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Abstract. For a smooth bounded domain Ω ⊆ Rn, n ≥ 3, we consider the
fast diffusion equation with critical sobolev exponent

∂w

∂τ
= ∆w

n−2
n+2

under Dirichlet boundary condition w(·, τ) = 0 on ∂Ω. Using the parabolic

gluing method, we prove existence of an initial data w0 such that the corre-
sponding solution has extinction rate of the form

‖w(·, τ)‖L∞(Ω) = γ0(T − τ)
n+2
4 |ln(T − τ)|

n+2
2(n−2) (1 + o(1))

as t→ T−, here T > 0 is the finite extinction time of w(x, τ). This generalizes

and provides rigorous proof of a result of Galaktionov and King [30] for the
radially symmetric case Ω = B1(0) := {x ∈ Rn||x| < 1} ⊂ Rn.
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1. Introduction

Let Ω be a smooth bounded domain in Rn, n ≥ 3. We consider the following
fast diffusion equation 

∂w
∂τ = ∆wm in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),

w(·, 0) = w0 in Ω,

(1.1)

1
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with m ∈ (0, 1). The first equation in (1.1) is a singular but non-degenerate par-
abolic problem. From [39], we know that there exists a unique positive classical
solution w which is local in time for the the Dirichlet problem (1.1). The solution
vanishes at finite time as τ → T− <∞, w > 0 in Ω× (0, T ) and w(x, T ) = 0.

The asymptotic behaviour of solutions for (1.1) near the extinction time T has
attracted much attention in the past two decades. Suppose Ω = B1(0) := {x ∈
Rn||x| < 1} ⊂ Rn, when m ∈ (ms, 1) and ms := n−2

n+2 . From the classical work of

Berryman and Holland [2], the solution near the extinction time has a separated
self-similar form

w(x, τ) = (T − τ)
1

1−mS(x),

where S(x) is the positive solution of the following nonlinear elliptic problem

∆Sm + (1−m)−1S = 0 in Ω, S = 0 on ∂Ω.

When m ∈ (0,ms), it was proved in [29], [30], [36] and [38] that the self-similar
behavior as t→ T− can be described as

w(x, τ) ∼ (T − τ)αF

(
|x|

(T − τ)β

)
, (1−m)α+ 2β = 1,

which provides the leading order of the inner solution. Thus the inner region is
|x| = O((T − τ)β) and the outer region is |x| = O(1) with

w(x, τ) ∼ (T − τ)(mα+(n−2)β)/mΦ(x),

where Φ(x) is the Green’s function with Dirichlet boundary condition,

∆Φ = −Cn,mδ(x) in Ω, Φ = 0 on ∂Ω,

where Cn,m is a positive constant depending on n and m, δ(x) is the Dirac delta
distribution function locating at origin.

For general smooth bounded domains, the papers [2], [6], [26], [27] and [28] stud-
ied the asymptotic behaviour near extinction time for solutions to (1.1). Recently,
Bonforte and Figalli proved the sharp extinction rates in [5] for the supercritical
case m ∈ (ms, 1). Optimal regularity at the boundary for solutions to (1.1) was
proved by Jin and Xiong in [33] when m ∈ [ms, 1). We refer the interested readers
to [3], [4], [7], [13], [14], [31], [35], [41] and the references therein for more results
on the asymptotic behavior of fast diffusion and porous medium equations.

The case m = ms corresponds to the Yamabe flow which describes the evolution
of conformal metrics; there are many results in the literature under different set-
tings. For the Dirichlet problem (1.1), sharp asymptotic results are still missing.
To the best of our knowledge, the only asymptotic result was due to Galaktionov
and King [30]. The aim of this paper is to provide a rigourous asymptotic analysis
of (1.1) near the extinct time T for general smooth domain Ω. Our result can be
stated as follows.

Let H(x, y) be the regular part of the Green’s function on Ω with Dirichlet
boundary condition, i.e., for fixed y ∈ Ω, H(x, y) satisfies ∆xH(x, y) = 0 in Ω,

H(x, y) = (n(n−2))
n−2
4

|x−y|n−2 for x ∈ ∂Ω. Let q1, · · · , qk to be k different but fixed points
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in Ω. We define the following matrix,

G(q) =


H(q1, q1) −G(q1, q2) · · · −G(q1, qk)
−G(q1, q2) H(q2, q2) −G(q2, q3) · · · −G(q3, qk)

...
. . .

...
−G(q1, qk) · · · −G(qk−1, qk) H(qk, qk)

 . (1.2)

Our main result is

Theorem 1. Suppose m = ms = n−2
n+2 , n ≥ 3, T > 0 is the finite extinction time,

k is a positive integer and q1, · · · , qk are k different but fixed points in Ω such that
the matrix defined in (1.2) is positive definite, then there exist an initial data w0

and smooth functions µ̃j(τ), ξ̃j(τ) such that the solution w(x, τ) of problem (1.1)
has the following asymptotic form when τ → T−,

w
n−2
n+2 (x, τ) = (T − τ)

n−2
4 × k∑

j=1

αn( µ̃j(τ)

µ̃2
j (τ) + |x− ξ̃j(τ)|2

)n−2
2

− µ̃
n−2
2

j (τ)H(x, qj)

+ ϕ̃(x, τ)

 ,

where the parameters µ̃j(τ) = βj

(
log T

T−τ

)− 1
n−2

(1 + o(1)) for some βj > 0, ξ̃j −

qj = o

((
log T

T−τ

)− 1
n−2

)
, αn = (n(n − 2))

n−2
4 and ϕ̃(x, τ) → 0 uniformly away

from the points q1, · · · , qk as τ → T−.

In the paper [30], Galaktionov and King gave the extinction rate ‖w(·, τ)‖∞ =

γ0(T −τ)
n+2
4 |ln(T − τ)|

n+2
2(n−2) (1+o(1)) when Ω = B1(0) := {x ∈ Rn||x| < 1} ⊂ Rn

by matching expansions from the inner and boundary domains. Theorem 1 gives a
rigourous proof of this extinction rate as well as a description of the space part in
the multiple point case for general domains. We refer the interested readers to [36]
and [37] for more results on the extinction behaviour of the fast diffusion equations.

In the inner region near the point qj , w(x, τ) is a logarithmic perturbation of the
self-similar stationary structure. Indeed, we have

w(x, τ) = (T − τ)
n+2
4 α(t)S1(|x− qj |α

2
n+2 (τ))(1 + o(1))

with α(τ) = γ0

(
log T

T−τ

) n+2
2(n−2)

and S1 belongs to a one-parameter family of sta-

tionary positive solutions {Sλ(|x|)|λ > 0}, which are the Loewner-Nirenberg explicit
solutions

Sλ(r) = λ

[
2n(n− 2)

2n(n− 2) + (n+ 2)λ
4

n+2 r2

]
= λS1(rλ

2
n+2 )

to the nonlinear elliptic equation ∆S
n−2
n+2 + 1

4 (n+ 2)S = 0 in Rn, see [32].
Under the transformation

u(x, t) = (T − τ)−m/(1−m)w(x, τ)m|τ=T (1−e−t), (1.3)
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Problem (1.1) changes into the Yamabe flow equation on the bounded domain Ω
as follows, 

∂up

∂t = ∆u+ up in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(·, 0) = u0 in Ω,

(1.4)

for a function u : Rn×[0,∞)→ R and positive initial datum u0 satisfying u0|∂Ω = 0,
p = n+2

n−2 . Therefore, using the transformation (1.3), for problem (1.4), Theorem 1
has the following equivalent form.

Theorem 2. Suppose n ≥ 3, k is a positive integer and q1, · · · , qk are k different
but fixed points in Ω such that the matrix defined in (1.2) is positive definite, then
there exist an initial data u0 and smooth functions µj(t), ξj(t) such that the solution
of problem (1.4) has the following asymptotic form when t→ +∞,

u(x, t) =

k∑
j=1

αn( µj(t)

µ2
j (t) + |x− ξj(t)|2

)n−2
2

− µ
n−2
2

j (t)H(x, qj)

+ ϕ(x, t), (1.5)

where µj = βjt
− 1
n−2 (1 + o(1)) for some βj > 0, ξj − qj = o(t−

1
n−2 ), αn = (n(n −

2))
n−2
4 and ϕ(x, t)→ 0 uniformly away from the points q1, · · · , qk as t→ +∞.

The behaviour of Yamabe flow was studied in [42], [8], [9], [10], [12], [13], [15],
[16], [17], [40] (see also [34] for a related flow). Especially, in the case of Sn with
its standard Riemannian metric gSn , the Yamabe flow evolving a conformal metric

g = v
4

n−2 (·, t)gSn takes the following form

(v
n+2
n−2 )t = ∆Snv − cnv, cn =

n(n− 2)

4
, (1.6)

which is equivalent to the problem{
∂
∂tu

n+2
n−2 = ∆u+ u

n+2
n−2 in Rn × (0,∞),

u(·, 0) = u0 in Rn
(1.7)

via the stereographic projection and cylindrical changes of variables. It was proved
in [42], [9] that the Yamabe flow (1.6) has a global solution, which converges expo-
nentially to a steady solution. In [25], del Pino and Saez showed that solutions for
problem (1.7) approach non-trivial steady states of the semilinear elliptic equation

∆u+ u
n+2
n−2 = 0 on Rn.

Theorem 2 tells us that when we consider the Yamabe flow equation on a bounded
domain with Dirichlet boundary condition, infinite time blow-up phenomenon can
occur.

In the beautiful work [13], Daskalopoulos, del Pino and Sesum constructed a new
class of type II ancient solutions to the Yamabe flow; these solutions are rotationally
symmetric and converge to a tower of spheres when t→ −∞. Note that Theorem
2 is on a bounded domain with Dirichlet boundary condition and the solutions we
find blow up at different points when the time t → +∞. In the recent paper [22],
bubble tower solutions for the energy critical heat equation were constructed; we
conjecture that bubble tower solutions for Problem (1.4) also exist.
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Infinite time blowing-up solutions for the energy critical heat equation with
Dirichlet boundary condition

∂
∂tu = ∆u+ u

n+2
n−2 in Ω× (0,∞),

u(·, t) = 0 on ∂Ω,

u(·, 0) = u0 in Ω

of form (1.5) are constructed in the seminal work [11] when n ≥ 5. Note that the

corresponding blow-up rates are µj(t) ∼ bjt−
1

n−4 (1 + o(1)) as t→ +∞.
To prove Theorem 2, we use the gluing method in the spirit of [11] and [19],

which has been applied to various parabolic problems in recent years, such as finite
time and infinite time blow-up solutions for energy critical heat equations [11], [21],
[22], [23], [24], ancient solutions of the Yamable flow [13], singularity formation for
the harmonic map heat flow [19] and so on. In the survey paper by del Pino [20],
there are more results on the gluing method and its applications.

In the proof of Theorem 2, we first construct an approximation to the exact
solution with sufficiently small error, then, by linearization around the bubble and
fixed point theorem, we solve for a small remainder term. In the linear theory, we
use blow-up arguments; the main difficulty is that the parabolic problem is degen-
erate, the linear equation is lifted onto the standard sphere Sn, which then becomes
a non-degenerate parabolic equation. Finally, based on the linear theory, we solve
the nonlinear problem by the contraction mapping theorem. The orthogonality
conditions are satisfied by solving an ODE system of the scaling and translation
parameter functions.

Remark 1.1. The spectrum of the following degenerate elliptic operator

L0[φ] = − 1

Up−1

(
∆φ+ pUp−1φ

)
plays an important role in the linear theory. Since there is a negative eigenvalue
for L0 with multiplicity one (see Section 2), our solution constructed in Theorem
2 is unstable. Indeed, from the proof the Theorem 2 and the same arguments as
in [11], there exists a submanifold M in the function space X := {u ∈ C1(Ω) :
u|∂Ω = 0} with codimension k and containing uq(x, 0) such that, if u0 is a small
perturbation of uq(x, 0) in M, then the corresponding solution u(x, t) to (1.4) still
has the asymptotic form

u(x, t) =

k∑
j=1

αn( µ̂j(t)

µ̂2
j (t) + |x− ξ̂j(t)|2

)n−2
2

− µ̂
n−2
2

j (t)H(x, q̂j)

+ µ̂
n−2
2

j (t)ϕ̂(x, t),

the points q̂j are close to qj for j = 1, · · · , k. This is different from the ancient
solution case; the effect of the negative eigenvalue can be dealt with by adding an
additional parameter function which tends to 0 as t → −∞ (tends to +∞ as t →
+∞), see [13].

