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Abstract. We are interested in the qualitative properties of positive entire so-
lutions u ∈ C4(Rn\{0}) of the equation

(0.1) ∆2u = u
n+4
n−4 in Rn\{0} and 0 is a non-removable singularity of u(x).

It is known from [Theorem 4.2, [12]] that any positive entire solution u of (0.1)
is radially symmetric with respect to x = 0, i.e. u(x) = u(|x|), and equation

(0.1) also admits a special positive entire solution us(x) =
(

n2(n−4)2

16

)n−4
8 |x|−n−4

2 .

We first show that u − us changes signs infinitely many times in (0,∞) for any
positive singular entire solution u 6≡ us in RN\{0} of (0.1). Moreover, equation
(0.1) admits a positive entire singular solution u(x) (= u(|x|) such that the scalar

curvature of the conformal metric with conformal factor u
4

n−4 is positive and

v(t) := e
n−4
2 tu(et) is 2T -periodic with suitably large T . It is still open that

v(t) := e
n−4
2 tu(et) is periodic for any positive entire solution u(x) of (0.1).

1. Introduction

We are interested in the qualitative properties of positive singular solutions of the
equation

(1.1) ∆2u = up in Rn

where p = n+4
n−4

, n ≥ 5.
Equation (1.1) arises in both physics and geometry. There are many results

about the classification of solutions to (1.1). If 1 < p < n+4
n−4

, all nonnegative regular

solutions to (1.1) are trivial. While for p = n+4
n−4

, any positive regular solution has
the form

(1.2) uλ(x) = cn

( λ

1 + λ2|x− x0|2
)n−4

2
, x0 ∈ Rn

where cn = [n(n−4)(n−2)(n+2)]−
n−4
8 and λ ∈ (0,∞), see [12] and [21]. Obviously

uλ ∈ C4(Rn) for any λ > 0. Under the transformations:

vλ(t) := |x− x0|
n−4
2 uλ(|x− x0|), t = log(λ|x− x0|),
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a simple calculation implies that

(1.3) vλ(t) = cn

(
2 cosh(t)

)−n−4
2

for t ∈ (−∞,∞).

It can be seen from (1.3) that, for each λ > 0, vλ(t) satisfies

vλ(−∞) = vλ(∞) = 0

and there is only one maximum point t0 = 0 of vλ(t).
In this paper, we are interested in qualitative properties of positive entire solutions

u of (1.1) with a non-removable singularity at x = 0, i.e., u satisfies the problem

(1.4)

{
∆2u = u

n+4
n−4 in Rn\{0},

0 is a non-removable singularity of u(x).

It is known from [12] that if u ∈ C4(Rn\{0}) is a positive entire solution to (1.4)
and 0 is a non-removable singularity of u, then u is radially symmetric with respect
to x = 0, i.e. u(x) = u(|x|). We recall the following theorem.

Theorem 1.1. (Theorem 4.2 of [12]) Suppose u is a positive smooth solution of

∆2u = up in Rn\{0},
where 1 < p ≤ n+4

n−4
. Assume 0 is a non-removable singularity of u, then u is radially

symmetric with respect to the origin.

In the second order case, it is known from Caffarelli, Gidas and Spruck [1] that if
u ∈ C2(Rn\{0}) is a positive solution of the problem:

(1.5)

{
−∆u = u

n+2
n−2 in Rn\{0}, n ≥ 3,

0 is a non-removable singularity of u(x),

then u is radially symmetric with respect to the origin. Moreover, under the trans-
formations:

v(t) = |x|
n−2
2 u(x), t = log |x|,

v(t) is a periodic function of t in R (see also [11]). These periodic solutions are called
Delaunay type solutions in geometry. It is known that Delaunay type solutions
play vital role in the construction and classification of singular Yamabe problem
([13, 14, 15, 16]).

An interesting question is whether the qualitative properties of the positive entire
solutions of the second order problem are still true for the fourth order problem.
More precisely, if u ∈ C4(Rn\{0}) is a positive entire solution of (1.4), under the
transformations:

(1.6) v(t) = |x|
n−4
2 u(|x|), t = log |x|,

then v(t) satisfies the equation

(1.7) v(4)(t) +K2v
′′(t) +K0v(t) = v

n+4
n−4 (t),

where

(1.8) K2 = −n
2 − 4n+ 8

2
, K0 =

n2(n− 4)2

16
.
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A natural question is: Is v(t) a periodic function of t ∈ R?

In this paper we will see that there is a basic difference between the second order

and the fourth order cases. It is easily seen that vs ≡ K
n−4
8

0 in R is a constant
solution to (1.7), since

us(r) = K
n−4
8

0 r−
n−4
2

is a positive entire solution to (1.4). We will prove that v(t) in (1.6) oscillates
infinitely many times in t ∈ R around the constant solution vs provided that v 6≡ vs
in R, which means that u(r) − us(r) changes signs infinitely many times in (0,∞)
provided u 6≡ us in (0,∞). Furthermore, the existence of positive 2T -periodic
solution v(t) of (1.7) will be given provided T > 0 suitably large. It is still open
that any solution v(t) of (1.7) is a periodic function.

Our main results of this paper are the following theorems.

Theorem 1.2. Assume n ≥ 5, any positive entire solution u ∈ C4(Rn\{0}) to
problem (1.4) is radially symmetric with respect to the origin. Moreover, u(r)−us(r)
changes signs infinitely many times in (0,∞) provided u 6≡ us in (0,∞).

Theorem 1.2 shows that the equation v′(t) = 0 admits infinitely many roots in R
provided v(t) := e

n−4
2
tu(et). If there are two roots −∞ < t0 < t1 < ∞ such that

v′′′(t0) = v′′′(t1) = 0, we can easily see from (1.7) that v(t) is a periodic solution to
(1.7). However, for arbitrary solution v(t) of (1.7), it is difficult to find t∗ satisfying
v′(t∗) = 0 and v′′′(t∗) = 0. We have succeeded in seeking the periodic solution to
equation (1.7) via variational methods.

Theorem 1.3. For any suitably large T > 0, there exists a positive 2T -periodic
solution to equation (1.7).

