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ABSTRACT. For a smooth bounded domain Q C R™, n > 3, we consider the
fast diffusion equation with critical sobolev exponent

ow = Aw%

or
under Dirichlet boundary condition w(-,7) = 0 on 9. Using the parabolic
gluing method, we prove existence of an initial data wg such that the corre-
sponding solution has extinction rate of the form

n42 n+2
lw(, MlLee (@) = (T —7) 4 [In(T —7)[2"=>) (1 +0(1))

ast — T, here T > 0 is the finite extinction time of w(z, 7). This generalizes
and provides rigorous proof of a result of Galaktionov and King [30] for the
radially symmetric case Q = B1(0) := {z € R"||z| < 1} C R™.
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1. INTRODUCTION

Let © be a smooth bounded domain in R™, n > 3. We consider the following
fast diffusion equation
%—’f = Aw™ in Q x (0, c0),
w =0 on 08 x (0, 00), (1.1)
w(+,0) = wp in Q,
1
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with m € (0,1). The first equation in (1.1) is a singular but non-degenerate par-
abolic problem. From [39], we know that there exists a unique positive classical
solution w which is local in time for the the Dirichlet problem (1.1). The solution
vanishes at finite time as 7 — T— < oo, w > 0in Q x (0,7T) and w(z,T) = 0.

The asymptotic behaviour of solutions for (1.1) near the extinction time T" has
attracted much attention in the past two decades. Suppose Q@ = B1(0) := {x €
R™|Jz| < 1} € R", when m € (mg, 1) and mg := Z—_ﬁ From the classical work of
Berryman and Holland [2], the solution near the extinction time has a separated
self-similar form

w(z,7) = (T = 7) =7 5(x),
where S(z) is the positive solution of the following nonlinear elliptic problem
AS™ +(1—-m)"'S=0inQ, S =0 on N

When m € (0,ms), it was proved in [29], [30], [36] and [38] that the self-similar
behavior as ¢t — T'— can be described as

||

w(z,7) ~ (T —7)F <(T—7')ﬂ

which provides the leading order of the inner solution. Thus the inner region is
|z] = O((T — 7)#) and the outer region is |z| = O(1) with

w(z,7) ~ (T — 7)ot (0=20/m e (1),
where ®(z) is the Green’s function with Dirichlet boundary condition,
AD =—-C), ,0(z) in Q, &=0ondQ,

where C,, ,,, is a positive constant depending on n and m, §(x) is the Dirac delta
distribution function locating at origin.

For general smooth bounded domains, the papers [2], [0], [20], [27] and [28] stud-
ied the asymptotic behaviour near extinction time for solutions to (1.1). Recently,
Bonforte and Figalli proved the sharp extinction rates in [5] for the supercritical
case m € (mg,1). Optimal regularity at the boundary for solutions to (1.1) was
proved by Jin and Xiong in [33] when m € [mg,1). We refer the interested readers
to [3], [4], [7], [13], [14], [31], [35], [41] and the references therein for more results
on the asymptotic behavior of fast diffusion and porous medium equations.

The case m = my corresponds to the Yamabe flow which describes the evolution
of conformal metrics; there are many results in the literature under different set-
tings. For the Dirichlet problem (1.1), sharp asymptotic results are still missing.
To the best of our knowledge, the only asymptotic result was due to Galaktionov
and King [30]. The aim of this paper is to provide a rigourous asymptotic analysis
of (1.1) near the extinct time 7T for general smooth domain 2. Our result can be
stated as follows.

Let H(x,y) be the regular part of the Green’s function on  with Dirichlet
boundary condition, i.e., for fixed y € Q, H(x,y) satisfies A,H(x,y) = 0 in Q,

n—-2
H(z,y) = (mn=2) * for 2 € 09). Let q1," " ,qk to be k different but fixed points

le—y[™—2
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in 2. We define the following matrix,

H(qi,q1) —G(q1,2) —G(q1,qr)
-G(q1,92) H(q2,92) —-Gla2,q3) - —G(g3,q)

G(q) = : . , (1.2)
—G(q1, qr) ~G(gh—1,qx)  H(qr,qx)

Our main result is

Theorem 1. Suppose m = my = Z—;g, n >3, T > 0 is the finite extinction time,
k is a positive integer and q1,- -+ ,qr are k different but fixed points in Q such that
the matriz defined in (1.2) is positive definite, then there exist an initial data wq
and smooth functions fi;(T), &;(T) such that the solution w(x,T) of problem (1.1)
has the following asymptotic form when ™ — T—,
n—2 n—2

wrt (x,7)= (T —7) T X

n—2
k ~ 2

£5(7) ) T 5

Z Qn | < = — My (T)H(xaQJ) +30(.’L',T) )
(M?(T)er—ﬁj(ﬂlz !

j=1

n—2

where the parameters fi;(17) = B; (10g %) (14 0(1)) for some 3; > 0, £ —

1
g =o0 <(log L ) n2>, an = (n(n —2))"7 and G(x,7) — 0 uniformly away

T—1
from the points q1,- -+ ,qr as T — T—.
In the paper [30], Galaktionov and King gave the extinction rate [|w(-,7)||cc =

n+2 n+2

Yo(T—7)"7 |In(T — 7)|2==2 (14+0(1)) when Q = B1(0) := {x € R"||z| < 1} C R"
by matching expansions from the inner and boundary domains. Theorem 1 gives a
rigourous proof of this extinction rate as well as a description of the space part in
the multiple point case for general domains. We refer the interested readers to [30]
and [37] for more results on the extinction behaviour of the fast diffusion equations.

In the inner region near the point g;, w(x, 7) is a logarithmic perturbation of the
self-similar stationary structure. Indeed, we have

n+2

w(z,7) = (T — )% a(t)S1(|z — gjla™2 (1))(1 + o(1))

n+2
7\ 2(n-2)
T—1
tionary positive solutions {Sx(|z|)|A > 0}, which are the Loewner-Nirenberg explicit
solutions

with a(7) = v (1og and S; belongs to a one-parameter family of sta-

2n(n —2)

— | = ASy(rAT2)
2n(n —2) + (n+ 2)A7+2r2

S)\(T‘) = )\ [

to the nonlinear elliptic equation ASHE 4+ 1(n+2)S=0in R", see [32].
Under the transformation

w(z,t) = (T — 7)™ (@, 7)™ _p ey, (1.3)
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Problem (1.1) changes into the Yamabe flow equation on the bounded domain 2
as follows,

a&p = Au+uP in Q x (0,00),
u =10 on 90 x (0,00), (1.4)
u(+,0) = ug in Q,

for a function u : R" %[0, 00) — R and positive initial datum ug satisfying up|an = 0,

p = 2. Therefore, using the transformation (1.3), for problem (1.4), Theorem 1

has the following equivalent form.

Theorem 2. Suppose n > 3, k is a positive integer and q1,--- ,qr are k different
but fized points in  such that the matriz defined in (1.2) is positive definite, then
there exist an initial data uy and smooth functions p;(t), &;(t) such that the solution
of problem (1.4) has the following asymptotic form when t — 400,

n—2

k 2
-3 o 15 (t) _ 5 - -

j=1

where p; = ijﬁ(l +o(1)) for some 5; >0, & —q; = o(fﬁ), an, = (n(n —
2)"%

The behaviour of Yamabe flow was studied in [42], [8], [9], [10], [12], [13], [L5],
[16], [17], [40] (see also [34] for a related flow). Especially, in the case of S with
its standard Riemannian metric gs», the Yamabe flow evolving a conformal metric

g= vi2 (+,t)gsn takes the following form

and p(z,t) — 0 uniformly away from the points q1,--- ,qx as t — +00.

. -2
(/Uniirg)t — AS”’U —_ C'n,'U, Cp = %, (16)
which is equivalent to the problem
D0 = Autuit inR” x (0, 00), (1.7)
u(,O) =ug in R"

via the stereographic projection and cylindrical changes of variables. It was proved
in [42], [9] that the Yamabe flow (1.6) has a global solution, which converges expo-
nentially to a steady solution. In [25], del Pino and Saez showed that solutions for
problem (1.7) approach non-trivial steady states of the semilinear elliptic equation

n+2 n
Au +un—2 =0 on R".

Theorem 2 tells us that when we consider the Yamabe flow equation on a bounded
domain with Dirichlet boundary condition, infinite time blow-up phenomenon can
occur.

In the beautiful work [13], Daskalopoulos, del Pino and Sesum constructed a new
class of type IT ancient solutions to the Yamabe flow; these solutions are rotationally
symmetric and converge to a tower of spheres when ¢ — —oo. Note that Theorem
2 is on a bounded domain with Dirichlet boundary condition and the solutions we
find blow up at different points when the time ¢ — +o00. In the recent paper [22],
bubble tower solutions for the energy critical heat equation were constructed; we
conjecture that bubble tower solutions for Problem (1.4) also exist.
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Infinite time blowing-up solutions for the energy critical heat equation with

Dirichlet boundary condition

%u: Au+un? in Q x (0, 00),

u(+,t) = 0 on 09,

u(-,0) =wup in Q
of form (1.5) are constructed in the seminal work [11] when n > 5. Note that the
corresponding blow-up rates are fi;(t) ~ bjt_ﬁ (I14+0(1)) as t — +o0.

To prove Theorem 2, we use the gluing method in the spirit of [11] and [19],
which has been applied to various parabolic problems in recent years, such as finite
time and infinite time blow-up solutions for energy critical heat equations [11], [21],
[22], [23], [24], ancient solutions of the Yamable flow [13], singularity formation for
the harmonic map heat flow [19] and so on. In the survey paper by del Pino [20],
there are more results on the gluing method and its applications.

