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Abstract. We construct globally defined in time, unbounded positive solutions to the energy-critical
heat equation in dimension three

ut = ∆u+ u5, in R3 × (0,∞), u(x, 0) = u0(x) in R3.

For each γ > 1 we find initial data (not necessarily radially symmetric) with lim
|x|→∞

|x|γu0(x) > 0

such that as t → ∞

∥u(·, t)∥∞ ∼ t
γ−1
2 , if 1 < γ < 2, ∥u(·, t)∥∞ ∼

√
t, if γ > 2,

and

∥u(·, t)∥∞ ∼
√
t (ln t)−1, if γ = 2.

Furthermore we show that this infinite time blow-up is co-dimensional one stable. The existence of
such solutions was conjectured by Fila and King [16].

1. Introduction

Let n ≥ 3. The energy critical heat equation in Rn is the parabolic Cauchy problemut = ∆u+ |u|
4

n−2u in Rn ×(0,∞),

u(·, 0) = u0 in Rn.
(1.1)

The energy

E(u) =
1

2

∫
Rn

|∇u|2 − n− 2

2n

∫
Rn

|u|
2n

n−2

defines a Lyapunov functional for Problem (1.1). In fact for classical solutions u(x, t) with sufficient
decay in space variable we have that

d

dt
E(u(·, t)) = −

∫
Rn

|ut|2.

Classical parabolic theory yields that the Cauchy problem (1.1) is well-posed in its natural finite-energy
space for short time intervals.

In this paper we are interested in positive finite-energy solutions of (1.1) which are global in
time, namely defined and smooth in the entire time interval (0,∞). The presence of the Lyapunov
functional implies that limits of bounded solutions along sequences t = tn → +∞ can only be steady
states, namely solutions of the Yamabe equation

∆u+ |u|
4

n−2u = 0 in Rn. (1.2)

All positive solutions of (1.2) are given by the Aubin-Talenti bubbles

Uµ,ξ(x) = µ−n−2
2 w

(
x− ξ

µ

)
,

where µ > 0, ξ ∈ Rn and

w(x) = (n(n− 2))
n−2
4

(
1

1 + |x|2

)n−2
2

.
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They are precisely the extremals of Sobolev’s embedding. The criticality of Problem (1.1) refers to
the presence of this continuum of steady states which become singular as µ→ 0, in addition to energy
invariance. In fact we immediately see that

E(Uµ,ξ) = E(U) for all ξ ∈ Rn, µ > 0.

A solution u(x, t) of (1.1) which looks around one or more points of space like u(x, t) ≈ Uµ(t),ξ(t)(x)
with µ(t) → 0 is called a bubbling blow-up solution. Bubbling phenomena is present in many impor-
tant time-dependent and stationary setting, usually carrying deep meaning in the global structure of
their solutions. Notable examples include the Yamabe and harmonic map flows and the Keller-Segel
chemotaxis system. (See [4, 7, 34, 8, 19] and the references therein.) In the last decade or so it has been
extensively studied in energy-critical wave equations, Schrodinger maps and other dispersive settings.

Problem (1.1) is a simple looking model which contains much of the complexity of the bubbling blow-
up issue. Basic questions have remain unanswered until today. Existence or nonexistence of infinite
time bubbling positive solutions in Problem (1.1) is not known. This question has been explicitly
stated for instance in [30] and in [32], Remark 22.10. Detecting such solutions rigorously is not easy.
Usual behaviors in the flow (1.1) are either asymptotic vanishing or blow-up in finite time. Global
solutions with nontrivial asymptotic patterns are typically unstable objects and hence harder to be
detected.

In a very interesting paper Fila and King [16] provided insight on the question in the case of a
radially symmetric, positive initial condition with an exact power decay rate. Using formal matching
asymptotic analysis, they demonstrated that the power decay determines the blow-up rate in a precise
manner. Intriguingly enough, their analysis leads them to conjecture that infinite time blow-up should
only happen in low dimensions 3 and 4, see Conjecture 1.1 in [16].

In this paper we rigorously establish the existence of solutions with infinite time blow-up in dimen-
sion 3, confirming the conjecture in [16]. Thus we consider the Cauchy problemut = ∆u+ u5 in R3 ×(0,∞),

u(·, 0) = u0 in R3,
(1.3)

for an initial datum u0 which we assume first radially symmetric with an exact power decay of the
form

lim
|x|→∞

|x|γu0(x) =: A > 0. (1.4)

As in [16] we assume that γ > 1 which means that u0 decays faster than the bubble

w(x) = 3
1
4

(
1

1 + |x|2

) 1
2

. (1.5)

Theorem 1.1. Given γ > 1, there exists a positive, radially symmetric global solution u(x, t) to
problem (1.3) whose initial condition u0(|x|) satisfies (1.4) and as t→ +∞

∥u(·, t)∥L∞(R3) ∼


t
γ−1
2 if 1 < γ < 2,√
t

ln t if γ = 2,√
t if γ > 2.

(1.6)

More precisely, the blow-up takes place by bubbling near the origin. The solution of Theorem 1.1
is in the inner self-similar region, |x| ≪

√
t, in leading order of the bubbling blow-up form

u(x, t) ∼ 1

µ(t)
1
2

w

(
x

µ(t)

)
,
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where

µ(t) ∼


t1−γ if 1 < γ < 2,

t−1ln2 t if γ = 2,
t−1 if γ > 2

(1.7)

and w is given by (1.5). In the outer self-similar region |x| ≫
√
t, the solution dissipates in the form

of a self-similar solution of heat equation ut = ∆u in R3 × (0,∞).

A surprising feature of the construction is the dynamics discovered for the scaling parameter µ(t).
It has a highly non-local character governed by a equation involving a perturbation of the fractional
1
2 -Caputo derivative. In fact, in order to find the precise lower order corrections needed for the scaling
parameter µ(t) we will need to solve linear equations of the type∫ t

0

β′(s)√
t− s

(
1− e−

M2

(t−s)

)
ds = h(t),

for suitably decaying right hand sides h(t). See (6.8) and (6.13) below.

Problem (1.1) is a special case of the Fujita equationut = ∆u+ up in Rn ×(0,∞),

u(·, 0) = u0 in Rn
(1.8)

with p > 1. Blow-up phenomena in Problem (1.8) is extremely sensitive to the values of the exponent
p. A vast literature has been devoted to this problem after Fujita’s seminal work [18]. We refer the
reader for instance to the book [32] for background and a comprehensive account of results until 2007
and to the more recent works [21, 22, 23] and references therein. The case p = n+2

n−2 is special in many

ways. Positive steady states do not exist when p < n+2
n−2 . Positive radial global solutions must be

bounded and go to zero, see [26, 28, 32]. They exist when p > n+2
n−2 but they have infinite energy, see

[20]. Infinite time blow-up exists in that case but it has an entirely different nature, see [29, 30].

The study of energy critical problems has attracted much attention in the last decade. For energy-
critical wave equations, blow-up solutions have been characterized and constructed in [10, 11, 12,
13, 15]. In [36] Type-II sign changing, finite time blow-up for (1.1) is constructed, first formally
predicted in [17]. Threshold dynamics around the steady states of (1.1) has been characterized in
large dimensions n ≥ 7 in [5]. Also in large dimensions n ≥ 5 in [6] infinite time bubbling solutions of
(1.1) in a bounded domain under Dirichlet boundary conditions are constructed for n ≥ 5. The cases
n = 3, 4 are indeed considerably more delicate and not treated there. The solutions in Theorem 1.1
are specially meaningful for the full dynamics since they are threshold solutions in the sense that the
solution of (1.3) with initial condition λu0 goes to zero as t → ∞ if λ < 1 while it blows-up in finite
time if λ > 1. Radial threshold solutions for various ranges of exponents in (1.3) are analyzed in [32].

We recall that from [16], it is not expected to have this blow-up in entire space in dimensions n ≥ 5.
Our approach is entirely different from that in [36] for n = 4 in which a finite-time type II blow-up
solution of (1.1) is constructed on the basis of the modulation equation methods developed for critical
dispersive equations in [9, 25, 24, 33, 34].

Our approach has a parabolic-elliptic flavor, in line with the recent works [6, 8]. Since our proofs
only rely on elliptic and parabolic estimates, we can easily modify the proof to deal with nonradial
and general initial data, in particular establishing codimension 1 stability of the solution built. This
is concordant with a result on [14] on the corresponding wave analogue. In Section 10 we prove the
following

Theorem 1.2. Let v̄0 = v̄0(x) be a positive continuous function, uniformly bounded for x ∈ R3. Let
γ > 1 and κ > max{γ+3

2 , γ}. Then, there exists a positive global solution u(x, t) to problem (1.3) with
initial condition

u(x, 0) = u0(|x|) +
v̄0(x)

|x|κ

[
1− η

(
|x|
t0

)]
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where u0 is positive, radially symmetric, satisfies (1.4), t0 > 0 is a fixed large number and η is a
smooth cut-off function with η(s) = 1 for s < 1 and η(s) = 0 for s > 2. As t → +∞, u(x, t) satisfies
(1.6).

Furthermore, there exists a codimension 1 manifold of functions in C1(R3) converging to 0 at infinity

with a sufficiently fast decay, that contains u0(|x|)+ v̄0(x)
|x|κ (1−η( |x|t0 )) such that if ū0 lies in that manifold

and it is sufficiently close to u0(|x|)+ v̄0(x)
|x|κ (1−η( |x|t0 )) in the sense that ū0 = u0(|x|)+ v̄0(x)

|x|κ (1−η( |x|t0 ))+
O(|x|e−b|x|) for some b > 0, then the solution ū(x, t) to (1.3) with ū(x, 0) = ū0(x) is global in time
and satisfies (1.6).

In the non-radial setting, the profile of the solution in the inner self-similar regime is

u(x, t) ∼ 1

µ(t)
1
2

w

(
x− p(t)

µ(t)

)
,

|p(t)|
µ(t)

→ 0, as t→ ∞

where w is given by (1.5) and µ satisfies the asymptotics (1.7). Precise description of the dynamics of
the center p = p(t) is provided.

A surprising feature of the construction is the dynamics discovered for the scaling parameter µ(t).
It has a highly non-local character governed by a equation involving a perturbation of the fractional
1
2 -Caputo derivative. In fact, in order to find the precise lower order corrections needed for the scaling
parameter µ(t) we will need to solve linear equations of the type∫ t

0

β′(s)√
t− s

(
1− e−

M2

(t−s)

)
ds = h(t),

for suitably decaying right hand sides h(t). See (6.8) and (6.13) below.

We believe that an approach similar to that in this paper could be used to prove the existence of
global unbounded solution when N = 4, p = 3 as conjectured in [16]. We will undertake that issue in
a future work.

The proof of Theorem 1.1 starts with the construction of an approximate solution to Problem (1.3)
with the asymptotic behavior described in (1.6). This is done in full details in Section 2. We then
show the existence of an actual solution to Problem (1.3) deforming the approximation, by means of
a inner-outer gluing procedure. This scheme is described in Section 3, and its proof is addressed in
Sections 4 to 9. In Section 10 we prove Theorem 1.2. Sections 11 to 13 gather some technical results
needed to prove the Theorems.

In the rest of the paper, we shall denote by C a generic positive constant, whose value may change
from line to line, and within the same line. We shall use the notation c to indicate a positive constant,
with c < 1, whose explicit value may change from line to line. Furthermore, t0 will denote a large
fixed positive number and

η : R → R, (1.9)

a smooth cut-off function with η(s) = 1 for s < 1 and = 0 for s > 2.

Acknowledgements: We are indebted to Marek Fila for introducing this problem to us and for many
useful discussions. M. del Pino has been supported by a UK Royal Society Research Professorship
and Grant PAI AFB-170001, Chile. M. Musso has been partly supported by Fondecyt grant 1160135,
Chile. The research of J. Wei is partially supported by NSERC of Canada.

2. Construction of an approximate solution and estimate of the associated error

After shifting the initial time to t0 > 0, Problem (1.3) takes the form

ut = ∆u+ u5, in R3 × (t0,∞), (2.1)

with initial condition u0(r) = u(r, t0) satisfying

lim
r→∞

rγu0(r) = A > 0, for some γ > 1. (2.2)
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This section is devoted to the construction of a first approximation for a solution to (2.1)-(2.2), and
to the description of the associated error.

The first approximation is build by matching an inner profile, made upon solving the elliptic problem

∆u+ u5 = 0 in R3, (2.3)

and an outer profile, made upon solving the heat equation in the whole space

ut = ∆u in R3, (2.4)

in the set of functions satisfying the decaying conditions (2.2). It is constructed in Subsections 2.1 (for
the inner profile), 2.2 (for the outer profile), and in Subsection 2.3 we derive a precise description of
the error of approximation. In [16], this approximate solution was already derived. We realize though
that, for our rigorous construction to work, we need a further improvement of the approximation. This
is done in Subsection 2.4, where we introduce a next correction term, and describe the associated error.
It turns out that this next correction term gives the right dynamics for the blow-up rate which turns
out to be governed by a nonlocal differential equation with a fractional time-derivative closely related
to the so-called 1/2-Caputo derivative. See (6.13).

2.1. Construction of the first inner profile. We recall that all positive radially symmetric solutions
to (2.3) constitute a one-parameter family of functions, which are given explicitly by

w(r) = 3
1
4

(
1

1 + r2

) 1
2

, wµ(r) = µ− 1
2w(

r

µ
), (2.5)

for any positive number µ > 0. (See [1, 2].) We denote by Z0 the only bounded and radial function
belonging to the kernel of the linear operator

L0(ϕ) = ∆ϕ+ 5w4ϕ. (2.6)

See [35]. The function Z0 is explicitly defined by

Z0(r) = −
[w
2
+ w′(r)r

]
=

3
1
4

2

r2 − 1

(1 + r2)
3
2

. (2.7)

Given Z0, we denote by Φ1(r) the solution to

∆Φ1 + 5w4Φ1 = Z0, (2.8)

defined as

Φ1(r) = Φ0(r) + π0 + Φ̄1(r), where Φ0(r) =
3

1
4

4
r, (2.9)(

5

∫ ∞

0

w4Z0r
2 dr

)
π0 =

∫ ∞

0

(Z0 −
3

1
4

2r
)Z0r

2 dr − 5

∫ ∞

0

w4Φ0Z0r
2 dr

and Φ̄1 being the unique solution to

∆ϕ+ 5wp−1ϕ = (Z0 −
3

1
4

2r
)− 5w4(Φ0 + π0)︸ ︷︷ ︸
:=Π0(r)

,

explicitly given by

Φ̄1(r) = Z̃(r)

∫ r

0

Π0(s)Z0(s)s
2 ds− Z0(r)

∫ r

0

Π0(s)Z̃(s)s
2 ds.

In the above expression, Z̃ denoted another solution to ∆ϕ + 5w4ϕ = 0, linearly independent to Z0.
Z̃ satisfies the asymptotic behavior Z̃(s) ∼ s−1, as s→ 0, and Z̃(s) ∼ 1, as s→ ∞.

A closer look at the expression of Φ̄1 gives that,

∥r2−σΦ̄1(r)∥∞ < C,

for some fixed positive constant C, and any σ > 0 small.
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Remark 2.1. The solution to (2.8) is not unique. (In fact one can add any multiple of Z0.) The choice
we made in (2.9) is used to match the outer solution in the next section.

We have now the elements to define the first inner profile. We introduce a smooth positive function
µ(t) of the form

µ(t) = µ0(t) (1 + Λ(t))
2
, where µ0(t) > 0, lim

t→∞
µ0(t) = 0. (2.10)

The function µ0 will be defined below, (see (2.23), (2.32), (2.36)), as an explicit function of t depending
on the decay rate γ. On the other hand, the function Λ = Λ(t) will be left as a parameter in the
construction, and it will be determined in the final argument to get an actual solution to the problem.
In the meanwhile, we shall assume that Λ = Λ(t) is a smooth function in (t0,∞), defined by

Λ(t) : =

∫ ∞

t

λ(s)ds, where λ satisfies

∥λ∥♯ : = sup
t>t0

µ0(t)
−1t

[
∥λ∥∞,[t,t+1] + [λ]0,σ,[t,t+1]

]
≤ ℓ, (2.11)

for σ = 1
2 + σ′, with σ′ > 0 small, and for some fixed constant ℓ. Here we intend

∥f∥∞,[t,t+1] = sup
s∈[t,t+1]

|f(s)|, [f ]0,σ,[t,t+1] = sup
s1 ̸=s2∈[t,t+1]

|f(s1)− f(s2)|
|s1 − s2|σ

.

For later purpose we introduce the space

X♯ = {λ ∈ C(t0,∞) : ∥λ∥♯ is bounded}. (2.12)

With this in mind, we define the inner approximation to be

uin(r, t) = wµ(r) + µ′
0ψ1(r, t), ψ1(r, t) = µ

1
2Φ1(

r

µ
). (2.13)

A direct computation gives that

∆ψ1 + 5w4
µψ1 = −µ− 3

2Z0(
r

µ
) =

∂wµ
∂µ

(r).

In the region {r : r > Rµ0}, where R is any large but fixed positive number, the inner approximation
looks like

uin(r, t) = 3
1
4
µ

1
2

r
− 3

1
4

4
µ′
0µ

− 1
2 r + µ

1
2
0 µ

′
0 Θ[µ](r, t) +

µ
1
2
0

r

(µ0

r

)2
Θ[µ](r, t) (2.14)

where Θ[µ](r, t) denotes a generic function, which depends smoothly on µ, and on (r, t), and which is
uniformly bounded, for parameters µ satisfying (2.10), for r in the considered region, and any t large.

2.2. Construction of the first outer profile and choice of µ0(t). The outer profile is chosen to
satisfy the heat equation ut = ∆u, in the whole space R3, and to fit the requested decaying property
for the initial condition (2.2). Its properties and exact definitions change depending on the value of the
decay rate γ of the initial condition u0, see (2.2). We consider three different situations: 1 < γ < 2,
γ = 2 and γ > 2.

Case 1 < γ < 2. In this case we define uout as

uout(r, t) = t−
γ
2 g(

r√
t
) (2.15)

with g the positive solution to

g′′(s) +

(
2

s
+
s

2

)
g′(s) +

γ

2
g(s) = 0 s ∈ (0,∞) (2.16)

that satisfies the properties

(1) lims→∞ sγg(s) = A,
(2) lims→0+ sg(s) = d, for a certain positive constant d for which lims→0+

[
g(s)− d

s

]
= 0.
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Such a function g indeed exists. Let

Lν(g) = g′′ + (
2

s
+
s

2
)g′ + νg, s ∈ (0,∞).

In Section 11, we prove the following

Lemma 2.2. If 1
2 < ν < 1, there exist two positive linearly independent solutions y1 = y1(s) and

y2 = y2(s) to
Lν(g) = 0, s ∈ (0,∞) (2.17)

that satisfy respectively

y1(s) =
1

s
+ (ν − 1)

(∫ ∞

0

sy1(s) ds

)
+

1− 2ν

4
s+O(s2), if s→ 0+, (2.18)

y2(s) = c2 + o(s) if s→ 0+, (2.19)

y1(s) = c1e
− s2

4 s4ν−3, y2(s) =
1

s2ν
(1 + o(

1

s
)) if s→ ∞, (2.20)

for some positive constants c1, c2.

Thanks to the Lemma, which we apply to solve (2.16) when ν = γ
2 , we get that the function g we

are looking for in (2.15) is thus given by

g(s) = dy1(s) +Ay2(s), with d =
2Ay2(0)

(2− γ)
(∫∞

0
sy1(s) ds

) > 0. (2.21)

We observe that, in a region like r < R−1
√
t, for some large but fixed R, we get

uout(r, t) = d
t−

γ−1
2

r
+ t−

γ+1
2 A

(1− γ)y2(0)

2(2− γ)
∫∞
0
zy1(z) dz

r + t−
γ
2O(

r2

t
). (2.22)

We next choose the function µ0(t) in the definition of µ(t), (2.10), in such a way that the functions
uin and uout automatically match in the whole region Rµ0 < r < R−1

√
t, for some R large, but fixed

independent of t. This is possible if

µ0(t) =
d2√
3
t1−γ . (2.23)

Indeed, with this choice for µ0(t), and given the bound (2.11), there exists a constant C so that∣∣uin(r, t)− uout(r, t)
∣∣ ≤ C

µ
1
2
0

r
,
∣∣∇uin(r, t)−∇uout(r, t)

∣∣ ≤ C
µ

1
2
0

r2
(2.24)

for any Rµ0 < r < R−1
√
t, and t large enough.