As far as we know, except the well-known radial singular solution K
1
p−1

1 |x|−
4
p−1 to

equation (1.1) with

K1 =
8 [(n− 2)(n− 4)(p− 1)3 + 2(n2 − 10n+ 20)(p− 1)2 − 16(n− 4)(p− 1) + 32]

(p− 1)4
,

Theorem 1.3 states that (1.4) admits solutions u(|x|) with periodic v(t) := e
n−4
2
tu(et)

for t ∈ R.
Furthermore, for a solution u(r) = v(t)r−

n−4
2 of (1.4) where t = ln r and v(t) is

given in Theorem 1.3, we can show that the scalar curvature of the conformal metric

with conformal factor u
4

n−4 is positive. This result is an immediate consequence of
the following pointwise inequality (1.10). In fact, by the conformal change g :=

u
4

n−4 g0 where g0 is the usual Euclidean metric, the new scalar curvature becomes

(1.9) Rg = −4(n− 1)

n− 2
u−

n+2
n−4 ∆(u

n−2
n−4 ).
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Theorem 1.4. If v(t) = r
n−4
2 u(et) is given by Theorem 1.3, then the following

pointwise inequality holds

(1.10) −∆u ≥
√
n(n− 4)

n2 − 4
u

n
n−4 +

2

n− 4

|∇u|2

u
in Rn\{0}.

As a consequence, the scalar curvature Rg of the corresponding u is positive.

Such pointwise inequalities have important applications. For example Modica
[18] derived a similar Modica’s estimate for Allen-Cahn equation. This point esti-
mate has been used to study the De Giorgi’s conjecture (1978) and analyze various
semilinear equations and problems. Recently, Fazly, Wei and Xu [5] obtained the
inequality

(1.11) −∆u ≥
√

2

p+ 1− 8
n(n−4)

|x|
a
2u

p+1
2 +

2

n− 4

|∇u|2

u
in Rn

for all bounded positive solutions of ∆2u = |x|aup, p > 1, a ≥ 0. For more details
one may refer to [5] and references therein. We should point out that (1.11) holds for
bounded solutions while in our case, the solutions have non-removable singularity
at the point 0, which may make

∫
B1(0)
|∆u|2dx to be unbounded. On the other

hand, Theorem 1.3 and Theorem 1.4 imply that there is a relationship between the
periodic solution and the corresponding scalar curvature. Based on Theorem 1.4, it
is natural to raise the following

Conjecture: If the scalar curvature corresponding to the solution u(r) of (1.4) is

positive, then v(t) = e
n−4
2
tu(et) must be periodic.

Structure of positive radial entire solutions of the equation

(1.12) ∆2u = up in Rn, p >
n+ 4

n− 4
, n ≥ 5

has also been studied by many authors in these years. Gazzola and Grunau [6]
proved the existence of positive regular radial solutions to (1.12), denoted by ua
satisfying

u(0) = a, u′′(0) = b(a), u′(0) = u′′′(0) = 0

where b(a) is uniquely determined by a. Guo and Wei [9] got the qualitative prop-

erties of ua − K
1
p−1

1 |x|−
4
p−1 . Dávila, Dupaigne, Wang and Wei [3] proved that all

stable or finite Morse index solutions to (1.12) are trivial provided p < pc(n) where

pc(n) = +∞ for 5 ≤ n ≤ 12 and pc(n) =
n+2−
√
n2+4−n

√
n2−8n+32

n−6−
√
n2+4−n

√
n2−8n+32

for n ≥ 13. Re-

cently, Guo, Wei and Yang [10] obtained infinitely many nonradial singular solutions
of (1.12) by gluing method provided n+3

n−5
< p < pc(n − 1), n ≥ 6. For more results

and details one may refer to the references therein.
In section 2, we present some qualitative properties of the entire solutions of (1.4)

and the proof of Theorem 1.2. In section 3, we give the proof of Theorem 1.3 and
the proof of Theorem 1.4 will be given in section 4 .
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2. Qualitative properties of positive entire solutions of (1.4): Proof
of Theorem 1.2

In this section, we will present the proof of Theorem 1.2.
Since any positive entire solution u of (1.4) is radially symmetric, we write the

equation of u in radial coordinates r = |x|:

u(4) +
2(n− 1)

r
u(3) +

(n− 1)(n− 3)

r2
u′′ − (n− 1)(n− 3)

r3
u′ = u

n+4
n−4 , ∀r > 0.

Set

(2.1) v(t) = r
n−4
2 u(r), t = log r.

Then v ∈ C4(R) satisfies the ODE:

(2.2) v(4)(t) +K2v
′′(t) +K0v(t) = v(t)

n+4
n−4 , t ∈ R,

where K2 and K0 are given in (1.8). Note that equation (2.2) admits two constant

solutions: v0 ≡ 0 and vs ≡ K
n−4
8

0 , which correspond to the radial solutions of
equation (1.1):

u0(r) ≡ 0, us(r) = K
n−4
8

0 r−
n−4
2 .

We now write (2.2) as a system in R4. By (2.1) we have

u′(r) = r−
n−2
2

[
v′(t)− n− 4

2
v(t)

]
,

so that

u′(r) = 0 ⇔ v′(t) =
n− 4

2
v(t).

This fact suggests the definition
w1(t) = v(t),
w2(t) = v′(t)− n−4

2
v(t),

w3(t) = v′′(t)− n−4
2
v′(t),

w4(t) = v′′′(t)− n−4
2
v′′(t),

which makes (2.2) become

(2.3)


w′1(t) = n−4

2
w1(t) + w2(t),

w′2(t) = w3(t),
w′3(t) = w4(t),

w′4(t) = C2w2(t) + C3w3(t) + C4w4(t) + w
n+4
n−4

1 ,

where C2 = 2
n−4

K0, C3 = n2

4
> 0, C4 = −n−4

2
. System (2.3) has two stationary

points corresponding to v0 and vs:

O(0, 0, 0, 0) and P (K
n−4
8

0 ,−n− 4

2
K

n−4
8

0 , 0, 0).
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The linearized matrix at O is

Mo =


n−4

2
1 0 0

0 0 1 0
0 0 0 1
0 C2 C3 C4


and its characteristic polynomial is

λ 7→ λ4 +K2λ
2 +K0.

Then the eigenvalues are given by

(2.4) λ1 =
n

2
, λ2 = −n

2
, λ3 =

n− 4

2
, λ4 = −n− 4

2
.

It is easily seen that λ1 > λ3 > 0 > λ4 > λ2, which means that O is a hyperbolic
point. Moreover both the stable and unstable manifolds are two-dimensional.

The linearized matrix at P is given by

MP =


n−4

2
1 0 0

0 0 1 0
0 0 0 1

n+4
n−4

K0 C2 C3 C4


and the corresponding characteristic polynomial is

µ 7→ µ4 +K2µ
2 − 8

n− 4
K0.

