UNIFORM BOUND ON THE NUMBER OF PARTITIONS FOR OPTIMAL CONFIGURATIONS OF THE OHTA-KAWASAKI ENERGY IN 3D*

XIN YANG LU ${ }^{\dagger}$ AND JUN-CHENG WEI ${ }^{\ddagger}$

Abstract

We study a 3D ternary system which combines an interface energy with a long range interaction term. Several such systems were derived as a sharp-interface limit of the NakazawaOhta density functional theory of triblock copolymers. Both the binary case in 2D and 3D, and the ternary case in 2 D , are quite well understood, while very little is known about the ternary case in 3D. In particular, it is even unclear whether minimizers are made of finitely many components. In this paper we provide a positive answer to this, by proving that the number of components in a minimizer is bounded from above by a computable quantity depending only on the total masses and the interaction coefficients. There are two key difficulties, namely the impossibility to decouple the long range interaction from the perimeter term, and the absence of a quantitative isoperimetric inequality with two mass constraints in 3D. Therefore, the actual shape of minimizers is unknown, even for small masses, making the construction of suitable competing configurations significantly more delicate.

Key words. Pattern formation, small volume-fraction limit, triblock copolymers.
AMS subject classifications. 49S05, 35K30, 35K55

1. Introduction. Energy functionals entailing a direct competition between an attractive short-range force and a repulsive Coulombic long-range force have been studied intensively in recent years, to understand physical problems such as Gamow's liquid drop problem, and self-assembly of block copolymers. In Gamow's liquid drop model [10], the volume of the nucleus $\Omega \subset \mathbb{R}^{3}$ is fixed, i.e., $|\Omega|=m$ with the parameter m being referred to as "mass". The binding energy is given by

$$
\mathcal{E}_{\text {liquid }}(\Omega):=\operatorname{Per}(\Omega)+\frac{1}{8 \pi} \int_{\Omega \times \Omega} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|}
$$

where the first term is the perimeter (or surface area) of Ω, which arises due to the lower nucleon density near the nucleus boundary; the second term is a Coulomb-type one, introduced to account for the presence of positively charged protons [3].

In Ohta and Kawasaki's diblock copolymer model [21], the free energy is given by

$$
\mathcal{E}_{\text {diblock }}(\Omega):=\operatorname{Per}(\Omega)+\gamma \int_{\Omega \times \Omega} G(x, y) \mathrm{d} x \mathrm{~d} y,
$$

where the first term, i.e. the perimeter, favors a large ball; the second term prefers splitting, and models long-range interactions between monomers due to the connectivity of different subchains in copolymer molecules. Here

$$
G(x, y)=\frac{1}{4 \pi|x-y|}+R(x, y)
$$

[^0]is the zero-average Green's function of the Laplace operator in $\mathbb{R}^{3}, R(x, y)$ is the regular part of $G(x, y)$, and γ is the long-range interaction coefficient, determined by the percentage of each type monomer, the total number of monomers in a chain molecule, the repulsion between different monomers, and the average distance between two adjacent monomers [6]. During each experiment, the total mass of each type monomer is fixed. So the energy is minimized under the mass constraint $|\Omega|=m$.

In this paper, we study a model in ternary systems, introduced by Nakazawa and Ohta to study triblock copolymers [20]. A triblock copolymer is a chain molecule consisting of three types of subchains: a subchain of type A monomers is connected to a subchain of type B monomers, and then connected to a subchain of type C monomers. Block copolymers can be used as a material in artificial organ technology and controlled drug delivery.

The free energy of triblock copolymers, in the sharp interface model, was derived by Ren and Wei in [24, 23] as the Γ-limit of Nakazawa and Ohta's diffuse interface model:

$$
\mathcal{E}_{\text {triblock }}\left(\Omega_{1}, \Omega_{2}\right):=\frac{1}{2} \sum_{i=0}^{2} \operatorname{Per}\left(\Omega_{i}\right)+\sum_{i, j=1}^{2} \gamma_{i j} \int_{\Omega_{i} \times \Omega_{j}} G(x, y) \mathrm{d} x \mathrm{~d} y
$$

Here $\Omega_{0}=\left(\Omega_{1} \cup \Omega_{2}\right)^{c}$, the perimeter term is defined by

$$
\frac{1}{2} \sum_{i=0}^{2} \operatorname{Per}\left(\Omega_{i}\right)=\sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i} \cap \partial \Omega_{j}\right)
$$

and the long-range interaction coefficients $\gamma_{i j}$ form a 2×2 symmetric matrix. Using a "droplet" scaling argument, as done by Choksi and Peletier in [4, 5], and by Alama, Bronsard, the first author, and Wang in [1], it can be shown that the leading order of the free energy takes the form

$$
\begin{equation*}
E_{0}\left(\Omega_{1}, \Omega_{2}\right)=\sum_{k} e_{0}\left(\left|\Omega_{1, k}\right|,\left|\Omega_{2, k}\right|\right), \quad \Omega_{i}=\bigcup_{k} \Omega_{i, k}, \quad i=1,2 \tag{1.1}
\end{equation*}
$$

with

$$
\begin{aligned}
& e_{0}:[0,+\infty) \times[0,+\infty) \longrightarrow \mathbb{R} \\
& e_{0}\left(m_{1}, m_{2}\right):= \inf \left\{\sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i} \cap \partial \Omega_{j}\right)\right. \\
&\left.+\sum_{i, j=1}^{2} \frac{\Gamma_{i j}}{4 \pi} \int_{\Omega_{i} \times \Omega_{j}} \frac{\mathrm{~d} x \mathrm{~d} y}{|x-y|}:\left|\Omega_{i}\right|=m_{i}, i=1,2\right\}
\end{aligned}
$$

where $\Gamma_{i j}$ is a suitable scaling of $\gamma_{i j}$. That is, E_{0} seeks the optimal partition $\Omega_{i}=$ $\bigcup_{k} \Omega_{i, k}$, with each couple ($\Omega_{1, k}, \Omega_{2, k}$) minimizing e_{0}.