Case γ = 2. In this case, we define uout as

uout(r, t) = t−1(log t)kAg0(
r√
t
) + t−1h(

r√
t
) (2.25)

where g0(s) = s−1e−
s2

4 is a solution to

g′′(s) +

(
2

s
+
s

2

)
g′(s) + g(s) = 0 (2.26)

and h solves

h′′(s) +

(
2

s
+
s

2

)
h′(s) + h(s) = kAg0(s) (2.27)

with lims→∞ sγh(s) = A, and lims→0+ sh(s) = d, so that lims→0+
[
h(s)− d

s

]
= 0. The function h can

be described explicitly. Let g1(s) = s−1e−
s2

4

∫ s
0
e

z2

4 dz. This function solves (2.26). Since g1 and g0 are
linearly independent, the variation of parameters formula gives that, for any constants d and b

h(s) = g0(s)

[
d− kA

∫ s

0

zg1(z) dz

]
+ g1(s)

[
b+ kA

∫ s

0

zg0(z) dz

]
(2.28)
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solves (2.27). In order to have lims→∞ sγh(s) = A, we need 2
[
b+ kA

∫∞
0
zg0(z) dz

]
= A. Furthermore,

to have lims→0+
[
h(s)− d

s

]
= 0, we need b = 0. Thus we select

b = 0, k =
1

2
∫∞
0
zg0(z) dz

. (2.29)

Observe that, up to this moment, the constant d is arbitrary. Nevertheless, we remind that uout wants
to be a solution to ut = ∆u = urr +

2
rur. Multiplying this equation by r, and integrating in (0, R), for

some fixed, large R, we get

d

dt

(∫ R

0

ru(r, t) dr

)
= Rur(R, t) + u(R, t),

where we use the fact that limr→0[rur(r, t) + u(r, t)] = 0. Next, we integrate the above equation in t,

from 0 to ∞, and using the fact that limt→∞
∫ R
0
ru(r, t) dt = 0, we get

−
∫ R

0

ru(r, 0) dr =

∫ ∞

0

[Rur(R, t) + u(R, t)] dt. (2.30)

Take now u = uout and compute the right hand side of (2.30)∫ ∞

0

[Rur(R, t) + u(R, t)] dt = Ak

∫ ∞

0

t−1(log t)[
R√
t
g′0(

R√
t
) + g0(

R√
t
)] dt

+

∫ ∞

0

t−1[
R√
t
h′(

R√
t
) + h(

R√
t
)] dt s :=

R√
t

=

(
4Ak

∫ ∞

0

s−1[sg′0(s) + g0(s)] ds

)
logR

+d̄+

(
2

∫ ∞

0

s−1[sh′(s) + h(s)] ds

)
where d̄ is the constant defined by

d̄ = −
(
4Ak

∫ ∞

0

s−1(log s)[sg′0(s) + g0(s)] ds

)
.

We can simplify the expression of the constant in front of logR. Indeed, multiplying (2.26) against s,

we get that (sg′(s) + g + s2

2 g)
′ = 0. For g = g0, and using the fact that g0 decays very fast as s→ ∞,

we get that sg′0(s) + g0(s) = − s2

2 g0(s) for any s, thus

4Ak

∫ ∞

0

s−1[sg′0(s) + g0(s)] ds = Ak

(
−2

∫ ∞

0

sg0(s)ds

)
= −A

since (2.29). On the other hand, the decaying condition limr→∞ r2u(r, 0) = A gives

−
∫ R

0

ru(r, 0) dr = −A logR+B(R),

with limR→∞B(R) = B, being B a real constant. Plugging this information in (2.30), we get that

d̄+

(
2

∫ ∞

0

s−1[sh′(s) + h(s)] ds

)
= B.

This last relation defines in a unique way the constant d > 0 in the definition of h, (2.28). Indeed, a
direct computation gives that∫ ∞

0

s−1[sh′(s) + h(s)] ds = −d
2

(∫ ∞

0

sg0(s) ds

)
+ ω,

with

ω =
kA

2

∫ ∞

0

sg0(s)(

∫ s

0

zg1(z) dz) ds+

∫ s

0

s−1[sg′1 + g1](kA

∫ s

0

zg0(z) dz) ds,
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from which we deduce that

d =
d̄− 2ω −B∫∞
0
sg0(s) ds

.

With this choice for the function h in (2.25), we get

h(s) =
d

s
− s

4
[d+ 10kA] +O(s3), as s→ 0+

and

uout(r, t) =
t−

1
2

r
[kA(log t) + d] (2.31)

+ t−1

[
−kA(log t)

4
− d+ 10kA

4

]
r√
t
+O

(
(log t)

r3

t3
√
t
)

)
in the region r < R−1

√
t, for some large but fixed R, as t→ ∞.

In this case, namely when γ = 2, we choose µ0 in (2.10) as

µ0(t) =
[d+ kA(log t)]2√

3
t−1, (2.32)

and thanks to this choice, and to the bound (2.11) on λ, we find a constant C so that

∣∣uin(r, t)− uout(r, t)
∣∣ ≤ C

µ
1
2
0

r
,
∣∣∇uin(r, t)−∇uout(r, t)

∣∣ ≤ C
µ

1
2
0

r2
(2.33)

for any Rµ0 < r < R−1
√
t, for some fixed and large R, and for all t large enough.

Case γ > 2. In this case, we define u1out as

u1out(r, t) = t−1 dg0(
r√
t
), d =

(∫∞
0
ru0(r)dr∫∞

0
sg0(s) ds

)

where g0(s) = s−1e−
s2

4 solves (2.26), and u0(r) is the initial condition for (2.1)-(2.2). Observe that,
in a region like r < R−1

√
t, for some large but fixed R, we get

u1out(r, t) = d
t−

1
2

r
− t−1 d

4

r√
t
+ t−1O(

r2

t
3
2

). (2.34)

For a given time t, the function u1out is decaying very fast as r → ∞. For this reason, we modify u1out
with a function that has the right decay to match the initial condition u0(r), for r large. Define

uout(r, t) = η(
r

t
)u1out(r, t) + (1− η(

r

t
))u2out(r), with u2out(r) =

A

rγ
, (2.35)

where η is the cut off function defined in (1.9).

In this case, γ > 2, we choose µ0 in (2.10) as

µ0(t) =
d2√
3
t−1. (2.36)

With this choice for µ0(t), and thanks to (2.11), given any large but fixed number R > 0, there exists
a constant C so that∣∣uin(r, t)− uout(r, t)

∣∣ ≤ C
µ

1
2
0

r
,
∣∣∇uin(r, t)−∇uout(r, t)

∣∣ ≤ C
µ

1
2
0

r2
(2.37)

for any Rµ0 < r < R−1
√
t, and for all t large.
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2.3. Construction of the first global approximation and estimate of the error. Let r0 > 0
be a small and fixed number, define

U1(r, t) = η(
r

r0
√
t
)uin(r, t) +

(
1− η(

r

r0
√
t
)

)
uout(r, t) (2.38)

where η is given by (1.9). For any smooth function u = u(r, t), we define the Error Function as

E [u](r, t) = ∆u+ u5 − ut. (2.39)

Our next purpose is to describe
E1(r, t) = E [U1](r, t) (2.40)

with U1 given by (2.38). To this end, we introduce the function α = α(t), t > t0,

α(t) = 3
1
4 µ

− 1
2

0 (µ0Λ)
′
. (2.41)

Since Λ satisfies (2.11), definition (2.41) defines a linear homeomorphism A : X♯ → X♭, A(λ) = α,
where

X♭ = {α ∈ C(t0,∞) : ∥α∥♭ is bounded}, (2.42)

and

∥α∥♭ := sup
t>t0

µ
− 3

2
0 (t) t

[
∥α∥∞,[t,t+1] + |α|0,σ,[t,t+1]

]
. (2.43)

Here σ is the number introduced in (2.11). Let us denote by h0 : (0,∞) → (0,∞) a smooth function
with the properties that

h0(s) =

{
1
s for s→ 0
1
s3 for s→ ∞,

(2.44)

and define the following norm for any function f : R3 × (t0,∞) → R

∥f∥∗ := sup
x∈R3,t>t0

µ
− 1

2
0 t

3
2 h−1

0 (
r√
t
)

[
∥f∥∞,B(x,1)×[t,t+1]

+ [f ]0,σ,B(x,1)×[t,t+1]

]
, r = |x|. (2.45)

Here σ is defined in (2.11),

∥f∥∞,B(x,1)×[t,t+1] = sup
y∈B(x,1), s∈[t,t+1]

|f(y, s)| (2.46)

and

[f ]0,σ,B(x,1)×[t,t+1] = sup
y1 ̸=y2∈B(x,1), s1 ̸=s2∈[t,t+1]

|f(y1, s1)− f(y2, s2)|
|y1 − y2|2σ + |s1 − s2|σ

. (2.47)

We have the validity of the following estimates, whose proof is quite technical and delayed to Section
12.

Lemma 2.3. Assume λ = λ(t) satisfies (2.11). The error function defined in (2.40) can be described
as follows

E1(r, t) =
α(t)

µ+ r
η(

r

r0
√
t
) + E1,∗[λ](r, t), (2.48)

where η is the smooth cut off function defined in (1.9), α is the function defined in (2.41), and r0 is a
given fixed small number. The function E1,∗[λ](r, t) depends smoothly on λ. Furthermore, there exists
C > 0 such that

∥E1,∗∥∗ ≤ C. (2.49)

If the initial time t0 in Problem (2.1) is large enough, there exist c ∈ (0, 1) so that, for any λ1, λ2
satisfying (2.11), we have

∥E1,∗[λ1]− E1,∗[λ2]∥∞,B(x,1)×[t,t+1] ≤ cµ
1
2
0 t

− 3
2h0(

r√
t
) ∥λ1 − λ2∥♯ (2.50)
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and

[E1,∗[λ1]− E1,∗[λ2]]0,σ,B(x,1)×[t,t+1] ≤ cµ
1
2
0 t

− 3
2 h0(

r√
t
) ∥λ1 − λ2∥♯, (2.51)

for any r = |x| and any t. The definition of the function h0 and of the norm ∥·∥∗ are given respectively
in (2.44) and in (2.45). Furthermore the constant c in (2.50) and (2.51) can be made as small as one
needs, provided that the initial time t0 is chosen large enough.

2.4. Construction of the second global approximation and estimate of the new error.
Taking into account the expression of the error function given in (2.48), we introduce a correction

function ϕ0 to partially get rid of the term α(t)
µ+r . More precisely, let

ᾱ(t) =

{
α(t0) for t < t0
α(t) for t ≥ t0

, (2.52)

and introduce the function ϕ0 solution to

∂tϕ0 = ∆ϕ0 +
ᾱ(t)

µ+ r
1{r<M}, in R3 × (0,∞), ϕ0(x, t0 − 1) = 0, in R3, M2 = t0. (2.53)

Here, for a set K, we mean

1K(x) = 1, if x ∈ K, = 0, if x ̸∈ K.

Duhamel’s formula provides an explicit expression for ϕ0

ϕ0(x, t) =

∫ t

t0−1

1

(4π(t− s))
3
2

∫
R3

e−
|x−y|2
4(t−s)

ᾱ(s)

µ+ |y|
1{|y|<M} dy ds. (2.54)

Since λ satisfies (2.11), classical parabolic estimates give that ϕ0 is locally C2+2σ,1+σ, where σ is the
Hölder exponent in (2.11). In the interval (t0,∞), the function ϕ0 solves

∂tϕ0 = ∆ϕ0 +
α(t)

µ+ r
1{r<M}, in R3 × (t0,∞), (2.55)

and at time t = t0, the function ϕ0(x, t0) is radial in x and decays fast as |x| → ∞, that is

|ϕ0(x, t0)| ≤ ce−a|x|
2

, as |x| → ∞ (2.56)

for some positive, fixed constants a and c. Indeed, let x = ℓ e, with ∥e∥ = 1, and assume that

ℓ > max{1, 2M}. Thus |x− y|2 > ℓ2

4 , for any |y| < M , and

|ϕ0(x, t0)| ≤ C|α(t0)|

∫ t0

t0−1

e
− ℓ2

16(t0−s)

(t0 − s)
3
2

ds

 (∫
|y|<M

dy

|y|

)
≤ C|α(t0)|M2e−

ℓ2

16 .

Taking ℓ→ ∞, estimate (2.56) thus follows from (2.41).

The second approximation is given by

U2[λ](r, t) = U1(r, t) + ϕ0(r, t) (2.57)

where U1 is in (2.38). Observe that U2 satisfies the decaying conditions (2.2) at the initial time t0 as
consequence of (2.56). The new Error Function

E2[λ](r, t) = E [U2](r, t)

is thus

E2[λ](r, t) = E1,∗ +
α(t)

r

(
η(

r

r0
√
t
)− 1{r<2M}

)
︸ ︷︷ ︸

:=E21

+(U1 + ϕ0)
5 − U5

1︸ ︷︷ ︸
E22

. (2.58)
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The function E1,∗ is defined in (2.48). For later purpose, it is useful to estimate, in the ∥ · ∥∗-norm
introduced in (2.45), the function

Ē2 := E21 + (1− ηR(x, t))E22 where ηR(x, t) = η

(
x

Rµ0

)
. (2.59)

Here η(s) is given by (1.9), while the number R is a large number, whose definition will depend on t0,
but it will not dependent on t.

We have the validity of the following lemma, whose proof is given in Section 13.

Lemma 2.4. Assume λ = λ(t) satisfies (2.11). The error function defined in (2.58) depends smoothly
on λ and it satisfies the following estimates: there exists C > 0

∥Ē2∥∗ ≤ C. (2.60)

If the initial time t0 is large enough, there exist small positive number c ∈ (0, 1) such that, for any λ1,
λ2 satisfying (2.11), we have

∥Ē2[λ1]− Ē2[λ2]∥∞,B(x,1)×[t,t+1] ≤ cµ
1
2
0 t

− 3
2h0(

r√
t
) ∥λ1 − λ2∥♯, r = |x|, (2.61)

and [
Ē2[λ1](r, t)− Ē2[λ2](r, t)

]
0,σ,[t,t+1]

≤ cµ
1
2
0 t

− 3
2 h0(

r√
t
) ∥λ1 − λ2∥♯, (2.62)

for any x and t > t0, provided the initial time t0 in Problem (2.1) is chosen large enough. The
definition of the function h0 is given in (2.44), and the definition of the ∥ · ∥∗-norm is given in (2.45).

Remark 2.5. From the proof of the result, we also get that the constant c in (2.61) and (2.62) can be
made as small as one needs, provided that the initial time t0 is chosen large enough.

3. The inner-outer gluing

We recall the reader that our ultimate purpose is to construct a global unbounded solution u to
(2.1)-(2.2) of the form

u = U2[λ](r, t) + ϕ̃, t > t0 (3.1)

where U2 is defined in (2.57), while ϕ̃(x, t) is a smaller perturbation. The rest of the paper is thus

devoted to find ϕ̃(x, t). The construction of ϕ̃(x, t) is done by means of a inner-outer gluing procedure.
This procedure consists in writing

ϕ̃(x, t) = ψ(x, t) + ϕin(x, t) where ϕin(x, t) := ηR(x, t)ϕ̂(x, t) (3.2)

with

ϕ̂(x, t) := µ
− 1

2
0 ϕ

(
x

µ0
, t

)
, ηR(x, t) = η

(
x

Rµ0

)
, (3.3)

where η(s) is given in (1.9).

In terms of ϕ̃, Problem (2.1)-(2.2) reads as

∂tϕ̃ = ∆ϕ̃+ 5U4
2 ϕ̃+N(ϕ̃) + E2 in R3 × [t0,∞), (3.4)

where E2 is defined in (2.58) and

N(ϕ̃) = (U2 + ϕ̃)5 − U5
2 − 5U4

2 ϕ̃.

Recalling that wµ = µ− 1
2w( rµ ), we let

V [λ](r, t) = 5
(
U4
2 − w4

µ

)
ηR + 5U4

2 (1− ηR) (3.5)
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and write 5U4
2 = 5w4

µηR+V [λ](r, t). A main observation we make is that ϕ̃ solves Problem (3.4) if the
tuple (ψ, ϕ) solves the following coupled system of nonlinear equations

∂tψ = ∆ψ + V [λ]ψ + [2∇ηR∇xϕ̂+ ϕ̂(∆x − ∂t)ηR]

+N [λ](ϕ̃) + E21 + E22(1− ηR) in R3 × [t0,∞), (3.6)

and

∂tϕ̂ = ∆ϕ̂+ 5w4
µϕ̂+ 5w4

µψ + E22 in B2Rµ0
(0)× [t0,∞). (3.7)

We refer to (2.58) for the definition of E21 and E22. In terms of ϕ, see (3.3), equation (3.7) becomes

µ2
0∂tϕ =∆yϕ+ 5w4ϕ+ µ

5
2
0 E22(µ0y, t) + 5

µ
1
2
0

(1 + Λ)4
w4(

y

(1 + Λ)2
)ψ(µ0y, t) (3.8)

+B[ϕ] +B0[ϕ] in B2R(0)× [t0,∞)

where

B[ϕ] := µ0 (∂tµ0)

(
ϕ

2
+ y · ∇yϕ

)
(3.9)

and

B0[ϕ] := 5

[
w4

(
y

(1 + Λ)2

)
− w4(y)

]
ϕ+ 5

(
1− (1 + Λ)4

(1 + Λ)4

)
w4

(
y

(1 + Λ)2

)
ϕ. (3.10)

We call (3.6) the outer problem and (3.8) the inner problem(s) .

We next describe precisely our strategy to solve (3.6)-(3.8). For given parameter λ satisfying (2.11),
and function ϕ fixed in a suitable range, we first solve for ψ the outer Problem (3.6), in the form of a
(nonlocal) nonlinear operator ψ = Ψ(λ, ϕ). This is done in full details in Section 4.

We then replace this ψ in equation (3.8). At this point we consider the change of variable,

t = t(τ),
dt

dτ
= µ2

0(t),

that reduces (3.8) to

∂τϕ = ∆yϕ+ 5w4ϕ+H[ψ, λ, ϕ](y, t(τ)), y ∈ B2R(0), τ ≥ τ0 (3.11)

where τ0 is such that t(τ0) = t0, and

H[ψ, λ, ϕ](y, t(τ)) = µ
5
2
0 E22(µ0y, t) + 5

µ
1
2
0

(1 + Λ)4
w4(

y

(1 + Λ)2
)ψ(µ0y, t)

+B[ϕ] +B0[ϕ] (3.12)

Next step is to construct a solution ϕ to Problem (3.11). We can do this for functions ϕ which
furthermore satisfy

ϕ(y, τ0) = e0Z(y), y ∈ B2R(0), (3.13)

for some constant e0. Here Z is the positive radially symmetric bounded eigenfunction associated to
the only negative eigenvalue λ0 to the problem

L0(ϕ) + λϕ = 0, ϕ ∈ L∞(R3). (3.14)

Here L0 is the linear operator around the standard bubble w in R3. We refer to (2.6) for the definition
of L0. Furthermore, it is known that λ0 is simple and Z decays like

Z(y) ∼ |y|−1e−
√

|λ0| |y| as |y| → ∞.

To be more precise, we prove that Problem (3.11)-(3.13) is solvable in ϕ, provided that in addition
the parameter λ is chosen so that H[ψ, λ, ϕ](y, t(τ)) satisfies the orthogonality condition∫

B2R

H[ψ, λ, ϕ](y, t(τ))Z0(y)dy = 0, for all t > t0. (3.15)
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We recall that Z0(y), defined in (2.7), is the only bounded radial element in the kernel of the linear
elliptic operator L0.

Equation (3.15) becomes a non-linear, non-local problem in λ, for any fixed ϕ. We attack this
problem in Sections 5, 6, 7. In Section 5, we get the precise form of Equation (3.15) as a non local
non linear operator in λ. The principal part of the operator in λ defined by Equation (3.15) is a linear
non-local operator which turns out to be a perturbation of the 1

2 -Caputo derivative. We refer to [3] for
the original definition of Caputo derivatives. In Section 6 we develop an invertibility theory for such
linear operator. In Section 7 we fully solve Equation (3.15) in λ, by means of a Banach fixed point
argument. The solution λ = λ[ϕ] is a non linear operator in ϕ, and we also describe the Lipschitz
dependence of λ with respect to ϕ, which is a key property for our final argument.

At this point, one realizes that a central point of our complete proof is to design a linear theory
that allows us to solve in ϕ Problem (3.11)-(3.13). To this purpose, we shall construct a solution to
an initial value problem of the form

ϕτ = ∆ϕ+ 5w4ϕ+ h(y, τ) in B2R × (τ0,∞), ϕ(y, τ0) = e0Z(y) in B2R. (3.16)

And then we solve Problem (3.11)-(3.13) by means of a contraction mapping argument.