2. The approximate solution and the inner-outer gluing scheme

2.1. The approximate solution. Let t0 > 0 be a large number to be chosen later
and consider the following problem{

(up)t = ∆u+ up in Ω× (t0,∞),

u = 0 on ∂Ω× (t0,∞),
(2.1)
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for p = n+2
n−2 . Let q1, · · · , qk ∈ Rn be k fixed points, we are going to find a positive

solution to (2.1) of form

u(x, t) ≈
k∑
j=1

Uµj(t),ξj(t)(x)

with ξj(t) → qj , µj(t) → 0 as t → ∞ for all j = 1, · · · , k and Uµj(t),ξj(t)(x) =

µj(t)
−n−2

2 U
(
x−ξj(t)
µj(t)

)
, U(y) = αn

(
1

1+|y|2

)n−2
2

, which then provides a solution

u(x, t) = u(x, t − t0) to the original problem (1.4). Denote the error operator
as follows

S(u) := −(up)t + ∆u+ up.

Then we have

S(Uµj(t),ξj(t)) = − ∂

∂t
Upµj ,ξj (x) = µ

−n+2
2

j U(yj)
p−1

(
µ̇j
µj
Zn+1(yj) +

ξ̇j
µj
· ∇U(yj)

)
= µ

−n+2
2 −1

j U(yj)
p−1

(
µ̇jZn+1(yj) + ξ̇j · ∇U(yj)

)
for yj =

x−ξj(t)
µj(t)

. Since u = 0 on ∂Ω, a natural better approximation than∑k
j=1 Uµj(t),ξj(t)(x) should be

z̃(x, t) =

k∑
j=1

z̃j(x, t) with z̃j(x, t) := Uµj ,ξj (x)− µ
n−2
2

j Hµj (x, qj). (2.2)

Here for fixed y ∈ Ω, Hµj (x, y) satisfies ∆xHµj (x, y) = 0 in Ω, Hµj (x, y) =

(n(n−2))
n−2
4

(µ2
j+|x−y|2)

n−2
2

for x ∈ ∂Ω. Then from the equation satisfied by Uµj(t),ξj(t)(x) and

the fact that Hµj (x, q) is a harmonic function, the error of z̃ is

S(z̃) = −
k∑
i=1

∂tz̃
p
i +

(
k∑
i=1

z̃i

)p
−

k∑
i=1

Upµi,ξi . (2.3)

Moreover, by the same arguments as that of [11], for a fixed index j, in the region
|x− qj | ≤ 1

2 mini 6=l |qi − ql|, set x = ξj + µjyj , there holds

S[z̃] = µ
−n+2

2
j (µjE0j + µjE1j +Rj)

with

E0j = pU(yj)
p−1

−µn−3
j H(qj , qj) +

∑
i 6=j

µ
n−2
2 −1

j µ
n−2
2

i G(qj , qi)


+ µ−2

j µ̇jpU(yj)
p−1Zn+1(yj),

E1j = pU(yj)
p−1

−µn−2
j ∇H(qj , qj) +

∑
i6=j

µ
n−2
2

j µ
n−2
2

i ∇G(qj , qi)

 · yj
+ µ−2

j pU(yj)
p−1ξ̇j · ∇U(yj)
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and

Rj =
µn0 g

1 + |yj |2
+

µn−2
0 ~g

1 + |yj |4
·(ξj−qj)+µn+2

0 f+µn−1
0

k∑
i=1

µ̇ifi
1 + |yj |4

+µn0

k∑
i=1

ξ̇i · ~fi
1 + |yj |4

,

where f , fi, ~fi, g and ~g are smooth and bounded functions of (y, µ−1
0 µ, ξ, µjyj). Here

H(x, y) is the regular part of the Green’s function on Ω with Dirichlet boundary
condition, i.e., for fixed y ∈ Ω, H(x, y) satisfies ∆xH(x, y) = 0 in Ω, H(x, y) =

(n(n−2))
n−2
4

|x−y|n−2 for x ∈ ∂Ω.

Suppose u = z̃ + φ̃ is the exact solution of (2.1) and write φ̃(x, t) in self-similar
form around the point qj ,

φ̃(x, t) = µ
−n−2

2
j φ

(
x− ξj
µj

, t

)
. (2.4)

Then we have

0 = µ
n+2
2

j S[z̃ + φ̃]

= −pUp−1(y)∂tφ+ ∆yφ+ pU(y)p−1φ+ µ
n+2
2

j S[z̃] +A[φ]
(2.5)

with A[φ] being a high order term. To improve the approximation error, we require
φ(y, t) equals (at main order) to the solution φ0j(y, t) of the following equation

− pUp−1(y)∂tφ0j + ∆yφ0j + pU(y)p−1φ0j = −µ
n+2
2

j S[z̃] in Rn. (2.6)

Near the blow-up point qj , equation (2.6) is mainly an elliptic problem of form

L0[φ] :=
1

Up−1

(
∆yφ+ pU(y)p−1φ

)
= h(y) in Rn, ψ(y)→ 0 as |y| → ∞. (2.7)

Consider the eigenvalue problem L0[φ]+λφ = 0 on the weighted space L2(Up−1dx),
which has an infinite sequence of eigenvalues

λ0 < λ1 = · · · = λn = λn+1 = 0 < λn+2 < λn+3 < · · · ,

the associated eigenfunctions Zj , j = 0, 1, · · · constitute an orthonormal basis of
L2(Up−1dx). It is well known that λ0 is simple and Z0(y) = U(y). We refer the
interested readers to the well written paper [13] and [5] for more properties on
this operator. Therefore every bounded solution of L0[φ] = 0 in Rn is the linear
combination of the functions

Z1, · · · , Zn+1,

where

Zi(y) :=
∂U

∂yi
(y), i = 1, · · · , n, Zn+1(y) :=

n− 2

2
U(y) + y · ∇U(y).

Furthermore, problem (2.7) is solvable if the following conditions∫
Rn
h(y)Zi(y)Up−1(y)dy = 0 for all i = 1, · · · , n+ 1

hold.
Now we consider the solvability condition for equation (2.6) with i = n+ 1,∫

Rn
µ
n+2
2

j S[z̃](y, t)Zn+1(y)dy = 0. (2.8)
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We claim that if one choose µ0j = bjµ0(t) for some positive constants bj , j =

1, · · · , k to be determined later, µ0(t) = γnt
− 1
n−2 and γn is a positive constant

depending only on n, identity (2.8) holds at main order. Observe that the main
contribution term to the integral on the left hand side of (2.8) is

E0j = pU(yj)
p−1

−µn−3
j H(qj , qj) +

∑
i 6=j

µ
n−2
2 −1

j µ
n−2
2

i G(qj , qi)


+ µ−2

j µ̇jU(yj)
p−1Zn+1(yj).

Then direct computations yield the following∫
Rn
µ2
j (t)E0j(y, t)Zn+1(y)dy

≈ c1

µn−1
j H(qj , qj)−

∑
i6=j

µ
n−2
2 +1

j µ
n−2
2

i G(qj , qi)

+ c2µ̇j

with

c1 = −p
∫
Rn
U(y)p−1Zn+1(y)dy,

c2 =

∫
Rn
U(y)p−1 |Zn+1(y)|2 dy.

Note that c1, c2 are finite positive numbers since we assume that n ≥ 3. Set

µj(t) = bjµ0(t).

Then (2.8) holds at main order if we have the following identities,

bn−2
j H(qj , qj)−

∑
i 6=j

(bibj)
n−2
2 G(qj , qi)+c2c

−1
1 µ1−n

0 µ̇0 = 0 for all j = 1, · · · , k. (2.9)

Set c2c
−1
1 µ1−n

0 µ̇0 = − 2
n−2 , we then have

µ̇0(t) = −2c1c
−1
2

n− 2
µn−1

0 (t), (2.10)

with the solution µ0(t) =
(
c−1
1 c2

2

) 1
n−2

t−
1

n−2 . Furthermore, from the identities (2.9)

and (2.10), the constants bj must satisfy the following system

bn−3
j H(qj , qj)−

∑
i6=j

b
n−2
2 −1

j b
n−2
2

i G(qj , qi) =
2

n− 2

1

bj
for all j = 1, · · · , k. (2.11)

System (2.11) can be viewed as the Euler-Lagrangian equation ∇bI(b) = 0 for the
functional

I(b) :=
1

n− 2

 k∑
j=1

bn−2
j H(qj , qj)−

∑
i 6=j

b
n−2
2

j b
n−2
2

i G(qj , qi)−
k∑
j=1

ln b2j

 .
Set Λj = b

n−2
2

j , then we have

(n− 2)I(b) = Ĩ(Λ) =

 k∑
j=1

H(qj , qj)Λ
2
j −

∑
i6=j

G(qj , qi)ΛiΛj −
k∑
j=1

ln Λ
4

n−2

j

 .
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By the same arguments as [11], system (2.11) possesses a unique solution with all
its components be positive if and only if the matrix

G(q) =


H(q1, q1) −G(q1, q2) · · · −G(q1, qk)
−G(q2, q1) H(q2, q2) · · · −G(q2, qk)

...
...

. . .
...

−G(qk, q1) −G(qk, q2) · · · H(qk, qk)


is positive definite. For the following solvability conditions of (2.6),∫

Rn
µ
n+2
2

j S(z̃)(y, t)Zi(y)dy = 0, i = 1, · · · , n,

choose ξ0j = qj , then these identities can be satisfied at main order. Now we denote

µ̄0 = (µ01, · · · , µ0k) = (b1µ0, · · · , bkµ0)

and let Φj be the unique solution of (2.6) for µ = µ̄0. Then

∆yΦj + pU(y)p−1Φj = −µ0jE0j [µ̄0, µ̇0j ] in Rn, Φj(y, t)→ 0 as |y| → ∞.

From the definitions of µ0 and bj as above, there holds

µ0jE0j = −γ̃jµn−2
0 q0(y),

where γ̃j is a positive constant and

q0(y) := pU(y)p−1c2 + c1U(y)p−1Zn+1(y).

Let p0 = p0(|y|) be the unique solution of ∆yΦ + pU(y)p−1Φ = q0, then p0(|y|) =
O(|y|−2) as |y| → ∞ and

Φj(y, t) = γ̃jµ
n−2
0 p0(y).

Now we define the improved approximation as follows

z(x, t) = z̃(x, t) + Φ̃(x, t)

with

Φ̃(x, t) =

k∑
j=1

µ
−n−2

2
j η0(x− qj)Φj

(
x− ξj
µj

, t

)
and η0(x) is a smooth function defined on Rn which equals to 0 for x ∈ Rn \Bε(0)
and equals to 1 for x ∈ B ε

2
(0), ε > 0 is a small but fixed positive number satisfying

0 < ε < 1
2 min{mini6=l,i,l=1,··· ,k |qi − ql|,mini=1,··· ,k dist(qi, ∂Ω)}. Here dist(x, ∂Ω)

means the distance of x to the boundary ∂Ω of Ω. Finally we set

µ(t) = µ̄0 + λ(t) with λ(t) = (λ1(t), · · · , λk(t)).

Then the following result on the estimate of S[z] holds.
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Lemma 2.1. For a fixed index j and in the region |x−qj | ≤ 1
2 min{mini 6=l,i,l=1,··· ,k |qi−

ql|,mini=1,··· ,k dist(qi, ∂Ω)}, S[z] has the following expansion form

S[z] =

k∑
j=1

µ
−n+2

2
j

{
µ−1

0j λ̇jpU(yj)
p−1Zn+1(yj)− 2µ−2

0j bj µ̇0λjpU(yj)
p−1Zn+1(yj)

− µ0jµ
n−4
0 pU(yj)

p−1
k∑
i=1

Mijλi + µ−2
j pU(yj)

p−1ξ̇j · ∇U(yj)

+ µjpU(yj)
p−1
[
− µn−2

j ∇H(qj , qj) +
∑
i 6=j

µ
n−2
2

j µ
n−2
2

i ∇G(qj , qi)
]
· yj

}

+

k∑
j=1

µ
−n+2

2
j λjbj

[
b−2
j µ−2

0 µ̇0pU(yj)
p−1Zn+1(yj)

+ pU(yj)
p−1µn−3

0

(
− bn−4

j H(qj , qj) +
∑
i6=j

b
n−6
2

j b
n−2
2

i G(qj , qi)

)]

+ µ
−n+2

2
0

[
k∑
j=1

µn0 gj
1 + |yj |2

+

k∑
j=1

µ2n−4
0 gj

1 + |yj |2
+

k∑
j=1

µn−2
0 gj

1 + |yj |4
λj

]

+ µ
−n+2

2
0

[
k∑
j=1

µn−2
0 ~gj

1 + |yj |4
· (ξj − qj)

]

+ µ
−n+2

2
0

µn−2
0

k∑
i,j,l=1

pU(yj)
p−1fijlλiλl +

k∑
i,j,l=1

fijl
1 + |yj |n−2

λiλ̇l


+ µ

−n+2
2

0

[
µn+2

0 f + µn−1
0

k∑
i=1

µ̇ifi + µn0

k∑
i=1

ξ̇i ~fi

]
,

where x = ξj + µjyj, ~fi, fi, f , fijl, gj and ~gj are smooth bounded functions of

(µ−1
0 µ, ξ, x), for i = j,

Mij = (n− 3)bn−4
j H(qj , qj)− (

n− 2

2
− 1)

∑
i 6=j

b
n−2
2 −2

j b
n−2
2

i G(qj , qi),

for i 6= j,

Mij = −n− 2

2

∑
i 6=j

b
n−2
2 −1

j b
n−2
2 −1

i G(qj , qi).

