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Abstract We first obtain Liouville type results for stable entire solutions of
the biharmonic equation −∆2u = u−p in RN for p > 1 and 3 ≤ N ≤ 12. Then
we consider the Navier boundary value problem for the corresponding equation and
improve the known results on the regularity of the extremal solution for 3 ≤ N ≤ 12.
As a consequence, in the case of p = 2, we show that the extremal solution u∗ is
regular when N = 7. This improves earlier results of Guo-Wei [20] (N ≤ 4), Cowan-
Esposito-Ghoussoub [2] (N = 5), Cowan-Ghoussoub [4] (N = 6).

1. Introduction. Consider the biharmonic equation

∆2u = −u−p, u > 0 in RN (1.1)

where N ≥ 3 and p > 1. Let

Λ(φ) :=
∫

RN

|∆φ|2dx− p

∫

RN

u−(p+1)φ2dx, ∀φ ∈ H2(RN ). (1.2)

A solution u is said to be stable if Λ(φ) ≥ 0 for any test function φ ∈ H2(RN ). The
main aim of this paper is to classify the stable solutions.

We first consider the stability issue for radial entire solutions. It is known from
[7] that for N = 3 and 1 < p < 3; N ≥ 4 and p > 1; and any a > 0, there is a
unique b := b(a) > 0 such that the problem

{
∆2u = −u−p in RN ,
u(0) = a, u′(0) = 0, u′′(0) = b, u′′′(0) = 0 (1.3)

has a unique positive radial solution ua(r) such that

r−αua(r) = [Q4(α)]−1/(p+1) as r →∞,

where
α =

4
p + 1

, Q4(α) := α(2− α)(α + N − 2)(α + N − 4). (1.4)
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It is also known from [7] that for any b̃ > b(a), the entire radial solution ũa of (1.3)
with the initial values u(0) = a, u′(0) = 0, u′′(0) = b̃ and u′′′(0) = 0 admits the
growth rate O(r2) at r = ∞. A comparison principle (Lemma 3.2 in [24]) ensures
that ũa > ua. We can easily see that ũa is stable if ua is stable. This implies that
the set of stable radial entire solutions of (1.1) with growth rate O(r2) at r = ∞ is
richer than the set of stable radial entire solutions of (1.1) with growth rate O(rα)
at r = ∞. This is a big difference between the equations with “positive exponents”
and “negative exponents”. (In fact, it is known from [19, 21, 29] that all the radial
entire solutions of the equation ∆2u = up have the same decay rate O(r−

4
p−1 ) at

r = ∞.)

By arguments similar to those in the proof of Theorem 1 of [23], the radial entire
solutions {ua}a>0 to (1.1) given in (1.3) is unstable if and only if

N2(N − 4)2

16
< pQ4(α). (1.5)

The left hand side of (1.5) is the best constant of the Hardy-Rellich inequality (see
[27]): Let N ≥ 3,

∫

RN

|∆φ|2dx ≥ N2(N − 4)2

16

∫

RN

φ2

|x|4 dx, ∀φ ∈ H2(RN ),

while the right hand side of (1.5) comes from the weak radial solution w(x) =
(Q(α))−

1
p+1 |x|α.

In appendix A, we shall prove that (1.5) holds if and only if p satisfies




p1
0(3) < p < p2

0(3) if N = 3,
p > 1 if N = 4,
p > p0(N) if 5 ≤ N ≤ 12

(1.6)

where p1
0(3), p2

0(3) and p0(N) are defined as follows

p1
0(3) =

5−
√

13− 3
√

17

3 +
√

13− 3
√

17
, p2

0(3) =
5 +

√
13− 3

√
17

3−
√

13− 3
√

17
(1.7)

p0(N) =
N + 2−

√
4 + N2 − 4

√
N2 + HN

6−N +
√

4 + N2 − 4
√

N2 + HN

, with HN = (N(N − 4)/4)2. (1.8)

When p satisfies (1.6), the radial solutions {ua}a>0 to (1.1) given in (1.3) are
unstable. The study for radial solutions to (1.1) suggests the following conjecture:

Conjecture: A smooth stable solution to (1.1) with growth rate O(|x|α) at ∞ does
NOT exist if and only if p satisfies (1.6).

In this paper, we partially solve the above conjecture. To this end, we need to
define some exponents.

Let

H∗
N :=

N2(N − 4)2

4
+

(N − 2)2

2
− 1, (1.9)

p∗(N) =





N+2−
√

4+N2−4
√

N2+H∗
N

6−N+
√

4+N2−4
√

N2+H∗
N

when 5 ≤ N ≤ 12,

+∞ when N ≥ 13
(1.10)
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and for N = 4

p1
∗(N) = p∗(N), p2

∗(N) =
N + 2 +

√
4 + N2 − 4

√
N2 + H∗

N

6−N −
√

4 + N2 − 4
√

N2 + H∗
N

. (1.11)

Let N ∈ (4, 5) be the unique root of the equation 8(N − 2)(N − 4) = H∗
N and

x := 1
2 (N − 2) ∈ (1, 3/2). Set

p̄ =
2 + x̄

2− x̄
. (1.12)

With all the notations, we now state the following classification results.

Theorem 1.1. Let N ≥ 3 and p > 1. Then equation (1.1) has no classical stable
solution u(x) satisfying

u(x) = O(|x|α), as |x| → ∞, (1.13)

if N ≥ 5 and p > max{p, p∗(N)} or N = 3 and p ∈
[

5
3 ,∞)∩(p1

0(3), p2
0(3)) or N = 4

and p ∈ [3,∞)∩(p1
∗(4), p2

∗(4)), where α = 4/(p+1) and p, p∗(N), p1
0(3), p2

0(3), p1
∗(4), p2

∗(4)
are given at the above.

Remark 1.2. Theorem 1.1 is the first result for the stable entire nonradial solutions
of (1.1). We know that p0(N) = ∞ for N ≥ 13. It is easy to see that p∗(N) >
p0(N).

Remark 1.3. Note that the condition (1.13) is natural since Equation (1.1) admits
entire radial solutions with growth rate O(r2). This marks dramatic difference from
the analogue fourth order equations with “positive exponents” ([19, 21, 29]).

We also study the corresponding Navier boundary value problem:

(Pλ)





∆2u = λ(1− u)−p, in Ω,
0 < u < 1, in Ω,
u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain. It is well-known (see [2, 4, 20])
that there exists a critical value λ∗ > 0 depending on p and Ω such that

(a) If λ ∈ (0, λ∗), (Pλ) has a minimal and classical solution uλ which is stable;
(b) If λ = λ∗, u∗ = limλ→λ∗ uλ is a weak solution to (Pλ∗), u∗ is called the

extremal solution.
(c) No solution of (Pλ) exists whenever λ > λ∗.

