
RUPTURE SOLUTIONS OF AN ELLIPTIC EQUATION
WITH A SINGULAR NONLINEARITY

ZONGMING GUO AND JUNCHENG WEI

Abstract. We obtain infinitely many non-radial rupture solu-
tions of the equation

∆u =
1
up

in RN\{0}, u(0) = 0, N ≥ 3

with

p > pc(N − 1) :=
N − 1− 2

√
N − 2

2
√

N − 2− (N − 5)
,

by constructing infinitely many radially symmetric regular solu-
tions of the equation on SN−1:

∆SN−1w +
2

p + 1

[
N − 2 +

2
p + 1

]
w − w−p = 0.

1. Introduction

Of concern is the following nonlinear elliptic equation with negative
exponent

(1.1) ∆u− u−p = 0 in RN

where p > 0 and N ≥ 2.

Equation (1.1) arises in the study of steady states of thin films of vis-
cous fluids and in the modeling of electrostatic micro-electromechanical
systems (MEMS). It has attracted extensive studies in recent years, see,
for example, Davila-Ponce [3], Esposito-Ghoussoub-Guo ([6], [7]), Es-
posito [5], Ghoussoub-Guo [8], Guo-Ye-Zhou [10], Guo-Wei [11]-[13],
Jiang-Ni [15] and the references therein.

When p > 0, the structure of positive radial solutions of (1.1) has
been studied by Guo, Guo and Li [9], Guo and Wei [11]. It is shown
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that for any a > 0, equation (1.1) admits a unique positive radial
solution u = u(r) such that u(0) = a and u(r) → +∞ as r → +∞.
The solution u satisfies u′(r) > 0 for all r > 0 and

lim
r→∞

r−
2

p+1 u(r) =
[ 2

p + 1

(
N − 2 +

2

p + 1

)]− 1
p+1

(:= β−
1

p+1 ).

Moreover, if 2 ≤ N ≤ 9 and

p > pc(N)

then u(r)−β−
1

p+1 r
2

p+1 changes sign infinitely many times. If N ≥ 3 and

0 < p ≤ pc(N), then u(r) > β−
1

p+1 r
2

p+1 for all r > 0 and the solutions
are strictly ordered with respect to the initial value a = u(0). Here
pc(M) (M is an integer) is the Joseph-Lundgren exponent [14]:

(1.2) pc(M) :=

{
P (M), if 2 ≤ M ≤ 9,
∞, if M ≥ 10,

where

P (M) =
M − 2

√
M − 1

2
√

M − 1− (M − 4)
.

Note that P (M) is an increasing function of M and pc(2) = 0.

When p > 0, it is still open if all positive solutions are radially
symmetric about some point. It is shown in [12] that if u ∈ C2(RN) is
a positive solution of (1.1), and

lim
|x|→∞

|x|− 2
p+1 u(x) = β−

1
p+1 ,

then u is radially symmetric about some point x0 ∈ RN . Some qualita-
tive properties of entire solutions of (1.1) are studied in [16]. Solutions
of (1.1) are also classified by using the Morse index theory. Du and
Guo [4] showed that (1.1) does not admit any positive regular solution
that has finite Morse index provided that p > pc(N).

Now we turn to rupture solutions to (1.1). The rupture set of (1.1)
consists of the points where u vanishes. We consider the simplest case
where the rupture is the origin. Thus we consider the following problem

(1.3) ∆u− u−p = 0, u > 0, in RN\{0}, u(0) = 0.

When p > 0, the radial rupture solution to (1.3) takes the form

(1.4) U(x) := U(|x|) =
[ 2

p + 1

(
N − 2 +

2

p + 1

)]− 1
p+1 |x| 2

p+1 .

A basic question we will address in this paper is whether or not all
rupture solutions to (1.3) are radially symmetric (and hence are of the
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form (1.4)). Note that when N = 2 and p = 3, there is a family of
non-radial rupture solution

(1.5)
√

2|x|
(

ε(cos
θ

2
)2 + ε−1(sin

θ

2
)2

) 1
2

.

Besides (1.5), we are not aware of any non-radial rupture solutions to
(1.3). The purpose of this paper is to construct infinitely many positive
non-radial rupture solutions of (1.3) provided

p > pc(N − 1).

This gives an negative answer to the above question. Note that
pc(M) is an increasing function of M . Then pc(N) > pc(N − 1). This
provides new information on the case p ≤ pc(N). Note also that

(1.6)
(
M − 2 +

4

p + 1

)2

− 8
(
M − 2 +

2

p + 1

)
< 0, for p > pc(M).

Our main result can be stated as follows.

Theorem 1.1. Assume that

(1.7) p > pc(N − 1).

Then there exist infinitely many non-radial rupture solutions to (1.3).

An interesting consequence of Theorem 1.1 is the following.

Corollary 1.2. For each p > 0, there are infinitely many non-radial
rupture solutions to

(1.8) ∆u = u−p in R3, u(0) = 0.

The idea of proving Theorem 1.1 is simple: we look for separable
solutions

u(x) = r
2

p+1 w(ω)

where w is a solution of the equation

(1.9) ∆SN−1w + βw − w−p = 0,

with

β =
2

p + 1
(N − 2 +

2

p + 1
).

An obvious solution to (1.9) is w(ω) ≡ β−
1

p+1 which provides a radial
rupture solution of (1.1) as given in (1.4).

