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Abstract. We study the large-time asymptotics of global solutions to the semilinear heat equation in Rn

with critical Sobolev exponent ut = ∆u+ |u|
4

n−2 u in Rn × (0,∞),

u(·, 0) = u0 in Rn.

We show the existence of positive solutions for a class of initial value u0(x) ∼ |x|−γ as |x| → ∞ with γ > n−2
2

such that the time decay rate of ∥u∥L∞(Rn) depends on γ in a precise manner, motivating by a program

proposed by Fila and King [10]. We construct several global solutions in dimensions 4 and 6.

1. Introduction

The semilinear heat equation ut = ∆u+ |u|p−1u in Rn × (0,∞)

u(·, 0) = u0 in Rn
(1.1)

with p > 1 has been widely studied since Fujita’s seminal work [13]. The power nonlinearity plays a crucial

role, producing rich phonomena concerning singularity formation, long-time dynamics and regularity prop-

erties. It is well known that (1.1) admits a global nontrivial solution u ≥ 0 if and only if p > pF := n+2
n .

The stationary version of (1.1) does not have positive classical solutions if p < pS , where

pS =

n+2
n−2 for n ≥ 3,

∞ for n = 1, 2.

See [16] and [2]. For p = pS , up to translations and dilations, the positive solution to the Yamabe problem

∆u+ u
n+2
n−2 = 0 in Rn, n ≥ 3

is the Aubin-Talenti bubble

U(x) = αn(1 + |x|2)−
n−2
2 , αn = [n(n− 2)]

n−2
4 ,

and it serves as a natural candidate for the profile of singularity formation for (1.1).

For (1.1) in the subcritical case p < pS , Poláčik and Quittner [24] proved the nonexistence of positive,

radially symmetric, bounded entire solution, and they showed that the global nonnegative radial solution of

(1.1) decays to 0 uniformly as t → ∞. Optimal Liouville-type results have been achieved by Quittner [29]

for the case 1 < p < pS in the sense that no further decay or decay assumptions are made. See also Poláčik,

Quittner and Souplet [25] for a general scheme that connects parabolic Liouville type theorems with universal

estimates of solutions.
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In this paper, we are interested in the global positive solutions tout = ∆u+ u
n+2
n−2 in Rn × (t0,∞),

u(·, t0) = u0 in Rn,
(1.2)

and aim to understand their possible dynamics at large time. (Problem (1.2) is simply a shift of (1.1) in

time.) A solution is called global if its maximal existence time Tmax = ∞. The underlying motivation of this

is due to extensive investigations of threshold solutions.

For any nonnegative, smooth function ϕ(x) with ϕ ̸≡ 0, we define

α∗ = α∗(ϕ) := sup{α > 0 : Tmax(αϕ) = ∞},

and u∗ := u(x, t;α∗ϕ) is called the threshold solution associated with ϕ. The threshold solution can be

viewed as the borderline between global solutions and finite-time blow-ups, as the nonlinearity dominates

the Laplacian for α ≫ α∗ and vice versa. At the threshold level, all the possibilities can happen for the

dynamics of u∗ in the L∞-sense, and depending on p and the domain, the solutions could be global and

bounded, global and unbounded, or blow up in finite time. There are innumerable studies in related literature,

and we refer the readers to Ni-Sacks-Tavantzis [22], Lee-Ni [20], Galaktionov-Vázquez [15], Poláčik [23],

Quittner [28], and the monograph by Quittner and Souplet [30] for the state of the art of threshold solutions.

See also [11,12,17–20,25–27,32,33] and their references.

Define

L2
ρ =

{
f ∈ L2 |

∫
Rn

|f |2e
|x|2
4 dx <∞

}
.

For (1.1) with pF < p < pS and u0 ≥ 0, u0 ̸≡ 0 in L2
ρ ∩ L∞, the asymptotic behavior of the nonnegative

solution was studied by Kawanago [19], and in particular, he proved that

∥u(·, t;α∗ϕ)∥L∞ ∼ t−
1

p−1

for t > 1. For p ≥ pS and radial, positive initial data u0 with decay

lim
|x|→∞

u0(x)|x|
2

p−1 = 0,

Quittner [27] proved the nonexistence of global solution with self-similar rate t−
1

p−1 . For p = pS and radial

initial data u0 satisfying

lim
r→∞

rγu0(r) = A for some A > 0 and γ >
n− 2

2
=

2

pS − 1
,

Fila and King [10] carried out interesting formal analysis and predicted the possible long-time dynamics of

threshold solutions to (1.1). They conjectured that the threshold solution u of (1.1) with initial value u0

must satisfy

lim
t→∞

∥u(·, t)∥L∞(Rn)

φ(t;n, γ)
= C

for some positive constant C = C(n, u0), and φ(t;n, γ) depends on γ and n in a precise manner:
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n−2
2 < γ < 2 γ = 2 γ > 2

n = 3 t
γ−1
2 t

1
2 (ln t)−1 t

1
2

n = 4 t−
2−γ
2 ln t 1 ln t

n = 5 t−
3(2−γ)

2 (ln t)−3 1

If n ≥ 6 and γ > (n− 2)/2, then φ(t;n, γ) ≡ 1.

Table 1. Fila-King [10, Conjecture 1.1]

Motivated by the program of Fila-King, there are a series of rigorous constructions via the gluing method.