An interesting question is the regularity of the extremal solution u∗. If the
domain Ω is the unit ball, then one can use the methods of [8, 3] to obtain optimal
results for the radial extremal solution in the case of f(t) = (1 − t)−2 (see for
instance [17, 26]). For general domains, it is known from [2, 20] that u∗ is bounded
away from 1 provided N ≤ 5. Theorem 3 of [4] improves this to N ≤ 6. The
expected result that u∗ is bounded away from 1 is N ≤ 8, which holds on the ball,
see [26]. In this paper, we obtain the following theorem:

Theorem 1.4. The extremal solution u∗ is smooth, i.e., supΩ u∗ < 1, if 5 ≤ N ≤ 12
and p > p∗(N); N = 3 and p ∈ (p1

0(3), p2
0(3)); N = 4 and p ∈ (p1

∗(4), p2
∗(4)).

It is easy to see that p∗(7) < 2. Thus we obtain
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Corollary 1.5. The extremal solution u∗ to the following MEMS problem




∆2u = λ
(1−u)2 , in Ω,

0 < u < 1, in Ω,
u = ∆u = 0, on ∂Ω,

is smooth up to N ≤ 7.

This improves the result in Guo-Wei [20] (N ≤ 4), Cowan-Esposito-Ghoussoub
[2] (N = 5), Cowan-Ghoussoub [4] (N = 6). Moreover, we obtain optimal results
for the regularity of u∗ for N = 3 and general p.

Let us comment on related results. In the second order case, the finite Morse
index solutions to the corresponding problem

∆u + |u|q−1u = 0 in RN , q > 1 (1.14)

have been completely classified by Farina [18]. One main result of [18] is that
nontrivial finite Morse index solutions to (1.14) exist if and only if q ≥ pJL and
N ≥ 11, or q = N+2

N−2 and n ≥ 3. Here pJL is the so-called Joseph-Lundgren
exponent. This also yields the optimal regularity for extremal solutions of the
corresponding bounded domain problems.

For semilinear equations with negative exponents

∆u =
1
up

, u > 0 in RN , p > 1, (1.15)

the finite Morse index solutions has also been classified by Esposito [15] and Esposito-
Ghoussoub-Guo [16, 17]. See also Du-Guo [14] and Ma-Wei [25].

The finite Morse index solutions for semilinear problems in other contexts have
been studied by many authors recently, see, for example, [11, 5, 9, 13, 6].

For the fourth order with positive power case

∆2u = |u|p−1u in RN (1.16)

there have been many ractivities recently. It is known that Farina’s approach (which
ammounts to Moser’s iteration) does not work for (1.16). There are several new
approaches dealing with (1.16). The first approach is to use the test function −∆u.
To this end, one has to use the following Souplet’s inequality ([28]): for u > 0
satisfying (1.16) it holds

∆u +
√

2
p + 1

u
p+1
2 ≤ 0. (1.17)

This will give an exponent N
N−8 + εN for some εN > 0, see [2] and [29]. The second

approach, independently obtained by Cowan-Ghoussoub [4] and Dupaigne-Ghergu-
Goubet-Warnault [11], is to derive the following interesting intermediate second
order stability criterion: for stable positive solutions to (1.16) it holds

√
p

∫

RN

u
p−1
2 φ2 ≤

∫

RN

|∇φ|2, ∀φ ∈ C1
0 (RN ). (1.18)

This approaches improves the first upper bound N
N−8 but it again fails to obtain the

optimal exponent p0(N) (when N ≥ 13). By combining these two approaches one
can show that stable solutions to (1.16) do not exist when N ≤ 12 and p > N+4

N−4 ,
see [22]. Finally in a recent paper [10], Davila-Dupaigne-Wang-Wei employed a
monotonicity formula based approach and gave a complete classification of stable
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and finite Morse index (positive or sign-changing) solutions to (1.16. A remarkable
outcome of this third approach is that it gives the optimal exponent. Unfortunately
it seems that the monotonicity formula approach of [10] does not work well with
negative exponent. In this paper, we combine the first and second approaches for
negative exponent.

Acknowledgment. The research of the first author is supported by NSFC (11171092)
and Innovation Scientists and Technicians Troop Construction Projects of Henan
Province (114200510011). The research of the second author is supported by Ear-
marked Grants from RGC of Hong Kong and NSERC of Canada.

Note added after the completion of the paper. After the paper was com-
pleted, we were informed by Prof. L. Dupaigne that he and Prof. P. Esposito [12]
have obtained similar results when p = 2.

2. Preliminaries. In this section we collect some properties of the entire solutions
of (1.1) which will be useful in the following proofs. We will let v = ∆u in this
paper for notation simplicity. As a very first step, we start with

Lemma 2.1. For any point x0 ∈ RN and all r > 0,

u−p(r) ≤ u−p(r), u(r) =

∫
∂Br(x0)

udσ

|∂Br(x0)| . (2.1)

Proof. This is an immediate consequence of the Jensen’s inequality, as the function
f(u) = u−p is convex on the interval (0,∞).

Lemma 2.2. If u > 0 is a C4 solution to (1.1) in RN , then ∆u > 0.

Proof. The proof of this lemma is quite elementary. First we show that ∆u ≥ 0.
Assume there were a point x0 in RN such that ∆u(x0) < 0. Then it follows from
Lemma 2.1 that u(r) and v(r) := ∆u(r) satisfy

{
∆u = v,
∆v + u−p ≤ 0.

(2.2)

Since v(0) = v(x0) < 0, the inequality in (2.2) dictates that v(r) ≤ v(0) for all
r > 0. Replace the first equation in (2.2) by the differential inequality

∆u ≤ v(0)

and integrate it to get

u(r) ≤ u(0) +
v(0)
2N

r2. (2.3)

If r is large enough, we see that u(r) < 0. This is clearly impossible since we have
assumed that u is positive everywhere.

Next assume v = 0 at some x1. Then ∆v(x1) ≥ 0 since v attains its minimum
there. This contradicts Eq. (1.1). This completes the proof of this lemma.

Note that the definition of u(r) or v(r) in Lemmas 2.1 and 2.2 depends on x0. In
the following, we still use u(r) and v(r) to denote the spherical average with x0 = 0.

Lemma 2.3. We have
u′(r) > 0, u′′(0) > 0, (2.4)

v′(r) < 0 (2.5)
for all r > 0.
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Proof. We multiply the inequality in (2.2) by rN−1 and integrate the resulting
equation to get

rN−1v′(r) +
∫ r

0

tN−1u−p(t)dt ≤ 0,

where we have used the condition that v′(0) = 0. Eq. (2.5) follows immediately.
Similarly, from the facts that v > 0 and (rN−1u′(r))′ = rN−1v(r), we integrate this
last equation to conclude the first inequality in (2.4). Notice that we have used
u′(0) = 0. Since Nu′′(0) = (∆u)(0), we easily see that u′′(0) > 0.

In this paper, we use C to denote generic positive constants, which may change
term by term, but does not depend on the solution u.