Let a be a fixed number with a ∈ (0, 2), and let ν > 0 so that, for t large,

τ−ν ∼ µ
3
2
0 t

−1, if γ ̸= 2, and τ−ν ∼ µ
3
2
0 t

−1+ν′
, if γ = 2,

for some ν′ > 0 that can be fixed arbitrarily small. We solve (3.16) for functions h with ∥h∥ν,2+a-norm
bounded, where

∥h∥ν,2+a := sup
τ>τ0,y∈R3

τν(1 + |y|2+a)

[
∥h∥∞,B(y,1)×[τ,τ+1] + [h]0,σ,B(y,1)×[τ,τ+1]

]
, (3.17)

and we construct solutions ϕ in the class of functions with ∥ϕ∥ν,a-norm bounded, where

∥ϕ∥ν,a := supτ>τ0,y∈R3 τ τ (1 + |y|a)
[
∥ϕ∥∞,B(y,1)×[τ,τ+1] + [ϕ]0,σ,B(y,1)×[τ,τ+1]

]
+supτ>τ0,y∈R3 τν(1 + |y|1+a)

[
∥∇ϕ∥∞,B(y,1)×[τ,τ+1] + [∇ϕ]0,σ,B(y,1)×[τ,τ+1]

]
(3.18)

We have the validity of the following result

Proposition 3.1. Let ν, a be given positive numbers with 0 < a < 2. Then, for all sufficiently large
R > 0 and function h = h(y, τ), with h(y, τ) = h(|y|, τ) and ∥h∥ν,2+a < +∞ that satisfies∫

B2R

h(y, τ)Z0(y) dy = 0 for all τ ∈ (τ0,∞) (3.19)

there exist ϕ ∈ C2+2σ,1+σ-loc., which is radial in y, and e0 which solve Problem (3.16). Moreover,
ϕ = ϕ[h], and e0 = e0[h] define linear operators of h that satisfy the estimates

|ϕ(y, τ)| ≤ C τ−ν
R4−a

1 + |y|3
∥h∥ν,2+a, |∇yϕ(y, τ)| ≤ C τ−ν

R4−a

1 + |y|4
∥h∥ν,2+a, (3.20)

and

|e0[h]| ≤ C ∥h∥ν,2+a,

for some fixed constant C.

We postpone the proof of this Proposition to Section 9. Section 8 is devoted to solve Problem
(3.11)-(3.13) and this concludes the proof of Theorem 1.1.
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4. Solving the outer problem

The aim of this section is to solve the outer problem (3.6) for given parameter λ satisfying (2.11),
and for given small functions ϕ, in the form of a nonlinear nonlocal operator

ψ(x, t) = Ψ[λ, ϕ](x, t).

We recall that ϕin(x, t) = ηR(x, t)ϕ̂(x, t) with

ϕ̂(x, t) := µ
− 1

2
0 ϕ

(
x

µ0
, t

)
, and ηR(x, t) = η

(
x

Rµ0

)
.

Here η(s) is defined in (1.9), and number R is a sufficiently large number, independent of t. We assume
that

∥ϕ∥ν,a is bounded. (4.1)

Let φ0 : (0,∞) → (0,∞) be a smooth and bounded given function with the property that

φ0(s) =

{
s for s→ 0+
1
s3 for s→ ∞ . (4.2)

We introduce the following L∞-weighted norms for functions f = f(r, t)

∥f∥∗∗ := ∥f∥1 + ∥Df∥2 (4.3)

∥f∥1 := sup
x∈R3,t>t0

µ
− 1

2
0 t

1
2 φ−1

0 (
r√
t
)

[
∥f∥∞,B(x,1)×[t,t+1]

+ [f ]0,σ,B(x,1)×[t,t+1]

]
, r = |x|. (4.4)

∥f∥2 := sup
x∈R3,t>t0

µ
− 1

2
0 t (φ′

0)
−1(

r√
t
)

[
∥f∥∞,B(x,1)×[t,t+1]

+ [f ]0,σ,B(x,1)×[t,t+1]

]
, r = |x|. (4.5)

Refer to (2.46) and (2.47) for the definitions of ∥f∥∞,B(x,1)×[t,t+1] and [f ]0,σ,B(x,1)×[t,t+1].

Proposition 4.1. Assume that λ satisfies (2.11), and that the function ϕ satisfies the bound (4.1).
Let ψ0 ∈ C2(R3), radially symmetric so that

|y| |ψ0(y)|+ |y| |∇ψ0(y)| ≤ t−a0 e−b|y|, (4.6)

for some positive constants a and b. There exists t0 large so that Problem (3.6) has a unique solution
ψ = Ψ[λ, ϕ] so that

ψ(r, t0) = ψ0(r), ∥ψ∥1 + ∥Dψ∥2 ≤ C. (4.7)

Proof. Let f be a given function with ∥f∥∗-norm bounded. Classical parabolic estimates give that any
solution to ∂tψ = ∆ψ + f is locally C2+2σ,1+σ. Furthermore, consequence of Lemma 11.1 is that the

function φ̄0(r, t) = µ
1
2
0 t

− 1
2φ0(

r√
t
) is a positive supersolution for ∂tψ ≥ ∆ψ + f(r, t). Observe also that

φ̄0(r, t0) ≥ ψ0(r). Combining these facts with the maximum principle, we see that, for a function f
with ∥f∥∗-norm bounded, the unique solution to ∂tψ = ∆ψ + f , with ψ(r, t0) = ψ0, has ∥ψ∥∗∗-norm
bounded. We claim that a possibly large multiple of φ̄0 works as a supersolution also for Problem

∂tψ ≥ ∆ψ + V (r, t)ψ + f(r, t). (4.8)

Indeed, recalling the definition of V in (3.5), we write

V = V1 + V2, V1 = 5
(
U4
2 − w4

µ

)
ηR, V2 = 5U4

2 (1− ηR) .
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In the region where ηR ̸= 0, namely when r < 2Rµ0, we expand in Taylor the function V1 and we find
s∗ ∈ (0, 1) so that

V1(r, t) = 20 (wµ + s∗(µ′
0Ψ1(r, t) + ϕ0(r, t)))

3
[µ′

0Ψ1(r, t) + ϕ0(r, t))]ηR.

From here, we see that, in this region, |V1(r, t)| . Rt−1 ηR, so that

|V1(r, t)ψ0(r, t)| . µ
1
2
0 t

− 3
2 h0(

r√
t
). (4.9)

Let us now consider V2. This function is not zero only when r > Rµ0, and in this region we have that

|V2(r, t)| . µ2
0

r4 (1− ηR), so that

|V2(r, t)ψ0(r, t)| .
µ2

r4
µ

1
2
0 t

− 1
2φ0

(
r√
t

)
(1− ηR) . R−2µ

1
2
0 t

− 3
2h0(

r√
t
). (4.10)

Choosing R large, but independent of t, we thus find that a multiple of φ̄0 is a supersolution for (4.8).

We call To : (f, ψ0) → ψ the linear operator that to any f with ∥f∥∗-norm bounded and any initial
condition ψ0 satisfying (4.6) associates the unique solution to

∂tψ = ∆ψ + V [λ](r, t)ψ + f(r, t), ψ(r, t0) = ψ0(r), (4.11)

which has bounded ∥ψ∥∗∗-norm. Define ψ̄ = To(0, ψ0). We observe that ψ + ψ̄ is a solution to (3.6) if
ψ is a fixed point for the operator

Ao(ψ) = To

(
[2∇ηR∇xϕ̂+ ϕ̂(∆x − ∂t)ηR] +N [λ](ϕ̃+ ψ̄) + E21 + E22(1− ηR)

)
(4.12)

We shall show the existence and uniqueness of such fixed point as consequence of the Contraction
Mapping Theorem. We perform a fixed point argument in the set of functions ψ in

Bo = {ψ ∈ L∞ : ∥ψ∥∗∗ < r} (4.13)

for some r > 0.

From Lemma 2.3 we have that there exists a constant c1 so that

∥E21 + E22(1− ηR)∥∗ ≤ c1. (4.14)

We now claim that there exists constant c2 such that, if the parameter λ satisfies (2.11), and if the
function ϕ satisfies the bound (4.1), then∥∥∥2∇ηR∇xϕ̂+ ϕ̂(∆x − ∂t)ηR

∥∥∥
∗
+
∥∥∥N(ϕ̃+ ψ̄)

∥∥∥
∗
≤ c2 (4.15)

Furthermore, we claim that there exists a constant c ∈ (0, 1) so that, for any ψ1, ψ2 ∈ B0,

∥Ao(ψ1)−Ao(ψ2)∥∗∗ ≤ c ∥ψ1 − ψ2∥∗∗. (4.16)

If we assume, for the moment, the validity of (4.14), (4.15) and (4.16), we get the existence of a
fixed point for problem (4.12) in the set (4.13), provided r is chosen large enough.

Proof of (4.15). We start with the estimate of the first term in (4.15). Since we assume the validity
of the bound (4.1) on ϕ, we write∣∣∣ϕ̂∆xηR

∣∣∣ . |η′′( |x|
Rµ0

)|
R2µ2

0

|ϕ̂| .
|η′′( |x|

Rµ0
)|

R2µ2
0

µ
3
2
0 t

−1

(1 + | xµ0
|a)

∥ϕ∥ν,a

see (3.18) for the notation ∥ϕ∥ν,a. Thus, we get∣∣∣ϕ̂∆xηR

∣∣∣ . |η′′( |x|
Rµ0

)|
R2+a

µ
− 1

2
0 t−1 r√

t
h0(

r√
t
) ∥ϕ∥ν,a .

|η′′( |x|
Rµ0

)|
R1+a

µ
1
2
0 t

− 3
2h0(

r√
t
) ∥ϕ∥ν,a

. µ
1
2
0 t

− 3
2h0(

r√
t
)
∥ϕ∥ν,a
R1+a

.
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Arguing similarly, we get∣∣∣ϕ̂∂xηR∣∣∣ . µ
1
2
0 t

− 3
2h0(

r√
t
)
∥ϕ∥ν,a
R1+a

, and
∣∣∣∇ϕ̂∇ηR∣∣∣ . µ

1
2
0 t

− 3
2h0(

r√
t
)
∥ϕ∥ν,a
R1+a

,

which proves the L∞ bound in the first estimate in (4.15). To check the Hölder bound for this term,

we focus the analysis on the term g(x, t) := ϕ̂∆xηR. The others terms can be treated in a similar way.
We write

|g(x1, t1)− g(x2, t2)|
|x1 − x2|2σ + |t1 − t2|σ

= |∆xηR(x1, t1)|
|ϕ̂(x1, t1)− ϕ̂(x2, t2)|
|x1 − x2|2σ + |t1 − t2|σ

+ |ϕ̂(x2, t2)|
|∆xηR(x1, t1)−∆xηR(x2, t2)|

|x1 − x2|2σ + |t1 − t2|σ

In order to control the first term, we use the definition in (3.18) of ∥ϕ∥ν,a and we argue as before. The

second term can be easily treated using the L∞-bound on ϕ̂ and the smoothness of the function ∆xηR.
This complete the analysis of the first estimate in (4.15).

We continue with the proof of the second estimate in (4.15). We recall that N(ϕ̃) = (U2 + ϕ̃)5 −
U5
2 − 5U4

2 ϕ̃. It is convenient to estimate this function in three different regions: where r < M̄−1µ0,
where M̄−1µ0 < r < M̄

√
t and where r > M̄

√
t, with M̄ a large positive number.

From the definition of U2 in (2.57), we see that, if r < M̄−1µ0, then

|N(ϕ̃)| . µ
− 3

2
0 |ϕ̃|2 . µ

− 3
2

0

[
|ψ|2 + |ηRϕ̂|2

]
.

We recall that

|ψ| . ∥ψ∥∗∗ µ
1
2
0 t

− 1
2φ0(

r√
t
),

∣∣∣ηRϕ̂∣∣∣ . µ
3
2
0 t

−1|ηR| ∥ϕ∥µ,a (4.17)

so that we get, for r < M̄−1µ0,

|N(ϕ̃+ ψ̄)| . µ2
0t

−1
[
∥ψ + ψ̄∥2∗∗ + ∥ϕ∥2µ,a

] (
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
(4.18)

Let us now consider the region M̄−1µ0 < r < M̄
√
t. Here, after a Taylor expansion, we get that∣∣∣N(ϕ̃+ ψ̄)

∣∣∣ . w3
µ

[
|ψ + ψ̄|2 + |ηRϕ̂|2

]
. µ

3
2
0

r3

[
|ψ|2 + |ηRϕ̂|2

]
.

Using again (4.17), we obtain, for M̄−1µ0 < r < M̄
√
t,

|N(ϕ̃+ ψ̄)| . µ2
0t

−1
[
∥ψ + ψ̄∥2∗∗ + ∥ϕ∥2µ,a

] (
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
. (4.19)

Let us now consider r > M̄
√
t. Observe that in this region ηR = 0, |(ψ+ ψ̄)(r, t)| . µ

1
2
0 t

− 1
2φ0(

r√
t
) and,

from (13.3), also |U2(r, t)| . µ0

r . Thus we have∣∣∣N(ϕ̃+ ψ̄)
∣∣∣ . (µ0

r

)5
. µ

9
2
0 t

− 1
2

(
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
. (4.20)

From (4.18), (4.19), (4.20), we get the L∞ bound for the second estimate in (4.15).

Proof of (4.16). For any ψ1, ψ2 ∈ Bo, we have that

Ao(ψ1)−Ao(ψ2) = T0
(
N(ψ1 + ψ̄ + ϕin)−N(ψ2 + ψ̄ + ϕin)

)
thus

∥Ao(ψ1)−Ao(ψ2)∥∗∗ ≤ C∥N(ψ1 + ψ̄ + ϕin)−N(ψ2 + ψ̄ + ϕin)∥∗.
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We write

N(ψ1 + ϕin)−N(ψ2 + ϕin) = (U2 + ψ1 + g)5 − (U2 + ψ2 + g)5 − 5U4
2 (ψ1 − ψ2)

= (U2 + ψ1 + g)5 − (U2 + ψ2 + g)5 − 5(U2 + g)4(ψ1 − ψ2)︸ ︷︷ ︸
:=N1

+ 5[(U2 + g)4 − U4
2 ](ψ1 − ψ2)︸ ︷︷ ︸

:=N2

, g := ϕin + ψ̄

In the region where r < M̄
√
t, we have that

|N1(x, t)| . w3
µ|ψ1 − ψ2|2

which yields to

|N1(x, t)| . µ2
0t

−1
[
∥ψ1 − ψ2∥2∗∗

] (
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
.

while N2 can be estimated as

|N2(x, t)| .
[
µ2
0t

−1∥ψ̄∥∗∗ + µ2
0t

−1 ∥ϕin∥ν,a
]
∥ψ1 − ψ2∥∗∗

(
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
.

On the other hand, if r > M̄
√
t, we have that ϕin ≡ 0, so that

|N2(x, t)| . µ2
0∥ψ̄∥∗∗∥ψ1 − ψ2∥∗∗

(
µ

1
2
0 t

− 3
2h0(

r√
t
)

)
.

On the other hand N1 can be estimates as follows

|N1(x, t)| . |ψ1 − ψ2|5, from which |N1(x, t)| . µ2
0 µ

1
2
0 t

− 1
2 h0(

r√
t
)∥ψ1 − ψ2∥∗∗.

In summary, we get that

∥N(ψ1 + ϕin + ψ̄)−N(ψ2 + ϕin + ψ̄)∥∗,β ≤ Cµ2
0 ∥ψ1 − ψ2∥∗∗

where C = max{∥ψ1 − ψ2∥∗∗, ∥ϕin∥ν,a}. Thus we get the validity of (4.16) provided that t0 is large
enough.

�

Remark 4.2. Proposition 4.1 defines the solution to Problem (3.6) as a function of the initial condition
ψ0, in the form of an operator ψ = Ψ̄[ψ0], from a small neighborhood of 0 in the Banach space L∞(Ω)
equipped with the norm

sup
y∈R3

[
|y| |eb|y|ψ0(y)|+ |y| |eb|y|∇ψ0(y)|

]
(4.21)

into the Banach space of functions ψ ∈ L∞(Ω) equipped with the norm ∥ψ∥∗∗ , defined in (4.3). A
closer look to the proof of Proposition 4.1, and the Implicit Function Theorem give that ψ0 → Ψ̄[ψ0]
is a diffeomorphism, and that

∥Ψ̄[ψ1
0 ]− Ψ̄[ψ2

0 ]∥∗∗ ≤ c

[
sup
y∈R3

∣∣∣|y| eb|y|[ψ1
0 − ψ2

0 ]
∣∣∣+ sup

y∈R3

∣∣∣|y| eb|y|[∇ψ1
0 −∇ψ2

0 ]
∣∣∣] ,

for some positive constant c.

Proposition 4.3. Assume the validity of the assumptions of Proposition 4.1. Then the function
ψ = Ψ(λ, ϕ) depends smoothly on λ and ϕ, and we have the validity of the following estimates: for
any initial time t0 in Problem (2.1) sufficiently large, and any sufficiently large radius R in the cut off
function ηR introduced in (3.2) and there exist c such that, given λ1, λ2 satisfying (2.11) one has

∥Ψ[λ1, ϕ]−Ψ[λ2, ϕ]∥∗∗ ≤ c∥λ1 − λ2∥♯ (4.22)
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and for any ϕ satisfying (4.1). Moreover, given ϕ1, ϕ2 satisfying (4.1), one has

∥Ψ[λ, ϕ1]−Ψ[λ, ϕ2]∥∗∗ ≤ c∥ϕ1 − ϕ2∥ν,a (4.23)

for any λ satisfying (2.11).

Proof. Fix ϕ and define ψ̄ = ψ[λ1, ϕ]− ψ[λ2, ϕ], for λ1 and λ2 satisfying (2.11). Then ψ̄ solves

∂tψ̄ = ∆ψ̄ + (V [λ1] +N ′[λ]) (ψ̄) + F, R3 × (t0,∞), ψ̄(r, t0) = 0

for λ = sλ1 + (1− s)λ2, s ∈ (0, 1), where

F = E21[λ1]− E21[λ2] + (1− ηR) [E22[λ1]− E22[λ2]]
+ [V [λ1]− V [λ2]]ψ2 + [N [λ1]−N [λ1]] (ψ2 + ϕin)

where ψj = ψ[λj , ϕ], j = 1, 2. From Lemma 2.3, estimates (2.61)-(2.62), we get that

∥E21[λ1]− E21[λ2]∥∗ ≤ c∥λ1 − λ2∥♯

and

∥(1− ηR) [E22[λ1]− E22[λ2]] ∥∗ ≤ c∥λ1 − λ2∥♯,

provided t0 is large enough. One also checks that, for some c ∈ (0, 1)

∥ [V [λ1]− V [λ2]]ψ2∥∗ ≤ c∥λ1 − λ2∥♯, ∥ [N [λ1]−N [λ2]] (ψ2 + ϕin)∥∗ ≤ c∥λ1 − λ2∥♯.

The constant c1 can be made arbitrarily small provided t0 is large. Arguing as in (4.9) and (4.10), one

can show that a certain multiple of the function ∥λ1 − λ2∥♯φ̄0(r, t), where φ̄0 = µ
1
2
0 t

− 1
2φ0(

r√
t
), serves

as supersolution for ψ̄. This proves (4.22).

Let us now fix λ, and take ϕ1, ϕ2 satisfying (4.1). Denote by ϕinj = ηRϕ̂j , and ϕ̂j(x, t) =

µ
− 1

2
0 ϕj(

x
µ0
, t), for j = 1, 2, as natural. Let ψ̄ = ψ(λ, ϕ1)− ψ(λ, ϕ2). We have ψ̄(r, t0) = 0 and

∂tψ̄ = ∆ψ̄ + V [λ]ψ̄ + (ψ1 + ϕin1 )5 − (ψ2 + ϕin1 )5

+ [2∇ηR∇x(ϕ̂1 − ϕ̂2) + (ϕ̂1 − ϕ̂2)(∆x − ∂t)ηR]

+ (ψ2 + ϕin1 )5 − (ψ2 + ϕin2 )5 − 5U4
2 (ϕ

in
1 − ϕin2 ).

Arguing as in (4.6)-(4.21), we get∣∣∣[2∇ηR∇x(ϕ̂1 − ϕ̂2) + (ϕ̂1 − ϕ̂2)(∆x − ∂t)ηR]
∣∣∣ ≤ µ

1
2
0 t

− 3
2h0(

r√
t
)
∥ϕ1 − ϕ2∥ν,a

R1+a

≤ cµ
1
2
0 t

− 3
2h0(

r√
t
)∥ϕ1 − ϕ2∥ν,a

and also ∣∣(ψ2 + ϕin1 )5 − (ψ2 + ϕin2 )5 − 5U4
2 (ϕ

in
1 − ϕin2 )

∣∣ ≤ µ
1
2
0 t

− 3
2h0(

r√
t
)
∥ϕ1 − ϕ2∥ν,a

R1+a

≤ cµ
1
2
0 t

− 3
2h0(

r√
t
)∥ϕ1 − ϕ2∥ν,a.