The case γ > 1, n = 3 was answered affirmatively by del Pino, Musso and the first author [8]. The cases

n = 4 with γ > 2 and n = 5 with γ > 3/2 were solved respectively in [35] and [21]. The relation between

(1.2) with n = 4 and the 1-equivariant harmonic map heat flow (HMHF) has long been known, and related

trichotomy dynamics for HMHF were constructed in [34]. The current known examples can be summarized

as

n−2
2 < γ < 2 γ = 2 γ > 2

n = 3 [8] if 1 < γ < 2 [8] [8]

n = 4 HMHF [34] HMHF [34] [35], HMHF [34]

n = 5 [21] [21] [21]

Table 2. Examples of global solutions

For the Cauchy-Dirichlet problem of (1.2), global unbounded solutions have been constructed by Galaktionov-

King [14], Cortázar-del Pino-Musso [3], del Pino-Musso-Wei-Zheng [9], and Ageno-del Pino [1], where the

Dirichlet boundary plays an important role in the blow-up dynamics.

Based on previous works, this paper aims to extend the study for the cases n = 4 with 1 < γ ≤ 2 and

n = 6 with γ > 2, and we construct global solutions with rates predicted in Table 1.

Theorem 1.1. For n = 6 in (1.2), if γ > 2 and t0 sufficiently large, then there exists a positive solution of

the form

u(x, t) = 24

(
µ(t)

µ2(t) + |x− ξ(t)|2

)2

η

(
x− ξ(t)√

t

)
+ h.o.t.,

where µ(t) ∼ 1 and ξ(t) → 0 as t → ∞. Here, η(x) is a smooth cut-off function with η(x) = 1 for |x| ≤ 1,

η(x) = 0 for |x| ≥ 2.



4 J. WEI AND Y. ZHOU

Theorem 1.2. For n = 4 in (1.2), if 1 < γ ≤ 2 and for t0 sufficiently large, then there exists a positive

solution of the form

u(x, t) = 2
√
2

µ(t)

µ2(t) + |x|2
η

(
x√
t

)
+ h.o.t.,

where

µ(t) ∼

(ln t)−1t
2−γ
2 , 1 < γ < 2

1, γ = 2

as t→ ∞.

Theorem 1.1 and Theorem 1.2 thus provide examples of global solution in the remaining cases for n = 4, 6

in Table 1. The approach of deriving the desired asymptotics is to balance the bubble and the contribution

from the initial data with decay like u0(x) ∼ ⟨x⟩−γ . Here ⟨x⟩ =
√
|x|2 + 1. We combine Fila-King’s formal

analysis with gluing technique to complete the rigorous construction. The gluing method, developed in [3,7],

turns out to be versatile and can be systematically used to detect singularity formation for a lot of evolution

PDEs with precise blow-up dynamics captured. We refer to [3–8, 31] and the references therein. We finally

remark that the constructions for n ≥ 7 with γ > n−2
2 and for n = 3 with 1

2 < γ ≤ 1 in Table 1 will be very

similar to those carried out already. See also Remark 4.1.

The rest of this paper is organized as follows. In Section 2, we present the basic ansatz and necessary

ingredients for general dimension n ≥ 3. In Section 3, we focus on the case n = 6 and prove Theorem 1.1.

For the four-dimensional case, substantial change will be made in the ansatz of approximate solution, and

the non-local nature is due to the lack of decay in lower dimensions. We shall only point out the key parts

and omit other details in the proof of Theorem 1.2, as this case is similar to those done in [35] and [34].

2. Basic set-up

The global solutions for the critical semilinear heat equation

ut = ∆u+ |u|
4

n−2 u in Rn × (t0,∞) (2.1)

with n ≥ 3 are built on its ground state. Recall that the positive solution, called Aubin-Talenti bubble, to

the stationary equation

∆u+ u
n+2
n−2 = 0

is unique up to translations and dilations:

U(x) = αn(1 + |x|2)−
n−2
2 , αn = [n(n− 2)]

n−2
4 ,

and it is non-degenerate in the sense that the corresponding linearized operator ∆+ n+2
n−2U

4
n−2 has only n+1

bounded kernel functions

Zi(x) = ∂xi
U(x), i = 1, · · · , n, Zn+1(x) =

n− 2

2
U(x) + x · ∇U(x).

Moreover, the linearized operator ∆ + n+2
n−2U

4
n−2 has only one positive eigenvalue γ0 > 0:

∆Z0 +
n+ 2

n− 2
U

4
n−2Z0 = γ0Z0,

and the corresponding eigenfunction Z0 ∈ L∞(Rn) is radially symmetric and has exponential decay at spatial

infinity.

The first approximate solution of (2.1) is chosen as

u1(x, t) = µ−n−2
2 U (y) η (ỹ) + Ψ0(x, t), where y :=

x− ξ

µ
, ỹ :=

x− ξ√
t
,
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µ = µ(t) > 0, ξ = ξ(t) ∈ C1[t0,∞) will be determined later, and

∂tΨ0 = ∆Ψ0, Ψ0(·, 0) = ψ0 ∼ ⟨x⟩−γ ,

namely

Ψ0(x, t) = (4πt)
−n

2

∫
Rn

e−
|x−z|2

4t ψ0(z)dz.