Proposition 2.4. Assume that N ≥ 3 and p > 1, u > 0 is a C4 solution to
(1.1) satisfying u(x) = O(|x|α) as |x| → ∞ with α = 4/(p + 1). Then for R À 1
sufficiently large, ∫

BR

u−pdx ≤ CRN−pα, (2.6)

∫

BR

u2dx ≤ CRN+2α. (2.7)

Proof. It is easily seen from the first equation of (2.2) and the fact v′(r) < 0 that

v(r) ≤ Cr−2u(r) for r > 0, (2.8)

where C = C(N). On the other hand, since u(x) = O(|x|α) as |x| → ∞, it follows
that for R À 1 sufficiently large,

u(R) ≤ CRα (2.9)

and hence (2.8) implies
v(R) ≤ CRα−2. (2.10)

Therefore,
∫

BR

u−pdx ≤ CRN−2

∫ 2R

R

r1−N

∫

Br

u−pdx = −CRN−2

∫ 2R

R

r1−N

∫

Br

∆vdx

= −CRN−2

∫ 2R

R

v′(r)dr ≤ CRN−2v(R) ≤ CRN−pα (see (2.10)),

since N − 4 + α = N − 4p
p+1 = N − pα. This shows (2.6).

(2.7) follows from the growth assumption on u.

Proposition 2.5. Let u > 0 be a C4 solution to (1.1) with p > 1. Then the
following inequality holds:

v2 ≥ 2
p− 1

u1−p in RN . (2.11)

The inequality (2.11) is a generalization of the similar inequality given in [28] for
the Lane-Emden system.

Proof. Writing (1.1) as the system of equations
{

∆u = v
∆v = −u−p,

(2.12)
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and defining w(x) = `uσ− v with ` =
√

2
p−1 and σ = 1−p

2 , we see that v > 0, σ < 0
and

∆w = `σ
(
uσ−1∆u + (σ − 1)uσ−2|∇u|2

)
−∆v

≥ `σuσ−1v + u−p

= uσ−1`−1(`uσ − v)
= uσ−1`−1w.

It follows that

∆w ≥ 0 in the set {w ≥ 0}.
Consequently, for any R > 0, we have

∫

BR

|∇w+|2 = −
∫

BR

w+∆w + RN−1

∫

SN−1
w+(R)wr(R) ≤ RN−1

2
f ′(R), (2.13)

where f(R) :=
∫

SN−1(w+)2(R). Let g(R) :=
∫

SN−1 u−p(R). We note that f ≤
Cg

p−1
p .

We now show that for R > 1 large enough,
∫ R

0

g(r)rN−1dr =
∫

BR

u−pdx ≤ CRN−2. (2.14)

To show (2.14), by the argument
∫

BR

u−pdx ≤ CRN−2v(R)

in the proof of (2.6) of Proposition 2.4, we only need to show that, for R > 1 large
enough, v(R) ≤ C, where C is independent of R. Indeed, u is a subsolution in the
sense that it satisfies ∆2u + u−p ≤ 0, u′(0) = 0 and u′′′(0) = 0. Next, define the
radially symmetric quadratic function z(r) = u(0)+ u′′(0)

2 r2. It is a supersolution as
it satisfies ∆2z+z−p ≥ 0, z′(0) = 0 and z′′′(0) = 0. A comparison principle (Lemma
3.2 in [24]) ensures that z > u. The radially symmetric solution U of the initial
value problem ∆2U + U−p = 0 with U(0) = u(0), U ′(0) = 0, U ′′(0) = u′′(0) > 0,
U ′′′(0) = 0 exists on (0,∞) and satisfies u ≤ U ≤ z by the same comparison
principle. Therefore, for any R > 1,

v(R) ≤ CR−2u(R) ≤ C
(
u(0)R−2 +

u′′(0)
2

)
≤ C.

Therefore, (2.14) holds.
On the other hand, (2.14) implies that g(Ri) → 0 for some sequence Ri → ∞.

Consequently, f(Ri) → 0 and there exists a sequence R̃i →∞ such that f ′(R̃i) ≤ 0.
Letting i →∞ in (2.13) with R = R̃i, we conclude that w+ is constant in RN . But
w+ ≡ C > 0 would imply w ≡ C by continuity, hence uσ ≥ C which implies that
u−(p−1) ≥ C2. This contradicts the fact that for R À 1 sufficiently large,

∫

BR

u−(p−1)dx ≤
( ∫

BR

u−pdx
) (p−1)

p |BR|
1
p ≤ CR

(N−2)(p−1)
p + N

p = CRN−2+ 2
p .

Thus w+ ≡ 0 and the conclusion follows.
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3. Some decay estimates for stable solutions of (1.1): Proof of Theorem
1.1. In this section we obtain some useful decay estimates for stable solutions of
(1.1).

Lemma 3.1. Let u > 0 be a C4 solution to (1.1) satisfying u(x) = O(|x|α) as
|x| → ∞ and v = ∆u. Then for R À 1 sufficiently large, there holds

∫

BR

(v2 + u1−p)dx ≤ CRN−4+ 8
p+1 . (3.1)

Proof. We use an identity given in the proof of Theorem 1.1 of [29] (see also [22]):
For any ξ ∈ C4(RN ) and η ∈ C∞0 (RN ), we have

∫
RN (∆2ξ)ξη2dx =

∫
RN [∆(ξη)]2dx +

∫
RN [−4(∇ξ · ∇η)2 + 2ξ∆ξ|∇η|2]dx

+
∫
RN ξ2

[
2∇(∆η) · ∇η + (∆η)2

]
dx.

(3.2)

Take ξ = u, a solution of (1.1) into (3.2), there holds
∫

RN

[∆(uη)]2dx +
∫

RN

u1−pη2dx

=
∫

RN

[
4(∇u · ∇η)2 − 2uv|∇η|2 − u2

(
2∇(∆η) · ∇η + (∆η)2

)]
dx.

Since ∆(uη) = 2∇u · ∇η + u∆η + vη, we obtain that
∫

RN

[
v2η2 + u1−pη2

]
dx

≤ C

∫

RN

[
|∇u|2|∇η|2 + u2|∇(∆η) · ∇η|+ u2(∆η)2

]
dx + C

∫

RN

uv|∇η|2dx.

Here and in the following, C denotes generic positive constants independent of u,
which could be changed from one line to another. Using

2
∫

RN

|∇u|2|∇η|2dx =
∫

RN

u2∆(|∇η)|2)dx− 2
∫

RN

uv|∇η|2dx,

we can conclude that
∫

RN

[
v2η2 + u1−pη2

]
dx

≤ C

∫

RN

u2
[
|∇(∆η) · ∇η|+ (∆η)2 + ∆(|∇η)|2)

]
dx + C

∫

RN

uv|∇η|2dx.

Take η = ϕm with m > 2 and ϕ ∈ C∞0 (RN ), ϕ ≥ 0, it follows that
∫

RN

uv|∇η|2dx = m2

∫

RN

uvϕ2(m−1)|∇ϕ|2dx

≤ 1
2C

∫

RN

(vϕm)2dx + C

∫

RN

u2ϕ2(m−2)|∇ϕ|4dx.

Choose now ϕ0 a cut-off function in C∞0 (B2) satisfying 0 ≤ ϕ0 ≤ 1, ϕ0 = 1 in B1.
Input η = ϕm and m > 2 with ϕ = ϕ0(R−1x) for R À 1 into the above inequalities,
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we arrive at ∫

RN

(v2 + u1−p)ϕ2mdx ≤ C

R4

∫

B2R

u2ϕ2m−4dx

≤ C

R4

∫

B2R

u2dx

≤ CRN−4+ 8
p+1 (see (2.7)).