In the proof of Theorem 2, we first construct an approximation to the exact
solution with sufficiently small error, then, by linearization around the bubble and
fixed point theorem, we solve for a small remainder term. In the linear theory, we
use blow-up arguments; the main difficulty is that the parabolic problem is degen-
erate, the linear equation is lifted onto the standard sphere S™, which then becomes
a non-degenerate parabolic equation. Finally, based on the linear theory, we solve
the nonlinear problem by the contraction mapping theorem. The orthogonality
conditions are satisfied by solving an ODE system of the scaling and translation
parameter functions.

Remark 1.1. The spectrum of the following degenerate elliptic operator
Lofd] = s (A6 +pUP )

plays an tmportant role in the linear theory. Since there is a megative eigenvalue
for Lo with multiplicity one (see Section 2), our solution constructed in Theorem
2 is unstable. Indeed, from the proof the Theorem 2 and the same arguments as
in [11], there exists a submanifold M in the function space X = {u € C*(Q) :
ulon = 0} with codimension k and containing uqy(x,0) such that, if ug is a small
perturbation of ug(z,0) in M, then the corresponding solution u(x,t) to (1.4) still
has the asymptotic form

k ~ 2
5 (t) =2 . n=2
u(x,t) = Qp | ~ = -y (t)H(xa%') +i;’ (t)go(x,t),
2 138 + |lv = &(8)]? ’ !

the points §; are close to q; for j = 1,--- k. This is different from the ancient
solution case; the effect of the negative eigenvalue can be dealt with by adding an
additional parameter function which tends to 0 as t — —oo (tends to +o0o as t —
+00), see [17].

j=1

2. THE APPROXIMATE SOLUTION AND THE INNER-OUTER GLUING SCHEME

2.1. The approximate solution. Let ¢y > 0 be a large number to be chosen later
and consider the following problem
{(up)t = Au+uP in Q x (tg,0),

2.1
u =10 on 90 X (tg,00), 1)
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for p = "—*2 Let q1,--- ,qx € R™ be k fixed points, we are going to find a positive
solution to ( 1) of form

Z 5(t) S(t

with &;(t) — qj, pj(t) = 0 ast — oo for all j = 1,--- ,k and Uy, 4)¢, 1) (%) =

n—2

/J,j(t)_HEQU (r;fgt()t)>, Uly) = ap (ﬁ) * . which then provides a solution

u(x,t) = u(x,t — t9) to the original problem (1.4). Denote the error operator
as follows

S(u) := —(uP)s + Au + uP.
Then we have

o n;—? _ N 5
SWpi0).650) = = 5;Ups (@) = ;= Ulys)” ! (;Znﬂ(yj) + IJ : VU(%‘))

j j
_nt2_q _ . .
=15 7 T U) ™ (e () + & - VU ()
for yj = x;fgt()t). Since u = 0 on 0f), a natural better approximation than

Zj 1 U0, (t)( x) should be

n—2

Hat) = 3 50, t) with 5(@,0) = Uy, o, (@) — ;7 Hyy(2q)). (22)
j=1
Here for ﬁxed y € Q, Hy, (v,y) satisfies A, H, (v,y) = 0 in Q, H, (v,y) =
(n(n=2)"7"
(W3 +lz—yl
the fact that H,,(z,q) is a harmonic function, the error of Z is

k k P k
- Z} 02 + (Z} z) - Z} U? .. (2.3)

Moreover, by the same arguments as that of [11], for a fixed index j, in the region
|z — gj] < %min#l lg; — qi], set © = &; + p;y;, there holds

 for z € 9Q. Then from the equation satisfied by Uy, ()¢, (1) (z) and

n+2

* (wiBoj + iy + R;)

S[z = M
with

B . n=2_7 n=2
Eo; = pU(y;)P~* — I 3H(ijqj')+z/‘j2 pi* G4, ai)
i#£j
4 ‘uj_2,t'j,ij(yj)p71Zn+1(yj)7

By =pU(y;)"! _M;'FZVH(‘IJ’CIJ "'Z“J “12 VG(qj’ql) Vi
i#]

+ g pU( )P lfj VU (y;)
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and

n—2-= k

g g ni2 gL moi i fi & fi
R; = + (&G—q) g f + 1 ,
Ty 1+ Jylt ! O Tyt OZ1+ij|4

where f, f;, ﬁ, g and g are smooth and bounded functions of (y, ,ua w, &, 1;y;). Here
H(z,y) is the regular part of the Green’s function on  with Dirichlet boundary
condition, ie for fixed y € Q, H(x,y) satisfies A,H(z,y) = 0in Q, H(x,y) =

% for x € 09.
Suppose u = % + ¢ is the exact solution of (2.1) and write ¢(z,t) in self-similar

form around the point g;,

Bast) = ;o ( ;%) | (2.0
J

Then we have
n+2

T
— —pUP ()0 + Ayd + pU ()P o+ s T S[E] + Alg]

with A[¢] being a high order term. To improve the approximation error, we require
#(y,t) equals (at main order) to the solution ¢;(y,t) of the following equation

(2.5)

nt2
— pUP™H(y)Deoj + Ayoj +pU(y)P~ doj = —p;* S[Z] in R™. (2.6)

Near the blow-up point g;, equation (2.6) is mainly an elliptic problem of form

Lofg] = Ty (846 + pUW)6) = hly) in B, ) = 0 as Jy] = o0, (27)

Consider the eigenvalue problem Lg[¢]+A¢ = 0 on the weighted space L2(UP~1dz),
which has an infinite sequence of eigenvalues

/\O<)\1:"':)\n:)\n—H:O<)\n+2<)‘n+3<"'7

the associated eigenfunctions Z;, j = 0,1,--- constitute an orthonormal basis of
L2(UP~Ydz). Tt is well known that )¢ is simple and Zy(y) = U(y). We refer the
interested readers to the well written paper [13] and [5] for more properties on
this operator. Therefore every bounded solution of Lo[¢] = 0 in R™ is the linear
combination of the functions

21y L1,
where

ou ) n—2
Ziy) = ) i= Lo Zunly) = =

Furthermore, problem (2.7) is solvable if the following conditions

U(y) +y-VU(y).

/ h(y)Zi(y)UP (y)dy =0 forall i=1,--- ,n+1

hold.
Now we consider the solvability condition for equation (2.6) with i =n 4+ 1,

/n u;‘#s[i](yyt)ZnH(y)dy =0. (2.8)
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We claim that if one choose po; = b;uo(t) for some positive constants b, j =

,k to be determined later, po(t) = ’ynfﬁ and 7, is a positive constant
depending only on n, identity (2.8) holds at main order. Observe that the main
contribution term to the integral on the left hand side of (2.8) is

_ n— n=2_1 n=2
Eoj =pU(y;)P ™" | =uf 2 Hgjoq5) + > _py 1 ? Glaj.qi)

i#]j
+ 15 21U (y;)P ™~ Znga (y)-
Then direct computations yield the following
[ OEw (.0 20wy
~ey | Hga) = S i T Glag,an) | + eaiy

i
with

a=-p [ U(y)P~ ' Zns1(y)dy,

_ 2
o= [ U@ | Zun ) dy
Note that ¢y, co are finite positive numbers since we assume that n > 3. Set

15 (t) = bipo(t)-

Then (2.8) holds at main order if we have the following identities,

b?*QH(qj,qj)—Z(bibj)%G(qj,qi)—f—chfl,ué*”,uo =0forall j=1,---,k (2.9)

i#]
Set cac) l,u(l) "y = n22, we then have
. 201051 1
t) =— 0T (t 2.10
f1o () ok (1), (2.10)

2
and (2.10), the constants b; must satisfy the following system

1
—1 n—2
with the solution po(t) = (ﬂ) * ¢~72. Furthermore, from the identities (2.9)

. _1, n=2 2 1 .
b 3H QJaq_j ;b 2 i2 (qj,qz):mg for 311]217 ,k. (211)

System (2.11) can be viewed as the Euler-Lagrangian equation V,I(b) = 0 for the
functional

k
! n- 2ga og2
j=1

i

n—-2
Set Aj =b;? , then we have

(n—2)I(b) = ZH q5:45) A —ZG g5, qi) i A —ZlnA" -2

i#]
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By the same arguments as [11], system (2.11) possesses a unique solution with all
its components be positive if and only if the matrix

H(qi,q1) —Gla,¢2) -+ —Gla, ar)
—G(q2, 1) H(gz,q2) -+ —Gla2,q)
G(q) = : : . .
—Glaw, 1) —Glar,2) - H(qk, qx)
is positive definite. For the following solvability conditions of (2.6),

+2

/HM;TS(é)(y»t)Zi(y)dy =0, i=1,--,n,

choose £y; = g;, then these identities can be satisfied at main order. Now we denote

fio = (pto1, - -+, prox) = (bafto, -+ 5 brjio)
and let ®; be the unique solution of (2.6) for p = fig. Then

Ay, +pU(y)P~ ' ®; = —poj Eojlfio, fo;] in R, ®;(y,t) — 0 as |y| — oco.
From the definitions of ;1o and b; as above, there holds
pojEoj = —Aikg 2q0(y),
where 7; is a positive constant and
Q0(y) == pU )" tea + c1U(y)" ' Znia(y).