The constant c1 in the last two formulas can be made arbitrarily small provided R is chosen large
enough. This concludes the proof. �
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5. Choice of λ: Part I

Let ψ = Ψ[λ, ϕ] be the solution to Problem (3.6) predicted by Proposition 4.1, and satisfying the
properties described in Proposition 4.3. We substitute ψ in equations (3.11) and (3.12), and we want
to solve, in ϕ, Problem (3.11), satisfying the initial condition (3.13). As we stated in Proposition 3.1,
Problem (3.11)-(3.13) can be solved for functions ϕ satisfying (4.1), provided that∫

B2R

H[ψ, λ, ϕ](y, t(τ))Z0(y) dy = 0, for all t > t0, (5.1)

where H[ψ, λ, ϕ] is defined in (3.12).

Next Lemma states that (5.1) is a non linear, non local equation in λ, at any fixed ϕ.

Lemma 5.1. Assume that λ satisfies (2.11), and that the function ϕ satisfies the bound (4.1). Let
ψ = Ψ[λ, ϕ] be the solution to Problem (3.6) predicted by Proposition 4.1. Then Equation (5.1) is
equivalent to

[1 + µ0µ
′
0b(t) + q1(λ)]ϕ0(0, t) = g(t) +G[λ, ϕ](t). (5.2)

Here ϕ0 is the function defined in (2.53) and also in (2.54), thus

ϕ0(0, t) =

∫ t

t0−1

1

(4π(t− s))
3
2

∫
R3

e−
|y|2

4(t−s)
ᾱ(s)

µ+ |y|
1{r<M} dy ds. (5.3)

The function b = b(t) is a smooth function in (t0,∞). With q1(s) we denote a smooth function so that
q1(0) = 0, and q′1(0) ̸= 0. Moreover,

∥b∥∞ < C, ∥g∥♭ ≤ C, ∥G[λ, ϕ]∥♭ ≤ C. (5.4)

Furthermore, if the initial time t0 in Problem (2.1) is chosen large enough, there exists R in the
definition of the cut off function in (3.2) sufficiently large and there exist constant c ∈ (0, 1) so that,
for any ϕ,

∥G[λ1, ϕ]−G[λ2, ϕ]∥♭ ≤ c∥λ1 − λ2∥♯ (5.5)

and, for any λ,

∥G[λ, ϕ1]−G[λ, ϕ2]∥♭ ≤ c∥ϕ1 − ϕ2∥ν,a. (5.6)

The constants c in (5.5) and (5.6) can be made as small as one needs, provided that the initial time t0
is chosen large enough. We refer to (2.43) and (3.18) for the definitions of ∥·∥♭ and ∥·∥ν,a respectively.

Proof. Throughout the proof, we denote by qi = qi(s), for any interegr i, a smooth real function, with
the property that d

(ds)j qi(0) = 0, for j < i, and d
(ds)i qi(0) ̸= 0.

We decompose∫
B2R

H[ψ, λ, ϕ](y, t(τ))Z0(y) dy = µ
5
2
0

∫
B2R

E22(µ0y, t)Z0(y) dy

+ 5

∫
B2R

µ
1
2
0

(1 + λ)2
w4(

y

1 + λ
)ψ(µ0y, t)Z0(y) dy

+

∫
B2R

B[ϕ]Z0(y) dy

∫
B2R

B0[ϕ]Z0(y) dy

= i1 + i2 + i3 + i4.

For any j = 1, . . . , 4, ij is a function of t, and depends also on λ and ϕ. To emphasize this dependence,
we write ij = ij [λ, ϕ](t).
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We claim that

µ
− 1

2
0 i1[λ, ϕ](t) = µ2

0µ
−2

[(
5

∫
B2R

w4(y)Z0(y) dy

)
ϕ0(0, t) (5.7)

+ (q1(λ) + µ0µ
′
0q0(λ)) ϕ0(0, t) + µσ0α(t)b(t)

]
,

where b(t) is a smooth function in (t0,∞), which is uniformly bounded as t→ ∞.

Observe that i1 does not depend on ϕ. From the equation (2.53) satisfied by ϕ0, and Lemma 11.1,
we get the existence of a positive constant c so that |ϕ0(µ0y, t)| ≤ cα(t)µ0(t) for any y ∈ B2R. Thus,
we Taylor expand E22 in the region y ∈ B2R as follows

E22(µ0y, t) = 5U4
1ϕ0 + 4(U1 + sϕ0)

3ϕ20 = a+ b

for some s ∈ (0, 1). Let us first analyze a. We write

a = 5µ−2w4(y)ϕ0(0, t) + 5[U4
1 (µ0y)− µ−2w4(y)]ϕ0(0, t)︸ ︷︷ ︸

:=a1

+5U4
1 [ϕ0(µ0y, t)− ϕ0(0, t)]︸ ︷︷ ︸

:=a2

Observe that, by definition of U1 in (2.38), and (2.13), we have

U4
1 (µ0y)− µ−2w4(y) =

[
wµ(µ0y) + µ′

0µ
1
2Φ1(

µ0r

µ
)

]4
− µ−2w4(y)

= µ−2

[
w(y) +

(
w(

y

(1 + Λ)2
)− w(y)

)
+ µ′

0µΦ1(
µ0r

µ
)

]4
− µ−2w4(y)

= 4µ−2 w3(y)s

[(
w(

y

(1 + Λ)2
)− w(y)

)
+ µ′

0µΦ1(
µ0r

µ
)

]
for some s ∈ (0, 1). Observe that

w(
y

(1 + Λ)2
)− w(y) = ∇w(y) · y +∇w(y) · yz[−2Λ− Λ2] (5.8)

for some z ∈ (0, 1). Taking into account also the description of Φ1 in (2.9), we get that∫
B2R

a1Z0 dy = µ−2 [q1(Λ) + µ0µ
′
0q0(Λ)]ϕ0(0, t). (5.9)

We next claim that, for y ∈ B2R, we have

ϕ0(µ0y, t)− ϕ0(0, t) = α(t)|µ0y|σ Π(t)Θ(|y|), (5.10)

for some σ ∈ (0, 1). We postpone the proof of (5.10) to the Appendix. We thus get∫
B2R

a2Z0 dy = µ−2µσ0α(t)b(t). (5.11)

Collecting estimates (5.9)-(5.11) we get (5.7).

We claim that

µ
− 1

2
0 i2[λ, ϕ](t) = g(t) +G[λ, ϕ](t) (5.12)

with

∥g∥♭ ≤ c, ∥G[λ, ϕ]∥♭ ≤ c
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for some constant c. We refer to (2.43) for the definition of ∥ · ∥♭. Furthermore, we claim that G
satisfies estimates (5.5) and (5.6), for some constant c1 ∈ (0, 1). To prove the above assertion, we write

µ
− 1

2
0 i2[λ, ϕ](t) = 5

∫
B2R

w4(y)ψ[0, 0](µ0y, t)Z0(y) dy

+ 5

∫
B2R

w4(y)[ψ[λ, 0] − ψ [0, 0]](µ0y, t)Z0(y) dy

+ 5

∫
B2R

w4(y)[ψ[λ, ϕ]− ψ[λ, 0]](µ0y, t)Z0(y) dy

+ 5

∫
B2R

[w4(
y

(1 + Λ)2
)− w4(y)]ψ[λ, ϕ](µ0y, t)Z0(y) dy

+ 5[
1

(1 + Λ)4
− 1]

∫
B2R

w4(
y

(1 + Λ)2
)ψ[λ, ϕ](µ0y, t)Z0(y) dy

=

5∑
j=1

gj .

The first term,

g1(t) = 5

∫
B2R

w4(y)ψ(µ0y, t) [0, 0]Z0(y) dy,

is an explicit smooth function, globally defined in (t0,∞), which satisfies the bound

∥g1∥♭ ≤ c

(
5

∫
B2R

w4(y)|y|Z0(y) dy

)
(5.13)

for some constant c > 0, as direct consequence of (4.7). Let us analyze the term g5. We see that
g5 = g5[λ, ϕ](t). Let us first assume that λ and ϕ are fixed. From (4.7), we get

|g5(t)| ≤ cq1(λ)

∫
B2R

∣∣w4(y)ψ[λ, ϕ](µ0y, t)Z0(y)
∣∣ dy ≤ cµ

3
2
0 t

−1q1(λ)

∫
|y|

(1 + |y|5)
dy.

Using again (4.7) and the assumptions on λ and on ϕ, we get [g5]0,σ,[t,t+1] ≤ cµ
3
2
0 t

−1, from which we
conclude that ∥g5∥♭ ≤ c, for some constant c > 0. Let us now fix ϕ and take λ1, λ2 satisfying (2.11).
We write

g5[λ1, ϕ]− g5[λ2, ϕ] = 5[
1

(1 + Λ1)4
− 1

(1 + Λ2)4
]

∫
B2R

w4(
y

(1 + Λ1)2
)ψ[λ1, ϕ](µ0y, t)Z0(y) dy

+ 5[
1

(1 + Λ2)4
− 1]

∫
B2R

[w4(
y

(1 + Λ1)2
)− w4(

y

(1 + Λ2)2
)]ψ[λ1, ϕ](µ0y, t)Z0(y) dy

+ 5[
1

(1 + Λ2)4
− 1]

∫
B2R

w4(
y

(1 + Λ2)2
)[ψ[λ1, ϕ]− ψ[λ2, ϕ]](µ0y, t)Z0(y) dy

= e1 + e2 + e3.

Thanks to (2.11), and arguing as before, we see that

|e1(t)| ≤ c|Λ1(t)− Λ2(t)|
∫
B2R

∣∣w4(y)ψ[λ1, ϕ](µ0y, t)Z0(y)
∣∣ dy

≤ cµ0(t)
3
2 t−1

(∫ ∞

t

s−1µ0(s) ds

)
∥λ1 − λ2∥♯

≤ [µ0(t0)]µ0(t)
3
2 t−1∥λ1 − λ2∥♯ ≤ c1µ0(t)

3
2 t−1∥λ1 − λ2∥♯

where c1 is a positive number, which can be chosen arbitrarily small, in particular c1 < 1, provided t0
is chosen large enough. Similarly one can show that, thanks to (2.11),

[e1]0,σ,[t,t+1] ≤ c1µ0(t)
3
2 t−1∥λ1 − λ2∥♯.
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We thus can conclude that there exists a positive small number c1 < 1 so that

∥e1∥♭ ≤ c1∥λ1 − λ2∥♯.
A similar argument allow us to say that also ∥e2∥♭ ≤ c1∥λ1 − λ2∥♯. We next analyze e3. From (4.22)
we get that

|e3(t)| ≤ µ
3
2
0 t

−1

(∫
w4(y)

|y|
1 + |y|

dy

)
∥ψ[λ1, ϕ]− ψ[λ2, ϕ]∥∗∗

≤ c1µ
3
2
0 t

−1∥λ1 − λ2∥♯,
and also

[e3]0,σ,[t,t+1] ≤ c1µ
3
2
0 t

−1∥λ1 − λ2∥♯,
for some constant c1 ∈ (0, 1). We can conclude that

∥g5[λ1, ϕ]− g5[λ2, ϕ]∥♭ ≤ c1∥λ1 − λ2∥♯.
The same estimate can be obtained for g4, arguing in a similar way.

Let us now consider g2. This term does not depend on ϕ, namely g2[λ, ϕ](t) = g2[λ](t). From
Proposition 4.3, we get

|g2(t)| ≤ µ
3
2
0 t

−2

(∫
w4 |y|

1 + |y|
dy

)
∥λ∥♯ ≤ cµ

3
2
0 t

−2∥λ∥♯,

and similarly

[g2(t)]0,σ,[t,t+1] ≤ cµ
3
2
0 t

−2∥λ∥♯.

Furthermore, if t0 is large enough, there exists c1 ∈ (0, 1) so that

|g2[λ1](t)− g2[λ2](t)| ≤ 5

∫
R3

w4(y) ∥[ψ[λ1, 0]− ψ[λ2, 0]] (µ0y, t)|Z0dy

≤ Ct−1
0 µ

3
2
0 t

−2∥λ1 − λ2∥♯ ≤ c1µ
3
2
0 t

−2∥λ1 − λ2∥♯
and also

[g1[λ2]− g2[λ2]]0,σ,[t,t+1] ≤ c1µ
3
2
0 t

−2∥λ1 − λ2∥♯
thanks to the results of Proposition 4.3. Arguing in the same way, one gets similar estimates for g3.

Collecting all the above arguments, we conclude that µ
− 1

2
0 i2[λ, ϕ](t) can be written as in (5.12), with

g and G satisfying (5.4), (5.5) and (5.6).

Next we claim that

µ
− 1

2
0 ij [λ, ϕ](t) = G[λ, ϕ](t), j = 3, 4, (5.14)

and G satisfies (5.4), (5.5) and (5.6). We start with j = 3. First, we see that i3 does not depend on
λ, and it is linear in ϕ. Since we are assuming that ϕ satisfies (4.1), we have∣∣∣µ− 1

2
0 i3(t)

∣∣∣ ≤ (µ0µ
′
0R

2−a)µ 3
2
0 (t)t

−1∥ϕ∥ν,a ≤ cµ
3
2
0 (t)t

−1∥ϕ∥ν,a

and [
µ
− 1

2
0 i3(t)

]
0,σ,[t,t+1]

≤ cµ
3
2
0 (t)t

−1∥ϕ∥ν,a

for some constant c > 0. Let us know take ϕ1, and ϕ2, and we get that, if µ0(t0)µ
′
0(t0)R

2−a is small
enough, ∣∣∣µ− 1

2
0 (i3[ϕ1]− i3[ϕ2]) (t)

∣∣∣ ≤ c1µ
3
2
0 (t)t

−1∥ϕ1 − ϕ2∥ν,a
and [

µ
− 1

2
0 (i3[ϕ1]− i3[ϕ2]) (t)

]
0,σ,[t,t+1]

≤ c1µ
3
2
0 (t)t

−1∥ϕ1 − ϕ2∥ν,a

for some c1 ∈ (0, 1). Estimate (5.14) for j = 4 can be proved in a very similar way. We leave the
details to the interested reader. Combining (5.7), (5.12) and (5.14), we complete the proof of (5.2).
This concludes the proof of the Lemma.
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�

6. Solving a non local linear problem

Let ϕ0 be the function introduced in (2.53). Later in our argument we will need to solve in λ, a non
local equation of the form

ϕ0(0, t) = h(t), t ∈ (t0,∞) (6.1)

for a certain right hand side h. We see from (5.3) that ϕ0(0, t), defined as

ϕ0(0, t) =

∫ t

t0−1

∫
R3

ᾱ(s)

(4π(t− s))
3
2

e−
|y|2

4(t−s)

µ+ |y|
1{|y|<M} dy ds,

defines a non-local non-linear operator in λ. For convenience we recall that

α(t) = 3
1
4 µ

− 1
2

0 (µ0Λ)
′
, ᾱ(t) =

{
α(t0) for t < t0
α(t) for t ≥ t0

, Λ(t) =

∫ ∞

t

λ(s) ds.

We write
ϕ0(0, t) = T [λ](t) + T̂ [λ](t), (6.2)

where T is

T [λ](t) =

∫ t

t0−1

∫
R3

ᾱ(s)

(4π(t− s))
3
2

e−
|y|2

4(t−s)

|y|
1{|y|<M} dz ds. (6.3)

We shall see that T̂ is a small perturbation of T , in some sense we will precise later. In this section,
we start with the analysis of Problem

T [λ](t) = h(t), t > t0. (6.4)

Straightforward computations give that

T [λ](t) = − ω̄3

4

∫ t

t0−1

ᾱ(s)√
t− s

(
1− e−

M2

(t−s)

)
ds. (6.5)

Indeed, letting z = y
2
√
t−s , one gets

T [λ](t) =

∫ t

t0−1

∫
R3

ᾱ(s)

2
√
t− s

e−|z|2

|z|
1{|z|< M√

t−s
} dz ds

=
ω̄3

2

∫ t

t0−1

∫ ∞

0

ᾱ(s)√
t− s

e−ρ
2

ρ1{ρ< M√
t−s

} dρ ds =
ω̄3

4

∫ t

t0−1

ᾱ(s)√
t− s

∫ M√
t−s

0

e−ρ
2

2ρ dρ

= − ω̄3

4

∫ t

t0−1

ᾱ(s)√
t− s

(
1− e−

M2

(t−s)

)
ds. (6.6)

Introduce the function β = β(t) as

β(t) =
ω̄3

4

∫ ∞

t

ᾱ(s) ds. (6.7)

If β = β(t) solves ∫ t

t0−1

β′(s)√
t− s

(
1− e−

M2

(t−s)

)
ds = h(t), (6.8)

then the function Λ(t) =
∫∞
t
λ(s) ds, defined as

ω̄Λ(t) = µ
− 1

2
0 (t)β(t) +

µ−1
0 (t)

2

∫ ∞

t

β(s)µ
− 1

2
0 µ′

0(s) ds, ω̄ =
ω̄3

4
3

1
4 , (6.9)

solves (6.4).
Next Lemma constructs a solution to (6.8). If we formally let M → ∞ in (6.8), we get that the

left hand side of (6.8) is nothing but the 1
2 -Caputo derivative of β. This fact inspires the proof of the

following
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Lemma 6.1. Let σ = 1
2 + σ′, with σ′ > 0 small, be the number fixed in (2.11), and h : (t0,∞) → R a

smooth function satisfying

sup
t>t0

µ
− 3

2
0 t

[
∥h∥0,[t,t+1] + [h]0,σ,[t,t+1]

]
≤ C, (6.10)

for some constant C. Then there exist a constant C1 and a unique smooth function β : (t0−1,∞) → R
which solves (6.8), β ∈ C1 and satisfies the bounds

sup
t>t0

µ
− 3

2
0 t

[
∥β′∥0,[t,t+1] + [β′]0,σ,[t,t+1]

]
≤ C1M

−1. (6.11)

We recall that M2 = t0, was first introduced in (2.53).

Observe that a direct consequence of this Lemma, together with (6.9) and (2.41) is the invertibility
theory for Problem (6.4) that will be used in next Section to solve (5.1). This is contained in the
following

Proposition 6.2. The function T : X♯ → X♭, defined in (6.3) is a linear, non-local, homeomorphism
so that

∥T−1(h)∥♯ ≤ CM−1∥h∥♭, for any h ∈ X♭ (6.12)

for some fixed positive constant C. We refer to (2.11) and to (2.12) for the definition of the ∥·∥♯-norm
and of the set X♯, and to (2.43) and (2.42) for the definition of the norm ∥ · ∥♭ and of the space X♭.

We devote the rest to the Section to the

Proof of Lemma 6.1. We start performing a change of variables, to transform Problem (6.8) into an
equivalent one with simpler form: let

s = t0 − 1 +M2a, t = t0 − 1 +M2b, β̃(a) = β(s), h̃(b) = h(t).

After this change of variables, Problem (6.8) takes the form∫ b

0

β̃′(a)√
b− a

(
1− e−

1
b−a

)
da =M h̃(b). (6.13)

Let K(η) = 1−e
− 1√

η
√
η and take the Laplace transform of both sides in (6.13), thus getting

L
(
β̃′
)
(ξ)L (K) (ξ) =ML

(
h̃
)
(ξ).

Since L
(
β̃′
)
= ξL

(
β̃
)
(ξ)− β̃(0), we get

L
(
β̃
)
(ξ) =

β̃(0)

ξ
+M

L
(
h̃
)
(ξ)

ξL (K) (ξ)
(6.14)

Observe now that

L (K) (ξ) =

∫ ∞

0

e−ξη

(
1− e−

1
η

√
η

)
dη =

2√
ξ

∫ ∞

0

e−p
2
(
1− e

− ξ

p2

)
dp.

We readily get that

L (K) (ξ) =
1√
ξ

(
2

∫ ∞

0

e−p
2

dp

)
(1 + o(1)) , as ξ → ∞. (6.15)

To describe the behavior of L (K) (ξ), for ξ → 0, we first notice that∫ 1
ξ

0

e−ξη

(
1− e−

1
η

√
η

)
dη =

∫ ∞

0

1− e−
1
η

√
η

dη +O(
√
ξ).
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On the other hand, ∫ ∞

1
ξ

e−ξη

(
1− e−

1
η

√
η

)
dη =

∫ ∞

1
ξ

e−ξη

(
1− 1

η − e−
1
η

√
η

)
dη

+

∫ ∞

1
ξ

e−ξη

η
√
η
dη = O(

√
ξ).