The proof is the same as that of [11], so we omit it here.

2.2. The inner-out gluing scheme. Now we use the ansatz

u(x, t) =

k∑
j=1

zj(x, t) + ψ(x, t)
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for zj(x, t) = Uµj ,ξj (x) − µ
n−2
2

j H(x, qj) + µ
−n−2

2
j Φj

(
x−ξj
µj

, t
)

, with this setting,

problem (2.1) becomes

−
((
z + φ̃

)p)
t

+ ∆
(
z + φ̃

)
+
(
z + φ̃

)p
= 0,

which can be linearized as

−pzp−1φ̃t + ∆φ̃+ pzp−1φ̃+ S[z] +N [φ̃]−
(
N [φ̃]

)
t
−
(
pzp−1

)
t
φ̃ = 0. (2.12)

Here we denote

N [φ̃] =
(
z + φ̃

)p
− zp − pzp−1φ̃.

Using the inner outer gluing method (see, for example, [11] and [19]), we write

φ̃(x, t) = ψ(x, t) + φin(x, t)

with

φin(x, t) :=

k∑
j=1

ηj,R(x, t)φ̃j(x, t)

φ̃j(x, t) = µ
−n−2

2
0j φ

(
x− ξj
µ0j

, t

)
and

ηj,R = η

(
x− ξj
Rµ0j

)
.

Here η(s) is a cut-off function satisfying η(s) = 1 for s < 1 and = 0 for s > 2. The
positive number R is independent of t but sufficiently large, for convenience, we
choose it as

R = tε0, with 0 < ε� 1. (2.13)

Then φ̃ solves equation (2.12) if ψ and φ̃in satisfies the following system of two
equations respectively

pzp−1ψt = ∆ψ + Vµ,ξψ +

k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pUp−1

j ∂t

)
ηj,R

]
+ S∗,outµ,ξ +N [φ̃]−

(
N [φ̃]

)
t
−
(
pzp−1

)
t
φ̃

− pzp−1∂t

k∑
j=1

ηj,Rφ̃j +

k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)
in Ω× [t0,+∞),

ψ = 0 on ∂Ω× [t0,+∞)

(2.14)
and

pUp−1
j ∂tφ̃j = ∆φ̃j + pUp−1

0 φ̃j + pUp−1
0 ψ + S∗,inµ,ξ,j in B2Rµ0(ξ)× [t0,+∞).

(2.15)
Here

Vµ,ξ =

k∑
j=1

p

(
zp−1 −

(
µ
−n−2

2
j U

(
x− ξj
µj

))p−1
)
ηj,R + p

1−
k∑
j=1

ηj,R

 zp−1,

Uj := µ
−n−2

2
j U

(
x− ξj
µj

)
,
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S∗,inµ,ξ,j(y, t) = µ
−n+2

2
j

{
µ−1

0j λ̇jpU(y)p−1Zn+1(y)− 2µ−2
0j bjµ̇0λjpU(y)p−1Zn+1(y)

− µ0jµ
n−4
0 pU(y)p−1

k∑
i=1

Mijλi + µ−2
j pU(y)p−1ξ̇j · ∇U(y)

+ µjpU(y)p−1
[
− µn−2

j ∇H(qj , qj) +
∑
i 6=j

µ
n−2
2

j µ
n−2
2

i ∇G(qj , qi)
]
· y

}

+ µ
−n+2

2
j λjbj

[
b−2
j µ−2

0 µ̇0pU(y)p−1Zn+1(y)

+ pU(y)p−1µn−3
0

(
− bn−4

j H(qj , qj) +
∑
i 6=j

b
n−6
2

j b
n−2
2

i G(qj , qi)

)]
and

S∗,outµ,ξ =

S[z]−
k∑
j=1

S∗,inµ,ξ,j

+

k∑
j=1

(1− ηj,R)S∗,inµ,ξ,j .

Under the self-similar coordinates, equation (2.15) can be rewritten as

pUp−1∂tφj = ∆φ+ pUp−1φj +B1[φj ] +B2[φj ] +B3[φj ]

+ pµ
n−2
2

0j

µ2
0j

µ2
j

Up−1

(
µ0j

µj
y

)
ψ(ξj + µ0jy, t) + µ

n+2
2

0j S∗,inµ,ξ,j(ξj + µ0jy, t)

in B2R(0)× [t0,+∞).

(2.16)
Here

B1[φj ] = pUp−1∂tφj − p
µ2

0j

µ2
j

Up−1

(
µ0j

µj
y

)
∂tφj ,

B2[φj ] = µ0j µ̇0j

(
n− 2

2
φj + y · ∇yφj

)
+ µ0j∇φj · ξ̇j ,

B3[φj ] = p

[
Up−1

(
µ0j

µj
y

)
− Up−1(y)

]
φj + p

[
µ2

0j

µ2
j

− 1

]
Up−1

(
µ0j

µj
y

)
φj .

(2.14) is the so-called outer problem, (2.16) or (2.15) is the inner problem. In
Section 3, we solve the outer problem (2.14) as a function of λ, ξ and φ. In Section
4, we solve the inner problem (2.15) based on a linear theory and suitably choose
of the parameter functions λ, ξ.

3. The outer problem (2.14)

3.1. Linear theory for (2.14). In this subsection, we consider the linear equation
of the outer problem

pzp−1ψt = ∆ψ + Vµ,ξψ + f(x, t) in Ω× [t0,+∞),

ψ(x, t) = 0 on ∂Ω× [t0,+∞),

ψ(x, t0) = h(x) on Ω,

(3.1)

First we consider the H2-estimate of (3.1). We have
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Lemma 3.1. Suppose ‖g‖L2
t0
,ν < +∞ and ‖h‖L2(Ω) < +∞, there exists a solution

ψ = ψ(x, t) of the following problem
−pzp−1ψt + ∆ψ + Vµ,ξψ + zp−1g = 0 in Ω× [t0,+∞),

ψ = 0 on ∂Ω× [t0,+∞),

ψ(·, t0) = h(x) on Ω,

(3.2)

furthermore, there exists a positive constant C such that

‖ψ‖H2
t0
,ν ≤ C

(
‖h‖L2(Ω) + ‖g‖L2

t0
,ν

)
(3.3)

holds for t0 sufficiently large and ν > 0.

Notations: For Λτ := Ω× [τ, τ + 1] and ν > 0, we define

‖ψ(·, τ)‖L2 =

(∫
Ω

|ψ(·, τ)|2zp−1dx

) 1
2

,

‖ψ‖L2(Λτ ) =

(∫ ∫
Λτ

|ψ|2zp−1dxdt

) 1
2

,

‖ψ‖H1(Λτ ) = ‖ψ‖L2(Λτ ) + ‖z−
p−1
2 ∇ψ‖L2(Λτ ),

‖ψ‖H2(Λτ ) = ‖ψt‖L2(Λτ ) + ‖z−
p−1
2 ∆ψ‖L2(Λτ ) + ‖ψ‖H1(Λτ ),

‖ψ‖L2
t0
,ν = sup

τ>t0

µ−ν0 ‖ψ‖L2(Λτ ),

‖ψ‖H1
t0
,ν = sup

τ>t0

µ−ν0 ‖ψ‖H1(Λτ ),

‖ψ‖H2
t0
,ν = sup

τ>t0

µ−ν0 ‖ψ‖H2(Λτ ).

For s > t0, we also define

‖ψ‖L2
t0,s

,ν = sup
t0<τ<s

µ−ν0 ‖ψ‖L2(Λτ ),

‖ψ‖H1
t0,s

,ν = sup
t0<τ<s

µ−ν0 ‖ψ‖H1(Λτ ),

‖ψ‖H2
t0,s

,ν = sup
t0<τ<s

µ−ν0 ‖ψ‖H2(Λτ ),

Proof. First, we consider the following problem
−pzp−1ψt + ∆ψ + Vµ,ξψ + zp−1g = 0 in Ω× [t0, s),

ψ(·, t0) = h(x) in Ω,

ψ = 0 on ∂Ω× [t0, s).

(3.4)

Multiply (3.4) with ψ and take integration over Ω, we have

p

2

d

dt

∫
Ω

ψ2zp−1dx =

∫
Ω

(
∆ψψ + Vµ,ξψ

2 +
p(p− 1)

2

zt
z
ψ2zp−1 + gψzp−1

)
dx.
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Integrate by parts (since we have assumed that the boundary condition is zero) and
use the Cauchy-Schwarz inequality, there holds

p

2

d

dt

∫
Ω

ψ2zp−1dx+

∫
Ω

|∇ψ|2 ≤
∫

Ω

g2zp−1dx+

∫
Ω

ψ2zp−1dx+ µn−2
0 (t)

∫
Ω

ψ2zp−1dx.

In the above inequality, we have used the fact that
∣∣ zt
z

∣∣ . µn−2
0 (t). Indeed,

this is an Aronson-Bénilan type inequality in the setting of fast diffusion equation
(see, for example, [14]). Observe that in the domain Ω \ Bε(ξ) away from the
blow-up point (for simplicity, we assume k = 1 and denote µj as µ, denote ξj as

ξ), z = z̃ and c 1
t∆z̃ − ∂t∆z̃ = −cµ

−n+2
2

t U
n+2
n−2 (y) + µ−

n+2
2

(
−n+2

2
µ̇
µ

)
U
n+2
n−2 (y) +

µ−
n+2
2

n+2
n−2U

4
n−2 (y)∇U(y) · y

(
− µ̇µ
)

+ µ−
n+2
2

n+2
n−2U

4
n−2 (y)∇U(y) ·

(
− ξ̇
µ

)
. Now if

we choose the constant c > 0 such that − ct −
n+2

2
µ̇
µ ≈ −

c
t + n+2

2 µn−2
0 (t) = − ct +

n+2
2

1
t = 0, we obtain that c 1

t∆z̃ − ∂t∆z̃ < µ−
n+2
2

n+2
n−2U

4
n−2 (y)∇U(y) · y

(
− µ̇µ
)

+

µ−
n+2
2

n+2
n−2U

4
n−2 (y)∇U(y) ·

(
− ξ̇
µ

)
< 0. That is to say we have ∆

(
c 1
t z̃ − ∂tz̃

)
< 0

on Ω \ Bε(ξ), moreover, there hold 1
t z̃ − ∂tz̃ = 0 on ∂Ω as well as the estimate

c 1
t z̃ − ∂tz̃ = cµ

−n−2
2

t U (y) − µ−
n−2
2

(
−n−2

2
µ̇
µ

)
U (y) − µ−

n−2
2 ∇U (y) · y

(
− µ̇µ
)
−

µ−
n−2
2 ∇U (y) ·

(
− ξ̇
µ

)
− cµ

−n−2
2

t µn−2Hµ(x, q) + µ−
n−2
2

(
−n−2

2
µ̇
µ

)
µn−2Hµ(x, q) +

µ−
n−2
2 µn−2

(
(n− 2) µ̇µ

)
Hµ(x, q) > 0 on ∂Bε(ξ) when t0 is large enough. From this

we see that c
t z̃−∂tz̃ > 0 in Ω\Bε(ξ), which implies ∂tz

z ≤
c
t in Ω\Bε(ξ). Similarly,

∂tz
z ≥

c′

t for some c′ < 0 and hence
∣∣∂tz
z

∣∣ ≤ c′′

t in Ω\Bε(ξ) for some positive number

c′′ > 0. In the domain Bε(ξ), the estimate |∂tzz | ≤ c′′µn−2
0 (t) is obvious since the

main term of z̃ is µ−
n−2
2 U (y).

For τ ∈ [t0, s− 1], we set η(t) = t− τ , then

d

dt

(
η(t)

∫
Ω

ψ2zp−1dx

)
+ η(t)

∫
Ω

|∇ψ|2 ≤
∫

Ω

(ψ2 + g2)zp−1dx+ µn−2
0 (t)

∫
Ω

ψ2zp−1dx

holds for any t ∈ [τ, τ + 1]. Integrate this inequality on [τ, τ + 1], we obtain∫
Ω

ψ2(·, τ + 1)zp−1dx+

∫
Λτ

η(t) |∇ψ|2 dx ≤ ‖ψ‖2L2(Λτ ) + ‖g‖2L2(Λτ ) +
1

τ
‖ψ‖2L2(Λτ ).