Let po = po(]y|) be the unique solution of A,® + pU(y)P~1® = qo, then po(ly|) =
O(|ly|=2) as |y| — oo and

©;(y.t) =i po(y)-
Now we define the improved approximation as follows
2(x,t) = Z(x, ) + B(x, 1)

with

k —2 —_ .
Oz, t) =D py * mole—q))®; (x - 3 J)

j=1

and 7o (z) is a smooth function defined on R™ which equals to 0 for x € R™ \ B.(0)
and equals to 1 for z € B¢ (0), € > 0 is a small but fixed positive number satisfying

0 < e < 2min{minjz =1,k |¢; — @, min—1 ... x dist(g;, 0Q)}. Here dist(z, )
means the distance of x to the boundary 992 of Q. Finally we set

p(t) = fio + Mt) with A(t) = (A (£), -, Au(2)).

Then the following result on the estimate of S[z] holds.
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Lemma 2.1. For a fized index j and in the region |v—q;| <  min{min;4;; —1,... x |¢;—
qi], min;—1 ...  dist(q;,00N)}, S[z] has the following expansion form

Zuj = {MOJ MU ()P~ Znga (y5) — 200,650 \0U (43)P ™ Znga ()

k
— pojg"pU ()P~ Y Mighi + 15 pU ()P~ - VU (y5)
=1
+uij(yj)p‘1[ "V H(gi )+ S 1T VG(qpqz)} -y }
i#]
+ Zuj [b 112 f10pU (y5)P ™" Zn 41 ()

+pU ()P g™ 3(—b;-4H<qj,qj>+ij2 b7 G(qj,qn)]

i#£j
k k
_nye 1, gty g A
o TP & Tyl e Tyl
j=1 Yj j=1 Yj Yj
2.
_nt2 Mg G
+py ? —— (& — q))
0 [ — 14+ |Z/]|4 ( J J
J_
k
_n«2¢»2 n—2 fljl .
+Ho Ho Z pU (y;)P = fiihih + Z o ATV
i,7,0=1 =1 1+ |y ‘
,0,t= 4,5,
_nt2
gy [”“Hug 1Zulfz+u02&fz],
1=1 1=1

where x = &5 + [4;Y;, f;, fis f, fiji, gj and G; are smooth bounded functions of
(u51ﬂ7£7x): fOT”i = j:

2

n— n n-2_o n—2
M =(n— 3)bj 4H(Qja‘1j) —( j b;* G4, ),

i#]
fori#j,
n—2 n-2_q1 n-2_ 4
Mij = — D) ij : b; * G(45,4i)-
i#j
The proof is the same as that of [11], so we omit it here.

2.2. The inner-out gluing scheme. Now we use the ansatz

k
)= zle,t) +9(x,1)

Jj=1
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2 n—

for zj(z,t) = Upe,(x) — p; % H(w,q5) + u;#q)j (%?,t» with this setting,
problem (2.1) becomes
AP - A\ P
- ((z+¢) >t+A(z+¢) + (z—l—qS) =0,
which can be linearized as
—p Mo+ MG+ p o+ S[E 4 NG - (NI]) - (), 6=0. (212)

Here we denote

~\ P ~
N[¢] = (z+¢) — 2P — p2P Lo,
Using the inner outer gluing method (see, for example, [11] and [19]), we write

O(z,t) = Y(x,t) + ¢ (,1)

with i
¢in (xa t) = Z nj,R(x7 t)é] (J?, t)
=1
e =T o (2 5)
and

Nj,R = (zgj)
" Rpuo;

Here 7(s) is a cut-off function satisfying n(s) = 1 for s <1 and = 0 for s > 2. The
positive number R is independent of ¢ but sufficiently large, for convenience, we
choose it as

R=t5, with0<e< 1. (2.13)
Then ¢ solves equation (2.12) if ¢ and ¢ satisfies the following system of two
equations respectively
k

P = AU+ Ve + 3 [2V05nVads + 85 (A — pU0)) 1]

—

552+ N - (V1) ~ =),

k k
—pP'0 > mirdi + > pUYTo, (Uj,R&j) in Q x [to, +00),
=1 =1
=0 on 090X [ty,+00)

(2.14)
and
pUY ™ 0udy = Ay +pUS ™" &5 + pUS ™'+ 87" in Bapyy (€) X [to, +00).
(2.15)
Here
k I Tz — § p—1 k
Vu,gzzp Zp_l_(,uj 2 U<J>) niR+D 1_2773,7}% 1
j=1 Hi j=1

n—2 — .
]
J
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. ntz [ . _ oy . _
Sy, t) =p; ? {Noj‘l)‘jPU (Y)P ™" Znsa (y) = 200,705 107pU (9)P ™" Zna (1)

k
— popg~pU (y)P Z M + uj_sz(y)pflfj -VU(y)
i=1
+pipU (y)" ™! { PV H (g5 + Y iyt 1T VG, qz)] : y}
i#]

_ni2 . -
+py ? by lbj 2110 2 10pU ()P~ Znya (v)

n—6 n—-2
+pU(y)P " g~ 3(—b?4H(Qj,CIj)+ij2 b; * G(%’a%‘))]
i#j
and

k k
s,out *, 11 * ,in
Sue = SM_ZS#,EJ +Z —15,r)S g
= Jj=

Under the self-similar coordinates, equation (2.15) can be rewritten as

pUP 0165 = Ag + pUP ™ ¢ + B[] + B[] + B®[¢;]

'UO Ho nt2 xin
+Pﬂoj MJUP ! (MJ >¢(§j+H0jya )+M02 S (& A+ pojy,t)
J J

in BQR(O) X [to, +OO)
(2.16)
Here

‘LL . _ .
B(¢;] = pUP~ 10y — p—2- UP ™ (/m;y) 09,
.Uj K

. n—2 .
B?[¢;] = wojfio; <2¢j +y- Vy¢j> + po; Vs - &5,

yr-1 (,uo]'y> ;.
7 Hj

(2.14) is the so-called outer problem, (2.16) or (2.15) is the inner problem. In
Section 3, we solve the outer problem (2.14) as a function of A, £ and ¢. In Section
4, we solve the inner problem (2.15) based on a linear theory and suitably choose
of the parameter functions A, &.

M2

B%[p;] =p [Upl <’;°Jy> ~ ULy ﬂ ¢ +p

J

3. THE OUTER PROBLEM (2.14)

3.1. Linear theory for (2.14). In this subsection, we consider the linear equation
of the outer problem

P2y = A+ Vet + f(2, ) in Q x [to, +00),
Y(x,t) =0 on N X [tg, +00), (3.1)
Y(x,tg) = h(z) on Q,

First we consider the H?2-estimate of (3.1). We have
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Lemma 3.1. Suppose ||g|12 , < 400 and ||hl|L2(q) < 400, there exists a solution
,07
Y =(x,t) of the following problem

—pe" My + A+ Vet + 2P g = 0 in Q x [to, +00),
1 =0 on 00 x [tg, +00), (3.2)
P(-,to) = h(z) on Q,

furthermore, there exists a positive constant C' such that

Il o < C (IBllz2) + gllez, o) (3.3)
holds for ty sufficiently large and v > 0.
Notations: For A, := Q x [r,7 4+ 1] and v > 0, we define

(-, 7) |2 = (/ (-, 7) 22 1dm>2,

||"/}L2(AT):(//A |¢|2zp_1dxdt> ;

_p=1
[l e any = 18lezan + 11277 Va2,
_p—-1
IVl m2ar) = 1WellL2a,y + 11272 AYllLza,) + 191 E1 AL

”wHL? , = sup M(;VHw”L?(A,)’
T>10

to?
[Ny 0 = sup o9l (),
T>10

[Pllz, 0

For s > tg, we also define

tooY

= sup o " [Pl m2(as)-
T>10

19llez 0= sup pg ll¥llz2an),
to<T<s

||¢HH,O§,V: sup fg ||?/1||H1(A )s

to<T<s
1l = sup i lllar=cay
’ to<T<s

Proof. First, we consider the following problem
—p2P Ty + AP+ Ve + 2P g =0 in Q X [to, 5),
Y(-,tg) = h(x) in Q, (3.4)
1 =0 on I X [tg,s).

Multiply (3.4) with ¢ and take integration over {2, we have

th/@z}w 1dz/§2<A¢w+VM,gw2+p(’“2 )'Z;w?zl’wng“) da.
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Integrate by parts (since we have assumed that the boundary condition is zero) and
use the Cauchy-Schwarz inequality, there holds

/1/)2 p= 1dm+/ Vi) /g2zp_1dx+/szp_ldx—f—,ug_?(t)/wQZp_ldac.