Thus we conclude that

L (K) (ξ) =

∫ ∞

0

1− e−
1
η

√
η

dη +O(
√
ξ), as ξ → 0. (6.16)

From (6.15) and (6.16), we conclude that

1

ξL (K) (ξ)
=

{
c1
ξ + c2√

ξ
+O(1) if ξ → 0

c3√
ξ
(1 + o(1)) if ξ → ∞.

Let now G = G(t) be so that L (G) (ξ) = 1
ξL(K)(ξ) . Standard arguments on Laplace transformation

imply that

G(t) =

{
c̃1 +

c̃2√
t
+O( 1t ) if t→ ∞

c̃3√
t
(1 + o(1)) if t→ 0.

,

for certain constants c̃1, c̃2 and c̃3. From (6.14), taking the anti-Laplace transform of both sides, we
get

β̃(b) = β̃(0) +M

∫ b

0

h̃(a)G(b− a) da

= β̃(0) +Mc̃1

∫ ∞

0

h̃(a) da+Mc̃1

∫ ∞

b

h̃(a) da+M

∫ b

0

h̃(a) [G(b− a)− c̃1] da.

We select the solution to Problem (6.13) so that

β̃(0) +Mc̃1

∫ ∞

0

h̃(a) da = 0.

In the original variables, we thus obtain an explicit solution to (6.8)

β(t) =
c̃1
M

∫ ∞

t

h(s) ds︸ ︷︷ ︸
:=β1(t)

+
1

M

∫ t

t0−1

h(s)

[
G

(
t− s

M2

)
− c̃1

]
ds︸ ︷︷ ︸

:=β2(t)

. (6.17)

Let us now check (6.11). Since (6.10) holds, we easily get that

sup
t>t0

µ
− 3

2
0 |β1(t)| .M−1.

To control the second term in (6.17), we change variable t =M2t̄, s =M2s̄, so that

β2(t) =M

∫ t̄

t0−1

M2

h(M2s̄) [G (t̄− s̄)− c̃1] ds̄.

Since t0 =M2 and since (6.10) holds, we get

|β2(t)| .
1

M

∫ t̄

1− 1
t0

µ
3
2
0 (s̄)

s̄
[G (t̄− s̄)− c̃1] ds̄ .

1

M
µ

3
2
0 (t̄) .M−1µ

3
2
0 (t),

from which we get the validity of (6.11).
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The assumption that µ
− 3

2
0 t[h]0,σ,[t,t+1] is bounded guarantees that the function β defined in (6.17)

is differentiable. Indeed, trivially one has β′
1(t) = − c̃1

M h(t). Let us write β2 in the following way

β2(t) =
1

M

∫ t

t0

(h(s)− h(t))

[
G

(
t− s

M2

)
− c̃1

]
ds+

h(t)

M

∫ t

t0

[
G

(
t− s

M2

)
− c̃1

]
ds.

Thus we have

β′
2(t) =

1

M
lim
s→t

[
(h(s)− h(t))[G

(
t− s

M2

)
− c̃1]

]
︸ ︷︷ ︸

=0

+
1

M3

∫ t

t0

(h(s)− h(t))G′
(
t− s

M2

)
ds

+
h′(t)

M

∫ t

t0

[
G

(
t− s

M2

)
− c̃1

]
ds− h′(t)

M

∫ t

t0

[
G

(
t− s

M2

)
− c̃1

]
ds︸ ︷︷ ︸

=0

+
h(t)

M

d

dt

(∫ t

t0

[
G

(
t− s

M2

)
− c̃1

]
ds

)
=

1

M3

∫ t

t0

(h(s)− h(t))G′
(
t− s

M2

)
ds+

h(t)

M

d

dt

(∫ t

t0

[
G

(
t− s

M2

)
− c̃1

]
ds

)
.

Both the last two integrals are well defined, as consequence of the behavior of G(η), as η → 0, and the

assumption that µ
− 3

2
0 t[h]0,σ,[t,t+1] is bounded. Since G(η) ∼ η−

1
2 , as η → 0, direct computations give

the bounds in (6.11) for β′(t). This concludes the proof of the Lemma. �

7. Choice of λ: Part II

This Section is devoted to solve in λ Equation (5.1), for fixed ϕ satisfying (4.1). We have the validity
of the following

Proposition 7.1. For any ϕ satisfying (4.1), there exists L > 0 and a unique solution λ = λ[ϕ] to
Equation (5.1), with

∥λ∥♯ ≤ LM−1 (7.1)

where M =
√
t0, provided the initial time t0 in Problem (2.1) is chosen large enough. Furthermore,

there exists a constant c ∈ (0, 1) such that, for any ϕ1, ϕ2 satisfying (4.1), we have

∥λ[ϕ1]− λ[ϕ2]∥♯ ≤ c∥ϕ1 − ϕ2∥ν,a. (7.2)

Proof of Proposition 7.1. Lemma 5.1 states that solving Equation (5.1) is equivalent to solve (5.2).
We write (5.2) as follows

T [λ](t) + T̂ [λ](t) = (1 + µ0µ
′
0b(t) + q1(λ))

−1
[g(t) +G[λ, ϕ](t)] , (7.3)

where T and T̂ are defined in (6.2) and (6.3), while b, g and G satisfy the bounds in (5.4),(5.5) and
(5.6). Here q1 = q1(s) denotes a smooth function such that q1(0) = 0 and q′1(0) ̸= 0. We observe first
that

(1 + µ0µ
′
0b(t) + q1(λ))

−1
[g(t) +G[λ, ϕ](t)] = g1(t) +G1[λ, ϕ](t),

for some new functions g1 and G1 that also satisfy (5.4), (5.5), and (5.6).

Thanks to the result of Proposition 6.2, solving in λ Equation (7.3) reduces to find the fixed point
problem

λ(t) = F(λ)(t), F(λ) := T−1
(
g1 +G1[λ, ϕ]− T̂ [λ]

)
(7.4)

where T−1 is the operator introduced in Proposition 6.2.

Step 1. First we show that, for any fixed ϕ satisfying (4.1), there exists a unique fixed point
λ = λ[ϕ] of contraction type for F in the set

B = {λ ∈ X♯ : ∥λ∥♯ ≤ LM−1}
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for some L > 0 large.

In order to prove this fact, we claim that, if the initial time t0 in Problem (2.1) is large enough,
there are positive constants c̄1, c̄2 ∈ (0, 1) so that, for any λ ∈ B,

∥T̂ [λ]∥♭ ≤ c̄1M∥λ∥♯, with c̄1C < 1 (7.5)

and

∥T̂ [λ1]− T̂ [λ2]∥♭ ≤ c̄2∥λ1 − λ2∥♯ with CM−1(c+ c̄2) < 1, (7.6)

for any λ1, λ2 ∈ B. The constant C is the constant appearing in (6.12), Proposition 6.2, while c is the
constant is the one appearing in (5.5).

Assume for the moment the validity of (7.5) and (7.6). For any λ ∈ B, we have

∥F(λ)∥♯ ≤ CM−1∥g1 +G1[λ, ϕ]− T̂ [λ]∥♭ ≤ CM−1
(
∥g1∥♭ + ∥G1[λ, ϕ]∥♭ + ∥T̂ [λ]∥♭

)
≤ CM−1 (2c+ c̄1L) ≤ LM−1

provided L > 2cC
1−c̄1C , where C is the constant in (6.12), c are the constants in (5.4), and c̄1 is the

constant in (7.5), which satisfies c̄1C < 1.

Let us take now λ1, λ2 ∈ B. We have

∥F(λ1)−F(λ2)∥♯ = ∥T−1(G1[λ1, ϕ]−G1[λ2, ϕ])− T−1(T̂ [λ1]− T̂ [λ2])∥♯

≤ CM−1
(
∥G1[λ1, ϕ]−G1[λ2, ϕ]∥♭ + ∥T̂ [λ1]− T̂ [λ2]∥♭

]
≤ CM−1(c1 + c̄2)∥λ1 − λ2∥♯ < ε∥λ1 − λ2∥♯,

for some ε < 1, thanks to the choice of c̄2 in (7.6).
A direct application of Banach fixed point gives the existence and uniqueness of a solution λ to

Equation (5.1), satisfying (7.1). We complete the first part of the proof of the Proposition with the
proofs of (7.5) and (7.6).

Proof of (7.5). Let λ ∈ B. From (6.2) and (6.3), we get

T̂ [λ](t) = −
∫ t

t0−1

∫
R3

ᾱ(s)

(4π(t− s))
3
2

e−
|y|2

4(t−s)

|y|
µ(s)

µ(s) + |y|
1{|y|<M} dz ds

= c̄

∫ t

t0−1

ᾱ(s)µ(s)√
t− s

∫ M√
t−s

0

e−ρ
2 ρ

µ+ ρ
dρds,

for some explicit constant c̄. Since

∣∣∣∣∫ M√
t−s

0 e−ρ
2 ρ
µ+ρ dρ

∣∣∣∣ ≤ cM√
t
, for any t large, we observe that

∣∣∣T̂ [λ](t)∣∣∣ ≤ A
M√
t

∣∣∣∣∫ t

t0−1

ᾱ(s)µ(s)√
t− s

ds

∣∣∣∣ , (7.7)

for some fixed constant A. We claim that∫ t

t0−1

ᾱ(s)µ(s)√
t− s

ds = ᾱ(t)µ(t)
√
t− t0 + 1Π(t), t > t0, (7.8)

for some smooth and uniformly bounded function Π(t). Indeed, we write, for β∗(s) = ᾱ(s)µ(s),∫ t

t0−1

β∗(s)√
t− s

ds =

∫ t

t0−1

β∗(s)− β∗(t)√
t− s

ds+ 2β∗(t)
√
t− t0 + 1 = i+ 2β∗(t)

√
t− t0 + 1. (7.9)

Use the change of variables x =
√
t− s

i = −2

∫ √
t−t0+1

0

[
β∗(t)− β∗(t− x2)

]
dx = −2β∗(t)

∫ √
t−t0+1

0

[
β∗(t)− β∗(t− x2)

]
β∗(t)

dx.
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We now observe that the function x → [β∗(t)−β∗(t−x2)]
β∗(t)

is uniformly bounded in x ∈ [0,
√
t− t0 + 1],

since [
β∗(t)− β∗(t− x2)

]
β∗(t)

=

{
1− (1− x2

t )
−1(1− x2

t )
− 3

2 γ̄−1 for γ ̸= 2

1− (1− x2

t )
− 5

2 [1 + log(1− x2

t )]
3 for γ = 2

where γ̄ = 1 if γ > 2, and γ̄ = γ − 1 if 1 < γ < 2. With this in mind, we conclude that

i = β∗(t)
√
t− t0 + 1 Π(t) (7.10)

for some smooth and bounded function Π. Inserting (7.10) into (7.9), we get (7.8).

Using (7.8) in (7.7), we conclude that∣∣∣T̂ [λ](t)∣∣∣ ≤ Aµ0(t)M∥λ∥♯
[
µ

3
2
0 (t)t

−1
]
,

for some fixed constant A, independent of t and of M . Thus, for t large, if we choose t0 sufficiently
large, there exists a constant c1 ∈ (0, 1) such that∣∣∣T̂ [λ](t)∣∣∣ ≤ c1M ∥λ∥♯

[
µ

3
2
0 (t)t

−1
]
.

Let now consider t1 and t2 ∈ [t, t+ 1]. We write

T̂ [λ](t1)− T̂ [λ](t2) = c̄

∫ t1

t0−1

[
ᾱ(s)√
t1 − s

− ᾱ(s)√
t2 − s

] ∫ M√
t1−s

0

e−ρ
2 ρµ

µ+ ρ
dρds

− c̄

∫ t1

t0−1

ᾱ(s)√
t2 − s

∫ M√
t1−s

M√
t2−s

e−ρ
2 ρµ

µ+ ρ
dρds

− c̄

∫ t2

t1

ᾱ(s)√
t2 − s

∫ M√
t2−s

0

e−ρ
2 ρµ

µ+ ρ
dρds =

3∑
j=1

ij

Observe that, for t1, t2 ∈ [t, t+ 1], for t large, we have

sup
t1,t2∈[t,t+1]

|µ(t1)− µ(t2)|
|t1 − t2|σ

≤ Cµ0(t) supt1,t2∈[t,t+1]
|Λ(t1)−Λ(t2)|

|t1−t2|σ

≤ CM−1µ0(t)
(
µ

3
2
0 (t)t

−1
)

(7.11)

for some constant C. With this, we can estimate i1 and i5, as follows

[ij ]0,σ,[t,t+1] ≤ CM−1µ0(t)
(
µ

3
2
0 (t)t

−1
)
, for j = 1, 5.

Straightforward computation gives

[ij ]0,σ,[t,t+1] ≤ CM−1µ0(t)t
−σ ∥λ∥♯

(
µ

3
2
0 (t)t

−1
)
, for j = 1, 2, 3.

These estimates, together with the ones we obtained before, constitute the proof of (7.5).

Proof of (7.6). Let λ1, λ2 ∈ B. From (6.2) and (6.3),

T̂ [λ1](t)− T̂ [λ2](t) = c̄

∫ t

t0−1

ᾱ(s)√
t− s

∫ M√
t−s

0

e−ρ
2

[
ρµ[λ1]

µ[λ1] + ρ
− ρµ[λ2]

µ[λ2] + ρ

]
dρds.

Observe that

|(µ[λ1]− µ[λ2]) (s)| ≤ Aµ0(s) |Λ1(s)− Λ2(s)|

≤ Aµ0(s)

∫ ∞

s

|λ1 − λ2|(x) dx ≤ Aµ2
0(s)∥λ1 − λ2∥♯
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for some constant A, whose value may change from one line to the other, and which is independent of
t and t0. A Taylor expansion gives

|T̂ [λ1](t)− T̂ [λ2](t)| ≤
∫ t

t0−1

|ᾱ(s)|√
t− s

∫ M√
t−s

0

e−ρ
2 ρ

(µ̃+ ρ)2
|µ[λ1](s)− µ[λ2](s)| dρds

for some µ̃ between µ[λ1] and µ[λ2]. Thus we get

|T̂ [λ1](t)− T̂ [λ2](t)| ≤ Aµ2
0(t)M [µ

3
2
0 (t)t

−1] ∥λ1 − λ2∥♯,

where A is a constant independent of t0 and t. Using again (7.11), we can show that∣∣∣T̂ [λ1]− T̂ [λ2]
∣∣∣
0,σ,[t,t+1]

≤ Aµ2
0(t)M [µ

3
2
0 (t)t

−1] ∥λ1 − λ2∥♯,

where A is a constant independent of t0 and t. Choosing t0 large enough, we can find c̄2 small enough
so that (7.6) holds true.

Step 2. In the second part of the proof, we show the validity of (7.2). For this purpose, we fix ϕ1
and ϕ2 satisfying (4.1), and we let λj = λ[ϕj ] , j = 1, 2. If λ̄ = λ1 − λ2, then we see that λ̄ solves

λ̄ = T−1 (G1[λ1, ϕ1]−G1[λ2, ϕ2])

= T−1
(
G1[λ̄1, ϕ1]−G[λ̄1, ϕ2]

)
+ T−1 (G1[λ1, ϕ2]−G[λ2, ϕ2]) .

Thus

∥λ̄∥♯ ≤ CM−1
(
∥G1[λ̄1, ϕ1]−G[λ̄1, ϕ2]∥♭ + ∥G1[λ1, ϕ2]−G[λ2, ϕ2]∥♭

)
≤ CM−1 (c∥ϕ1 − ϕ2∥ν,a + c∥λ1 − λ2∥♯) ,

where C is the constant in (6.12), M2 = t0, c are the constants defined respectively in (5.5) and (5.6).
We now observe that the proof of Lemma 5.1 also gives that the constants c in (5.5) and (5.6) can be
such that CM−1c < 1. Thus the proof of (7.2) readily follows.

This concludes the proof of the Proposition. �

Remark 7.2. Recall that the function ψ = Ψ̄[ψ0] solution to Problem (3.6) depends smoothly on the
initial condition ψ0, provided ψ0 belongs to a small neighborhood of 0 in the Banach space L∞(Ω)
equipped with the norm defined in (4.21), as observed in Remark 4.2. This fact implies that also
λ = λ[ψ0] solution to (5.1) depends on ψ0. A closer look at the definitions of λ = λ[ψ0] gives that

∥λ[ψ(1)
0 ]− λ[ψ

(2)
0 ]∥♯ . ∥eb|y|[ψ(1)

0 − ψ
(1)
0 ]∥L∞(R3) + ∥eb|y|[∇ψ(1)

0 −∇ψ(1)
0 ]∥L∞(R3).

This fact will be useful in the final argument of finding ϕ solution to (3.13).

8. Final argument: solving (3.8)

We are constructing a global unbounded solution to Problem (2.1)-(2.2) of the form (3.1)

u = U2[λ](r, t) + ϕ̃.

The function U2 is defined in (2.57), while ϕ̃ is given in (3.2). The function ψ which enters in the

definition of ϕ̃ solves the outer problem (3.6), and its properties are contained in Proposition 4.1 and
4.3. The parameter λ = λ(t) belongs to the space X♯, (2.12), and has been chosen to solve Equation
(5.1). The properties of this λ = λ(t) are collected in Proposition 7.1. What is left is to solve in ϕ the
inner problem (3.8). Thanks to the choice of λ = λ(t), the orthogonality condition (3.19) is satisfied,
so that we can use the result of Proposition 3.1 to solve in ϕ Problem (3.8).

In other words, we want to find ϕ, with its ∥ϕ∥ν,a-bounded, solution to Problem (3.8). The function
ψ = Ψ[λ[ϕ], ϕ] solves (3.6), while λ = λ[ϕ] solves Equation (5.1).
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At this point, we fix a in the definition od the ∥ ⋆ ∥ν,a to be equal to 1. Proposition 3.1 defines a
linear operator ϕ = T (h), where ϕ is the solution to (3.16) so that

∥ϕ∥ν,1 ≤ C0R
4 ∥h∥ν,3

for some fixed constant C0. We refer to (3.17) for ∥h∥ν,2+a and to (3.18) for ∥ϕ∥ν,a, for a = 1. Thus
we can say that ϕ solves (3.11)-(3.13) if and only if ϕ is a fixed point for the Problem

ϕ = T (H[ϕ]) , where H[ϕ] = H(ψ[ϕ], λ[ϕ], ϕ), (8.1)

and H is defined in (3.12). Choose the number R in the cut off function ηR, defined in (2.59) and

appearing in the ansatz (3.2), to be sufficiently large in terms of t0, say R
6µ

1
2
0 (t0) = 1. We claim that

there exists a unique ϕ solution to (8.1) in the set

B1 = {ϕ : ∥ϕ∥ν,1 ≤ L1}

for some L1 > 0, fixed.

From (2.59) and (4.7), we see that∣∣∣µ 5
2
0 E22(µ0y, t)

∣∣∣ . µ
1
2
0

µ
3
2
0 t

−1

(1 + |y|2)2
,

∣∣∣∣∣5 µ
1
2
0

(1 + Λ)4
w4(

y

(1 + Λ)2
)ψ(µ0y, t)

∣∣∣∣∣ . µ2
0(t)t

−1

(1 + |y|3)
.

Furthermore,

|B[ϕ](t)| ≤ CR2µ0µ
′
0

µ
3
2
0 t

−1

(1 + |y|2+a)
,
∣∣B0[ϕ](t)

∣∣ ≤ CΛ(t)
µ

3
2
0 t

−1

(1 + |y|4+a)
.

In fact, one can prove that

∥H[ϕ]∥ν,2+a ≤ C1R
−4

for some fixed number C1, independent from t and of t0. This implies that, if ϕ ∈ B1, then T (ϕ) ∈ B1

provided L1 is chosen large. Furthermore, combining (2.61), the result of Proposition 4.3, and the
result of Proposition 7.1, we get the existence of a number c ∈ (0, 1), so that

∥T [ϕ1]− T [ϕ2]∥ν,a ≤ c∥ϕ1 − ϕ2∥ν,a
for any ϕ1 and ϕ2 ∈ B1. We apply Banach fixed point theorem to get the existence of a unique solution
to (8.1) with ∥ · ∥ν,a-bounded.