Choksi and Peletier showed in [4, Theorem 4.2] that, when the domain is the unit torus \mathbb{T}^{3}, in the small mass volume fraction regime, the first order Γ-limit of the free energies (see [4, Equation (1.8)])

$$
E_{\eta}^{3 d}(v):=\left\{\begin{array}{l}
\eta \int_{\mathbb{T}^{3}}|\nabla v| \mathrm{d} x+\eta\left\|v-\frac{1}{\left|\mathbb{T}^{3}\right|} \int_{\mathbb{T}^{3}} v \mathrm{~d} x\right\|_{\mathcal{H}^{-1}\left(\mathbb{T}^{3}\right)}^{2} \\
+\infty
\end{array}\right.
$$

$$
\text { if } v \in B V\left(\mathbb{T}^{3} ;\left\{0, \eta^{-3}\right\}\right)
$$ otherwise,

is of the form
perimeter + long range interaction,
i.e. (see [4, Equation (4.1)], and more in general [4, Section 4]),

$$
E_{0}^{3 d}(v):= \begin{cases}\sum_{k=0}^{\infty} e_{0}\left(m_{k}\right) & \text { if } v=\sum_{k=0}^{\infty} m_{k} \delta_{x_{k}}, \sum_{k=0}^{\infty} m_{k}=M=\text { total mass }, \\ +\infty & \text { otherwise },\end{cases}
$$

with

$$
e_{0}^{3 d}(m)=\inf \left\{\int_{\mathbb{R}^{3}}|\nabla z| \mathrm{d} x+\|z\|_{H^{-1}\left(\mathbb{R}^{3}\right)}^{2}: z \in B V\left(\mathbb{R}^{3} ;\{0,1\}\right),\|z\|_{L^{1}\left(\mathbb{R}^{3}\right)}=M\right\} .
$$

The H^{-1} norm can be made explicit:

$$
\|z\|_{H^{-1}\left(\mathbb{R}^{3}\right)}^{2}=\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} G(|x-y|) z(x) z(y) \mathrm{d} x \mathrm{~d} y,
$$

where G denotes the Green's function of the Laplacian in \mathbb{R}^{3}. That is, the minima seeks the optimal partition, in which each component minimizes the energy $e_{0}^{3 d}$. An analogous result, but for ternary systems in the two dimensional torus, was obtained in by Alama, Bronsard, the first author, and Wang, in [1, Theorem 3.2].

With the same arguments from $[4,1]$, it is possible to show that, again, with the domain being the unit torus \mathbb{T}^{3}, in the small mass volume fraction regime, the first order Γ-limit of the free energies (which are the analogue of [1, Equation (1.8)] for ternary systems in 3D)

$$
\begin{aligned}
E_{\text {ternary }, \eta}^{3 d}\left(v_{1, \eta}, v_{2, \eta}\right):= & \begin{cases}f_{\eta}\left(v_{1, \eta}, v_{2, \eta}\right) & \text { if } v_{1, \eta}, v_{2, \eta} \in B V\left(\mathbb{T}^{3} ;\left\{0, \frac{1}{\eta^{3}}\right\}\right), \\
+\infty & \text { otherwise },\end{cases} \\
f_{\eta}\left(v_{1, \eta}, v_{2, \eta}\right):= & \frac{\eta}{2} \sum_{i=0}^{2} \int_{\mathbb{T}^{3}}\left|\nabla v_{i, \eta}\right| \mathrm{d} x
\end{aligned}
$$

$G_{\mathbb{T}^{3}}:=$ Green's function of the Laplacian in \mathbb{T}^{3} with zero average, can be again written in the form

$$
\begin{align*}
E_{\text {ternary }, 0}^{3 d}\left(v_{1}, v_{2}\right) & := \begin{cases}\sum_{k=0}^{\infty} e_{0}\left(m_{1, k}, m_{2, k}\right) & \text { if } v_{i}=\sum_{k=0}^{\infty} m_{i, k} \delta_{x_{i, k}}, \sum_{k=0}^{\infty} m_{i, k}=M_{i}, \\
+\infty & \text { otherwise, }\end{cases} \tag{1.2}\\
M_{i} & =\text { total mass of type } i \text { constituent, } \quad i=1,2,
\end{align*}
$$

where

$$
\left.\begin{array}{rl}
e_{0}\left(m_{1}, m_{2}\right)=\inf \{ & \left\{\sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i} \cap \partial \Omega_{j}\right)+\sum_{i, j=1}^{2} \Gamma_{i j}\left\|z_{i}\right\|_{H^{-1}\left(\mathbb{R}^{3}\right)}^{2}:\right. \\
& z_{i} \in B V\left(\mathbb{R}^{3} ;\{0,1\}\right),\left\|z_{i}\right\|_{L^{1}\left(\mathbb{R}^{3}\right)}=m_{i},
\end{array} \quad \Omega_{i}=\operatorname{supp} z_{i}, i=1,2,\left|\Omega_{1} \cap \Omega_{2}\right|=0\right\}, \quad \Omega_{0}=\left(\Omega_{1} \cup \Omega_{2}\right)^{c},, ~ l
$$

and $\Gamma_{i j} \eta^{-3}=\gamma_{i j} \geq 0$ are coefficients penalizing the Coulomb interaction. Observe that the problem of minimizing $E_{\text {ternary }, 0}^{3 d}$ is again fully determined once we fix the total masses M_{i} and the interaction coefficients $\Gamma_{i j}$. Each couple of sets $\left(\Omega_{1}, \Omega_{2}\right)$, with the appropriate masses, and minimizing e_{0}, is referred to as a "cluster".