Since ϕ2m(x) = 1 for x ∈ BR, we obtain (3.1).
For k ∈ N, let Rk := 2kR with R > 0.

Lemma 3.2. Assume that u is a classical stable solution to (1.1). Then there exists
0 < C < ∞ independent of u such that for any s > 1∫

BRk

u−pvs−1dx ≤ C

R2

∫

BRk+1

vsdx, ∀R > 0, (3.3)

provided that

L1(p, s) := s4 − 32p

p− 1
s2 +

32p(p− 3)
(p− 1)2

s +
64p

(p− 1)2
< 0 (3.4)

or for any 1 < s ≤ p+1√
2(p−1)

, (3.3) holds provided that

L0(p, s) := s4 − 2
(p + 1

p− 1

)2

s2 +
(p + 1

p− 1

)4

− 32p

p− 1
s2 +

32p(p− 3)
(p− 1)2

s +
64p

(p− 1)2
< 0.

(3.5)

Remark 3.3. We see that if x = (p−1)
p+1 s, then

H0(p, x) =
(p− 1

p + 1

)4

L0(p, s), H1(p, x) =
(p− 1

p + 1

)4

L1(p, s).

Since for x ≥ 1,

H0(p, x) < 0 if and only if p > p0(2 + 2x),

then for s ≥ (p + 1)/(p− 1),

L0(p, s) < 0 if and only if p > p0

(
2 + 2(p−1)

p+1 s
)
.

Similarly, since for x > x,

H1(p, x) < 0 if and only if p > p∗(2 + 2x),

then, for s > (p+1)
(p−1)x,

L1(p, x) < 0 if and only if p > p∗
(
2 + 2(p−1)

(p+1) s
)
.

For s ∈
(

(
√

2−1)(p+1)
p−1 , p+1

p−1x
)
,

H1(p, x) < 0 if and only if p ∈
(
p1
∗
(
2 + 2(p−1)

p+1 s
)
, p2
∗
(
2 + 2(p−1)

p+1 s
))

.

Moreover, for s ∈
(

(
√

2−1)(p+1)
p−1 , p+1

p−1

)
and s1 < s2, we have

1 < p1
0

(
2 +

2(p− 1)
p + 1

s2

)
< p1

0

(
2 +

2(p− 1)
p + 1

s1

)

< p2
0

(
2 +

2(p− 1)
p + 1

s1

)
< p2

0

(
2 +

2(p− 1)
p + 1

s2

)
,
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and for s ∈
(

(p+1)
p−1 , p+1

p−1x
)

and s1 < s2, we have

1 < p1
∗
(
2 +

2(p− 1)
p + 1

s1

)
< p1

∗
(
2 +

2(p− 1)
p + 1

s2

)

< p2
∗
(
2 +

2(p− 1)
p + 1

s1

)
< p2

∗
(
2 +

2(p− 1)
p + 1

s2

)
.

Proof of Lemma 3.2. The proof of this lemma is motivated by the proof of Lemma
3.1 of [22]. Let u be a classical stable solution of (1.1). Writing the equation of u
as { −∆u = z

−∆z = −u−p (3.6)

with z = −v and using arguments similar to those in the proof of Lemma 3 in [1],
we obtain that

√
p

∫

RN

u−
(p+1)

2 ϕ2dx ≤
∫

RN

|∇ϕ|2dx (3.7)

for all ϕ ∈ C∞0 (RN ). Let φ ∈ C2
0 (RN ) and ϕ = u

(q+1)
2 φ with q < −1. Take ϕ into

the stability inequality (3.7), we obtain

√
p

∫

RN

u−
p+1
2 uq+1φ2 ≤

∫

RN

uq+1|∇φ|2 +
∫

RN

|∇u
q+1
2 |2φ2 +(q +1)

∫

RN

uqφ∇u ·∇φ.

(3.8)
Integrating by parts, we have
∫

RN

|∇u
q+1
2 |2φ2dx =

(q + 1)2

4

∫

RN

uq−1|∇u|2φ2dx

=
(q + 1)2

4q

∫

RN

φ2∇(uq) · ∇udx

= − (q + 1)2

4q

∫

RN

uqvφ2dx− q + 1
4q

∫

RN

∇(uq+1) · ∇(φ2)dx

= − (q + 1)2

4q

∫

RN

uqvφ2dx +
q + 1
4q

∫

RN

uq+1∆(φ2)dx

and

(q + 1)
∫

RN

uqφ∇u · ∇φdx =
1
2

∫

RN

∇(uq+1) · ∇(φ2)dx = −1
2

∫

RN

uq+1∆(φ2)dx.

Combining (3.8) and these two identities, we conclude that

a1

∫

RN

u−
(p+1)

2 uq+1φ2dx ≤
∫

RN

uqvφ2dx + C

∫

RN

uq+1(|∆(φ2)|+ |∇φ|2)dx (3.9)

where a1 = − 4q
√

p

(q+1)2 > 0 (note q < −1). Choose now φ(x) = h(R−1
k x) where

h ∈ C∞0 (B2) such that h ≡ 1 in B1, there holds then
∫

RN

u−
(p+1)

2 uq+1φ2dx ≤ 1
a1

∫

RN

uqvφ2dx +
C

R2

∫

BRk+1

uq+1dx. (3.10)

Now, apply the stability inequality (3.7) with ϕ = v
r+1
2 φ, r > 0, there holds

√
p

∫

RN

u−
p+1
2 vr+1φ2 ≤

∫

RN

vr+1|∇φ|2 +
∫

RN

|∇v
r+1
2 |2φ2 + (r + 1)

∫

RN

vrφ∇v · ∇φ.

(3.11)
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By very similar computation as above (recalling that −∆v = u−p), we have
∫

RN

u−
p+1
2 vr+1φ2dx ≤ 1

a2

∫

RN

u−pvrφ2dx +
C

R2

∫

BRk+1

vr+1dx, (3.12)

where a2 = 4r
√

p

(r+1)2 .
Using (3.10) and (3.12), there holds

I1 + ar+1
2 I2 :=

∫

RN

u−
p+1
2 uq+1φ2dx + ar+1

2

∫

RN

u−
p+1
2 vr+1φ2dx

≤ 1
a1

∫

RN

uqvφ2dx + ar
2

∫

RN

u−pvrφ2dx +
C

R2

∫

BRk+1

(uq+1 + vr+1)dx.

Fix now

2q = −(p− 1)r − (p + 1), or equivalently q + 1 = − (p−1)(r+1)
2 . (3.13)

By Young’s inequality, we have

1
a1

∫

RN

uqvφ2 =
1
a1

∫

RN

u−
p+1
2 u−

p−1
2 rvφ2dx

=
1
a1

∫

RN

u−
p+1
2 u

r
r+1 (q+1)vφ2dx

≤ r

r + 1

∫

RN

u−
p+1
2 uq+1φ2dx +

1
ar+1
1 (r + 1)

∫

RN

u−
p+1
2 vr+1φ2dx

=
r

r + 1
I1 +

1
ar+1
1 (r + 1)

I2

and similarly

ar
2

∫

RN

u−pvrφ2dx ≤ 1
r + 1

I1 +
ar+1
2 r

r + 1
I2.

