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1. Introduction

In this paper we are concerned with positive singular solution of the following
bi-harmonic equation:

∆2u = up in Rn, n ≥ 6, (1.1)

where p > n+4
n−4 .

Equation (1.1) arises both in physics and geometry. In the past decades there
have been lots of research activities in classifying solutions to (1.1). When 1 < p ≤
n+4
n−4 , all nonnegative solutions to (1.1) have been completely classified (Lin ([18])

and Wei-Xu ([19])): if p < n+4
n−4 (1.1) admits no nontrivial nonnegative regular

solution, while p = n+4
n−4 , i.e. the critical case, any positive regular solution of (1.1)

can be written as the following form:

uλ,ξ = [n(n− 4)(n− 2)(n+ 2)]−
n−4
8

( λ

1 + λ2|x− ξ|2
)n−4

2

, ξ ∈ Rn.

However, the question on complete classification of positive regular solutions of
(1.1) in the supercritical case, i.e. p > n+4

n−4 , remains largely open.

The structure of positive radial solutions of (1.1) with p > n+4
n−4 has been studied

by Gazzola-Grunau [7] and Guo-Wei [10]. For the following fourth order ODE:{
∆2u(r) = up(r), r ∈ [0,∞),
u(0) = a, u′′(0) = b, u′(0) = u′′′(0) = 0,

(1.2)

it is known from [7] that for any a > 0 there is a unique b0 := b0(a) < 0 such that
the unique solution ua,b0 of (1.2) satisfies that ua,b0 ∈ C4(0,∞), u′a,b0(r) < 0 and

lim
r→∞

rαua,b0(r) = K
1

p−1

0 ,

where α = 4
p−1 and

K0 =
8

(p− 1)4

[
(n−2)(n−4)(p−1)3+2(n2−10n+20)(p−1)2−16(n−4)(p−1)+32

]
.

This implies that ua,b0(r) > 0 for all r > 0 and ua,b0(r) → 0 as r → ∞. Moreover,
it is known from [10] that if 5 ≤ n ≤ 12 or if n ≥ 13 and n+4

n−4 < p < pc(n),
1
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ua,b0 −K
1

p−1

0 r−α changes sign infinitely many times in (0,∞), if n ≥ 13 and p ≥
pc(n), then u(r) < K

1
p−1

0 r−α for all r > 0 and the solutions are strictly ordered
with respect to the initial value a = ua,b0(0). Here pc(n) refers to the unique value
of p > n+4

n−4 such that

pc(n) =

 +∞, if 4 ≤ n ≤ 12,
n+2−

√
n2+4−n

√
n2−8n+32

n−6−
√

n2+4−n
√
n2−8n+32

, if n ≥ 13.

Very recently, Dávila-Dupaigne-Wang-Wei [5] proved that all stable or finite Morse
index solutions of the equation (1.1) are trivial provided 1 < p < pc(n). According
to the result by [10] and [16] all radial solutions are stable when p ≥ pc(n). Thus
the result in [5] is sharp.

We now turn to the singular solutions of (1.1). It is easily seen that

us(x) := K
1

p−1

0 |x|−
4

p−1 (1.3)

is a singular solution of (1.1), in other words, us satisfies the equation

∆2u = up, u > 0 in Rn \ {0}. (1.4)

As far as we know, the radial singular solution in (1.3) is the only singular solution
to (1.4) known so far. The question we shall address in this paper is whether or
not there are non-radial singular solutions to (1.4). To this end, we first discuss the
corresponding second order Lane-Emden equation

∆u+ up = 0, u > 0 in Rn. (1.5)

Equation (1.5) has been widely studied in the past decades. We refer to [1], [2], [3],
[6], [9], [11], [12], [14], [15], [17], [22] and the references therein. Farina ([6]) proved
that if n+2

n−2 < p < pc(n), the Morse index of any regular solution u of (1.5) is ∞.

Here pc(n) is the Joseph-Lundgren exponent ([15]):

pc(n) =

{
+∞, if 2 ≤ n ≤ 10,
(n−2)2−4n+8

√
n−1

(n−2)(n−10) , if n ≥ 11.

In [3], Dancer, Du and Guo showed that if Ω0 is a bounded domain containing 0, u
is a solution of (1.5) in Ω0\{0}; u has finite Morse index and n+2

n−2 < p < pc(n), then
x = 0 must be a removable singularity of u. They also show that if Ω0 is a bounded
domain containing 0, u is a solution of (1.5) in Rn\Ω0 that has finite Morse index
and n+2

n−2 < p < pc(n), then u must be a fast decay solution. It is easily seen that

(1.5) has a radial singular solution

us(x) := us(r) =
[ 2

p− 1

(
n− 2− 2

p− 1

)] 1
p−1 |x|−

2
p−1 .