Then direct computation gives out the eigenvalues

µ1 =

√
n2 − 4n+ 8 +

√
n4 − 64n+ 64

2
, µ2 = −

√
n2 − 4n+ 8 +

√
n4 − 64n+ 64

2
,

µ3 =

√
n2 − 4n+ 8−

√
n4 − 64n+ 64

2
, µ4 = −

√
n2 − 4n+ 8−

√
n4 − 64n+ 64

2
.

Note that for any n ≥ 5, µ1, µ2 ∈ R, µ2 < 0 < µ1 and µ3, µ4 6∈ R, Reµ3 = Reµ4 = 0.
Let u ∈ C4(Rn\{0}) be a positive entire solution of (1.4) (note that u is radially

symmetric) and v be defined in (2.1). Then v(t) satisfies (2.2). In order to study
the behaviors of u near 0 and +∞, we need to investigate the behaviors of v(t) near

∓∞. At the same time, we know that (2.2) has two equilibrium points: 0 and K
n−4
8

0 .

Lemma 2.1. Let v ∈ C4(R) be a positive solution of (2.2). Assume that there exists

θ ∈ [0,+∞] such that limt→±∞ v(t) = θ. Then θ ∈ {0, K
n−4
8

0 }.

Proof. We only consider the case of t → +∞. The case of t → −∞ can be treated
similarly. In fact, if we make the change s = −t, we see that ṽ(s) := v(t) satisfies
the same equation (2.2).

Case 1. Assume that θ is finite and θ 6∈ {0, K
n−4
8

0 }, then [v
n+4
n−4 (t) − K0v(t)] →

α := θ
n+4
n−4 −K0θ 6= 0 as t→ +∞. So for any ε > 0 there exists T > 0 such that

(2.5) α− ε ≤ v(4)(t) +K2v
′′(t) ≤ α + ε ∀ t ≥ T.
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Take ε < |α|, so that α− ε and α + ε have the same sign and let

δ = sup
t≥T
|v(t)− v(T )| <∞.

Integrating (2.5) over [T, t] for any t ≥ T , we obtain

(α− ε)(t− T ) + C1 ≤ v(3)(t) +K2v
′(t) ≤ (α + ε)(t− T ) + C1,

where C1 = C1(T ) is a constant containing all the terms K2v
′(T ) and v

′′′
(T ). Re-

peating this procedure gives for any t > T

α− ε
2

(t− T )2 + C1(t− T )− |K2|δ + C2(T )

≤ v′′(t) ≤ α + ε

2
(t− T )2 + C1(t− T ) + |K2|δ + C2(T )

and
α− ε

6
(t− T )3 +O(t2) ≤ v′(t) ≤ α + ε

6
(t− T )3 +O(t2) as t→ +∞.

Hence,
α− ε

24
(t− T )4 +O(t3) ≤ v(t) ≤ α + ε

24
(t− T )4 +O(t3).

This contradicts the assumption that v(t) admits a finite limit θ as t→ +∞.
Case 2. θ = +∞. Then there exists T such that

v(4)(t) +K2v
′′(t) = v

n+4
n−4 (t)−K0v(t) ≥ 1

2
v
n+4
n−4 (t) ∀t > T

and

(2.6) v(3)(t) +K2v
′(t) ≥ 1

2

∫ t

T

v
n+4
n−4 (s)ds+ C(T ) ∀t > T.

From limt→+∞ v(t) = +∞ and (2.6) we deduce that there exists T1 ≥ T such that

v(3)(T1) +K2v
′(T1) > 0.

Since equation (2.2) is autonomous, we may assume that T1 = 0. Therefore we may
assume

(2.7) v(4)(t) +K2v
′′(t) ≥ 1

2
v(t)

n+4
n−4 ∀t ≥ 0.

and

(2.8) v(3)(0) +K2v
′(0) = γ > 0.

Now we apply the test function method developed by Mitidieri-Pohozaev in [17].
More precisely, we can choose a nonnegative function φ0 ∈ C∞ ([0,∞)) satisfying
φ0 > 0 in [0, 2),

(2.9) φ0(τ) =


1, for τ ∈ [0, 1],
0, for τ ≥ 2,∫ 2

0

|φ(i)0 (τ)|2
φ0(τ)

dτ := Ai <∞, ∀i ∈ N.
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Let T1 := 2T , multiplying inequality (2.7) by φ(t) := φ0( t
T

) and integrating by parts,
we obtain ∫ T1

0

v(4)(t)φ(t)dt+K2

∫ T1

0

v′′(t)φ(t)dt ≥ 1

2

∫ T1

0

v(t)
n+4
n−4φ(t)dt.

Hence

(2.10)

∫ T1

0

φ(4)(t)v(t)dt+K2

∫ T1

0

φ′′(t)v(t)dt ≥ 1

2

∫ T1

0

v(t)
n+4
n−4φ(t)dt+ γ.

Note that v(3)(0) + K2v
′(0) = γ > 0 and φ(T1) = φ′(T1) = φ′′(T1) = φ(3)(T1) = 0.

By Young’s inequality, for any ε > 0, ∃ Cε > 0 such that

v(t)|φ(i)(t)| ≤ εv
n+4
n−4φ+ Cε

|φ(i)|n+4
8

φ
n−4
8

.

Then provided ε sufficiently small, (2.10) yields

C̃
(∫ T1

0

(
|φ(4)|n+4

8

φ
n−4
8

+
|φ′′|n+4

8

φ
n−4
8

)dt
)
≥ 1

4

∫ T1

0

v
n+4
n−4φdt+ γ

with a fixed constant C̃ > 0. Using (2.9), we get

C̃1(A4T
−n+2

2 + A2T
−n

4 ) ≥ 1

4

∫ T

0

v
n+4
n−4dt

with a fixed constant C̃1 > 0. Sending T to∞, we observe that the left-hand side of
the above inequality goes to 0, while the right-hand side of the above inequality goes
to +∞ since v(t)→ +∞ as t→ +∞, which is a contradiction. The contradictions
in cases 1 and 2 complete the proof of this lemma.

Lemma 2.2. Assume that v ∈ C4(R) is a positive solution of equation (2.2) and
satisfies limt→±∞ v(t) = 0. Then for all k ∈ N, k ≥ 1, limt→±∞ v

(k)(t) = 0.

Proof. We only give the proof for the case t→ +∞. By the assumption, v(t) < K
n−4
8

0

for t large enough. Then

v(4)(t) +K2v
′′(t) = (v

8
n−4 −K0)v(t) < 0.