To construct positive non-radial rupture solutions of (1.1), we need to
find positive non-constant solutions w(ω) of (1.9). In this paper, we will
construct infinitely many positive radially symmetric solutions of (1.9),
i.e., solutions that only depend on the geodesic distance θ ∈ [0, π).
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In this case, (1.9) can be written in a more convenient form (with
x = cos θ), namely
(1.10){

(1− x2)−
N−3

2

(
(1− x2)

N−1
2 wx

)
x

+ βw − w−p = 0, w(x) > 0, −1 < x < 1

w′(1) exists.

Furthermore we only consider the simple case w(−x) = w(x) for
x ∈ (0, 1). Thus w′(0) = 0. Then w(x) := w(θ) with w(θ) = w(π − θ)
for 0 < θ ≤ π/2 satisfies the problem
(1.11){

1
sinN−2 θ

d
dθ

(
sinN−2 θ dw

dθ
(θ)

)
+ βw(θ)− w−p(θ) = 0, w(θ) > 0, 0 < θ < π

2
,

w′
θ(0) exists, w′

θ(
π
2
) = 0.

Even though problem (1.11) is just an ODE, it is clearly supercritical.
Neither the variational method nor the sub-super solution method nor
the bifurcation method works. An important observation is that
(1.12)

w∗(θ) = Ap[sin θ]
2

p+1 , θ ∈ (0,
π

2
], A−(p+1)

p =
2

p + 1

[
N − 3 +

2

p + 1

]

is a rupture solution of (1.11) with two ruptures: θ = 0 and θ = π.
We will construct the inner and outer solutions of (1.11) and then glue
them to be solutions of (1.11). Such arguments have been used by
Budd-Norbury [1] for the supercritical problem ∆u + λu + up = 0 in
a unit ball in R3 with p > 5. This idea was also used in Dancer-Guo-
Wei [2] for constructing non-radial singular solutions to Lane-Emden
equation ∆u + up = 0.

The non-radial rupture solutions to (1.1) may serve as good asymp-
totics for non-radial entire solutions to (1.1). We conjecture that for

each of the non-radial singular solutions r
2

p+1 w(θ) constructed in The-
orem 1.1 there exists an entire positive solution u to (1.1) such that

(1.13) u(x)− |x| 2
p+1 w(θ) = o(|x| 2

p+1 ), for |x| À 1.

This paper is organized as follows: in Section 2, we study an initial
value problem and study the asymptotic behavior of the inner solution
when the initial value turns to 0. In Section 3, we study the outer prob-
lem. Namely we solve the problem (1.11) from θ = π

2
. The asymptotic

behavior of the outer problem will be analyzed near the origin. Finally
in Section 4, we do a matching of inner and outer solution, thereby
proving Theorem 1.1.
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2. Inner solutions

In this section we study solutions w(θ) of (1.11) with small initial
values w(0) = Q ¿ 1 and analyze their behaviors near θ = 0. Since

Q ¿ 1, we set Q = ε
2

p+1 (:= εα) with ε sufficiently small. In the
following we denote α = 2/(p + 1).

Let w(θ) = εαv( θ
ε
). Then we see that v(0) = 1 and v(r) (r = θ/ε)

satisfies

(2.1) vrr + (N − 2)ε cot(εr)vr + βε2v − v−p = 0, v(0) = 1.

Observe that for ε > 0 sufficiently small,

cot(εr) =
cos(εr)

sin(εr)
=

1

εr
− 1

3
(εr) +

∞∑

k=1

`k(εr)
2k+1.

Thus,
(2.2)

vrr+
N − 2

r
vr−(N − 2)

3
(ε2r)vr+

( ∞∑

k=1

(N−2)`kε
2(k+1)r2k+1

)
vr+βε2v−v−p = 0, v(0) = 1.

When ε = 0, we obtain the first approximation of (2.2) which is the
radial solution v0(r) of the problem

(2.3) ∆v − v−p = 0 in RN−1, v(0) = 1.

The asymptotic behavior of v0 is given in the following lemma.

Lemma 2.1. For p > pc(N−1), there exist constants a0, b0 and R0 À 1
such that for r ≥ R0 the unique positive solution v0(r) of (2.3) satisfies

(2.4) v0(r) = Apr
α +

a0 cos(ω ln r) + b0 sin(ω ln r)

r
N−3

2

+ O(r−(N−3+ 2
p+1

)),

where

A−(p+1)
p =

2

p + 1

[
N − 3 +

2

p + 1

]
,

(2.5) ω =
1

2

√
8
(
N − 3 +

2

p + 1

)
−

(
N − 3 +

4

p + 1

)2

.

Proof. Note that

8
(
N − 3 +

2

p + 1

)
−

(
N − 3 +

4

p + 1

)2

> 0, for p > pc(N − 1).

The existence and uniqueness of v0(r) can found in [9] and [11]. It
is also known from [9] and [11] that

lim
r→+∞

r−αv0(r) = Ap.
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To obtain the next order expansion, we use the Emden-Fowler trans-
formation:

V (t) = r−αv0(r)− Ap, t = ln r.

It is easy to see that V (t) satisfies the equation
(2.6)
Vtt+(N−3+2α)Vt+2(N−3+α)V−g(V ) = 0, for t ≥ T = ln R, R > 10,

where g(ρ) = (ρ + Ap)
−p − A−p

p + pA
−(p+1)
p ρ satisfies

g(ρ) =
p(p + 1)

2
A−(p+2)

p ρ2 + O(ρ3) for ρ near 0.

