=2

∫
R3

|∇wi|2dx−
5

3
a∗3

∫
R3

( 3∑
i 6=2

w2
i

) 5
3
dx

+
5

3
lim
n→∞

an

∫
R3

( 3∑
i=1

|wani |
2
) 2

3 |wan2 |
2dx (4.35)

:=
3∑
i 6=2

∫
R3

|∇wi|2dx−
5

3
a∗3

∫
R3

( 3∑
i 6=2

w2
i

) 5
3
dx+

5

3
A.

Note from (4.10) that

wan2 → w2 ≡ 0 strongly in L∞(R3) as n→∞,

which yields that

0 ≤ A := lim
n→∞

an

∫
R3

ρ
2
3
γ̃an
|wan2 |

2dx

≤a∗3 lim
n→∞

‖wan2 ‖∞
∫
R3

ρ
2
3
γ̃an
|wan2 |dx

≤a∗3 lim
n→∞

‖wan2 ‖∞ ‖ργ̃an‖
2/3
4/3 ‖w

an
2 ‖2

=0,

(4.36)
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i.e., A = 0, where the last identity follows from the uniform boundedness of the sequence
{ργ̃an} =

{∑3
i=1 |w

an
i |2

}
in L1(R3) ∩ L3(R3). We thus conclude from (4.34)–(4.36) that

3∑
i=1

µ̂i =
3∑
i 6=2

µ̂i,

which however contradicts with (4.31). This proves that i∗ 6= 2.
Repeating the above argument, one can obtain that i∗ 6= 1 holds for (4.30), too.

Hence, it necessarily has i∗ = 3, and Step 2 is proved in view of Step 1. This completes
the proof of Theorem 1.3 (2), and we are done.
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