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Abstract

We construct traveling wave solutions with a stationary or traveling vortex helix to
the inhomogeneous Gross-Pitaevskii equation

iΨt = ε24Ψ +
(
W (y)− |Ψ|2

)
Ψ,

where the unknown function Ψ is defined as Ψ : R3 × R → C, ε is a small positive
parameter and W is a real smooth potential with symmetries.

1 Introduction

In the present paper, we consider the existence of solutions with vortex helices to the
nonlinear Schrödinger type problem

iΨt = ε24Ψ +
(
W (y)− |Ψ|2

)
Ψ, (1.1)

where the unknown function Ψ : R3×R→ C, 4 = ∂2
y1

+∂2
y2

+∂2
y3

is the Laplace operator in R3,
ε is a small positive parameter and W is a smooth real potential. The equation (1.1), called the
Gross-Pitaevskii equation [74], is a well-known mathematical model to describe Bose-Einstein
condensates.

Interest in quantized vortices has grown in the past few years due to the experimental
verification of the existence of Bose-Einstein condensates (cf.[9], [34]). Vortices in Bose-Einstein
condensates are quantized. Their size, origin, and significance are quite different from those
in normal fluids, as they exemplify superfluid properties (cf.[35], [10], [11]). In addition to
the simpler two-dimensional point vortices, two types of individual topological defects in three-
dimensional Bose-Einstein condensates have attracted the attention of the scientific community
in recent years: vortex lines [87, 84, 43] and vortex rings. Quantized vortex rings with cores
have been proven to exist when charged particles are accelerated through superfluid helium [76].
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The achievements of quantized vortices in a trapped Bose-Einstein condensate [93], [67], [66]
have suggested the possibility of producing vortex rings with ultracold atoms. The existence
and dynamics of vortex rings in a trapped Bose-Einstein condensate have been studied by
several authors [8], [48], [49], [37], [78], [42], [80], [47]. Vortex rings and their two-dimensional
analog(vortex-antivortex pair) have attracted much attention by playing an important role in
the study of complex quantized structures such as superfluid turbulence [11], [10], [55], [46].
The reader can refer to the review papers [38], [40] and [11] for more details on quantized
vortices in the physical sciences.

In the present paper, we are concerned with the construction of vortices by rigorous math-
ematical methods. We review some results on vortex structures.

1.1 The vortex structures for homogeneous cases

For the steady state, (1.1) becomes the problem

ε24Ψ +
(
W (y)− |Ψ|2

)
Ψ = 0, (1.2)

where the unknown function Ψ is defined as Ψ : R3 → C, ε is a small positive parameter and
W is a smooth potential. The study of the problem (1.2) in the homogeneous case, i.e. W ≡ 1,
on a bounded domain with a suitable boundary condition began with [14] by F. Bethuel, H.
Brezis, F. Helein in 1994, see also the book by K. Hoffmann and Q. Tang[45]. Since then, many
references addressed the existence, asymptotic behavior and dynamical behavior of solutions.
We refer to the books [2] and [81] for references and background. Regarding the construction of
solutions, we mention two works which are relevant to the present one. F. Pacard and T. Riviere
derived a non-variational method to construct solutions with coexisting degrees of +1 and -1
in [72]. The proof is based on an analysis of the linearized operator around an approximation.
M. Del Pino, M. Kowalczyk and M. Musso [29] derived a reduction method for the general
existence of vortex solutions under Neumann (or Dirichlet) boundary conditions. The reader
can refer to [56]-[58], [60], [86], [95], [25]-[26], [50]-[53], [82] and the references therein.

Traveling wave solutions are believed to play an important role in the full dynamics of (1.1).
More precisely, when W ≡ 1, these are solutions of the form

Ψ(y, t) = ũ
(
y1, y2, y3 − ε c t

)
.

Then, by a suitable rescaling, ũ is a solution of the nonlinear elliptic problem

− i c ∂ũ
∂ỹ3

= 4ũ +
(

1− |ũ|2
)
ũ. (1.3)

In the two-dimensional plane, F. Bethuel and J. Saut constructed a traveling wave with two
vortices of degree ±1 in [18]. In higher dimensions, by minimizing the energy, F. Bethuel, G.
Orlandi and D. Smets constructed solutions with a vortex ring [17]. See [23] for another proof
by Mountain Pass Lemma and the extension of results in [16]. The reader can refer to the
review paper [15] by F. Bethuel, P. Gravejat and J. Saut and the references therein. See [24]
for the existence of vortex helices.
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1.2 The pinning phenomena in inhomogeneous cases

Before stating our assumptions and main result, we review some references on the pinning
phenomena of vortices.

We start the review by mentioning the pinning phenomena in superconductors, as described
by the well known Ginzburg-Landau model, which is relevant to the topics for Gross-Pitaevskii
equations. When a superconductor of type II is placed in an external magnetic field, the field
penetrates the superconductor in thin tubes of magnetic flux called magnetic vortices. This
will cause the dissipation of energy due to creeping or the flow of magnetic vortices[88]. In the
superconductor application, it is of importance to pin vortices at fixed locations preventing their
motion. Various mechanisms have been advances by physicists, engineers and mathematicians.
These methods include introducing impurities into the superconducting material sample or
changing the thickness of the superconducting material sample so as to derive various variants
of the original Ginzburg-Landau mode of superconductivity.

We first mention the results for the modified Ginzburg-Landau equations for a supercon-
ductor with impurities

−4AΨ + λ(|Ψ|2 − 1)Ψ + W (x)Ψ = 0 in R2

5×5× A + Im(Ψ̄5A Ψ) = 0,

where W : R2 → R is a potential of impurities, 5A = 5 − iA is the covariant gradient and
4A = 5A · 5A. For a vector field A, 5 × A = ∂1A2 − ∂2A1. Numerical evidence shows
that fundamental magnetic vortices(degrees of ±1) of the same degree are attracted to maxima
of W (x) and can be found in works by Chapman, Du and Gunzburger [21], Du, Gunzburger
and Peterson [36]. Strauss and Sigal [85] have derived the effective dynamics of the magnetic
vortex in a local potential. Gustafson and Ting [44] have shown dynamic stability/instability
of single pinned fundamental vortices. Pakylak, Ting and Wei show the pinning phenomena of
multi-vortices in [73]. Ting [89] studied the effective dynamics of multi-vortices in the external
potentials of different strengths.

As an extreme case of impurities, the presence of point defect or normal inclusion in some
disjoint, smooth connected regions contained in the superconductor sample will also cause
the pinning phenomena. Let D ⊂ R2 be a smooth simply connected domain. For functions
Ψ ∈ H1(D;C), A ∈ H1(D;R2), N. Andre, P. Bauman and D. Phillips considered the minimizers
of the energy in [1]

Eε(Ψ, A) ≡
∫
D

{
1

2

∣∣(∇− iA)Ψ
∣∣2 +

1

4ε2
(
|Ψ|2 − a(x)

)2

}
dx

+

∫
D

1

2

(
∇× A− hexe3

)2
dx.

The domain D represents the cross-section of an infinite cylindrical body with e3 as its gen-
erator. The body is subjected to an applied magnetic field, hexe3 where hex ≥ 0 is constant.
If the smooth function a is nonnegative and is allowed to vanish at finitely many points, the
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local minimizers exhibit vortex pinning at the zeros of a. Later on, for functions Ψ ∈ H1(D;C),
A ∈ H1(D;R2), S. Alama and L. Bronsard consider the minimizers of the energy in [5]

Eε(Ψ, A) ≡
∫
D

{
1

2

∣∣(∇− iA)Ψ
∣∣2 +

1

4ε2

[ (
|Ψ|2 − a(x)

)2 − (a−)2
]}

dx

+

∫
D

1

2

(
∇× A− hex

)2
dx

where hex is a constant applied field. They assume that

a ∈ C2(D), {x ∈ D̄ : a(x) ≤ 0} = ∪nm=1ωm ,

∇a(x) 6= 0 for all x ∈ ∂wm, m = 1, . . . , n,

with finitely many smooth, simply connected domains ωm ⊂⊂ D. For bounded applied fields
(independent of ε), they showed that the normal regions acted as ”giant vortices” acquiring
large vorticity for large (fixed) applied field hex. Note that these configurations cannot have any
vortices in the sense of zeros of Ψ in Ω = D−∪nm=1ωm. Nevertheless, they do exhibit vorticity
around the holes ωm due to the nontrivial topology of the domain Ω. For hex = O(| log ε|),
the pinning effect of the holes eventually breaks down and free vortices begin to appear in
the superconducting region a(x) > 0 at a point set, which is determined by solving an elliptic
boundary-value problem. The reader can refer to [6] and [3].

Work has also been done on non-magnetic vortices (A = 0) with pinning (see [7], [13]). For
example, in the model for the variance of the thickness of the superconducting material sample
considered by [7], a weight function p(x) is introduced into the energy

Eλ =
1

2

∫
Ω

[
p| 5Ψ|2 + λ(1− |Ψ|2)2

]
, (1.4)

with a bounded domain and λ → ∞. They show that non-magnetic vortices are localized
near minima of p(x) in the first part of [7]. In the second part of [7], they also analyzed the
“interaction energy” between vortices approaching the same limit site by deriving estimates of
the mutual distances between these vortices. In fact, they showed that the mutual distance
between vortices(approaching the same limit site) is of order O(1/

√
| log λ|). See also the paper

by Lin and Du [59].

In 2006, experimentalists succeeded in creating a rotating optical lattice potential with
square geometry, which they applied to a Bose-Einstein condensate with a vortex lattice [90].
They observed the pinning of vortices at the potential minima for sufficient optical strength
and confirmed the theoretical prediction by Reijnders and Duine [77]. See also the papers
[3] and [68] for pinning phenomena of vortices in single and multi-component Bose-Einstein
condensates.

Note that the above results we mentioned are two-dimensional cases and the location of
the vortices (as in the sense of zero of the order parameter) was determined by the properties
of the potential. However, we are concerned with the existence of vortex lines to (1.1) in
three-dimensional space.
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To the leading order, the vortex lines in the Ginzburg-Landau theory move in the binor-
mal direction with curvature-dependent velocity [75]. Moreover, the motion of vortex lines in
quantum mechanics is essentially determined by four factors [19]: the shape of the vortex line,
the shape of the back ground condensate wave function, the interaction between vortex lines
and possible external forces. By formal asymptotic expansion, A. Svidzinsky and A. Fetter
[87] gave a complete description of qualitative features of dynamics of a single vortex line in a
trapped Bose-Einstein condensate in the Thomas-Fermi limit. To be specific, we shall consider
a trapping potential W (y) = m(ω2

⊥r
2 + ω2

zz
2)/2 in the cylindrical coordinates (r, θ, z), with as-

pect ration defined by λ = ωz/ω⊥. In Thomas-Fermi limit, the density profile of the condensate
is given by the positive part of

ρ(y) = ρ0 (1− r2/R2
⊥ − z2/R2

z),

where R⊥ =
√

2µ/mω2
⊥ and Rz =

√
2µ/mω2

z are the radial and axial Thomas-Fermi radii of the
trapped Bose-Einstein condensates respectively; µ is the chemical potential and ρ0 = µm/4π~2a
is the central particle density. Then the velocity of a vortex line at y in nonrotating trap is
given by (cf. (38) in [87])

V = Λ(ξ, k)

(
T ×5W (y)

µρ(y)/ρ0

+ kB

)
(1.5)

where T and B are tangent vector and binormal of the vortex line. In the above,

Λ(ξ, k) = (−~/2m) log
(
ξ
√
R−2
⊥ + k2/8

)
and k is the curvature of the vortex line. For more details, the reader can refer to [87] and the
references therein.

Note that there are two important cases of vortex lines: vortex rings and vortex helices.
Recently, by rigourous mathematical methods, T. Lin, J. Wei and J. Yang [63] construct solu-
tions with a single stationary (and also a traveling) vortex ring for (1.1) with inhomogeneous
trap potential. More precisely, from (1.5) we see that the shape parameter(the curvature), the
wave function and the gradient of the potential will determine the limit site of the stationary
vortex lines, i.e. the potential will pin the vortex rings. We will call the role of the gradient of
the potential as the effect at first order of the potential. In [91], the authors studied the
role of the factor of interaction between vortex rings by adding one more vortex ring. It was
found that the interaction between vortex rings will be balanced by the second derivative of
the potential. We will call the role of the second derivatives of the potential as the effect at
second order of the potential. Hence, it is natural to construct the vortex helices, which is
not torsion free.

1.3 Main results: the existence of single vortex helix

In the present paper, we are concerned with the construction of vortex helices by rigorous
mathematical method. We are looking for solutions to problem (1.1) in the form

Ψ(ỹ, t) = eiνεt ũ
(
ỹ1, ỹ2, ỹ3 − κ ε2| log ε|t

)
,
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which has a vortex helix traveling along the y3 direction with velocity

C = κ ε2 log
1

ε
. (1.6)

Here ε is any small positive real number. κ and νε are two constants to be determined later (cf.
(1.12), (1.16) and (1.23)). Then ũ is a solution of the nonlinear elliptic problem

− iε2| log ε|κ ∂ũ

∂ỹ3

= ε24 ũ +
(
νε +W (ỹ)− |ũ|2

)
ũ. (1.7)

Note that we need the trapping potential W of the form

W (ỹ1, ỹ2, ỹ3) = W (ỹ1, ỹ2, ỹ3 + κε2| log ε|t), (1.8)

see the assumption (A1) below.

1.3.1 A traveling helix

We first consider (1.7) for the case κ 6= 0 provided that the real function W in (1.7) has the
following three properties.
(A1): W is a smooth function in the form

W (ỹ1, ỹ2, ỹ3) = W
(
r̃
)

with r̃ =
√
ỹ2

1 + ỹ2
2 .

(A2): There is a number r̂1 such that

∂W

∂r̃

∣∣∣
r̃=r̂1

+
d

r̂1

6= 0 and
∂W

∂r̃

∣∣∣
r̃=r̂1

< 0. (1.9)

Here d is a positive constant defined by (cf. (7.3))

d ≡ 1

π

∫
R2

w(| s |)w′(| s |) 1

| s |
ds > 0, (1.10)

where w is defined by (2.1). We also assume that W is non-degenerate at r̂1 in the sense that

∂2W

∂r̃2

∣∣∣
r̃=r̂1
− d

r̂2
1

6= 0. (1.11)

Then we set the parameter κ by the relation (cf. (7.5))

∂W

∂r̃

∣∣∣
r̃=r̂1

+
d

r̂1

=
κ d

2γ
, (1.12)

where γ is a geometric parameter of the vortex helix given in (3.7).

We assume that the vortex helix is directed along the curve in the form

α ∈ R 7−→ (r̂1ε cosα, r̂1ε sinα, λ̂α) ∈ R3, (1.13)
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where r̂1ε = r̂1 + f̂ with the parameter f̂ of order O(ε) to be determined in the reduction
procedure, λ̂ is any nonzero constant.
(A3): There also exists a number r̂2ε with r̂2ε−r̂1ε = τ0 +O(ε) for a universal positive constant
τ0 independent of ε in such a way that

1 +
(
W (r̃)−W (r̂1ε)

)
> 0 if r̃ ∈

(
0, r̂2ε

)
,

1 +
(
W (r̃)−W (r̂1ε)

)
< 0 if r̃ ∈

(
r̂2ε, +∞

)
,

1 +
(
W (r̃)−W (r̂1ε)

)
= 0 if r̃ = 0, r̂2ε.

(1.14)

Moreover, we also assume that

1 +
[
W (r̃)−W (r̂1ε)

]
= c0r̃

4 +O(r̃5), if r̃ ∈
(
0, r̂0

)
,

1 +
[
W (r̃)−W (r̂1ε)

]
≥ c1, if r̃ ∈

(
r̂0, r̂2ε − τ1

)
,

1 +
[
W (r̃)−W (r̂1ε)

]
≤ −c2, if r̃ ∈ (r̂2ε + τ2, +∞),

∂W

∂r̃

∣∣∣
r̃=r̂2ε

< 0,
∂2W

∂r̃2

∣∣∣
r̃=r̂2ε

≤ 0,

(1.15)

for some positive constants r̂0, c0, c1, c2, τ1 and τ2 with τ1 < τ0/100 and r̂0 < r̂1.

Some explanation is in order to explain the physical and mathematical motivation of the
assumptions in (A1)-(A3).

Remark 1.1.

• We will need the symmetries in (A1) to transform (1.18) into a two-dimensional case in
Section 3 in such a way that we can use the mathematical method from [62]. Moreover,
we will use these symmetries to determine the locations of the vortex helices, see Remark
3.1.

• To determine the density function(i.e. the absolute value |u| of a solution u) with decay by
the classical Thomas-Fermi approach in outer region of vortices, we impose the conditions
in (1.14).

• The first condition in (1.15) will help us deal with the singularity caused by the skew
motions described in the formulation of problem in Section 3.1, see Remark 4.1. There
are solutions with vortex rings to the homogeneous cases such as Gross-Pitaevskii equation
[24] and Klein-Gordon equation with Ginzburg-Landau type nonlinearity [94]. It is an
interesting problem to construct helicoidally symmetric solutions with vortex helices to
these two equations.