By the standard argument of variation of constants we obtain the
following integral equation

V (t) = eσt[a cos ωt + b sin ωt]− 1

ω

∫ t

T

eσ(t−t′) sin ω(t− t′)g(V (t′))dt′,

where σ = −1
2
(N −3+2α), ω is given in (2.5). Note that g(ρ) = O(ρ2)

for ρ sufficiently small.
Set Ṽ (t) = e−σtV (t). Then Ṽ (t) satisfies the integral equation

(2.7)

Ṽ (t) := N Ṽ (t) = C sin(ωt+D)− 1

ω

∫ t

T0

e−σt′ sin ω(t− t′)g(eσt′Ṽ (t′))dt′,

where C =
√

a2 + b2, sin D = a
C
, cos D = b

C
. We take t in the range

T0 ≤ t < ∞, where T0 = ln R0 is suitably large, and consider N Ṽ as
a map from C[T0,∞) into itself. We claim that, for each C > 0 and
suitable T0, the operator N Ṽ maps the set

B = {Ṽ ∈ C[T0,∞) : ‖z‖0 = sup
T0<t<∞

|Ṽ (t)| ≤ 2C, C > 0}

into itself, and is a contraction mapping on B. Indeed, if ‖Ṽ ‖0 < 2C,
then

|g(eσtṼ (t))| = e2σtO(1)

and
‖N Ṽ − C sin(ωt + D)‖0 ≤ C ′eσT0

where C ′ > 0 only depends on C, N , p. Note that σ < 0 and ‖eσtṼ (t)‖0

is sufficiently small for Ṽ ∈ B for T0 suitably large. Thus, if we choose
T0 > 1 suitably large, we see that ‖N Ṽ − C sin(ωt + D)‖0 < C. A
similar calculation shows that

‖N Ṽ1 −N Ṽ2‖0 ≤ eσT0‖Ṽ1 − Ṽ2‖0.

Hence it is possible for each value of C to choose T0 so that N is a
contraction mapping of B to itself. Thus, we define Ṽ0 = C sin(ωt+D)
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and the iteration Ṽn+1 = N Ṽn for n ≥ 0. The contraction mapping the-
orem then ensures that this iteration converges to the unique solution
Ṽ∗(t) of (2.7) in B. Note that

∣∣∣ 1

ω

∫ t

T0

e−σt′ sin ω(t− t′)g(eσt′Ṽ∗(t′))dt′
∣∣∣ = O(eσt).

Then

V∗(t) = eσtṼ∗(t) = C0e
σt sin(ωt + D0) + O(e2σt) for t ∈ (T0,∞).

This implies that for r ∈ [R0,∞),

v0(r) = Apr
α + r−

N−3
2 [a0 cos(ω ln r) + b0 sin(ω ln r)] + O(r−(N−3+ 2

p+1
))

and completes the proof of this lemma. ¤
Lemma 2.2. Let p satisfy the conditions of Lemma 2.1 and v1(r) be
the unique solution of the problem
(2.8){

v′′1(r) + N−2
r

v′1(r) + pv
−(p+1)
0 (r)v1(r)− (N−2)

3
rv′0(r) + βv0(r) = 0, r ∈ (0,∞),

v1(0) = 0, v′1(0) = 0.

Then for r ∈ [R0,∞),
(2.9)

v1(r) = Cpr
2+α + r2−N−3

2 (a1 cos(ω ln r) + b1 sin(ω ln r)) + o(r2−N−3
2 ),

where Cp satisfies

(2.10) [(2 + α)(N − 1 + α) + pA−(p+1)
p ]Cp = Ap

[2(N − 2)

3(p + 1)
− β

]
,

(a1, b1) is the solution of{
D1a1 + 4ωb1 = −βa0 + (N−2)

3
b0ω − (N−2)(N−3)

6
a0 + p(p + 1)A

−(p+2)
p Cpa0

−4ωa1 + D1b1 = −βb0 − (N−2)
3

a0ω − (N−2)(N−3)
6

b0 + p(p + 1)A
−(p+2)
p Cpb0,

where D1 = (N+1)(7−N)
4

− ω2 + pA
−(p+1)
p ; a0, b0 and ω are given in

Lemma 2.1.

Proof. Let

v1(r) = Cpr
2+α + h(r)r2−N−3

2 + o(r2−N−3
2 )

where
h(r) = c1 cos(ω ln r) + c2 sin(ω ln r).

Using the expression of v0(r) in (2.4), (2.9) can be obtained by direct
calculations. Note that

O(r−(N−3+ 2
p+1

)) = o(r−
(N−3)

2 ).
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¤
Now we obtain the following proposition.

Proposition 2.3. Let p > pc(N − 1) and v(r) be a solution of (2.1).
Then for ε > 0 sufficiently small,

v(r) = v0(r) +
∞∑

k=1

ε2kvk(r).

Moreover, for R0 < r << 1
ε
,

(2.11)

vk(r) =
k∑

j=1

dk
j r

2j+α +
k∑

j=1

ek
j r

2j−N−3
2 sin(ω ln r + Ek

j ) + o(r2k−N−3
2 ),

where dk
j , e

k
j , E

k
j (j = 1, 2, . . . , k) are constants. Moreover,

d1
1 = Cp, e1

1 =
√

a2
1 + b2

1, sin E1
1 =

a1

e1
1

, cos E1
1 =

b1

e1
1

where Cp, a1, b1 are given in Lemma 2.2.

Proof. Using the Taylor’s expansion of v−p and the expressions of
v0(r), v1(r), . . . , vk−1(r), we can obtain this proposition by the induc-
tion argument and direct calculations. Note that

O(r2−N−3
2 ) = o(r2+α).

¤
Now we obtain the following theorem.