For later purposes, we need the following estimate for Ψ0(0, t).

Lemma 2.1. Assume γ ∈ R, t ≥ 1. Then

(4πt)
−n

2

∫
Rn

e−
|y|2
4t ⟨y⟩−γdy = vn,γ(t)(Cn,γ + h.o.t.),

where

vn,γ(t) =


t−

γ
2 , γ < n

t−
n
2 ln(1 + t), γ = n

t−
n
2 , γ > n

, Cn,γ =


(4π)−

n
2

∫
Rn e

− |z|2
4 |z|−γdz, γ < n

(4π)
−n

2 1
2

∣∣Sn−1
∣∣ , γ = n

(4π)
−n

2
∫
Rn⟨y⟩−γdy, γ > n

(2.2)

Proof. See [21, Lemma 2.1]. □

Hereafter, we always assume t0 ≥ 1 is sufficiently large and t ≥ t0. By Lemma 2.1, we have

Ψ0(0, t) ∼ vn,γ(t) (Cn,γ + gn,γ(t)) . (2.3)

For γ ≥ 0, by similar calculations as in [35, Lemma A.3], we have

∥∇Ψ0(·, t)∥L∞(Rn) ≲ t−
1
2 vn,γ(t). (2.4)

Here the notation a ≲ b means that there exists a constant C > 0 independent of t0 such that a ≤ Cb.

By [35, Lemma A.3], we get

Ψ0(x, t) ≲ t−
γ̃
2 1

|x|≤t
1
2
+ |x|−γ̃1

|x|>t
1
2
,

where γ̃ is defined as

γ̃ := min {γ, 3−} .
Here, for any c ∈ R, the notation c− means a constant less than c and can be chosen arbitrarily close to c.

Define the error of f as

E[f ] := −∂tf +∆f + |f |
4

n−2 f.

Straightforward computation implies

E[u1] = µ−n
2 µ̇Zn+1(y)η (ỹ) + µ−n

2 ξ̇ · (∇U) (y) η (ỹ) + Eη + |u1|
4

n−2u1 − µ−n+2
2 U (y)

n+2
n−2 η (ỹ) , (2.5)

where

Eη := µ−n−2
2 U(y)

(
2−1t−1ỹ + t−

1
2 ξ̇
)
·(∇η) (ỹ)+2µ−n

2 t−
1
2 (∇U) (y)·(∇η) (ỹ)+µ−n−2

2 t−1U (y) (∆η) (ỹ) . (2.6)
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3. The case n = 6

We look for an exact solution u of (2.1) in the case n = 6 in the form

u = u1 + ψ(x, t) + µ−2ϕ

(
x− ξ

µ
, t

)
ηR, ηR := η

(
x− ξ

µR

)
, R = R(t) = t1/1000.

We assume that

2µR ≤
√
t/9. (3.1)

We compute

E[u] =
(
µ−3µ̇Zn+1(y) + µ−3ξ̇ · (∇U) (y)

)
η (ỹ) + Eη + µ−4U2(y)

(
η2(ỹ)− η (ỹ)

)
+N [ψ, ϕ, µ, ξ] + 2µ−2U(y)η(ỹ)

(
Ψ0 + ψ + µ−2ϕ(y, t)ηR

)
− ∂tψ +∆ψ − µ−2∂tϕ(y, t)ηR + µ−4∆yϕ(y, t)ηR + Λ1 [ϕ, µ, ξ] + Λ2 [ϕ, µ, ξ] ,

where
Λ1 [ϕ, µ, ξ] := µ−4R−2ϕ(y, t) (∆η) (

y

R
) + 2µ−4R−1∇yϕ(y, t) · (∇η) (

y

R
)

+ µ−2ϕ(y, t) (∇η) ( y
R
) ·

(
ξ̇

µR
+
y

R

∂t(µR)

µR

)
,

(3.2)

Λ2 [ϕ, µ, ξ] := µ−3µ̇ (2ϕ(y, t) + y · ∇yϕ(y, t)) ηR + µ−3ξ̇ · ∇yϕ(y, t)ηR, (3.3)

and

N [ψ, ϕ, µ, ξ] := |u|u− µ−4U2(y)η2(ỹ)− 2µ−2U(y)η(ỹ)
(
Ψ0 + ψ + µ−2ϕ(y, t)ηR

)
. (3.4)

The assumption (3.1) gives η(ỹ) = η(x−ξ√
t
) = 1 if |x − ξ| ≤ 2µR, i.e., ηRη(ỹ) = ηR, In order for E[u] = 0, it

suffices to solve the coupled system for ϕ and ψ, as well as the parameter functions µ and ξ:

∂tψ = ∆ψ + G [ψ, ϕ, µ, ξ] in R6 × (t0,∞), ψ(·, t0) = 0 in R6, (3.5)

and

µ2∂tϕ = ∆yϕ+ 2U(y)ϕ+H [ψ, µ, ξ] for t > t0, y ∈ B4R(t), (3.6)

and the former is called the outer problem and the latter is called the inner problem. Here

G [ψ, ϕ, µ, ξ] := Λ1 [ϕ, µ, ξ] + Λ2 [ϕ, µ, ξ] +
(
µ−3µ̇Z7(y) + µ−3ξ̇ · (∇U) (y)