• It is also worth mentioning that we assume that W satisfies (1.15) in the region r̃ >
r̂2ε + τ2. This is because it is a vortexless region and we do not care about the effect of the
potential W there. Moreover, the assumptions in (1.15) will be helpful for dealing with
the problem in mathematical aspect and then determining the density function with decay
at infinity, see part 5 of the proof of Lemma 6.1.
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By setting

νε = 1−W (r̂1ε), (1.16)

to problem (1.7) and then defining V (r̃) = W (r̃) − W (r̂1ε), we shall consider the following
problem

ε24 ũ +
(

1 + V (r̃)− |ũ|2
)
ũ + iε2| log ε|κ ∂ũ

∂ỹ3

= 0. (1.17)

Here is the first result.

Theorem 1.2. For ε sufficiently small, there exists an axially symmetric solution of problem
(1.17) with the form ũ = ũ(|ỹ′|, ỹ3) ∈ C∞(R3,C) possessing a traveling vortex helix of degree
+1

θ ∈ R 7→
(
r̂1ε cos θ, r̂1ε sin θ, λ̂θ

)
∈ R3,

where r̂1ε ∼ r̂1. ũ is also invariant under the screw motion expressed in cylinder coordinates

Σ : (r, θ, s3) 7→ (r, θ + α, s3 + λ̂α), ∀α ∈ R.

More precisely, the solution ũ posses the following asymptotic profile

ũ(ỹ1, ỹ2, ỹ3) ≈



w
(

˜̀

ε

)
eiϕ

+
0 , ỹ ∈ D2 = {˜̀< τ0/100},

√
1 + V (r̃) eiϕ

+
0 , ỹ ∈ D1 = {r̃ < r̂2ε − ε

2
3
−λ} \ D2,

δ
1/3
ε q

(
δ

1/3
ε

r̃−r̂2ε
ε

)
eiϕ

+
0 , ỹ ∈ D3 = {r̃ > r̂2ε − ε

2
3
−λ},

where we have denoted

˜̀=
√
ỹ2

1 + ỹ2
2 + ỹ2

3 − r̂2
1ε, r̃ =

√
ỹ2

1 + ỹ2
2 , δε = −ε∂V

∂r̃

∣∣∣
r̃=r̂2ε

> 0,

and ϕ+
0 (ỹ1, ỹ2, ỹ3) = ϕ+

0 (r̃, ỹ3) is the angle argument of the vector (r̃ − r̂1ε, ỹ3) in the (r̃, ỹ3)
plane. Here q is the function defined by Lemma 2.4.

Remark 1.3.

• Due to the assumption (A3), in the region D1 we use the classical Thomas-Fermi ap-
proximation to describe the wave function. The reader can refer to then monograph [74]
for more discussions. For the asymptotic behavior of u in D3, there are also some for-
mal expansions in physical works such as [64] and [39]. Here we use q in Lemma 2.4 to
describe the profile beyond the Thomas-Fermi approximation.

• The results in Theorems 1.2 and 1.4 can be extended to higher dimensions for the existence
of solutions with vortex helix submanifolds in RN with the odd integer N ≥ 5, see Remark
3.1 in [92].
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1.3.2 A stationary helix

We now consider the stationary case κ = 0, i.e.

ε24 ũ +
(
νε +W (ỹ)− |ũ|2

)
ũ = 0, (1.18)

by assuming that the real function W has the following properties (P1)-(P3). In other words,
the vortex helix will be completely pinned at a fixed site due to the role of the potential.
(P1): W is a symmetric function with the form

W (ỹ1, ỹ2, ỹ3) = W
(
r̃
)

with r̃ =
√
ỹ2

1 + ỹ2
2 .

(P2): There is a point r̃1 such that the following solvability condition holds

∂W

∂r̃

∣∣∣
r̃=r̃1

+
d

r̃1

= 0. (1.19)

Here d is a positive constant defined by (1.10). We also assume that W is non-degenerate at
r̃1 in the sense that

∂2W

∂r̃2

∣∣∣
r̃=r̃1
− d

r̃2
1

6= 0. (1.20)

We assume that the vortex helix is characterized by the curve

α ∈ R 7−→ (r̃1ε cosα, r̃1ε sinα, λ̃α) ∈ R3,

where r̃1ε = r̃1 + f̃ with the parameter f̃ of order O(ε) to be determined in the reduction
procedure.
(P3): There exists a number r̃2ε with r̃2ε − r̃1ε = τ̃0 + O(ε) such that the following conditions

1 +
(
W (r̃)−W (r̃1ε)

)
≥ 0 if r̃ ∈

(
0, r̃2ε

)
,

1 +
(
W (r̃)−W (r̃1ε)

)
≤ 0 if r̃ ∈

(
r̃2ε, +∞

)
,

1 +
(
W (r̃)−W (r̃1ε)

)
= 0 if r̃ = 0, r̃2ε,

(1.21)

with a universal positive constant τ̃0 independent of ε. Moreover, we also assume that

1 +
[
W (r̃)−W (r̃1ε)

]
= c̃0r̃

4 +O(r̃5), if r̃ ∈
(
0, r̃0

)
,

∂W

∂r̃

∣∣∣
r̃=r̃2ε

< 0,
∂2W

∂r̃2

∣∣∣
r̃=r̃2ε

≤ 0,

1 +
[
W (r̃)−W (r̃1ε)

]
≥ c̃1, if r̃ ∈

(
r̃0, r̃2ε − τ̃1

)
,

1 +
[
W (r̃)−W (r̃1ε)

]
≤ −c̃2, if r̃ ∈ (r̃2ε + τ̃2,+∞),

(1.22)
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for some positive constants r̃0, c̃0, c̃1, c̃2, τ̃1 and τ̃2 with τ̃1 < τ̃0/100 and r̃0 < r̃1.

By setting

νε = 1−W (r̃1ε), (1.23)

to problem (1.18) and then defining Ṽ (r̃) = W (r̃) −W (r̃1ε), we shall consider the following
problem

ε24 ũ+
(

1 + Ṽ (r̃)− |ũ|2
)
ũ = 0. (1.24)

The second result reads:

Theorem 1.4. For ε sufficiently small, there exists an axially symmetric solution to problem
(1.24) in the form ũ = ũ(|ỹ′|, ỹ3) ∈ C∞(R3,C) with a stationary vortex helix of degree +1

θ ∈ R 7→
(
r̃1ε cos θ, r̃1ε sin θ, λ̃θ

)
∈ R3,

where r̃1ε ∼ r̃1. ũ is also invariant under the screw motion expressed in cylinder coordinates

Σ : (r, θ, s3) 7→ (r, θ + α, s3 + λ̃α), ∀α ∈ R.

The profile of ũ is the same as the solution in Theorem 1.2.

Some words are in order to explain the methods for the results. By using the screw invariance
of solutions, we transform the problem to a two-dimensional case (3.8) with boundary condition
(3.10) on the infinite strip S (cf. (3.9)) and then show the existence of solutions. Problem
(3.8) is degenerate when x1 = 0 due to the terms

1

x1

∂u

∂x1

and γ−2
(

1 +
λ2

x2
1

)∂2u

∂x2
2

.

The new ingredient is the second term, which does not appear in [63] and [91] for the existence
of vortex rings. Here, by using the first condition imposed in (A3) we shall make careful
analysis to deal with the problem near the origin, see Remark 4.1.

The remaining part of this paper is devoted to the complete proof of Theorem 1.2 by the
reduction method, see [29] and also [62]. The proof to Theorem 1.4 is similar and we omit it
here. The organization of the paper is as follows: in Section 2, we review some preliminary
results. Section 3 is devoted the formulation of the problem and outline of the proof. For the
convenience of readers, we collect notation in the end of Section 3.1. More details of the proof
of Theorem 1.2 will be given in Sections 4-7.

2 Preliminaries

By (`, ϕ) designating the usual polar coordinates s1 = ` cosϕ, s2 = ` sinϕ, we introduce the
standard vortex block solution

U0(s1, s2) = w(`)eiϕ, (2.1)
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with degree +1 in the whole plane, where w(`) is the unique solution of the problem

w′′ +
1

`
w′ − 1

`2
w + (1− |w|2)w = 0 for ` ∈ (0,+∞), w(0) = 0, w(+∞) = 1. (2.2)

The properties of the function w are stated in the following lemma.

Lemma 2.1. There hold the following properties:
(1) w(0) = 0, w′(0) > 0, 0 < w(`) < 1, w′(`) > 0 for all ` > 0,
(2) w(`) = 1− 1

2`2
+O( 1

`4
) for large `,

(3) w(`) = k`− k
8
`3 +O(`5) for ` close to 0, where k is a positive constant.

(4) Define T = dw
d`
− w

`
, then T < 0 in (0,+∞).

Proof. Partial proof of this lemma can be found in [22] and the references therein.

We introduce the bilinear form

B(φ, φ) =

∫
R2

| 5 φ|2 −
∫
R2

(1− w2)|φ|2 + 2

∫
R2

|Re(Ū0φ)|2, (2.3)

defined in the natural space H of all locally-H1 functions with

||φ||H =

∫
R2

| 5 φ|2 −
∫
R2

(1− w2)|φ|2 + 2

∫
R2

|Re(Ū0φ)|2 < +∞. (2.4)

Let us consider, for a given φ, its associated ψ defined by the relation

φ = iU0ψ. (2.5)

Then we decompose ψ by the form

ψ = ψ0(`) +
∑
m≥1

[
ψ1
m + ψ2

m

]
, (2.6)

where we have denoted

ψ0 = ψ01(`) + iψ02(`),

ψ1
m = ψ1

m1(`) cos(mϑ) + iψ1
m2(`) sin(mϑ),

ψ2
m = ψ2

m1(`) sin(mϑ) + iψ2
m2(`) cos(mϑ).

This bilinear form is non-negative, as it follows from various results in [14, 20, 69, 70, 83], see
also [28, 71]. The nondegeneracy of U0 is contained in the following lemma, whose proof can
be found in the appendix of [29].

Lemma 2.2. There exists a constant C > 0 such that if φ ∈ H decomposes like in (2.5)-(2.6)
with ψ0 ≡ 0, and satisfies the orthogonality conditions

Re

∫
B(0,1/2)

φ̄
∂U0

∂sl
= 0, l = 1, 2,

then there holds

B(φ, φ) ≥ C

∫
R2

|φ|2

1+ | s |2
.

11



The linear operator L0 corresponding to the bilinear form B can be defined by

L0(φ) =
( ∂2

∂s2
1

+
∂2

∂s2
2

)
φ+ (1− |w|2)φ− 2Re

(
Ū0φ

)
U0.

The nondegeneracy of U0 can be also stated as following lemma, whose proof can be found in
[28].

Lemma 2.3. Suppose that L0[φ] = 0 with φ ∈ H, then

φ = c1
∂U0

∂s1

+ c2
∂U0

∂s2

, (2.7)

for some real constants c1, c2.

To construct a approximate solution in Section 3, we also prepare the following lemma [63].

Lemma 2.4. There exists a unique solution q to the following problem

q′′ − q
(
`+ q2

)
= 0 on R, (2.8)

such that the following properties hold:

q(`) > 0 for all ` ∈ R, q′(`) < 0 for any ` > 0,

q(`) ∼
√
−` as `→ −∞, q(`) ∼ exp (−`3/2) as `→ +∞.

3 Formulation of the problem and outline of the proof

As stated in Section 1, we will only give the proof to Theorem 1.2. By using the symmetry,
we will first transform (1.17) into a two dimensional case in the form (3.8) with conditions
(3.13) and then give an outline of the proof.

3.1 The formulation of problem and notation

Making rescaling ỹ = εy̌, problem (1.17) takes the form

4u +
(

1 + V (εy̌)− |u|2
)
u + iε| log ε|κ ∂u

∂y̌3

= 0. (3.1)

Introduce a new coordinates (r, θ, y̌3) ∈ (0,+∞)× (0, 2π]× R in the form

y̌1 = r cos θ, y̌2 = r sin θ, y̌3 = y̌3. (3.2)

Then problem (3.1) takes the form( ∂2

∂r2
+

∂2

∂y̌2
3

+
1

r2

∂2

∂θ2
+

1

r

∂

∂r

)
u+

(
1 + V (εr)− |u|2

)
u+ iε| log ε|κ ∂u

∂y̌3

= 0. (3.3)

12



For problem (3.3), we want to find a solution u which has a vortex helix directed along the
curve in the form

θ ∈ R 7→ (r1ε cos θ, r1ε sin θ, λθ) ∈ R3,

with two parameters

r1ε = r̂1ε/ε, λ = λ̂/ε. (3.4)

Moreover, u is also invariant under the screw motion

Σ : (r, θ, y̌3) 7→ (r, θ + α, y̌3 + λα), ∀α ∈ R. (3.5)

Then u is a solution to[
∂2

∂r2
+

1

r

∂

∂r
+
(

1 +
λ2

r2

) ∂2

∂y̌2
3

]
u+

(
1 + V (εr)− |u|2

)
u+ iε| log ε|κ ∂u

∂y̌3

= 0, (3.6)

which will be defined on the region
{

(r, y̌3) ∈ [0,∞) × (−λπ, λπ)
}
. Recall the parameters in

(3.4) and then set

σ =
λ̂

r̂1ε

, γ =
√

1 + σ2 , δ =
1√

|r̂1ε|2 + |λ̂|2
=

1

γ r̂1ε

. (3.7)

Hence we consider a two-dimensional problem[
∂2

∂x2
1

+
1

x1

∂

∂x1

+ γ−2
(

1 +
λ2

x2
1

) ∂2

∂x2
2

]
u+

(
1 + V (ε|x1|)− |u|2

)
u+ iε| log ε| κ

γ

∂u

∂x2

= 0. (3.8)

By using the symmetries, in the sequel, we shall consider the problem on the region

S =
{
z = x1 + ix2 : x1 ∈ R, x2 ∈ (−λπ/γ, λπ/γ)

}
, (3.9)

and then impose the boundary conditions

|u(z)| → 0 as |x1| → +∞,
∂u

∂x1

(0, x2) = 0, ∀x2 ∈ (−λπ/γ, λπ/γ),

u(x1,−λπ/γ) = u(x1, λπ/γ), ∀x1 ∈ R,
ux2(x1,−λπ/γ) = ux2(x1, λπ/γ), ∀x1 ∈ R.

(3.10)

Before finishing this section, some words are in order to explain the strategies of solving
problem (3.8) with boundary conditions in (3.10). It is easy to see that problem(3.8) is invariant
under the following two transformations

u(z)→ u(z̄), u(z)→ u(−z̄). (3.11)
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Thus we impose the following symmetry on the solution u

Π :=
{
u(z) = u(z̄), u(z) = u(−z̄)

}
. (3.12)

This symmetry will play an important role in our analysis. As a conclusion, if we write

u(x1, x2) = u1(x1, x2) + iu2(x1, x2),

then u1 and u2 enjoy the following conditions:

|u(x1, x2)| → 0 as |x1| → +∞,
u1(x1, x2) = u1(−x1, x2), u1(x1, x2) = u1(x1,−x2),

u2(x1, x2) = u2(−x1, x2), u2(x1, x2) = −u2(x1,−x2),

∂u1

∂x1

(0, x2) = 0,
∂u2

∂x1

(0, x2) = 0,

u1(x1,−λπ/γ) = u1(x1, λπ/γ),
∂u2

∂x2

(x1,−λπ/γ) =
∂u2

∂x2

(x1, λπ/γ),

∂u1

∂x2

(x1,−λπ/γ) =
∂u1

∂x2

(x1, λπ/γ) = 0, u2(x1,−λπ/γ) = u2(x1, λπ/γ) = 0.

(3.13)

Problem (3.8) becomes a two-dimensional problem with conditions in (3.13). The key point
is then to construct a solution with a vortex of degree +1 at ξ+ and its antipair of degree −1
at ξ−, where ξ± are defined in (3.16). Additional to the computations for standard vortices in
two dimensional case, there are two extra derivative terms

1

x1

∂u

∂x1

and γ−2
(

1 +
λ2

x2
1

)∂2u

∂x2
2

.

These will lead us to further improve the approximate solution to satisfy the conditions in (3.13).
Note that the potential V in (3.8) possesses the following properties due to the assumptions
(A1)-(A3):

∂V

∂r̃

∣∣∣
r̃=0

= 0, 0 ≤ 1 + V (r̃) = c0r̃
4 +O(r̃5) if r̃ ∈

(
0, r̂0

)
,

∂V

∂r̃

∣∣∣
r̃=r̂1

+
d

r̂1

=
κ d

2
,

∂2V

∂r̃2

∣∣∣
r̃=r̂1
− d

|r̂1|2
6= 0,

1 + V (r̂1ε) = 1, 1 + V (r̂2ε) = 0,
∂W

∂r̃

∣∣∣
r̃=r̂2ε

< 0,
∂2W

∂r̃2

∣∣∣
r̃=r̂2ε

≤ 0,

1 + V (r̃) ≥ c1 if r̃ ∈
(
r̂0, r̂2ε − τ1

)
, 1 + V (r̃) ≤ −c2 if r̃ ∈ (r̂2ε + τ2, +∞).