This concludes the proof of the existence of the solution to Problem (2.1)-(2.2), or equivalently
Problem (1.3)-(1.4), as predicted by Theorem 1.1. �

9. Basic linear theory for the inner problem

Let R > 0 be a fixed large number. This section is devoted to construct a solution to the initial
value problem

ϕτ = ∆ϕ+ 5w4ϕ+ h(y, τ) in B2R × (τ0,∞), ϕ(y, τ0) = e0Z(y) in B2R, (9.1)

for any given function h with ∥h∥ν,2+a < +∞, not necessarily radial in the y variable. We refer to
(3.17) for the explicit definition of the ∥ · ∥ν,2+a-norm. The corresponding problem in dimension n ≥ 5
has already been treated in [6], Section 7. We follow the same strategy in the procedure to construct
the solution to (9.1), but in dimension 3 we get a decay estimate for the solution different from the
one valid for dimensions n ≥ 5.

We recall that the operator L0(ϕ) = ∆ϕ + 5w4ϕ has an 4 dimensional kernel generated by the
bounded functions Z0 defined in (2.7) and also by

Zi(y) =
∂w

∂yi
, i = 1, 2, 3. (9.2)
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In the class of radially symmetric functions, the only element in the kernel of L0 is Z0. To describe our
construction, we consider an orthonormal basis ϑm, m = 0, 1, . . . , in L2(S2) of spherical harmonics,
namely eigenfunctions of the problem

∆S2ϑm + λmϑm = 0 in S2

so that 0 = λ0 < λ1 = . . . = λ3 = 2 < λ4 ≤ . . .. Let h(·, τ) ∈ L2(B2R), for any τ ∈ [τ0,∞). We
decompose it into the form

h(y, τ) =

∞∑
j=0

hj(r, τ)ϑj(y/r), r = |y|, hj(r, τ) =

∫
S2

h(rθ, τ)ϑj(θ) dθ.

In addition, we write h = h0 + h1 + h⊥ where

h0 = h0(r, τ), h1 =

3∑
j=1

hj(r, τ)ϑj , h⊥ =

∞∑
j=4

hj(r, τ)ϑj .

Observe that h1 = h⊥ = 0 if h is radially symmetric in the y variable. Consider also the analogous
decomposition for ϕ into ϕ = ϕ0 + ϕ1 + ϕ⊥. We build the solution ϕ of Problem (9.1) by doing so
separately for the pairs (ϕ0, h0), (ϕ1, h1) and (ϕ⊥, h⊥).

Our main result in this section is the following proposition.

Proposition 9.1. Let ν, a be given positive numbers with 0 < a < 2. Then, for all sufficiently large
R > 0 and any h = h(y, τ) with ∥h∥ν,2+a < +∞ that satisfies for all j = 0, 1, . . . , 3∫

B2R

h(y, τ)Zj(y) dy = 0 for all τ ∈ (τ0,∞) (9.3)

there exist ϕ = ϕ[h] and e0 = e0[h] which solve Problem (9.1). They define linear operators of h that
satisfy the estimates

|ϕ(y, τ)| . τ−ν
[ R4−a

1 + |y|3
∥h0∥ν,2+a +

R4−a

1 + |y|4
∥h1∥ν,2+a +

∥h∥ν,2+a
1 + |y|a

]
, (9.4)

|∇yϕ(y, τ)| . τ−ν
[ R4−a

1 + |y|4
∥h0∥ν,2+a +

R4−a

1 + |y|5
∥h1∥ν,2+a +

∥h∥ν,2+a
1 + |y|a+1

]
, (9.5)

and

|e0[h]| . ∥h∥ν,2+a. (9.6)

Proposition 3.1 is a direct consequence of Proposition 9.1. Indeed, if h is radially symmetric in the
y variable, (9.3) is authomatically satified for j = 1, . . . , 3, and h ≡ h0.

The result contained in Proposition 9.1 follows from next Proposition, which refers to the following
problem

ϕτ = ∆ϕ+ 5w(y)4ϕ+ h(y, τ)− c(τ)Z in B2R × (τ0,∞), ϕ(y, τ0) = 0 in B2R. (9.7)

Proposition 9.2. Let ν, a be given positive numbers with 0 < a < 2. Then, for all sufficiently large
R > 0 and any h with ∥h∥ν,2+a < +∞ and satisfying the orthogonality conditions (3.19), there exist
ϕ = ϕ[h] and c = c[h] which solve Problem (9.7), and define linear operators of h. The function ϕ[h]
satisfies estimate (9.4), (9.5) and for some Γ > 0∣∣∣∣c(τ)− ∫

B2R

hZ

∣∣∣∣ . τ−ν
[
R2−a

∥∥∥∥h− Z

∫
B2R

hZ

∥∥∥∥
ν,2+a

+ e−ΓR∥h∥ν,2+α
]
. (9.8)

Assuming the validity of Proposition 9.2, we proceed with
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Proof of Proposition 9.1. Let ϕ1 be the solution of Problem (9.7) predicted by Proposition 9.2.
Let us write

ϕ(y, τ) = ϕ1(y, τ) + e(τ)Z(y). (9.9)

for some e ∈ C1 ([τ0,∞)). We find

∂τϕ = ∆ϕ+ 5w4ϕ+ h(y, τ) + [ e′(τ)− λ0e(τ)− c(τ) ] Z(y).

We choose e(τ) to be the unique bounded solution of the equation

e′(τ) − λ0e(τ) = c(τ), τ ∈ (τ0,∞)

which is explicitly given by

e(τ) =

∫ ∞

τ

exp(
√
λ0(τ − s)) c(s) ds .

The function e depends linearly on h. Besides, we clearly have from (9.8), |e(τ)| . τ−ν∥h∥ν,2+a. and
thus, from the fact that ϕ1 satisfies estimates (9.4), (9.5), so does ϕ given by (9.9). Thus ϕ satisfies
Problem (9.1) with initial condition ϕ(y, τ0) = e(τ0)Z(y). The proof is concluded. �
The rest of the Section is devoted to the

Proof of Proposition 9.2. The proof is divided in two steps. In the first step, we construct a
solution to (9.7) which has value zero on the boundary ∂B2R, at any time τ , for a right hand side h
not necessarily satisfying the orthogonality conditions (9.3). In the second step, we make use of this
construction to solve (9.7), for a right hand side satisfying (9.3), and to obtain estimates (9.4), (9.5)
and (9.6).

Step 1. We claim that for all sufficiently large R > 0 and any H with ∥H∥ν,a < +∞ there exists
ϕ = ϕ(y, τ) and c = c(τ) which solve Problem

ϕτ = ∆ϕ+ 5w4ϕ+H(y, τ)− c(τ)Z(y) in B2R × (τ0,∞) (9.10)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, τ0) = 0 in B2R.

The functions ϕ and c are linear operators of h and satisfy the estimates

(1 + |y|) |∇ϕ(y, τ)|+ |ϕ(y, τ)| .

τ−ν
[R4−a∥H0∥ν,a

1 + |y|
+
R4−a∥H1∥ν,a

1 + |y|2
+R2 ∥H∥ν,a

1 + |y|a
]

(9.11)

and for some Γ > 0∣∣∣∣c(τ)− ∫
B2R

HZ

∣∣∣∣ . τ−ν
[
R2

∥∥∥∥H − Z

∫
B2R

HZ

∥∥∥∥
ν,a

+ e−ΓR∥H∥ν,a
]
. (9.12)

We construct the solution ϕ mode by mode, considering first mode 0, then modes 1, 2, 3 and finally
modes greater or equal to 4. For each mode, we get the corresponding estimates.

Construction at mode 0. Consider Problem (9.10) for a right hand side H = H0(r, τ) radially
symmetric. Let η(s) be the smooth cut-off function in (1.9), and consider ηℓ(y) = η(|y|− ℓ), for a large
but fixed number ℓ independently of R. By standard parabolic theory, there exists a unique solution
ϕ∗[h̄0] to

ϕτ = ∆ϕ+ 5w(r)4(1− ηℓ)ϕ+ H̄0(y, τ) in B2R × (τ0,∞) (9.13)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, τ0) = 0 in B2R,

where

H̄0 = H0 − c0(τ)Z, c0(τ) =

∫
B2R

H0(y, τ)Z(y) dy.

The function ϕ∗[h̄0] is radial and satisfies the bound∣∣ϕ∗[H̄0]
∣∣ . τ−ν R2−a ∥H∥ν,a.
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This can be proven with the use of a special super solution, arguing as in Lemma 7.3 in [6]. Setting

ϕ = ϕ∗[H̄0] + ϕ̃ and c(τ) = c0(τ) + c̃(τ), Problem (9.10) gets reduced to

ϕ̃τ = ∆ϕ̃+ 5w(r)4ϕ̃+ H̃0(r, τ)− c̃(τ)Z in B2R × (τ0,∞) (9.14)

ϕ̃ = 0 on ∂B2R × (τ0,∞), ϕ̃(·, τ0) = 0 in B2R.

where H̃0 = 5w4ηℓϕ∗[H̄0]. Observe that H̃0 is radial, it is compactly supported and with size controlled
by that of H̄0. In particular we have that for any m > 0,

|H̃0(r, τ)| .
τ−ν

1 + rm

[
sup
τ>τ0

τν∥ϕ∗[H̄0](·, τ)∥L∞

]
. τ−ν

1 + rm
R2−a ∥H∥ν,a. (9.15)

We shall next solve Problem (9.14) under the additional orthogonality constraint∫
B2R

ϕ̃(·, τ)Z = 0 for all τ ∈ (τ0,∞). (9.16)

Problem (9.14)-(9.16) is equivalent to solving just (9.14) for c̃ given by the explicit linear functional

c̃ := c̃[ϕ̃, H̃0] determined by the relation

c̃(τ)

∫
B2R

Z2 =

∫
B2R

H̃0(·, τ)Z +

∫
∂B2R

∂rϕ̃(·, τ)Z. (9.17)

If the function c̃ = c̃(τ) defined by (9.17) were independent of ϕ, standard linear parabolic theory
would give the existence of a unique solution. On the other hand, a close look to (9.17) shows that

the dependence of c̃ = c̃(τ) on ϕ is small in an L∞-C1+α, 1+α
2 setting, since Z(R) = O(e−ΓR) for some

Γ > 0. A contraction argument applies to yield existence of a unique solution to (9.14)-(9.16) defined
at all times. To get the estimates, we assume smoothness of the data so that integrations by parts
and differentiations can be carried over, and then arguing by approximations. Testing (9.14)-(9.16)

against ϕ̃ and integrating in space, we obtain the relation

∂τ

∫
B2R

ϕ̃2 +Q(ϕ̃, ϕ̃) =

∫
B2R

gϕ̃, g = H̃0 − c̃(τ)Z0,

where Q is the quadratic form defined by

Q(ϕ, ϕ) :=

∫ [
|∇ϕ|2 − 5w4|ϕ|2

]
. (9.18)

Since dimension is 3, there exists β > 0 such that, for any ϕ with
∫
ϕZ = 0, the following inequality

holds

Q(ϕ, ϕ) ≥ β

R2

∫
ϕ2.

The proof of this inequality is a slight modification of the proof for the corresponding inequality in
dimensions n ≥ 5 that can be found in Lemma 7.2 [6], considering that

∫
BR

Z2
0 = O(R), as R → ∞,

when dimension is 3. Thus we have, for some β′ > 0,

∂τ

∫
B2R

ϕ̃2 +
β′

R2

∫
B2R

ϕ̃2 . R2

∫
B2R

g2. (9.19)

We observe that from (9.17) and (9.15) for m = 0 we get that

|c̃(τ)| ≤ τ−νK, K :=

[
sup
τ>τ0

τν∥ϕ∗[H̄0](·, τ)∥L∞

]
+ e−ΓR

[
sup
τ>τ0

τν∥∇ϕ∗[H̄0](·, τ)∥L∞

]
.

Besides, using again estimate (9.15) for a sufficiently large m, we get∫
B2R

g2 . τ−2νK2.

Using that ϕ̃(·, τ0) = 0 and Gronwall’s inequality, we readily get from (9.19) the L2-estimate

∥ϕ̃(·, τ)∥L2(B2R) . τ−νR2K, (9.20)
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for all τ > τ0. Now, using standard parabolic estimates in the equation satisfied by ϕ̃ we obtain then
that on any large fixed radius ℓ > 0,

∥ϕ̃(·, τ)∥L∞(BM ) . τ−νR2K for all τ > τ0.

Since the right hand side has a fast decay at infinity and taking into account that we are in dimension
3, outside Bℓ we can dominate the solution by a barrier of the order τ−ν |y|−1. As a conclusion, also
using local parabolic estimates for the gradient, we find that

(1 + |y|) |∇yϕ̃(y, τ)|+ |ϕ̃(y, τ)| . τ−ν
R2

1 + |y|

[
sup
τ>τ0

τν∥ϕ∗[H̄0](·, τ)∥L∞

]
. (9.21)

It clearly follows from this estimate and inequality (9.15) that the function

ϕ0[h0] := ϕ̃+ ϕ∗[H̄0] (9.22)

solves Problem (9.10) for H = H0 and satisfies

(1 + |y|) |∇yϕ0(y, τ)|+ |ϕ0(y, τ)| . τ−ν
R4−a

1 + |y|
∥H∥ν,a

Finally, from (9.17) we see that we have that

c(τ) =

∫
B2R

HZ +

∫
B2R

5w4ηℓϕ∗[H̄0]Z +O(e−ΓR)∥H∥ν,a.

From here we find the validity of estimate∣∣∣∣c(τ)− ∫
B2R

H0Z

∣∣∣∣ . τ−ν
[
R2

∥∥∥∥H0 − Z

∫
B2R

H0Z

∥∥∥∥
ν,a

+ e−ΓR∥H0∥ν,a
]
.

Hence estimates (9.11) and (9.12) hold. The construction of the solution at mode 0 is concluded.

Construction at modes 1 to 3. Here we consider the caseH = H1 whereH1(y, τ) =
∑3
j=1Hj(r, τ)ϑj .

The function

ϕ1[H1] :=

n∑
j=1

ϕj(r, τ)ϑj . (9.23)

solves the initial-boundary value problem

ϕτ = ∆ϕ+ 5w4ϕ+H1(y, τ) in B2R × (τ0,∞) (9.24)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, τ0) = 0 in B2R,

if the functions ϕj(r, τ) solves

∂τϕj = L1[ϕj ] +Hj(r, τ) in (0, 2R)× (τ0,∞) (9.25)

∂rϕj(0, τ) = 0 = ϕj(R, τ) for all τ ∈ (τ0,∞), ϕj(r, τ0) = 0 for all r ∈ (0, R),

where

L1[ϕj ] := ∂rrϕj + 2
∂rϕj
r

− 2
ϕj
r2

+ 5w4ϕj . (9.26)

Let us consider the solution of the stationary problem L1[ϕ] + (1 + r)−a = 0 given by the variation of
parameters formula

ϕ̄(r) = Z(r)

∫ 2R

r

1

ρ2Z(ρ)2

∫ ρ

0

(1 + s)−aZ(s)s2 ds

where Z(r) = wr(r). Since wr(r) ∼ r−2 for large r, we find the estimate |ϕ̄(r)| . R4−a

1+r2 . Then, provided

that τ0 was chosen sufficiently large, the function 2∥Hj∥ν,aτ−ν ϕ̄(r) is a positive super-solution of

Problem (9.25) and thus we find |ϕj(r, τ)| . τ−ν R
4−a

1+r2 ∥Hj∥ν,a. Hence ϕ1[H1] given by (9.23) satisfies

|ϕ1[H1](y, τ)| . R4−a

1 + |y|2
∥H1∥ν,a.

A corresponding estimate for the gradient follows.
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Construction at higher modes. We consider now the case of higher modes,

ϕτ = ∆ϕ+ 5w4ϕ+H⊥ in B2R × (τ0,∞) (9.27)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, τ0) = 0 in B2R,

where H = H⊥ =
∑∞
j=4Hj(r)Θj whose solution has the form ϕ⊥ =

∑∞
j=4 ϕj(r, τ)Θj . Given the

quadratic form in (9.18), for ϕ⊥ ∈ H1
0 (B2R)∫

B2R

|ϕ⊥|2

r2
. Q(ϕ⊥, ϕ⊥). (9.28)

The proof of this fact is elementary. The interested reader can find it in [6]. Let ϕ∗[H
⊥] be the solution

to
ϕτ = ∆ϕ+ 5w(r)4(1− ηℓ)ϕ+ H̄⊥(y, τ) in B2R × (τ0,∞)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, 0) = 0 in B2R,

where H̄⊥ = H⊥ − c⊥Z, and c⊥ =
∫
B2R

H⊥Z. By writing ϕ = ϕ∗[H
⊥] + ϕ̃, Problem (9.27) reduces to

solving
ϕ̃τ = ∆ϕ̃+ 5w(y)4ϕ̃+ H̃ in B2R × (τ0,∞) (9.29)

ϕ̃ = 0 on ∂B2R × (τ0,∞), ϕ̃(·, τ0) = 0 in B2R,

where H̃ = 5w(y)4ηℓϕ∗[H
⊥], for a sufficiently large ℓ. Arguing as in (9.19) we now get

∂τ

∫
B2R

ϕ̃2 + c

∫
B2R

|ϕ̃|2

|y|2
.
∫
B2R

|y|2|H̃|2. (9.30)

Similarly to (9.20) we get

∥ |y|−1ϕ̃(·, τ)∥L2(B2R) . τ−νR2−a∥H∥ν,a (9.31)

From elliptic estimates we then get that

∥ϕ̃(·, τ)∥L∞(B2R) . τ−νR2−a∥H⊥∥ν,a. for all τ > τ0,

so that with the aid of a barrier we obtain

|ϕ̃(y, τ)| . τ−νR2−a∥H⊥∥ν,a (1 + |y|)−1.

It follows that the function
ϕ⊥[H⊥] := ϕ̃+ ϕ∗[H

⊥] (9.32)

satisfies
|ϕ⊥[H⊥](y, τ)| . τ−ν R2

[
(1 + |y|)−1 + (1 + |y|)−a

]
∥H⊥∥ν,a in B2R.

Similar estimates for the gradient follow. Conclusion: let

ϕ[h] := ϕ0[h0] + ϕ1[h1] + ϕ⊥[h⊥]

for the functions defined in (9.22), (9.23), (9.32). By construction, ϕ[h] solves Equation (9.10). It
defines a linear operator of h and satisfies (9.11). The proof of Step 1 is concluded.

Step 2. To complete the proof of Proposition 9.2, we decompose the right hand side h in (9.7) in
modes, h = h0+h1+h⊥ as before, and define separately associated solutions of (9.7) in a decomposition
ϕ = ϕ0 + ϕ1 + ϕ⊥.

Construction at mode 0. For a bounded radial h = h(|y|) defined in B2R with
∫
B2R

hZ0 = 0, let h̃

designate the extension of h as zero outside B2R. The equation

∆H + 5w4(y)H + h̃(|y|) = 0 in R3, H(y) → 0 as |y| → ∞
has a solution H =: L−1

0 [h] represented by the variation of parameters formula

H(r) = Z̃(r)

∫ ∞

r

h̃(s)Z0(s) s
2 ds+ Z0(r)

∫ ∞

r

h̃(s) Z̃(s) s2 ds (9.33)
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where Z̃(r) is a suitable second radial solution of L0[Z̃] = 0, linearly independent with Z0. Mode 0
function h0 = h0(|y|, τ) is defined in B2R, and satisfies ∥h0∥ν,2+a < +∞ and

∫
B2R

h0Z0 = 0 for all τ .

Then H0 := L−1
0 [h0(·, τ)] satisfies the estimate

|H0(r, τ)| .
τ−ν

(1 + r)a
∥h0∥ν,2+a.

Let Φ0[h0] be the radial solution in B3R to

Φτ = ∆Φ+ 5w4(y)Φ +H0(|y|, τ)− c0(τ)Z in B3R × (τ0,∞) (9.34)

Φ = 0 on ∂B3R × (τ0,∞), Φ(·, τ0) = 0 in B3R,

that we discussed in Step 1. Φ0[h0] defines a linear operator of h0 and satisfies the estimates

|Φ0(y, τ)| . τ−νR4−a

(1 + |y|)
∥H0∥ν,a, (9.35)

where for some Γ > 0∣∣∣∣c0(τ)− ∫
B2R

H0Z

∣∣∣∣ . τ−ν
[
R2

∥∥∥∥H0 − Z

∫
B2R

H0Z

∥∥∥∥
ν,a

+ e−ΓR∥H0∥ν,a
]
. (9.36)

Since L0[Z] = λ0Z then

λ0

∫
B2R

H0Z =

∫
B2R

H0L0[Z] =

∫
B2R

L0[H0]Z +

∫
∂B2R

(Z∂νH0 −H0∂νZ),

and hence ∫
B2R

H0Z = λ−1
0

∫
B2R

h0 Z +O(e−ΓR)τ−ν∥h0∥ν,2+a.