Next, we introduce the main energy of this paper: given connected sets Ω_{i}, with $\mathbf{1}_{\Omega_{i}} \in B V\left(\mathbb{R}^{3} ;\{0,1\}\right), i=1,2$, and $\left|\Omega_{1} \cap \Omega_{2}\right|=0$, define the energy

$$
\begin{equation*}
E\left(\Omega_{1}, \Omega_{2}\right):=\sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i} \cap \partial \Omega_{j}\right)+\sum_{i, j=1}^{2} \gamma_{i j} \int_{\Omega_{i} \times \Omega_{j}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y \tag{1.3}
\end{equation*}
$$

where $\Omega_{0}=\left(\Omega_{1} \cup \Omega_{2}\right)^{c}$. Here $\gamma_{i j}$ denote the interaction strengths, and are positive, of order $O(1)$. Note that E is the analogue of e_{0} from (1.1), (1.2), and [1], and of $e_{0}^{3 d}$ from [4], for ternary systems with domain \mathbb{R}^{3}. Then, given disjoint unions

$$
\left(\bigsqcup_{k} \Omega_{1, k}, \bigsqcup_{k} \Omega_{2, k}\right),
$$

with $\Omega_{i, k}$ being the connected components, the total energy of this configuration is defined by

$$
\mathcal{E}\left(\bigsqcup_{k} \Omega_{1, k}, \bigsqcup_{k} \Omega_{2, k}\right):=\sum_{k} E\left(\Omega_{1, k}, \Omega_{2, k}\right) .
$$

Observe that \mathcal{E} is the analogue of [1, Equation (3.5)] and [4, Equation (4.1)], for 3D ternary systems. It is also worthy noting that \mathcal{E} is similar to $\mathcal{E}_{\text {liquid }}, \mathcal{E}_{\text {diblock }}$, and $\mathcal{E}_{\text {triblock }}$, as they are all of the form
perimeter + long range interaction,
with the main difference being that \mathcal{E} suppresses the interaction between different connected components.

In the following, when we say "optimal configuration", unless otherwise specified, we mean a configuration $\left(\bigsqcup_{k} \Omega_{1, k}, \bigsqcup_{k} \Omega_{2, k}\right)$ minimizing \mathcal{E}.

In 2 D , due to the fact that the Green's function is a logarithmic term, the interaction was simply the product of the masses, hence it was equivalent to minimize the perimeter, subject to two mass constraints. It is well known that the double bubble is the unique such minimizer (see e.g. [8, 18] for the 2D case, and [12] for the 3D case, and also $[22,7,16,17]$). In the ternary 3D case, however, such simplification is not available, and the shape of the minimizers is unclear, even for small masses. This is a significant hurdle, and studying the shape of minimizers is hindered by the lack of a quantitative isoperimetric inequality with two mass constraints in 3D

Therefore, a priori, it is even unclear whether optimal configurations have finitely many clusters, as we cannot exclude the presence of infinitely many components with very small masses. Our main result is to show that this is not the case:

Theorem 1. There exists a computable constant $K=K\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right)$ such that any optimal configuration has at most K clusters.

Notation. Since the position of the clusters is rarely relevant, in this paper we denote by B_{m} a ball of mass m.
2. Uniform upper bound on the number of clusters. The proof of Theorem 1 will be split over several lemmas. Throughout the entire section, $M_{i}, i=1,2$, will denote the total masses of type i constituent, and $\gamma_{i j}, i, j=1,2$ will denote the interaction coefficients. These parameters completely determine the minimization problem for \mathcal{E} in 3D. All the M_{i} and $\gamma_{i j}$ will assumed to be given, and do not change throughout the section. Our proof will proceed as follows.

1. First, in Lemma 2, we bound from above the number of clusters made purely of one constituent type. Such upper bound will depend only on $M_{i}, \gamma_{i i}$, $i=1,2$.
2. Then, in Lemma 3, we show that the total mass of the largest cluster's cannot be too small. Such lower bound on the mass will depend only on $M_{i}, \gamma_{i i}$, $i=1,2$.
3. Finally, in Lemmas 4 and 5 we show that the total mass of each cluster is bounded from below by a constant depending only on $M_{i}, \gamma_{i i}, i=1,2$. Since there is only so much total mass (i.e., $M_{1}+M_{2}$), this allows us to infer Theorem 1.
As we have no information on the shape of optimal configurations, we will often compare their energy against that of a suitable standard double bubble. Further information about the geometry of standard double bubbles are available in the Appendix.