(3.14)

Notation: We have used x = (x1, x2) = (r, y̌3/γ) and also write ` = |x|. We may write
z = x1 + ix2. In this rescaled coordinates, we write

r0ε ≡ r̂0/ε, r1ε ≡ r̂1/ε+ f ≡ r̂1ε/ε with f = f̂/ε, r2ε ≡ r̂2ε/ε, (3.15)
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D4D5

x1

x2

Figure 1: Decompositions of the Domain S

where the constants f̂ , r̂1ε and r̂2ε, r̂0 are defined in (1.13), (1.14) and (1.15). By setting,
ξ+ = (r1ε, 0) and ξ− = (−r1ε, 0), we introduce the translated variable

s = x− ξ+ or s̃ = x− ξ−, (3.16)

in a small neighborhood of the vortices. For any given (x1, x2) ∈ R2, let ϕ+
0 (x1, x2) and

ϕ−0 (x1, x2) be respectively the angle arguments of the vectors (x1 − r1ε, x2) and (x1 + r1ε, x2)
in the (x1, x2) plane. We also let

`1(x1, x2) =
√

(x1 + r1ε)2 + x2
2 , `2(x1, x2) =

√
(x1 − r1ε)2 + x2

2 , (3.17)

be the distance functions between the point (x1, x2) and the pair of vortices of degree ±1 at the
points ξ+ and ξ−. We decompose the region S in (3.9) into different parts D1, D2, D3, D4 and
D5 in the following forms, see Figure 1

D1 ≡
{

(x1, x2) ∈ S : `1 < ε−λ1
}
,

D2 ≡
{

(x1, x2) ∈ S : `2 < ε−λ1
}
,

D3 ≡
{

(x1, x2) ∈ S : |x1| < r2ε − ε−λ2
}
\
(
D2 ∪D1

)
,

D4 ≡
{

(x1, x2) ∈ S : x1 > r2ε − ε−λ2
}
,

D5 ≡
{

(x1, x2) ∈ S : x1 < −r2ε + ε−λ2
}
.

(3.18)

Here λ1 and λ2 are two constants, independent of ε, with 0 < λ1, λ2 < 1/3, see (4.22) for the
choice of λ1. To the end of construction of vortex pairs locating at ξ+ and ξ−, we write locally

∂2u

∂x2
1

+
(

1 +
λ2

x2
1

)
γ−2∂

2u

∂x2
2

=
( ∂2

∂x2
1

+
∂2

∂x2
2

)
u + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2u

∂x2
2

. (3.19)
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Finally, we decompose the operator as

S[u] = S0[u] + S1[u] + S2[u] + S3[u] + S4[u],

with the explicit form

S0[u] : =
( ∂2

∂x2
1

+
∂2

∂x2
2

)
u, S1[u] : =

(
1 + V (ε|x1|)− |u|2

)
u,

S2[u] : = γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2u

∂x2
2

, S3[u] : =
1

x1

∂u

∂x1

, S4[u] : = iε
κ

γ
| log ε| ∂u

∂x2

.

(3.20)

We will use these notation without any further statement in the sequel.

3.2 Outline of the Proof

Step 1. To construct a solution to (3.8)-(3.10) and prove Theorem 1.2, the first step is to
construct an approximate solution, denoted by U2 in (4.52), possessing a pair of vortices with
degree ±1 locating at ξ+ = (r1ε, 0) and ξ− = (−r1ε, 0). The heuristic method is to find suitable
approximations in different regions and then patch them together. So we decompose the plane
into different regions D1, D2, D3, D4 and D5 as in (3.18), see Figure 1. Note that the components
of D1 and D2 center at ξ− and ξ+.

The first approximation U1 is a solution which has a profile of a pair of standard vortices
in D1 ∪D2, which possess the degrees ±1 and centers ξ+ and ξ−, see (4.1). Then in D3 we set
U1 by Thomas-Fermi approximation in the form (4.2) and make an extension to the regions D4

and D5. In fact, by some type of rescaling, in D4 and D5 we use q in Lemma 2.4 as a bridge
when |x| crossing r2ε and then reduce the norm of the approximate solution to zero as |x| tends
to ∞.

Now there are two types of singularities caused by the phase term of standard vortices and
the Thomas-Fermi approximation, which will be described in Section 4.1. In fact, to cancel the
singularities caused by S2[ϕ0] and S3[ϕ0] with the standard phase ϕ0 in (4.1), we will add one
more correction term ϕd in (4.33) to the phase component. Finally we get the approximate
solution U2 in (4.52), which has the symmetry

U2(x1, x2) = U2(x1,−x2), U2(x1, x2) = U2(−x1, x2). (3.21)

These are done in subsections 4.1 and 4.2. The Section 4.3 is devoted to estimation of the
errors in suitable weighted norms. The reader can refer to the papers [29] and [62].

Step 2. To get explicit information of the linearized problem, we then also divide further D2

and D4 into small parts in (5.10), see Figure 2. In Section 5, we then express the error and
formulate the problem in suitable local forms in different regions by the method in [29]. More
precisely, for the perturbation ψ = ψ1 + iψ2 with conditions in (5.5), we take the solution u
in the form (5.3). The key points that we shall mention are the roles of local forms of the
linearized problem for further deriving of the linear resolution theory in Section 6.
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• In D3, the linear operators have approximate forms, (cf. (5.32))

L̃3(ψ1) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ1 +

2

β1

5 β1 · 5ψ1,

L̄3(ψ2) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ2 − 2|U2|2ψ2 +

2

β1

5 β1 · 5ψ2.

The type of the linear operator L̃3 was handled in [62], while L̄3 is a good operator since
|U2| stays uniformly away from 0 in D3 by the assumption (A3), see (5.30).

• In the vortex core regions D1,1 and D2,1, we use a type of symmetry (3.21) to deal with
the kernel of the linear operator related to the standard vortex.

• In D4,1, the lowest approximations of the linear operators are, (cf. (5.35))

L41∗(ψ1) =
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 −

(
`+ q2(`)

)
ψ1 ,

L41∗∗(ψ2) =
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 −

(
`+ 3q2(`)

)
ψ2 .

By Lemma 2.4, the facts that L41∗(q) = 0 and L41∗∗(−q′) = 0 with −q′ > 0 and q > 0 on
R will give the application of maximum principle.

• The linear operators in the region D4,2 can be approximated by a good linear operator of
the form, (cf.(5.40))

L42∗[ψ̃] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ̃ +

(
1 + V

)
ψ̃,

with
(
1 + V

)
< −c2 < 0 by the assumption (A3). For more details, the reader can refer

to the proof of Lemma 6.1.

Step 3. After deriving the linear resolution theory by Lemmas 6.1 and 6.2, and then solving the
nonlinear projected problem (5.42) in Section 6, as the standard reduction method we adjust
the parameter f̃ to get a solution with a vortex helix in Theorem 1.2. It is showed in Section
7 that this is equivalent to solve the following algebraic equation, (cf. (7.5))

C(f̂) := − 2 π ε

[
∂V

∂r̃

∣∣∣
r̃=r̂1+f̂

log
1

ε
+

d

r̂1 + f̂
log

r̂1 + f̂

ε
− κ d

2γ
log

1

ε

]
+ O(ε)

= 0,

where O(ε) is a continuous function of the parameter f̂ . By the solvability condition (1.9) and
the non-degeneracy condition (1.11), we can find a zero of C

(
f̂
)

at some small f̂ with the help
of the simple mean-value theorem.
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Remark 3.1. Similarly, to prove Theorem 1.4, we need to solve the equation,

C(f̃) := − 2 επ

[
∂Ṽ

∂r̃

∣∣∣
r̃=r̃1+f̃

log
1

ε
+

d

r̃1 + f̃
log

r̃1 + f̃

ε

]
+ O(ε)

= 0,

where O(ε) is a continuous function of the parameter f̃ . By simple mean-value theorem and
the solvability condition (1.19) and the non-degeneracy condition (1.20), we can find a zero of
C(f̃) at some small f̃ .

4 Approximate solutions

As we stated in Section 3, in the rest part of the present paper, we shall solve the two-
dimensional problem (3.8) with conditions in (3.10) by finding a solution with a vortex of
degree +1 at ξ+ and its antipair of degree −1 at ξ−. The main objective of this section is to
construct a good approximate solution and evaluate its error.

4.1 First approximate solution

Recalling the definition of the standard vortex of degree +1 in (2.1) and notation in Section
3.1, the construction of the first approximate solution U1 can be roughly done as follows:

(1) If (x1, x2) ∈ D2 ∪D1, we choose U1 by

U1(x1, x2) = U2(x1, x2) ≡ ρ̃eiϕ0 , (4.1)

where ρ̃ = w(`2)w(`1) and the phase term ϕ0 is defined by ϕ0 = ϕ+
0 − ϕ−0 .

(2) If (x1, x2) ∈ D3,, we write

U1(x1, x2) = U3(x1, x2) ≡
√

1 + V (ε|x1|) eiϕ0 . (4.2)

The choice of U3 here is well defined due to the assumption (A3), see also (3.14). It is
the standard Thomas-Fermi approximation, see [74].

(3) By the assumption (A3), there exists a small positive ε0 such that for 0 < ε < ε0, we can
set

δε := −ε∂V
∂r̃

∣∣∣
r̃=r̂2ε

> 0. (4.3)

Let q be the unique solution given by Lemma 2.4. Choose

U4(x1, x2) = q̂(x1)eiϕ0 on D4, U5(x1, x2) = q̂(−x1)eiϕ0 on D5, (4.4)

where the function q̂ is given by

q̂(x1) = δ1/3
ε q

(
δ1/3
ε (x1 − r2ε)

)
. (4.5)

It is obvious that the approximation on S will vanish at infinity.
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For further improvement of the approximation, it is crucial to evaluate the error of this
approximation, which will be carried out in different regions as follows. Obviously, there hold
the trivial formulas

5x1,x2w(`2) =
w′(`2)

`2

(
x1 − r1ε, x2

)
, 5x1,x2w(`1) =

w′(`1)

`1

(
x1 + r1ε, x2

)
,

5x1,x2ϕ0(x1, x2) =

(
−x2

(`2)2
+

x2

(`1)2
,
x1 − r1ε

(`2)2
− x1 + r1ε

(`1)2

)
.

(4.6)

We may work directly in the half space R2
+ = {(x1, x2) : x1 > 0} in the sequel because of the

symmetry of the problem.

4.1.1 The error term: S[U2]

Firstly, we estimate the error near the vortices. Note that for x1 > 0, the error between
1 and w(`1) is O(`−2

1 ), which is of order ε2, we may ignore w(`1) in the computations below.
Note that

S0[U2] = 4[w(`1)]w(`2)eiϕ0 + 4[w(`2)]w(`1)eiϕ0 − U2

∣∣∇ϕ0

∣∣2
+ 2eiϕ0∇w(`2) · ∇w(`1) + 2ieiϕ0∇

(
w(`2)w(`1)

)
· ∇ϕ0 + i4[ϕ0]U2.

In fact, 4[ϕ0] = 0. Then, there holds

4
[
w(`1)

]
w(`2)eiϕ0 + 4

[
w(`2)

]
w(`1)eiϕ0 − U2

∣∣∇ϕ0

∣∣2
=
[
w′′(`1) +

1

`1

w′(`1) − 1

(`1)2
w(`1)

] U2

w(`1)

+
[
w′′(`2) +

1

`2

w′(`2) − 1

(`2)2
w(`2)

] U2

w(`2)

− U2

[ ∣∣∇ϕ0

∣∣2 − ∣∣∇ϕ+
0

∣∣2 − ∣∣∇ϕ−0 ∣∣2
]
,

where for x1 > 0

U2

[ ∣∣∇ϕ0

∣∣2 − ∣∣∇ϕ+
0

∣∣2 − ∣∣∇ϕ−0 ∣∣2
]

= − 2U2
x2

2 + (x1 − r1ε)(x1 + r1ε)

`2
1`

2
2

= − 2U2

[ 1

`2
1

+
2(x1 − r1ε)r1ε

`2
1`

2
2

]
.

The next term in S0[U2] can be estimated as

2eiϕ0∇w(`2) · ∇w(`1) = 2U2
x2

2 + (x1 − r1ε)(x1 + r1ε)

`1`2

w′(`1)

w(`1)

w′(`2)

w(`2)
.

Note that ∇w(`2) · ∇ϕ+
0 = 0 and ∇w(`1) · ∇ϕ−0 = 0. By the formulas in (4.6), we get

2ieiϕ0∇
(
w(`2)w(`1)

)
· ∇ϕ0
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= 2ieiϕ0w(`1)∇w(`2) · ∇ϕ−0 + 2ieiϕ0w(`2)∇w(`1) · ∇ϕ+
0

= − 4iU2
x2r1ε

`1(`2)2

w′(`1)

w(`1)
− 4iU2

x2r1ε

`2(`1)2

w′(`2)

w(`2)
.

Now, we will turn to the computation of S1[U2]. In a small neighborhood of the point
r̃ = r̂1ε = εr1ε, by Taylor expansion we also write V (ε|x1|) as the form

V (ε|x1|) = ε
∂V

∂r̃

∣∣∣
r̃=εr1ε

(x1 − r1ε) + ε2O(|x1 − r1ε|2).

It is easy to derive that, in the region D2

S1[U2] =
(

1 + V − |U2|2
)
U2

=
(

1− |w(`2)|2
)
U2 +

(
1− |w(`1)|2

)
U2 +

(
|w(`1)|2 + |w(`2)|2 − |U2|2 − 1

)
U2

+ ε U2
∂V

∂r̃

∣∣∣
r̃=r̂1ε

(x1 − r1ε) + ε2O(|x1 − r1ε|2)U2,

where (
|w(`1)|2 + |w(`2)|2 − |U2|2 − 1

)
U2 = −

(
|w(`1)|2 − 1

)(
|w(`2)|2 − 1

)
U2

= − O

[
1

(1 + `2
1)(1 + `2

2)

]
U2.

Whence, we can write

S0[U2] + S1[U2] = Ω21,

where

Ω21 = − 2U2

[ 1

`2
1

+
2(x1 − r1ε)r1ε

`2
1`

2
2

]
+ 2U2

x2
2 + (x1 − r1ε)(x1 + r1ε)

`1`2

w′(`1)

w(`1)

w′(`2)

w(`2)

− 4iU2
x2r1ε

`1(`2)2

w′(`1)

w(`1)
− 4iU2

x2r1ε

`2(`1)2

w′(`2)

w(`2)

+ ε U2
∂V

∂r̃

∣∣∣
r̃=r̂1ε

(x1 − r1ε) + ε2O(|x1 − r1ε|2)U2 − O

[
1

(1 + `2
1)(1 + `2

2)

]
U2.

(4.7)

The calculation for the term S2[U2] is proceeded as

S2[U2] = γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2

∂x2
2

[
ρ̃eiϕ0

]
= γ−2

[
λ2

x2
1

− λ2

|r1ε|2

][
∂2ρ̃

∂x2
2

+ 2i
∂ρ̃

∂x2

∂ϕ0

∂x2

− ρ̃
∣∣∣∂ϕ0

∂x2

∣∣∣2]eiϕ0

+ i U2 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ϕ0

∂x2
2

≡ Ω22 + i U2 S2[ϕ0].

(4.8)
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Here we need more analysis on the term i U2 S2[ϕ0]. Note that

∂2ϕ0

∂x2
2

=
∂2ϕ+

0

∂x2
2

− ∂2ϕ−0
∂x2

2

=
−2(x1 − r1ε)x2

`4
2

− −2(x1 + r1ε)x2

`4
1

.

There also hold

γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
= − 2σ2

r1ε γ2
(x1 − r1ε) +

σ2

r1ε γ2

3r1ε(x1 − r1ε)
2 + 2(x1 − r1ε)

3

x2
1

=− 2σ2

r1ε γ2
(x1 − r1ε) + O

(
(x1 − r1ε)

2/|r1ε|2
)

for x ∼ ξ+,

(4.9)

and

γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
=

2σ2

r1ε γ2
(x1 + r1ε) +

σ2

r1ε γ2

3r1ε(x1 + r1ε)
2 − 2(x1 + r1ε)

3

x2
1

=
2σ2

r1ε γ2
(x1 + r1ε) + O

(
(x1 + r1ε)

2/|r1ε|2
)

for x ∼ ξ−.

(4.10)

Whence there is a singularity in the form, as x ∼ ξ+

− 2σ2

r1ε γ2
(x1 − r1ε)

∂2ϕ+
0

∂x2
2

= − 2σ2

r1ε γ2
s1
∂2ϕ+

0

∂s2
2

=
4σ2

r1ε γ2

s2
1s2

|s|4
(4.11)

with variable s = x− ξ+. A similar singularity exists in the neighborhood of ξ−

2σ2

r1ε γ2
(x1 + r1ε)(−1)

∂2ϕ−0
∂x2

2

= − 2σ2

r1ε γ2
s̃1
∂2ϕ−0
∂s̃2

2

=
4σ2

r1ε γ2

s̃2
1s̃2

| s̃ |4
(4.12)

with the variable s̃ = x− ξ−.