Multiply (3.4) with ψt and take integration over Ω, we have∫
Ω

ψ2
t z
p−1dx+

d

dt

∫
Ω

(
|∇ψ|2 − pψ2zp−1

)
dx

≤
∫

Ω

(ψ2 + g2)zp−1dx+ µn−2
0 (t)

∫
Ω

ψ2zp−1dx

and ∫
Ω

η(t)ψ2
t z
p−1dx+

∫
Ω

(
|∇ψ|2 − pψ2zp−1

)
(·, τ + 1)dx

≤ ‖ψ‖2L2(Λτ ) + ‖g‖2L2(Λτ ) + µn−2
0 (t)‖ψ‖2L2(Λτ ).

Therefore, we have

‖ψ‖L2
t0,s

,ν ≤ ‖ψ‖L2
t0,s

,ν + ‖g‖L2
t0,s

,ν ,

‖ψt‖L2
t0,s

,ν ≤ ‖ψ‖L2
t0,s

,ν + ‖g‖L2
t0,s

,ν
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and

‖z−(p−1)∆ψ‖L2
t0,s

,ν ≤ ‖ψ‖νL2
t0,s

+ ‖g‖L2
t0,s

,ν .

The above estimates implies that ‖ψ‖H2
t0,s

,ν ≤ C(‖ψ‖L2
t0,s

,ν + ‖g‖L2
t0,s

,ν). Since∫
Ω
Vµ,ξψ

2dx ≤ o
(

1
R

) ∫
Ω
ψ2zp−1dx, then standard parabolic estimate shows that

‖ψ‖L2
t0,s

,ν ≤ C
(
‖g‖L2

t0,s
,ν + ‖h‖L2

t0,s
,ν

)
.

Thus we have

‖ψ‖H2
t0,s

,ν ≤ C
(
‖g‖L2

t0,s
,ν + ‖h‖L2

t0,s
,ν

)
.

Second, we consider the solution ψR,s(x, t) of the following problem
pzp−1ψt = ∆ψ + Vµ,ξψ + zp−1g in QR,s,

ψ(·, t0) = h(x) in Ω 1
R
,

ψ(x, t) = 0 on ∂Ω 1
R
× [t0, s).

(3.5)

where QR,s = Ω 1
R
× [t0, s] and Ω 1

R
:= {x ∈ Ω | dist(x, ∂Ω) < 1

R}, dist(x, ∂Ω) means

the distance of x to the boundary ∂Ω of Ω. Problem (3.5) is a non-degenerate
parabolic one, from standard parabolic theory, there exists a unique solution of
(3.5). Then by the same arguments as above, we have

‖ψR,s‖H2
t0,s

,ν ≤ C0

(
‖g‖L2

t0,s
,ν + ‖h‖L2

t0,s
,ν

)
.

Here C0 is independent of R and s. Let Rj → +∞ and set Λτ0,s = Ω× [t0, s], then
ψRj ,s converges in C∞(Λτ0,s) to a smooth solution ψs on Λτ0,s.

Finally, we take a sequence sj → +∞, for each sj , there exists solution ψsj

satisfying the a priori estimates (3.3) independent of sj . For every compact subset
K ⊂ Ω × (t0,+∞), standard parabolic theory can be applied to get higher order
derivative estimates for ψs, then, by the Arzela-Ascoli theorem, ψsj converges to
a smooth solution ψ of (3.2) defined on Ω × (t0,+∞). By taking limits, we know
that estimate (3.3) also hold, which completes the proof. �

In the region ∪kj=1B2µjR(ξj), we consider the following model problem of (2.14),{
pzp−1ψt = ∆ψ + Vµ,ξψ + fj(x, t) in B2µjR(ξj)× [t0,+∞),

ψ(·, t0) = hj(x) on B2µjR(ξj),
(3.6)

j = 1, · · · , k. For α, β > 0, we assume fj(x, t) satisfies

|fj(x, t)| ≤M
µ−2

0 µβ0
1 + |y|2+α

(3.7)

and denote by ‖fj‖∗,β,2+α the least M such that (3.7) holds. It is convenient to lift
(3.6) onto the standard sphere Sn. Let us recall some facts about the conformal
Laplacian on Sn first.
Conformal Laplacian on Sn. Let π : Rn → Sn be the stereographic projection
given by

π(y1, · · · , yn) =

(
2y

1 + |y|2
,
|y|2 − 1

|y|2 + 1

)
.
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For a function φ : Rn → R, we define the lifted function φ̃ of φ on Sn by the relation

φ(y) = φ̃(π(y))

(
2

1 + |y|2

)n−2
2

, y ∈ Rn. (3.8)

The conformal Laplacian on Sn can be defined as

P = ∆Sn −
1

4
n(n− 2),

here ∆Sn is the Laplace-Beltrami operator on Sn. Then the following well known
property holds, (

2

1 + |y|2

)n+2
2

P (φ̃) ◦ π = ∆Rnφ

for φ and φ̃ satisfying the relation (3.8). Using idea of [11], we have the following
result.

Lemma 3.2. Suppose ‖fj‖∗,β,2+α < +∞ for some α > 0 and β > 0. Then there
exists a solution ψ = ψ[fj , hj ] of (3.6) satisfies the following estimates

|ψ(x, t)| . ‖fj‖∗,β,2+α

k∑
j=1

µβ0 (t)

1 + |yj |α

+

k∑
j=1

e−δ(t−t0)‖hj(x)‖L∞(BµjR(ξj)),

|∂tψ(x, t)| . ‖fj‖∗,β,2+α

k∑
j=1

µβ0 (t)

1 + |yj |α−2

and

|∇ψ(x, t)| . ‖fj‖∗,β,2+α

k∑
j=1

µ−1+β
0 (t)

1 + |yj |α−1
,

here yj :=
x−ξj
µj

.

Proof. Now we lift (3.6) to the sphere, we get the following equation(1 + a(ỹ, t))ψ̃t = ∆Sn ψ̃ −
1

4
n(n− 2)ψ̃ + Ṽµ,ξψ̃ + f̃(ỹ, t) in B̃2R × [t0,+∞),

ψ(·, t0) = h̃(ỹ) on B̃2R.

(3.9)

Here ψ(y) = ψ̃(ỹ)
(

2
1+|y|2

)n−2
2

, ỹ = π(y), y =
x−ξj
µj

∈ B2R(0) and B̃2R :=

π(B2R(0)), the functions f̃ , g̃ and h̃ are defined similarly, furthermore Ṽµ,ξ(ỹ, t) =
µ2
j (1+ |y|2)2Vµ,ξ(y, t), |a(ỹ, t)| < ε for a small number ε > 0. Note that the function

f̃(ỹ, t) satisfies the estimate

|f̃(ỹ, t)| . ‖f‖∗,β,2+αµ
β
0 (π − |ỹ|)α−n.

Here |ỹ| means the geodesic distance of the point ỹ to the south pole in Sn. Let ψ̃1

be the solution of the following equation(1 + a(ỹ, t))∂tψ̃ = ∆Sn ψ̃ −
1

4
n(n− 2)ψ̃ in B̃2R × [t0,∞),

ψ̃(·, t0) = h̃ in B̃2R.
(3.10)
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Suppose ṽ(ỹ) is the bounded solution of ∆Sn ṽ− 1
4n(n−2)ṽ+1 = 0 in B̃2R satisfying

ṽ = 1 on ∂B̃2R. Then ṽ ≥ 1 in B̃2R and the function

ψ̄(ỹ, t) = e−δ(t−t0)‖h̃‖L∞(B̃2R)ṽ(ỹ)

is a super-solution of (3.10). Hence |ψ1(ỹ, t)| ≤ ψ̄.

Now suppose ψ̃2(ỹ, t) is the unique solution of (3.9) with h̃ = 0. Let p(ỹ) be the
positive solution of the equation

∆Snp−
1

4
n(n− 2)p+ 4q = 0 in Sn

with q(ỹ) = 1
(π−|ỹ|)n−α . Then by Riesz kernel (see, for example, [18]), we get

p(ỹ) ∼ 1
(π−|ỹ|)n−α−2 . For a fixed small δ > 0, we have

∆Snp−
1

4
n(n− 2)p+ δ(π − |ỹ|)−2p+ 2q ≤ 0 in Sn.

Observe that |Ṽµ,ξ| ≤ δ(π − |ỹ|)−2, then it is easy to see that ψ̃(ỹ, t) = 2µβ0p is a
positive super-solution to

(1 + a(ỹ, t))∂tψ̃ = ∆Sn ψ̃ −
1

4
n(n− 2)ψ̃ + Ṽµ,ξψ̃ + µβ0 q

for t > t0 and t0 is large enough. Therefore, one has

|ψ̃2(ỹ, t)| . µβ0‖f‖∗,β,2+α
1

(π − |ỹ|)n−α−2
.

Hence ψ̃ = ψ̃1 + ψ̃2 satisfies the estimate

|ψ̃(ỹ, t)| . ‖f‖∗,β,2+αµ
β
0 (t)

1

(π − |ỹ|)n−α−2

+ t−γ‖τγ g̃(ỹ, τ)‖L∞(∂B̃2R×[t0,∞)) + e−δ(t−t0)‖h̃‖L∞(B̃2R).

Finally, scaling arguments imply that

|∂tψ̃(ỹ, t)| . ‖f‖∗,β,2+αµ
β
0 (t)

1

(π − |ỹ|)n−α

and

|∇ψ̃(ỹ, t)| . ‖f‖∗,β,2+αµ
β
0 (t)

1

(π − |ỹ|)n−α−1
for ỹ ∈ B̃2R.

Projected to Rn, we obtain the desired estimates. �

Combine the above discussions, we have the following linear theory for the outer
problem. Define the norm ‖ψ‖∗∗,β,α,ν of ψ as the least positive number such that

(1 + |y|)−1µ0|∇ψ(x, t)|χ∪kj=1B2Rµj
(ξj) + (1 + |y|)−2|∂tψ(x, t)|χ∪kj=1B2Rµj

(ξj)

+ |ψ(x, t)|χ∪kj=1B2Rµj
(ξj) .M

k∑
j=1

µβ0 (t)

1 + |yj |α

and
‖ψ‖H2

t0
,ν .M.

Also we define ‖f‖∗,β,2+α,ν = ‖fχ∪kj=1B2Rµj
(ξj)‖∗,β,2+α+‖z1−pf‖L2

t0
,ν . From Lemma

3.1 and Lemma 3.2, we have the following result.
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Proposition 3.1. There exists a bounded linear operator which maps functions
f : Ω × (t0,+∞) → R, h : Ω → R with ‖f‖∗,β,2+α,ν < ∞, ‖h‖L2

t0
,ν < +∞ into a

solution ψ of(3.1), furthermore, the following estimate holds

‖ψ‖∗∗,β,α,ν ≤ C
(
‖f‖∗,β,2+α,ν + ‖h‖L2(Ω) + e−δ(t−t0)‖hχ∪kj=1B2Rµj

(ξj)‖L∞(Ω)

)
for a small constant δ > 0.

3.2. Solving the outer problem (2.14). Given a function h(t) : (t0,∞) → Rk
and δ > 0, we define its weighted L∞ norm as follows

‖h‖δ := ‖µ0(t)−δh(t)‖L∞(t0,∞).

In the rest of this paper, we assume the parameter functions λ, ξ, λ̇, ξ̇ satisfy the
following conditions,

‖λ̇(t)‖n−1+σ + ‖ξ̇(t)‖n−1+σ ≤ c, (3.11)

‖λ(t)‖1+σ + ‖ξ(t)− q‖1+σ ≤ c, (3.12)

for a positive constant c which is independent of t, t0 and R, σ > 0 is a small but
fixed constant. Also, for a fixed number a ∈ (−n,−2), let us denote

‖φ‖n−2+σ,n+a = max
j=1,··· ,k

‖φj‖n−2+σ,n+a,

where ‖φj‖n−2+σ,n+a is defined to be the least number M > 0 such that

(1 + |y|)−2|∂tφj(y, t)|+ (1 + |y|)−1|∇yφj(y, t)|+ |φj(y, t)| ≤M
µn−2+σ

0

1 + |y|n+a
(3.13)

holds for j = 1, · · · , k and |y| ≤ 2R. We assume that for φ = (φ1, · · · , φk), it holds
that

‖φ‖n−2+σ,n+a ≤ ct−ε0 (3.14)

for some ε > 0 sufficiently small.
Note that the function ψ is a solution to (2.14) if ψ is a fixed point of the operator

A(ψ) := T (f(ψ), ψ0),

where

f(ψ) =

k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pUp−1

j ∂t

)
ηj,R

]
+ S∗,outµ,ξ +N [φ̃]−

(
N [φ̃]

)
t
−
(
pzp−1

)
t
φ̃

− pzp−1∂t

k∑
j=1

ηj,Rφ̃j +

k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)
.