LEMMA 2. Consider an optimal configuration, made of clusters $\left(\Omega_{1, k}, \Omega_{2, k}\right), k \geq$ 1. Then

$$
\#\left\{k:\left|\Omega_{1, k}\right|\left|\Omega_{2, k}\right|=0\right\}
$$

is bounded from above by a constant depending only on $M_{i}, \gamma_{i i}, i=1,2$.
Proof. It is well known (see e.g. [13, 2, 19, 9, 14, 15], and references therein) that there exist $m_{i, B}=m_{i, B}\left(\gamma_{i i}\right)>0, i=1,2$, such that, for all $m \leq m_{i, B}\left(\gamma_{i i}\right)$, the minimizer of

$$
\inf _{|X|=m}\left\{\mathcal{H}^{2}(\partial X)+\gamma_{i i} \int_{X \times X}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right\}
$$

is given by B_{m}. Since $\mathcal{H}^{2}\left(\partial B_{m}\right)$ (resp. $\int_{X \times X}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y$) scales like $m^{2 / 3}$ (resp. $\left.m^{5 / 3}\right)$, the perimeter term is dominating for all sufficiently small masses. Thus there exist geometric constants $m_{i, S}=m_{i, S}\left(\gamma_{i i}\right) \leq m_{i, B}\left(\gamma_{i i}\right)$ such that

$$
\begin{aligned}
\mathcal{H}^{2}\left(\partial B_{m_{1}}\right)+ & \gamma_{i i} \int_{B_{m_{1}} \times B_{m_{1}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y \\
& +\mathcal{H}^{2}\left(\partial B_{m_{2}}\right)+\gamma_{i i} \int_{B_{m_{2} \times B_{m_{2}}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y \\
> & \mathcal{H}^{2}\left(\partial B_{m_{1}+m_{2}}\right)+\gamma_{i i} \int_{B_{m_{1}+m_{2}} \times B_{m_{1}+m_{2}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

for all $m_{1}, m_{2} \leq m_{i, S}\left(\gamma_{i i}\right)$, i.e. combining the two balls is energetically favorable whenever $m_{1}, m_{2} \leq m_{i, S}\left(\gamma_{i i}\right)$. Thus we cannot have two balls of the type i constituent, both with masses less than $m_{i, S}\left(\gamma_{i i}\right)$. Since the total mass is $M_{1}+M_{2}<+\infty$, the proof is complete.

Lemma 3. Consider an optimal configuration, made of clusters $\left(\Omega_{1, k}, \Omega_{2, k}\right), k \geq$ 1. Then

$$
m_{i}^{+}:=\sup _{k} m_{i, k}, \quad m_{i, k}:=\left|\Omega_{i, k}\right|, \quad i=1,2,
$$

is bounded from below by

$$
\min \left\{\frac{M_{i}}{2},\left(\frac{\sqrt[3]{36 \pi} M_{i}}{4 \sum_{i=1}^{2}\left[\sqrt[3]{36 \pi} M_{i}^{2 / 3}+\gamma_{i i} \int_{B_{M_{i}} \times B_{M_{i}}}|x-y|^{-1} d x d y\right]}\right)^{3}\right\}, \quad i=1,2
$$

Note that, curiously, this lower bound is independent of γ_{12}. As it will be clear from the proof, this is due to the fact that an upper bound for the energy of an optimal configuration is given by the energy of two balls of masses M_{1} and M_{2} respectively. Such bound is clearly independent of γ_{12}.

Proof. The idea is that, for very small masses, the perimeter term is sub-addictive and dominating. Assume $m_{i}^{+} \leq M_{i} / 2$, as otherwise $M_{i} / 2$ is already a lower bound. Note that

$$
E\left(\Omega_{1, k}, \Omega_{2, k}\right) \geq \mathcal{S}\left(m_{1, k}, m_{2, k}\right) \quad \forall k \geq 1
$$

where
$\mathcal{S}\left(m_{1}, m_{2}\right)=$ perimeter of the standard double bubble with masses m_{1} and m_{2},
and, by [11, Theorem 4.2] (applied with $v_{1}=m_{1}, x=v_{2}=m_{2}, n=3$)

$$
\mathcal{S}\left(m_{1}, m_{2}\right) \geq \sum_{i=1}^{2} c_{i} m_{i}^{2 / 3}, \quad c_{1}=c_{2}=\frac{\sqrt[3]{36 \pi}}{2}
$$

Thus the total energy of our optimal configuration satisfies

$$
\sum_{k \geq 1} E\left(\Omega_{1, k}, \Omega_{2, k}\right) \geq \sum_{i=1}^{2} c_{i} \sum_{k \geq 1} m_{i, k}^{2 / 3}
$$

By the concavity of the function $t \mapsto t^{2 / 3}$, the sum $\sum_{k \geq 1} m_{i, k}^{2 / 3}$ is minimum when $m_{i, k} \in\left\{0, m_{i}^{+}\right\}$for all k. Since $\sum_{k \geq 1} m_{i, k}=M_{i}$, there are at least $\left\lfloor\frac{M_{i}}{m_{i}^{+}}\right\rfloor$many clusters containing type i constituents, thus

$$
\begin{aligned}
\sum_{k \geq 1} E\left(\Omega_{1, k}, \Omega_{2, k}\right) & \geq \sum_{i=1}^{2} c_{i} \sum_{k \geq 1} m_{i, k}^{2 / 3} \geq \sum_{i=1}^{2} c_{i}\left\lfloor\frac{M_{i}}{m_{i}^{+}}\right\rfloor\left(m_{i}^{+}\right)^{2 / 3} \\
& \geq \sum_{i=1}^{2} c_{i} \frac{M_{i}-m_{i}^{+}}{\left(m_{i}^{+}\right)^{1 / 3}} \geq \sum_{i=1}^{2} \frac{c_{i}}{2} \frac{M_{i}}{\left(m_{i}^{+}\right)^{1 / 3}}
\end{aligned}
$$