)
η (ỹ) (1− ηR) + Eη

+ µ−4U2(y)
(
η2(ỹ)− η (ỹ)

)
+N [ψ, ϕ, µ, ξ] + 2µ−2U(y)η(ỹ) (Ψ0 + ψ) (1− ηR) ,

(3.7)

and

H [ψ, µ, ξ] := µµ̇Zn+1(y) + µξ̇ · (∇U) (y) + 2µ2U(y) (Ψ0(µy + ξ, t) + ψ(µy + ξ, t)) . (3.8)

Problem (3.6) can be expressed in a new time variable

τ = τ(t) :=

∫ t

t0

µ−2(s)ds+ Cτ t0µ
−2(t0), τ0 := τ(t0), (3.9)

with a sufficiently large constant Cτ independent of t0, such that

∂τϕ = ∆yϕ(y, t(τ)) + 2U(y)ϕ(y, t(τ)) +H [ψ, µ, ξ] (y, t(τ)) for τ > τ0, y ∈ B4R(t(τ)). (3.10)

The parameter functions µ and ξ are certainly not arbitrary, and their asymptotics are determined by

orthogonality conditions that ensure a good solution to (3.6) with fast enough decay. In fact, if one considers∂τϕ = ∆ϕ+ 2U(y)ϕ+ h for τ > τ0, y ∈ B4R(t(τ)),

ϕ(y, τ0) = e0Z0(y) for y ∈ B4R(t(τ0)),
(3.11)
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and uses the norms

∥h∥∗ := sup
τ>τ0, y∈B2R(t(τ))

τν⟨y⟩2+a|h(y, τ)|, ν > 0, 0 < a < 1,

∥ϕ∥in := sup
τ>τ0,y∈B2R(t(τ))

τνRa−7(t(τ))⟨y⟩7
(
⟨y⟩|∇ϕ(y, τ)|+ |ϕ(y, τ)|

)
, (3.12)

then the following estimates hold.

Proposition 3.1. For (3.11), assume that ∥h∥∗ <∞ and∫
B4R(t(τ))

h(y, τ)Zj(y)dy = 0, ∀τ ∈ (τ0,∞), j = 1, 2, · · · , 7. (3.13)

Then for τ0 suffciently large, there exists a solution (ϕ, e0) = (Tin[h], Te0 [h]) linear in h, that satisfies the

estimates

∥ϕ∥in ≲ ∥h∥∗, |e0| ≲ τ−ν
0 R2−a(t(τ0))∥h∥∗.

Proof. See [3, Proposition 7.1]. □

Then the desired long-time asymptotics is given by (3.13). The leading term of µ, denoted by µ0, will be

determined by the orthogonality condition∫
B4R

(
µ0µ̇0Z7(y) + 2µ2

0U(y)Ψ0(0, t)
)
Z7(y)dy = 0, (3.14)

yielding

µ̇0 = C(R)µ0Ψ0(0, t), (3.15)

where

C(R) := −
2
∫
B4R

U(y)Z7(y)dy∫
B4R

Z2
7 (y)dy

=
2
∫
R6 U

2(y)dy∫
R6 Z2

7 (y)dy

(
1 +O

(
R−2

))
(3.16)

for t ≥M sufficiently large. We take a solution of (3.15) as

µ0(t) = e
∫ t
M

C(R(s))Ψ0(0,s)ds.

By (2.3) and the fact γ > 2, for t0 ≥ 9M sufficiently large, we have

µ0(t) ∼ 1, µ̇0(t) ∼ t−κ, 1 < κ ≤ 3, (3.17)

and clearly the range of κ depends on γ. We now make the following ansatz

µ = µ0 + µ1, where µ1 = µ1(t) ∈ C1[t0,∞), |µ1| ≤ µ0/9, |µ̇1| ≤
t−ν

9
, (3.18)

which yields 8
9µ0 ≤ µ ≤ 10

9 µ0 and realizes (3.1) for t0 sufficiently large. Here we assume that 1 < ν < 2. The

relation (3.9) then gives

τ(t) ∼ t. (3.19)

By (3.18), H [ψ, µ, ξ] is controlled by

|µµ̇Z7(y)|+
∣∣2µ2U(y)Ψ0(0, t)

∣∣ ≲ t−ν⟨y⟩−4. (3.20)

By Proposition 3.1, we will solve (3.10) in the space

Bin :=
{
ϕ(x, τ) | ϕ(·, τ) ∈ C1

(
B2R(t(τ))

)
for τ > τ0, ∥ϕ∥in ≤ 1

}
.

For ϕ ∈ Bin, we solve the outer problem (3.5) first. In what follows, ϵ will be denoted as a positive small

constant, whose value might change from line to line.
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Proposition 3.2. Assume that ϕ ∈ Bin, µ1, ξ ∈ C1[t0,∞) satisfying

|µ1| ≤ t−ϵ, |µ̇1| ≤ t−ν−ϵ, |ξ| ≤ t−ϵ, |ξ̇| ≤ t−ν−ϵ (3.21)

for small ϵ > 0. Then for t0 sufficiently large, there exists a unique solution ψ = ψ[ϕ, µ1, ξ] for the outer

problem (3.5), which satisfies the following estimates:

|ψ| ≲ t−νR−a1

(
1|x|≤

√
t + t|x|−21|x|>

√
t

)
, (3.22)

∥∇ψ(·, t)∥L∞(R6) ≲ t−νR−1−a1 (3.23)

for some 0 < a1 < a.