Using these, we obtain that

ar+1
2 I2 ≤

[ 1
ar+1
1 (r + 1)

+
ar+1
2 r

r + 1

]
I2 +

C

R2

∫

BRk+1

(uq+1 + vr+1)dx (3.14)

hence
(a1a2)r+1 − 1

r + 1
I2 ≤ Car+1

1

R2

∫

BRk+1

(uq+1 + vr+1)dx. (3.15)

If we denote s = r + 1, then for s ≤ p+1√
2(p−1)

and a1a2 > 1− (p+1)2

(p−1)2s4 [2s2 − ( p+1
p−1 )2],

by the choice of φ, we see from (3.15) that
∫

BRk

u−
p+1
2 vr+1dx ≤ I2 ≤ C

R2

∫

BRk+1

(uq+1 + vr+1)dx. (3.16)

From (2.11) and (3.13), we get uq+1 ≤ Cvs. Therefore, we obtain that
(i) if a1a2 > 1 and s > 1,
∫

BRk

u−pvs−1 ≤ C

∫

BRk

u−
p+1
2 vs ≤ C

R2

∫

BRk+1

(uq+1 + vr+1) ≤ C

R2

∫

BRk+1

vs,

(3.17)
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(ii) if a1a2 > 1− (p+1)2

(p−1)2s4 [2s2 − ( p+1
p−1 )2] provided 1 < s ≤ p+1√

2(p−1)
,

∫

BRk

u−pvs−1 ≤ C

∫

BRk

u−
p+1
2 vs ≤ C

R2

∫

BRk+1

(uq+1 + vr+1) ≤ C

R2

∫

BRk+1

vs.

(3.18)
For case (i),

a1a2 > 1 is equivalent to L1(p, s) < 0,

where

L1(p, s) := s4 − 32p

p− 1
s2 +

32p(p− 3)
(p− 1)2

s +
64p

(p− 1)2
. (3.19)

For case (ii),

a1a2 > 1− (p + 1)2

(p− 1)2s4

[
2s2 −

(p + 1
p− 1

)2]
is equivalent to L0(p, s) < 0,

where

L0(p, s) := s4−2
(p + 1

p− 1

)2

s2+
(p + 1

p− 1

)4

− 32p

p− 1
s2+

32p(p− 3)
(p− 1)2

s+
64p

(p− 1)2
. (3.20)

These complete the proof of this lemma.

Corollary 3.4. Assume that u is a classical stable solution to (1.1). For any
ε > 0 sufficiently small, suppose 5 ≤ N ≤ 12 and any (p+1)

(p−1)x := s0 < β :=
N

N−2
(p+1)
p−1

(
N−2

2 +ε
)
. Then there is some integer n ≥ 1 and 0 < C < ∞ independent

of u and ε such that
( ∫

BR

vβ
) 1

β ≤ CRN( 1
β− 1

s0
)
(∫

BR3n

vs0

) 1
s0

, (3.21)

for all R ≥ 1, provided that p satisfies

H1

(
p,

N − 2
2

+ ε
)

< 0.

Suppose N = 3 and 1√
2

p+1
p−1 > p+1

2(p−1) := s0 < β := 3 (p+1)
p−1

(
1
2 + ε

)
(note that

s0 > 1 for 1 < p < 3). Then there is some integer n ≥ 1 and 0 < C < ∞
independent of u and ε such that

(∫

BR

vβ
) 1

β ≤ CR3( 1
β− 1

s0
)
( ∫

BR3n

vs0

) 1
s0

, (3.22)

for all R ≥ 1, provided that p satisfies

H0

(
p,

1
2
) < 0.

Suppose N = 4 and p+1
p−1 := s0 < β := 2 (p+1)

(p−1) (1 + ε). Then there is some integer
n ≥ 1 and 0 < C < ∞ independent of u and ε such that

(∫

BR

vβ
) 1

β ≤ CR4( 1
β− 1

s0
)
( ∫

BR3n

vs0

) 1
s0

, (3.23)

for all R ≥ 1, provided that p satisfies

both H1

(
p, 1

)
< 0 and H1

(
p, 1 + ε

)
< 0.
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Proof. To prove this corollary, we can use the iteration argument as in [1]. First
we need to claim that for 5 ≤ N ≤ 12, if p satisfies

L1

( (p + 1)
(p− 1)

[N − 2
2

+ ε
])

< 0,

then
L1(p, s) < 0 for s ∈

(
s0,

(p+1)
(p−1)

[
N−2

2 + ε
])

.

To see this, a direct calculation implies that p∗(N) is an increasing function of N
for N ∈ [5, 12]. Therefore, for any fixed x∗ > x, H1(p, x∗) < 0 implies H1(p, x) < 0
for x ∈ (x, x∗). Note that p∗(2 + 2x∗) > p∗(2 + 2x) for x ∈ (x, x∗). Our claim can
be obtained easily from

H1(p, x) := H1

(
p,

(p− 1)
(p + 1)

s
)

=
(p− 1

p + 1

)4

L1(p, s)

and x = (p−1)
(p+1)s0 ≤ x := (p−1)

(p+1)s <
(

N−2
2 + ε

)
.

For 2
√

2 < 3 < 4, we need to claim that L0

(
p, 1

2
p+1
p−1

)
< 0 implies that L0(p, s) <

0 for s ∈
[
s0,

(
1
2 +ε

)
p+1
p−1

]
. To see this, we need to use the fact that for

√
2−1 < x0 <

x < 1, H0(p, x0) < 0 implies H0(p, x) < 0. Note that (p1
0(2 + 2x0), p2

0(2 + 2x0)) ⊂
(p1

0(2 + 2x), p2
0(2 + 2x)). Our claim can be obtained easily from

H0(p, x) := H0

(
p,

(p− 1)
(p + 1)

s
)

=
(p− 1

p + 1

)4

L0(p, s)

and
√

2 − 1 < 1
2 = (p−1)

(p+1)s0 := x0 < x := (p−1)
(p+1)s < 1

2 + ε < 1. We use H0(p, x),
L0(p, s), p1

0(2+2x), p2
0(2+2x) instead of H1(p, x), L1(p, s), p1

∗(2+2x) and p2
∗(2+2x)

here, because of s < 1√
2

p+1
p−1 for s ∈

[
s0,

(
1
2 + ε

)
p+1
p−1

]
.

The proof of N = 4 is similar to that of N = 3. But we should use H1(p, x),
L1(p, s), p1

∗(2 + 2x) and p2
∗(2 + 2x) here, because of s0 > 1√

2

p+1
p−1 . Note that for

N1, N2 ∈ [4, N) and N1 < N2,

1 < p1
∗(N1) < p1

∗(N2) < p2
∗(N1) < p2

∗(N2).

Then if p satisfies both H1(p, 1) < 0 and H1(p, 1 + ε) < 0, we see that p ∈
(p1
∗(4), p2

∗(4 + 2ε)). Therefore, p satisfies

L1(p, s) < 0 for s ∈
(

(p+1)
(p−1) , (1 + ε) (p+1)

(p−1)

)
.