(3.15)

To apply the Contraction Mapping Theorem, we estimate the terms in (3.15) as
follows:

(1) Estimation of S∗,outµ,ξ :

|S∗,outµ,ξ (x, t)| . µ2−α−σ
0 (t0)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

and ‖z1−pS∗,outµ,ξ ‖L2
t0
,ν . t

−ε
0

(3.16)

with ν = n−2+σ
2 .
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(2) Estimation of
∑k
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pzp−1∂t

)
ηj,R

]
:∣∣∣∣∣∣

k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pzp−1∂t

)
ηj,R

]∣∣∣∣∣∣ . ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

and ‖z1−p
k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pzp−1∂t

)
ηj,R

]
‖L2

t0
,ν ≤ ‖φ‖n−2+σ,n+a

(3.17)
with ν = n−2+σ

2 .

(3) Estimation of (1− ∂t)N(φ̃):∣∣∣(1− ∂t)N(φ̃)
∣∣∣ .

t−ε0 (‖φ‖2n−2+σ,n+a + ‖ψ‖2∗∗,β,α)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
, when 6 ≥ n,

t−ε0 (‖φ‖pn−2+σ,n+a + ‖ψ‖p∗∗,β,α)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
, when 6 < n

and ‖z1−p(1− ∂t)N(φ̃)‖L2
t0
,ν ≤ c‖ψ‖∗∗,β,α,ν with ν =

n− 2 + σ

2
.

(3.18)

(4) Estimation of
(
pzp−1

)
t
φ̃:

∣∣∣(pzp−1
)
t
φ̃
∣∣∣ . µ2−α−σ

0 (t0)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

and ‖z1−p (pzp−1
)
t
φ̃‖L2

t0
,ν . ‖φ‖n−2+σ,n+a

(3.19)

with ν = n−2+σ
2 .

(5) Estimation of pzp−1∂t
∑k
j=1 ηj,Rφ̃j :∣∣∣∣∣∣pzp−1∂t

k∑
j=1

ηj,Rφ̃j

∣∣∣∣∣∣ . ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

and ‖z1−p∂t

k∑
j=1

ηj,Rφ̃j‖L2
t0
,ν . ‖φ‖n−2+σ,n+a

(3.20)

with ν = n−2+σ
2 .

(6) Estimation of
∑k
j=1 pU

p−1
j ∂t

(
ηj,Rφ̃j

)
:∣∣∣∣∣∣

k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)∣∣∣∣∣∣ . ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

and ‖z1−p
k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)
‖L2

t0
,ν . ‖φ‖n−2+σ,n+a

(3.21)

with ν = n−2+σ
2 .
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Proof of (3.16). Recall that

S∗,outµ,ξ =

S[z]−
k∑
j=1

S∗,inµ,ξ,j

+

k∑
j=1

(1− ηj,R)S∗,inµ,ξ,j .

In the region |x− qj | > δ with δ > 0 small, S∗,outµ,ξ can be estimated as follows

|Sout(x, t)| . µ
n−2
2

0 (µ2
0 + µn0 ) . µ2−α−σ

0 (t0)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

. t−ε0

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
.

In the region |x− qj | ≤ δ with δ > 0 small, we have

∣∣∣S(2)
µ,ξ(x, t)

∣∣∣ . µ−n+2
2

0

µn0
1 + |yj |2

. µ2−α−σ
0 (t0)

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
. t−ε0

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
.

Furthermore, in the region |x− qj | < δ,

∣∣∣(1− ηj,R)S∗,inµ,ξ,j

∣∣∣ . t−ε0

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α

since (1 − ηj,R) 6= 0 if |x − ξj | > µ0R. Therefore, we have ‖S∗,outµ,ξ ‖∗,β,2+α < t−ε0 .
Similarly, we have

∫
Ω

∣∣∣z1−pS∗,outµ,ξ

∣∣∣2 zp−1dx ≤ t−ε0

∫
Ω

∣∣∣∣∣ µ
n−2
2 +σ

0

1 + |y| 72−σ
|y|4
∣∣∣∣∣
2

zp−1dx

≤ t−ε0

∫
Ω/µ0

∣∣∣∣ µn−2+σ
0

1 + |y| 72−σ
|y|4
∣∣∣∣2 1

1 + |y|4
dy

≤ t−ε0 µn−2+σ
0

∫
Ω/µ0

1

1 + |y|−2σ−1+n−2+σ

1

1 + |y|4
dy

≤ t−ε0 µn−2+σ
0

∫
Rn

1

1 + |y|−σ+n+1
dy

≤ t−ε0 µn−2+σ
0 ,

(3.22)

thus ‖z1−pS∗,outµ,ξ ‖L2
t0
,ν ≤ t−ε0 with ν = n−2+σ

2 .

Proof of (3.17). For the term φ̃j
(
∆− ∂t

)
ηj,R, we have

∣∣∣φ̃j(∆− ∂t)ηj,R∣∣∣ .
∣∣∣∆η (|x−ξjRµ0j

|
)∣∣∣

R2µ2
0j

µ
−n−2

2
0 |φj |

+

∣∣∣∣η′(|x− ξjRµ0j
|
)(
|x− ξj |
Rµ2

0

µ̇0 +
1

Rµ0
ξ̇

)∣∣∣∣µ−n−2
2

0 |φj |.
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Furthermore, there hold∣∣∣∆(|x−ξjRµ0j
|
)∣∣∣

R2µ2
0j

µ
−n−2

2
0 |φj | .

∣∣∣∆η (|x−ξjRµ0j
|
)∣∣∣

R2µ2
0j

µ
n−2
2 +σ

0

(1 + |yj |n+a)
‖φ‖n−2+σ,n+a

. ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α

and ∣∣∣∣∣η′
(
|x− ξj
Rµ0j

|
)(
|x− ξj |µ̇0 + µ0ξ̇

Rµ2
0

)∣∣∣∣∣µ−n−2
2

0 |φj |

.

∣∣∣η′ (|x−ξjRµ0j
|
)∣∣∣

R2µ2
0j

(µn0R
2 + µn+σ

0 R)µ
−n−2

2
0 |φj |

. ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
.

The estimate of ∇ηj,R ·∇φ̃j−φ̃jpzp−1∂tηj,R is similar, hence we have (3.17). There-
fore, we have

‖
k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pzp−1∂t

)
ηj,R

]
‖∗,β,2+α . ‖φ‖n−2+σ,n+a.

Similar estimates as (3.22), we have

‖z1−p
k∑
j=1

[
2∇ηj,R∇xφ̃j + φ̃j

(
∆x − pzp−1∂t

)
ηj,R

]
‖L2

t0
,ν . ‖φ‖n−2+σ,n+a

with ν = n−2+σ
2 .

Proof of (3.18). Observe that

N(ψ +

k∑
j=1

ηj,Rφ̃j) .


zp−2

|ψ|2 +

k∑
j=1

|ηj,Rφ̃j |2
 , when 6 ≥ n,

|ψ|p +

k∑
j=1

|ηj,Rφ̃j |p, when 6 < n.

If 6 ≥ n, there hold

∣∣∣zp−2(ηj,Rφ̃j)
2
∣∣∣ . | φ̃j

z
zp−1φ̃j | . µσ0‖φ‖2n−2+σ,n+a

µ
n−2
2 +σ

0

1 + |yj |4

. t−ε0 ‖φ‖2n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
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and ∣∣zp−2ψ2
∣∣ . |ψ

z
zp−1ψ| . µσ0‖ψ‖2∗∗,β,α

µ
n−2
2 +σ

0

1 + |yj |4+α

. t−ε0 ‖ψ‖2∗∗,β,α
k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
.

In the above, we have used the facts that
∣∣∣ φ̃jz ∣∣∣ ≤ µσ0 (t)‖φ‖n−2+σ,n and

∣∣∣ψz ∣∣∣ ≤
µσ0 (t)‖ψ‖∗∗,β,α in the region ∪kj=1B2Rµj (ξj). If 6 < n, there hold∣∣∣ηj,Rφ̃j∣∣∣p . µ

(n−2
2 +σ)p

0

1 + |yj |(n+a)p
‖φ‖pn−2+σ,n+a

. µ
(p−1)(n−2

2 +σ)
0 ‖φ‖pn−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
,

and

|ψ|p . µ
p(n−2

2 +σ)
0

1 + |yj |pα
‖ψ‖p∗∗,β,a

. µ
(p−1)(n−2

2 +σ)
0 ‖ψ‖p∗∗,β,α

k∑
j=1

µ−2
j µ

n−2
2 +σ

0 (t)

1 + |yj |2+α
.

The estimates for ∂tN are similar.
Since ∣∣z1−pzp−2ψ2

∣∣ . |ψ
z
ψ| . c|ψ|

and ∣∣z1−p|ψ|pψ2
∣∣ . |(ψ

z

)p−1

ψ| . c|ψ|,

we have

‖z1−p(1− ∂t)N(φ̃)‖L2
t0
,ν ≤ c‖ψ‖∗∗,β,α,ν

with ν = n−2+σ
2 .

Here we have used the fact that: in the region Ω \ B2Rµj (ξj), the solution ψ of
(2.14) satisfying the estimate

|ψ(x, t)| . |z(x, t)|.

Indeed, observe that in the region Ω\∪kj=1B2Rµj (ξj), the function u(x, t) = z(x, t)+
ψ(x, t) is a solution of the problem

∂up

∂t
= ∆u+ up in Ω× (t0,+∞),

u = 0 on ∂Ω× (t0,+∞),

u(x, t0) = u0(x) := z(x, t0) + ψ0(x) on Ω.

(3.23)

Suppose v = v(x) is the bounded solution of ∆v + 1 = 0 in Ω satisfying v = 0 on
∂Ω. Then v > 0 in Ω and the function

ψ̄(x, τ) = (T − τ)
1+δ
1−m v(x)

1
m with m =

n− 2

n+ 2
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is a super-solution of ∂τw −∆wm = 0. Indeed, we have

∂τ ψ̄ −∆ψ̄m = − 1 + δ

1−m
(T − τ)

m+δ
1−m v(x)

1
m + (T − τ)

m(1+δ)
1−m

= (T − τ)
m(1+δ)
1−m

(
− 1 + δ

1−m
(T − τ)

δ−δm
1−m v(x)

1
m + 1

)
> 0

when τ is close to T . Then by the maximum principal for the fast diffusion equation

(for example, Theorem 1.1.1 in [14]), we have |w(x, τ)| ≤ (T − τ)
1+δ
1−m v(x)

1
m when

τ is close to T . From the relation (1.3), the solution of (3.23) can be controlled

as |u(x, t)| ≤ (T − τ)
mδ

1−m v(x) ≤ (Te−t)
mδ

1−m v(x) if u0 := z(x, t0) + ψ0(x) satisfies
‖u0‖L∞(Ω) ≤ e−εt0 for t0 > 0 large enough and ε > 0 is small enough. Hence in the

region Ω\∪kj=1Bε(ξj) with ε > 0 small enough, the solution ψ of (2.14) satisfies the
esitmate

|ψ| . |z|+ (T − τ)
mδ

1−m v(x) . |z|+
(
Te−t

) mδ
1−m v(x). (3.24)

Furthermore, |z| ≤ Cµ
n−2
2

0 (t)v(x) in the Ω \ ∪kj=1Bε(ξj) for some positive constant

C > 0, ε > 0 is a fixed small number. Indeed, z satisfies ∆z + µ−
n+2
2 U

n+2
n−2 (y) = 0

in Ω \ Bε(ξ), z = 0 on ∂Ω, z > Cµ
n−2
2 v(x) on ∂Bε(ξ) (for simplicity, we assume

k = 1 and denote ξj as ξ). From this we see that z > Cµ(n−2)/2v(x) in Ω \ Bε(ξ)
and (Te−t)

mδ
1−m v(x)/z . (Te−t)

mδ
1−m µ−

n−2
2 � 1 when t0 is large. In the region

Bε(ξ), we have (Te−t)
mδ

1−m v(x)/z . (Te−t)
mδ

1−m µ
n−2
2 −(n−2) � 1. From (3.24), we

obtain |ψ(x, t)| . |z(x, t)|.
Proof of (3.19). From the definition of ‖φ‖n−2+σ,n+a, we have

∣∣∣(pzp−1
)
t
φ̃
∣∣∣ . ∣∣∣zp−1φ̃

∣∣∣ ∣∣∣∣∣ µ̇+ ξ̇

µ

∣∣∣∣∣ . µn−2
0 ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |n+a+4

. t−ε0 ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
.