Proof. We only need to find a fixed point for

ψ = T out
6 [G [ψ, ϕ, µ, ξ]] ,

where G [ψ, ϕ, µ, ξ] is given in (3.7), and

T out
6 [f ] :=

∫ t

t0

∫
R6

[4π(t− s)]
−3
e−

|x−z|2
4(t−s) f(z, s)dzds.

We assume in the sequel
∫ t1
t2

· · · ds = 0 if t1 ≤ t2. Clearly, the assumptions (3.18) and (3.1) are ensured by

(3.21). Combining these with (3.17), there exists a constant Cµ > 9 sufficiently large such that

9C−1
µ < µ < Cµ/9.

Recall Λ1 [ϕ, µ, ξ] in (3.2). Using (3.1) and (3.21), we have∣∣∣∣∣ ξ̇µR
∣∣∣∣∣+
∣∣∣∣∂t(µR)µR

∣∣∣∣ =
∣∣∣∣∣ ξ̇µR

∣∣∣∣∣+
∣∣∣∣∣ µ̇µ +

Ṙ

R

∣∣∣∣∣ ≲ t−ν .

Since ϕ ∈ Bin and t ∼ τ , one has

⟨y⟩|∇yϕ|+ |ϕ| ≲ t−νR7−a⟨y⟩−7,

and thus

|Λ1 [ϕ, µ, ξ]| ≲ t−νR−2−a1R≤|y|≤2R ≤ t−νR−2−a1|x|≤CµR.

Then
T out
6

[
t−νR−2−a1|x|≤CµR

]
≲ t−3e−

|x|2
16t

∫ t
2

t0

s−νR4−a(s)ds

+ t−νR−2−a

[
R21|x|≤R + |x|−4e−

|x|2
16t R61|x|>R

]
≲ t−ϵwo(x, t),

where

wo(x, t) := t−νR−a1

(
1|x|≤

√
t + t|x|−21|x|>

√
t

)
,

and we have used [35, Lemma A.1, Lemma A.2]. Then∣∣T out
6 [Λ1 [ϕ, µ, ξ]]

∣∣ ≤ Cowo(x, t)/2

for a sufficiently large constant Co ≥ 2. For this reason, we define the norm

∥f∥out := sup
t≥t0, x∈R6

(wo(x, t))
−1 |f(x, t)|,

and we solve the outer problem (3.5) in

Bout := {f | ∥f∥out ≤ Co}.
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For Λ2 [ϕ, µ, ξ] in (3.3), we have

|Λ2 [ϕ, µ, ξ]| ≲ t−2ν−ϵR7−a⟨y⟩−71|x|≤CµR ≲ t−νR−2−a1|x|≤CµR.

By (3.1) and (3.21), one has∣∣∣(µ−3µ̇Z7(y) + µ−3ξ̇ · (∇U) (y)
)
η (ỹ) (1− ηR)

∣∣∣+ |Eη|+
∣∣µ−4U2(y)

(
η2(ỹ)− η (ỹ)

)∣∣
+

∣∣∣∣2µ−2U(y)η(ỹ)Ψ0 (1− ηR)

∣∣∣∣
≲ t−ν⟨y⟩−41µR≤|x−ξ|≤2

√
t + t−1⟨y⟩−41√

t≤|x−ξ|≤2
√
t

≲ t−ν |x|−41C−1
µ R≤|x|≤4

√
t + t−31√

t/2≤|x|≤4
√
t,

and if ν < 2, we obtain

T out
6

[
t−ν |x|−41C−1

µ R≤|x|≤4
√
t

]
≲ t−3e−

|x|2
16t

∫ t
2

t0

s1−νds+ t−ν

(
R−21|x|≤R + |x|−21R<|x|≤

√
t + t|x|−4e−

|x|2
16t 1|x|>

√
t

)
≲ t−ϵωo(x, t),

T out
6

[
t−31√

t/2≤|x|≤4
√
t

]
≲ t−2

(
1|x|≤

√
t + t|x|−21|x|>

√
t

)
≲ t−ϵωo(x, t)

for some ϵ > 0.

For any ψ1, ψ2 ∈ Bout, we have∣∣µ−2U(y)η(ỹ) (ψ1 − ψ2) (1− ηR)
∣∣ ≲ ⟨y⟩−4∥ψ1 − ψ2∥outwo(x, t)1µR≤|x−ξ|≤2

√
t

≲ t−νR−a1 |x|−41C−1
µ R≤|x|≤4

√
t∥ψ1 − ψ2∥out.

(3.24)

Then

T out
6

[
t−νR−a1 |x|−41C−1

µ R≤|x|≤4
√
t

]
≲ t−3e−

|x|2
16t

∫ t
2

t0

s1−νR−a1(s)ds+ t−νR−a1

(
R−21|x|≤

√
t + t|x|−4e−

|x|2
16t 1|x|>

√
t

)
≲ R−2wo(x, t).