These complete the proof of this corollary.

Proof of Theorem 1.1: We first consider the case of 5 ≤ N ≤ 12 and p >

max{p, p∗(N)} with p := 2+x
2−x . We see that (p+1)

(p−1)x < 2. Then for s0 as given in
Corollary 3.4 and R À 1,

∫

BR

vs0dx ≤ C
( ∫

BR

v2dx
) s0

2
R

N(2−s0)
2

≤ CR
s0
2 (N−4+2α)+

N(2−s0)
2

= CRN−(2−α)s0 ,

(see Lemma 3.1). It follows from Corollary 3.4 that when p satisfies

H1

(
p,

N − 2
2

+ ε
)

< 0,
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then ( ∫

BR

vβ
) 1

β ≤ CRN( 1
β− 1

s0
)
(∫

BR3n

vs0

) 1
s0

, (3.24)

for all R ≥ 1. It is easily seen that

H1

(
p,

N − 2
2

+ ε
)

< 0 ⇐⇒ p > p∗(N + 2ε). (3.25)

Therefore, for p > p∗(N + 2ε),
∫

BR

vβdx ≤ CRN−(2−α)β , ∀R À 1. (3.26)

Note that

N − (2− α)β < 0 ⇐⇒ N <
2(p− 1)
p + 1

β.

Since
2(p− 1)
p + 1

β =
2N

N − 2

(N − 2
2

+ ε
)

> N,

after sending R → ∞ we get that ‖v‖Lβ(RN ) = 0, which is impossible since v is

positive. The arbitrariness of ε implies that for p > max
{

2+x
2−x , p∗(N)}, u does not

exist.
Now we consider the case of N = 3. It is known from Corollary 3.4 that when p

satisfies H0(p, 1
2 ) < 0, then

(∫

BR

vβ
) 1

β ≤ CR3( 1
β− 1

s0
)
( ∫

BR3n

vs0

) 1
s0

, (3.27)

for all R ≥ 1. We easily see that

H0

(
p,

1
2

)
< 0 ⇐⇒ p ∈ (p1

0(3), p2
0(3)).

On the other hand, we see that

(p + 1)
2(p− 1)

≤ 2 if p ≥ 5
3 .

Then for p ∈ [ 53 ,∞) ∩ (p1
0(3), p2

0(3)), we have
( ∫

BR

vβ
) 1

β ≤ CR3( 1
β− 1

s0
)
( ∫

BR3n

vs0

) 1
s0 ≤ CR3( 1

β− 1
s0

)+ 3
s0
−(2−α). (3.28)

This implies that ∫

BR

vβdx ≤ CR3−(2−α)β , ∀R À 1. (3.29)

Since

3− (2− α)β = 3− 2(p− 1)
(p + 1)

β = 3− (3 + 6ε) < 0,

after sending R → ∞ we get that ‖v‖Lβ(RN ) = 0, which is impossible since v is
positive. This implies that for p ∈ [ 53 ,∞) ∩ (p1

0(3), p2
0(3)), u does not exist.

The proof of N = 4 is similar to that of N = 3. We need to send ε to zero.
To conclude, the equation (1.1) has no classical stable solution with u(x) =

O(|x|α) provided that

p > max{p, p∗(N)} for 5 ≤ N ≤ 12,
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and

p ∈
[5
3
,∞

)
∩ (p1

0(3), p2
0(3)) for N = 3

and
p ∈ [3,∞) ∩ (p1

∗(4), p2
∗(4)) for N = 4.

4. Navier boundary value problem: Proof of Theorem 1.4. In this section,
we consider the regularity of the extremal solution u∗ of the problem:

(Pλ)





∆2u = λ(1− u)−p, in Ω,
0 < u < 1, in Ω,
u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain. We give the proof of Theorem
1.4.

Proof of Theorem 1.4: Let uλ be the minimal solution of (Pλ), it is well known
that uλ is stable. To simplify the presentation, we erase the index λ on uλ. We
easily see from the maximum principle that ∆u < 0. If we define v = −∆u, then
v > 0 in Ω.

It is known from [4, 2] that there holds
√

λp

∫

Ω

(1− u)−
p+1
2 ϕ2dx ≤

∫

Ω

|∇ϕ|2dx, ∀ϕ ∈ H1
0 (Ω). (4.1)

Using ϕ = (1− u)
q+1
2 − 1 with q < −1 as test function, we see from (4.1) that

√
λa1

∫

Ω

(1−u)−
p+1
2 +q+1

[
1−2(1−u)−

q+1
2 +(1−u)−(q+1)

]
dx ≤

∫

Ω

(1−u)qvdx (4.2)

where a1 = − 4q
√

p

(q+1)2 . Similarly, using ϕ = v
r+1
2 with r > 0 as the test function in

(4.1), we obtain
√

λa2

∫

Ω

(1− u)−
p+1
2 vr+1dx ≤ λ

∫

Ω

(1− u)−pvrdx, (4.3)

where a2 = 4r
√

p

(r+1)2 . Take always 2q = −(p− 1)r− (p + 1), i.e., q + 1 = − (p−1)(r+1)
2 .

Applying Hölder’s inequality, there hold
∫

Ω

(1− u)qvdx ≤
( ∫

Ω

(1− u)−
p+1
2 vr+1dx

) 1
r+1

( ∫

Ω

(1− u)−
p+1
2 +q+1dx

) r
r+1

(4.4)

and∫

Ω

(1−u)−pvrdx ≤
(∫

Ω

(1−u)−
p+1
2 vr+1dx

) r
r+1

( ∫

Ω

(1−u)−
p+1
2 +q+1dx

) 1
r+1

. (4.5)

Multiplying (4.2) with (4.3), using (4.4) and (4.5), we obtain

a1a2

∫

Ω

(1−u)−
p+1
2 +q+1

[
1−2(1−u)−

q+1
2 +(1−u)−(q+1)

]
dx ≤

∫

Ω

(1−u)−
p+1
2 +q+1dx.

(4.6)
Therefore,
(
1− 1

a1a2

) ∫

Ω

(1−u)−
p+1
2 +q+1dx ≤

∫

Ω

(1−u)−
p+1
2 + q+1

2

[
2− (1−u)−

q+1
2

]
dx. (4.7)
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Applying Hölder’s inequality, we see that
∫

Ω

(1− u)−
p+1
2 + q+1

2

[
2− (1− u)−

q+1
2

]
dx ≤

( ∫

Ω

(1− u)−
p+1
2 +q+1dx

) (p+1)−(q+1)
(p+1)−2(q+1)

C,

(note that q < −1). Therefore,

(
1− 1

a1a2

)( ∫

Ω

(1− u)−
p+1
2 +q+1dx

)− (q+1)
(p+1)−2(q+1) ≤ C. (4.8)

Therefore, if 1 < s ≤ 1√
2

p+1
p−1 and L0(p, s) < 0, we see that

a1a2 > 1− (p + 1)2

(p− 1)2s4

[
2s2 −

(p + 1
p− 1

)2]
.