In a recent paper [4], Dancer, Guo and Wei obtained infinitely many positive non-
radial singular solutions of (1.5) provided p ∈ (n+1

n−3 , p
c(n− 1)). The proof of [4] is

via a gluing of outer and inner solutions.
The main result in this paper is the following theorem.

Theorem 1.1. Let n ≥ 6. Assume that

n+ 3

n− 5
< p < pc(n− 1).
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Then (1.1) admits infinitely many non-radial singular solutions.

The proof of Theorem 1.1 is via a gluing of inner and outer solutions, as in
[4]. In the second order case, one glues (u(r), u

′
(r)) at some intermediate point.

However, since equation (1.1) is fourth order, we have to match the inner solution

and outer solution up to the third derivative (u(r), u
′
(r), u

′′
(r), u

′′′
(r)). There are

some essential obstructions appearing in matching the inner and outer solutions.
As far as we know this seems to be the first paper in gluing inner and outer solutions
for fourth order ODE problems.

In the following, we sketch the idea of proving Theorem 1.1. After performing
a separation of variables for a solution u of (1.1): u(x) = r−αw(θ), finding a non-
radial singular solutions of (1.1) is equivalent to finding a non-constant solution of
the following equation:

∆2
Sn−1w + k1(n)∆Sn−1w + k0(n)w = wp, (1.6)

where
k0(n) = (n− 4− α)(n− 2− α)(2 + α)α,

k1(n) = −[(n− 4− α)(2 + α) + (n− 2− α)α].

It is clear that w(θ) = [k0(n)]
1

p−1 is the constant solution of (1.6), which provides
the radial singular solution of (1.1) and it is given in (1.3).

In order to construct positive non-radial singular solutions of (1.1), we need to
find positive non-constant solutions of (1.6), which is a fourth order inhomogeneous
nonlinear ODE, therefore, we shall construct infinitely many positive non-constant
radially symmetric solutions of (1.6), i.e. solutions that only depend on the geodesic
distance θ ∈ [0, π). We only consider the simple case w(θ) = w(π−θ) for 0 ≤ θ ≤ π

2 .
In this case, (1.6) can be written as the following form:{

T1w(θ) + k1(n)T2w(θ) + k0(n)w = wp, w(θ) > 0 0 < θ < π
2 ,

w′
θ(0), w′′′

θ (0) exist, w′
θ(

π
2 ) = w′′′

θ (π2 ) = 0,
(1.7)

where T1, T2 are the differential operators defined as:

T1w(θ) =
1

sinn−2 θ

d

dθ

(
sinn−2 θ

d

dθ

( 1

sinn−2 θ

d

dθ

(
sinn−2 θ

dw(θ)

dθ

)))
,

and

T2w(θ) =
1

sinn−2 θ

d

dθ

(
sinn−2 θ

dw(θ)

dθ

)
.

A key observation is that

w∗(θ) = Ap[sin θ]
−α, θ ∈ (0,

π

2
], (1.8)

with
Ap−1

p = (n− 5− α)(n− 3− α)(2 + α)α (:= k0(n− 1))

is a singular solution of (1.7) with a singular point at θ = 0. (Note that this is
a singular solution in one dimension less.) We will construct the inner and outer
solution of (1.7) and glue them at some point close to 0, which gives solutions of
(1.7). The main difficulty is the matching of four parameters, which correspond to
matching of u and its derivatives up to the third order.

This paper is organized as follows. In Section 2, we present some preliminaries.
In Section 3, we construct inner solutions of (1.7) by studying an initial value
problem of (1.7) with large initial values at θ = 0. In Section 4, we construct outer
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solutions of (1.7). We first study an initial value problem of (1.7) with the initial
values at θ = π

2 , then we analyze the asymptotic behaviors of the solutions of this
initial value problem near θ = 0. Finally, in Section 5, we match the inner and
outer solutions constructed in Sections 3 and 4 to obtain solutions of (1.1). This
completes the proof of Theorem 1.1. We leave some computation results in the last
section.

2. preliminaries

In this section, we present some known results which will be used in the subse-
quent sections.