In the above inequality, we have used the fact that |% o~ 2(t). Indeed,
this is an Aronson-Bénilan type inequality in the setting of fast diffusion equation
(see, for example, [14]). Observe that in the domain Q \ B.(§) away from the
blow-up point (for simplicity, we assume k£ = 1 and denote p; as p, denote §; as

s 1Az s *"T” nt2 _nt2 2
§), z =z and c;AZ — 0} AZ = —c& =2 (y) +p 2 ( a2 “)U"2()—|—
p R BRUTS () VU(y) -y (- )ﬂrTMU T (y) VU (y >~(f§). Now if

we choose the constant ¢ > 0 such that —% — ";2Z -+ ";2 po~ 2(t) = -¢+
2421 — 0, we obtain that ¢ AZ — 9;AZ < ps %Uﬁ (y)VU(y) -y (—%) +

e %Uﬁ (y) VU(y) - (77> < 0. That is to say we have A (c+Z — 9;2) <0

on Q\ Bc(£), moreover, there hold 12 — 8,2 = 0 on 0% as well as the estimate

. ~ nsl _n-2 n— _n=2 ;
ciZ =0 = ct—U(y) —p~ 2 (‘%ﬁ)U(y) — VU -y (-E) -

n—2 3 -5 n— _n-2 n—2 n—
pEVU () - (=5) = et Hy () " (<222) 2 () +
T 2 ((n - 2)%) H,(x,q) > 0 on B(£) when ty is large enough. From this
we see that $Z—0;Z > 0in Q\ B(§), which 1mphes Sz < < £in Q\ B(§). Similarly,
% > %/ for some ¢’ < 0 and hence |‘9;Z| < Ct in Q\B (&) for some positive number
¢’ > 0. In the domain B.(£), the estimate |%| < g2 (t) is obvious since the

main term of Z is M_HT_?U( ).
For 7 € [tg, s — 1], we set n(t) = ¢ — 7, then

< /1/1221’ 1dz> +(t /|V1/J| / (W2 + g¥) 2P Lda + pl~ t)/QT/JQZp*ldx

holds for any t € [r,7 + 1]. Integrate this inequality on [r, 7 + 1], we obtain

_ 1
e 02 e [ a0 V6P b < [l + lale + 160

-

Multiply (3.4) with wt and take integration over 2, we have
/ Y2 Vdx + £ (|Vz/)| pi/)sz_l) dw
Q
S/(¢2+g2)2p_1d$+ug_2(t)/ ,L/)ZZp—ldx
Q Q

and

[ntwuzertan [ (196 = pe 1) o+ 1)da

< elZ2(a,y + 1972,y + 12 O1¢NZ2a,)-
Therefore, we have

v

1Pllez, o < 19llzz, o+ llglles
[Wllez o < l9llez o +1lglles

tp,s?

tg,sV tg,s?

v
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and
I DAYz, o < Il%,  + Dol

t tg,s 'V’
The above estimates implies that [[¥[|gz , < C([[¢llzz ,» + llgllzz .). Since
0:8° 0,8° 0,87
fQ Vuygz/ﬁdm <o (%) fQ 2 2P~1dz, then standard parabolic estimate shows that

Il o Illez, ) -

2 2
tp,s? tp,s?

, < (lgll

Thus we have
Il o < C (lgllzz, o+ IRlz, ) -

Second, we consider the solution 1%*(z,) of the following problem

PPy = AY + Vg + 2P g in Qrs,
¥(-,to) = h(z) in Q1 , (3.5)
Y(x,t) =0 on 921 x [to, s).

where Qs = Q. x [to, s] and Q= {z € Q|dist(z,00) < £}, dist(x, ) means
the distance of z to the boundary 9Q of Q. Problem (3.5) is a non-degenerate
parabolic one, from standard parabolic theory, there exists a unique solution of
(3.5). Then by the same arguments as above, we have

1%z, < Co (llgllzz, o+ Ilzz, ) -

Here C is independent of R and s. Let R; — 400 and set A, s = X [to, s], then
YTi:s converges in C*°(A,, s) to a smooth solution ¥* on A, s.

Finally, we take a sequence s; — 400, for each s;, there exists solution %
satisfying the a priori estimates (3.3) independent of s;. For every compact subset
K C QX (tg, +00), standard parabolic theory can be applied to get higher order
derivative estimates for v°, then, by the Arzela-Ascoli theorem, 1% converges to
a smooth solution v of (3.2) defined on 2 X (tg,+00). By taking limits, we know
that estimate (3.3) also hold, which completes the proof. (]

In the region U?Zl By, r(€j), we consider the following model problem of (2.14),

pzz)—lwt — A’lﬁ + VP«’E’L/} + fj (.T, t) in BQMjR(éj) X [to, —I-OO), (3 6)
U(-,to) = hj(x) on By, r(&;), '
j=1,---,k. For o, 8 > 0, we assume f;(z,t) satisfies
—2 B
Ho Mo
. <M .
‘f](zat” — 1+ ‘y|2+a (3 7)

and denote by || f;+,8,2+« the least M such that (3.7) holds. It is convenient to lift
(3.6) onto the standard sphere S™. Let us recall some facts about the conformal
Laplacian on S™ first.

Conformal Laplacian on S™. Let 7 : R® — S™ be the stereographic projection

given by
(Y, -,y )( 2 |y|21>
) ) n - ) *
L+ yl* Jyl* +1
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For a function ¢ : R™ — R, we define the lifted function ¢ of ¢ on S™ by the relation

n—2

o) =dn) (157) -+ weR" (35)

The conformal Laplacian on S™ can be defined as

P = Agn — in(n - 2),

here Agn is the Laplace-Beltrami operator on S™. Then the following well known
property holds,
nt2
2

2
—_— P = Agn
(1+y|2> (@)om=Aw-¢
for ¢ and ¢ satisfying the relation (3.8). Using idea of [11], we have the following

result.

Lemma 3.2. Suppose ||f;||«,8,2+a < +00 for some o > 0 and 8 > 0. Then there
exists a solution 1 = [f;, h;] of (3.6) satisfies the following estimates

k B
Ho (t)
[U(z,t)] S fill«g24a Y —— o
)‘ J B,2+ — 1+ |y]|a
]_
k
+Zefé(tfto)||hj($)\\Loo(BujR(gj)),
j=1
k B
o (t)
|8{(/J($,t)‘ S ”fj *7ﬂ,2+az %
j=1 L+ |yJ|
and
= e )
VY (z, )] S N fjllx8.24a T el
J Sl
here y; = m;?

Proof. Now we lift (3.6) to the sphere, we get the following equation
- ~ ~ 1 N
(1+a(g,t)s = Asn) — —n(n — 2) + V, ¢ + f(§,t) in Bag X [to, +00),

4
¥(-,to) = h(j) on Bag.
(3.9)

n—2

Here ¢(y) = 0() (mdp) ~ 9 = 7ly) v = %5 € Ban(0) and Bop =
7(Bag(0)), the functions f, § and h are defined similarly, furthermore V. e(@,t) =
15 (14 1y1*)? Ve (y, 1), la(,t)| < € for a small number e > 0. Note that the function

f(g,t) satisfies the estimate
P01 S 1 ll,,24ak0 (= [51)*"

Here || means the geodesic distance of the point § to the south pole in S™. Let 1
be the solution of the following equation

(1 + a(§,1))0) = Agntp — in(n —2)¢ in Byg X [tg, o),
i(',to) = il in BQR.

(3.10)
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Suppose (§) is the bounded solution of Aga®—in(n—2)5+1=0in Bs g, satisfying
v =1on 0Byg. Then ¥ > 1 in Bsy and the function

U(g,t) = 6_5(t_t°)||ﬁ||Lw(BQR)77(Z7)

is a super-solution of (3.10). Hence [y (7,t)| < 1.
Now suppose 1 (g,t) is the unique solution of (3.9) with h=0. Let p(7) be the
positive solution of the equation

1
Agnp — Zn(n —2)p+4¢=0in S"

with ¢(g) = W Then by Riesz kernel (see, for example, [18]), we get

p(7) ~ W For a fixed small § > 0, we have
1
Agnp — Zn(n —2)p+6(r —|§])"*p+2¢ <0 in S™.

Observe that |V, ¢| < d(r — [§])~2, then it is easy to see that (g,t) = 2p§p is a
positive super-solution to

- -1 -~~~
(1+a(§, )0t = Dgntd = Jn(n = 24 + Vet + g q

for t > tg and tg is large enough. Therefore, one has

~ 1
9250 S 11l 0
Pl s e g

Hence ) = 1)1 + 1y satisfies the estimate

~ 1
105, 1)] < ||f||*,ﬁ,2+aﬂg(t)W

F NG, T Lo (0B x [t0,00)) T+ e 0tto) ||iL||L°°(B’23)'

Finally, scaling arguments imply that

- 1
10 ()| S 1 f lp2ratty () —r—
Perel N Ty
and )
Vb(g, )] S ||f||*,ﬁ,2+aﬂg(t)W for § € Bag.
Projected to R™, we obtain the desired estimates. [

Combine the above discussions, we have the following linear theory for the outer
problem. Define the norm ||9)||.« g,a,0 of ¥ as the least positive number such that

(L4 1y ™" 10l Ve (2, )X UL Bar, ey + (L YD 2100 (2, ) XUk, B e
k

+ |7/J(xat)|XU;?:132Ruj(§y ~ Z |y]|0‘
=1

and

||w||Ht20,1/ S M.
Also we define [|fll«.p.21a.0 = IfX0t_, Bag,, 6)) 58,240+ 12" P £l 12 - From Lemma
3.1 and Lemma 3.2, we have the following result.