Also, from the definition of the operator L−1
0 we see that Z = λ0L

−1
0 [Z]. Thus∥∥∥∥H0 − Z

∫
B2R

H0Z

∥∥∥∥
ν,a

=

∥∥∥∥L−1
0

[
h0 − λ0Z

∫
B2R

H0Z
] ∥∥∥∥

ν,a

.
∥∥∥∥h0 − Z

∫
B2R

h0Z

∥∥∥∥
ν,2+a

+e−ΓR∥h0∥ν,2+a.

Next, we discuss estimates on the first and second derivatives of Φ0. Let us fix now a vector e with
|e| = 1, a large number ρ > 0 with ρ ≤ 2R and a number τ1 ≥ τ0. Consider the change of variables

Φρ(z, t) := Φ0(ρe+ ρz, τ1 + ρ2t), Hρ(z, t) := ρ2[H0(ρe+ ρz, τ1 + ρ2t)− c0(τ1 + ρ2t)Z(ρe+ ρz) ].

Then Φρ(z, t) satisfies an equation of the form

∂tΦρ = ∆zΦρ +Bρ(z, t)Φρ +Hρ(z, t) in B1(0)× (0, 2).

where Bρ = O(ρ−2) uniformly in B2(0) × (0,∞). Standard parabolic estimates yield that for any
0 < α < 1

∥∇zΦρ∥L∞(B 1
2
(0)×(1,2)) . ∥Φρ∥L∞(B1(0)×(0,2)) + ∥Hρ∥L∞(B1(0)×(0,2)).

Moreover

∥Hρ∥L∞(B1(0)×(0,2)) . ρ2−aτ−ν1 ∥H0∥ν,a, ∥Φρ∥L∞(B1(0)×(0,2)) . τ−1
1 K(ρ)

where

K(ρ) =
R2−a

1 + ρ
R2∥h0∥ν,2+a (9.37)

This yields in particular that

ρ|∇yΦ(ρe, τ1 + ρ2)| = |∇ϕ̃(0, 1)| . τ−ν1 K(ρ).

Hence if we choose τ0 ≥ R2, we get that for any τ > 2τ0 and |y| ≤ 3R

(1 + |y|) |∇yΦ(y, τ)| . τ−νK(|y|) (9.38)

We obtain that these bounds are as well valid for τ < 2τ0 by the use of similar parabolic estimates up
to the initial time (with condition 0).
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Now, we observe that the function H0 is of class C1 in the variable y and ∥∇yH0∥ν,1+a ≤ ∥h0∥ν,2+a.
It follows that we have the estimate

(1 + |y|2) |D2
yΦ(y, τ)| . τ−νK(|y|)

for all τ > τ0, |y| ≤ 2R. where K is the function in (9.37). The proof follows simply by differentiating
the equation satisfied by Φ, rescaling in the same way we did to get the gradient estimate, and apply
the bound already proven for ∇yΦ. Thus we have in B2R

(1 + |y|2)|D2Φ(y, τ)|+ (1 + |y|)|∇Φ(y, τ)| + |Φ(y, τ)| . τ−ν∥h0∥ν,2+a
R4−a

1 + |y|
.

This yields in particular

|L0[Φ](·, τ)| . τ−ν∥h0∥ν,2+a
R4−a

1 + |y|3
in B2R

We define

ϕ0[h0] := L0[Φ]
∣∣∣
B2R

.

Then ϕ0[h0] solves Problem (9.7) with

c(τ) := λ0c0(τ). (9.39)

ϕ0[h0] satisfies the estimate

|ϕ0[h0](y, τ)| . τ−ν∥h0∥ν,2+a
R4−a

1 + |y|3
in B2R. (9.40)

and from (9.36), estimate (9.8) holds too.

Construction for modes 1 to 3. We consider now h1(y, τ) =
∑3
j=1 hj(r, τ)ϑj with ∥h1∥ν,2+a < +∞

that satisfies for all i = 1, . . . , 3
∫
B2R

h1Zi = 0 for all τ ∈ (τ0,∞). We will show that there is a

solution

ϕ1[h1] =

3∑
j=1

ϕj(r, τ)ϑj(
y

r
)

to Problem (9.7) for h = h1, which define a linear operator of h1 and satisfies the estimate

|ϕ1(y, τ)| . R4

1 + |y|4
R−a∥h∥ν,2+a. (9.41)

Let us fix 1 ≤ j ≤ 3. For a function h = hj(r)ϑj(
y
r ) defined in B2R, we let H = L−1

0 [h] := Hj(r)ϑj(
y
r )

be the solution of the equation

∆H + pUp−1H + h̃jϑj = 0 in Rn, H(y) → 0 as |y| → ∞

where h̃j designates the extension of hj as zero outside B2R, represented by the variation of parameters
formula

Hj(r) = wr(r)

∫ 2R

r

1

ρn−1wr(ρ)2

∫ ∞

ρ

h̃j(s)wr(s)s
n−1 ds

If we consider a function hj = hj(r, τ)ϑj defined in B2R with ∥hj∥2+a,ν < +∞ and
∫
B2R

hjZj = 0 for

all τ , then Hj = L−1
0 [hj(·, τ)] satisfies the estimate ∥Hj∥ν,a . ∥hj∥ν,2+a. Let us consider the boundary

value problem in B3R

Φτ = ∆Φ+ pU(y)p−1Φ+Hj(r)ϑj(y) in B3R × (τ0,∞) (9.42)

Φ = 0 on ∂B3R × (τ0,∞), Φ(·, τ0) = 0 in B3R.
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As consequence of Step 1, we find a solution Φj [h] to this problem, which defines a linear operator of
hj and satisfies the estimates

|Φj(y, τ)| . τ−νR3−a

1 + |y|2
R1∥hj∥ν,2+a, (9.43)

Arguing by scaling and parabolic estimates, we find as in the construction for mode 0,

|L[Φj ](·, τ)| . τ−ν∥h∥ν,2+a
R4−a

1 + |y|4
in B2R.

We define ϕj [hj ] := L[Φj ]
∣∣∣
B2R

. and ϕ1[h1] :=
∑3
j=1 ϕj [hj ]ϑj . This function solves (9.7) for h = h1 and

satisfies

|ϕ1[h1](y, τ)| . τ−ν∥hj∥2+a,ν
R4−a

1 + |y|4
in B2R. (9.44)

Construction at higher modes. In order to deal with the higher modes, for h = h⊥ =
∑∞
j=4 hj(r)Θj

we let ϕ⊥[h⊥] be just the unique solution of the problem

ϕτ = ∆ϕ+ pU(y)p−1ϕ+ h⊥ in B2R × (τ0,∞) (9.45)

ϕ = 0 on ∂B2R × (τ0,∞), ϕ(·, τ0) = 0 in B2R,

which is estimated as

|ϕ⊥[h⊥](y, τ)| . τ−ν
∥h⊥∥ν,2+a
1 + |y|a

in B2R. (9.46)

We just let

ϕ[h] := ϕ0[h0] + ϕ1[h1] + ϕ⊥[h⊥]

be the functions constructed above. According to estimates (9.40) and (9.46) we find that this function
solves Problem (9.7) for c(τ) given by (9.17), with bounds (9.4), (9.5), (9.8) as required. The proof is
concluded.

�

10. Non radially symmetric case

In this section, we discuss the existence of solutions for Problem (2.1) when the initial condition is
not radially symmetric, and we discuss the co-dimension 1 stability. Let v̄0 be a positive, uniformly
bounded smooth function, not radially symmetric and define

v0(x) =
v̄0(x)

|x|κ
, with κ > max{γ + 3

2
, γ}. (10.1)

We construct a solution to the initial value Problem{
ut = ∆u+ u5, in R3 × (t0,∞),
u(x, t0) = u0(|x|) + v0(x)

(10.2)

where u0 is radial and satisfies the decay condition (2.2), while v0 is a non radial function of the form
(10.1).

Since the strategy of the proof is similar to the one already performed in details for v̄0(x) ≡ 0, we
shall indicate the changes in the argument that are required when the initial condition is not radially
symmetric.

We start with a slightly different first approximation. Let p = p(t) : [t0,∞) → R3 be a smooth
function so that

p(t0) = 0, p(t) =

∫ t

t0

P (s) ds, where P satisfies

∥P∥♢ := sup
t>t0

µ0(t)
− 1

2 tκ−1
[
∥P (s)∥∞,[t,t+1] + [P ]0,σ,[t,t+1]

]
≤ ℓ, (10.3)
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with σ the number fixed in (2.11), and ℓ a positive fixed number. Observe that, under these assump-

tions, and the bound on κ in (10.1), we have |p(t)|
µ0(t)

→ 0 as t→ ∞. Define

U [λ, P ](x, t) = Û2(x, t) + U3(x, t), Û2(x, t) := U2(|x− p(t)|, t), (10.4)

where U2 is given by (2.57) and

U3(x, t) =

(
1− η(

|x|
t
)

)
v0(x). (10.5)

If we call E [λ, P ](x, t) := ∆U + U5 − Ut, we can write

E [λ, P ](x, t) = E2[λ](|x− p|, t)−∇U2(|x− p|, t) · ṗ(t)

+ ∆U3 −
∂U3

∂t
+ (Û2 + U3)

5 − (Û2)
5︸ ︷︷ ︸

:=E3

.

Define

Ē(x, t) = E21(|x− p|, t) (10.6)

+

(
1− ηR(

|x|
Rµ0

)

)
[E22(|x− p|, t)−∇U2(|x− p|, t) · ṗ(t)]

where ηR is defined in (2.59). We have that∣∣Ē(x, t)∣∣ ≤ Cµ
1
2
0 t

− 3
2h0(

|x|√
t
), |E3(x, t)| ≤ Ct−κ+

1
2h0(

|x|√
t
). (10.7)

A solution to (10.2) does exist and has the form

u = U [λ, P ](r, t) + ϕ̃, t > t0 (10.8)

where U is defined in (10.4), while ϕ̃(x, t) is given as in (3.2)

ϕ̃(x, t) = ψ(x, t) + ϕin(x, t) where ϕin(x, t) := ηR(x, t)ϕ̂(x, t)

and ϕ̂(x, t) := µ
− 1

2
0 ϕ

(
x
µ0
, t
)
. For any ψ0 ∈ C2(R3) so that

|y| |ψ0(y)|+ |y| |∇ψ0(y)| ≤ t−a0 e−b|y|, (10.9)

for some positive constants a and b, the function ψ is the solution to

∂tψ = ∆ψ + V ψ + [2∇ηR∇xϕ̂+ ϕ̂(∆x − ∂t)ηR]

+N [λ](ϕ̃) + Ē+E3 in R3 × [t0,∞), (10.10)

ψ(x, t0) = ψ0,

where V is defined as in (3.5) with U instead of U2, and N(ϕ̃) = (U + ϕ̃)5 −U5 − 5U4 ϕ̃. This solution
ψ can be described as follows

ψ(x, t) = ψr(x, t) + ψnr(x, t), (10.11)

where ψr is a radial function in |x− p(t)|, for any t, and

|ψr(x, t)| ≤ Cµ
1
2
0 t

− 1
2 φ0(

|x|√
t
), |ψnr(x, t)| ≤ Ct−η+

3
2 φ0(

|x|√
t
). (10.12)

We refer to (4.2) for the definition of φ0.

On the other hand, the function ϕ̂ satisfies

∂tϕ̂ = ∆ϕ̂+ 5w4
µϕ̂+ 5w4

µψ + E22(|x− p(t)|, t)−∇U2(|x− p(t)|, t) · ṗ(t) in B2Rµ0(0)× [t0,∞),
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with ϕ̂(x, t0) = µ
− 1

2
0 (t0)e0Z(

x
µ0(t0)

). In terms of ϕ, this equation becomes

µ2
0∂tϕ =∆yϕ+ 5w4ϕ+ f(y, t) in B2R(0)× [t0,∞) (10.13)

ϕ(y, t0) = e0Z(y)

where

f(y, t) = µ
5
2
0 E22(|µ0y − p(t)|, t)−∇U2(|µ0y − p(t)|, t) · ṗ(t)

+ 5
µ

1
2
0

(1 + Λ)4
w4(

y

(1 + Λ)2
)ψ(µ0y, t) +B[ϕ] +B0[ϕ].

In the above expression, ψ is the solution to (10.10), while B and B0 are defined respectively in (3.9)
and (3.10). The solution ϕ exists in the class of functions with ∥ · ∥ν,a-norm bounded (see (4.1)), as
consequence of Proposition 9.1, and a contraction type argument, provided the parameter functions λ
and P can be chosen so that∫

BR

f(y, t)Zj(y) dy = 0, for all t > t0, j = 0, 1, . . . , n. (10.14)

The system of (n + 1) non linear, non local equations in λ and P is solvable for λ and P satisfying
(2.11) and (10.3). Indeed, equation (10.14), for j = 0, can be treated as we did for equation (5.1) in
Sections 5, 6, 7. On the other hand, when j = 1, . . . , n, equations (10.14) are perturbations of

ṗ(t) = µ
1
2
0 t

−κ+1ū

for some fixed vector ū ∈ R3. Thus it can be solved for parameters p(t) =
∫ t
t0
P (s) ds satisfying (10.3).

This concludes the proof of existence of a positive global solution to (10.2).

Next we discuss the co-dimension 1 stability. Let us observe that the construction of ϕ, and e0
solution to (10.13) is possible for any initial condition ψ0 to the outer Problem (10.10). We have the
validity of Lipschitz dependence of ϕ = ϕ[ψ0], and e0 = e0[ψ0] in the C1-topology described in (10.9).
As a consequence of the Implicit Function Theorem the maps ϕ[ψ0], and e0[ψ0] depends in C1-sense
on ψ0 in our C1-topology (10.9), thanks to the corresponding dependence for ψ, λ and p.

Let us consider the following map defined in a small neighborhood of 0 in X = C1(Ω̄).

F (ψ0) = ψ0 − (e0[ψ0]− e0[t0])Z0

so that F [0] = 0, F is differentiable and

Dψ0
F (0)[h] = h− ⟨Dψ0

e0[0], h⟩Z0, h ∈ X.

We have a solution which blows-up as t→ +∞ provided that

u(·, t0) = u∗(·, t0)− e0[0]Z0 + g (10.15)

where u∗ is the solution corresponding to ψ0 = 0, and g = F [ψ0] for any small ψ0.
The vector space of the functionals in X given by Dψ0

e0[0] has dimension 1. We write W :=
Ker (Dψ0

e0[0]) is a space with codimension 1. Indeed, we can find a non zero function u such that

X =W⊕ < u > .

We consider the operator in a neighborhood of 0 in X given by

G
(
w + αu

)
= αu+ F (w), αj ∈ R, w ∈W.

Then G is of class C1 near the origin, G(0) = 0 and Dψ0
G(0)[h] = h. By the local inverse theorem,

G defines a local C1 diffeormorphism onto a neighborhood of the origin. For all small g we can find
smooth functions α(g), w(g) with

α(g)u+ F (w(g)) = g.

Thus the set M of functions F [w], w ∈ W can be described in a neighborhood of 0 exactly as those
g ∈ X such that

α(g) = 0.
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This says precisely that M is locally a codimension 1 C1-manifold, such that if g in (10.15) is selected
there, then the desired phenomenon takes place. The proof is concluded. �

11. Appendix A

Proof of Lemma 2.2. We denote by y2(s) the solution to (2.17) with lims→∞ s2νy2(s) = 1, and by
y1(s) another solution, linearly independent from y2, defined explicitly by

y1(s) = c y2(s)

∫ ∞

s

e−
z2

4

y2(z)2 z2
dz, (11.1)

for some positive constant c we fix later. The function y1(s) decays fast at infinity, since y1(s) =

c1e
− s2

4 s4ν−3
(
1 + o(s−1)

)
, as s → ∞, for some positive constant c1, as a direct consequence from

(11.1). The function y2(s) is definite for any s ∈ (0,∞), and it is positive. Indeed, we first observe
that the operator Lν satisfies the maximum principe. This is consequence of the fact that the positive

function g0(s) =
e−

s2

4

s , which solves L1(g0) = 0, satisfies Lν(g0) < 0 in (0,∞). With this is mind, we

define ḡ0(s) =
∫∞
s

e−
z2

4

z2 dz. This is a positive function, which satisfies Lν(ḡ0) = νḡ0 > 0 in (0,∞).
Thus ḡ0 is a sub solution. Moreover, it is easy to see that ḡ0(R) < y2(R) for any R large enough. A
standard application of the maximum principle thus gives that y2 is positive in (0,∞).

We now claim that lims→0+ s y1(s) exists and it is positive. Write y1(s) = ϕ( s
2

4 ), x = s2

4 , from
which we get that

xϕ′′ + (
3

2
+ x)ϕ′ + νϕ = 0, x ∈ (0,∞).

Performing the further change of variables ϕ(x) = e−xφ(x), we get that φ satisfies

xφ′′ + (
3

2
− x)φ′ − (

3

2
− ν)φ = 0, x ∈ (0,∞). (11.2)

In [17], Appendix A, it is proven that (11.2) admits polynomial solutions if and only if 3
2 − ν = −k,

k = 0, 1, 2, . . .. Since 1
2 < ν < 1, this never happens, thus φ can not be bounded, as x → 0+. On the

other hand, the behavior of the solutions to (11.2), as x→ 0+, are determined by xφ′′+ 3
2φ

′ = 0, which

implies that the solutions to (11.2) are bounded around x = 0, or they behave like x−
1
2 as x → 0+.

Combining all the above information, we showed that, for a proper choice of the constant c in (11.1),
we get that

y1(s) =
1

s
(1 + o(1)), as s→ 0.

To understand further the behavior of y1 around s = 0, we write sy1(s) = f(s), so that

f ′′ +
s

2
f ′ + (ν − 1

2
)f = 0, s ∈ (0,∞). (11.3)

Integrating (11.3) between 0 and ∞, and using the fast decay of y1 to 0 as s→ ∞, we compute

f ′(0) = (ν − 1)

∫ ∞

0

f(s) ds < 0, f ′′(0) =
1

2
− ν. (11.4)

With this information, we get the estimates (2.18) and (2.20) for y1(s).

Since the Wronskian associated to Problem (2.17) is given by a multiple of e
− s2

4

s2 , we conclude that,
since y1 is unbounded as s→ 0+, we have that y2(s) is bounded, as s→ 0+. This concludes the proof
of the Lemma.

�

Lemma 11.1. Let h = h(s) be a smooth function defined for s ≥ 0 so that

h(s) =

{
1
s for s→ 0
1
s3 for s→ ∞
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Then there exists a solution to
∂tψ = ∆ψ + t−βh(

r√
t
), (11.5)

of the form

ψ(r, t) = t−β+1φ(
r√
t
), with φ(s) =

{
s for s→ 0
1
s3 for s→ ∞ . (11.6)

Proof. We look for a solution to (11.5) of the form ψ(r, t) = t−(β−1)φ( r√
t
). Thus φ satisfies

φ′′ +

(
2

s
+
s

2

)
φ′ + (β − 1)φ+ h(s) = 0.

We look for a solution of the above equation of the form

φ(s) = z(s) y1(s)

where y1 solves y′′1 +
(
2
2 + s

2

)
y′1 + (β − 1)y1 = 0, and y1(s) ∼

{
1
s as s→ 0

e−
s2

4 s4(β−1)−3 as s→ ∞
. The

existence of y1 is consequence of Lemma 2.2. A direct computation gives

z(s) = −
∫ s

0

e−
η2

4

y1(η)2η2

(∫ η

0

h(x)y1(x)x
2 e

x2

4 dx

)
dη.

One can easily see that

z(s) ∼

{
s2 as s→ 0

e
s2

4 s−4(β−1) as s→ ∞
.

This fact gives (11.6), and concludes the proof of the Lemma. �

Proof of (5.10). For x ∈ B2R, we shall prove

ϕ0(µ0x, t)− ϕ0(0, t) = α(t)|µ0x|σ Π(t)Θ(|x|), (11.7)

for some σ ∈ (0, 1). Here Π = Π(t) denotes a smooth and bounded function of t, and Θ a smooth and
bounded function of x.

We have

ϕ0(µ0x, t)− ϕ0(0, t) =

∫ t

t0

1

(4π(t− s))
3
2

∫
R3

[
e−

|x−y|2
4(t−s) − e

−|y|2
4(t−s)

]
α(s)

|y|
1{r<M} dy ds

=
1

2

∫ t

t0

∫
β′(s)

(t− s)
1
2

[
e
−|z− µ0x

2
√

t−s
|2 − e−|z|2

] 1

|z|
1{|z|< M

2
√

t−s
} dy ds

= I + II

where

I =

∫ t−(
µ0x
2m )

t0

∫
β′(s)

(t− s)
1
2

[
e
−|z− µ0x

2
√

t−s
|2 − e−|z|2

] 1

|z|
1{|z|< M

2
√

t−s
} dy ds.