(3.25)

The nonlinear terms N [ψ, ϕ, µ, ξ], in (3.4) with ψ ∈ Bout, can be estimated as

|N [ψ, ϕ, µ, ξ]| ≲
∣∣Ψ0 + ψ + µ−2ϕ(y, t)ηR

∣∣2
≲ t−2κ + t−2νR−2a1

(
1|x|≤

√
t + t|x|−21|x|>

√
t

)
+ τ−2νR14−2a⟨y⟩−141|y|≤2R,

and as before, one can easily check that

T out
6 [|N [ψ, ϕ, µ, ξ] |] ≲ t−ϵwo(x, t).

Putting all these estimates together, we conclude that for t0 sufficiently large, T out
6 [G [ψ, ϕ, µ, ξ]] ∈ Bout,

and it is a contraction mapping in Bout by similar estimates as (3.24) and (3.25). There then exists a unique

solution ψ ∈ Bout. The gradient estimate (3.23) follows from a scaling argument and parabolic regularity

estimate. □

In view of Proposition 3.1 for the inner problem, our next step is to find suitable µ1, ξ such that the

orthogonality conditions∫
B4R

H[ψ, µ, ξ](y, t)Zi(y)dy = 0, µ = µ0 + µ1, i = 1, . . . , 7 (3.26)



10 J. WEI AND Y. ZHOU

are satisfied, where ψ = ψ[ϕ, µ1, ξ] is solved in Proposition 3.2 (with µ1, ξ fixed within proper spaces), and

H [ψ, µ, ξ] is defined in (3.8).

Proposition 3.3. For t0 sufficiently large, there exists a solution (µ1, ξ) = (µ1[ϕ], ξ[ϕ]) for (3.26) satisfying

|µ1| ≲ t−ϵ, |µ̇1| ≲ t−ν−ϵ, |ξ| ≲ t−ϵ, |ξ̇| ≲ t−ν−ϵ. (3.27)

Proof. From (3.8), we can write (3.26) as

µ̇ = −2µ

(∫
B4R

Z2
7 (y)dy

)−1 ∫
B4R

(Ψ0(µy + ξ, t) + ψ(µy + ξ, t))U(y)Z7(y)dy, (3.28)

ξ̇ = S⃗[µ1, ξ] := (S1[µ1, ξ], . . . ,S6[µ1, ξ]) (3.29)

Si[µ1, ξ] := −2µ

(∫
B4R

Z2
i (y)dy

)−1 ∫
B4R

[
Ψ0(µy + ξ, t)−Ψ0(0, t) + ψ(µy + ξ, t)− ψ(0, t)

]
U(y)Zi(y)dy,

for i = 1, 2, . . . , 6. By µ = µ0 + µ1 with µ0 chosen in (3.15), we rewrite (3.28) as

µ̇1 + β(t)µ1 = F [µ1, ξ](t), (3.30)

where

β(t) := 2

(∫
B4R

Z2
7 (y)dy

)−1

Ψ0(0, t)

∫
B4R

U(y)Z7(y)dy,

and

F [µ1, ξ](t) := − 2

(∫
B4R

Z2
7 (y)dy

)−1 [
µ

∫
B4R

ψ(µy + ξ, t)U(y)Z7(y)dy

+ µ

∫
B4R

(Ψ0(µy + ξ, t)−Ψ0(0, t))U(y)Z7(y)dy

]
.

Solving the system (3.29)-(3.30) is reduced to finding fixed point (µ̇1, ξ̇) of

µ̇1 = S7[µ1, ξ] :=
d

dt

(∫ t

∞
F [µ1, ξ](s)e

∫ s
t
β(a)dads

)
= −β(t)

∫ t

∞
F [µ1, ξ](s)e

∫ s
t
β(a)dads+ F [µ1, ξ](t),

µ1 = µ1[µ̇1](t) :=

∫ t

∞
µ̇1(a)da, ξ̇ = S⃗[µ1, ξ], ξ = ξ[ξ̇](t) :=

∫ t

∞
ξ̇(a)da,

(3.31)

and we will work in the space

Bµ̇1
:= {f ∈ C[t0,∞) | ∥f∥µ̇1

≤ 1} , Bξ̇ =
{
f⃗ = (f1, . . . , f5) ∈ C[t0,∞) | ∥f⃗∥ξ̇ ≤ 1

}
with the norm

∥f∥µ̇1
:= sup

t≥t0

tν+ϵ |f(t)| , ∥f⃗∥ξ̇ := sup
t≥t0

tν+ϵ|f⃗(t)|. (3.32)

By (2.3) and (3.16), we have

β(t) ∼ −t−κ, 1 < κ ≤ 3. (3.33)

For any (µ̇1, ξ̇) ∈ Bµ̇1 ×Bξ̇, one has

|µ1| ≲ t1−ν−ϵ, |ξ| ≲ t1−ν−ϵ. (3.34)

Therefore, µ1, µ̇1, ξ, ξ̇ satisfy the assumption (3.21) in Proposition 3.2. By (2.4) and (3.23), we obtain∣∣∣S⃗[µ1, ξ]
∣∣∣ ≲ µ

(
∥∇xΨ0(·, t)∥L∞(R6) + ∥∇xψ(·, t)∥L∞(R6)

)
(|µ|+ |ξ|) ≲ t−

1
2−κ + t−νR−1−a1 . (3.35)

Using (3.22), (2.4), (2.3) and (3.34), we get∣∣∣∣µ∫
B4R

ψ(µy + ξ, t)U(y)Z7(y)dy

∣∣∣∣ ≲ t−νR−a1 ,∣∣∣∣µ∫
B4R

(Ψ0(µy + ξ, t)−Ψ0(0, t))U(y)Z7(y)dy

∣∣∣∣ ≲ t−
1
2−κ,
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and thus

|F [µ1, ξ](t)| ≲ t−νR−a1 . (3.36)

Therefore, we have ∣∣∣∣β(t)∫ t

∞
F [µ1, ξ](s)e

∫ s
t
β(a)dads

∣∣∣∣ ≲ t1−ν−κR−a1 .