The term S3[U2] obeys the following asymptotic behavior

1

x1

∂U2

∂x1

=
x1 + r1ε

x1`1

w′(`1)

w(`1)
U2 +

x1 − r1ε

x1`2

w′(`2)

w(`2)
U2 + iU2

1

x1

∂ϕ0

∂x1

= Ω23 + i U2 S3[ϕ0].

(4.13)

We here also need more analysis on i U2 S3[ϕ0]. By the computation

1

x1

∂ϕ0

∂x1

=
1

x1

∂ϕ+
0

∂x1

− 1

x1

∂ϕ−0
∂x1

=
1

x1

( −x2

`2
2

+
x2

`2
1

)
, (4.14)

we find that it is a singular term. More precisely, the formulations

1

x1

=
1

r1ε

− x1 − r1ε

r1ε x1

for x ∼ ξ+,

and
1

x1

= − 1

r1ε

+
x1 + r1ε

r1ε x1

for x ∼ ξ−,
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will give that, in the neighborhood of ξ+ with variable s = x− ξ+, there is a singularity in the
form

1

x1

∂ϕ+
0

∂x1

=
[ 1

r1ε

− s1

r1ε(r1ε + s1)

]∂ϕ+
0

∂s1

with
1

r1ε

∂ϕ+
0

∂s1

= − 1

r1ε

s2

|s|2
, (4.15)

and a similar singularity exists in the neighborhood of ξ− with the variable s̃ = x− ξ−

− 1

x1

∂ϕ−0
∂x1

=
[
− 1

r1ε

+
s̃1

r1ε(s̃1 − r1ε)

]
(−1)

∂ϕ−0
∂s̃1

with
1

r1ε

∂ϕ−0
∂s̃1

= − 1

r1ε

s̃2

| s̃ |2
. (4.16)

For S4[U2], there holds

S4[U2] =
κ

γ
ε| log ε|U2

[
i
x2

`1

w′(`1)

w(`1)
+ i

x2

`2

w′(`2)

w(`2)
−

2
(
x2

1 − x2
2 − |r1ε|2

)
r1ε

(`1`2)2

]
≡ Ω24.

(4.17)

By combining all estimates above and using the equation (2.2), we write the error, near the
vortices, in the form

S[U2] = F21 + F22. (4.18)

In the above, we have denoted the combination of the singular terms as F21 and also F22 in the
form

F21 = iU2

(
S2 + S3

)
[ϕ0] and F22 =

4∑
j=1

Ω2j.

Whence we need a further correction to improve the approximation. On the other hand, we
collect all terms in F22 and then get

Re
F22

−iU2

= 4
x2r1ε

`1(`2)2

w′(`1)

w(`1)
+ 4

x2r1ε

`2(`1)2

w′(`2)

w(`2)
− γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
2

ρ̃

∂ρ̃

∂x2

∂ϕ0

∂x2

− κ

γ
ε| log ε|

[
x2

`1

w′(`1)

w(`1)
+

x2

`2

w′(`2)

w(`2)

]
,

(4.19)

and

Im
F22

−iU2

= − 2
[ 1

`2
1

+
2(x1 − r1ε)r1ε

`2
1`

2
2

]
+ 2

x2
2 + (x1 − r1ε)(x1 + r1ε)

`1`2

w′(`1)

w(`1)

w′(`2)

w(`2)

+ ε
∂V

∂r̃

∣∣∣
(εr1ε,0)

(x1 − r1ε) + ε2O(|x1 − r1ε|2) + O

[
1

(1 + `2
1)(1 + `2

2)

]

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

][
1

ρ̃

∂2ρ̃

∂x2
2

−
∣∣∣∂ϕ0

∂x2

∣∣∣2]

+
x1 + r1ε

x1`1

w′(`1)

w(`1)
+
x1 − r1ε

x1`2

w′(`2)

w(`2)
− κ

γ
ε| log ε|

2
(
x2

1 − x2
2 − |r1ε|2

)
r1ε

(`1`2)2
.

(4.20)
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By careful checking, we find that F22 is a term defined on the region D2 with properties, for
`1 > 3 and `2 > 3 ∣∣∣Re

( F22

−iU2

)∣∣∣ ≤ O(ε1−σ)

(1 + `1)3
+

O(ε1−σ)

(1 + `2)3
,

∣∣∣Im( F22

−iU2

)∣∣∣ ≤ O(ε1−σ)

(1 + `1)1+σ
+

O(ε1−σ)

(1 + `2)1+σ
,

and ∥∥∥∥∥ F22

−iU2

∥∥∥∥∥
Lp
(
{`1<3}∪{`2<3}

) ≤ Cε| log ε|, (4.21)

where σ and p are some universal constants. In fact, we have for example∣∣∣∣∣ε∂V∂r̃ ∣∣∣(εr1ε,0)
(x1 − r1ε)

∣∣∣∣∣ =
∂V

∂r̃

∣∣∣
(εr1ε,0)

ε1−σ

(1 + `2)1+σ
O
(
εσ(1 + `2)2+σ

)
=

O(ε1−σ)

(1 + `2)1+σ
, ∀x ∈ D2,

by choosing

0 < λ1 < 1/3 and
2λ1

1− λ1

< σ < 1. (4.22)

4.1.2 The error term: S[U3]

Secondly, we compute the error for U3 in D3. It is easy to check that the error of U3 is

S[U3] = S0[U3] + S2[U3] + S3[U3] + S4[U3].

The above components can be computed as follows.

The computations

∂

∂x1

√
1 + V (ε|x1|) =

ε

2

(
1 + V

)−1/2 ∂V

∂r̃
,

∂2

∂x2
1

√
1 + V (ε|x1|) = − ε2

4

(
1 + V

)−3/2
∣∣∣∂V
∂r̃

∣∣∣2 +
ε2

2

(
1 + V

)−1/2 ∂2V

∂r̃2
,
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give that the first term in S[U3] is

S0[U3] = 4
[√

1 + V
]
eiϕ0 + 2i eiϕ0 ∇

√
1 + V · ∇ϕ0 −

√
1 + V eiϕ0

∣∣∇ϕ0

∣∣2
= − 1

4
ε2
∣∣∣∣∂V∂r̃

∣∣∣∣2 eiϕ0(
1 + V

)3/2
+

1

2
ε2
∂2V

∂r̃2

eiϕ0(
1 + V

)1/2
− U3

∣∣∇ϕ0

∣∣2
+ i

U3

1 + V
∇V · ∇ϕ0

≡Ω31 + i
U3

1 + V
∇V · ∇ϕ0.

Note that 1 + V will tend to zero as x1 approaches 0 or r2ε due to the conditions in (A3). We
shall do careful analysis in this region. By recalling these conditions rewritten in (3.14), there
holds if x1 ∈ (0, r2ε − τ1/ε),

Ω31 = O(ε2)eiϕ0 + i O
(
ε (`1)−1 + ε (`2)−1

)
eiϕ0 + O

(
(`1)−2 +O(`2)−2

)
U3 .

On the other hand, if x1 ∈ (r2ε − τ1/ε, r2ε − ε−λ2), we get

Ω31 = O(ε(3λ2+1)/2)eiϕ0 + O
(
(`1)−2 +O(`2)−2

)
U3 + i ε(λ2+1)/2O

(
(`1)−1 + (`2)−1

)
eiϕ0 ,

where 0 < λ2 < 1/3.

Explicit computations give that

S2[U3] = − U3 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

] ∣∣∣∂ϕ0

∂x2

∣∣∣2 + i U3 S2[ϕ0]

≡ Ω32 + i U3 S2[ϕ0].

We then write the term ∂2ϕ0

∂x22
in S2[ϕ0] in the form

∂2ϕ0

∂x2
2

=
−2(x1 − r1ε)x2

`4
2

− −2(x1 + r1ε)x2

`4
1

=
4 r1ε x2

(|r1ε|2 + x2
2)2
− 8x2x

2
1r1ε(`1 + `2)

`4
1`

4
2

− 2x2x
2
1r1ε

`4
1`

4
2(|r1ε|2 + x2

2)2

[
`4

1(|r1ε|2 + x2
2 + `2

2) + `4
2(|r1ε|2 + x2

2 + `2
1)

]

+
16x2x

2
1r

3
1ε

`4
1`

4
2(|r1ε|2 + x2

2)

[
(`2

1 + `2
2)(|r1ε|2 + x2

2) + `2
2`

2
1

]
≡ 4 r1ε x2

(|r1ε|2 + x2
2)2

+ Θ,

(4.23)

then obtain

i U3 S2[ϕ0] = i U3 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

]
Θ + i U3 S2[arctan(x2/r1ε)]

≡ Ω33 + i U3 S2[arctan(x2/r1ε)],

(4.24)
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due to the relation

i U3 S2[arctan(x2/r1ε)] = i U3 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

]
4 r1ε x2

(|r1ε|2 + x2
2)2
. (4.25)

In the next section, we will also introduce a correction in the phase term to get rid of the
singular term in i U3 S2[ϕ0]. Hence, there holds

S2[U3] = Ω32 + Ω33 + i U3 S2[arctan(x2/r1ε)].

Moreover,

Ω32 = O
(
ε2(`1)−2 + ε2(`2)−2

)
eiϕ0 ,

due to the facts that

U3(x1, x2) =
[
ĉ0 ε

2 x2
1 + O(|εx1|5/2)

]
eiϕ0 for |εx1| < r̂0,

and ∣∣∣∣∂ϕ0

∂x2

∣∣∣∣2 =

∣∣∣∣x1 − r1ε

`2
2

− x1 + r1ε

`2
1

∣∣∣∣2 = O
(
(`1)−2 +O(`2)−2

)
in D3.

Remark 4.1. We pause here to remark that we need the assumption

0 ≤ 1 + V (r̃) = c0r̃
4 +O(r̃5) if r̃ ∈

(
0, r̂0

)
,

in (3.14) (see also (1.15)) to cancel the singularity caused by λ2/x2
1 at x1 = 0.

Similar calculations hold

S3[U3] =
1

2
ε

eiϕ0

(1 + V )1/2

1

x1

∂V

∂r̃
+ i U3 S3[ϕ0]

≡ Ω34 + i U3 S3[ϕ0].

(4.26)

If x1 ∈ (0, r2ε − τ1/ε), we get

Ω34 = O(ε2)eiϕ0 .

If x1 ∈ (r2ε − τ1/ε, r2ε − ε−λ2), we get

Ω34 = O(ε(3+λ2)/2)eiϕ0 .

On the other hand

i U3 S3[ϕ0] = i U3
1

x1

∂ϕ0

∂x1

= −i U3
4x2 r1ε

(`2)2(`1)2
(4.27)

is not a singular term.
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The last term in S[U3] can be estimated by

S4[U3] = − κ

γ
ε| log ε|U3

2
(
x2

1 − x2
2 − |r1ε|2

)
r1ε

(`1`2)2

≡ Ω35.

In summary, we write

S[U3] ≡ F31 + F32. (4.28)

In the above, we have denoted the combination of the terms as F31 and also F32 in the form

F31 = i U3
∇V · ∇ϕ0

1 + V
+ i U3 S2[arctan(x2/r1ε)] + i U3 S3[ϕ0],

and

F32 =
5∑
j=1

Ω3j.

By careful checking, we find that F32 is a term defined on the region D3 with properties,∣∣∣∣∣Re
( F32

ieiϕ0

)∣∣∣∣∣ ≤ O(ε1−σ)

(1 + `1)3
+

O(ε1−σ)

(1 + `2)3
,

∣∣∣∣∣Im( F32

ieiϕ0

)∣∣∣∣∣ ≤ O(ε1−σ)

(1 + `1)1+σ
+

O(ε1−σ)

(1 + `2)1+σ
.

(4.29)

4.1.3 The error terms: S[U4] and S[U5]

Finally, the errors on D4 and D5. We begin with the error of U4

S[U4] = S0[U4] + S1[U4] + S2[U4] + S3[U4] + S4[U4],

where

S0[U4] = δε q
′′
(
δ1/3
ε (x1 − r2ε)

)
eiϕ0 + 2ieiϕ0∇q̂ · ∇ϕ0 − q̂ eiϕ0

∣∣∇ϕ0

∣∣2.
By the conditions in (A3)

1 + V (ε|x1|) = 1 + V (εr2ε) +
∂V

∂r̃

∣∣∣
r̃=εr2ε

ε(x1 − r2ε) +O
(
ε2(x1 − r2ε)

2
)

= −δε(x1 − r2ε) +O
(
ε2(x1 − r2ε)

2
)
.

(4.30)
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We also write S1[U4] of the form

S1[U4] = δε

[
− δ1/3

ε (x1 − r2ε)− q2
(
δ1/3
ε (x1 − r2ε)

)]
q
(
δ1/3
ε (x1 − r2ε)

)
eiϕ0

+
[
(1 + V ) + δε(x1 − r2ε)

]
q̂eiϕ0 .

The equation of q in Lemma 2.4 implies that there holds

S0[U4] + S1[U4] = 2ieiϕ0 δ2/3
ε q′

(
δ1/3
ε (x1 − r2ε)

)∂ϕ0

∂x1

− q̂ eiϕ0
∣∣∇ϕ0

∣∣2
+
[
(1 + V )− δε(x1 − r2ε)

]
q̂eiϕ0

≡ Ω41.

We proceed with the calculations

S2[U4] ≡ U4 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

](
−
∣∣∣∂ϕ0

∂x2

∣∣∣2 + i
∂2ϕ0

∂x2
2

)

= − U4 γ
−2

[
λ2

x2
1

− λ2

|r1ε|2

]∣∣∣∂ϕ0

∂x2

∣∣∣2 + i U4 S2[ϕ0]

≡ Ω42 + i U4 S2[ϕ0],

where ∣∣∣∣∂ϕ0

∂x2

∣∣∣∣2 =

∣∣∣∣x1 − r1ε

`2
2

− x1 + r1ε

`2
1

∣∣∣∣2 = O(1/`2
2) in D4.

Similar calculations hold

S3[U4] =
1

x1

δ2/3
ε q′

(
δ1/3
ε (x1 − r2ε)

)
eiϕ0 + i U4 S3[ϕ0]

≡ Ω43 + i U4 S3[ϕ0].

The last term is

S4[U4] = − κ

γ
ε| log ε|U4

2
(
x2

1 − x2
2 − |r1ε|2

)
r1ε

(`1`2)2

≡ Ω44.

In summary, we write

S[U4] ≡ F41 + F42, (4.31)

where

F41 = i U4 S2[ϕ0] + i U4 S3[ϕ0], F42 =
4∑
j=1

Ω4j.
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By careful checking, we find that F42 is a term defined on the region D4 with properties,∣∣∣Re
( F42

ieiϕ0

)∣∣∣ ≤ O(ε1−σ)

(1 + `1)3
+

O(ε1−σ)

(1 + `2)3
,

∣∣∣Im( F42

ieiϕ0

)∣∣∣ ≤ O(ε1−σ)

(1 + `1)1+σ
+

O(ε1−σ)

(1 + `2)1+σ
.

(4.32)

Similar estimates hold for U5 on D5.

4.2 Further improvement of the approximation

To get rid of the singularities given in previous section, we formally add a correction term
to the phase component of the approximation in the form

ϕd(z) = ϕs(z) + ϕ1(z) + ϕ2(z). (4.33)

The components will be found explicitly in the sequel.

Recall the constants r̂1, τ0 ad τ1 given in Section 1.3.1, and set

τ = min{ r̂1, τ0, τ1 }. (4.34)

By defining the smooth cut-off function ηε(x1) = η̃(ε|x1|) where η̃ is in the form

η̃(ϑ) = 1 for |ϑ| ≤ τ/10, η̃(ϑ) = 0 for |ϑ| ≥ τ/5, (4.35)

we add the last component

ϕ2 = − ηε(x1) arctan(x2/r1ε), (4.36)

in the above formula to cancel the singular term in (4.25). Note that

∆ϕ2 = − ηε(x1)
∂2

∂x2
2

arctan(x2/r1ε) + O(ε2)

= − ηε(x1)
4 r1ε x2

(r2
1ε + x2

2)2
+ O(ε2).