Let u = u(r) be a positive radial solution of (1.1). Using the Emden-Fowler
transformation:

u(r) = r−αv(t), t = ln r, (2.1)

we see that v(t) satisfies the equation:

v(4)(t) +K3v
′′′(t) +K2v

′′(t) +K1v
′(t) +K0v(t) = vp(t), t ∈ (−∞,∞) (2.2)

where the coefficients K0,K1,K2,K3 are given in [7]:

K0 =
8

(p− 1)4

[
(n− 2)(n− 4)(p− 1)3 + 2(n2 − 10n+ 20)(p− 1)2

− 16(n− 4)(p− 1) + 32
]
,

K1 =− 2

(p− 1)3

[
(n− 2)(n− 4)(p− 1)3 + 4(n2 − 10n+ 20)(p− 1)2

− 48(n− 4)(p− 1) + 128
]
,

K2 =
1

(p− 1)2

[
(n2 − 10n+ 20)(p− 1)2 − 24(n− 4)(p− 1) + 96

]
,

K3 =
2

p− 1

[
(n− 4)(p− 1)− 8

]
.

By direct calculations it is easy to see that K0 = k0. The characteristic polynomial

(linearized at K
1

p−1

0 ) of (2.2) is

ν 7→ ν4 +K3ν
3 +K2ν

2 +K1ν + (1− p)K0

and the eigenvalues are given by

ν1 =
N1 +

√
N2 + 4

√
N3

2(p− 1)
, ν2 =

N1 −
√
N2 + 4

√
N3

2(p− 1)
,

ν3 =
N1 +

√
N2 − 4

√
N3

2(p− 1)
, ν4 =

N1 −
√
N2 − 4

√
N3

2(p− 1)

where

N1 :=− (n− 4)(p− 1) + 8, N2 := (n2 − 4n+ 8)(p− 1)2

N3 :=(9n− 34)(n− 2)(p− 1)4 + 8(3n− 8)(n− 6)(p− 1)3

+ (16n2 − 288n+ 832)(p− 1)2 − 128(n− 6)(p− 1) + 256.

Let ν̃j = νj − α for j = 1, 2, 3, 4. We have the following proposition ([10]):
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Proposition 2.1. For any n ≥ 5 and p > n+4
n−4 , we have

ν̃2 < 2− n < 0 < ν̃1. (2.3)

(1) For any 5 ≤ n ≤ 12 or n ≥ 13 and n+4
n−4 < p < pc(n), we have ν̃3, ν̃4 ̸∈ R

and ℜ(ν̃3) = ℜ(ν̃4) = 4−n
2 < 0.

(2) For any n ≥ 13 and p = pc(n), we have ν̃3 = ν̃4 = 4−n
2 .

(3) For any n ≥ 13 and p > pc(n), we have

ν̃2 < 4− n < ν̃4 <
4− n

2
< ν̃3 < 0 < ν̃1, ν̃3 + ν̃4 = 4− n. (2.4)

Theorem 2.1. ([7]) The following limits hold:

lim
t→∞

v(t) = K
1/p−1
0 , lim

t→∞
v(k)(t) = 0 (2.5)

for any k ≥ 1.

Remark: We see that Ki (i = 0, 1, 2, 3) and νj , ν̃j (j = 1, 2, 3, 4) above depend
on n and p. In the following, by abuse of notation, we use Ki, νj , ν̃j with the
dimension n replaced by n− 1 and denote k0 = k0(n), k1 = k1(n).

3. Inner solutions

In this section, we construct inner solutions of (1.7).

Let Q ≫ 1 be a large constant and b̃ be a constant which will be given below.
We consider an initial value problem:{

T1w(θ) + k1T2w(θ) + k0w = wp,

w(0) = Q, w′(0) = 0, w′′(0) = (b̃+ µ)Q1+ 2
α , w′′′(0) = 0,

(3.1)

where µ > 0 is a small constant. Since Q ≫ 1, we set Q = ϵ−
4

p−1 (:= ϵ−α) with
ϵ > 0 sufficiently small.