Since our configuration was an optimal one, its energy does not exceed that of two balls, which we denote by $B_{M_{1}}$ and $B_{M_{2}}$, of masses M_{1} and M_{2}, respectively. Thus the above line continues as

$$
\begin{aligned}
\sum_{i=1}^{2} \frac{c_{i}}{2} \frac{M_{i}}{\left(m_{i}^{+}\right)^{1 / 3}} & \leq \sum_{k \geq 1} E\left(\Omega_{1, k}, \Omega_{2, k}\right) \\
& \leq \sum_{i=1}^{2}\left[\sqrt[3]{36 \pi} M_{i}^{2 / 3}+\gamma_{i i} \int_{B_{M_{i}} \times B_{M_{i}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right]
\end{aligned}
$$

hence

$$
\left(m_{i}^{+}\right)^{1 / 3} \geq \frac{c_{i} M_{i}}{2 \sum_{i=1}^{2}\left[\sqrt[3]{36 \pi} M_{i}^{2 / 3}+\gamma_{i i} \int_{B_{M_{i}} \times B_{M_{i}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right]}
$$

and the proof is complete.
LEMMA 4. Consider an optimal configuration, made of clusters $\left(\Omega_{1, k}, \Omega_{2, k}\right), k \geq$ 1. Assume $\sup _{k}\left|\Omega_{1, k}\right|$ and $\sup _{k}\left|\Omega_{2, k}\right|$ are achieved on different clusters, i.e., without loss of generality,

$$
\left|\Omega_{1,1}\right|=m_{1}^{+}=\sup _{k}\left|\Omega_{1, k}\right|, \quad\left|\Omega_{2,2}\right|=n_{2}^{+}=\sup _{k}\left|\Omega_{2, k}\right| .
$$

Then

$$
\inf _{k} \sum_{i=1}^{2}\left|\Omega_{i, k}\right|
$$

is bounded from below by a constant depending only on $M_{i}, \gamma_{i i}, i=1,2$.
Proof. Consider a cluster $\left(\Omega_{1, k}, \Omega_{2, k}\right)$, with $k \geq 3$, and let

$$
m_{2}:=\left|\Omega_{2,1}\right|, \quad n_{1}:=\left|\Omega_{1,2}\right|, \quad \varepsilon_{i}:=\left|\Omega_{i, k}\right|>0, i=1,2 .
$$

Note that $m_{1}^{+} \geq n_{1}, n_{2}^{+} \geq m_{2}$. The construction will be slightly different depending on the values of $\frac{m_{1}^{+}}{m_{2}}, \frac{m_{2}}{n_{2}^{+}}$, and $\frac{\varepsilon_{1}}{\varepsilon_{2}}$.

Case 1: $\frac{m_{1}^{+}}{m_{2}} \geq \frac{\varepsilon_{1}}{\varepsilon_{2}}$. Consider the competitor constructed in the following way (see Figure 1).

- Move mass ε_{1} (resp. $r m_{2}$, with $r:=\frac{\varepsilon_{1}}{m_{1}^{+}} \leq 1$) of type I (resp. type II) constituent from the cluster $\left(\Omega_{1, k}, \Omega_{2, k}\right)$ to $\left(\Omega_{1,1}, \Omega_{2,1}\right)$. This is possible since we are discussing the case $\frac{m_{1}^{+}}{m_{2}} \geq \frac{\varepsilon_{1}}{\varepsilon_{2}}$, i.e. $r m_{2}=\varepsilon_{1} \frac{m_{2}}{m_{1}^{+}} \leq \varepsilon_{2}$.
- Replace $\left(\Omega_{1, k}, \Omega_{2, k}\right)$ and $\left(\Omega_{1,1}, \Omega_{2,1}\right)$ with $B_{\varepsilon_{2}-r m_{2}}$ (of type II constituent) and $\left(\tilde{\Omega}_{1,1}, \tilde{\Omega}_{2,1}\right):=(1+r)^{1 / 3}\left(\Omega_{1,1}, \Omega_{2,1}\right)$, while every other cluster remains unaltered.
Now we estimate the change in energy. Since our initial configuration was optimal,

$$
\begin{align*}
0 \leq E & \left((1+r)^{1 / 3}\left(\Omega_{1,1}, \Omega_{2,1}\right)\right)+E\left(\emptyset, B_{\varepsilon_{2}-r m_{2}}\right) \\
& -E\left(\Omega_{1,1}, \Omega_{2,1}\right)-E\left(\Omega_{1, k}, \Omega_{2, k}\right) . \tag{2.2}
\end{align*}
$$

By a straightforward scaling argument,

$$
\begin{aligned}
& E\left((1+r)^{1 / 3}\left(\Omega_{1,1}, \Omega_{2,1}\right)\right) \\
& \quad=(1+r)^{2 / 3} \sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i, 1} \cap \partial \Omega_{j, 1}\right), \quad \Omega_{0,1}:=\left(\Omega_{1,1} \cup \Omega_{2,1}\right)^{c}, \\
& \quad+(1+r)^{5 / 3} \sum_{i, j=1}^{2} \gamma_{i j} \int_{\Omega_{i, 1} \times \Omega_{j, 1}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y \\
& \quad \leq(1+r) \sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i, 1} \cap \partial \Omega_{j, 1}\right)+(1+3 r) \sum_{i, j=1}^{2} \gamma_{i j} \int_{\Omega_{i, 1} \times \Omega_{j, 1}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y \\
& \quad \leq(1+3 r)[\underbrace{\left.\sum_{0 \leq i<j \leq 2} \mathcal{H}^{2}\left(\partial \Omega_{i, 1} \cap \partial \Omega_{j, 1}\right)+\sum_{i, j=1}^{2} \gamma_{i j} \int_{\Omega_{i, 1} \times \Omega_{j, 1}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right]}_{=E\left(\Omega_{1,1}, \Omega_{2,1}\right)}]
\end{aligned}
$$