This and (4.8) imply that for any 1 < s∗ ≤ 1√
2

p+1
p−1 and L0(p, s∗) < 0, then

∫

Ω

(1− u)−
p+1
2 +q+1dx ≤ C. (4.9)

Now, we choose s3 := (p+1)
2(p−1) . Then 1 < s3 < 1√

2

p+1
p−1 for N = 3 and 1 < p < 3. We

also know that L0(p, s3) < 0 is equivalent to H0

(
p, 1

2

)
< 0 and

H0

(
p,

1
2

)
< 0 if and only if p ∈ (p1

0(3), p2
0(3)).

This implies that if p ∈ (p1
0(3), p2

0(3)) for N = 3, we have (4.9).
Similarly, when N = 4, we also choose s4 = (p+1)

(p−1) and see that L1(p, s4) < 0
is equivalent to a1a2 > 1. This implies that if L1(p, s4) < 0, (4.9) holds. But
L1(p, s4) < 0 if and only if H1(p, 1) < 0. But H1(p, 1) < 0 if and only if p ∈
(p1
∗(4), p2

∗(4)). Therefore, if p ∈ (p1
∗(4), p2

∗(4)) ⊂ (p1
0(4), p2

0(4)), (4.9) holds. Note
that p1

0(4) = 1 and p2
0(4) = ∞.

For 5 ≤ N ≤ 12, we choose sN = (N−2)
2

(p+1)
p−1 and use the similar arguments to

obtain that for p > p∗(N), (4.9) holds.
We see from (4.9) and u∗ = limλ→λ∗ uλ, that

(1− u∗)−1 ∈ L
p+1
2 −(qN+1)(Ω), (4.10)

with qN + 1 = − (p−1)sN

2 = − (N−2)(p+1)
4 . Thus,

p + 1
2

− (qN + 1) =
N(p + 1)

4
.

This implies that

(1− u∗)−p ∈ L
N(p+1)

4p (Ω).

This and Theorem 6.2 of [2] imply supΩ u∗ < 1. This completes the proof.

In appendix, we discuus the validicity of the inequality (1.5).

Define the following function

g(α, N) = pQ4(α) = (4− α)(2− α)(α + N − 2)(α + N − 4), α ∈ (0, 2).
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We discuss different dimensions. For N = 3 and 1 < p < 3, we see that α ∈ (1, 2)
and g(1, 3) = g(2, 3) = 0, g(α, 3) > 0 for α ∈ (1, 2). A simple calculation shows that
g′′α(α, 3) < 0 for α ∈ (1, 2). Therefore, there are exactly 1 < α1 < α2 < 2 such that

g(α1, 3) = g(α2, 3) =
9
16

, g(α, 3) >
9
16

for α ∈ (α1, α2).

Since g(4/3, 3) > 9/16, we see that α1 < 4/3 < α2. These imply that there exist
1 < p1

0(3) < 2 < p2
0(3) < 3 such that g̃(p, 3) := g(α, 3) satisfies

g̃(p1
0(3), 3) = g̃(p2

0(3), 3) =
9
16

, g̃(p, 3) >
9
16

for p ∈ (p1
0(3), p2

0(3)).

It is known from [7] that

p1
0(3) =

4− α2

α2
:=

5−
√

13− 3
√

17

3 +
√

13− 3
√

17
, p2

0(3) =
4− α1

α1
:=

5 +
√

13− 3
√

17

3−
√

13− 3
√

17
.

For N = 4, g(0, 4) = g(2, 4) = 0 and g(α, 4) > 0 for α ∈ (0, 2). Therefore,
g̃(p, 4) := g(α, 4) > 0 for p > 1. This implies p0(4) = 1 and when p > p0(4),
g̃(p, 4) > 42(4−4)2

16 .
For N ≥ 5, we see that g(0, N) = 8(N − 2)(N − 4), g(2, N) = 0 and

g′α(α, N) = −(2α + N − 6)[(2− α)(α + N − 4) + (4− α)(α + N − 2)].

Therefore, g′α(α,N) < 0 for α ∈ (0, 2) and N ≥ 6.
We also know that g(0, 5) = g(1, 5) = 24 > 25/16; g′′α(α, 5) < 0 for α ∈ (0, 2).

Moreover, a simple calculation implies that

g(0, N) >
N2(N − 4)2

16
for 5 ≤ N ≤ 12.

Therefore, we have the following cases:
(i) g(α,N) > N2(N−4)2

16 for N = 4 and α ∈ (0, 2),

(ii) g(α, N) < N2(N−4)2

16 for N ≥ 13 and α ∈ (0, 2),
(iii) there exists a unique α0 ∈ (0, 2) for 5 ≤ N ≤ 12 such that

g(α, N)





> N2(N−4)2

16 for α ∈ (0, α0),
= N2(N−4)2

16 for α = α0,

< N2(N−4)2

16 for α ∈ (α0, 2).

Therefore, for 5 ≤ N ≤ 12, there is a unique

p0(N) := (4− α0)/α0 =
N + 2−

√
4 + N2 − 4

√
N2 + HN

6−N +
√

4 + N2 − 4
√

N2 + HN

∈ (1,∞)

where HN = (N(N − 4)/4)2, such that

g̃(p,N) := pQ4(α)





< HN for p ∈ (1, p0(N)),
= HN for p = p0(N),
> HN for p > p0(N).

Moreover, a simple calculation implies that p0(N) ∈ (1, 2) for 5 ≤ N ≤ 8 and
p0(N) ∈ (2,∞) for 9 ≤ N ≤ 12.
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If we define N = 2 + 2x, a direct calculation shows that (1.5) is equivalent to
H0(p, x) < 0, where

H0(p, x) := (x2 − 1)2 − 32p(p− 1)
(p + 1)2

x2 +
32p(p− 1)(p− 3)

(p + 1)3
x +

64p(p− 1)2

(p + 1)4
.

It is clear that H0(p, x) = HN − g̃(p, N). Therefore, for any fixed x ≥ 1,

H0(p, x) < 0 if and only if p > p0(N) := p0(2 + 2x). (0.1)

If N = 3 (i.e. x = 1
2 ), then

H0(p,
1
2
) < 0 if and only if p ∈ (p1

0(3), p2
0(3)). (0.2)

We also know that for x ∈ (
√

2− 1, 1), there are 1 < p1
0(2 + 2x) < p2

0(2 + 2x) such
that

H0(p, x) < 0 if and only if p ∈ (p1
0(2 + 2x), p2

0(2 + 2x)). (0.3)

Moreover, for x1, x2 ∈ (
√

2− 1, 1) and x1 < x2,

1 < p1
0(2 + 2x2) < p1

0(2 + 2x1) < p2
0(2 + 2x1) < p2

0(2 + 2x2). (0.4)

We now define

H1(p, x) = x4 − 32p(p− 1)
(p + 1)2

x2 +
32p(p− 1)(p− 3)

(p + 1)3
x +

64p(p− 1)2

(p + 1)4
.

Then

H1(p, x) = H0(p, x) + 2x2 − 1 =
[
HN +

(N − 2)2

2
− 1

]
− g̃(p, N).