Therefore, we have

‖
(
pzp−1

)
t
φ̃‖∗,β,2+α . ‖φ‖n−2+σ,n+a.

Similar to (3.22), we have

‖z1−p (pzp−1
)
t
φ̃‖L2

t0
,ν . ‖φ‖n−2+σ,n+a

with ν = n−2+σ
2 .
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Proof of (3.20). From the definition of ‖φ‖n−2+σ,n+a, we have∣∣∣∣∣∣pzp−1∂t

k∑
j=1

ηj,Rφ̃j

∣∣∣∣∣∣
.
∣∣pzp−1

∣∣ k∑
j=1

(
|∂tηj,R|

∣∣∣φ̃j∣∣∣+ |ηj,R|
∣∣∣∂tφ̃j∣∣∣)

.
∣∣pzp−1

∣∣ k∑
j=1

∣∣∣∣η′(|x− ξjRµ0j
|
)(
|x− ξj |
Rµ2

0

µ̇0 +
1

Rµ0
ξ̇

)∣∣∣∣µ−n−2
2

0 |φj |

+
∣∣pzp−1

∣∣ k∑
j=1

|ηj,R|
(
µ
−n−2

2
0 |∂tφj |+ µ

−n−2
2

0

µ̇0

µ0
|φj |
)

. ‖φ‖n−2+σ,n+a|zp−1| µ
n−2
2 +σ

0

1 + |y|n+a
. ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
.

Therefore, we have

‖pzp−1∂t

k∑
j=1

ηj,Rφ̃j‖∗,β,2+α . ‖φ‖n−2+σ,n+a.

Similar to (3.22), we have

‖p∂t
k∑
j=1

ηj,Rφ̃j‖L2
t0
,ν . ‖φ‖n−2+σ,n+a

with ν = n−2+σ
2 .

Proof of (3.21). From the definition of ‖φ‖n−2+σ,n+a, we have∣∣∣∣∣∣
k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)∣∣∣∣∣∣
.

k∑
j=1

∣∣∣pUp−1
j

∣∣∣ (|∂tηj,R| ∣∣∣φ̃j∣∣∣+ |ηj,R|
∣∣∣∂tφ̃j∣∣∣)

.
k∑
j=1

∣∣∣pUp−1
j

∣∣∣ ∣∣∣∣η′(|x− ξjRµ0j
|
)(
|x− ξj |
Rµ2

0

µ̇0 +
1

Rµ0
ξ̇

)∣∣∣∣µ−n−2
2

0 |φj |

+

k∑
j=1

∣∣∣pUp−1
j

∣∣∣ |ηj,R|(µ−n−2
2

0 |∂tφj |+ µ
−n−2

2
0

µ̇0

µ0
|φj |
)

. ‖φ‖n−2+σ,n+a|zp−1| µ
n−2
2 +σ

0

1 + |y|n+a
. ‖φ‖n−2+σ,n+a

k∑
j=1

µ−2
j µ

n−2
2 +σ

0

1 + |yj |2+α
.

Therefore, we have

‖
k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)
‖∗,β,2+α . ‖φ‖n−2+σ,n+a.
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Similar to (3.22), we have

‖z1−p
k∑
j=1

pUp−1
j ∂t

(
ηj,Rφ̃j

)
‖L2

t0
,ν . ‖φ‖n−2+σ,n+a

with ν = n−2+σ
2 .

Now we set

B =
{
ψ : ‖ψ‖∗∗,β,α,ν ≤Mt−ε0

}
with β = n−2

2 +σ and ν = n−2+σ
2 . Here the constant M is large but independent of t

and t0. For any ψ ∈ B, A(ψ) ∈ B as a consequence of the estimations (3.16)-(3.21).
And similar estimations imply that, for any ψ1, ψ2 ∈ B, there holds

‖A(ψ(1))−A(ψ(2))‖∗∗,β,α,ν ≤ C‖ψ(1) − ψ(2)‖∗∗,β,α,ν ,

for a constant C < 1 when t0 is chosen large enough. Therefore, A is a contraction
map in B and there exists a fixed point ψ of A, which is a solution to the outer
problem (2.14). Therefore, we obtain the following result.

Proposition 3.2. Assume λ, ξ, λ̇, ξ̇ satisfy the conditions (3.11) and (3.12),
φ = (φ1, · · · , φk) satisfies conditions (3.14), ψ0 ∈ C2(Ω) and

‖ψ0‖L∞(Ω) + ‖ψ0‖L2
t0
,ν ≤ t−ε0

for ν = n−2+σ
2 . Then there exists a large enough t0 > 0 and a small constant α > 0

such that the outer problem (2.14) possesses a unique solution ψ = Ψ[λ, ξ, λ̇, ξ̇, φ].
Moreover, there hold

|ψ(x, t)|χ∪kj=1B2R(ξj) . t
−ε
0

k∑
j=1

µ
n−2
2 +σ

0 (t)

1 + |yj |α
+

k∑
j=1

e−δ(t−t0)‖ψ0‖L∞(Ω),

|∇ψ(x, t)|χ∪kj=1B2R(ξj) . t
−ε
0

k∑
j=1

µ
−1+n−2

2 +σ
0 (t)

1 + |yj |α−1

and

‖ψ‖H2
t0
,ν . t

−ε
0 .

Here yj =
x−ξj
µ0j

.

Remark 3.1. The solution Ψ obtained in Proposition 3.2 depends smoothly on the

parameters λ, ξ, λ̇, ξ̇, φ, for yj =
x−ξj
µ0j

. Indeed, using Lemma 3.2 and the same

arguments as Proposition 4.2 of [11], in the domain ∪kj=1B2Rµj (ξj), we have

∣∣∂λΨ[λ, ξ, λ̇, ξ̇, φ][λ̄](x, t)
∣∣ . t−ε0 ‖λ̄(t)‖1+σ

 k∑
j=1

µ
n−2
2 +σ−1

0 (t)

1 + |yj |α

 ,

∣∣∂ξΨ[λ, ξ, λ̇, ξ̇, φ][ξ̄](x, t)
∣∣ . t−ε0 ‖ξ̄(t)‖1+σ

 k∑
j=1

µ
n−2
2 +σ−1

0 (t)

1 + |yj |α

 ,

∣∣∂ξ̇Ψ[λ, ξ, λ̇, ξ̇, φ][ ˙̄ξ](x, t)
∣∣ . t−ε0 µn−1+σ

0 ‖ ˙̄ξ(t)‖n−1+σ

 k∑
j=1

µ
−n2 +σ
0 (t)

1 + |yj |α

 ,
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∣∣∂λ̇Ψ[λ, ξ, λ̇, ξ̇, φ][ ˙̄λ](x, t)
∣∣ . t−ε0 µn−1+σ

0 ‖ ˙̄λ(t)‖n−1+σ

 k∑
j=1

µ
−n2 +σ
0 (t)

1 + |yj |α

 ,

∣∣∂φΨ[λ, ξ, λ̇, ξ̇, φ][φ̄](x, t)
∣∣ . ‖φ̄(t)‖n−2+σ,n+a

 k∑
j=1

µ
n−2
2 +σ

0 (t)

1 + |yj |α

 .

4. The inner problem (2.16)

To solve the highly nonlinear problem (2.16), we need a linear theory first, which
is the content of

4.1. The linear theory of the inner problem (2.16). In this subsection, we
consider the following linear equation

−pUp−1φt + ∆φ+ pUp−1φ+ Up−1h = 0 on Rn, (4.1)

with h = h(y, t) being supported on the ball B2R(0) and under the orthogonality
conditions ∫

B2R

h(y, t)Zj(y)Up−1(y)dy = 0 for j = 0, 1, · · · , n+ 1. (4.2)

Equation (4.1) is a degenerate parabolic equation, therefore a natural way is to lift
it to the standard sphere Sn, which becomes a classical (non-degenerate) parabolic
problem on Sn. Similarly to (3.8), we define g̃ on Sn to be

h(y) = h̃(π(y))

(
2

1 + |y|2

)n−2
2

, y ∈ Rn.

Then standard computation shows that (4.1) is equivalent to the following linear
heat problem on Sn

∂tφ̃ = (∆Sn + λ1) φ̃+ h̃ on Sn. (4.3)

Here λ1 = n is the second eigenvalue of ∆Sn with eigenfunctions Z̃j , j = 1, · · · , n+1,
given by the functions

Zi(y) = Z̃i(π(y))

(
2

1 + |y|2

)n−2
2

, y ∈ Rn.

Recall that the space L2(Sn) has an orthonormal basis Θm, m = 0, 1, · · · , which
are eigenfunctions of the problem

∆SnΘm + λmΘm = 0 in Sn (4.4)

so that
0 = λ0 < λ1 = · · · = λn+1 = n < λn+2 ≤ · · · .

One has Θ0(y) = α0 and Θj(y) = α1yj , j = 1, · · · , n+ 1, for constant numbers α0

and α1.

Proposition 4.1. Suppose a ∈ (−n,−2), ν > 0, ‖h̃‖a,ν < +∞ and∫
Sn
h(ỹ, t)Zj(ỹ)dỹ = 0 for all t ∈ (t0,∞), j = 1, · · · , n+ 1,

then there exists a function φ̃ = φ̃[h̃](ỹ, t) satisfying (4.3) and the estimate

(π − |ỹ|)|∇φ̃(ỹ, t)|+ |φ̃(ỹ, t)| . t−ν(π − |ỹ|)2+a‖h̃‖a,ν .
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Remark 4.1. Here and in the following, dỹ is the sphere measure on Sn, and
|ỹ| ∈ [0, π] is the geodesic distance of a point ỹ ∈ Sn to the south pole (0, · · · , 0,−1),

‖h̃‖a,ν is least positive number M such that

|h̃(y, t)| ≤Mt−ν(π − |ỹ|)a.

Lemma 4.1. Suppose a ∈ (−n,−2), ν > 0, ‖h̃‖a,ν < +∞ and∫
Sn
h̃(ỹ, t)Z̃j(ỹ)dỹ = 0 for all t ∈ (t0,∞), j = 1, · · · , n+ 1.

Then, for any sufficiently large number t1 > 0, the solution (φ(ỹ, t), c(t)) of the
problem 

∂tφ̃ = (∆Sn + λ1) φ̃+ h̃− c(t)Z̃0(ỹ), ỹ ∈ Sn, t ≥ t0,∫
Sn
φ̃(ỹ, t) · Z̃0(ỹ)dỹ = 0 for all t ∈ (t0,+∞),

φ̃(ỹ, t0) = 0, ỹ ∈ Sn,

(4.5)

satisfies the estimates

‖φ̃(ỹ, t)‖a+2,t1 . ‖h̃‖a,t1 (4.6)

and

|c(t)| . t−ν‖h̃‖a,t1 for t ∈ (t0, t1).

Here ‖h̃‖b,t1 := supt∈(t0,t1) t
ν‖(π − |ỹ|)−bh̃‖L∞(Sn).

Proof. Observe that (4.5) is equivalent to the following problem{
∂tφ̃ = (∆Sn + λ1) φ̃+ h̃− c(t)Z̃0(ỹ), ỹ ∈ Sn, t ≥ t0,

φ̃(ỹ, t0) = 0, ỹ ∈ Sn
(4.7)

for c(t) determined by the relation

c(t)

∫
Sn
|Z̃0(ỹ)|2dỹ =

∫
Sn
h̃(ỹ, t) · Z̃0(ỹ)dỹ.

Then it is easy to check that

|c(t)| . t−ν‖h̃‖a,t1 (4.8)

holds for t ∈ (t0, t1). Therefore we only need to show (4.6) for solutions φ̃ of (4.7).
We use the blowing-up arguments in the spirit of [19].

First, given t1 > t0, we have ‖φ̃‖a+2,t1 < +∞. Indeed, from the standard
parabolic theory on sphere, given R0 ∈ (0, π), there exists a positive constant
K = K(R0, t1) such that

|φ̃(ỹ, t)| ≤ K in B̃R0(0)× (t0, t1].