18 Y. SIRE, J. WEI, AND Y. ZHENG

Proposition 3.1. There exists a bounded linear operator which maps functions
fQx (to,+00) = R, h: Q= R with ||f|l«82+ar < 00, ”h”Lgo’” < 400 into a
solution ¢ of(3.1), furthermore, the following estimate holds

llsw s < C (I1f

for a small constant § > 0.

e pzvaw + llzz@) + e TONhXUE By, e ||Loe(sz))

3.2. Solving the outer problem (2.14). Given a function h(t) : (to,00) — RF
and 0 > 0, we define its weighted L°° norm as follows

12lls == ll0(t) = A()l| Lo (1g,00) -

In the rest of this paper, we assume the parameter functions A, &, A, 5 satisfy the
following conditions,
[A@) [ln-140 + [[E@) [[n-140 < c, (3.11)
[A@) 140 + 1) = alli+o < ¢ (3.12)
for a positive constant ¢ which is independent of ¢, ty and R, ¢ > 0 is a small but
fixed constant. Also, for a fixed number a € (—n, —2), let us denote

||¢||nf2+0,n+a = J:n?ax A H(bj ||nf2+fr,n+a7

)

where ||¢;||n—2+0,n+aq is defined to be the least number M > 0 such that
n—=2+o

(L Iy) 710003 ()] + (1 o)™ 190501+ s )] < MEE s (319)

holds for j =1,--- ,k and |y| < 2R. We assume that for ¢ = (¢1,--- , ¢x), it holds
that
¢lln—2+0n+a < cto® (3.14)
for some £ > 0 sufficiently small.
Note that the function 1) is a solution to (2.14) if ¢ is a fixed point of the operator

A) == T(f(¥), %o),
where
f@)y=>" [QVW,RV:E@ +0; (Aw - PUf_lat) ﬂj,R}
j=1

+ 8¢ + N[9) - (N[é])t —(p2"71), 0 (3.15)

k k
— Y minds + Y pUL O (nsnds )
j=1 j=1

=

To apply the Contraction Mapping Theorem, we estimate the terms in (3.15) as
follows:

(1) Estimation of S* 2%

e
k H—QM”;2+U
* —a— 1 0
1S (e, )] S g~ (b0) D T
e 0 ; L+ |y [>T (3.16)
_ Jout _
and ||z P57 " ez 0 Sto”

with y = n=2te_
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(2) Estimation of E§:1 [Qan7RVm<£j + ¢, (A, — pzr=18,) Uj,R}f

k _92 7+g
7 7 _ KMo
> 129050 Vads + 65 (A =027 0) k]| S 16lln-210m 40 Z R Eres
j=1 P 1]
k ~ ~
and [|27 3 (2901 Va65 + &5 (Aa = 02" 0) min) 22,0 < [6ln240mta
j=1
(3.17)
with v = 2=242,
(3) Estimation of (1 — 8,)N(¢):
\(1 — 9N 5
12 ()
0 “UIBlA =24 onta + [1¥120 5.0) Z W7 when 6 > n,
j=1 /
n— 2+O'( ) (318)
15 2 g t
o - (lellh_ 24onta T ||¢||**ﬁ o) Z W, when 6 < n
i=1 Yi
- -2
and [1277(1 = 0)N()13, o < el lln s with v = .
(4) Estimation of (17,7,4”1)75 b:
,LL Mn 2+0‘
0
R i i
‘( ; L Jy;[2*e (3.19)
and ||Zl_p (pzp_l) ¢HLt NN ||¢Hn 24o0,n+a
with v = "_2""”
(5) Estimation of pzP~1o, Z] 11, R¢J
k ﬂ_2ﬂ7+0
_ - 0
pr 181& an,Rgbj 5 ||¢Hn72+0',n+a Z W
— £ s
= =t (3.20)
k
and ”Zl_patznjﬂ(ijL RN ||¢Hn 2+o0,n+a
j=1
with v = 2=242
(6) Estimation of 25:1 pUJP_lé't (nj,RQNSj):
k —92 —Jra
- - 15 g
ZPUJP 1815 (nj,R(bj) S élln—240.n+a Z W
- — j
= ) =t (3.21)
and Hzl_pszjpilat (%‘,Réj) ”L2 RN ||¢Hn 2+0,n+a
j=1

with v = n=2te.
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Proof of (3.16). Recall that

k k
s,out *,41 * ,in
Sue = SM*ZSM,&J +Z —15,R)S g
i=1 =1

* out

In the region |z — ¢j| > ¢ with § > 0 small, S7°¢"" can be estimated as follows

—92 —Jra
i Ho
|Sout (2, 1)] <Mo (M0+N0)NM(2) o U(to)zw
=1
k _ n 2+
<=\ ‘o
~Y 0
= ]_+|yj|2+a
In the region |z — ¢;| < § with 6 > 0 small, we have
k _9 7L22+0_ k _9 7L22+0_
_mg2opm e 115" g N )
5(2)$,t‘< 5 Ho < 2maoy J < o€ J .
[siétw0] 5 0 R (O)Z Ly, 2o ~ 0 Zlﬂy |2+

Furthermore, in the region |z — ¢;| < 6,

W
5 ta yre
; L+ [y; [+

(= mm)S3

2

2Py

since (1 —nj,r) # 0 if |z — &;| > poR. Therefore, we have ||S::Zut||*,/3,2+a < ty°.
poo 7

Similarly, we have
zp_ldx < tis/ —
0 all+y |%*”
Ho | |4 1

/‘ 1— pS*out
St‘f/ y
oo 11+ Jy2 1+1y

1 1
<t £ n— 2+U/ d
=" fo I I e e I T

1
—e n—2+o d
o o / T Jylom

S tofeﬂ'rotf2+0'

ly[*

n—24o

A

)

(3.22)
thus Hzl_pS::ZutHLfo,u <ty ® with v = 2=2%2

Proof of (3.17). For the term éj (A — 8t)nj73, we have

z—E;
\é;‘(A—&)ﬂmkWuo 5]

|z =&l . 1 )‘ _ng2
+ = gy
(| Ry, |) ( Ry o RMO5 Ho % 14

_|_
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Furthermore, there hold

() .

r—& n—2
| < ‘ ('Ruoj|)’ no® °

| ] H¢||n72+a,n+a

RQ:U’Oj RQNOJ‘ (1 + [y;|mte)
—92 —«Hf
wip? (1)
S 9lln—2+0n+a Z W
J

J=1

and

n—2
* o

77 ( f] |) |x_§]‘,u0+/1'0§ M* 5
Rpo; Ryd 0

z—§
7 (i)
103 n n+o -
S T(M0R2+/~Lo+ R)pg * o5l
Hoj
_ —+(f
;T ()
1+ |yj|2+oz

S ||¢an2+0'7n+a Z

Jj=1

The estimate of V; r- V¢~>]— — isjpzp*lamm is similar, hence we have (3.17). There-
fore, we have

k
|| Z |:2V"7]7vaéj + ng (Az - pzp—lat) nj,R:| 5,240 > ||¢||n 24omta-
j=1

Similar estimates as (3.22), we have
k: ~ ~
3 [2V0rVads + &5 (Ba =9 0) ik 2z 0 S [002t0mta
j=1

with v =
Proof of (3.18). Observe that

n—=2+o
5 -

k
k Zp_2 |77b|2 + Z ‘nJ,R¢]|2 ) when 6 Z n,
- =
N+ nirds) S .
Jj=1 ~
[P + Z nj,r951", when 6 < n.
j=1

If 6 > n, there hold

+0’
Mo

L+ [y, |*
+
ne (1)
L+ [y, [>T

O T
205,087 S 127651 S HEIONE -2t

S} t078H¢||3172+0,n+a Z

Jj=1
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and
ﬁ#»a
2
p—22| < ﬂ p—1,| < 0 2 Mo~
‘Z (G | ~S |ZZ Yl NNOHW‘**ﬁ,al_,_ |y;|4+e
T B
_ s Ho (t)
St Ulisa X e
= Yj

vl <
cl <

L] < g (B)6lln-240m and
1g () |9]|4x.8,o in the region U?legRﬂj (&5). If 6 < n, there hold

In the above, we have used the facts that

N(”LEZ‘FU)P
7 0
’Tij,Rci?j‘ S W\Wni—zw,nm
E -2 "Fto
< QPDCEFE) ot ®)
N Mo —2+4on+ )
n n aj:1 1+‘yj|2+a
and
up<"T_2+U)
P00 P
|¢| ~ 1+ |yj|pa ||w||**,ﬁ,a
k-2 3P40
(p=1)("z2+0)  p Hj o (t)
S Ko 2 ||wH**,,8,oz Z 14 |y,|2+o¢
j=1 /
The estimates for 9; /N are similar.
Since
N Y
2172 292| < 1£9) S el
and
v\

et 5 1(2) S ol
we have

12771 = 8N (D)ll2z, . < cllt)lln .0
with v = ”_73"'”

Here we have used the fact that: in the region Q\ Bagy,; (§;), the solution ¢ of
(2.14) satisfying the estimate

(2, )] < [2(x, 1)
Indeed, observe that in the region Q\UleBQRH]. (&;), the function u(z,t) = z(x,t)+
¥ (z,t) is a solution of the problem

ouP
8—1; = Au+uP in Q x (tg, +00),

u =10 on 9N x (tg, +00), (3.23)
u(z,to) = ug(x) := z(z,t9) + o(z) on Q.
Suppose v = v(x) is the bounded solution of Av 4+ 1 =0 in Q satisfying v = 0 on
9. Then v > 0 in Q and the function
n—2
n—+ 2

— 1446

Y(x,7)= (T —7)T—™ v(ac)% with m =
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is a super-solution of 0,w — Aw™ = 0. Indeed, we have

149 m+s 1 m(1+8)

0,5~ A =~ 15D (B @k 4 ()
m(+6) 1+6 5-om I

when 7 is close to T'. Then by the maximum principal for the fast diffusion equation
46
(for example, Theorem 1.1.1 in [11]), we have |w(z,7)| < (T — 7)7=" v(z)= when
7 is close to T. From the relation (1.3), the solution of (3.23) can be controlled
m _md

as |u(z,t)| < (T — T)ﬁ v(z) < (Te YT v(x) if ug := 2(z,tg) + Yo(x) satisfies
luol| Lo (o) < €™ for ¢y > 0 large enough and & > 0 is small enough. Hence in the
region Q\U;?:lBE (&) with € > 0 small enough, the solution v of (2.14) satisfies the
esitmate

mé md

WIS Jel + (T = 1) (@) S J2] + (Te™") T (). (3.24)

n—2
Furthermore, |z| < Cpy? (t)v(x) in the @\ U¥_; B.(&;) for some positive constant
C >0, € > 0 is a fixed small number. Indeed, z satisfies Az + p_nT“U%g(y) =0
in Q\ B.(€), z=0on dQ, z > Cp"T v(z) on dB(E) (for simplicity, we assume
k=1 and denote ¢ as €). From this we see that z > Cu("=2/2y(z) in Q\ B.(£)
and (Te~ )1 mo(x)/z < ~ (Te t)yT=m = prT << 1 when tg is large. In the region
Bc(&), we have (Te~ )1 mou(x)/z S (Te_t)1 ™ uanQ_("_Q) < 1. From (3.24), we
obtain [¢)(z,t)| < [z(x,1)].