We start estimating II. We observe that, if t− (µ0x
2m ) < s < t, then µ0|x|

2
√
t−s > m. We write

II = II1 + II2 + II3

where

IIj =

∫ t

t−(
µ0x
2m )

∫
Dj

β′(s)

(t− s)
1
2

[
e
−|z− µ0x

2
√

t−s
|2 − e−|z|2

] 1

|z|
1{|z|< M

2
√

t−s
} dy ds.

with

D1 = {z : |z − µ0x

2
√
t− s

| < 1

4

µ0|y|
2
√
t− s

}, D2 = {z : |z| < 1

4

µ0|y|
2
√
t− s

}

and D3 the complement of the two above regions.
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We start estimating II1. We see that∫
D1

e
−|z− µ0x

2
√

t−s
|2 1

|z|
1{|z|< M

2
√

t−s
} dy =

∫
e−|z̄| 1

|z̄ + µ0x
2
√
t−s |

dz̄ = c
2
√
t− s

µ0|x|
,

for some constant c, as a direct application of Dominated Convergence Theorem. Thus∫ t

t−(
µ0x
2m )

∫
D1

e
−|z− µ0x

2
√

t−s
|2 1

|z|
1{|z|< M

2
√

t−s
} dy ds =

2c

µ0|x|

∫ t

t−(
µ0x
2m )

√
t− sds = c′(µ0|x|)

1
2 .

On the other hand, for any z in D1, one has |z| > 1
4
µ0|x|
2
√
t−s , and hence we can bound∣∣∣∣∫

D1

e−|z|2 1

|z|
dz

∣∣∣∣ ≤ c

[√
t− s

µ0|x|

]σ
,

for any σ > 0. We take σ > 1, so that

|
∫ t−(

µ0x
2m )

t0

∫
D1

e−|z|2 1

|z|
1{|z|< M

2
√

t−s}
dy ds| ≤ 1

(µ0|x|)σ

∣∣∣∣∣
∫ t−(

µ0x
2m )

t0

(t− s)
σ
2 − 1

2 ds

∣∣∣∣∣ ≤ c′µ0|x|

Thus we conclude that

|II1| . β′(t)(µ0|x|)
1
2 .

Arguing in a similar way, one finds the same type of estimate for II2. In the third region D3, we have
that

|z| > 1

4

µ0|x|
2
√
t− 2

, |z − µ0x

2
√
t− s

| > 1

4

µ0|x|
2
√
t− s

,

so that again one gets the estimate

|II3| . β′(t)µ0|x|.

Let us now consider the interval of time t0 < s < t −
(

µ0|x|
2m

√
t−s

)2
, region where one has µ0|x|

2
√
t−s < m.

We decompose

I = III + IV

where

III =

∫ t−1

t0

∫
β′(s)

(t− s)
1
2

[
e
−|z− µ0x

2
√

t−s
|2 − e−|z|2

] 1

|z|
1{|z|< M

2
√

t−s}
dy ds

We start with IV , where we expand in Taylor

IV =

∫ t−
(

µ0|x|
2m

√
t−s

)2

t−1

∫
β′(s)

(t− s)
1
2

[
e
−|z− µ0x

2
√

t−s
|2 − e−|z|2

] 1

|z|
1{|z|< M

2
√

t−s}
dy ds

= β′(t)

∫ t−
(

µ0|x|
2m

√
t−s

)2

t−1

µ0|x|
t− s

(∫
e−|z|2

|z|
dz

)
ds = β′(t) log

 t−
(

µ0|x|
2m

√
t−s

)2
t

µ0|x|

= β′(t)µ0|x|[log(µ0|x|)] = β′(t)(µ0|x|)σ,

for some positive σ < 1. Finally, we consider III. Again, after a Taylor expansion, we have

III = µ0|x|
∫ t−1

t0

β′(s)

(t− s)
ds = µ0|x|

∫ t−1

t0

β′(s)

t− s
ds.

Collecting the previous estimates, we conclude with the validity of (11.7). �
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12. Appendix B

Proof of Lemma 2.3. Throughout the proof of the Lemma, we denote by qi = qi(s), for any interegr
i, a smooth real function, with the property that d

(ds)j qi(0) = 0, for j < i, and d
(ds)i qi(0) ̸= 0. With

Θ = Θ(r) we intend a smooth function of the space variable, which is uniformly bounded. Also,
Π = Π(t) stands for a smooth function of the time variable, which is uniformly bounded in t ∈ (0,∞).
The explicit expressions of these functions change from line to line, and also within the same line.

Let R0 = r0
√
t. A simple computation gives the explicit expression of the error E1 in (2.40)

E1(r, t) = E1
inη(

r

R0
) + E1

out

(
1− η(

r

R0
)

)
(12.1)

+ R−2
0

(
uin − uout

)
∆η(

r

R0
) + 2R−1

0 ∇
(
uin − uout

)
· ∇η( r

R0
)︸ ︷︷ ︸

:=Ē1

+
(
uin − uout

) R′
0

R2
0

η′(
r

R0
)︸ ︷︷ ︸

:=Ê1

where

E1
in = ∆uin + u5in − ∂tuin, and E1

out = ∆uout + u5out − ∂tuout. (12.2)

We start analyzing E1
in, getting

E1
in(r, t) = µ′

0

[
∆ψ1 + 5w4

µψ1

]
− µ′ ∂wµ

∂µ

+ (wµ + µ′
0ψ1)

5 − w4
µ − 5w4

µµ
′
0ψ1 − µ′′

0ψ1 − µ′
0µ

′ ∂ψ1

∂µ

= (µ′ − µ′
0) µ

− 3
2Z0(

r

µ
) +

[
(wµ + µ′

0ψ1)
5 − w5

µ − 5w4
µµ

′
0ψ1

]
− µ′′

0ψ1 − µ′
0µ

′ ∂ψ1

∂µ
. (12.3)

Now we write

(µ′ − µ′
0) µ

− 3
2Z0(

r

µ
) =

[
2(µ

1
2 − µ

1
2
0 )

′ + (µ
1
2 − µ

1
2
0 )µ

−1
0 µ′

0

]
µ−1Z0(

r

µ
)

− (µ
1
2 − µ

1
2
0 )

2

µ
1
2

µ−1
0 µ′

0 µ
−1Z0(

r

µ
).

Taking into account that Z0(s) =
3

1
4

2
1
s +O( 1

s3 ), as s→ ∞, it is convenient to write[
2(µ

1
2 − µ

1
2
0 )

′ + (µ
1
2 − µ

1
2
0 )µ

−1
0 µ′

0

]
µ−1Z0(

r

µ
) =

α(t)

µ+ r

+
[
2(µ

1
2 − µ

1
2
0 )

′ + (µ
1
2 − µ

1
2
0 )µ

−1
0 µ′

0

]
µ−1

[
Z0(

r

µ
)− 3

1
4

2

µ

µ+ r

]
,

where α is defined in (2.41). We decompose (12.3) as

E1
in(r, t) =

α(t)

µ+ r
+ Ē1

in(r, t), (12.4)
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where Ē1
in is explicitly given by

Ē1
in(r, t) = − (µ

1
2 − µ

1
2
0 )

2

µ
1
2

µ−1
0 µ′

0 µ
−1Z0(

r

µ
)− µ′′

0ψ1 +
[
(wµ + µ′

0ψ1)
5 − w5

µ − 5w4
µµ

′
0ψ1

]
+
[
2(µ

1
2 − µ

1
2
0 )

′ + (µ
1
2 − µ

1
2
0 )µ

−1
0 µ′

0

]
µ−1

[
Z0(

r

µ
)− 3

1
4

2

µ

µ+ r

]
− µ′

0µ
′ ∂ψ1

∂µ

=

5∑
j=1

ej . (12.5)

We observe now that (e1 + e2 + e3)η(
r
R0

) can be described as sum of functions of the form

µ
1
2
0 t

−2R2
0

µ0 + r
q0(Λ)Π(t)Θ(r),

µ
− 1

2
0 t−1

µ0 + r
q2(Λ)Π(t)Θ(r), (12.6)

where q0 is a smooth function with q(0) ̸= 0, while q2 is a smooth function with q2(0) = q′2(0) = 0,
and q′′2 (0) ̸= 0. On the other hand, we see that

e4 =
α(t)µ2

0

µ3
0 + r3

Π(t)Θ(r), (12.7)

and e5

µ
1
2
0 t

−1

µ0 + r

[
R2

0Λ
′ +R2

0t
−1q1(Λ)

]
Π(t)Θ(r), (12.8)

where q1 is a smooth function with q1(0) = 0, q′1(0) ̸= 0. Under assumption (2.11) and combining
(12.4)-(12.6)-(12.7)-(12.8), we find that∣∣Ē1

inη
∣∣
∞,B(x,1)×[t,t+1]

. µ
1
2
0 t

− 3
2h0(

r√
t
), r = |x|.

Since (2.41), we observe that∣∣∣∣ α(t)µ+ r

(
1− η(

r

R0
)

)∣∣∣∣ . µ
3
2
0 t

− 3
2h0(

r√
t
), r = |x|.

Let us fix λ1 and λ2 satisfying (2.11). We write, for some λ̄ = sλ1 + (1− s)λ2, s ∈ (0, 1),

(
Ē1
in[λ1]− Ē1

in[λ2]
)
η(

r

R0
) =

(
DλĒ1

in[λ̄][λ1 − λ2]
)
η(

r

R0
), with DλĒ1

in[λ̄] =

5∑
j=1

(Dλej)[λ̄],

where the ej are defined in (12.5). Let us consider e1. We have that

(Dλe1)[λ̄] = 2µ0(1 + Λ)Dµ(e1)[λ̄].

Direct computation give that

∣∣Dµ(e1)[λ̄](r, t)
∣∣ . µ

− 1
2

0 t−1

µ0 + r
q0(λ̄)Π(t)Θ(r).

We combine the above estimates to get

|e1[λ1]− e1[λ2]| η(
r

R0
) ≤ µ0

µ
− 1

2
0 t−1

µ0 + r
|λ1 − λ2|η(

r

R0
)

≤ C
(
µ0(t)t

−1
)
µ

3
2
0 (t)t

− 3
2h0(

r√
t
)∥λ1 − λ2∥♯

≤ C
(
µ0(t0)t

−1
0

)
µ

3
2
0 (t)t

− 3
2h0(

r√
t
)∥λ1 − λ2∥♯.
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Choosing t0 large if necessary, we get C
(
µ0(t0)t

−1
0

)
< 1. Similar estimates can be obtained for the

other terms e2, . . ., e5. Thus we get∣∣(Ē1
in[λ1]− Ē1

in[λ2]
)
χ
∣∣
∞,B(x,1)×[t,t+1]

≤ co1µ
1
2
0 t

− 3
2h0(

r√
t
) ∥λ1 − λ2∥♯,

for some constant co1 which can be made arbitrarily small, if t0 is chosen large. Also, we have

[Ē1
in[λ1]− Ē1

in[λ2]]0,σ,[t,t+1] ≤ co1µ
1
2
0 t

− 3
2h0(

r√
t
) [λ1 − λ2]0,σ,[t,t+1].

Let us now describe E1
out. A first observation is that, for any value of γ, we immediately see that

E1
out does not depend on λ. On the other hand, if 1 < γ ≤ 2 the expression for E1

out becomes

E1
out(r, t) = u5out,

so that we directly get ∣∣∣∣E1
out (1− χ(

r

R0
))

∣∣∣∣ ≤ C
µ

5
2
0

r5
1{r>R−1

0 } . (12.9)

Let us consider now γ > 2. In this case, the expression of E1
out is a bit more involved

E1
out(r, t) = η(

r

t
)(u1out)

5 +
(
1− η(

r

t
)
)
A

[
γ(γ − 1)

rγ+2
+
A4

r5γ

]
(12.10)

+ t−2
(
u1out − u2out

)
∆η(

r

t
) + 2t−∇

(
u1out − u2out

)
· ∇η(r

t
)︸ ︷︷ ︸

:=Ēout
1

+
(
u1out − u2out

)
t−2 η′(

r

t
)︸ ︷︷ ︸

:=Êout
1

.

A close analysis of each one of the terms appearing in (12.10) gives that∣∣∣∣E1
out (1− η(

r

R0
))

∣∣∣∣ ≤ C

{
t−(γ−1)

r3
1{r>t}

+
t−2µ

1
2
0

r
1{t<r<2t} +

t−
5
2

r5
1{r0

√
t<r<t}

}
. (12.11)

From (12.9)-(12.10) and (12.11), we obtain that∣∣∣∣E1
out

(
1− χ(

r

R0
)

)∣∣∣∣ .
{
µ

1
2
0 t

− 3
2h0(

r√
t
) if 1 < γ ≤ 2

t−2h0(
r√
t
) if γ > 2.

Going back to (12.1), we are left with the description of Ē1 = Ē1[λ] and Ê1[λ]. Directly we check∣∣Ē1(r, t)∣∣ , ∣∣∣Ê1(r, t)∣∣∣ ≤ CR−2
0

µ
1
2
0

r
1{R0<r<2R0}, (12.12)

for some positive constant C. This gives right away∣∣∣Ē1 + Ê1
∣∣∣ . µ

1
2
0 t

− 3
2h0(

r√
t
).

Let us fix λ1 and λ2 satisfying (2.11). We write, for some λ̄ = sλ1 + (1− s)λ2, s ∈ (0, 1),

Ē1[λ1](r, t)− Ē1[λ2](r, t) = DλĒ1[λ̄][λ1 − λ2](r, t),

where

DλĒ1[λ̄] = R−2
0 (∂λuin[λ̄])∆η(

r

R0
) + 2R−1

0 ∇
(
(∂λuin)[λ̄]

)
· ∇η( r

R0
).
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Since in the region we are considering

∂λuin[λ̄] = 2µ0(1 + Λ)(∂µuin)[λ̄], |(∂µuin)| ≤ c
µ
− 1

2
0

r
,

we have ∣∣Ē1[λ1](r, t)− Ē1[λ2]
∣∣
∞,B(x,1)×[t,t+1]

≤
(
µ0(t0)t

−1
0

)
µ

1
2
0 t

− 3
2h0(

r√
t
)∥λ1 − λ2∥♯

≤ c1µ
1
2
0 t

− 3
2h0(

r√
t
)∥λ1 − λ2∥♯,

for some constant c1 ∈ (0, 1), provided t0 is large enough. Furthermore, we also have, for any t > t0,

[Ē1[λ1]− Ē1[λ2]]0,σ,[t,t+1] ≤ c1µ
1
2
0 t

− 3
2h0(

r√
t
)
(
[λ1 − λ2]0,σ,[t,t+1]

)
,

with again c1 ∈ (0, 1). Collecting all the previous estimates, we get the proof of the Lemma. �

Remark 12.1. From the proof of the result, we also get that the constants c in (2.50) and (2.51) can
be made as small as one needs, provided that the initial time t0 is chosen large enough.

.

13. Appendix C

Proof of Lemma 2.4. Under the assumptions (2.11) on λ, we get that, for any r > 0 and t > t0,

|E2,1(r, t)|+ [E2,1(r, t)]0,σ,[t,t+1] . µ
1
2
0 t

− 3
2h0(

r√
t
), (13.1)

where h0 is given by (2.44), and also estimates similar to (2.50) and (2.51) for ∂λE2,1. These estimates
follow from (2.49)-(2.50), (2.41) and from∣∣∣∣ α(t)µ+ r

(
η(

r

R0
)− 1{r<2M}

)∣∣∣∣ ≤ |α(t)|t− 1
2h0(

r√
t
).

Here we use again R0 = r0
√
t. Furthermore, in the region where η( r

R0
) − 1{r<2M} ̸= 0, the above

function is regular enough to have

[
α(t)

µ+ r

(
η(

r

R0
)− 1{r<2M}

)
]0,σ,B(x,1)×[t,t+1] ≤ |α(t)|t− 1

2h0(
r√
t
), r = |x|.

Using (2.43), we get (13.1). Let us consider now E22(1− ηR)(r, t). We claim that

∥E22(1− ηR)(r, t)∥∗ ≤ c2. (13.2)

Given d > 1, define h∗(s) =

{
1
s for s→ 0
1
sd

for s→ ∞ . Arguing as in the proof of Lemma 11.1, we get the

existence of ψ∗ so that

∂tψ∗ = ∆ψ∗ + µ
1
2
0 t

− 3
2h∗

(
r√
t

)
, with ψ∗(r, t) = µ

1
2
0 t

− 1
2φ∗(

r√
t
), φ(s) =

{
s for s→ 0
1
sd

for s→ ∞ .

Comparing the above equation and the equation satisfied by ϕ0, and using the maximum principle, we
obtain that, in the region where (1− ηR) ̸= 0,

|ϕ0(x, t)| ≤ ∥λ∥♯µ
1
2
0 t

− 1
2φ∗(

r√
t
). (13.3)

We proceed now with the estimate of (1−ηR)E22. A Taylor expansion gives the existence of s∗ ∈ (0, 1),
so that

E22(r, t) = 5(U1 + s∗ϕ0)
4 ϕ0.
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Let M̄ be a large fixed number. From (2.38) and (2.13), we see that, if r < M̄
√
t,

|(1− ηR)E22| . w4
µϕ0 . R−2µ

1
2
0 t

− 3
2h0(

r√
t
).

On the other hand, thanks to (13.3) we see that, for r > M̄
√
t, we get

|(1− ηR)E22| . (ϕ0)
5 . µ

5
2
0 t

− 5
2h0(

r√
t
).

Thus we get the L∞ bound in estimate (13.2). The control on the Hölder norm contained in (2.61)
and (2.62) follows arguing as in the proof of (2.50)-(2.51) in the proof of Lemma 2.3, and from the
assumption on λ in (2.11). We leave the details to the reader.

�
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[6] C. Cortázar, M. del Pino, M. Musso, Green’s function and infinite-time bubbling in the critical nonlinear heat

equation. To appear in JEMS.
[7] P. Daskalopoulos, M. del Pino, N. Sesum, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew

Math., to appear.
[8] J. Davila, M. del Pino, J. Wei, Singularity formation for the two-dimensional harmonic map flow into S2,

arXiv:1702.05801.

[9] R. Donninger, J. Krieger, Nonscattering solutions and blow-up at infinity for the critical wave equation. Math.

Ann., 357, 1 (2013), 89-163.
[10] T.Duyckaerts, C. E. Kenig, F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave

equation, Geometric and Functional Analysis 22 (2012), no. 3, 639–698.
[11] T.Duyckaerts, C.E. Kenig, F. Merle, Classification of radial solutions of the focusing, energy-critical wave equa-

tion, Cambridge Journal of Mathematics 1 (2013), no. 1, 75–144.

[12] T.Duyckaerts, C.E. Kenig, F. Merle, Solutions of the focusing nonradial critical wave equation with the com-

pactness property, to appear in Ann. Sc. Norm. Sup. Pisa, arXiv:1402.0365.
[13] T.Duyckaerts, C.E. Kenig, F. Merle, Concentration-compactness and universal profiles for the non-radial energy

critical wave equation, preprint, arXiv:1510.01750.
[14] J. Krieger, K. Nakanishi, W. Schlag. Center-stable manifold of the ground state in the energy space for the

critical wave equation. Math. Ann. 361 (2015), no. 1-2, 150.
[15] J. Krieger, W. Schlag, D. Tataru, Slow blow-up solutions for the H1(R3) critical focusing semilinear wave

equation. Duke Math. J. 147 (2009), no. 1, 1-53.

[16] M. Fila, J.R. King, Grow up and slow decay in the critical Sobolev case. Netw. Heterog. Media 7 (2012), no. 4,

661–671.
[17] S. Filippas, M. Herrero, J. Velázquez, Fast blow-up mechanisms for sign-changing solutions of a semilinear

parabolic equation with critical nonlinearity. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no.

2004, 2957-2982.
[18] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u+ u1+α, J. Fac. Sci. Univ. Tokyo

Sect. I, 13 (1966), 109–124.

[19] T-E. Ghoul, N. Masmoudi, Stability of infinite time blow up for the Patlak Keller Segel system, arXiv:1610.00456.
[20] C. Gui, W.-M. Ni, X. Wang, On the stability and instability of positive steady states of a semilinear heat equation

in Rn, Comm. Pure Appl. Math. 45 (1992), 1153–1181.
[21] H. Matano, F. Merle, Classification of type I and type II behaviors for a supercritical nonlinearheat equation. J.

Funct. Anal. 256 (2009), no. 4, 992–1064.

[22] H. Matano, F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation. Comm. Pure
Appl. Math. 57 (2004), no. 11, 1494–1541.

[23] H. Matano, F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation. J.

Funct. Anal. 261, no. 3, (2011), 716–748.



50 M. DEL PINO, M. MUSSO, AND J. WEI
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