Fig. 1. Schematic representation of the construction of the competitor: original clusters (top), and modified clusters (bottom). Though the objects in question are three dimensional, for better clarity, we represented the construction in two dimensions. Only the affected clusters are represented here. The clusters are drawn deliberately deformed, to emphasize the fact that we do not know the clusters' precise shapes.
where we used the estimates

$$
(1+r)^{2 / 3} \leq 1+r \leq 1+3 r, \quad(1+r)^{5 / 3} \leq(1+r)^{2} \stackrel{(r \leq 1)}{\leq} 1+3 r
$$

Thus, in view of Lemma 3,

$$
\begin{align*}
E\left((1+r)^{1 / 3}\left(\Omega_{1,1}, \Omega_{2,1}\right)\right) & -E\left(\Omega_{1,1}, \Omega_{2,1}\right) \\
& \leq 3 r E\left(\Omega_{1,1}, \Omega_{2,1}\right) \leq \varepsilon_{1} H_{1}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right) \tag{2.3}\\
H_{1}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right) & :=\sum_{i=1}^{2} \frac{3}{m_{1}^{+}}\left[\sqrt[3]{36 \pi} M_{i}^{2 / 3}+\gamma_{i i} \int_{B_{M_{i}} \times B_{M_{i}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right] .
\end{align*}
$$

Now we estimate $E\left(\emptyset, B_{\varepsilon_{2}-r m_{2}}\right)-E\left(\Omega_{1, k}, \Omega_{2, k}\right)$:

$$
\begin{aligned}
E\left(\emptyset, B_{\varepsilon_{2}-r m_{2}}\right) & -E\left(\Omega_{1, k}, \Omega_{2, k}\right) \leq \mathcal{S}\left(0, \varepsilon_{2}-r m_{2}\right)-\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& =\mathcal{S}\left(0, \varepsilon_{2}-r m_{2}\right)-\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}-r m_{2}\right)+\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}-r m_{2}\right)-\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}\right) \\
& \leq-c_{1} \varepsilon_{1}^{2 / 3}, \quad c_{1}:=\frac{\sqrt[3]{36 \pi}}{2}
\end{aligned}
$$

where the last line is due to [11, Theorem 3.2], which gives

$$
\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}-r m_{2}\right)-\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}\right) \leq 0
$$

and [11, Theorem 4.2] (applied with $v_{1}=\varepsilon_{1}, x=v_{2}=\varepsilon_{2}-r m_{2}, n=3$), which gives

$$
\begin{aligned}
\mathcal{S}\left(\varepsilon_{1}, \varepsilon_{2}-r m_{2}\right) & \geq \frac{\sqrt[3]{36 \pi}}{2}\left[\varepsilon_{1}^{2 / 3}+\left(\varepsilon_{2}-r m_{2}\right)^{2 / 3}+\left(\varepsilon_{1}+\varepsilon_{2}-r m_{2}\right)^{2 / 3}\right] \\
& \geq \frac{\sqrt[3]{36 \pi}}{2}\left[\varepsilon_{1}^{2 / 3}+2\left(\varepsilon_{2}-r m_{2}\right)^{2 / 3}\right]=\frac{\sqrt[3]{36 \pi}}{2} \varepsilon_{1}^{2 / 3}+\underbrace{\sqrt[3]{36 \pi}\left(\varepsilon_{2}-r m_{2}\right)^{2 / 3}}_{=\mathcal{S}\left(0, \varepsilon_{2}-r m_{2}\right)}
\end{aligned}
$$

Combining with (2.2) and (2.3) gives the necessary condition

$$
\begin{aligned}
0 & \leq E\left((1+r)^{1 / 3}\left(\Omega_{1,1}, \Omega_{2,1}\right)\right)+E\left(\emptyset, B_{\varepsilon_{2}-r m_{2}}\right)-E\left(\Omega_{1,1}, \Omega_{2,1}\right)-E\left(\Omega_{1, k}, \Omega_{2, k}\right) \\
(2.4) & \leq \varepsilon_{1} H_{1}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right)-c_{1} \varepsilon_{1}^{2 / 3},
\end{aligned}
$$

hence

$$
\varepsilon_{1}^{1 / 3} \geq H_{1}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right) c_{1}^{-1}
$$

thus completing the proof for this case.
Case 2: $\frac{n_{2}^{+}}{n_{1}} \geq \frac{\varepsilon_{2}}{\varepsilon_{1}}$. The competitor constructed in a way similar to the previous case.