Proof of (3.19). From the definition of ||¢||n—2+0.n+a, We have

n—2

k -2 —5 to
1 = AP Hi Fo
|02, 9] < ] | |N up ||¢||n—2+a,n+a;W
ko2 Fito
_ Hj - Ho
< ¢ _ L —
S 07 10lln-zsmna 3 T v

Therefore, we have
” (pzpil)ﬁg”*yﬁ,%ra f, ||¢||n72+cr,n+a~
Similar to (3.22), we have

”zl_p (pzp_l) ¢||Lt RPN ||¢)||n 2+0,n+a

with v =

n—2+o
5 .
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Proof of (3.20). From the definition of ||¢||n—2+0.n+a, We have
k ~
2710, Z n,RP;
j=1

2

+ Ins.nl 006

k
Sl <|8t7]j,R| )
j=1

/ —& [z — &l . 1 >‘ -2
+ .
7 (1521) (Bitlio + =) 6= 10

k n—2 n—2
_ —n=2 —=7= Ho
+[p2" M [n (uo > |0vs] + 1o 7 m|¢j|)

j=1
L*Q+0 2 2+o‘
p—1)_Ho~ w
5 ||¢||n—2+o,n+a|z |1 + |y|n+a 5 H¢||n—2+o,n+a; 1+ |yj‘2+a :

Therefore, we have

k
szpilat anﬁ@bjn* B2+ S ||¢||n 24-0,n+a-
j=1

Similar to (3.22), we have

k
[pO: Z 77j7R¢j||LfO,u S 9lln—240.n+a
j=1
with v = %

Proof of (3.21). From the definition of ||¢||n—2+0.n+a, We have

zk:prflﬁt (ﬂj,mgj)
j=1

Z‘ ‘ (|8t773 Rl ’ij‘ + |nj,g| atébJ’)
j=1
i\pm ! (1) (i + o)™l

J:1

S0P sal (g T 1085+ 1 B2 gy
p M5,R ,Uo t¢J ﬂo 1o j

=24, k M—2M";2+U
S Plln—2+0.n+al2P™ |1 T y[rra [¢lln—2+0.n+a < 1+ [y,[2+e
Therefore, we have

I Ek:pr’lat (n3.085)

Jj=1

*3,24a S ||¢||n 24o0,n+a-
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Similar to (3.22), we have

S0, (m3.05 ) 12z

Jj=1

Tov ||¢||n 2+o0,n+a

with v = ”_73'“’
Now we set
B={¢: [l par < Mt}
with 8 = ”T*Q—I—o and v = ”775“’ Here the constant M is large but independent of ¢
and to. For any ¢ € B, A(y) € B as a consequence of the estimations (3.16)-(3.21).
And similar estimations imply that, for any v, ¥ € B, there holds

IA@WD) = AW [ g < ClYD = P4s 50,0,

for a constant C' < 1 when ¢, is chosen large enough. Therefore, A is a contraction
map in B and there exists a fixed point 9 of A, which is a solution to the outer
problem (2.14). Therefore, we obtain the following result.

Proposition 3.2. Assume X\, &, \, € satisfy the conditions (3.11) and (3.12),
¢ = (¢1,--- ,ér) satisfies conditions (3.1/), o € C*(Q) and

1Yol ooy + IYollzz » < to°

forv= ”*T%“ Then there exists a large enough tg > 0 and a small constant o > 0

such that the outer problem (2.14) possesses a unique solution ¢ = \I/[)\,f,)'\,f.,qb].
Moreover, there hold

n— 2+O’ k
I
(@, )Xk Ban(e;) Sto e o Z o= to)”%HLw(Q),
= = 1+l \ —
k —1+"’%+a
—€ Ho (t)
Vi(z,t St _
‘ ¢( )|XU§:1BZR(€J) 0 = 1+ |yj|a71
and
ellrs o <t
oz
Here y; = o
Remark 3.1. The solution ¥ obtained in Proposition 3.2 depends smoothly on the
parameters X, &, A, &, ¢, for y; = m;:ofj Indeed, using Lemma 3.2 and the same
arguments as Proposition 4.2 of [11], in the domain U?IIBQRHJ. (&), we have
o B B k M 2240 1(t)
AT &N & AN (2, )| S 1o A 1140 Oia ;
= 1+lyl
o : St )
0[N €A € 0lE] (2, 1)] St ° 1€ 1h+o e
= L+lyl
240
#0 G

[96¥ 06,2, &, dllE)(@. 0] S 85°5 ™7 W1t | 22T |
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k — 240
Ho® (1)

AW, €N E BN (0] <t i A ot to
|05 WIN &N € DN (2, )] < tg °pg A -1+ e

j=1
k =245
Po® (t)

009X €A & 161w, O] S NODlIn—2t0imre | 2L T30

j=1
4. THE INNER PROBLEM (2.16)

To solve the highly nonlinear problem (2.16), we need a linear theory first, which
is the content of

4.1. The linear theory of the inner problem (2.16). In this subsection, we
consider the following linear equation

—pUP " ¢y + Ap + pUP '+ UP"'h = 0 on R", (4.1)

with h = h(y,t) being supported on the ball Bog(0) and under the orthogonality
conditions

Bar

Equation (4.1) is a degenerate parabolic equation, therefore a natural way is to lift
it to the standard sphere S™, which becomes a classical (non-degenerate) parabolic
problem on S™. Similarly to (3.8), we define § on S™ to be

n—2

b =) (155) T ver

1+ [yl

Then standard computation shows that (4.1) is equivalent to the following linear
heat problem on S™

b= (Agn +M)d+h on S (4.3)

Here \; = n is the second eigenvalue of Agr» with eigenfunctions Zj, j=1,--+ n+l,
given by the functions

2:0) = Zin() (1 )Ti yeR™.

1+ [yl
Recall that the space L?(S™) has an orthonormal basis ©,,, m = 0,1,---, which
are eigenfunctions of the problem
AsnO, + A0, =0 in S” (4.4)
so that
O=>\Q<>\1:'~'=>\n+1:n</\n+2§--- .

One has Oy (y) = a9 and ©,(y) = ayy;, j =1,--- ,n+ 1, for constant numbers ag
and o;.

Proposition 4.1. Suppose a € (—n,—2), v > 0, ||A]la., < +00 and

h’(g’t)Z](g)dg = O fOT a’ll te (thOO)’ .] = 17 e 7n+ 17
Sn

then there exists a function ¢ = qg[ﬁ](g,t) satisfying (4.3) and the estimate
(m = [IDIVo@, 1) + 6@, 1) St (m = [G)* 7]l an-
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Remark 4.1. Here and in the following, dy is the sphere measure on S™, and
|g| € [0, ] is the geodesic distance of a point § € S™ to the south pole (0,--- ,0,—1),
|h]la, s least positive number M such that

|h(y, 1) < Mt~ (x — [§])".

Lemma 4.1. Suppose a € (—n, —2), v > 0, ||h]|a,, < +00 and

/ h’(gﬂt)Zj(g)dg = 0 fOT all t 6 (t()?OO), ] = ]_7 e 7n+ ]_.

Then, for any sufficiently large number t; > 0, the solution (¢(g,t),c(t)) of the
problem

b = (Dgn +X1) b+ h—c(t)Zo(5), § €S, t > to,

b(,t) - Zo(§)dij =0 for all t € (to,+00), (4.5)
Sn

¢(gvt0) = 07 g € Snv
satisfies the estimates
6@ t)llat2.s S lI7llat (4.6)

and
le(O)] St " Nhllae, for t€ (to,t1).

Here [lle, = $ubreioyey) 17 = 3B 2oy

Proof. Observe that (4.5) is equivalent to the following problem

{?té = (Asn + M) S+ h — () Z(§), GES", t > to, (47
¢(y,t0) =0, y€S"
for ¢(t) determined by the relation
o) [ 120 Pdi = [ B0 Zali)ds
Then it is easy to check that
OIS 7 1 ]layty (4.8)

holds for ¢ € (to,t;). Therefore we only need to show (4.6) for solutions ¢ of (4.7).
We use the blowing-up arguments in the spirit of [19].

First, given t; > tp, we have ||<$Ha+2,t1 < +o00. Indeed, from the standard
parabolic theory on sphere, given Ry € (0,7), there exists a positive constant
K = K(Ry,t1) such that

6§, )] < K in By (0) x (to, t1].