Let H(t) := v′′(t) + K2v(t). Then H ′′(t) < 0 and H is concave near ∞. So
limt→∞H(t) = b ∈ R ∪ {±∞}, hence limt→∞ v

′′(t) = b. If b = ±∞, we have
limt→+∞ v

′(t) = ±∞ respectively. These reach contradictions to v(t) → 0 as
t → +∞. Hence b ∈ R and limt→+∞ v

′′(t) = b. We claim b = 0. On the con-
trary, if b > 0, we have v′′(t) ≥ b

2
and hence v′(t) ≥ b

4
t for t sufficiently large. This

is impossible in view of limt→+∞ v(t) = 0. If b < 0, the same argument implies that
v′(t) ≤ b

4
t for t sufficiently large and a contradiction to limt→+∞ v(t) = 0. Therefore,

lim
t→+∞

v′′(t) = b = 0.

8



Next, we show that the limit of v′(t) exists as t→ +∞. For t large enough, there
exists ξ ∈ [t, t+ 1] such that

v(t+ 1)− v(t) = v′(t) +
1

2
v′′(ξ).

As t → +∞, it is obvious that ξ → +∞, v(t + 1) → 0, v(t) → 0 and v′′(ξ) → 0.
Hence

lim
t→+∞

v′(t) = 0.

Now the fact limt→+∞H(t) = 0 and the concavity of H imply limt→+∞H
′(t) = 0,

hence limt→+∞ v
(3)(t) = 0. The equation (2.2) yields

lim
t→+∞

v(k)(t) = 0, for k ≥ 4.

Lemma 2.3. Assume that v ∈ C4(R) is a positive solution of (2.2). If v(t)

is eventually monotone and satisfies limt→±∞ v(t) = K
n−4
8

0 , then for all k ≥ 1,
limt→±∞ v

(k)(t) = 0.

Proof. We only consider the case of t → +∞. Since v(t) is eventually monotone

as t → +∞ and satisfies limt→+∞ v(t) = K
n−4
8

0 , there are two cases: (i) v(t) is
eventually decreasing as t→ +∞, (ii) v(t) is eventually increasing as t→ +∞.

The proof is almost the same, hence here we just give the proof of the first case.

In this case, there is T � 1 such that v(t) is decreasing and v(t) ≥ K
n−4
8

0 for t > T .
It is easily seen from (2.2) that

v(4)(t) +K2v
′′(t) = (v

8
n−4 −K0)v(t) ≥ 0 ∀t > T.

Let H(t) := v′′(t) +K2v(t). Then H ′′(t) ≥ 0 for t > T and H is convex near ∞. So

limt→∞H(t) = a ∈ R ∪ {±∞}. Noticing that v(t)→ K
n−4
8

0 as t→∞, we see that

lim
t→+∞

v′′(t) = b ∈ R ∪ {±∞},

where b = a−K2K
n−4
8

0 . If b = ±∞, we easily see v′(t) = ±∞ as t→ +∞ respectively

and hence v(t) → ±∞ as t → +∞. These contradict to v(t) → K
n−4
8

0 as t → +∞.
So b ∈ R. We claim b = 0. On the contrary, if b > 0, we have v′′(t) ≥ b

2
for t

sufficiently large and hence v′(t) ≥ b
4
t for t sufficiently large. This is impossible

since v(t) → K
n−4
8

0 as t → +∞. If b < 0, we can obtain v′(t) ≤ b
4
t for t sufficiently

large. This implies v(t) → −∞ as t → +∞. A contradiction to v(t) → K
n−4
8

0 as
t→ +∞. Therefore,

lim
t→+∞

v′′(t) = b = 0, lim
t→+∞

H(t) = K2K
n−4
8

0 .
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Next, we show that the limit of v′(t) exists as t → +∞. For t large enough, there
exists ξ ∈ [t, t+ 1] such that

v(t+ 1)− v(t) = v′(t) +
1

2
v′′(ξ).

Let t→ +∞, we see that ξ → +∞, v(t+ 1)→ K
n−4
8

0 , v(t)→ K
n−4
8

0 and v′′(ξ)→ 0.

Hence limt→+∞ v
′(t) = 0. Now the fact limt→+∞H(t) = K2K

n−4
8

0 and the convex-
ity of H imply limt→+∞H

′(t) = 0, so limt→+∞ v
(3)(t) = 0. Equation (2.2) yields

limt→+∞ v
(k)(t) = 0 for k ≥ 4. This completes the proof.

To prove a non-constant solution v of (2.2) to be oscillatory, an useful energy
function of v is introduced, which helps to exclude the possibility of v to be monotone
near t = ±∞. For any positive solution v ∈ C4(R) of (2.2), we define the energy
function

Ẽv(t) = Ev(t)− v′(t)v(3)(t),

where

Ev(t) =
1

2
v′′2(t)− K2

2
v′2(t)− K0

2
v2 +

n− 4

2n
v

2n
n−4 (t).

Lemma 2.4. Assume that v ∈ C4(R) is a positive solution of (2.2), then there
exists µ ∈ R such that Ẽv(t) ≡ µ for t ∈ R.

Proof. It is easily obtained from (2.2) that

(2.11)

E ′v(t) = v′′(t)v(3)(t)−K2v
′(t)v′′(t)−K0v(t)v′(t) + v

n+4
n−4 (t)v′(t)

= (v
n+4
n−4 (t)−K2v

′′(t)−K0v(t))v′(t) + v′′(t)v(3)(t)

= v(4)(t)v′(t) + v′′(t)v(3)(t) = (v′(t)v(3)(t))′.

Then
Ẽ ′v(t) = E ′v(t)− (v′(t)v(3)(t))′ ≡ 0, for t ∈ R.

Hence there exists µ ∈ R such that Ẽv(t) ≡ µ for t ∈ R.

We now have the following key lemma.

Lemma 2.5. Assume that v ∈ C4 is a positive entire solution of (2.2). Then, the
equation: v′(t) = 0 admits infinitely many roots in R.

Proof. We only consider the non-constant case. Suppose by contradiction that
v′(t) = 0 has finite roots in R, then v(t) is monotone for large |t|. Lemma 2.1

leads to v(t) → 0 or K
n−4
8

0 as t → ±∞. Denoting l := K
n−4
8

0 in the following for
simplicity.

Case 1. v(t) → 0 as t → −∞, v(t) → l as t → +∞. It follows from Lemma 2.4
that

Ẽv(t) ≡ µ for t ∈ R.
Therefore,

(2.12) Ẽv(−∞) = Ẽv(+∞).
10



On the other hand, we see from Lemmas 2.2 and 2.3 that

Ẽv(−∞) = 0, Ẽv(+∞) = G(l) = − 2

n
K

n
4

0 < 0

where

(2.13) G(s) = −K0

2
s2 +

n− 4

2n
s

2n
n−4 .