Theorem 2.4. Let p > pc(N − 1) and winn
ε (θ) be an inner solution

of (1.11) with wε(0) = εα. Then for any sufficiently small ε > 0 and
θ > R0ε but θ is also sufficiently small,

winn
ε (θ) = Apθ

α + Cpθ
α+2 +

∞∑

k=2

k∑
j=1

dk
j ε

2(k−j)θ2j+α

+ε
N−3

2
+α

[a0 cos[ω ln θ
ε
] + b0 sin[ω ln θ

ε
]

θ
N−3

2

+
a1 cos[ω ln θ

ε
] + b1 sin[ω ln θ

ε
]

θ
N−3

2
−2

+
∞∑

k=2

( k∑
j=1

ek
j ε

2(k−j)θ2j−N−3
2 sin(ω ln

θ

ε
+ Ek

j ) + o(θ2k−N−3
2 )

)]
.

Proof. This theorem can be obtained directly from Proposition 2.3 by
setting r = θ/ε. ¤

The following lemmas which are similar to Lemma 2.4 and Lemma
3.3 of [1] respectively will be useful in the subsequent proofs.
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Lemma 2.5. Let p > pc(N − 1) and

v(Q, θ) = Qv0(Q
− p+1

2 θ).

Then for Q− p+1
2 θ ≥ R0, and for n = 0, 1, 2, v(Q, θ) satisfies

(i)
∂n

∂Qn
(v(Q, θ)) =

{
Apθ

α

0

}

+
∂n

∂Qn

{
Cθ−

N−3
2 Q(

(p+1)(N−3)
4

+1) sin(ω ln(Q− p+1
2 θ) + D)

}

+Q−n+[ p+1
2

(N−3+α)+1]O(θ−(N−3+α)),

(ii)
∂n

∂Qn
(v′θ(Q, θ)) =

{
Apθ

α−1

0

}

+
∂n+1

∂Qn∂θ

{
Cθ−

N−3
2 Q(

(p+1)(N−3)
4

+1) sin(ω ln(Q− p+1
2 θ) + D)

}

+Q−n+[ p+1
2

(N−3+α)+1]O(θ−(N−2+α)),

where

D = tan−1(
b0

a0

), C =
√

a2
0 + b2

0.

Proof. These estimates are obtained by the expansion of v0(r) given
above and some calculations. ¤

Lemma 2.6. In the region θ = |O(Q− σ
(2−σ)α )|, the solution w(Q, θ) of

(1.11) with w(Q, 0) = Q, w′
θ(Q, 0) = 0 satisfies

(i)
∣∣∣ ∂w
∂Q

(Q, θ)− ∂v
∂Q

(Q, θ)
∣∣∣ = Q

(p+1)(N−3)
4 |o(θ−N−3

2 )|;
(ii)

∣∣∣∂w′θ
∂Q

(Q, θ)− ∂v′θ
∂Q

(Q, θ)
∣∣∣ = Q

(p+1)(N−3)
4 |o(θ−N−1

2 )|;
(iii)

∣∣∣ ∂2w
∂Q2 (Q, θ)− ∂2v

∂Q2 (Q, θ)
∣∣∣ = Q(

(p+1)(N−3)
4

−1)|o(θ−N−3
2 )|;

(iv)
∣∣∣∂2w′θ

∂Q2 (Q, θ)− ∂2v′θ
∂Q2 (Q, θ)

∣∣∣ = Q(
(p+1)(N−3)

4
−1)|o(θ−N−1

2 )|.
Proof. This lemma can be obtained from Lemma 2.5 and Theorem
2.4. Note that

ε = Q
1
α ,

σ

α
= −(p + 1)(N − 3)

4
− 1.

Moreover,

Q− p+1
2 θ = |O(Q− p+1

2−σ )| > R0

provided Q suitably small. ¤
Now we can write the inner solution obtained in Theorem 2.4 in

terms of the parameter Q:
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Theorem 2.7. Let p > pc(N − 1) and winn
Q (θ) be an inner solution

of (1.11) with wQ(0) = Q. Then for any sufficiently large Q > 0 and

θ = |O(Q− σ
(2−σ)α )|,

winn
Q (θ)

= Apθ
α + Cpθ

α+2 +
∞∑

k=2

k∑
j=1

dk
j Q

(p+1)(k−j)θ2j+α

+Q− σ
α

[a0 cos[ω ln(Q− p+1
2 θ)] + b0 sin[ω ln(Q− p+1

2 θ)]

θ
N−3

2

+
a1 cos[ω ln(Q− p+1

2 θ)] + b1 sin[ω ln(Q− p+1
2 θ)]

θ
N−3

2
−2

+
∞∑

k=2

( k∑
j=1

ek
j Q

(p+1)(k−j)θ2j−N−3
2 sin(ω ln(Q− p+1

2 θ) + Ek
j ) + o(θ2k−N−3

2 )
)]

.

3. outer solutions

In this section we study the asymptotic behaviors of solutions w(θ)
of (1.11) far from θ = 0. Recall that the exponent p satisfies

(3.1) p > pc(N − 1)

where pc(N − 1) is defined by (1.2).

Let w∗(θ) be the singular solution given in (1.12). We first obtain
the following lemma.

Lemma 3.1. Equation
(3.2)

1

sinN−2 θ

d

dθ

(
sinN−2 θ

dφ

dθ
(θ)

)
+βφ(θ)+pw−(p+1)

∗ (θ)φ(θ) = 0, 0 < θ <
π

2
,

admits two fundamental solutions φ1(θ) and φ2(θ). Moreover, any so-
lution φ(θ) of (3.2) can be written in the form

φ(θ) = c1φ1(θ) + c2φ2(θ), where c1 and c2 are constants,

which satisfies that as θ → 0,

(3.3) φ(θ) = θ−
N−3

2

[
c1 cos(ω ln

θ

2
) + c2 sin(ω ln

θ

2
)
]

+ O(θ2−N−3
2 ).