- Move mass ε_{2} (resp. $r n_{1}$, with $r:=\frac{\varepsilon_{2}}{n_{2}^{+}} \leq 1$) of type II (resp. type I) constituent from the cluster $\left(\Omega_{1, k}, \Omega_{2, k}\right)$ to $\left(\Omega_{1,2}, \Omega_{2,2}\right)$. This is possible since we are discussing the case $\frac{n_{2}^{+}}{n_{1}} \geq \frac{\varepsilon_{2}}{\varepsilon_{1}}$, i.e. $r n_{1}=\varepsilon_{2} \frac{n_{1}}{n_{2}^{+}} \leq \varepsilon_{1}$.
- Replace $\left(\Omega_{1, k}, \Omega_{2, k}\right)$ and $\left(\Omega_{1,2}, \Omega_{2,2}\right)$ with $B_{\varepsilon_{1}-r n_{1}}$ (of type I constituent) and $(1+r)^{1 / 3}\left(\Omega_{1,2}, \Omega_{2,2}\right)$, while every other cluster remains unaltered.
Then the proof proceeds like in the previous case. With the same arguments from Case 1, we obtain

$$
\begin{aligned}
E\left((1+r)^{1 / 3}\left(\Omega_{1,2}, \Omega_{2,2}\right)\right) & -E\left(\Omega_{1,2}, \Omega_{2,2}\right) \leq 3 r E\left(\Omega_{1,2}, \Omega_{2,2}\right) \leq \varepsilon_{2} H_{2}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right), \\
H_{2}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right) & :=\sum_{i=1}^{2} \frac{3}{n_{2}^{+}}\left[\sqrt[3]{36 \pi} M_{i}^{2 / 3}+\gamma_{i i} \int_{B_{M_{i}} \times B_{M_{i}}}|x-y|^{-1} \mathrm{~d} x \mathrm{~d} y\right]
\end{aligned}
$$

which is the analogue of (2.3), and

$$
\begin{aligned}
0 & \leq E\left((1+r)^{1 / 3}\left(\Omega_{1,2}, \Omega_{2,2}\right)\right)+E\left(\emptyset, B_{\varepsilon_{1}-r n_{1}}\right)-E\left(\Omega_{1,2}, \Omega_{2,2}\right)-E\left(\Omega_{1, k}, \Omega_{2, k}\right) \\
& \leq \varepsilon_{2} H_{2}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right)-c_{2} \varepsilon_{2}^{2 / 3}
\end{aligned}
$$

for some computable, purely geometric constant $c_{2}>0$, which is the analogue of (2.4). Thus

$$
\varepsilon_{2}^{1 / 3} \geq H_{2}\left(M_{1}, M_{2}, \gamma_{11}, \gamma_{22}\right) c_{2}^{-1}
$$

concluding the proof for this case.
Finally, note that the above two cases are exhaustive: if Case 1 does not hold, i.e. $\frac{\varepsilon_{2}}{\varepsilon_{1}}<\frac{m_{2}}{m_{1}^{+}}$, using $m_{1}^{+} \geq n_{1}, n_{2}^{+} \geq m_{2}$, we get

$$
\frac{\varepsilon_{2}}{\varepsilon_{1}}<\frac{m_{2}}{m_{1}^{+}} \leq \frac{n_{2}^{+}}{n_{1}}
$$

i.e. Case 2 holds. The proof is thus complete.

LEMMA 5. Consider an optimal configuration, made of clusters $\left(\Omega_{1, k}, \Omega_{2, k}\right), k \geq$ 1. Assume $\sup _{k}\left|\Omega_{1, k}\right|$ and $\sup _{k}\left|\Omega_{2, k}\right|$ are achieved on the same clusters, i.e., without loss of generality,

$$
\left|\Omega_{i, 1}\right|=m_{i}^{+}=\sup _{k}\left|\Omega_{i, k}\right|, \quad i=1,2 .
$$

Then

$$
\inf _{k} \sum_{i=1}^{2}\left|\Omega_{i, k}\right|
$$

is again bounded from below by a constant depending only on $M_{i}, \gamma_{i i}, i=1,2$.
Proof. We rely on Lemma 4: Consider another cluster $\left(\Omega_{1, k}, \Omega_{2, k}\right), k \geq 2$. Let $\left|\Omega_{1, k}\right|=\varepsilon_{1}>0,\left|\Omega_{2, k}\right|=\varepsilon_{2}>0$, and note that one of the following cases must hold.

1. If $\frac{m_{1}^{+}}{m_{2}^{+}} \geq \frac{\varepsilon_{1}}{\varepsilon_{2}}$, then we can use the construction from Case 1 of Lemma 4.
2. If $\frac{m_{1}^{+}}{m_{2}^{+}} \leq \frac{\varepsilon_{1}}{\varepsilon_{2}}$, i.e. $\frac{m_{2}^{+}}{m_{1}^{+}} \geq \frac{\varepsilon_{2}}{\varepsilon_{1}}$, then we can use the construction from Case 2 of Lemma 4.
The proof is thus complete.
3. Appendix: geometry of the standard double bubble. In [12], it was shown that the three dimensional standard double bubbles has the least surface area among all sets enclosing two regions of given volumes.

Fig. 2. The standard double bubble in \mathbb{R}^{3} : if the two bubbles that meet have equal volumes, the shared surface between them is a flat disc. But in the case of unequal volumes, the smaller bubble, given its larger internal pressure, will bow slightly into the larger bubble. In either scenario, the two bubbles always meet at angles of 120 degrees. Credit: John M. Sullivan, Technical University of Berlin and University of Illinois at Urbana-Champaign.

Geometrically, the standard double bubble is a surface of revolution, with all the three surfaces being part of spheres, meeting at 120 degrees (see Figures 2 and 3).

Below we collect several results, used in the proof of Theorem 1, on the function \mathcal{S} introduced in (2.1).