Combining (3.35) and (3.36), one has

|S7[µ1, ξ]| ≲ t1−ν−κR−a1 ,
∣∣∣S⃗[µ1, ξ]

∣∣∣ ≲ t−νR−1−a1 , (3.37)

yielding
(
S7, S⃗

)
[µ1, ξ] ∈ Bµ̇1

×Bξ̇.

For any sequence (µ̇
[j]
1 , ξ̇

[j])j≥1 ⊂ Bµ̇1
× Bξ̇, denote µ

[j]
1 =

∫ t

∞ µ̇
[j]
1 (a)da, ξ[j] =

∫ t

∞ ξ̇[j](a)da. We set

˜̇µ
[j]
1 := S7[µ

[j]
1 , ξ

[j]],
˜̇
ξ[j] := S⃗[µ[j]

1 , ξ
[j]]. Similar to (3.37), we have

| ˜̇µ[j]
1 | ≤ C1t

1−ν−κR−a1 , | ˜̇ξ[j]| ≤ C1t
−νR−1−a1 for all j ≥ 1 (3.38)

for a constant C1 > 0 independent of j.

For any compact subset K ⊂⊂ [t0,∞), by the equation (3.31) and the Hölder regularity for the outer

solution ψ, for all j ≥ 1, ˜̇µ
[j]
1 and

˜̇
ξ[j] are uniformly Hölder continuous in K. Then up to a subsequence,

˜̇µ
[j]
1 → g,

˜̇
ξ[j] → g⃗ in L∞(K) as j → ∞

for some g, g⃗ ∈ C[t0,∞). By (3.38), we have

|g| ≤ C1t
1−ν−κR−a1 , |⃗g| ≤ C1t

−νR−1−a1 .

Thus, for any ϵ1 > 0, there exists t1 sufficiently large such that for all j ≥ 1,

sup
t≥t1

tν+κ−1Ra1−ϵ(t)
∣∣∣( ˜̇µ[j]

1 − g
)
(t)
∣∣∣+ sup

t≥t1

tνR1+a1−ϵ(t)
∣∣∣( ˜̇ξ[j] − g⃗

)
(t)
∣∣∣ < ϵ1,

and moreover, one has

lim
j→∞

[
sup

t0≤t≤t1

tν+κ−1Ra1−ϵ(t)
∣∣∣( ˜̇µ[j]

1 − g
)
(t)
∣∣∣+ sup

t0≤t≤t1

tνR1+a1−ϵ(t)
∣∣∣( ˜̇ξ[j] − g⃗

)
(t)
∣∣∣ ] = 0,

i.e., lim
j→∞

(
∥ ˜̇µ[j]

1 − g∥µ̇1
+ ∥ ˜̇ξ[j] − g⃗∥ξ̇

)
= 0, which implies that

(
S7, S⃗

)
[µ1, ξ] is a compact mapping on Bµ̇1

×Bξ̇.

Then Schauder fixed-point theorem ensures the existence of a solution (µ̇1, ξ̇) ∈ Bµ̇1
× Bξ̇ for the system

(3.31).

□

The last step is to solve the inner problem (3.10). By (3.27), (2.4), and (3.22), we have∣∣∣µξ̇ · (∇U) (y) + 2µ2U(y)
(
Ψ0(µy + ξ, t)−Ψ0(0, t) + ψ(µy + ξ, t)

)∣∣∣ ≲ τ−νR−a1(t(τ))⟨y⟩−4.

We write H̃[ϕ] := H
[
ψ
[
ϕ, µ1[ϕ], ξ[ϕ]

]
, µ0 + µ1[ϕ], ξ[ϕ]

]
for simplicity. From (3.20), we have

|H̃[ϕ]| ≲ τ−ν⟨y⟩−4.

We now apply Proposition 3.1 to the inner problem (3.10), and it suffices to solve the fixed-point problem

ϕ = Tin
[
H̃[ϕ]

]
.

Indeed, for any ϕ ∈ Bin, given t0 sufficiently large (so does τ0), by Proposition 3.1, we have

⟨y⟩
∣∣∣∇yTin

[
H̃[ϕ]

]∣∣∣+ ∣∣∣Tin[H̃[ϕ]
]∣∣∣ ≲ τ−νR7−a⟨y⟩−7,

∣∣∣Te0[H̃[ϕ]
]∣∣∣ ≲ τ−ν

0 R2−a(t(τ0)),

which implies Tin
[
H̃[ϕ]

]
∈ Bin in particular.
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For any sequence (ϕj)j≥1 ∈ Bin, denote ϕ̃j := Tin
[
H̃[ϕj ]

]
, ẽj := Te0

[
H̃[ϕj ]

]
, which satisfies∂τ ϕ̃j = ∆yϕ̃j + 2U(y)ϕ̃j + H̃[ϕj ] in D4R :=

{
(y, τ) | τ ∈ (τ0,∞), y ∈ B4R(t(τ))

}
ϕ̃j(·, τ0) = ẽjZ0 in B4R(t(τ0)).