Proof. Let φ̃(θ) = [sin θ]−αφ(θ). We see that φ̃(θ) satisfies the equa-
tion

(3.4) sin2 θφ̃′′(θ)+(N−2+2α) sin θ cos θφ̃′(θ)+(p+1)A−(p+1)
p φ̃(θ) = 0.
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Under the Emden-Fowler transformations:

ψ(t) = φ̃(θ), t = ln tan
θ

2
,

we obtain that for t ∈ (−∞, 0),

(3.5) ψ′′(t)+
(
N−3+2α

)(
1− 2e2t

1 + e2t

)
ψ′(t)+2

(
N−3+α

)
ψ(t) = 0.

Note that

sin θ =
2et

1 + e2t
, cos θ =

1− e2t

1 + e2t
= 1− 2e2t

1 + e2t
.

We can obtain solutions of (3.5) by shooting backwards under the con-
ditions ψ(0) = a, ψ′(0) = 0. The standard ODE arguments imply that
(3.5) admits two fundamental solutions ψ1, ψ2 ∈ C2(−∞, 0) such that
any solution ψ(t) of (3.5) satisfies

ψ(t) = `1ψ1(t) + `2ψ2(t)

where `1 and `2 are two constants. Now we show that as t → −∞,

ψ(t) = eσt[`3 cos ωt + `4 sin ωt] + O(e(σ+2)t)

where σ = −(N−3
2

+ α).
We see that the characteristic equation of (3.5) admits a pair roots

λ1 = σ + iω, λ2 = σ − iω as t → −∞ since

(N − 3 + 2α)2 − 8(N − 3 + α) < 0 for p > pc(N − 1).

By the standard argument of variation of constants we obtain the fol-
lowing integral equation

ψ(t) = eσt[`3 cos ωt + `4 sin ωt] +
1

ω

∫ t

T

eσ(t−t′) sin ω(t− t′)j(ψ)(t′)dt′,

where T ∈ (−∞, 0) with sufficiently large |T |, j(ψ)(t′) = −(N − 3 +

2α) 2e2t′

1+e2t′ψ
′(t′). Setting ψ̂(t) = e−σtψ(t), we see

(3.6) ψ̂(t) = [`3 cos ωt + `4 sin ωt] +
1

ω

∫ t

T

sin ω(t− t′)j(ψ̂)(t′)dt′,

where

j(ψ̂)(t′) = −(N − 3 + 2α)
2e2t′

1 + e2t′ (σψ̂(t′) + ψ̂′(t′)).

It follows from (3.6) that

(3.7) ‖ψ̂ − [`3 cos ωt + `4 sin ωt]‖0 ≤ τ(|σ|‖ψ̂‖0 + ‖ψ̂′‖0),

where 0 < τ := τ(T ) → 0 as T → −∞ and ‖ρ‖0 = sup−∞<t<T |ρ(t)|.
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On the other hand, we see that z(t) := ψ′(t) satisfies the equation

z′′(t) + (N − 3 + 2α)z′(t) + 2(N − 3 + α)z(t) + h(t, ψ(t), ψ′(t)) = 0

where

h(t, ψ(t), ψ′(t)) = (N − 3 + 2α)2 2e2t

(1 + e2t)

(
1− 2e2t

(1 + e2t)

)
ψ′(t)

−2(N − 3 + 2α)
2e2t

(1 + e2t)2
ψ′(t) + 2(N − 3 + α)(N − 3 + 2α)

2e2t

(1 + e2t)
ψ(t).

Thus,
(3.8)

e−σtψ′(t) = [`5 cos ωt+`6 sin ωt]+
1

ω

∫ t

T

sin ω(t− t′)h(t′, ψ̂(t′), ψ̂′(t′))dt′,

where

`5 = `3σ + `4ω, `6 = `4σ − ω`3

and

h(t, ψ̂(t), ψ̂′(t)) = (N − 3 + 2α)2 2e2t

(1 + e2t)

(
1− 2e2t

(1 + e2t)

)
(σψ̂(t) + ψ̂′(t))

−2(N − 3 + 2α)
2e2t

(1 + e2t)2
(σψ̂(t) + ψ̂′(t))

+2(N − 3 + α)(N − 3 + 2α)
2e2t

(1 + e2t)
ψ̂(t).

It follows from (3.8) that

(3.9) ‖e−σtψ′(t)− [`5 cos ωt + `6 sin ωt]‖0 ≤ τ(|σ|‖ψ̂‖0 + ‖ψ̂′‖0),

where τ is as in (3.7). Since ψ̂′(t) = e−σtψ′(t)− σψ̂(t), it follows from
(3.7) and (3.9) that by choosing |T | suitably large,

(3.10) ‖ψ̂‖0 ≤ C, ‖ψ̂′‖0 ≤ C

where C = C(p,N, T, `3, `4). Both (3.10) and (3.6) imply that as t →
−∞,

(3.11) ψ̂(t) = [`3 cos ωt + `4 sin ωt] + O(e2t).

Therefore, as t → −∞,

(3.12) ψ(t) = eσt[`3 cos ωt + `4 sin ωt] + O(e(σ+2)t).