Lemma 6. [11, Theorem 3.2] The function \mathcal{S} is strictly concave: given $m_{i}, n_{i} \geq 0$, $i=1,2$, it holds

$$
\mathcal{S}\left((1-t) m_{1}+t n_{1},(1-t) m_{2}+t n_{2}\right)>(1-t) \mathcal{S}\left(m_{1}, m_{2}\right)+t \mathcal{S}\left(n_{1}, n_{2}\right)
$$

Fig. 3. Cross section of a standard double bubble.
for all $t>0$.
Corollary 7. [11, Corollary 3.3] The function $\mathcal{S}\left(m_{1}, m_{2}\right)$ is increasing in both variables.

Lemma 8. [11, Theorem 4.2] Suppose that in a minimal enclosure of volumes m_{1} and m_{2} in \mathbb{R}^{3}, with the latter having a connected component with volume $x>0$. Then

$$
\begin{aligned}
\frac{2 \mathcal{S}\left(m_{1}, m_{2}\right)}{c_{1}} & \geq m_{2} x^{-1 / 3}+m_{1}^{2 / 3}+\left(m_{1}+m_{2}\right)^{2 / 3} \\
c_{1} & :=\sqrt[3]{36 \pi}=\text { surface area of the unit ball in } \mathbb{R}^{3} .
\end{aligned}
$$

Acknowledgments. XYL acknowledges the support of NSERC. The research of J. Wei is partially supported by NSERC. We are grateful to Chong Wang for useful discussions and suggestions.

REFERENCES

[1] S. Alama, L. Bronsard, X. Lu, and C. Wang, Periodic minimizers of a ternary non-local isoperimetric problem, Indiana Univ. Math. J., (2021).
[2] M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem on R^{N}, SIAM Journal on Mathematical Analysis, 46 (2014), pp. 2310-2349.
[3] R. Choksi, C. B. Muratov, and I. Topaloglu, An old problem resurfaces nonlocally: Gamow's liquid drops inspire today's research and applications, Notices of the AMS, 64 (2017), pp. 1275-1283.
[4] R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I. sharp-interface functional, SIAM Journal on Mathematical Analysis, 42 (2010), pp. 1334-1370.
[5] , Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional, SIAM Journal on Mathematical Analysis, 43 (2011), pp. 739-763.
[6] R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), pp. 151-176.
[7] R. Dorff, G. Lawlor, D. Sampson, and B. Wilson, Proof of the planar double bubble conjecture using metacalibration methods, Involve, a Journal of Mathematics, 2 (2010), pp. 611-628.
[8] J. Foisy, M. Alfaro Garcia, J. Brock, N. Hodges, and J. Zimba, The standard double soap bubble in R^{2} uniquely minimizes perimeter, Pacific journal of mathematics, 159 (1993), pp. 47-59.
[9] R. L. Frank and E. H. Lieb, A compactness lemma and its application to the existence of minimizers for the liquid drop model, SIAM Journal on Mathematical Analysis, 47 (2015), pp. 4436-4450.
[10] G. Gamow, Mass defect curve and nuclear constitution, Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character, 126 (1930), pp. 632-644.
[11] M. Hutchings, The structure of area-minimizing double bubbles, The Journal of Geometric Analysis, 7 (1997), pp. 285-304.
[12] M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, Proof of the double bubble conjecture, Annals of Mathematics, (2002), pp. 459-489.
[13] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term I: The planar case, Communications on Pure and Applied Mathematics, 66 (2013), pp. 1129-1162.
[14] H. Knüpfer, C. B. Muratov, and M. Novaga, Low density phases in a uniformly charged liquid, Communications in Mathematical Physics, 345 (2016), pp. 141-183.
[15] -, Emergence of nontrivial minimizers for the three-dimensional Ohta-Kawasaki energy, Pure and Applied Analysis, 2 (2019), pp. 1-21.
[16] E. Milman and J. Neeman, The Gaussian double-bubble conjecture, arXiv preprint arXiv:1801.09296, (2018).
[17] F. Morgan and M. Ritoré, Geometric measure theory and the proof of the double bubble conjecture, in Proc. Clay Research Institution Summer School, MSRI, 2001.
[18] F. Morgan and W. Wichiramala, The standard double bubble is the unique stable double bubble in R^{2}, Proceedings of the American Mathematical Society, 130 (2002), pp. 27452751.
[19] C. Muratov and H. Knüpfer, On an isoperimetric problem with a competing nonlocal term II: The general case, Communications on Pure and Applied Mathematics, 67 (2014), pp. 19741994.
[20] H. Nakazawa and T. Оhta, Microphase separation of ABC-type triblock copolymers, Macromolecules, 26 (1993), pp. 5503-5511.
[21] T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), pp. 2621-2632.
[22] B. W. Reichardt, C. Heilmann, Y. Y. Lai, and A. Spielman, Proof of the double bubble conjecture in R^{4} and certain higher dimensional cases, Pacific journal of mathematics, 208 (2003), pp. 347-366.
[23] X. Ren and J. Wei, Triblock copolymer theory: Free energy, disordered phase and weak segregation, Physica D: Nonlinear Phenomena, 178 (2003), pp. 103-117.
[24] X. Ren and J. Wei, Triblock copolymer theory: Ordered ABC lamellar phase, Journal of Nonlinear Science, 13 (2003), pp. 175-208.

[^0]: *SUBMITTED TO THE EDITORS 01/28/2022.
 Funding: XYL ACKNOWLEDGES THE SUPPORT OF NSERC. THE RESEARCH OF J. WEI IS PARTIALLY SUPPORTED BY NSERC.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON, Canada (xlu8@lakeheadu.ca).
 ${ }^{\ddagger}$ Department of Mathematics, University of British Columbia, Vancouver, BC, Canada (jcwei@math.ubc.ca).