Let w(θ) = ϵ−αv( θϵ ), then we have v(0) = 1, v′(0) = 0, v′′(0) = b̃+ µ, v′′′(0) = 0

and v(r) (for r = θ
ϵ ) satisfies the following equation:

v(4)(r) + 2(n− 2)ϵ cot(ϵr)v′′′(r) + ((n− 2)(n− 4)
ϵ2

sin2(ϵr)
− (n− 2)2ϵ2 + k1ϵ

2)v′′

+ ((n− 2)k1ϵ
3 cot(ϵr)− (n− 2)(n− 4)ϵ3

cot(ϵr)

sin2(ϵr)
)v′(r) + k0ϵ

4v(r) = vp(r),

(3.2)

with initial conditions

v(0) = 1, v′(0) = 0, v′′(0) = b̃+ µ, v′′′(0) = 0.
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For ϵ > 0 sufficiently small, we have

ϵ cot(ϵr) =
1

r
− 1

3
ϵ2r +

∞∑
k=1

lkϵ
2k+2r2k+1,

ϵ2 sin−2(ϵr) =
1

r2
+

1

3
ϵ2 +

∞∑
k=1

mkϵ
2k+2r2k,

ϵ3 cot(ϵr) sin−2(ϵr) =
1

r3
+

∞∑
k=1

nkϵ
2k+2r2k−1,

then, (3.2) can be written as the following form

v(4)(r) +
(2(n− 2)

r
− 2(n− 2)

3
ϵ2r +

∞∑
k=1

l′kϵ
2k+2r2k+1

)
v′′′(r)

+
( (n− 2)(n− 4)

r2
+
[ (n− 2)(n− 4)

3
− (n− 2)2 + k1

]
ϵ2 +

∞∑
k=1

m′
kϵ

2k+2r2k+1
)
v′′(r)

−
( (n− 2)(n− 4)

r3
− (n− 2)k1r

−1ϵ2 +

∞∑
k=1

n′kϵ
2k+2r2k−1

)
v′(r) + k0ϵ

4v(r)

= vp(r) (3.3)

with initial conditions

v(0) = 1, v′′(0) = b̃+ µ, v′(0) = v′′′(0) = 0.

The first approximation to the solution of (3.3) is the radial solution v0(r) of the
problem

∆2v = vp in Rn−1, v(0) = 1, v′(0) = 0, v′′(0) = b̃+ µ, v′′′(0) = 0. (3.4)

We write v0 = v01 + v02, where v01 and v02 satisfy the following equations respec-
tively

∆2v = vp, v(0) = 1, v′(0) = 0, v′′(0) = b̃, v′′′(0) = 0 (3.5)

and
∆2v = vp0 − vp01, v(0) = 0, v′(0) = 0, v′′(0) = µ, v′′′(0) = 0. (3.6)

We now choose b̃ < 0 to be the unique value such that the solution v01 is the unique
positive radial ground state of (3.5).

Lemma 3.1. Assume that v01(r) and v02(r) are the solutions to (3.5) and (3.6)
respectively. For n+3

n−5 < p < pc(n − 1), there exists R0 ≫ 1 such that for r ≥ R0,

the solution v01(r) satisfies

v01(r) = Apr
−α +

a0 cos(β ln r) + b0 sin(β ln r)

r
n−5
2

+O(rν̃2), (3.7)

where β =

√
4
√
N3−N2

2(p−1) (with n being replaced by n−1 in N2 and N3) and
√
a20 + b20 ̸=

0.
The solution v02(r) satisfies

v02(r) = µBpr
ν̃1 +O

(
µ2rν1+ν̃1 + µrν̃1+(α−n−5

2 )
)

(3.8)

with Bp ̸= 0 when µ = O( 1
rν1−σ ) for r in any interval [eT , e10T ] with T ≫ 1 and

σ = α− n−5
2 .
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Proof. The proof of this lemma is divided to two steps. We consider v01(r) in the
first step. The main arguments in the proof are similar to those in the proof of
Theorem 3.1 of [8].

Using the Emden-Fowler transformation:

v01(r) = r−αv(t), t = ln r (r > 0), (3.9)

and letting v(t) = Ap − h(t), we see that h(t) satisfies

h(4)(t)+K3h
′′′(t)+K2h

′′(t)+K1h
′(t)+(1−p)K0h(t)+O(h2) = 0, t > 1. (3.10)

Note that rαv01(r) → Ap as r → ∞ and hence h(t) → 0 as t→ ∞. It follows from
Proposition 2.1 that ν̃3, ν̃4 ̸∈ R and ℜ(ν̃3) = ℜ(ν̃4) = 5−n

2 < 0 and ν̃2 < 3 − n <

0 < ν̃1 provided n+3
n−5 < p < pc(n− 1). Let ν3 = σ + iβ, where β =

√
4
√
N3−N2

2(p−1) and

σ = −n−5
2 + α < 0 for p > n+3

n−5 .