This implies that as θ → 0+,
(3.13)

φ(θ) = [sin θ]α
(

tan
θ

2

)σ[
`3 cos(ω ln

θ

2
)+`4 sin(ω ln

θ

2
)+O(θ2)

]
+O

(
[sin θ]α

(
tan

θ

2

)σ+2)
.
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Note that for sufficiently small x > 0, tan x = x+O(x3) and ln(tan x) =
ln(x+O(x3)) = ln x+O(x2). The Taylor’s expansions of sin θ and tan θ

2
imply that (3.3) holds. This completes the proof. ¤
Remark 3.2. For any δ > 0 sufficiently small, if c1 and c2 in (3.3)
satisfy that c1 = c̃1δ, c2 = c̃2δ, where c̃1 and c̃2 are constants, then as
θ → 0+,
(3.14)

φ(θ) := φδ(θ) = δθ−
N−3

2

[
c̃1 cos(ω ln

θ

2
) + c̃2 sin(ω ln

θ

2
)
]

+ O(δ)θ2−N−3
2 .

Indeed, if `3 = ˜̀
3δ, `4 = ˜̀

4δ, where ˜̀
3 and ˜̀

4 are constants, we see from
(3.9) that

|σ|‖ψ̂‖0 + ‖ψ̂′‖0 ≤ Cδ

where C := C(p,N, T, ˜̀
3, ˜̀

4) > 0 is independent of δ. Hence

ψ(t) := ψδ(t) = eσtδ[˜̀3 cos ωt + ˜̀
4 sin ωt] + O(δ)e(σ+2)t.

For any δ > 0 sufficiently small, if w ∈ C2(0, π
2
) is a solution of (1.11)

and

w(θ) = w∗(θ) + δφδ(θ) + δ2ψδ(θ),

where

φδ(θ) = c̃1δφ1(θ) + c̃2δφ2(θ)

is a solution of (3.2) with

c1 = c̃1δ, c2 = c̃2δ,

then ψδ(θ) satisfies the problem
(3.15)



1
sinN−2 θ

d
dθ

(
sinN−2 θ dψ

dθ
(θ)

)
+ βψ(θ) + pw

−(p+1)
∗ ψ(θ)

+δ−2
[
(w∗ + δφδ + δ2ψ)−p − w−p

∗ + pw
−(p+1)
∗ δφδ + δ2pw

−(p+1)
∗ ψ

]
= 0, 0 < θ < π/2,

ψ′(π
2
) = −(c̃1φ

′
1(

π
2
) + c̃2φ

′
2(

π
2
)).

Lemma 3.3. For any δ > 0 sufficiently small and each fixed pair
(c̃1, c̃2), (3.15) admits solutions ψδ ∈ C2(0, π/2).

Proof. We set the initial value conditions on ψ of (3.15) at θ = π/2:
ψ(π/2) = 1 provided

ψ′(
π

2
) = −(c̃1φ

′
1(

π

2
) + c̃2φ

′
2(

π

2
)) = 0;

ψ(π/2) = 0 provided

ψ′(
π

2
) = −(c̃1φ

′
1(

π

2
) + c̃2φ

′
2(

π

2
)) 6= 0.



14 ZONGMING GUO AND JUNCHENG WEI

Then, the standard shooting argument in ODE implies that (3.15)
admits a unique nontrivial solution ψδ in C2(0, π/2). Note that there
is no singularity of (3.15) for θ ∈ (0, π/2). Note also that ψδ depends
on c̃1 and c̃2. ¤

Now we obtain the following proposition.

Proposition 3.4. For any δ > 0 sufficiently small and ψδ being given

in Lemma 3.3, then for θ = |O(δ
2

(2−σ) )|,

(3.16) ψδ(θ) = θ−
N−3

2

[
d̃1 cos[ω ln

θ

2
] + d̃2 sin[ω ln

θ

2
]
]

+ O(θ2−N−3
2 ),

where d̃1 and d̃2 are constants depending on c̃1 and c̃2 but independent
of δ.

Proof. Setting ψδ(θ) = [sin θ]αψ̃δ(θ), we see that ψ̃δ(θ) satisfies the
problem
(3.17){

sin2 θψ̃′′(θ) + (N − 3 + 2α) cos θ sin θψ̃′(θ) + 2(N − 3 + α)ψ̃(θ) + G(ψ̃(θ)) = 0,

ψ̃′(π
2
) = ψ′δ(

π
2
),

where

G(ψ̃(θ)) = [sin θ]2−αδ−2
[
w∗(θ) + δφδ(θ) + δ2[sin θ]αψ̃(θ)

]−p

−w−p
∗ + pw−(p+1)

∗ δφδ(θ) + δ2pw−(p+1)
∗ [sin θ]αψ̃(θ).

Under the Emden-Fowler transformations:

z(t) = ψ̃(θ), t = ln tan
θ

2

we obtain
(3.18)

z′′(t)+(N−3+2α)
(
1− 2e2t

1 + e2t

)
z′(t)+2(N−3+α)z(t)+G(z(t)) = 0.