(4.37)

To cancel the singularities in (4.11) and (4.15) rewritten in the form

s2

r1ε|s|2
− 4σ2

r1εγ2

s2
1s2

|s|4
=

s2

r1εγ2|s|2
− σ2(3s2

1 − s2
2)s2

r1εγ2|s|4
,

we want to find a function Φ(s1, s2) by solving the problem in the translated coordinates (s1, s2)

∂2Φ

∂s2
1

+
∂2Φ

∂s2
2

=
s2

r1εγ2|s|2
− σ2(3s2

1 − s2
2)s2

r1εγ2|s|4
in R2. (4.38)
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In fact, we can solve this problem by separation of variables and then obtain

Φ(s1, s2) =
1

4r1εγ2
s2 log |s|2 − σ2

2r1εγ2

s3
2

|s|2
+

3σ2

8r1εγ2
s2. (4.39)

After setting χ a smooth cut-off function such that

χ(ϑ) = 1 for ϑ < τ/10, χ(ϑ) = 0 for ϑ > τ/5,

the singular part is defined by

ϕs(z) = χ(ε`1)
( x2

4r1ε γ2
log

`2
1

`2
2

− σ2

2r1ε γ2

x3
2

`2
1

+
3σ2

8r1ε γ2
x2

)
+ χ(ε`2)

( x2

4r1ε γ2
log

`2
2

`2
1

− σ2

2r1ε γ2

x3
2

`2
2

+
3σ2

8r1ε γ2
x2

)
.

(4.40)

For later use, we compute:

∂ϕs
∂x1

= χ′(ε`1) ε
x1 − r1ε

`1

(
x2

4r1ε γ2
log

`2
1

`2
2

− σ2

2r1ε γ2

x3
2

`2
1

+
3σ2

8r1ε γ2
x2

)

+ χ(ε`1)

(
x2 (x1 − r1ε)

2r1ε γ2 `2
1

− x2 (x1 + r1ε)

2r1ε γ2 `2
2

+
σ2

r1ε γ2

x3
2 (x1 − r1ε)

`4
1

)

+ χ′(ε`2) ε
x1 + r1ε

`2

(
x2

4r1ε γ2
log

`2
2

`2
1

− σ2

2r1ε γ2

x3
2

`2
2

+
3σ2

8r1ε γ2
x2

)

+ χ(ε`2)

(
x2 (x1 + r1ε)

2r1ε γ2 `2
2

− x2 (x1 − r1ε)

2r1ε γ2 `2
1

+
σ2

r1ε γ2

x3
2 (x1 + r1ε)

`4
2

)
,

(4.41)

∂ϕs
∂x2

= χ′(ε`1) ε
x2

`1

(
x2

4r1ε γ2
log

`2
1

`2
2

− σ2

2r1ε γ2

x3
2

`2
1

+
3σ2

8r1ε γ2
x2

)

+ χ(ε`1)

[
1

4r1εγ2
log

`2
1

`2
2

+
2x2

2

4r1εγ2

( 1

`2
1

− 1

`2
2

)
− σ2

2r1εγ2

3x2
2

`2
1

+
σ2

2r1εγ2

2x4
2

`4
1

+
3σ2

8r1εγ2

]

+ χ′(ε`2) ε
x2

`2

(
x2

4r1ε γ2
log `2

2 −
σ2

2r1ε γ2

x3
2

`2
2

+
3σ2

8r1ε γ2
x2

)

+ χ(ε`2)

[
1

4r1εγ2
log

`2
2

`2
1

+
2x2

2

4r1εγ2

( 1

`2
2

− 1

`2
1

)
− σ2

2r1εγ2

3x2
2

`2
2

+
σ2

2r1εγ2

2x4
2

`4
2

+
3σ2

8r1εγ2

]
.

(4.42)
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Hence, we obtain

5ϕs = χ
(
ε`1

)[ 1

2r1ε γ2

(
0, log

`1

`2

)
+O(ε)

]
+ χ′

(
ε`1

)
O(ε| log ε|)

+ χ
(
ε`2

)[ 1

2r1ε γ2

(
0, log

`2

`1

)
+O(ε)

]
+ χ′

(
ε`2

)
O(ε| log ε|).

(4.43)

Note that the function ϕs is continuous but ∇ϕs is not. The singularity of ϕs comes from its
derivatives.

While by recalling the operators S2, S3 in (3.20), the region S in (3.9) and its decompositions
in (3.18), we find the term ϕ1(z) by solving the problem[

∆ + S2 + S3 + η3
1

1 + V
∇V · ∇+ 2∇η3 · ∇

]
ϕ1

= −
[
∆ + S2 + S3 + η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

](
ϕ0 + ϕs + ϕ2

)
in S,

(4.44)

ϕ1 = −ϕ0 − ϕs − ϕ2 on ∂S. (4.45)

We derive the estimate of ϕ1 by computing the right hand side of (4.44).

We begin with the computation on the ball Bτ/10ε(ξ+). Recall the formulas (4.9), (4.11),
(4.14), (4.15). For z ∈ Bτ/10ε(ξ+), there holds(

∆ + S2 + S3

)
ϕ0 + ∆ϕs

= ∆ϕs +
(
S2 + S3

)
ϕ0

= −x1 − r1ε

r1ε x1

∂ϕ+
0

∂x1

+
σ2

γ2

3r1ε(x1 − r1ε)
2 + 2(x1 − r1ε)

3

r1ε x2
1

∂2ϕ+
0

∂x2
2

+ O(ε2)

=
x1 − r1ε

r1ε x1

x2

`2
2

− 2σ2

γ2

3r1ε(x1 − r1ε)
2 + 2(x1 − r1ε)

3

r1ε x2
1

(x1 − r1ε)x2

`4
2

+ O(ε2)

= O(ε2),

due to ∆ϕ0 = 0. Similarly, by recalling (4.9) and (4.42), we obtain for z ∈ Bτ/10ε(ξ+)

S2[ϕs] =

[
− 2σ2

r1ε γ2
(x1 − r1ε) +O

(
(x1 − r1ε)

2/|r1ε|2
)]

×

{
(1− 3σ2)x2

2r1ε γ2`2
2

− (−1 + 7σ2)x3
2

r1ε γ2`4
2

− 4σ2x5
2

r1ε γ2`6
1

}
+ O(ε2)

= O(ε2),
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and by recalling (4.41)

S3[ϕs] =
1

x1

1

2r1ε γ2

[ x2(x1 − r1ε)

`2
2

− x2(x1 + r1ε)

`2
1

]
+

1

x1

σ2

r1ε γ2

[ x3
2(x1 − r1ε)

`4
2

− x3
2(x1 + r1ε)

`4
1

]
+ O(ε2)

= O(ε2).

We also get for z ∈ Bτ/10ε(ξ+)[
η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

]
(ϕ0 + ϕs) = 0,

due to η3 = 0 in this region, and also[
∆ + S2 + S3 + η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

]
ϕ2 = 0,

due to ϕ2 = 0 in this region. For z ∈ Bτ/10ε(ξ−), similar estimates can be checked.

By recalling (4.23), (4.25) and (4.27) and (4.37), we do the computation on the region

S0 =
{
x ∈ S : |x1| ≤ τ/10ε

}
.

There also hold ϕs = 0 and η3 = 1, and so by the expression of ϕ2 in (4.36)[
∆ + S2 + S3 + η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

](
ϕ0 + ϕs + ϕ2

)
= ∆ϕ2 + S3[ϕ0] + S2[ϕ0 + ϕ2] +

1

1 + V
∇V · ∇ϕ0

= − 4 r1ε x2

(r2
1ε + x2

2)2
− 4 r1ε x2

`2
2`

2
1

+ O(ε2)

+ γ−2

[
λ2

x2
1

− λ2

r2
1ε

]{
− 8x2 x

2
1 r1ε(`2 + `1)

`4
2`

4
1

− 16x2 x
2
1 r

3
1ε

`4
2`

4
1(r2

1ε + x2
2)

(
(`2

2 + `2
1)(r2

1ε + x2
2) + `2

1`
2
2

)
− 2x2 x

2
1 r1ε

`4
2`

4
1(r2

1ε + x2
2)2

(
`4

2(r2
1ε + x2

2 + `2
1) + `4

1(r2
1ε + x2

2 + `2
2)
)}

+
ε

1 + V

∂V

∂r̃

4 r1ε x2 x1

`2
2`

2
1

.

In the region(
Bτ/5ε(ξ+) \Bτ/10ε(ξ+)

)
∪
(
Bτ/5ε(ξ−) \Bτ/10ε(ξ−)

)
∪
{

(x1, x2) : τ/10ε < |x1| < τ/5ε
}
,

similar estimates can be derived.

For z in the region

S \
(
Bτ/5ε(ξ+) ∪Bτ/5ε(ξ−) ∪

{
(x1, x2) : |x1| ≤ τ/5ε

})
,
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we have ϕs = ϕ2 = 0 and then[
∆ + S2 + S3 + η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

](
ϕ0 + ϕs + ϕ2

)
=
[
S2 + S3 + η3

1

1 + V
∇V · ∇+ 2∇η3 · ∇

]
ϕ0

= γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ϕ0

∂x2
2

+
1

x1

∂ϕ0

∂x1

+ η3
1

1 + V
∇V · ∇ϕ0 + 2∇η3 · ∇ϕ0

= − γ−2

[
λ2

x2
1

− λ2

|r1ε|2

](
2x2(x1 − r1ε)

`4
2

− 2x2(x1 + r1ε)

`4
1

)
− 4x2r1ε

`2
2`

2
1

− εη3
1

1 + V

∂V

∂r̃

4x1x2r1ε

`2
2`

2
1

+ 2
∂η3

∂x1

4x1x2r1ε

`2
2`

2
1

,

(4.46)

due to ∆ϕ0 = 0.

Whence, going back to the original variable (r, y̌3) in (3.2) and letting ϕ̂(r, y̌3) = ϕ1(z) we
see that∣∣∣∣∣∆r,y̌3ϕ̂ + S2[ϕ̂] + S3[ϕ̂] +

1

1 + V
∇V · ∇ϕ̂+ 2∇η3 · ∇ϕ̂

∣∣∣∣∣ ≤ C(√
1 + r2 + |y̌3|2

)3 . (4.47)

Thus we can choose ϕ1 such that

ϕ̂ = O
( 1√

1 + r2 + |y̌3|2
)
.

The regular term ϕ1 is C1 in the original variable (r, y̌3).

We observe also that by our definition, the function

ϕ := ϕ0 + ϕd = ϕ0 + ϕs + ϕ1 + ϕ2, (4.48)

satisfies [
∆ + S2 + S3 + ηε

1

1 + V
∇V · ∇+ 2∇ηε · ∇

]
ϕ = 0 on S,

ϕ = 0 on ∂S.
(4.49)

From the decomposition of ϕd, we see that the singular term contains x2 log |z − ξ+| which
becomes dominant when we calculate the speed.

By defining smooth cut-off functions as follows

η̃2(s) =

{
1, | s |≤ 1,
0, | s |≥ 2,

η̃4(s) =

{
1, s ≥ −1,
0, s ≤ −2,

η̃5(s) =

{
1, s ≤ 1,
0, s ≥ 2,

(4.50)

we choose the cut-off functions by

η2

(
εx1, εx2

)
= η̃2

(
ελ1`1/30

)
+ η̃2

(
ελ1`2/30

)
,

η4

(
εx1, εx2

)
= η̃4

(
ελ2(x1 − r2ε)

)
,

η5

(
εx1, εx2

)
= η̃5

(
ελ2(x1 + r2ε)

)
,

η3

(
εx1, εx2

)
= 1− η2 − η4 − η5.

(4.51)
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We then choose the final approximate solution to (3.8) by, for (x1, x2) ∈ R2,

U2(x1, x2) =
√

1 + V (ε|x1|) η3 e
iϕ + w(`2)w(`1) η2 e

iϕ

+ q̂(x1) η4 e
iϕ + q̂(−x1) η5 e

iϕ.
(4.52)

By recalling the definition of U2, U3, U4 and U5 in (4.1), (4.2) and (4.4), we also write the
approximation as

U2 =U2 η2 e
iϕd + U3 η3 e

iϕd + U4 η4 e
iϕd + U5 η5 e

iϕd . (4.53)

4.3 Estimates of the error

We shall check that U2 is a good approximate solution in the sense that it satisfies the
conditions in (3.13) and has a small error. It is easy to show that

U2(z) = U2(z̄), U2(z) = U2(−z̄),
∂U2

∂x1

(0, x2) = 0.

Recall the boundary condition in (4.49). It is obvious that

ImU2 =
[√

1 + V (ε|x1|) η3 + w(`2)w(`1) η2 + q̂(x1) η4 + q̂(−x1) η5

]
sinϕ

= 0 on ∂S,
(4.54)

and

∂ ReU2

∂x2

=
∂

∂x2

{[√
1 + V (ε|x1|) η3 + w(`2)w(`1) η2 + q̂(x1) η4 + q̂(−x1) η5

]
cosϕ

}
=
[√

1 + V (ε|x1|) η3 + q̂(x1) η4 + q̂(−x1) η5

]
sinϕ

∂ϕ

∂x2

on ∂S, (4.55)

which is of order O(ε2) due the fact

∂ϕ

∂x2

=
∂ϕ0

∂x2

+
∂ϕd
∂x2

It can be checked that U2 satisfies the conditions in (3.13) except

∂U2

∂x2

= 0 on ∂S. (4.56)

For the computation of errors, we work directly in the half space R2
+ = {(x1, x2) : x1 > 0}

in the sequel because of the symmetry of the problem. Recalling the definitions of the operators
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in (3.20), let us start to compute the error E = S[U2] in the form

E = S[U2] η2 e
iϕd + U2

(
S0 + S2 + S3 + S4

)[
η2e

iϕd
]

+ 2∇U2 · ∇
(
η2e

iϕd
)

+ 2γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U2

∂x2

∂
(
η2e

iϕd
)

∂x2

+ S[U3] η3 e
iϕd + U3

(
S0 + S2 + S3 + S4

)[
η3e

iϕd
]

+ 2∇U3 · ∇
(
η3e

iϕd
)

+ 2γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U3

∂x2

∂
(
η3e

iϕd
)

∂x2

+ S[U4] η4 e
iϕd + U4

(
S0 + S2 + S3 + S4

)[
η4e

iϕd
]

+ 2∇U4 · ∇
(
η4e

iϕd
)

+ 2γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U4

∂x2

∂
(
η4e

iϕd
)

∂x2

+ S[U5] η5 e
iϕd + U5

(
S0 + S2 + S3 + S4

)[
η5e

iϕd
]

+ 2∇U5 · ∇
(
η5e

iϕd
)

+ 2γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U5

∂x2

∂
(
η5e

iϕd
)

∂x2

+ N,

(4.57)

where the nonlinear term N is defined by

N = η2|U2|2U2e
iϕd + η3|U3|2U3e

iϕd + η4|U4|2U4e
iϕd + η5|U5|2U5e

iϕd − |U2|2U2. (4.58)

The main components in the above formula can be estimated as follows. It will be shown that
the singular terms in S[U2] will be canceled by the relation

∆ϕd + S2[ϕd] + S3[ϕd] = −S2[ϕ0] − S3[ϕ0]. (4.59)

Here we have used the relation ∆ϕ0 = 0 and the equation in (4.49).

Recall F21 and F22 in (4.18). Using the equation (4.59), the singular term F21 in S[U2] is
canceled and we then get

S[U2] η2 e
iϕd + U2

(
S0 + S2 + S3 + S4

)
[η2e

iϕd ]

= S[U2] η2 e
iϕd + i U2 η2e

iϕd
(
S0 + S2 + S3 + S4

)
[ϕd] + 2iU2∇η2 · ∇ϕd

− U2 η2 e
iϕd
∣∣∇ϕd∣∣2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

](
2iU2

∂η2

∂x2

· ∂ϕd
∂x2

− U2 η2 e
iϕd

∣∣∣∂ϕd
∂x2

∣∣∣2)
+ U2 e

iϕd
(
S0 + S2 + S3 + S4

)
[η2]

= F22 η2 e
iϕd + ε2O(|`2|2).

The formulas in (4.41)-(4.42) imply that

2∇U2 · ∇
(
η2e

iϕd
)

= 2η2U2e
iϕd

4x1x2 r1ε

(`1`2)2

x2

[
x2

1 − x2
2 − r2

1ε

]
`2

2`
2
1
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+ 2iη2U2e
iϕd

x1 − r1ε

`2

w′(`2)

w(`2)

x2

[
x2

1 − x2
2 − r2

1ε

]
`2

2`
2
1

+ 2iη2U2e
iϕd

x2

`2

w′(`2)

w(`2)

2x1x
2
2

`2
2`

2
1

− 4η2U2e
iϕd
r1ε

[
x2

1 − x2
2 − r2

1ε

]
(`1`2)2

1

4r1ε

log
`2

2

`2
1

+ 2iη2U2e
iϕd

x2

`2

w′(`2)

w(`2)

1

4r1ε

log
`2

2

`2
1

+ O(ε)

= 2η2U2e
iϕd

(x1 + r1ε)(x1 − r1ε)

(`1`2)2
log r1ε

− iη2U2e
iϕd

x2

`2

w′(`2)

w(`2)

1

r1ε

log r1ε + O(ε log `2).

Similar estimate holds for

γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U2

∂x2

∂(η2e
iϕd)

∂x2

and U2 S4

[
η2e

iϕd
]
.