We can write (3.10) as

(∂t − ν4)(∂t − ν3)(∂t − ν2)(∂t − ν1)h(t) = H(h(t)), (3.11)

where H(h(t)) = O(h2). We claim that for any T ≫ 1, there exist constants Ai

and Bi (i = 1, 2, 3, 4) such that

h(t) =A1e
σt cosβt+A2e

σt sinβt+A3e
ν2t +A4e

ν1t

+B1

∫ t

T

eσ(t−s) sinβ(t− s)H(h(s))ds

+B2

∫ t

T

eσ(t−s) cosβ(t− s)H(h(s))ds

+B3

∫ t

T

eν2(t−s)H(h(s))ds

+B4

∫ t

T

eν1(t−s)H(h(s))ds.

Moreover, each Ai depends on T and νi (i = 1, 2, 3, 4), while each Bi depends only
on νi (i = 1, 2, 3, 4). In fact, it follows from (3.11) and the ODE theory of second
order (see [13]) that

(∂t − ν2)(∂t − ν1)h(t) =A
′
1e

σt cosβt+A′
2e

σt sinβt

+
1

β

∫ t

T

eσ(t−s) sinβ(t− s)H(h(s))ds, (3.12)

where A′
1 and A′

2 are constants depending on T , ν3 and ν4. Multiplying both sides
of (3.12) by e−ν2t and integrating it from T to t, we obtain that

(∂t − ν1)h(t) =A
′
3e

ν2t +

∫ t

T

eν2(t−s)(A′
1e

σs cosβs+A′
2e

σs sinβs)ds

+
1

β

∫ t

T

eν2(t−s)

∫ s

T

eσ(s−ξ) sinβ(s− ξ)H(h(ξ))dξds.
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We now switch the order of integrations and find that

(∂t − ν1)h(t) =A
′′
1e

σt cosβt+A′′
2e

σt sinβt+A′′
3e

ν2t

+B′
1

∫ t

T

eσ(t−s) sinβ(t− s)H(h(s))ds

+B′
2

∫ t

T

eσ(t−s) cosβ(t− s)H(h(s))ds

+B′
3

∫ t

T

eν2(t−s)H(h(s))ds,

where A′′
1 , A

′′
2 and A′′

3 depend on T , νi (i = 2, 3, 4), B′
i (i = 1, 2, 3) depend only on

νi (i = 2, 3, 4). Repeating the same argument once again, we obtain our claim. We
can also write h(t) as

h(t) =A1e
σt cosβt+A2e

σt sinβt+A3e
ν2t +M4e

ν1t

+B1

∫ t

T

eσ(t−s) sinβ(t− s)H(h(s))ds+B2

∫ t

T

eσ(t−s) cosβ(t− s)H(h(s))ds

+B3

∫ t

T

eν2(t−s)H(h(s))ds−B4

∫ ∞

t

eν1(t−s)H(h(s))ds,

by using the fact that
∫ t

T
=

∫∞
T

−
∫∞
t

. Since h(t) → 0 as t → ∞, we have M4 = 0
(note ν1 > 0). Setting

h1(t) = A1e
σt cosβt+A2e

σt sinβt+A3e
ν2t

and

h2(t) =B1

∫ t

T

eσ(t−s) sinβ(t− s)H(h(s))ds

+B2

∫ t

T

eσ(t−s) cosβ(t− s)H(h(s))ds

+B3

∫ t

T

eν2(t−s)H(h(s))ds

−B4

∫ ∞

t

eν1(t−s)H(h(s))ds,

we see from the fact H(h(t)) = O(h2(t)) that

|h2(t)| ≤ C[h̃1(t) + h̃2(t)], (3.13)

where C > 0 is independent of T and

h̃1(t) = max
{∫ t

T

eσ(t−s)|h1(s)|2ds,
∫ t

T

eν2(t−s)|h1(s)|2ds,
∫ ∞

t

eν1(t−s)|h1(s)|2ds
}
,

h̃2(t) = max
{∫ t

T

eσ(t−s)|h2(s)|2ds,
∫ t

T

eν2(t−s)|h2(s)|2ds,
∫ ∞

t

eν1(t−s)|h2(s)|2ds
}
.

We now show

|h2(t)| = o(eσt). (3.14)

There are three cases to be considered:

(1) |h2(t)| ≤ C
[
h̃1(t) +

∫ t

T
eσ(t−s)|h2(s)|2ds

]
,
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(2) |h2(t)| ≤ C
[
h̃1(t) +

∫ t

T
eν2(t−s)|h2(s)|2ds

]
,

(3) |h2(t)| ≤ C
[
h̃1(t) +

∫∞
t
eν1(t−s)|h2(s)|2ds

]
.