Here B̃R0(0) is the geodesic ball centered at the south pole with geodesic radius R0.
For a fixed R0 close to π and sufficiently large K1, K1(π−|ỹ|)2+a is a super-solution

of (4.7) when |ỹ| > R0. Therefore |φ̃| ≤ 2K1(π−|ỹ|)2+a and ‖φ̃‖a+2,t1 < +∞ holds
for any t1 > 0. Secondly, from the definition of c(t), the following identities hold,∫

Sn
φ̃(ỹ, t) · Z̃j(ỹ)dỹ = 0 for all t ∈ (t0, t1), j = 0, 1, · · · , n+ 1. (4.9)
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Finally, for any t1 > 0 sufficiently large, and any φ̃ satisfying (4.7), (4.9) and

‖φ̃‖a+2,t1 < +∞, we claim that the estimate

‖φ̃‖a+2,t1 . ‖h̃‖a,t1 (4.10)

holds, which implies (4.6).
To prove (4.10), we use contradiction arguments. Suppose there exist sequences

tk1 → +∞ and φ̃k, h̃k, ck satisfying the equation
∂tφ̃k = ∆Sn φ̃k + λ1φ̃k + h̃k − ck(t)Z̃0(ỹ), ỹ ∈ Sn, t ≥ t0,∫

Sn
φ̃k(ỹ, t) · Z̃j(ỹ)dỹ = 0 for all t ∈ (t0, t

k
1), j = 0, 1, · · · , n+ 1,

φ̃k(ỹ, t0) = 0, ỹ ∈ Sn

and also there hold

‖φ̃k‖a+2,tk1
= 1, ‖h̃k‖a,tk1 → 0. (4.11)

From (4.8), supt∈(t0,tk1 ) t
νck(t)→ 0. First, we claim it holds that

sup
t0<t<tk1

tν |φ̃k(ỹ, t)| → 0 (4.12)

uniformly on compact subsets away from the north point on Sn. Indeed, if there
are some points on Sn satisfying |ỹk| ≤M < π and t0 < tk2 < tk1 ,

(tk2)ν(π − |ỹk|)−a−2|φ̃k(ỹk, t
k
2)| ≥ 1

2
,

then we have tk2 → +∞. Now let us define

φ̄k(ỹ, t) = (tk2)ν φ̃k(ỹ, tk2 + t).

Then φ̄k is a solution of

∂tφ̄k = ∆Sn φ̄k + λ1φ̄k + h̄k − c̄k(t)Z̃0(ỹ) in Sn × (t0 − tk2 , 0],

with h̄k → 0, c̄k → 0 uniformly on compact subsets of (Sn \ {north pole})×(−∞, 0],
moreover, it holds that

|φ̄k(ỹ, t)| ≤ (π − |ỹ|)a+2 in Sn × (t0 − tk2 , 0].

From the dominant convergence theorem, we have φ̄k → φ̄ uniformly on compact
subsets of (Sn \ {north pole})× (−∞, 0], φ̄ 6= 0 and satisfies the following equation

∂tφ̄ = ∆Sn φ̄+ λ1φ̄ in Sn × (−∞, 0],∫
Sn
φ̄(ỹ, t) · Z̃j(ỹ)dỹ = 0 for all t ∈ (−∞, 0], j = 0, 1, · · · , n+ 1,

|φ̄(ỹ, t)| ≤ (π − |ỹ|)a+2 in Sn × (−∞, 0],

φ̄(ỹ, t0) = 0, ỹ ∈ Sn.

(4.13)

Now we claim that φ̄ = 0, from which we obtain a contradiction. Indeed, by
standard parabolic regularity on the sphere, φ̄(ỹ, t) is smooth. From a scaling
argument, we have

(π − |ỹ|)|∇Sn φ̄|+ |φ̄t|+ |∆Sn φ̄| . (π − |ỹ|)2+a.

Then differentiating (4.13) gives ∂tφ̄t = ∆Sn φ̄t + λ1φ̄t and

(π − |ỹ|)|∇Sn φ̄t|+ |φ̄tt|+ |∆Sn φ̄t| . (π − |ỹ|)2+a.
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Furthermore, we have
1

2
∂t

∫
Sn
|φ̄t|2 +B(φ̄t, φ̄t) = 0,

where

B(φ̄, φ̄) =

∫
Sn

[
|∇Sn φ̄|2 − λ1|φ̄|2

]
dỹ.

Since
∫
Sn φ̄(ỹ, t) · Z̃j(ỹ)dỹ = 0 for all t ∈ (−∞, 0], j = 0, 1, · · · , n + 1, B(φ̄, φ̄) ≥ 0.

Also, it holds that ∫
Sn
|φ̄t|2 = −1

2
∂tB(φ̄, φ̄).

From these relations, we obtain

∂t

∫
Sn
|φ̄t|2 ≤ 0,

∫ 0

−∞
dt

∫
Sn
|φ̄t|2 < +∞.

Therefore φ̄t = 0, thus φ̄ is independent of t and ∆Sn φ̄ + λ1φ̄ = 0. Since φ̄ is
bounded, by the non-degeneracy of the elliptic operator ∆Sn+λ1, φ̄ can be expressed
as a linear combination of the functions Z̃j defined in (4.4), j = 1, · · · , n+ 1. But∫
Sn φ̄ · Z̃j = 0, j = 1, · · · , n, we get φ̄ = 0, which a contradiction. Therefore (4.12)

holds.
From (4.11) and (4.12), there exists a sequence ỹk with π − |ỹk| → 0 such that

(tk2)ν(π − |ỹk|)−a−2|φ̃k(ỹk, t
k
2)| ≥ 1

2
.

Let us write φ̃k as a function of θ1, · · · , θn, i.e., φ̃k = φ̃k(θ1, · · · , θn) with θn being
the geodesic distance to the south pole. Suppose ỹk = (θk1 , · · · , θkn), then θkn → π
and

(tk2)ν(π − θkn)−a−2|φ̃k(θk1 , · · · , θkn, tk2)| ≥ 1

2
.

Set

φ̂k(ϑ1, · · · , ϑn, t) := (tk2)ν(π − θkn)−a−2×

φ̃k
(
θk1 + (π − θkn)ϑ1, · · · , θkn + (π − θkn)ϑn, (π − θkn)2t+ tk2

)
,

(4.14)
then

∂tφ̂k = ∆Sn φ̂k + akφ̂k + ĥk(z, t),

where

ĥk(ϑ1, · · · , ϑn, t) := (tk2)ν(π − θkn)−a×

h̃k
(
θk1 + (π − θkn)ϑ1, · · · , θkn + (π − θkn)ϑn, (π − θkn)2t+ tk2

)
.

From the assumptions on hk, there holds

|ĥk(ϑ1, · · · , ϑn, t)| . o(1)|1− ϑn|a((tk2)−1(π − θkn)2t+ 1)−ν .

Thus ĥk(ϑ1, · · · , ϑn, t)→ 0 uniformly on compact subsets of Sn × (−∞, 0] and the

function ak satisfies the same property. Furthermore, |φ̃k(0, · · · , 0)| ≥ 1
2 and

|φ̂k| . |1− ϑn|a+2((tk2)−1(π − θkn)2t+ 1)−ν .

Note that |1 − ϑn| is the geodesic distance between the point (ϑ1, · · · , ϑn) and
(θk1 , · · · , θkn−1, 1), by passing to a subsequence, we may assume (θk1 , · · · , θkn−1, 1)→
ê ∈ Sn, the geodesic distance from ê to the south pole is 1. Hence there exists a



30 Y. SIRE, J. WEI, AND Y. ZHENG

function φ̂ such that φ̂k → φ̂ 6= 0 uniformly on compact subsets of Sn × (−∞, 0],

and φ̂ satisfies the following equation

φ̂t = ∆Rn φ̂ in Rn × (−∞, 0] (4.15)

and
|φ̂(y, t)| ≤ |y − e|a+2 in Rn × (−∞, 0]. (4.16)

Here e is the pre-image of ê under the stereographic projection, i.e., ê = π(e) . Any
functions satisfying (4.15), (4.16) and a + 2 ∈ (2 − n, 0) must be zero, which is a
contradiction, hence we have the validity of (4.10).

Indeed, without loss of generality, assume e is the origin point. Define u(ρ, t) =

(ρ2 + t)
a+2
2 + ε

ρn−2 , then −ut+∆u < [−(a+2)+ 1
2 − (n−1)](ρ2 + t)

a
2 < 0, therefore

u(|y|, t + M) is a super-solution of (4.15)-(4.16) on Rn × [−M, 0]. Hence we have

|φ̂(y, t)| ≤ u(|y|, t + M). Letting M → +∞, we get |φ̂(y, t)| ≤ ε
|y|n−2 . Since ε is

arbitrary, we conclude that φ̂(y, t) = 0. �

Remark 4.2. In (4.14), if we define φ̂k as

φ̂k(ϑ1, · · · , ϑn, t) := (tk2)ν(π − θkn)−a−2×

φ̃k
(
θk1 + ϑ1, · · · , θkn−1 + ϑn−1, θ

k
n + (π − θkn)ϑn, (π − θkn)2t+ tk2

)
,

then the limit equation is

φ̂t = ∆Sn φ̂ in Sn × (−∞, 0]

and
|φ̂(y, t)| ≤ |y − ê|a+2 in Sn × (−∞, 0].

Under the assumption a + 2 ∈ (2 − n, 0) and similar arguments as above, one has

φ̂ = 0, which is also a contradiction.

Proof of Proposition 4.1. First, we consider the problem{
∂tφ̃ = (∆Sn + λ1) φ̃+ h̃− c(t)Z̃0(ỹ), ỹ ∈ Sn, t ≥ t0,

φ̃(ỹ, t0) = 0, ỹ ∈ Sn.

Let (φ̃(ỹ, t), c(t)) be the unique solution of the initial value problem (4.5), then by
Lemma 4.1, for any t1 > t0, there hold

|φ̃(ỹ, t)| . t−ν(π − |ỹ|)2+a‖h̃‖a,t1 , for all t ∈ (t0, t1), ỹ ∈ Sn

and
|c(t)| ≤ t−ν‖h̃‖a,t1 for all t ∈ (t0, t1).

By assumption, we have ‖h̃‖a,ν < +∞ and ‖h̃‖a,t1 ≤ ‖h̃‖a,ν for an arbitrary t1.
Therefore,

|φ̃(ỹ, t)| . t−ν(π − |ỹ|)2+a‖h̃‖a,ν for all t ∈ (t0, t1), ỹ ∈ Sn

and
|c(t)| ≤ t−ν‖h̃‖a,ν for all t ∈ (t0, t1).

Since t1 is arbitrary, we have

|φ̃(ỹ, t)| . t−ν(π − |ỹ|)2+a‖h̃‖a,ν for all t ∈ (t0,+∞), ỹ ∈ Sn

and
|c(t)| ≤ t−ν‖h̃‖a,ν for all t ∈ (t0,+∞).
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�
Using the stereographic projection, Proposition 4.1 is equivalent to the following

result.

Proposition 4.2. Suppose a ∈ (−n,−2), ν > 0, ‖Up−1h‖n+2+a,ν < +∞ and∫
B2R(0)

h(y, t)Zj(y)Up−1(y)dy = 0 for all t ∈ (t0,∞), j = 1, · · · , n+ 1. (4.17)

Then, for sufficiently large R, there exists φ = φ[h](y, t) satisfying (4.1) and

(1 + |y|)−2|∂tφ(y, t)|+ (1 + |y|)−1|∇φ(y, t)|+ |φ(y, t)| . t−ν

1 + |y|n+a
‖Up−1h‖n+2+a,ν .

Furthermore, there exists a function e0 = e0[h](t) such that φ(·, t0) = e0[h](t0)Z0(y)
and |e0[h]| . ‖Up−1h‖n+2+a,ν hold.

4.2. Choice of the parameter functions. To apply Proposition 4.2 to the inner
problem (2.16), the right hand term

Hj [λ, ξ, λ̇, ξ̇, φ](y, t) := pµ
n−2
2

0j

µ2
0j

µ2
j

Up−1

(
µ0j

µj
y

)
ψ(ξj + µ0jy, t)

+ µ
n+2
2

0j S∗,inµ,ξ,j(ξj + µ0jy, t) +B1[φj ] +B2[φj ] +B3[φj ]

should satisfy the orthogonality conditions (4.17), that is to say, we need the fol-
lowing identities∫

B2R

Hj [λ, ξ, λ̇, ξ̇, φ](y, t)Zl(y)dy = 0 for l = 1, · · · , n+ 1, j = 1, 2, · · · , k. (4.18)

These identities can be achieved by solving a system of ODEs for the parameter
functions λj , ξj , j = 1, · · · , k.