It is worth to mention that, in the vortex-core region

D2 =
{

(x1, x2) : `2 < ε−λ1
}
,

we estimate the error by

E = U2η2e
iϕd

[
x1 − r1ε

x1`2

w′(`2)

w(`2)
+ ε(x1 − r1ε)

∂V

∂r̃

∣∣∣
r̃=εr1ε

]

+ η2U2e
iϕd

2(x1 + r1ε)(x1 − r1ε)

(`1`2)2
log r1ε + O(ε2`2

2)

− iη2U2e
iϕd

x2

`2

w′(`2)

w(`2)

1

r1ε

log r1ε + O(ε log `2).

(4.60)

The singularity of the last formula will play an important role in the final reduction step.

We then consider the error in the region

D3 =
{

(x1, x2) : |x1| < r2ε − ε−λ2
}
\
(
D2 ∪D1

)
.

From the relation (4.59), there holds

S[U3] η3 e
iϕd + U3

(
S0 + S2 + S3 + S4

)
[η3e

iϕd ]

= S[U3] η3 e
iϕd + i U3 η3e

iϕd
(
S0 + S2 + S3 + S4

)
[ϕd] + 2iU3∇η3 · ∇ϕd

− U3 η3 e
iϕd
∣∣∇ϕd∣∣2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

](
2iU3

∂η3

∂x2

· ∂ϕd
∂x2

− U3 η3 e
iϕd

∣∣∣∂ϕd
∂x2

∣∣∣2)
+ U3 e

iϕd
(
S0 + S2 + S3 + S4

)
[η3]
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= F32 η3 e
iϕd + ε2O(|`2|2).

In this region, | 5 ϕ0| = O(ε) and | 5 ϕd| = O(ε). Whence, by using (4.28), we obtain

η3e
iϕdS[U3] + U3

(
S0 + S2 + S3

)
[η3e

iϕd ] = η3e
iϕdU3O(ε2).

Using the formulas (4.41)-(4.42), we obtain

2∇U3 · ∇
(
η3e

iϕd
)

= 2η3iU3e
iϕd

[
1

2

(
1 + V

)−1
ε
∂V

∂r̃
− i

4x1x2 r1ε

`2
2`

2
1

]

×

(
x2

4r1ε

εη′
(
ε`2

)x1 − r1ε

`2

log
`2

2

`2
1

+ η
(
ε`2

)x2

(
x2

1 − x2
2 − (r1ε)

2
)

`2
2`

2
1

+ O(ε)

)

+ 2η3U3e
iϕd

[
1

2

(
1 + V

)−1
ε
∂V

∂ỹ3

−
2r1ε

[
x1

2 − x2
2 − r2

1ε

]
`2

2`
2
1

]

×

[
x2

4r1ε

εη′
(
ε`2

)x2

`2

log
`2

2

`2
1

+
1

4r1ε

η
(
ε`2

)
log

`2
2

`2
1

+ η
(
ε`2

)2x1x
2
2

`2
2`

2
1

+ O(ε)

]

+ 2U3e
iϕd

[
1

2

(
1 + V

)−1
ε
∂V

∂r̃
− i

4x1x2 r1ε

`2
2`

2
1

]
× ∂η3

∂x1

+ 2U3e
iϕd

[
1

2

(
1 + V

)−1
ε
∂V

∂ỹ3

−
2r1ε

[
x1

2 − x2
2 − r2

1ε

]
`2

2`
2
1

]
× ∂η3

∂x2

= η3U3e
iϕdO(ε2).

Similar estimate holds for

γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂U3

∂x2

∂(η3e
iϕd)

∂x2

and U3 S4

[
η3e

iϕd
]
.

Whence we conclude that, in D3, the error is estimated by

E = (η3e
iϕdU3)O(ε2).

In the region

D4 =
{

(x1, x2) : x1 > r2ε − ε−λ2
}
,

by using the equation (4.59) and the similar computations as before, we now obtain

η4 e
iϕdS[U4] + U4

(
S0 + S2 + S3

)
[η4e

iϕd ] = η4e
iϕdF42 + η4e

iϕO(ε2) = η4e
iϕO(ε2).
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In the above, we have use the relation (4.49). Hence, there holds

E = η4e
iϕO(ε2).

Similar estimate holds on the region D5 =
{

(x1, x2) : x1 < −r2ε + ε−λ2
}

.

For a complex function h = h1 + ih2 with real functions h1, h2, define a norm of the form

||h||∗∗ ≡
2∑
j=1

||h||Lp(`j<3) +
2∑
j=1

||hj||Lp(D4∪D5)

+
2∑
j=1

[∥∥∥ `2+σ
j

( h1

−iU2

)∥∥∥
L∞(D̃∪D3)

+
∥∥∥ `1+σ

j

( h2

−iU2

)∥∥∥
L∞(D̃∪D3)

]
,

(4.61)

where we have denoted

D̃ =
(
D1 ∪D2

)
\
{
`1 < 3 or `2 < 3

}
, (4.62)

for `1 and `2 defined in (3.17). As a conclusion, we have the following lemma.

Lemma 4.2. There holds ∥∥E∥∥
Lp({`1<3}∪{`2<3}) ≤ Cε| log ε|.

As a consequence, there also holds
||E||∗∗ ≤ Cε1−σ,

for some σ ∈ (0, 1) independent of ε.

5 Suitable decompositions of the perturbations

We look for a solution u = u(x1, x2) to problem (3.8) with additional conditions in (3.13)
in the form of small perturbation of U2. Define cut-off functions

χ(x1, x2) = η̃(`2) + η̃(`1),

χ2ε(x1, x2) = η̃(ελ1`1/2) + η̃(ελ1`2/2),

χ8ε(x1, x2) = η̃(ελ1`1/8) + η̃(ελ1`2/8),

χ100ε(x1, x2) = η̃(ελ1`1/100) + η̃(ελ1`2/100),

(5.1)

with η̃ in (4.35). Recalling (4.50)-(4.53) and setting the components of the approximation U2

as
v2(x1, x2) = η2 U2 e

iϕd , v3(x1, x2) = η3 U3 e
iϕd ,

v4(x1, x2) = η4 U4 e
iϕd , v5(x1, x2) = η5 U5 e

iϕd ,
(5.2)

in such a way that
U2 = v2 + v3 + v4 + v5,
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we want to choose the ansatz of the form

u =
[
χ
(
v2 + iv2ψ

)
+
(
1− χ

)
v2e

iψ
]

+
[
(v3 + v4 + v5) + i(1− χ2ε)e

iϕψ
]
. (5.3)

where ϕ is defined in (4.48) and ψ is an unknown perturbation term. The above nonlinear
decomposition of the perturbation in the vortex core region was first introduced in [29].

To find the perturbation term, the main objective of this section is to write the equation for
the perturbation as a linear one with a right hand side given by a lower order nonlinear term.
The conditions imposed on u in (3.10) and (3.12) can be transmitted to ψ

ψ(z) = ψ(−z̄), ψ(z) = −ψ(z̄),

∂ψ

∂x1

(0, x2) = 0, ψ(x1,−λπ/γ) = ψ(x1, λπ/γ),[ ∂U2

∂x2

+ iU2 ψx2

]∣∣∣
(x1,−λπ/γ)

=
[ ∂U2

∂x2

+ iU2 ψx2

]∣∣∣
(x1,λπ/γ)

.

(5.4)

More precisely, by the computations in (4.54) and (4.55), for ψ = ψ1 + iψ2, there hold the
conditions

ψ1(x1, x2) = ψ1(−x1, x2), ψ1(x1, x2) = −ψ1(x1,−x2),

ψ2(x1, x2) = ψ2(−x1, x2), ψ2(x1, x2) = ψ2(x1,−x2),

∂ψ1

∂x1

(0, x2) = 0,
∂ψ2

∂x1

(0, x2) = 0,

ψ1(x1,−λπ/γ) = ψ1(x1, λπ/γ) = 0,
∂ψ1

∂x2

(x1,−λπ/γ) =
∂ψ1

∂x2

(x1, λπ/γ),

∂ψ2

∂x2

(x1,−λπ/γ) =
1

ρ̃

∂ρ̃

∂x2

(x1,−λπ/γ),
∂ψ2

∂x2

(x1, λπ/γ) =
1

ρ̃

∂ρ̃

∂x2

(x1, λπ/γ),

ψ2(x1,−λπ/γ) = ψ2(x1, λπ/γ).

(5.5)

Let us observe that

u =
[
v2 + iv2ψ +

(
1− χ

)
v2

(
eiψ − 1− iψ

)]
+
(
v3 + v4 + v5 + i(1− χ2ε)e

iϕψ
)

=U2 + iv2ψ + i(1− χ2ε)e
iϕψ + Γ,

where we have denoted

Γ =
(
1− χ

)
v2

(
eiψ − 1− iψ

)
. (5.6)

A direct computation shows that u satisfies (3.8) if and only if ψ satisfies the following equation

iv24ψ + iv2S2[ψ] + iv2S3[ψ] + iv2S4[ψ] + 2i5 v2 · 5ψ (5.7)

+ 2iγ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂v2

∂x2

∂ψ

∂x2

+ i
[

1 + V − |U2|2
]
v2ψ − 2Re

(
Ū2iv2ψ

)
U2

+ i4v2ψ + iS2[v2]ψ + iS3[v2]ψ + iS4[v2]ψ
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+ i(1− χ2ε)e
iϕ4ψ + i(1− χ2ε)e

iϕS2[ψ] + i(1− χ2ε)e
iϕS3[ψ] + i(1− χ2ε)e

iϕS4[ψ]

+ 2i5 ((1− χ2ε)e
iϕ) · 5ψ + 2iγ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂(1− χ2ε)e

iϕ

∂x2

∂ψ

∂x2

+ (1− χ2ε)e
iϕ
[

1 + V − |U2|2
]
ψ − 2(1− χ2ε)Re

(
Ū2e

iϕψ
)
U2

+ i4
[

(1− χ2ε)e
iϕ
]
ψ + iS2[(1− χ2ε)e

iϕ]ψ + iS3[(1− χ2ε)e
iϕ]ψ + iS4[(1− χ2ε)e

iϕ]ψ

= −E + N in S.

In the last formula, the error term E is defined as E in (4.57) and N is the nonlinear operator
defined by

N = − 4Γ − iS2[Γ] − i S3[Γ] − i S4[Γ] −
(
1 + V − |U2|2

)
Γ

+
[
2Re

(
i Ū2v2ψ

)
+ 2Re

(
i Ū2(1− χ2ε)e

iϕψ
)]
×
(
iv2ψ + i(1− χ2ε)e

iϕψ + Γ
)

+
[

2Re(Ū2Γ) +
∣∣iv2ψ + i(1− χ2ε)e

iϕψ + Γ
∣∣2 ]

×
(
U2 + iv2ψ + i(1− χ2ε)e

iϕψ + Γ
)
.

Note that E and N can be written as

E = χ8εE + (1− χ8ε)E, N = χ8εN + (1− χ8ε)N.

Whence, we decompose (5.7) into

iv24ψ + iv2S2[ψ] + iv2S3[ψ] + iv2S4[ψ] + 2i5 v2 · 5ψ

+ 2iγ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂v2

∂x2

∂ψ

∂x2

+ i
[

1 + V − |U2|2
]
v2ψ − 2Re

(
Ū2iv2ψ

)
U2

+ i4v2ψ + iS2[v2]ψ + iS3[v2]ψ + iS4[v2]ψ

= −χ8εE + χ8εN, (5.8)

and

i(1− χ2ε)e
iϕ4ψ + i(1− χ2ε)e

iϕS2[ψ] + i(1− χ2ε)e
iϕS3[ψ] + i(1− χ2ε)e

iϕS4[ψ]

+ 2i5 ((1− χ2ε)e
iϕ) · 5ψ + 2iγ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂(1− χ2ε)e

iϕ

∂x2

∂ψ

∂x2

+ i(1− χ2ε)e
iϕ
[

1 + V − |U2|2
]
ψ − 2(1− χ2ε)Re

(
Ū2ie

iϕψ
)
U2

+ i4
[

(1− χ2ε)e
iϕ
]
ψ + iS2[(1− χ2ε)e

iϕ]ψ + iS3[(1− χ2ε)e
iϕ]ψ + iS4[(1− χ2ε)e

iϕ]ψ

= − (1− χ8ε)E + (1− χ8ε)N. (5.9)

Note that we, here and in the sequel, follow the gluing method from [30]. The application of
further analysis to obtain a resolution theory relies on suitable local forms of (5.8) and (5.9)
and the properties of the corresponding linear operators, which will be done in the following.
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Figure 2: Further decompositions of the domain S

Before going further, we pause here to give some notation. By recalling the notation `1 and
`2 in (3.17), and also D1, D2, D3, D4 and D5 in (3.18) (see Figure 1), we set, see Figure 2

D1,1 ≡
{

(x1, x2) ∈ S : `1 < 1
}
, D1,2 ≡

{
(x1, x2) ∈ S : `1 < ε−λ1

}
\D1,1,

D2,1 ≡
{

(x1, x2) ∈ S : `2 < 1
}
, D2,2 ≡

{
(x1, x2) ∈ S : `2 < ε−λ1

}
\D2,1,

D3,0 ≡
{

(x1, x2) ∈ S : |x1| < r0ε

}
, (5.10)

D3,1 ≡
{

(x1, x2) ∈ S : −r2ε + ε−λ2 < x1 < −r0ε

}
\D1,

D3,2 ≡
{

(x1, x2) ∈ S : r0ε < x1 < r2ε − ε−λ2
}
\D2,

D4,1 ≡
{

(x1, x2) ∈ S : r2ε − ε−λ2 < x1 < r2ε +
τ2

ε

}
,

D4,2 ≡
{

(x1, x2) ∈ S : x1 > r2ε +
τ2

ε

}
,

D5,1 ≡
{

(x1, x2) ∈ S : −r2ε −
τ2

ε
< x1 < −r2ε + ε−λ2

}
,

D5,2 ≡
{

(x1, x2) ∈ S : x1 < −r2ε −
τ2

ε

}
.

Here τ1, τ2, r1ε and r2ε are given in the assumption (A3).

Part 1: Recall that U2 = v2 = U2e
iϕd in the sets {`1 < 30ε−λ1} and {`2 < 30ε−λ1}. v2

supports on {`1 < 60ε−λ1} and {`2 < 60ε−λ1}, and χ8ε supports on the sets {`1 < 16ε−λ1} and
{`2 < 16ε−λ1}. We first consider (5.8) and transform it into the following form by extension
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method

4ψ +
[

1− |U2|2
]
ψ + 2Re

(
Ū2iU2ψ

)
+ χ100εS2[ψ] + χ100εS3[ψ] + χ100εS4[ψ]

+ 2χ100ε
5v2

v2

· 5ψ + 2χ100εγ
−2

[
λ2

x2
1

− λ2

|r1ε|2

]
1

v2

∂v2

∂x2

∂ψ

∂x2

+ χ100εV ψ

+ χ100ε
E

v2

ψ + χ100ε
(1 + V − |U2|2)

v2

ψ = −χ8εE + χ8εN in R2,

(5.11)

with constraints for ψ

ψ1(x1, x2) = ψ1(−x1, x2), ψ1(x1, x2) = −ψ1(x1,−x2),

ψ2(x1, x2) = ψ2(−x1, x2), ψ2(x1, x2) = ψ2(x1,−x2),

∂ψ1

∂x1

(0, x2) = 0,
∂ψ2

∂x1

(0, x2) = 0.

(5.12)

Consider the linearization of the problem on the vortex-core region D1,1 or D2,1. Here we
only argue in the region D2,1 =

{
(x1, x2) : `2 < 1}. It is more convenient to do this in the

translated variable (y1, y2) = (x1− r1ε, x2) and then denote ` = `2 for brevity of notation. Now
the term ψ is small, however possibly unbounded near the vortex. Whence, in the sequel, by
setting

φ̃ = iv2ψ with ψ = ψ1 + iψ2, (5.13)

we shall require that φ̃ is bounded (and smooth) near the vortices. We shall write the equation
in term of a type of the function φ̃ for ` < δ/ε. In the region D2,1, let us write U2, i.e. v2, as
the form

v2 = βU0 with β = w(`1)e−iϕ
−
0 + iϕd , (5.14)

where U0, ϕ−0 and ϕd are defined in (2.1), (3.17) and (4.33). We define the function

φ(s) = iU0ψ for |y| < δ/ε, (5.15)

namely

φ̃ = βφ. (5.16)

Hence, in the translated variable, the ansatz becomes in this region

u = β(s)U0 + β(s)φ + (1− χ)β(s)U0

(
eφ/U0 − 1− φ

U0

)
. (5.17)

We also call

Γ2,1 = (1− χ)U0

(
eφ/U0 − 1− φ

U0

)
.