We only consider (1) and (3). Case (2) can be discussed similarly. For case (1),
we have

|h2(t)| ≤ C
[
h̃1(t) +

∫ t

T

eσ(t−s)|h2(s)|2ds
]
. (3.15)

Thus,

|h2(t)| ≤ C
[
h̃1(t) + maxt≥T |h2(t)|

∫ t

T

eσ(t−s)|h2(s)|ds
]
. (3.16)

Let m(t) =
∫ t

T
e−σs|h2(s)|, then, it is seen from (3.16) that

m′(t) ≤ Ch̃1(t)e
−σt + Cmaxt≥T |h2(t)|m(t). (3.17)

For any ϵ > 0 sufficiently small, we can choose T sufficiently large such that 0 <
dT := Cmaxt≥T |h2(t)| < ϵ. It follows from (3.17) that

m(t) ≤ CedT t

∫ t

T

h̃1(s)e
−σse−dT sds. (3.18)

Substituting m(t) in (3.18) into (3.16), we see that

|h2(t)| ≤ Ch̃1(t) + CdT e
(σ+dT )t

∫ t

T

h̃1(s)e
−σse−dT sds. (3.19)

Note that σ + dT < 0 for T sufficiently large. We also know that ν2 < σ, which
implies h̃1(t) = o(eσt). On the other hand, from (3.19) we can obtain that |h2(t)| =
o(e(σ+dT )t). Substituting these into (3.15), we eventually have

|h2(t)| = o(eσt). (3.20)

For case (3), we have

|h2(t)| ≤ C
[
h̃1(t) +

∫ ∞

t

eν1(t−s)|h2(s)|2ds
]
. (3.21)

Thus,

|h2(t)| ≤ Ch̃1(t) + Cmaxt≥T |h2(t)|
∫ ∞

t

eν1(t−s)|h2(s)|ds. (3.22)

Let l(t) =
∫∞
t
e−ν1s|h2(s)|ds, it is seen from (3.22) that

− l′(t) ≤ Ch̃1(t)e
−ν1t + dT l(t). (3.23)

It follows from (3.23) that

l(s) ≤ Ce−dT t

∫ ∞

t

h̃1(s)e
−ν1sedT sds. (3.24)

Since h̃1(t) = o(eσt), we obtain from (3.24) that

l(s) = o(e(σ−ν1)t).

Substituting this into (3.22), we also have

|h2(t)| = o(eσt).
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We now write h(t) as

h(t) =M1e
σt cosβt+M2e

σt sinβt+A3e
ν2t

−B1

∫ ∞

t

eσ(t−s) sinβ(t− s)H(h(s))ds

−B2

∫ ∞

t

eσ(t−s) cosβ(t− s)H(h(s))ds

+B3

∫ t

T

eν2(t−s)H(h(s))ds

−B4

∫ ∞

t

eν1(t−s)H(h(s))ds.

Then, it follows from the facts H(h(t)) = O(h2(t)), h1(t) = O(eσt), h2(t) = o(eσt)
and ν2 < 2σ that

h(t) =M1e
σt cos(βt) +M2e

σt sin(βt) +A3e
ν2t +O(e2σt). (3.25)

This implies that (3.7) holds for some a0 and b0. By a similar argument which was
used in the proof of [10, Theorem 3.3], we can show a20 + b20 ̸= 0. This completes
the proof of the first step.

We now proceed the second step. Setting v02 = µṽ02, we see that ṽ02(r) satisfies
the following equation:

∆2ṽ02 − pvp−1
01 ṽ02 = µ−1

[
(v01 + µṽ02)

p − vp01 − pµvp−1
01 ṽ02

]
(3.26)

with initial conditions

ṽ02(0) = 0, ṽ′02(0) = 0, ṽ′′02(0) = 1, ṽ′′′02(0) = 0.