This contradicts to (2.12).
Case 2. v(t) → 0 as t → +∞, v(t) → l as t → −∞. We can also derive a

contradiction by arguments similar to those in the case 1.
Case 3. v(t) → l as t → ±∞. Since v(t) 6≡ l, v(t) admits a global maximum or

minimum point t0 ∈ R and v(t0) 6= l. It follows from (2.11) and Lemma 2.3 that

Ev(+∞)− Ev(t0) =

∫ +∞

t0

E ′v(s)ds = v(3)v′ |+∞t0 = −v(3)(t0)v′(t0) = 0.

Hence

(2.14) Ev(+∞) = Ev(t0).

Obviously,

Ev(+∞) = G(l), Ev(t0) =
1

2
v′′2(t0) +G(v(t0)).

A simple calculation implies

G(l) = min
s∈[0,∞)

G(s)
(

= − 2

n
K

n
4

0 < 0
)
.

Since v(t0) 6= l, no matter v(t0) < l or v(t0) > l, we have G(v(t0)) > G(l). Therefore,

(2.15) Ev(t0) > Ev(+∞).

This contradicts to (2.14).
Case 4. v(t) → 0 as t → ±∞. If we make the transformation: s = −t and

w(s) = v(t), we see that w(s) satisfies the same equation (2.2). Moreover, w(s)→ 0
as s→ +∞. It follows from the ODE theory that there is S � 1 such that

w(s) = A1e
−n

2
s + A2e

−n−4
2
s +M3e

n−4
2
s +M4e

n
2
s

+B1

∫ s

S

e−
n
2

(s−t)g(w(t))dt+B2

∫ s

S

e−
n−4
2

(s−t)g(w(t))dt

−B3

∫ ∞
s

e
n−4
2

(s−t)g(w(t))dt−B4

∫ ∞
s

e
n
2

(s−t)g(w(t))dt,

where g(w(t)) = w
n+4
n−4 (t), the constants A1, A2,M3,M4 depend on S, the constants

B1, B2, B3, B4 are independent of S. Note that the four eigenvalues are given in
(2.4). Since w(s) → 0 as s → +∞, we see that M3 = M4 = 0. Arguments similar
to those in the proof of Theorem 3.1 of [7] and Proposition 3.1 of [8] imply that

w(s) = O
(
e−

n−4
2
s
)

for s near +∞.
11



This implies that

v(t) = O(e
n−4
2
t) for t near −∞.

Since u(r) = e−
n−4
2
tv(t), we obtain

u(r) = O(1) for r near 0

and 0 is a removable singularity point of u. This contradicts our assumption that 0
is a non-removable singularity of u(r). All the contradictions derived above imply
that the equation v′(t) = 0 admits infinitely many roots in R.

We present the precise behavior of v(t) at its extremal points in the following
lemma.

Lemma 2.6. Assume that v ∈ C4(R) is a non-constant positive solution of equa-
tion (2.2) and {ti}∞i=1 and {si}∞i=1 are the local maximum and minimum points of v
respectively. Then v(ti) > l, v(si) < l for any i.

Proof. Suppose that there exists a maximum point t0 of v such that v(t0) ≤ l and
v′(t0) = 0, v′′(t0) ≤ 0. It follows from equation (2.2) that either

(i) v(t0) = l, v′′(t0) = 0, v(4)(t0) = 0

or
(ii) v(4)(t0) = −K2v

′′(t0) + v
n+4
n−4 (t0)−K0v(t0) < 0.

For the case (i), we claim that v(3)(t0) = 0. Then by the uniqueness we get that
v(t) ≡ l, which is impossible. Now we prove the claim. We may assume v(3)(t0) > 0,
otherwise we consider w(s) = v(t) with s = −t. By the elementary analysis we
deduce ∃ δ > 0 such that

v′′(t) > 0, v′(t) > 0 in (t0, t0 + δ).

Contradict to the local maximum point t0 of v(t).
For the case (ii), v(4)(t) < 0 for t ∈ (t0, t0 + ε) for some small ε > 0. In this case

we assume v(3)(t0) ≤ 0. Hence v′(t) < 0 and v(3)(t) < 0 for t ∈ (t0, t0 + ε). Now let

t1 = sup
{
t̃ > t0 : v′(t) < 0, v(3)(t) < 0, t ∈ (t0 t̃)

}
.

Then t1 is finite by oscillation of v(t) and either v′(t1) = 0 or v′′′(t1) = 0 because
of continuity. Thus v′(t1)v(3)(t1) = 0. Moreover, v′′ is decreasing in (t0, t1). Since
v′′(t0) ≤ 0, we see that v′′2(t) is increasing for t ∈ (t0, t1). It follows from Lemma
2.4 that

1

2
v′′2(t1)− K2

2
v′2(t1) +G(v(t1)) =

1

2
v′′2(t0) +G(v(t0)),

since v′(t0) = 0 and v′(t1)v(3)(t1) = 0. Thus,

(2.16) G(v(t0))−G(v(t1)) =
1

2
(v′′2(t1)− v′′2(t0))− K2

2
v′2(t1) > 0,

where G(s) is given in (2.13). On the other hand, since v(t1) < v(t0) ≤ l, we easily
see G(v(t1)) > G(v(t0)). This contradicts to (2.16). Hence v(ti) > l if ti is a local
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maximum point of v. Similarly, we can obtain v(si) < l if si is a local minimum
point of v. The proof is completed.

Proof of Theorem 1.2

It follows from [12] that u is radially symmetric with respect to x = 0. By Lemmas
2.5 and 2.6, we see that the function v(t)− l changes signs infinitely many times in

R with v(t) := e
n−4
2
tu(et). It implies that u(r)−K

n−4
8

0 r−
n−4
2 changes signs infinitely

many times in (0,∞). The proof of Theorem 1.2 is completed.

3. Existence of positive periodic solutions of (2.2): Proof of
Theorem 1.3

In this section, we will see that equation (2.2) admits positive periodic solutions
and present the proof of Theorem 1.3. In the following, we denote C a positive
constant which may be changed from one line to another line.

Let G(s) be given in (2.13) and F (s) = −G(s). It is easily seen that F (0) =
F (L) = 0 and F (s) > 0 for s ∈ (0, L), F (s) < 0 for s > L, where

L =
( n

n− 4

)n−4
8
K

n−4
8

0 > l := K
n−4
8

0 .

Let −∞ < t1 < t2 <∞ and

H =
{
v ∈ H2(t1, t2) : v′ ∈ H1

0 (t1, t2)
}

with the scalar product

(u, v)H :=

∫ t2

t1

[u′′(t)v′′(t) + u′(t)v′(t) + u(t)v(t)] dt

and
‖u‖2

H = (u, u)H .