We see that H∗
N := HN + (N−2)2

2 −1 < HN for N = 3 and HN + (N−2)2

2 −1 ≥ HN

for N ≥ 2 +
√

2. Therefore, for N ≥ N , where N ∈ (4, 5) is the unique root of the
equation 8(N−2)(N−4) = H∗

N and x ≥ x := 1
2 (N−2) ∈ (1, 3/2), there is a unique

p∗(N) := p∗(2 + 2x) > p0(2 + 2x) with

p∗(N) =
N + 2−

√
4 + N2 − 4

√
N2 + H∗

N

6−N +
√

4 + N2 − 4
√

N2 + H∗
N

such that
H1(p, x) < 0 if and only if p > p∗(2 + 2x). (0.5)

For x ∈ (
√

2 − 1, x), i.e., N ∈ (2
√

2, N), there are p1
∗(N) := p1

∗(2 + 2x) and
p2
∗(N) := p2

∗(2 + 2x) with

p1
∗(N) =

N + 2−
√

4 + N2 − 4
√

N2 + H∗
N

6−N +
√

4 + N2 − 4
√

N2 + H∗
N

,

p2
∗(N) =

N + 2 +
√

4 + N2 − 4
√

N2 + H∗
N

6−N −
√

4 + N2 − 4
√

N2 + H∗
N

,

and
1 < p1

0(2 + 2x) < p1
∗(2 + 2x) < p2

∗(2 + 2x) < p2
0(2 + 2x)
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such that

H1(p, x) < 0 if and only if p1
∗(2 + 2x) < p < p2

∗(2 + 2x). (0.6)

We also have that for 2
√

2 < N1 < N2 < 4,

1 < p1
0(N2) < p1

0(N1) < p2
0(N1) < p2

0(N2). (0.7)

For 4 ≤ N1 < N2 < N ,

1 < p1
∗(N1) < p1

∗(N2) < p2
∗(N1) < p2

∗(N2). (0.8)

Moreover, (0.7) implies that for x ∈ (
√

2− 1, 1) and x1 < x2,

(p1
0(2 + 2x1), p2

0(2 + 2x1)) ⊂ (p1
0(2 + 2x2), p2

0(2 + 2x2)); (0.9)

(0.8) implies that for x ∈ (1, x) and x1 < x2,

p1
∗(2 + 2x1) < p1

∗(2 + 2x2) < p2
∗(2 + 2x1) < p2

∗(2 + 2x2). (0.10)

REFERENCES

[1] C. Cowan, Liouville theorems for stable Lane-Emden systems and biharmonic problems,
arXiv1207.1081v1, 2012.

[2] C. Cowan, P. Esposito and N. Ghoussoub, Regularity of extremal solutions in fourth order
nonlinear eigevalue problems on general domains, DCDS-A 28 (2010), 1033-1050.

[3] C. Cowan, P. Esposito, N. Ghoussoub and A. Moradifam, The critical dimension for a fourth
order elliptic problem with singular nonlinearity, Arch. Ration. Mech. Anal. 198 (2010), 763-
787.

[4] C. Cowan and N. Ghoussoub, Regularity of semi-stable solutions to fourth order nonlinear
eigevalue problems on general domains, arXiv:1206.3471v1, 2012.

[5] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for
some non-local semilinear equations, Comm. PDEs 36 (2011), 1353-1384.

[6] E.N. Dancer, Y. Du and Z.M. Guo, Finite Morse index solutions of an elliptic equation with
supercritical exponent, J. Differential Equations 250 (2011), 3281-3310.

[7] J. Dávila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order equation with
power-type nonlinearity, Math. Ann. 348 (2010), 143-193.

[8] J. Dávila, L. Dupaigne, I. Guerra and M. Montenegro, Stable solutions for the bilaplacian
with exponential nonlinearity, SIAM J. Math. Anal. 39 (2007), 565-592.

[9] J. Dávila, L. Dupaigne and A. Farina, Partial regularity of finite Morse index solutions to
the Lane-Emden equation, J. Funct. Anal. 261 (2011), 218-232.

[10] J. Davila, L. Dupaigne, K. Wang and J. Wei, Monotonicity formula and Liouville theorems
for fourth order supercritical problems, preprint, 2013.

[11] L. Dupaigne, M. Ghergu, O. Goubet and G. Warnault, Entire large solutions for semilinear
elliptic equations, J. Differential Equations 253 (2012), 2224-2251.

[12] L. Dupaigne and P. Esposito, private communications.
[13] L. Dupaigne and A. Farina, Stable solutions of −∆u = f(u) in RN , J. Eur. Math. Soc. 12

(2010), 855-882.
[14] Y. Du and Z.M. Guo, Positive solutions of an elliptic equation with negative exponent:

Stability and critical power, J. Differential Equations 246 (2009), 2387-2414.
[15] P.Esposito, Compactness of a nonlinear eigenvalue problem with singular nonlinearity,

Comm. Contemp.Math. 10(2008), no.1, 17-45.
[16] P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semi-stable and

unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl.
Math. 60(2007), no.12, 1731-1768.

[17] P. Esposito, N. Ghoussoub and Y. Guo, Mathematical Analysis of Partial Differential Equa-
tions Modeling Electrostatic MEMS, Research Monograph, Courant Lecture Notes, Vol. 20
(2010).

[18] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded
domains of RN , J. Math. Pures Appl. 87 (2007), 537-561.



20 Z. GUO AND J. WEI

[19] F. Gazzola and H. -Ch. Grunau, Radial entire solutions for supercritical biharmonic equa-
tions, Math. Ann. 334 (2006), 905-936.

[20] Z.M. Guo and J. Wei, On a fourth order elliptic problem with negative exponent, SIAM J.
Math. Anal. 40 (2008/09), no.5, 2034-2054.

[21] Z.M. Guo and J. Wei, Qualitative properties of entire radial solutions for a biharmonic equa-
tion with supcritical nonlinearity, Proc. American Math. Soc. 138 (2010), no.11, 3957-3964.

[22] H. Hajlaoui, A. A. Harrabi and D. Ye, On stable solutions of biharmonic problem with
polynomial growth, arXiv:1211.2223v2, 2012.

[23] P. Karageorgis, Stability and intersection properties of solutions to the nonlinear biharmonic
equation, Nonlinearity 22 (2009), 1653-1661.

[24] P.J. McKenna, W. Reichel, Radial solutions of singular nonlinear biharmonic equations and
applications to conformal geometry, Electron J. Differential Equations no 37 13pp (2003).

[25] L. Ma and J. Wei, Properties of positive solutions to an Elliptic Equation with negative
exponent, Journal of Functional Analysis 254(2008), no.4, 1058-1087.

[26] A. Moradiam, On the critical dimension of a fourth order elliptic problem with negative
exponent, J. Differential Equations 248 (2010), 594-616.

[27] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publisher,
New York, (1969).

[28] P. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math.
221 (2009), 1409-1427.

[29] J. Wei and D. Ye, Liouville theorems for stable solutions of biharmonic problem Math. Ann
356(2013), no.4, 1599-1612.