Using the Emden-Fowler transformation:

ṽ02(r) = r−αv̂(t), t = ln r (r > 0),

and the expression obtained for v01(r), we see that v̂(t) satisfies

v̂(4) +K3v̂
′′′ +K2v̂

′′ +K1v̂
′ + (1− p)K0v̂ = f(r, µ, v̂), (3.27)

where

f(r, µ, v̂) = O
(
[µv̂ + r(α−

n−5
2 )]

)
v̂

provided that µv̂ = o(1) for t sufficiently large. It follows from (3.27) that

v̂(t) =Â1e
σt cosβt+ Â2e

σt sinβt+ Â3e
ν2t + Â4e

ν1t

+ B̂1

∫ t

T

eσ(t−s) sinβ(t− s)f(r, µ, v̂(s))ds

+ B̂2

∫ t

T

eσ(t−s) cosβ(t− s)f(r, µ, v̂(s))ds

+ B̂3

∫ t

T

eν2(t−s)f(r, µ, v̂(s))ds

+ B̂4

∫ t

T

eν1(t−s)f(r, µ, v̂(s))ds,
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where Âi = Âi(T, ν1, ν2, ν3, ν4) (i = 1, 2, 3, 4) and B̂i = B̂i(ν1, ν2, ν3, ν4). We first
show that ṽ02 is strictly increasing in (0,∞). Using the initial values, we can find
R ∈ (0,∞) such that ṽ02(r) > 0 for r ∈ (0, R). Writing (3.26) as

µ∆2ṽ02 = (v01 + µṽ02)
p − vp01,

we obtain that (∆ṽ02)
′ > 0, and hence ∆ṽ02 > ∆ṽ02(0) = n for r ∈ (0, R), which

implies that (ṽ02)
′(r) > 0 for r ∈ (0, R). Moreover, we can deduce that R = ∞ and

ṽ′02(r) > 0 for r ∈ (0,∞). Therefore, v̂ is increasing in (0,∞). Next, we claim that

Â4 ̸= 0 for any T ≫ 1 sufficiently large. Indeed, for t ∈ [T, 10T ],

e−ν1tv̂(t) = Â4 + g̃(t)

+ B̂1e
(σ−ν1)t

∫ t

T

e−σs sinβ(t− s)f(r, µ, v̂(s))ds

+ B̂2e
(σ−ν1)t

∫ t

T

e−σs cosβ(t− s)f(r, µ, v̂(s))ds

+ B̂3e
(ν2−ν1)t

∫ t

T

e−ν2sf(r, µ, v̂(s))ds

+ B̂4

∫ t

T

e−ν1sf(r, µ, v̂(s))ds

≤ |Â4|+ |g̃(t)|+ (Σ4
j=1|B̂j |) max

t∈[T,10T ]

[
µv̂ + e(α−

n−5
2 )t

] ∫ t

T

e−ν1sv̂(s),

where

g̃(t) = Â1e
(σ−ν1)t cosβt+ Â2e

(σ−ν1)t sinβt+ Â3e
(ν2−ν1)t.

Since

(Σ4
j=1|B̂j |) max

t∈[T,10T ]

[
µv̂ + e(α−

n−5
2 )t

]
= τ = o(1),

we have

e−ν1tv̂(t) ≤ |Â4|+ |g̃(t)|+ τ

∫ t

T

e−ν1sv̂(s)ds. (3.28)

Let ℓ(t) =
∫ t

T
e−ν1sv̂(s)ds. We see that

(e−τtℓ(t))′ ≤ (|Â4|+ |g̃(t)|)e−τt. (3.29)

Integrating (3.29) in [T, t], we obtain that

ℓ(t) ≤
|Â4|+maxt∈[T,10T ] |g̃(t)|

τ
eτ(t−T ).

If we choose τ(t− T ) ≤ C for t ∈ [T, 10T ], i.e., τ = O( 1
T ), we see that

ℓ(t) ≤
(|Â4|+maxt∈[T,10T ] |g̃(t)|)C

τ
. (3.30)

Substituting this into (3.28), we have

e−ν1tv̂(t) ≤ |Â4|(1 + C) + |g̃(t)|+ C max
t∈[T,10T ]

|g̃(t)|. (3.31)

Suppose Â4 = 0. We see from (3.31) and the expression of |g̃(t)| that

v̂(t) = o(1), ∀t ∈ [T, 10T ].
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This contradicts the fact that v̂ is increasing in (0,∞). Therefore, Â4 ̸= 0 and our
claim holds. Moreover, it is known from (3.31) and the expression of v̂(t) that

v̂(t) = Bpe
ν1t +O

(
µe2ν1t + e(σ+ν1)t

)
(3.32)

with Bp ̸= 0 and µ = O(e(−ν1+σ)t). Therefore,

v02(r) = µBpr
ν̃1 +O

(
µ2rν1+ν̃1 + µrν̃1+σ

)
with Bp ̸= 0 and µ = O( 1

rν1−σ ). This completes the proof of this lemma. �

Lemma 3.2. Let p satisfy the conditions of Lemma 3.1 and v1(r) be the unique
solution of the following equation v