Then H is a Hilbert space. For simplicity, if we denote

‖u‖2
K2,K0

:=

∫ t2

t1

[u′′2(t)−K2u
′2(t) +K0u

2(t)]dt,

we see that
‖u‖2

H ≤ ‖u‖2
K2,K0

since

K2 = −n
2 − 4n+ 8

2
< −4, K0 =

n2(n− 4)2

16
> 1

for n ≥ 5.
Define the functional

(3.1) J(v) =

∫ t2

t1

[v′′2(t)

2
−K2

v′2(t)

2
+ F (v(t))

]
dt, v ∈ H.

Lemma 3.1. The functional J satisfies (PS)c condition on the sequence {vj}∞j=1 ⊂
H with 0 ≤ vj ≤ L in [t1, t2] for each j.
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Proof. Let {vj}∞j=1 ⊂ H with 0 ≤ vj ≤ L in [t1, t2] for each j and

J(vj)→ c, (J ′(vj), vj)→ 0 as j →∞.

Since

J(vj) =
1

2
‖vj‖2

K2,K0
− n− 4

2n

∫ t2

t1

v
2n
n−4

j (t)dt ≤ C

and

(J ′(vj), vj) = ‖vj‖2
K2,K0

−
∫ t2

t1

v
2n
n−4

j (t)dt→ 0,

we get, ‖vj‖K2,K0 ≤ C and ‖vj‖H ≤ C. Observe that DJ is of the form Id + K
with K compact and therefore {vj}∞j=1 (up to some subsequence, still denoted by
{vj}∞j=1) is convergent to v in H. The emdedding and Arzela-Ascoli theorem imply

that vj → v in C0([t1, t2]) and 0 ≤ v ≤ L in [t1, t2].

Lemma 3.2. For any fixed −∞ < t1 < t2 <∞, J admits a mountain pass critical
point v0 ∈ H with 0 ≤ v0 ≤ L in [t1, t2], and

J(v0) = inf
γ∈Γ

sup
t∈[0,1]

J(γt) > 0,

where

Γ := {γ ∈ C0([0, 1], H) : 0 ≤ γt ≤ L in [t1, t2] for t ∈ [0, 1], γ0 ≡ 0, γ1 ≡ L}.

Proof. We show that the functional J has the mountain-pass geometry.
The embedding implies ‖v‖∞ ≤ C(t1, t2)‖v‖H for some C(t1, t2) > 0.
Let ε > 0 be sufficiently small such that F (t) > F (0) = 0 for t ∈ (0, ε) and

F (t) > F (L) = 0 for t ∈ (L − ε, L). Since −K2 > 0, 0 ≤ v ≤ L in [t1, t2] and
‖v‖H ≤ ε

C(t1,t2)
, it holds

(3.2) J(v) ≥
∫ t2

t1

F (v(t))dt ≥ 0.

We claim that the mountain pass geometry holds with ρ = ε
C(t1,t2)

, i.e. inf‖v‖H=ρ
J(v) >

0. Suppose not, then there exists {vj}∞j=1 with 0 ≤ vj ≤ L in [t1, t2] such that

(3.3) ‖vj‖H ≡ ρ and J(vj) ≤
1

j
, ∀j ≥ 1.

We see

vj ⇀ v in H and vj → v in L2([t1, t2]).

We also have
∫ t2
t1
F (vj(t))dt → 0 thanks to (3.2). Since ‖vj‖∞ ≤ ε, the dominated

convergence gives v ≡ 0 in [t1, t2]. Moreover, by (3.3)∫ t2

t1

[v′′2j (t)

2
−K2

v′2j (t)

2

]
dt ≤ 1

j
→ 0,
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which implies vj → 0 strongly in H and contradicts to ‖vj‖H ≡ ρ > 0. Hence there
exists δ := δ(ρ) > 0 such that

J(v) ≥ δ > 0 for all v ∈ Sρ,
where

Sρ = {v ∈ H : ‖v‖H = ρ, 0 ≤ v ≤ L in [t1, t2]} .
Since J(0) = 0 = J(L) and ‖L‖H = L(t2 − t1)

1
2 > ρ (by choosing ε sufficiently

small), mountain-pass Lemma (see [2], Theorem 4.8.5) shows that

c := inf
γ∈Γ

sup
t∈[0,1]

J(γt) > 0

is a critical value of J . That is, there exists a critical point v0 ∈ H of J with
0 ≤ v0 ≤ L in [t1, t2] such that J(v0) = c.

Lemma 3.3. Let T := t2 − t1 > 0. If T is suitably large, the critical point v0

obtained in Lemma 3.2 is nonconstant.

Proof. To prove this lemma, we use some ideas similar to those in [19]. Suppose on
the contrary that v0 ≡ κ in [t1, t2]. By Lemma 3.2, we have

(3.4) 0 < c := J(v0) = F (κ)(t2 − t1),

which implies F (κ) > 0. To get a contradiction with Lemma 3.2 and (3.4), we need
to build a curve γ̃ ∈ Γ such that

(3.5) sup
t∈[0,1]

J(γ̃t) < F (κ)(t2 − t1).

Suppose t2−t1 > 2 and fix an auxiliary function φ ∈ C∞([t1, t1 +1]) with φ(t) ≥ 0
for t ∈ [t1, t1 + 1] and

φ(t1) = 1, φ′(t1) = 0, φ(t1 + 1) = 0, φ′(t1 + 1) = 0, max
t∈[t1,t1+1]

φ(t) = 1.

Consider the curves γ̃i ∈ C0([0, 1];H2(t1, t1 + 1)), i = 1, 2 defined as

γ̃1
t (x) = Ltφ(x), γ̃2

t (x) = L((1− t)φ(x) + t).

Then they have the following properties:

(3.6)


γ̃1
t (t1 + 1) = 0, γ̃2

t (t1) = L, ∀ t ∈ [0, 1],

(γ̃it)
′(t1) = (γ̃it)

′(t1 + 1) = 0, for i = 1, 2 ∀t ∈ [0, 1],

γ̃1
1(x) = γ̃2

0(x), ∀ x ∈ [t1, t1 + 1],

γ̃1
0(x) ≡ 0, γ̃2

1(x) ≡ L, ∀ x ∈ [t1, t1 + 1].