The support of this function is contained in set |y| > 1. In this vortex-core region, the problem,
written in (s1, s2) coordinates, can be stated as

L2,1(ψ) = E2,1 +N2,1. (5.18)
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Let us consider the linear operator defined in the following way: for φ and ψ linked through
formula (5.15) we set

L2,1(ψ) =L0(φ) + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2φ

∂x2
2

+
1

s1 + r1ε

∂

∂s1

φ + 2
(
1− |β|2

)
Re
(
Ū0φ

)
U0

+

[
ε
∂V

∂r̃

∣∣∣
r̃=r1ε+ϑs1

+ 1− |β|2
]
φ + 2

5β
β
· 5φ + χ

E2,1

U0

φ + iε
κ

γ
| log ε| ∂φ

∂x2

, (5.19)

where ϑ is a small constant. Here we also have defined L0 as

L0(φ) =
( ∂2

∂s2
1

+
∂2

∂s2
2

)
φ+ (1− |w|2)φ− 2Re

(
Ū0φ

)
U0.

Here, by writing the error E in the translated variable y, the error E2,1 is given by

E2,1 = E/β. (5.20)

Observe that, in the region D2,1, the error E2,1 takes the expression

E2,1 = w(`2) eiϕ
+
0

[
x1 − r1ε

x1`2

w′(`2)

w(`2)
+ ε

∂V

∂r̃

∣∣∣
r̃=εr1ε

(x1 − r1ε)

]

+ w(`2) eiϕ
+
0

2(x1 + r1ε)(x1 − r1ε)

(`1`2)2
log r1ε

− iw(`2) eiϕ
+
0
x2

`2

w′(`2)

w(`2)

1

r1ε

log r1ε + i
κ

γ
ε| log ε|U2

x2

`2

w′(`2)

w(`2)
+ O(ε log `2),

(5.21)

while the nonlinear term is given by

N2,1(φ) = − 4(β Γ2,1)

β
+
(

1 + V − |U0|2
)

Γ2,1 − 2|β|2 Re(Ū0φ)
(
φ+ Γ2,1

)
−
(

2|β|2Re
(
Ū0Γ2,1

)
+ |β|2

∣∣φ+ Γ2,1

∣∣2)(U0 + φ+ Γ2,1

)
+ (χ− 1)

E2,1

U0

φ. (5.22)

Taking into account to the explicit form of the function β we get

5β = O(ε), 4β = O(ε2), |β| ∼ 1 +O(ε2), (5.23)

provided that |y| < δ/ε. With this in mind, we see that the linear operator is a small pertur-
bation of L0.

In the region D2,2 far from the vortex core, directly from the form of the ansatz u =(
1− χ

)
U2e

iψ, we see that, for `2 > 2, the equation takes the simple form

L2,2(ψ) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

+ 2
5U2

U2

· 5ψ

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

− 2i|U2|2ψ2 + iε
κ

γ
| log ε| ∂ψ

∂x2

= E2,2 − i(5ψ)2 + i|U2|2
(
1− e−2ψ2 + 2ψ2

)
,

42



where E2,2 = iE/U2. We intend next to describe in more accurate form the equation above. As
before, let us also write

U2 = βU0 with β = w(`1)e−iϕ
−
0 +iϕ1 . (5.24)

where U0, ϕ+
0 and ϕd are defined in (2.1), (3.17) and (4.33). For `2 <

δ
ε
, there are two real

functions A and B such that

β = eiA+B, (5.25)

furthermore, a direct computation shows that, in this region, there holds

5A = O(ε), 4A = O(ε2), 5B = O(ε3), 4B = O(ε4). (5.26)

The equations become

L̃2,2(ψ1) = Ẽ2,2 + Ñ2,2, L̄2,2(ψ2) = Ē2,2 + N̄2,2. (5.27)

In the above, we have denoted the linear operators by

L̃2,2(ψ1) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ1 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ1

∂x2
2

+
(
5B +

w′(`2)

w(`2)

y

`2

)
· 5ψ1 + ε

κ

γ
| log ε|∂ψ1

∂x2

,

L̄2,2(ψ2) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ2

∂x2
2

− 2|U2|2ψ2

+ 2
(
5B +

w′(`2)

w(`2)

y

`2

)
· 5ψ2 + ε

κ

γ
| log ε|∂ψ2

∂x2

,

where have used y = (x1 − r1ε, x2). The nonlinear operators are

Ñ2,2 = − 2(5A+5ϕ+
0 ) · 5ψ2 + 25 ψ15 ψ2,

N̄2,2 = − 2(5A+5ϕ+
0 ) · 5ψ1 + |U2|2

(
1− e−2ψ2 + 2ψ2

)
+ | 5 ψ1|2 − | 5 ψ2|2.

Part 2: We consider (5.9) and make an extension to get

4ψ + (1− χ2ε)S2[ψ] + (1− χ2ε)S3[ψ] + (1− χ2ε)S4[ψ] + 2e−iϕ5 ((1− χ2ε)e
iϕ) · 5ψ

+ 2γ−2e−iϕ

[
λ2

x2
1

− λ2

|r1ε|2

]
∂(1− χ2ε)e

iϕ

∂x2

∂ψ

∂x2

+ (1− χ2ε)
[

1 + V − |U2|2
]
ψ

− 2(1− χ2ε)e
−iϕRe

(
Ū2ie

iϕψ
)
U2 + e−iϕ4

[
(1− χ2ε)e

iϕ
]
ψ + e−iϕS2

[
(1− χ2ε)e

iϕ
]
ψ

+ e−iϕS3

[
(1− χ2ε)e

iϕ
]
ψ + e−iϕS4

[
(1− χ2ε)e

iϕ
]
ψ

= i(1− χ8ε)e
−iϕE − i(1− χ8ε)e

−iϕN in S, (5.28)

with constraints for ψ in (5.5).
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In the region D3 far from the vortex core region, directly from the form of the ansatz
u = U2 + ieiϕψ with the approximation as

U2(x1, x2) =
√

1 + V η3 e
i(ϕ0+ϕd) + w(`2)w(`1) η2 e

i(ϕ0+ϕd),

we see that the equation takes the simple form

L3 ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ + 25 ϕ · 5ψ − 2i|U2|2ψ2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

+
1

x1

∂ψ

∂x1

= E3 − i(5ψ)2 + i|U2|2
(
1− e−2ψ2 + 2ψ2

)
+ ε

κ

γ
| log ε| ∂ψ

∂x2

,

where E3 = iE/U2. We intend next to describe in more accurate form the equation above. Let
us also write

U2 = eiϕβ1 with β1 =
√

1 + V η3 + w(`2)w(`1) η2.

For |x| < r2ε − ε−λ1 , there holds,

U2 = β1e
iϕ =

√
1 + V eiϕ, (5.29)

and hence, by using the assumption (A3), we have

|U2|2 = 1 + V > 1 for r0ε < |x1| < r2ε − ε−λ1 ,

|U2|2 = 1 + V = ĉ0(εx1)4 +O(|εx1|5) for |x1| < r0ε.

(5.30)

Direct computation also gives that

2
5U2

U2

· 5ψ =
2

β1

5 β1 · 5ψ1 − 25 ϕ · 5ψ2 + i
2

β1

5 β1 · 5ψ2 + 2i5 ϕ · 5ψ1

= (A1, 0) · 5ψ1 − (A2, B2) · 5ψ2 + i(A1, 0) · 5ψ2 + i(A2, B2) · 5ψ1,

where A1 = O(ε| log ε|), A2 = O(ε), B2 = O(ε). The equations become

L̃3(ψ1) = Ẽ3 + Ñ3, L̄3(ψ2) = Ē3 + N̄3. (5.31)

In the above, we have denoted the linear operators by

L̃3(ψ1) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ1 +

2

β1

5 β1 · 5ψ1

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ1

∂x2
2

,

L̄3(ψ2) ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ2 − 2|U2|2ψ2 +

2

β1

5 β1 · 5ψ2

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ2

∂x2
2

.
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The nonlinear operators are

Ñ3 = − 25 ϕ · 5ψ2 + 25 ψ1 · 5ψ2 + ε
κ

γ
| log ε|∂ψ1

∂x2

+
1

x1

∂ψ1

∂x1

,

N̄3 = 25 ϕ · 5ψ1 + |U2|2
(
1− e−2ψ2 + 2ψ2

)
+ | 5 ψ1|2 − | 5 ψ2|2 + ε

κ

γ
| log ε|∂ψ1

∂x2

.

For r2ε − 2τ1/ε < |x| < r2ε − τ1/ε, similar estimates hold.

In the region

D4,1 =
{

(x1, x2) : r2ε − τ1/ε < |x| < r2ε + τ2/ε
}
,

the approximation takes the form

U2 = w(`2)w(`1) η2 e
iϕ + q̂ η4 e

iϕ.

We write the ansatz as

u = U2 + ieiϕψ + Γ4,1, (5.32)

where Γ4,1 is defined as

Γ4,1 = iη2

(
w(`1)w(`2)− 1

)
eiϕψ + η2w(`1)w(`2)eiϕ

(
eiψ − 1− iψ

)
. (5.33)

The equation becomes

L4,1[ψ] ≡ 4ψ + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

+ 2i5 ϕ · 5ψ − | 5 ϕ|2ψ + i4[ϕ]ψ

+
(

1 + V − |U2|2
)
ψ + 2ie−iϕRe

(
ū2ie

iϕψ
)
U2 + iε

κ

γ
| log ε| ∂ψ

∂x2

= E4,1 + N4,1,

where E4,1 = ie−iϕE. The nonlinear operator is defined by

N4,1(ψ) = ie−iϕ
[
4 Γ4,1 +

1

x1

∂

∂x1

Γ4,1 +
(
1 + V − |U2|2

)
Γ4,1

]
− ie−iϕ

[
2Re(ū2Γ4,1)− |ieiϕψ + Γ4,1|2

]
(U2 + ieiϕψ + Γ4,1)

− 2ie−iϕRe(ū2ie
iϕψ)(ieiϕψ + Γ4,1).

More precisely, in the region D4,1, the linear operator L4,1 is defined as

L4,1[ψ] =4ψ −
(
δε(`− r2ε) + q̂2

)
ψ + 2ie−iϕRe

(
ū2ie

iϕψ
)
U2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

+
[
1 + V + δε(`− r2ε)

]
ψ + 2i5 ϕ · 5ψ + 4[ϕ]ψ − | 5 ϕ|2ψ + iε

κ

γ
| log ε| ∂ψ

∂x2

.

45



where we have used the definition of q̂ in (4.5). We shall analyze other terms in the linear
operator L4,1. For r2ε − τ1/ε < |x| < r2ε + τ2/ε, there holds U2 = q̂ eiϕ. It is obvious that

2ie−iϕRe
(
ū2ie

iϕψ
)
U2 = −2i q̂2 ψ2. (5.34)

For r2ε + τ2/ε < |x| < r2ε + 2τ2/ε, there holds

U2 = w(`2)w(`1) η2 e
iϕ + q̂ η4 e

iϕ.

Whence we decompose the equation in the form

L̃4,1[ψ1] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 −

(
δε(`− r2ε) + q̂2

)
ψ1 +

[
1 + V + δε(`− r2ε)

]
ψ1

+
1

x1

∂

∂x1

ψ1 − 25 ϕ · 5ψ2 + 4[ϕ]ψ1 − | 5 ϕ|2ψ1

+ ε
κ

γ
| log ε|∂ψ1

∂x2

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ1

∂x2
2

= Ẽ4,1 + Ñ4,1,

L̄4,1[ψ2] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 −

(
δε(`− r2ε) + 3q̂2

)
ψ2 +

[
1 + V + δε(`− r2ε)

]
ψ2

+
1

x1

∂

∂x1

ψ2 + 25 ϕ · 5ψ1 + 4[ϕ]ψ2 − | 5 ϕ|2ψ2

+ ε
κ

γ
| log ε|∂ψ2

∂x2

+ γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ2

∂x2
2

= Ē4,1 + N̄4,1.

If r2ε − τ1/ε < |x| < r2ε + τ2/ε, by using (4.3), we then have

Ξ4,1 ≡ 1 + V + δε(`− r2ε) =
ε2

2

∂2V

∂ ˜̀2
(`− r2ε)

2 + O
(
ε3(`− r2ε)

3
)
.

The other terms with ϕ0 are also lower order terms. Whence the linear operators L̃4,1 and L̄4,1

are small perturbations of the following linear operators

L41∗[ψ1] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 −

(
δε(`− r2ε) + q̂2

)
ψ1,

L41∗∗[ψ2] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 −

(
δε(`− r2ε) + 3q̂2

)
ψ2.

(5.35)

In the region D4,2 the approximation takes the form

U2 = q̂(x1, x2)eiϕ,
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and the ansatz is

u = U2 + ieiϕψ.

The equation becomes

L4,2[ψ] ≡4ψ + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ

∂x2
2

+
(

1 + V
)
ψ − |U2|2ψ + 2ie−iϕRe

(
ū2ie

iϕψ
)
U2

− | 5 ϕ|2ψ + i4[ϕ]ψ + 2i5 ϕ · 5ψ + iε
κ

γ
| log ε|∂ψ1

∂x2

=E4,2 + N4,2, (5.36)

where E4,2 = ie−iϕE . The nonlinear operator is defined by

N4,2(ψ) = − ie−iϕ(U2 + ieiϕψ)|ψ|2 + 2iRe(ū2ie
iϕψ)ψ.

More precisely, for other term, we have

−|U2|2ψ + 2ie−iϕRe
(
ū2ie

iϕψ
)
U2 = −q̂2 ψ1 − 3iq̂2 ψ2.

The equation can be decomposed in the form

L̃4,2[ψ1] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 +

(
1 + V

)
ψ1 − q̂ ψ1 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ1

∂x2
2

+
1

x1

∂

∂x1

ψ2 − | 5 ϕ|2ψ1 + i4ϕψ1 − 25 ϕ · 5ψ2 + ε
κ

γ
| log ε|∂ψ1

∂x2

= Ẽ4,2 + Ñ4,2, (5.37)

L̄4,2[ψ2] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 +

(
1 + V

)
ψ2 − q̂ ψ2 + γ−2

[
λ2

x2
1

− λ2

|r1ε|2

]
∂2ψ2

∂x2
2

+
1

x1

∂

∂x1

ψ2 − | 5 ϕ|2ψ2 + i4ϕψ2 + 25 ϕ · 5ψ1 + ε
κ

γ
| log ε|∂ψ2

∂x2

= Ē4,2 + N̄4,2. (5.38)

The assumption (A3) implies that, for any sufficiently small ε there holds

Ξ4,2 = 1 + V < −c2 for |x| > r2ε + τ2/ε. (5.39)

The other terms with ϕ0 are lower order terms. From the asymptotic properties of q in Lemma
2.4, q̂ ψ2 and q̂ ψ1 are also lower order term. Whence the linear operators L̃4,2 and L̄4,2 are
small perturbations of the following linear operator

L42∗[ψ̃] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ̃ +

(
1 + V

)
ψ̃. (5.40)
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We now come to the conclusion of this section. Let χ be the cut-off function defined in
(5.1). By recalling the definition of β in (5.14), we define

Λ ≡ ∂U2

∂f
·
χ
(
|x− ξ+|/ε

)
+ χ

(
|x− ξ−|/ε

)
β

. (5.41)

In summary, for any given f in (3.15), we want to solve the projected problem for ψ satisfying
the conditions in (5.5)

L(ψ) = N (ψ) + E + CΛ, Re

∫
R2

φ̄Λ = 0, (5.42)

where have denoted

L(ψ) = L1,j(ψ) in D1,j for j = 1, 2, L(ψ) = L2,j(ψ) in D2,j for j = 1, 2,

L(ψ) = L3(φ) in D3,

L(ψ) = L4,j(ψ) in D4,j for j = 1, 2, L(ψ) = L5,j(ψ) in D5,j for j = 1, 2,

with the relation

φ = iU2 ψ in D2. (5.43)

As we have stated, the nonlinear operator N and the error term E also have suitable local forms
in different regions.

6 The Resolution of the projected nonlinear problem

6.1 The linear resolution theory

The main objective is to consider the resolution of the linear part in previous section, which
was stated in Lemma 6.2.

For that purpose, we shall firs get a priori estimates expressed in suitable norms. By recalling
the norm ‖ · ‖∗∗ defined in (4.61), for fixed small positive numbers 0 < σ < 1, 0 < γ < 1, we
define

||ψ||∗ ≡
2∑
i=1

[
||φ||W 2,p(`i<3) + ||`σi ψ1||L∞(D̃∪D3) + ||`1+σ

i 5 ψ1||L∞(D̃∪D3)

+ ||`1+σ
i ψ2||L∞(D̃∪D3) + ||`2+σ

i 5 ψ2||L∞(D̃∪D3)

]
+ ||ψ||W 2,p(D4∪D5),

where we have use the relation φ = iU2ψ and the region D̃ is defined in (4.62). We then consider
the following problem: finding ψ with the conditions in (5.5)

L(ψ) = h in R2, Re

∫
R2

φ̄Λ = 0 with φ = iU2ψ, (6.1)

where L,Λ are defined in Section 5, (5.42), (5.41).
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Lemma 6.1. There exists a constant C, depending on γ, σ only, such that for all ε sufficiently
small, and any solution of (6.1), we have the estimate

||ψ||∗ ≤ ||h||∗∗ .