One sees similarly that there exists a constant C1 independent of j such that

|H̃[ϕj ]| ≤ C1τ
−ν⟨y⟩−4, ⟨y⟩

∣∣∣∇yϕ̃j

∣∣∣+ ∣∣∣ϕ̃j∣∣∣ ≤ C1τ
−νR7−a⟨y⟩−7, |ẽj | ≤ C1τ

−ν
0 R2−a(t(τ0)). (3.39)

For any compact setK ⊂⊂ D3R∪(B3R(t0)×{τ0}), parabolic regularity theory gives that ∥ϕj∥
C1+ℓ, 1+ℓ

2 (K)
≤ C2

with a constant C2 independent of j and a constant ℓ ∈ (0, 1). By Arzelà-Ascoli theorem, up to a subsequence,

there exists a function g ∈ C1
x such that

ϕ̃j → g, ∇yϕ̃j → ∇yg in L∞(K) as j → ∞.

By (3.39), we have

⟨y⟩ |∇yg|+ |g| ≤ C1τ
−νR7−a⟨y⟩−7 in D3R.

The compactness of the mapping Tin
[
H̃[ϕ]

]
is a consequence of modifying the constant measuring the weighted

space for inner problem. By the Schauder fixed-point theorem, there exists a solution ϕ ∈ Bin.

The desired asymptotics of global solution to (2.1) are thus captured, and based on the space that the

solution lies in, it is a positive solution by maximum principle. The proof of Theorem 1.1 is complete.

4. Remarks on the cases n = 3, 4

The constructions for the lower dimensional cases n = 3, 4 consist of almost the same steps as in the

previous section. But substantial modifications have to be made in the ansatz for the approximate solution.

Recall that in the error of the first approximation u1, (2.5), the spatial decay is not fast enough in lower

dimensions, namely

Zn+1(y) /∈ L2(Rn) for n = 3, 4.

Also, correction is also needed for Eη in (2.6) in the self-similar region. This suggests that modifications must

be added to improve the decay of the error.

We add two global corrections ϕnl and ϕss that solve respectively

∂tϕnl −∆ϕnl = µ−n
2 µ̇Zn+1(y)η (ỹ) ,

∂tϕss −∆ϕss = Eη.

For instance, assume that n = 4, the term ϕnl, expressed by the convolution form

ϕnl(x, t) =

∫ t

t0

∫
R4

(4π(t− s))−2e−
|x−z|2
4(t−s) µ−2(s)µ̇(s)Z5

(
|z|
µ(s)

)
η

(
|z|√
s

)
dzds,

has leading term in non-local form in µ̇

ϕnl(x, t) ∼ −2−
1
2

∫ t−µ2
0

t/2

µ̇(s)

t− s
ds

while ϕss can be approximated by a neat self-similar form. Indeed, the leading term in Eη is

Ẽ = 2
3
2µt−2

(
2−1ỹ−1η′(ỹ)− ỹ−3η′(ỹ) + ỹ−2η′′(ỹ)

)
, ỹ :=

x√
t
.

We take

ϕss = µφ̂1, Ẽ = µÊ,

then φ̂1 satisfies

∂tφ̂1 = ∆φ̂1 + Ê.
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Writing φ̂1 = t−1A(ỹ) implies

A′′ +

(
3

ỹ
+
ỹ

2

)
A′ +A+ h(ỹ) = 0,

h(ỹ) = 2
3
2 ỹ−2

(
η′′(ỹ)− 1

ỹ
η′(ỹ) +

ỹ

2
η′(ỹ)

)
.

Then

ϕss(x, t) = 2
3
2µ|x|−2

(
e−

|x|2
4t − η (ỹ)

)
,

and in particular,

ϕss(0, t) = −2−
1
2µt−1.

The terms ϕnl and ϕss will create new errors, making the reduced problem of the scaling parameter µ(t)

non-local also. Similar computations as in [35] and [34] eventually lead to the non-local dynamics for µ:∫ t−µ2(t)

t/2

µ̇(s)

t− s
ds+

µ(t)

t
∼ −v4,γ

with v4,γ defined in (2.2). Above non-local equation can be solved by approximation

(µ ln t)′ ∼ −v4,γ ,

yielding the trichotomy dynamics

µ(t) ∼


(ln t)−1t1−

γ
2 , γ < 2

1, γ = 2

(ln t)−1, γ > 2

.

However, the remainder needs to be controlled using Hölder properties of solution, which is subtle and has

been dealt with in [35, Section 4] and [34, Section 5]. We omit the lengthy details here.

Remark 4.1. For the case n = 3, the non-local dynamics read∫ t

0

β̇(s)

(t− s)1/2

(
1− e−

M2

t−s

)
ds = hγ(t),

where β(t) is an explicit function of µ(t), M is a large constant, and hγ depends on γ. The resolution of the

Abel-type operator is achieved by the Laplace transform and its inverse. See [8, Section 6] and [1, Section 8].
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