Now let
E0 = sup

t∈[0,1]

max{J(γ̃1
t ), J(γ̃2

t )}

and here J is considered to be the energy function with integrals defined on [t1, t1+1].
Define the curve

γ1
t (x) :=

{
γ̃1
t (x) for x ∈ [t1, t1 + 1],

0 for x ∈ [t1 + 1, t2].
15



Notice that for all t ∈ [0, 1], it holds

(3.7) J(γ1
t ) =

∫ t1+1

t1

[ |(γ̃1
t )
′′(x)|2

2
− K2

2
|(γ̃1

t )
′(x)|2 + F (γ̃1

t (x))
]
dx ≤ E0.

Furthermore, define the curve

γ2
t (x) :=


L for x ∈ [t1, tT̂ + t1],

γ̃1
1(t1 + x− [tT̂ + t1]) for x ∈ [tT̂ + t1, tT̂ + t1 + 1],

0 for x ∈ [tT̂ + t1 + 1, t2].

where T̂ = t2 − t1 − 1. By translation invariance, it holds

(3.8) J(γ2
t ) ≤ E0,

for all t ∈ [0, 1]. Finally let

γ3
t (x) :=

{
L for t1 ≤ x ≤ t2 − 1,

γ̃2
t (t1 + x− (t2 − 1)) for t2 − 1 ≤ x ≤ t2,

then

(3.9) J(γ3
t ) ≤ E0,

for all t ∈ [0, 1]. Using the properties in (3.6) one can check that γi belong to
C0([0, 1], H) with 0 ≤ γit ≤ L for t ∈ [0, 1], and they can be concatenated to form a
γ̃ ∈ Γ. By the inequalities (3.7)-(3.9), it holds

sup
t∈[0,1]

J(γ̃t) ≤ E0.

Since F (κ) > 0 the inequality

E0 < F (κ)(t2 − t1)

holds for suitably large T := t2− t1, which gives the claim (3.5). This completes the
proof.

Next, we will show that equation (2.2) admits a positive periodic solution.

Lemma 3.4. Let v0 be given in Lemma 3.2. Then equation (2.2) admits a nontrivial
nonnegative periodic solution v ∈ C4(R), which is the extension of v0 in R.

Proof. We see that v0 ∈ H satisfies equation (2.2) in [t1, t2]. We easily know from
the embeddings that v0 ∈ C4([t1, t2]). Since v′0(t1) = v′0(t2) = 0, it suffices to show

that v
(3)
0 (t1) = v

(3)
0 (t2) = 0. Integrating by parts, we get for any φ ∈ H

0 =

∫ t2

t1

[v′′0φ
′′ −K2v

′
0φ
′ + F ′(v0)φ] dt =

∫ t2

t1

[
−v(3)

0 φ′ +K2v
′′
0φ+ F ′(v0)φ

]
dt

=

∫ t2

t1

[
v

(4)
0 φ+K2v

′′
0φ+ F ′(v0)φ

]
dt− v(3)

0 φ|t2t1 = −v(3)
0 φ
∣∣t2
t1
.

Clearly we can choose arbitrarily values at t1 and t2 for φ ∈ H and obtain v
(3)
0 (t1) =

v
(3)
0 (t2) = 0. In conclusion, v

(4)
0 (t) + K2v

′′
0(t) + K0v0 = v

n+4
n−4

0 in (t1, t2) and v′0(t1) =
16



v′0(t2) = v
(3)
0 (t1) = v

(3)
0 (t2) = 0. Define ṽ0(t) = v0(2t2 − t) for t ∈ [t2, 2t2 − t1],

we see that ṽ0(t) satisfies ṽ
(4)
0 (t) + K2ṽ

′′
0(t) + K0ṽ0 = ṽ

n+4
n−4

0 in (t2, 2t2 − t1) and

ṽ
(k)
0 (t2) = v

(k)
0 (t2), ṽ

(k)
0 (2t2 − t1) = v

(k)
0 (t1) for k = 0, 1, 2, 3. It follows from ODE

theory that we can obtain a 2T := 2(t2 − t1)-periodic solution v(t) for equation
(2.2).

Proof of Theorem 1.3
To prove Theorem 1.3, we only need to show that v ∈ C4(R) obtained in Lemma

3.4 is actually positive. On the contrary, mint∈R v(t) = 0 and there is a sequence

{si}∞−∞ such that v(si) = 0. Then u(r) = r−
n−4
2 v(ln r) is a nonnegative radial

solution to (1.4) and there is a sequence {ri}∞−∞ with ri = esi such that u(ri) = 0.
We also know u ∈ C4(Rn\{0}) and

(3.10) u(r) ≤ Lr−
n−4
2 , ∀ r > 0.

Since u satisfies

∆2u = u
n+4
n−4 in Rn\{0},

we see that, for any r > 0 sufficiently small,

(3.11) 0 ≤ |Sn−1|rn−1∂∆u

∂r
(r) =

∫
Br

u
n+4
n−4dx,

where Sn−1 = ∂B1 and Br = {x ∈ Rn : |x| < r}. It follows from (3.10) that∫
Br

u
n+4
n−4dx ≤ L|Sn−1|

∫ r

0

sn−1−n+4
2 ds ≤ Cr

n−4
2 ,

where C > 0 is independent of r. We see from (3.11) that

(3.12) lim
r→0+

rn−1(∆u)′(r) = 0.

Since u satisfies an equation of the radial form:

(rn−1(∆u)′(r))′ = rn−1u
n+4
n−4 (r) for r ∈ (0,∞),

by (3.12) we can deduce

(∆u)′(r) > 0, ∀ r > 0.

Hence ∆u(r) is a strictly increasing function of r. By the relation between u and v,
we easily see that

lim
r→∞

∆u(r) = 0.

So, we have

(3.13) ∆u(r) < 0, ∀r > 0.

The strong maximum principle implies that there can not be any ri > 0 such that
u(ri) = 0. So v(t) is a positive periodic solution to (2.2). The proof of Theorem 1.3
is completed.
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4. Positive scalar curvature: Proof of Theorem 1.4

We present the proof of Theorem 1.4 in this section. The proof of Theorem 1.4 is
based on iteration arguments, which is inspired by [5], where the authors consider
the bounded solutions of ∆2u = |x|aup in Rn with a ≥ 0, p > 1 and n ≥ 5. As
we have noticed before, the solutions in [5] are bounded which will lead to good
estimates in section 2 of [5], while in our case, the solutions admit singularity at
x = 0 which causes some difficulties in a priori estimates. Since our entire solutions
of (1.4) are radially symmetric with precisely asymptotic behaviors at r = 0 and
∞, we can still obtain the necessary estimates and the first step in the iteration
arguments by using our entire solutions. Note that the first step in the iterations in
[5] is a direct result of [20].