By the standard argument of variation of constants and Lemma 3.1, if

φ̃1(t) = [sin θ]−αφ1(θ), φ̃2(t) = [sin θ]−αφ2(θ),
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then we obtain the following integral equation for T ∈ (−∞, 0) and |T |
suitably large,

z(t) = ϑ1φ̃1(t) + ϑ2φ̃2(t) +

∫ t

T

−φ̃1(t)φ̃2(t
′) + φ̃2(t)φ̃1(t

′)

φ̃1(t′)φ̃′2(t′)− φ̃′1(t′)φ̃2(t′)
dt′

= eσt[ϑ1 cos ωt + ϑ2 sin ωt] + O(e(σ+2)t)

+
1

ω

∫ t

T

eσ(t−t′) sin ω(t− t′) + O(e2t′)

1 + O(e2t′)
G(z(t′))dt′

= eσt[ϑ1 cos ωt + ϑ2 sin ωt] + O(e(σ+2)t)

+
p(p + 1)

2ω

∫ t

T

eσt sin ω(t− t′)
[
eσt′δ2

]
[ρ(t′)]2dt′

+
1

ω

∫ t

T

eσt sin ω(t− t′)O
([

eσt′δ2
]2

[ρ(t′)]3
)
dt′

+
1

ω

∫ t

T

eσt sin ω(t− t′)O(e2t′)
[
eσt′δ2

]
[ρ(t′)]2dt′

+
1

ω

∫ t

T

eσt sin ω(t− t′)O(e2t′)O
([

eσt′δ2
]2

[ρ(t′)]3
)
dt′

where
ρ(t′) = (c̃1 cos ωt′ + c̃2 sin ωt′) + e−σt′z(t′).

Setting ẑ(t) = e−σtz(t), arguments similar to those in the proof of
Lemma 3.1 imply that there exists C := C(N, p, T ) > 0 but indepen-
dent of δ such that

(3.19) ‖ẑ − [ϑ1 cos ωt + ϑ2 sin ωt]‖0 ≤ C

provided that for t ∈ [2T, 10T ],

(3.20) δ2 = |O(e(2−σ)t)|.
Therefore,

(3.21) z(t) = eσt[ϑ1 cos ωt + ϑ2 sin ωt] + O(e(σ+2)t)

provided that (3.20) holds. Therefore,
(3.22)

ψδ(θ) = [sin θ]α
(

tan
θ

2

)σ[
ϑ1 cos[ω ln

θ

2
]+ϑ2 sin[ω ln

θ

2
]+O(θ2)

]
+O

(
[sin θ]α

(
tan

θ

2

)σ+2)

provided

(3.23) θ = |O(δ
2

2−σ )|.
The Taylor’s expansions of sin θ and tan θ

2
imply that (3.16) holds

provided that (3.23) holds. This completes the proof of this propo-
sition. ¤
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Now we are in the position to obtain the following theorem.

Theorem 3.5. For any δ > 0 sufficiently small, problem (1.11) admits
outer solutions wout

δ ∈ C2(0, π/2) satisfying

(3.24) wout
δ (θ) = w∗(θ) + δφδ(θ) + δ2ψδ(θ), θ ∈ (0,

π

2
), w′

δ(
π

2
) = 0.

Moreover,
(3.25)

wout
δ (θ) = Apθ

α− Ap

3(p + 1)
θα+2+δ2

[ϑ3 cos(ω ln θ
2
) + ϑ4 sin(ω ln θ

2
)

θ
N−3

2

+O
( 1

θ
N−3

2
−2

)]

provided

(3.26) θ = |O(δ
2

2−σ )|,
where ϑ3 and ϑ4 are constants which are independent of δ.

Proof. This theorem can be obtained from the expression of w(θ),
(3.22) and the Taylor’s expansions of sin θ and tan θ

2
. Note that for

δ > 0 sufficiently small and θ = |O(δ
2

2−σ )|,
O(θ4+α) = o(δ2θ2−N−3

2 ).

¤

Remark 3.6. It follows from (3.20) that δ2 = |O(θ2−σ)|. Thus wout
δ

can also be expressed by
(3.27)

wout
δ (θ) = Apθ

α− Ap

3(p + 1)
θα+2+δ2

[ϑ3 cos[ω ln θ
2
] + ϑ4 sin[ω ln θ

2
]

θ
N−3

2

+δ2O
(
θσ−N−3

2

)]
.

4. Infinitely many solutions of (1.11) and Proof of
Theorem 1.1

In this section we will construct infinitely many regular solutions for
(1.11) by combining the inner and outer solutions.

We first construct a solution of problem
(4.1){

1
sinN−2 θ

d
dθ

(
sinN−2 θ dw

dθ
(θ)

)
+ βw(θ)− w−p(θ) = 0, w(θ) > 0, 0 < θ < π

2
,

w(0) = Q (:= εα), w′
θ(

π
2
) = 0

by using the expressions in Theorems 2.7 and 3.5. The variables Q and
δ are then chosen to ensure that, at a fixed θ = Θ chosen to satisfy

Θ = O(Q− σ
(2−σ)α )
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such that

winn
Q (Θ) = wout

δ (Θ)

and

[winn
Q (θ)− wout

δ (θ)]′θ
∣∣∣
θ=Θ

= 0.

These can be done by arguments similar to those in the proof of Lemma
6.1 of [1]. From the choice of Q and δ we deduce the existence of a
C2 function w(θ) defined by w(θ) = winn

Q (θ) for θ ≤ Θ and by w(θ) =
wout

δ (θ) for θ ≥ Θ. Thus w(θ) satisfies (4.1).
We first see that

(4.2) − Ap

3(p + 1)
= Cp

Note that

(2 + α)(N − 1 + α) + pA−(p+1)
p

=
2(p + 2)

p + 1

(2(p + 2)

p + 1
+ N − 3

)
+

2p

p + 1

(
N − 3 +

2

p + 1

)

=
4(p2 + 5p + 4)

(p + 1)2
+ 4(N − 3)

= 4
(
N − 2 +

3

p + 1

)
.

2(N − 2)

3(p + 1)
− β = − 4

3(p + 1)

(
N − 2 +

3

p + 1

)
.