Here B R, (0) is the geodesic ball centered at the south pole with geodesic radius Ry.
For a fixed Ry close to 7 and sufficiently large K7, K; (7 —|j|)?T® is a super-solution
of (4.7) when || > Ry. Therefore |¢| < 2K, (m —|§])*** and ||@||a12.¢, < 400 holds
for any t; > 0. Secondly, from the definition of ¢(t), the following identities hold,

O(G,t) - Z;(§)dy = 0 for all t € (tg,t1),5 = 0,1,--- ,n+ 1. (4.9)
gn
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Finally, for any ¢; > 0 sufficiently large, and any ¢ satisfying (4.7), (4.9) and
|62, < 400, we claim that the estimate
I9llare,er S lhllat, (4.10)

holds, which implies (4.6).
To prove (4.10), we use contradiction arguments. Suppose there exist sequences
th — 400 and ¢x, hy, ¢ satisfying the equation

Dk = Dgnp + Mg + hi — e(t) Zo(9), § €S™, t > to,

&k(gvt) : Zg@)dﬂ =0forallte (tht]f)a .7 = Oa 17' o a’n’—"_ ]-7
Sn

Gr(§,t0) =0, FES"
and also there hold

IPkllaszee =1, Pkllae = 0. (4.11)
From (4.8), sup,¢ ¢, 4x) t”ci(t) — 0. First, we claim it holds that
sup 17| (5,t)] = 0 (4.12)
to<t<th

uniformly on compact subsets away from the north point on S™. Indeed, if there
are some points on S satisfying |§x| < M < 7 and to < t§ < ¢k,

(1) — 14) 160 )] = 5

then we have t§ — +0o. Now let us define
O (0, 1) = (15)" Dn(§, 15 + ).
Then ¢, is a solution of
Ordr. = Dsn i + Mk + i — & (t) Zo(§) in S™ x (to — t5,0],

with hj, — 0, & — 0 uniformly on compact subsets of (S™ \ {north pole})x (—oo0, 0],
moreover, it holds that

|6k(7, )] < (= [g)*"* in " x (to — t5,0].

From the dominant convergence theorem, we have ¢ — ¢ uniformly on compact
subsets of (S" \ {north pole}) x (—o0,0], ¢ # 0 and satisfies the following equation

até = Agn(g—k )\1(5 in S" x (—O0,0],
o(G,t) - Z;(§)dij = 0 for all t € (—00,0], j =0,1,--- ,n+1,
S'n.

|6, 0)] < (= [g])*** in 8" x (~o0,0],

¢(gat0) = Oa Z:/ es".

Now we claim that ¢ = 0, from which we obtain a contradiction. Indeed, by

standard parabolic regularity on the sphere, ¢(g,t) is smooth. From a scaling
argument, we have

(m = [9D)|Vsn | + 161] + |Asn | S (m — [g])>F°.
Then differentiating (4.13) gives Oy = Asny + M1y and
(m = [GD)Vsn el + [bee] + [Agnde] S (m — [g])>+e.
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Furthermore, we have
1 _ -
30 [ 18 + B@d) =0,
STL
where

B(6.9) = [ (V60 = MlaP] dg
Since [5, ¢(3,t) - Z;(§)dy = 0 for all t € (—00,0], j =0,1,--- ,n+ 1, B(
Also, it holds that

,¢) > 0.

s

[ 1 = —505(.9).

From these relations, we obtain

0
&/ 6. <0, / at [ 13,2 < +oo.
Sn —00 Sn

Therefore ¢; = 0, thus ¢ is independent of ¢t and Agn¢ + A\j¢ = 0. Since ¢ is
bounded, by the non-degeneracy of the elliptic operator Agn+\1, ¢ can be expressed
as a linear combination of the functions Zj defined in (4.4), j=1,--- ,n+ 1. But
fSn b - Zj =0,7=1,---,n, we get = 0, which a contradiction. Therefore (4.12)
holds.

From (4.11) and (4.12), there exists a sequence g with = — |gx| — 0 such that

v ~ N—a—2|1 (~ 1
(t5)" (m — il) =21 dw (Fn, t5)] = 7
Let us write ¢, as a function of 6y, --- ,60,, i.e., ¢p = ¢Zk(¢91, -+, 0,) with 6,, being
the geodesic distance to the south pole. Suppose g = (6F,--- ,0%), then 08 — 7
and )
(t5)"(m = 0) ™" 2 1ow (07, 05, 15)] > 5.
Set

¢k(1917 e 31977,71’-) = (tIQC)D(Tr - 9@)7‘7'72)(

Or, (0F + (1 — 0F)91, -+, 08 + (7 — 0F)9,, (7 — 05)%t + 1),
(4.14)
then

Ord = Dgn i + ardy, + hi(z, ),
where
B (91, O, 1) = (t5)" (7w = 0) " x
i (0F + (m = 0F)91, -+ 08 + (7 — 0F)0,, (m — 0F)2t +45) .
From the assumptions on hg, there holds
k(91 Ons O] S 0(1)[1 = | *((85) 7" (= )%t + 1) 7.

Thus hy, (01, -+ ,0p,t) = 0 uniformly on compact subsets of S™ x (—o0, 0] and the
function ay, satisfies the same property. Furthermore, |¢(0,--- ,0)| > % and

|kl S 11— 9|2 ((85) 7" (= O3)%t + 1) 7.
Note that |1 — ;| is the geodesic distance between the point (¢1,---,v,) and

(0F,--- ,0%_, 1), by passing to a subsequence, we may assume (65, 0F_, 1) —

é € S™, the geodesic distance from é to the south pole is 1. Hence there exists a
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function ¢ such that qgk — # 0 uniformly on compact subsets of §™ x (—o0, 0],
and ¢ satisfies the following equation
¢y = Agng  in R™ x (—00,0] (4.15)
and .
60y, 1) < |y —e[*** i R™ x (—o0,0]. (4.16)
Here e is the pre-image of é under the stereographic projection, i.e., & = 7(e) . Any
functions satisfying (4.15), (4.16) and a 4+ 2 € (2 — n,0) must be zero, which is a

contradiction, hence we have the validity of (4.10).

Indeed, without loss of generality, assume e is the origin point. Define u(p,t) =
(p? +t)aT+2 + sz, then —up +Au < [—(a+2) + 1—(n=1)](p*+1t)% <0, therefore
u(|y|,t + M) is a super-solution of (4.15)-(4.16) on R™ x [—-M,0]. Hence we have
6(y, )| < u(ly|,t + M). Letting M — 400, we get |p(y,t)| < =z Since ¢ is
arbitrary, we conclude that g?)(y, t)=0. O

Remark 4.2. In (4.14), if we define br as
Gr(V1, -+ O, 1) = (15)" (m — O5) "% x
On (05 + 91, 0n 1+ Dnr, O + (1 = 00, (1 = 07)% +15)
then the limit equation is
by = Asngp  in S x (—o0, 0]
and A
0(y: )] < ly —e[**? in S x (—00,0].

Under the assumption a +2 € (2 —n,0) and similar arguments as above, one has

¢ = 0, which is also a contradiction.

Proof of Proposition 4.1. First, we consider the problem

{8t¢3 = (Agn + M) G+ h—c(t)Zo(§), § S, t>to,

é(g,t0) =0, g€ S™.
Let (4(7, 1), ¢(t)) be the unique solution of the initial value problem (4.5), then by
Lemma 4.1, for any t; > tg, there hold
|é(g’t)| 5 t_u(ﬂ- - ‘g|)2+a”ﬁ”a¢1, for all t € (th tl), ye s"
and ~
le(t)] < t77||h||a,, for all t € (to,t1).

By assumption, we have [|h]la,, < +0o and ||h]las, < ||h]la, for an arbitrary t;.
Therefore,

lo(g,6)] S8 (m — |gj|)2+“Hiz||a,,, for all ¢t € (tg,t1), g € S™
and ~
le(t)] < t77||h|la,w for all t € (to,t1).
Since t; is arbitrary, we have
(5, 6)] St (m = [G1)* |7 ]la, for all t € (to, +00), § € S"

and )
le(t)] < t77||h||a, for all ¢ € (tg, +00).
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O
Using the stereographic projection, Proposition 4.1 is equivalent to the following
result.

Proposition 4.2. Suppose a € (—n,—2), v > 0, |[UP7 h||pr24a,, < +00 and
/ h(y,t)Z;(y)UP" (y)dy =0 for all t € (tg,00), j=1,--- ,n+1. (4.17)
B2r(0)

Then, for sufficiently large R, there exists ¢ = ¢[h](y,t) satisfying (4.1) and

_ _ t _
(1 + [y 210y, )] + (1 + |yl) 1|V¢(y,t)|+\¢(y,t)|5WIIU” 'hllnt 2+,

Furthermore, there exists a function eq = eg[h](t) such that ¢(-,to) = eo[h](to) Zo(y)
and |eg[h]| < [JUP™ A pnt21a, hold.

4.2. Choice of the parameter functions. To apply Proposition 4.2 to the inner
problem (2.16), the right hand term

Hi[NE A 6)(y.1) = ppg? %U (lﬁ)jy) (& + pojyst)

J J

+ MOj S (&5 + Hoyst) + B8]+ B(65] + B¢y
should satisfy the orthogonality conditions (4.17), that is to say, we need the fol-
lowing identities

HiINENE Oy, ) Zi(y)dy =0 for l=1,--- ,n+1, j=1,2,--- k. (4.18)
Bar

These identities can be achieved by solving a system of ODEs for the parameter
functions A;, &5, 7 =1,--- k.