For the readers’ convenience, let us explain the main idea in [5]. Define a sequence
of functions (wk)k=−1 with the form

wk := ∆u+ αk|∇u|2(u+ ε)−1 + βku
p+1
2 ,

where αk and βk are certain nondecreasing sequences of nonnegative numbers with
α−1 = 0 and β−1 = 0. First it should be proved that w−1 = ∆u ≤ 0. Then
for the purpose of the iteration arguments, one should show that w0 = ∆u +√

2
p+1
|x|a2u p+1

2 ≤ 0. Assuming that wk ≤ 0 holds, we construct a differential in-

equality for wk+1 from which we can prove that wk+1 ≤ 0 by certain maximum
principle type arguments. Choosing suitable sequences αk, βk and letting k tend to
infinity, we will have inequality (1.11).

Let’s come back to our case. Define

(4.1) wk := ∆u+ αk|∇u|2(u+ ε)−1 + βku
n
n−4 ,

then by (3.13) w−1 = ∆u < 0. In the following we will show w0 ≤ 0, the first step of
the iteration arguments and some kind of maximum principle through the following
lemmas. Once these are done, the remaining things are the same. For more details,
one may refer to [5].

Lemma 4.1. Let v(t) = e
n−4
2
tu(et) be given by Theorem 1.3. Then the following

inequality holds

−∆u ≥
√
n− 4

n
u

n
n−4 in Rn\{0}.

Proof. A simple calculation gives that

∆u = e−
n
2
t

[
v′′(t) + 2v′(t)− n(n− 4)

4
v

]
,

which yields

(4.2) ∆u+

√
n− 4

n
u

n
n−4 = e−

n
2
t

[
v′′(t) + 2v′(t)− n(n− 4)

4
v +

√
n− 4

n
v

n
n−4

]
.

Let ṽ(t) = v′′(t) + 2v′(t)− n(n−4)
4

v +
√

n−4
n
v

n
n−4 . We need to show ṽ ≤ 0 in R. Note

that ṽ is smooth and periodic in R owning to v is smooth, positive and periodic
18



in R. On the maximum points {ti} of v, ṽ(ti) ≤ 0 since v′(ti) = 0, v′′(ti) ≤ 0, 0 <

v ≤ L :=
(

n
n−4

)n−4
8
K

n−4
8

0 =
(
n3(n−4)

16

)n−4
8

. On the other hand, a simple calculation

yields

ṽ′′ − 2ṽ′ −

[
n(n− 4)

4
+

√
n− 4

n

n

n− 4
v

4
n−4

]
ṽ

= n

√
n− 4

n
v

8−n
n−4

[
v − 2

n− 4
v′
]2

≥ 0.(4.3)

Now the maximum principle shows that ṽ ≤ 0 in R.

To apply the iteration argument, we also need to develop a maximum principle
argument for the following equation

(4.4) ∆w−2α(u+ε)−1∇u·∇w+αw
|∇u|2

(u+ ε)2
−β n

n− 4
u

8
n−4w = f(x) ≥ 0 in Rn\{0}

where α, β are positive constants, u is a positive solution of equation (1.4) and w,
f ∈ C∞(Rn \ {0}). For this, we first cite Lemma 4.1 in [5].

Lemma 4.2. Suppose that w is a solution of the equation (4.4) where u is a solution
of (1.4) and

(4.5) w = ∆u+ α(u+ ε)−1|∇u|2 + βu
n
n−4

for positive constants ε, α and β. Then assuming that α < n
n−4

, the following holds

(4.6) ∆w̃ ≥ 0 on {w ≥ 0} ⊂ Rn \ {0}
where w̃ = (u+ ε)tw for t = −α.

Now we apply Lemma 4.2 to show that w, the solution of (4.4), is non-positive.

Lemma 4.3. Suppose that w̃ and w are the same as Lemma 4.2 and v(t) =

e
n−4
2
tu(et) is given by Theorem 1.3, then w ≤ 0.

Proof. Since v ∈ C4(R) is a periodic function with 0 < v ≤ L and u = r−
n−4
2 v, we

see that 0 < u ≤ Lr−
n−4
2 , w ≤ Cr−

n
2 and w̃ ≤ Cr−

n
2

+n−4
2
α for some constant C

independent of r. Note that
∫
BR

∆w̃w̃s+ < +∞ for 0 < s < n−4
n

and it follows from
Lemma 4.2 that

0 ≤
∫
BR

∆w̃w̃s+ = −s
∫
BR
|∇w̃+|2w̃s−1

+ +Rn−1

∫
Sn−1

w̃rw̃
s
+.

Therefore,

(4.7)

∫
BR
|∇w̃+|2w̃s−1

+ ≤ 1

s(s+ 1)
Rn−1

∫
Sn−1

(w̃s+1
+ )r = C(s)Rn−1I ′(R)

where

I(R) :=

∫
Sn−1

w̃s+1
+ =

∫
Sn−1

(u+ ε)−(s+1)αws+1
+

19



and C(s) is a constant independent of R. Note that w given as w = ∆u+α|∇u|2(u+

ε)−1+βu
n
n−4 satisfies w ≥ 0 if and only if −∆u ≤ α|∇u|2(u+ε)−1+βu

n
n−4 . Therefore,

ws+1
+ ≤ C|∇u|2(s+1)(u+ ε)−(s+1) + Cu(s+1) n

n−4

where C = C(α, β, s). Hence, with u(R) = R−
n−4
2 v(lnR),

I(R) ≤ C

∫
Sn−1

u−(s+1)(α+1)|∇u|2(s+1) + C

∫
Sn−1

u−(s+1)αu(s+1) n
n−4

≤ CRη1 + CRη2

where C is independent of R, η1 = (s + 1)[n−4
2

(α + 1) − (n − 2)] < 0 and η2 =

(s+ 1)[n−4
2
α− n

2
] < 0 owing to α < n

n−4
and 0 < s < n−4

n
. So I(R)→ 0 as R→∞.

Since I(R) is a positive function and converges to zero, there is a sequence {Ri}
with Ri →∞ as i→∞ such that I ′(Ri) is non-positive. Therefore, (4.7) yields∫

BRi

|∇w̃+|2w̃s−1
+ ≤ 0.

Hence, w̃+ has to be a nonnegative constant c. If c 6= 0, the continuity of w̃ implies

that w̃ ≡ c. From w̃ ≤ Cr−
n
2

+n−4
2
α and 0 < α < n

n−4
, this constant c can not be

strictly positive. This contradicts to c 6= 0. So c = 0 and w̃+ = 0 and therefore
w+ = 0.
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