Proof. We prove the result by contradiction. Suppose that there is a sequence of ε = εn,
functions ψn, hn which satisfy (6.1) with

||ψn||∗ = 1, ||hn||∗∗ = o(1).

Before any further argument, by the assumptions (5.5) for ψ = ψ1 + iψ2, we have

ψ1(x1,−x2) = −ψ1(x1, x2), ψ1(−x1, x2) = ψ1(x1, x2),

ψ2(x1,−x2) = ψ2(x1, x2), ψ2(−x1, x2) = ψ2(x1, x2).
(6.2)

We may just need to consider the problem in R2
+ = {(x1, x2) : x1 > 0}. Then we have

Re

∫
R2

φ̄nΛ = 2Re

∫
R2
+

φ̄nΛ = 0, (6.3)

for any φn = iU2ψ
n. To get good estimate and then derive a contradiction, we will use suitable

forms of the linear operator L in different regions, which was stated in previous section. Hence
we divide the proof into several parts.

Part 1. In the vortex-core region, we here only derive the estimates D2,1 near ξ+. Since
||h||∗∗ = o(1), ψn → ψ0, which satisfies

L2,1(ψ0) = 0, ||ψ0||∗ ≤ 1.

Whence, we get L0(φ0) = 0. By the nondegeneracy in Lemma 2.3, we have

φ0 = c1
∂U0

∂y1

+ c2
∂U0

∂y2

.

Observe that φ0 inherits the symmetries of φ and hence φ0 = φ0(x1,−x2), while the other
symmetry is not preserved under the translation y = x− ξ+. Obviously, the term ∂U0

∂y2
does not

enjoy the above symmetry. This implies that φ0 = c1
∂U0

∂s1
. On the other hand, taking a limit of

the orthogonality condition Re
∫
R2
+
φ̄nΛ = 0, we obtain

Re

∫
R2

φ̄0
U0

∂y1

= 0.

Thus c1 = 0 and φ0 = 0. Hence, for any fixed R > 0, there holds

||φ1||L∞(`<R) + ||φ2||L∞(`<R) + || 5 φ1||L∞(`<R) + || 5 φ2||L∞(`<R) = o(1).

Part 2. In the outer part D2,2, we use the following barrier function

B(x) = B1(x) + B2(x),
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where

B1(x) = |x− ξ+|% |x2|γ + |x− ξ−|% |x2|γ, B2(x) = C1(1 + |x|2)−σ/2,

where %+ γ = −σ, 0 < σ < γ < 1, and C1 is a large number depending on σ, %, γ only. Trivial
computations derive that

4B1 ≤ −C
(
|x− ξ+|2 + |x− ξ−|2

)−1−σ/2
,

4B2 +
1

x1

∂B2

∂x1

≤ −CC1(1 + |x|2)−1−σ/2.

On the other hand,

1

x1

∂B1

∂x1

≤ |x2|γ

x1

[
|x− ξ+|%−2(x1 − r1ε) + |x− ξ−|%−2(x1 − r1ε)

]
.

Thus for |x− ξ+| < cσr1ε, where cσ is small, we have

1

x1

∂B1

∂x1

≤ Ccσ

[
|x− ξ+|2 + |x− ξ−|2

]−1−σ/2
.

For |x− ξ+| > cσr1ε, where cσ is small, we have

1

x1

∂B1

∂x1

≤ C(1 + |x|2)−1−σ/2.

By choosing C1 large, we have

4B +
1

x1

∂B
∂x1

≤ −C
(
|x− ξ+|2 + |x− ξ−|2

)−1−σ/2
.

For the details of the above computations, the reader can refer to the proof of Lemma 7.2 in
[62].

In the region D2,2, we have( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ1 +

(
5B +

w′(`2)

w(`2)

y

`2

)
· 5ψ1 + o(1)|ψ1| = h1,

where have used y = (x1 − r1ε, x2). By comparison principle on the set D2,2, we obtain

|ψ1| ≤ CB
(
||h||∗∗ + o(1)

)
, ∀x ∈ D2,2.

On the other hand, the equation for ψ2 is( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ2 − 2|U2|2ψ2 + 2

(
5B +

w′(`2)

w(`2)

y

`2

)
· 5ψ2 + o(1)|ψ2| = h2.

For x ∈ D2,2, there holds |U2| ∼ 1. By standard elliptic estimates we have

||ψ2||L∞(`i>3) ≤ C||ψ2||L∞(`i=3)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−1−σ,
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| 5 ψ2| ≤ C||ψ2||L∞(`i=R)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−2−σ.

Part 3. In the outer part D3, we still use the following barrier function

B(x) = B1(x) + B2(x),

where

B1(x) = |x− ξ+|% |x2|γ + |x− ξ−|% |x2|γ, B2(x) = C1(1 + |x|2)−σ/2,

where %+ γ = −σ, 0 < σ < γ < 1, and C1 is a large number depending on σ, %, γ only.
In D3, we have( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ1 +

2

β1

5 β1 · 5ψ1 + o(1)|ψ1| = h1.

By comparison principle on the set D3, we obtain

|ψ1| ≤ CB
(
||h||∗∗ + o(1)

)
, ∀x ∈ D3.

On the other hand, the equation for ψ2 is( ∂2

∂x2
1

+
∂2

∂x2
2

+
1

x1

∂

∂x1

)
ψ2 − 2|U2|2ψ2 +

2

β1

5 β1 · ψ2 + o(1)|ψ2| = h2.

For x ∈ D3, there holds |U2| ∼ 1. By standard elliptic estimates we have

||ψ2||L∞(`i>3) ≤ C||ψ2||L∞(`i=3)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−1−σ,

| 5 ψ2| ≤ C||ψ2||L∞(`i=R)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−2−σ.

Part 4. In the region D4,1, we have

L4,1[ψ1] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 −

(
δε(`− r2ε) + q̂2

)
ψ1 +

[
1 + V + δε(`− r2ε)

]
ψ1

+
1

x1

∂

∂x1

ψ1 − 25 ϕ · 5ψ2 + 4[ϕ]ψ1 − | 5 ϕ|2ψ1 + o(1)|ψ1|

=h1,

L4,1[ψ2] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 −

(
δε(`− r2ε) + 3q̂2

)
ψ2 +

[
1 + V + δε(`− r2ε)

]
ψ2

+
1

x1

∂

∂x1

ψ2 + 25 ϕ · 5ψ1 + 4[ϕ]ψ2 − | 5 ϕ|2ψ2 + o(1)|ψ2|

=h2.
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By defining a new translated variable z = δ
1/3
ε (` − r2ε), the linear operators L41∗ and L41∗∗ in

(5.35) become

L41∗(ψ1∗) =
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1∗ −

(
z + q2(z)

)
ψ1∗ ,

L41∗∗(ψ2∗∗) =
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2∗∗ −

(
z + 3q2(z)

)
ψ2∗∗ .

From Lemma 2.4, −q′(z) > 0 for all z ∈ R, and L31∗∗(−q′) = 0. We apply the maximum
principle to −ψ2/q

′ and then obtain

|ψ2| ≤ C|q′|(||h||∗∗ + o(1)), ∀x ∈ D4,1.

On the other hand, q(z) > 0 for all z ∈ R, and L31∗(q) = 0. We apply the maximum principle
to ψ1/q and then obtain

|ψ1| ≤ Cq(||h||∗∗ + o(1)), ∀x ∈ D4,1.

Part 5. In D4,2, we consider the problem

L4,2[ψ1] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ1 +

(
1 + V

)
ψ1 − q̂ ψ1

+
1

x1

∂

∂x1

ψ2 − | 5 ϕ|2ψ1 + i4[ϕ]ψ1 − 25 ϕ · 5ψ2 + o(1)|ψ1|

= h1,

L4,2[ψ2] ≡
( ∂2

∂x2
1

+
∂2

∂x2
2

)
ψ2 +

(
1 + V

)
ψ2 − q̂(|x1|)ψ2

+
1

x1

∂

∂x1

ψ2 − | 5 ϕ|2ψ2 + i4[ϕ]ψ2 + 25 ϕ · 5ψ1 + o(1)|ψ2|

= h2.

By using the properties of Ξ4,2 in (5.39), i.e.

Σ4,2 =
(
1 + V

)
< −c2 in D4,2,

we have

||ψ2||L∞(`i>3) ≤ C||ψ2||L∞(`i=3)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−1−σ,

| 5 ψ2| ≤ C||ψ2||L∞(`i=R)(1 + ||ψ||∗)||h||∗∗(1 + `1 + `2)−2−σ.

Combining all the estimates in the above, we obtain that ||ψ||∗ = o(1), which is a contra-
diction.
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We now consider the following linear projected problem: finding ψ with the conditions in
(5.5)

L[ψ] = h + CΛ, Re

∫
R2

φ̄Λ = 0 with φ = iU2ψ. (6.4)

Lemma 6.2. There exists a constant C, depending on γ, σ only, such that for all ε sufficiently
small, the following holds: if ||h||∗∗ < +∞, there exists a unique solution (ψε,f , Cε,f ) = Tε,f (h)
to (6.4). Furthermore, there holds

||ψ||∗ ≤ C||h||∗∗.

Proof. The proof is similar to that of Proposition 4.1 in [29]. Instead of solving (6.4) in
R2, we solve it in a bounded domain first:

L[ψ] = h + CΛ, Re

∫
R2

φ̄Λ = 0 with φ = iU2ψ,

φ = 0 on ∂BM(0), ψ satisfies the conditions in (5.5).

where M > 10r1ε. By the standard proof of a priori estimates, we also obtain the following
estimates for any solution ψM of above problem

||ψ||∗ ≤ C||h||∗∗.

By working with the Sobole space H1
0 (BM(0)), the existence will follow by Fredholm alterna-

tives. Now letting M → +∞, we obtain a solution with the required properties.

6.2 Solving the Projected Nonlinear Problem

We then consider the following problem: finding ψ with the conditions in (5.5)

L[ψ] + N [ψ] = E + CΛ, Re

∫
R2

φ̄Λ = 0 with φ = iU2ψ. (6.5)

Proposition 6.3. There exists a constant C, depending on γ, σ only, such that for all ε suffi-
ciently small, there exists a unique solution ψε,f , cε,f to (6.5), and

||ψ||∗ ≤ Cε.

Furthermore, ψ is continuous in the parameter f .

Proof. Using of the operator defined by Lemma 6.2, we can write problem (6.5) as

ψ = Tε,f
(
−N [ψ] + E

)
≡ Gε(ψ).

Using Lemma 4.2, we see that

||E||∗∗ ≤ Cε1−σ.

53



Let

ψ ∈ B =
{
||ψ||∗ < Cε1−σ

}
,

then we have, using the explicit form of N (ψ) in Section 5

||N (ψ)||∗∗ ≤ Cε.

Whence, there holds

||Gε(ψ)||∗∗ ≤ C
(
||N (ψ)||∗∗ + ||E||∗∗

)
≤ Cε1−σ.

Similarly, we can also show that, for any ψ̌, ψ̂ ∈ B

||Gε(ψ̌)− Gε(ψ̂)||∗∗ ≤ o(1)||ψ̌ − ψ̂||∗∗ .

By contraction mapping theorem, we confirm the result of the Lemma.

7 Reduction procedure

To find a real solution to problem (3.8)-(3.10), in this section, we solve the reduced problem
by finding a suitable f such that the constant C in (5.42) is identical zero for any sufficiently
small ε.

In previous section, for any given f in (3.15), we have deduced the existence of ψ with the
conditions in (5.5) to the projected problem

L(ψ) = N (ψ) + E + CΛ, Re

∫
R2

φ̄Λ = 0, (7.1)

with the relation

φ = iU2ψ in D2.

Multiplying (7.1) by Λ̄ and integrating, we obtain

C Re

∫
R2

Λ̄Λ = Re

∫
R2

Λ̄L(ψ) − Re

∫
R2

Λ̄N (ψ) − Re

∫
R2

Λ̄E . (7.2)

Hence we can derive the estimate for C by computing the integrals of the right hand side.

We begin with the computation of Re
∫
R2 Λ̄E . The term Λ has its support contained in

the region {(x1, x2) : `1 < τ0/ε or `2 < τ0/ε}. It is convenient to compute Re
∫
R2 Λ̄E on the

variables (s1, s2). Note that, in the vortex-core region {(x1, x2) : `2 ≤ τ0/ε}, there holds

∂U2

∂f
=
[
− w′(`2)

w(`2)

x1 − r1ε

`2

+ i
x2

`2
2

]
U2 + O(ε2)U2,
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which implies that

Λ = χ
(
|x− ξ+|/ε

)[
− w′(`2)

w(`2)

x1 − r1ε

`2

+ i
x2

`2
2

]
w(`2)eiϕ

+
0 + O(ε2).

By using of local form of E in the formula (5.21), we obtain

Re

∫
R2

Λ̄Edx = 2Re

∫
R2
+

Λ̄E dx

= − 2

∫
R2
+

χ
(
`2/ε

)[
w′(`2)

]2 (x1 − r1ε)
2

x1`2
2

dx

− 2ε
∂V

∂r̃

∣∣∣
r̃=r̂1ε

∫
R2
+

χ
(
`2/ε

)
w(`2)w′(`2)

(x1 − r1ε)(x1 − r1ε)

`2

dx

− 2 log r1ε

∫
R2
+

χ
(
`2/ε

)
w(`2)w′(`2)

2(x1 + r1ε)(x1 − r1ε)
2

`2
1`

3
2

dx

− 2
1

r1ε

log r1ε

∫
R2
+

χ
(
`2/ε

)
w(`2)w′(`2)

x2
2

`3
2

dx

+ 2
κε| log ε|

γ

∫
R2
+

χ
(
`2/ε

)
w(`2)w′(`2)

x2
2

`3
2

dx + O(ε).

By the translation in (3.16), we further derive that

Re

∫
R2

Λ̄Edx = − 2

∫
R2

χ
(
| s | /ε

)[
w′(| s |)

]2 s2
1

(s1 + r1ε) | s |2
ds

− 2ε
∂V

∂r̃

∣∣∣
r̃=r̂1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

1

| s |
ds

− 2 log r1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) 2(s1 + 2r1ε)s

2
1[

(s1 + 2r1ε)2 + s2
2

]
| s |3

ds

− 2
1

r1ε

log r1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

2

| s |3
ds

+ 2
κε| log ε|

γ

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

2

| s |3
ds + O(ε) .

We compute the first two terms in above formula

− 2

∫
R2

χ
(
| s | /ε

)[
w′(| s |)

]2 s2
1

(s1 + r1ε) | s |2
ds = O(ε),

and by the asymptotic behavior of w in Lemma 2.1

− 2ε
∂V

∂r̃

∣∣∣
r̃=r̂1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

1

| s |
ds

= −2πε | log ε| ∂V
∂r̃

∣∣∣
r̃=r̂1ε

+ O(ε).
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On the other hand,

− 2 log r1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) 2(s1 + 2r1ε)s

2
1[

(s1 + 2r1ε)2 + s2
2

]
| s |3

ds

− 2
1

r1ε

log r1ε

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

2

| s |3
ds

= − 2

r1ε

log r1ε

∫
R2

w(| s |)w′(| s |) 1

| s |
ds + O(ε)

= − 2πd

r1ε

log r1ε + O(ε),

where

d =
1

π

∫
R2

w(| s |)w′(| s |) 1

| s |
ds > 0. (7.3)

While the last term can be estimated by

2
κε| log ε|

γ

∫
R2

χ
(
| s | /ε

)
w(| s |)w′(| s |) s2

2

| s |3
ds

=
κε| log ε|

γ

∫
R2

w(| s |)w′(| s |) 1

| s |
ds + O(ε)

=
πdκ

γ
ε| log ε| + O(ε).

Hence, there holds

Re

∫
R2

Λ̄Edx = −2π
∂V

∂r̃

∣∣∣
r̃=r̂1ε

ε | log ε| − 2π
d

r1ε

log r1ε +
πd κ

γ
ε| log ε| + O(ε). (7.4)

Using Proposition 6.3, and the expression in (5.22), we deduce that

Re

∫
R2

Λ̄N (ψ) = Re

∫
R2

Λ̄N2(ψ) = O(ε).

On the other hand, integration by parts, we have

Re

∫
R2

Λ̄L(ψ) = Re

∫
R2

ψ̄L(Λ̄) = O(ε).

Combining all estimates together and recalling r̂1ε = r̂1+f̂ , we obtain the following equation

C(f̂) = −2 επ

[
∂V

∂r̃

∣∣∣
r̃=r̂1+f̂

log
1

ε
+

d

r̂1 + f̂
log

r̂1 + f̂

ε
− κ d

2γ
log

1

ε

]
+ O(ε), (7.5)

where O(ε) is a continuous function of the parameter f̂ . By the solvability condition (1.12) and
the non-degeneracy condition(1.11), we can find a zero of C

(
f̂
)

at some small f̂ with the help
of the simple mean-value theorem.
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Inst. Henri Poincaré, Physique Théorique, 70 (1999), no. 2, pp. 147–238.

[19] I. Bialynicki-Birula, Z. Bialynicka-Birula and C. Śliwa, Motion of vortex lines
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