It follows from (2.10) that (4.2) holds.
Define Q∗ and δ2

∗ by

(4.3) ω ln Q
− (p+1)

2∗ + D = ω ln 2−1 + φ + 2mπ,

with m > 1 being an integer suitably large,

(4.4) δ2
∗ =

√
a2

0 + b2
0

ϑ2
3 + ϑ2

4

Q
− σ

α∗ ,

where φ satisfies that

φ = tan−1(
ϑ4

ϑ3

).

Note that

O(δ
2

2−σ∗ ) = O(Q
− σ

α(2−σ)
∗ ),

(4.5)

a0 cos[ω ln(Q− (p+1)
2 θ)]+b0 sin[ω ln(Q− (p+1)

2 θ)] =
√

a2
0 + b2

0 sin(ω ln θ+ω ln Q− (p+1)
2 +D),
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(4.6)

ϑ3 cos[ω ln
θ

2
] + ϑ4 sin[ω ln

θ

2
] =

√
ϑ2

3 + ϑ2
4 sin(ω ln θ + ω ln 2−1 + φ).

Then we claim that the values of Q and δ2 required to satisfy these
conditions may be obtained as small perturbations of the values of Q∗
and δ2

∗ given in (4.3) and (4.4), i.e.,

(4.7) Q = Q∗
(
1 + O

(
Q
− 2σ

(2−σ)α
∗

))
,

(4.8) δ2 = δ2
∗
(
1 + O

(
Q
− 2σ

(2−σ)α
∗

))
.

To show this we define the function F(Q, δ2) by

FT (Q, δ2) =
(
Θ

N−3
2 (winn

Q (Θ)−wout
δ (Θ)), [θ

N−3
2 (winn

Q (θ)−wout
δ (θ))]′θ

∣∣∣
θ=Θ

)
.

(We treat δ2 as a new variable.) Taking Q = Q∗ and δ2 = δ2
∗ we find

a bound for F(Q∗, δ2
∗) by making use of the behavior of winn

Q (θ) deter-
mined by Theorem 2.7, and the behavior of wout

δ (θ) given in Theorem
3.5. Accordingly we find for some M > 1 suitably large,

(4.9)
∣∣∣Θ−N−3

2 F(Q∗, δ2
∗)

∣∣∣ ≤ Mδ4
∗Θ

σ−N−3
2 + small terms.

We now seek values of Q and δ2 which are small perturbations of Q∗
and δ2

∗ and for which F(Q, δ2) = 0. As in [1], we need to evaluate the
Jacobian of F at (Q∗, δ2

∗). We can obtain the following estimates from
Lemmas 2.5, 2.6 and Theorems 2.7, 3.6:

∂F(Q, δ2)

∂(Q, δ2)
=


 C

(
− σ

α
sin τ − ω(p+1)

2
cos τ

)
Q
− σ

α
−1

∗ , −E sin τ

C
(
− σ

α
cos τ + ω(p+1)

2
sin τ

)
Q
− σ

α
−1

∗ , −E cos τ




+small order terms,

where

C =
√

a2
0 + b2

0, E =
√

ϑ2
3 + ϑ2

4,

τ = ω ln Θ + ω ln Q
− (p+1)

2∗ + D = ω ln Θ + ω ln 2−1 + φ + 2mπ.

Note that

−σ

α
− 1 =

(N − 3)(p + 1)

4
.

To simplify this expression we define the function G(x, y) by

G(x, y) = F(Q∗ + xQ
1+ σ

α∗ , δ2
∗ + y).
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Using the bounds for F given in (4.9) and (3.27) and the results in
Lemmas 2.5, 2.6, we express G(x, y) in the form

G(x, y)

= C +


 C

(
− σ

α
sin τ − ω(p+1)

2
cos τ

)
, −E sin τ

C
(
− σ

α
cos τ + ω(p+1)

2
sin τ

)
, −E cos τ

+ small terms




(
x
y

)

+E(x2(δ2
∗)
−1 + y2Θσ),

where C is a constant vector independent of (x, y) which is bounded
above by Mδ4

∗Θ
σ. Also |E| is bounded independently of x, y, Q and δ.

Thus,

G(x, y) = C + L

(
x
y

)
+ T(x, y),

where L is a linear operator which, from a direct calculation, is seen to
be invertible. If we define the operator J mapping R2 into itself by

J(x, y) = −(L−1C + L−1T(x, y)),

then, provided that Q∗ is suitably large, a direct calculation shows that
J maps the set B into itself, where B is the ball

B =
{

(x, y) : (x2 + y2)1/2 ≤ 4δ4
∗Θ

σM

(p + 1)ωE
√

a2
0 + b2

0

}
.

We may therefore apply the Brouwer Fixed Point Theorem to conclude
that J has a fixed point in B. This point (x, y) satisfies both G(x, y) =
0 and

(x2 + y2)1/2 ≤ Aδ4
∗Θ

σ,

where A is a constant independent of δ∗, Q∗ and Θ. By substituting for

Q and δ, and then taking Θ to have the upper limiting value of Q
− σ

(2−σ)α
∗ ,

we deduce the values given in (4.7) and (4.8). We have obtained a C2

solution of (1.11) for each fixed m large. Hence, we obtain the following
theorem which implies Theorem 1.1.

Theorem 4.1. For any integer m À 1 large and Q and δ given in
(4.7) and (4.8), problem (4.1) admits a C2 solution wQ,δ(θ). Moreover,

there is Θ = |O(Q
−σ

(2−σ)α )| such that

winn
Q (Θ) = wout

δ (Θ),

(winn
Q )′θ(Θ) = (wout

δ )′θ(Θ).

As a consequence, problem (1.11) admits infinitely many radially
symmetric solutions.
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