Lemma 4.2. When | = n + 1, identities (4.18) are equivalent to the following
system of ODFEs,

)\ + - (Pszag ( o+ 2> P)\> - Hl,j [)\,f,)\,&,ﬁb](t) (419)
J

where & is a positive number and the right hand side term IIy ;[\, €, A€, @)(t) can
be expressed as

I\ & N & 8l(t) =t “p =7 (8).f3()
+t5°01 [MEu 20N e - @m0 ().
Here f;(t) and Oy [}\,é,u 2O\ g 26— q), ub™ H”gzﬁ] (t) are smooth bounded
functions of t. Furthermore, the following Lipschitz properties hold,
[0151100) — ©1,301(0)| < 171 A (6) — ha(t)

O14E)() — O1,[Eal (1) S 57 [é1() — at),
Ol 2)(1) — Ol al(0)] S £ 1A (0) — a(t)
(Ol (€ — a))(t) — ©1lu (& — @) ()] S 15716 (1) — Ea()],
017 0110) ~ O1ulii ™ 6a)D] S (3°161(0) — 622100t

(4.20)
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Proof. For a fixed j € {1,--- ,k}, let us compute the term

Hj [/\a 57 )"a év (b] (y7 t)Zn—H (y)dy
Bar
First, we consider the term
232 win
Hos SH:@]‘ (&5 + 10y, t)
n+2

= <“°J> (11 S1(2, 1) 4+ Ab; g 282 (2, 1) + ;2 95(2, 1)]

2=+ 15y

tojttg > [S1(&5 + pojy,t) — S1(&5 + wyy, t)]

) 2 )‘jbj_llﬁg2 [S2(&5 + pojy,t) — Sa(& + pjy, t)]
) W2 136 + pogyst) — Sa(€5 + . 1)]

where

S1(z) = ).\ij(Z;fj)p_lznﬂ (7)

L z— & p—1 z— &
0 fO% 14 T

k
n— z = f —
— Mg 2pU(TJ)p 12[)?./\/12‘]‘)\1‘,

J i=1

_ £ _ e \P1
So(2) =f10Zn 11 (Z & ) pU (Z €j>
Ky My

z—&; p—1 e e n=2 n-2
+pU( . J) 1o 1(—bj *H(qj,q;) + > b;% b, G(Qja%‘))

J

i#]
and
— £ — &4 p—1
Sa(z) =¢; - VU (Z@) + u3pU <Z§]>
j 2%
e nz2 n2 24
x (uj PVH(qj,q) + Y 17 1 VG(Qj7Qi)) : <MJ)
i7i !

By direct computations, we have

S1(& + 1Y) Zny1(y)dy = c2(1 + O(R*™))\;

Bar

k
—265(1+ O(R™%))pg oy + ea(1+ O(R™?))pug ™2 D b7 Mg,

i=1

; So(&; + 1Y) Zn41(y)dy = O(R*™™ + R ) g~
2R
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and
/ S3(6; + 1179) Znsa (y)dy = 0 (by symmetry).
Bar

Since “OJ =1+ 307 )~L, for any [ = 1,2, 3, there holds

[S1(&5 + 1oy, t) — Si(&5 + sy, )] Zny1 (y)dy

S

Bar

A
=g(t7;;)kj+g( Mg g, ” Zug i+ pg (),

where f, g are smooth bounded functions satisfying f(-, s) ~ s, g(,s) ~ s as s = 0.
Therefore we have
nt2
2

i nt2
c (J) MOj/ tof Suei(&5 + 1oy, 1) Zni1(y)dy
Hoj Bar

A+ - (Psz ag (;) PA)
J

for a positive number ¢. Here we have used the fact that, since G(q) is positive defi-
nite, the matrix with elements %b?/\/l” can be diagonalized as —PT (G1, -+ ,0%) P
with 6; >0 fori=1,--- ,k and P is a k X k matrix.

Next we compute the term

_ i e A
+ig sg(tvi)(A+§)+tosﬂo 29(@4),
Mo Ho

)\ _ .
Phtof (40 [ o NS (& + pogy, t) Zusa (y)dy,

0j Bag M
the principal part is I := fBgR UP=Y () (& + 10jYs t) Zn+1(y)dy. Decompose I as
1= 000.0.0.0.0)0;.8) [ U ) Zua(w)iy

Bar

+ /B Up_l(y)Zn+1(y)(¢[0» q, 07 0’ O](gj + Mij» t) - 1/}[07 q, 0) 07 0]((13; t))dy

+ 5 Up_l(y)Zn+1(y)(ql)[)‘7 57 /.\7 éa ¢] - 1/}[07 q, 07 07 0])(5] + Ho5Y, t)dy

=1 +1x+ Is.

By Proposmon 3.2, Iy =t g e 7 f(t), f is a smooth bounded function. Similarly,

Iy =t5 g 7 +Ug( »g,{ — ¢q) for a bounded function g such that g(-,s,:) ~ s and

g(+,+,8) ~ s as s = 0. From Remark 3.1 and mean value theorem, I3 is the sum of
terms like

Ho 2Tt TP A+ OFINEAE 6l(t)
and »
Ho® to " f)A+EOFINEAE (),
where the function f is smooth bounded, F is a nonlocal operator with F[0, ¢, 0, 0, 0](t)

bounded.
Finally, there hold

[ B0 Zun Wy = 15O 910 + & 1610)
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for functions ¢*(s) satisfying g*(s) ~ s as s — 0, and ¢¢[¢](¢) is smooth bounded in
t. Combining all the estimates above, we conclude the result. ([

Similarly, for the identities

Hy[A 60, ¢y, t(t) Zi(y)dy,

Bar

forany j=1,---,k,l=1,---,n, we have
Lemma 4.3. Forj=1,--- k, l=1,---,n, (4.18) are equivalent to the following
system of ODFEs

€j = H2,j [)\7 57 )‘7 6) ¢](t))

H2,j P‘a 57 ).‘7 éa ¢] (t)

= pge |V} AV H (g q) = Y 0,7 b7 VGlg5,0) |+ pg 7 (05(0)
i#]
+ 157025 [N & g 2O 1y E = @), g (),

P fon UP 1§ 1 dy
T/ A N2.
JR(%) dy
tions fort € [tg, 00), the n dimensional vector functions ©q ; has the same properties

as i Lemma 4.2.

where ¢ = fj(t) are smooth bounded n dimensional vector func-

From Lemma 4.2 and Lemma 4.3, we know that the orthogonality conditions

Hj[)\,f,)'\,f.,qi)](y,t(t))Zl(y)dy, forj=1,--- kandl=1,--- ,n+1,
Bar
are equivalent to the system of ODEs for A\ and &,
. 1 5+1 ..
b g (Praig (T55) PA) =g Al
t n—2 i (4.21)
gj = HZ,j[)‘,Ea)‘7£a¢](t)a .7 = ]-a v 7k'
System (4.21) is solvable for A and ¢ satisfying (3.11)-(3.12). Indeed, we have

Proposition 4.3. There exists a solution A = M¢|(t), & = &[P](t) to (4.21) satis-
fying

IA[o1]() = Alb2)(t)] < 510" b1 — d2lln-2+40:m+a
and

[€[o1](t) — E[D2)(D)] < to 1o 61 = b2lln—24anta-

The proof is similar to that of [11], so we omit it here.

4.3. Solving the inner problem (2.16). After the parameter functions A\ = \[¢]
and £ = £[¢] have been chosen such that the orthogonality conditions (4.18) hold,
problem (2.16) can be solved in the class of functions satisfying ||@||n—2+4on+a <
400 bounded. From Proposition 4.2, there exists a bounded linear operator T
associating any function h(y,t) with ||UP~'h||,—240.nt2+a-bounded the solution of
problem (4.1), thus (2.16) reduces to the following fixed point problem

¢ = (¢1,‘ o a¢k) = A(¢) = (T(Hl[)‘vfa /.\,f.,d)]), T 7T(Hk[)‘7£7>‘>§a¢]))
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From the definition of H;, we have the estimate
un72+a
. 3 o
H[)\7§7)\7£7¢](y3t) g tO&W‘ (422)
Therefore A maps the set A := {@| |¢|ln—2+0,n+a < ¢ty } into itself for some large
constant ¢ > 0.
Moreover, A is a contraction map, hence there exists a fixed point, from which
we find a solution of (1.4). Indeed, this is consequence of the following estimates:

(a)

n+2
/J'Oj2 |SH17§17j(€j,1 + HojYs t) - Suz,ﬁz,j (5j72 + pojY; t)‘
—240
—e Mo (t) 1) 2)
5 tO ° 1+ |y|”+2+a ||¢( - ¢( ||n72+a,n+a

where
pi=plo"], & =¢0W), &i=¢g"], i=1,2.
(b) From Remark 3.1, we have

2

B T —— Ty

P | 2 U” ' (ij) DIV + pojy, 1)
7,1 J,1

2
_ 05 g (f” y) WGP (2 + oy 1)
52 Hj,2

Mg_2+a (t) (1) 2)
—€
5 tO 1+ |y|n+2+a ||¢ - ¢) Hn—2+a7n+a

where
Hii = 100, oW = N, &, i &0, i =12
(¢) From the definitions in Section 2, we have

(1) W @1] < g2t () 1) _ (2
B¢, "] = B; [0l Sto " imrara 19 — 07 ln—240.n+a
L+ y|
hold for I = 1,2, 3. O
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