Lemma 4.2. When l = n + 1, identities (4.18) are equivalent to the following
system of ODEs,

λ̇j +
1

t

(
PT diag

(
σ̄ + 2

n− 2

)
Pλ

)
j

= Π1,j [λ, ξ, λ̇, ξ̇, φ](t) (4.19)

where σ̄ is a positive number and the right hand side term Π1,j [λ, ξ, λ̇, ξ̇, φ](t) can
be expressed as

Π1,j [λ, ξ, λ̇, ξ̇, φ](t) =t−ε0 µn−1+σ
0 (t)fj(t)

+ t−ε0 Θ1,j

[
λ̇, ξ̇, µn−2

0 (t)λ, µn−2
0 (ξ − q), µn−1+σ

0 φ
]

(t).
(4.20)

Here fj(t) and Θ1,j

[
λ̇, ξ̇, µn−2

0 (t)λ, µn−2
0 (ξ − q), µn−1+σ

0 φ
]

(t) are smooth bounded

functions of t. Furthermore, the following Lipschitz properties hold,∣∣∣Θ1,j [λ̇1](t)−Θ1,j [λ̇2](t)
∣∣∣ . t−ε0 |λ̇1(t)− λ̇2(t)|∣∣∣Θ1,j [ξ̇1](t)−Θ1,j [ξ̇2](t)
∣∣∣ . t−ε0 |ξ̇1(t)− ξ̇2(t)|,∣∣Θ1,j [µ

n−2
0 λ1](t)−Θ1,j [µ

n−2
0 λ2](t)

∣∣ . t−ε0 |λ̇1(t)− λ̇2(t)|∣∣Θ1,j [µ
n−2
0 (ξ1 − q)](t)−Θ1,j [µ

n−2
0 (ξ2 − q)](t)

∣∣ . t−ε0 |ξ1(t)− ξ2(t)|,∣∣Θ1,j [µ
n−1+σ
0 φ1](t)−Θ1,j [µ

n−1+σ
0 φ2](t)

∣∣ . t−ε0 ‖φ1(t)− φ2(t)‖n−2+σ,n+a.
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Proof. For a fixed j ∈ {1, · · · , k}, let us compute the term∫
B2R

Hj [λ, ξ, λ̇, ξ̇, φ](y, t)Zn+1(y)dy.

First, we consider the term

µ
n+2
2

0j S∗,inµ,ξ,j(ξj + µ0jy, t)

=

(
µ0j

µj

)n+2
2 [

µ−1
0j S1(z, t) + λjb

−1
j µ−2

0 S2(z, t) + µ−2
j S3(z, t)

]
z=ξj+µjy

+

(
µ0j

µj

)n+2
2

µ0jµ
−2
0 [S1(ξj + µ0jy, t)− S1(ξj + µjy, t)]

+

(
µ0j

µj

)n+2
2

λjb
−1
j µ−2

0 [S2(ξj + µ0jy, t)− S2(ξj + µjy, t)]

+

(
µ0j

µj

)n+2
2

µ−2
j [S3(ξj + µ0jy, t)− S3(ξj + µjy, t)] ,

where

S1(z) = λ̇jpU(
z − ξj
µj

)p−1Zn+1

(
z − ξj
µj

)
− 2µ−1

0 µ̇0λjpU

(
z − ξj
µj

)p−1

Zn+1

(
z − ξj
µj

)
− µn−2

0 pU(
z − ξj
µj

)p−1
k∑
i=1

b2jMijλi,

S2(z) =µ̇0Zn+1

(
z − ξj
µj

)
pU

(
z − ξj
µj

)p−1

+ pU

(
z − ξj
µj

)p−1

µn−1
0

(
− bn−2

j H(qj , qj) +
∑
i 6=j

b
n−2
2

j b
n−2
2

i G(qj , qi)

)
and

S3(z) =ξ̇j · ∇U
(
z − ξj
µj

)
+ µ3

jpU

(
z − ξj
µj

)p−1

×

−µn−2
j ∇H(qj , qj) +

∑
i 6=j

µ
n−2
2

j µ
n−2
2

i ∇G(qj , qi)

 · (z − ξj
µj

)
.

By direct computations, we have∫
B2R

S1(ξj + µjy)Zn+1(y)dy = c2(1 +O(R2−n))λ̇j

− 2c2(1 +O(R−2))µ−1
0 µ̇0λj + c1(1 +O(R−2))µn−2

0

k∑
i=1

b2jMijλi,

∫
B2R

S2(ξj + µjy)Zn+1(y)dy = O(R2−n +R−2)µn−1
0
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and ∫
B2R

S3(ξj + µjy)Zn+1(y)dy = 0 (by symmetry).

Since
µ0j

µj
= (1 +

λj
µ0j

)−1, for any l = 1, 2, 3, there holds∫
B2R

[Sl(ξj + µ0jy, t)− Sl(ξj + µjy, t)]Zn+1(y)dy

= g(t,
λj
µ0

)λ̇j + g(t,
λj
µ0

)ξ̇ + g(t,
λj
µ0

)
∑
i

µn−2
0 λi + µn−1+σ

0 f(t),

where f , g are smooth bounded functions satisfying f(·, s) ∼ s, g(·, s) ∼ s as s→ 0.
Therefore we have

c

(
µj
µ0j

)n+2
2

µ0j

∫
B2R

µ
n+2
2

0j Sµ,ξ,j(ξj + µ0jy, t)Zn+1(y)dy

=

[
λ̇j +

1

t

(
PT diag

(
σ̄j + 2

n− 2

)
Pλ

)
j

]
+ t−ε0 g(t,

λj
µ0

)(λ̇+ ξ̇) + t−ε0 µn−2
0 g(t,

λj
µ0

),

for a positive number c. Here we have used the fact that, since G(q) is positive defi-
nite, the matrix with elements 1

2b
2
jMij can be diagonalized as 1

n−2P
T (σ̄1, · · · , σ̄k)P

with σ̄i > 0 for i = 1, · · · , k and P is a k × k matrix.
Next we compute the term

pµ
n−2
2

0j (1 +
λj
µ0j

)−2

∫
B2R

Up−1(
µ0j

µj
y)ψ(ξj + µ0jy, t)Zn+1(y)dy,

the principal part is I :=
∫
B2R

Up−1(y)ψ(ξj + µ0jy, t)Zn+1(y)dy. Decompose I as

I = ψ[0, q, 0, 0, 0](qj , t)

∫
B2R

Up−1(y)Zn+1(y)dy

+

∫
B2R

Up−1(y)Zn+1(y)(ψ[0, q, 0, 0, 0](ξj + µ0jy, t)− ψ[0, q, 0, 0, 0](qj , t))dy

+

∫
B2R

Up−1(y)Zn+1(y)(ψ[λ, ξ, λ̇, ξ̇, φ]− ψ[0, q, 0, 0, 0])(ξj + µ0jy, t)dy

= I1 + I2 + I3.

By Proposition 3.2, I1 = t−ε0 µ
n−2
2 +σ

0 f(t), f is a smooth bounded function. Similarly,

I2 = t−ε0 µ
n−2
2 +σ

0 g(t, λµ0
, ξ − q) for a bounded function g such that g(·, s, ·) ∼ s and

g(·, ·, s) ∼ s as s→ 0. From Remark 3.1 and mean value theorem, I3 is the sum of
terms like

µ
−n2 +σ
0 t−ε0 f(t)(λ̇+ ξ̇)F [λ, ξ, λ̇, ξ̇, φ](t)

and

µ
n−4
2

0 t−ε0 f(t)(λ+ ξ)F [λ, ξ, λ̇, ξ̇, φ](t),

where the function f is smooth bounded, F is a nonlocal operator with F [0, q, 0, 0, 0](t)
bounded.

Finally, there hold∫
B2R

Bi[φj ](y, t)Zn+1(y)dy = t−ε0 [µn−1+σ
0 (t)gi[φ](t) + ξ̇j`

i[φ](t)]
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for functions gi(s) satisfying gi(s) ∼ s as s→ 0, and `i[φ](t) is smooth bounded in
t. Combining all the estimates above, we conclude the result. �

Similarly, for the identities∫
B2R

Hj [λ, ξ, λ̇, ξ̇, φ](y, t(t))Zl(y)dy,

for any j = 1, · · · , k, l = 1, · · · , n, we have

Lemma 4.3. For j = 1, · · · , k, l = 1, · · · , n, (4.18) are equivalent to the following
system of ODEs

ξ̇j = Π2,j [λ, ξ, λ̇, ξ̇, φ](t),

Π2,j [λ, ξ, λ̇, ξ̇, φ](t)

= µn0 c

bn−2
j ∇H(qj , qj)−

∑
i 6=j

b
n−2
2

j b
n−2
2

i ∇G(qj , qi)

+ µn+σ
0 (t)fj(t)

+ t−ε0 Θ2,j [λ̇, ξ̇, µ
n−2
0 (t)λ, µn−1

0 (ξ − q), µn−1+σ
0 φ](t),

where c =
p
∫
Rn U

p−1 ∂U
∂y1

y1dy∫
Rn

(
∂U
∂y1

)2
dy

, fj(t) are smooth bounded n dimensional vector func-

tions for t ∈ [t0,∞), the n dimensional vector functions Θ2,j has the same properties
as in Lemma 4.2.

From Lemma 4.2 and Lemma 4.3, we know that the orthogonality conditions∫
B2R

Hj [λ, ξ, λ̇, ξ̇, φ](y, t(t))Zl(y)dy, for j = 1, · · · , k and l = 1, · · · , n+ 1,

are equivalent to the system of ODEs for λ and ξ,
λ̇j +

1

t

(
PT diag

(
σ̄ + 1

n− 2

)
Pλ

)
j

= Π1,j [λ, ξ, λ̇, ξ̇, φ](t),

ξ̇j = Π2,j [λ, ξ, λ̇, ξ̇, φ](t), j = 1, · · · , k.
(4.21)

System (4.21) is solvable for λ and ξ satisfying (3.11)-(3.12). Indeed, we have

Proposition 4.3. There exists a solution λ = λ[φ](t), ξ = ξ[φ](t) to (4.21) satis-
fying

|λ[φ1](t)− λ[φ2](t)| . t−ε0 µ1+σ
0 ‖φ1 − φ2‖n−2+σ,n+a

and

|ξ[φ1](t)− ξ[φ2](t)| . t−ε0 µ1+σ
0 ‖φ1 − φ2‖n−2+σ,n+a.

The proof is similar to that of [11], so we omit it here.

4.3. Solving the inner problem (2.16). After the parameter functions λ = λ[φ]
and ξ = ξ[φ] have been chosen such that the orthogonality conditions (4.18) hold,
problem (2.16) can be solved in the class of functions satisfying ‖φ‖n−2+σ,n+a <
+∞ bounded. From Proposition 4.2, there exists a bounded linear operator T
associating any function h(y, t) with ‖Up−1h‖n−2+σ,n+2+a-bounded the solution of
problem (4.1), thus (2.16) reduces to the following fixed point problem

φ = (φ1, · · · , φk) = A(φ) := (T (H1[λ, ξ, λ̇, ξ̇, φ]), · · · , T (Hk[λ, ξ, λ̇, ξ̇, φ])).
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From the definition of Hj , we have the estimate∣∣∣H[λ, ξ, λ̇, ξ̇, φ](y, t)
∣∣∣ . t−ε0

µn−2+σ
0

1 + |y|n+2+a
. (4.22)

Therefore A maps the set Λ := {φ | ‖φ‖n−2+σ,n+a ≤ ct−ε0 } into itself for some large
constant c > 0.

Moreover, A is a contraction map, hence there exists a fixed point, from which
we find a solution of (1.4). Indeed, this is consequence of the following estimates:
(a)

µ
n+2
2

0j |Sµ1,ξ1,j(ξj,1 + µ0jy, t)− Sµ2,ξ2,j(ξj,2 + µ0jy, t)|

. t−ε0

µn−2+σ
0 (t)

1 + |y|n+2+a
‖φ(1) − φ(2)‖n−2+σ,n+a

where

µi = µ[φ(i)], ξi = ξ[φ(i)], ξj,i = ξj [φ
(i)], i = 1, 2.

(b) From Remark 3.1, we have

pµ
n−2
2

0j

∣∣∣∣∣ µ2
0j

µ2
j,1

Up−1

(
µ0j

µj,1
y

)
ψ[φ(1)](ξj,1 + µ0jy, t)

−
µ2

0j

µ2
j,2

Up−1

(
µ0j

µj,2
y

)
ψ[φ(2)](ξj,2 + µ0jy, t)

∣∣∣∣∣
. t−ε0

µn−2+σ
0 (t)

1 + |y|n+2+a
‖φ(1) − φ(2)‖n−2+σ,n+a

where

µj,i = µj [φ
(i)], ψ[φ(i)] = Ψ[λi, ξi, λ̇i, ξ̇i, φ

(i)], i = 1, 2.

(c) From the definitions in Section 2, we have∣∣∣Bl[φ(1)
j ]−B(1)

j [φ
(2)
j ]
∣∣∣ . t−ε0

µn−2+σ
0 (t)

1 + |y|n+2+a
‖φ(1) − φ(2)‖n−2+σ,n+a

hold for l = 1, 2, 3. �
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