(4)
1 (r) + 2(n−2)

r v′′′1 (r) + (n−2)(n−4)
r2 v′′1 (r)−

(n−2)(n−4)
r3 v′1(r)−

2(n−2)
3 rv′′′0 (r)

+( (n−2)(n−4)
3 − (n− 2)2 + k1)v

′′
0 (r) +

(n−2)k1

r v′0(r) = pvp−1
0 (r)v1(r),

v1(0) = 0, v′1(0) = 0, v′′1 (0) = 0, v′′′1 (0) = 0.
(3.33)

Then for r ∈ [eT , e10T ] with T ≫ 1 and µ = O( 1
rν1−σ ),

v1(r) =Cpr
2−α + r2−

n−5
2 (a1 cos(β ln r) + b1 sin(β ln r)) + µDpr

2+ν̃1

+O(µ2rν̃1+ν1+2 + µrν̃1+σ+2) + o(r2−
n−5
2 ), (3.34)

where Cp satisfies

E1Cp − pAp−1
p Cp = F1Ap, (3.35)

and

E1 =(1 + α)(1− α)(2− α)α− 2(n− 2)(2− α)(1− α)α− (n− 2)(n− 4)(2− α)

+ (n− 2)(n− 4)(2− α)(1− α),

F1 =((n− 2)2 − k1 −
(n− 2)(n− 4)

3
)α(α+ 1)− 2(n− 2)

3
α(α+ 1)(α+ 2)

+ k1(n− 2)α,

Dp satisfies

E2Dp = F2Bp, (3.36)

where

E2 = (2 + ν̃1)(ν̃1 + n− 1)(ν̃1 + n− 3)ν̃1 − pAp−1
p

and

F2 =
2(n− 2)(ν̃1 − 1)(ν̃1 − 2)ν̃1

3
+ ((n− 2)2 − k1 −

(n− 2)(n− 4)

3
)(ν̃1 − 1)ν̃1

− k1(n− 2)ν̃1 + p(p− 1)Ap−2
p Cp,

(a1, b1) is the solution of {
Aa1 −Bb1 = G,
Ba1 +Ab1 = H,

where

A =
n4 − 12n3 + 14n2 + 132n− 135

16
− pAp−1

p + (
n2 − 6n− 35

2
)β2 + β4,

B = (2n2 − 12n− 6)β + 8β3,
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G =p(p− 1)Ap−2
p Cpa0 +

n4 − 11n3 + 41n2 − 61n+ 30

12
a0 +

n2 − 6n+ 5

4
k1a0

+
4n2 + 3n− n3 − 14

6
b0β − 2k1b0β +

n2 − 9n+ 14

3
a0β

2 + a0k1β
2

− 2(n− 2)

3
b0β

3,

and

H =p(p− 1)Ap−2
p Cpb0 +

n4 − 11n3 + 41n2 − 61n+ 30

12
b0 +

n2 − 6n+ 5

4
k1b0

− 4n2 + 3n− n3 − 14

6
a0β + 2k1a0β +

n2 − 9n+ 14

3
b0β

2 + b0k1β
2

+
2(n− 2)

3
a0β

3.

Remark: We need to show E2 ̸= 0 and the following 2 by 2 matrix is invertible,

K =

[
A, −B
B, A

]
.

This will be proved in last section.

Proof. Let

v1(r) =Cpr
2−α + f̃(r)r2−

n−5
2 + µDpr

2+ν̃1 + o(r2−
n−5
2 )

+O(µ2rν̃1+ν1+2 + µrν̃1+σ+2),

where

f̃(r) = a1 cos(β ln r) + b1 sin(β ln r).

Using the expression in (3.7) and (3.8), we can get (3.34) by direct calculations. �

Furthermore, we can obtain the following proposition.

Proposition 3.1. Let n+3
n−5 < p < pc(n− 1) and v(r) be a solution of (3.2). Then

for ϵ > 0 sufficiently small,

v(r) = v0(r) +
∞∑
k=1

ϵ2kvk(r).

Moreover, for r ∈ [eT , e10T ] with T ≫ 1 and, µ = o( 1
rν1−σ ),

vk(r) =
k∑

j=1

dkj r
2j−α +

k∑
j=1

ekj r
2j−n−5

2 sin(β ln r + Ek
j ) +

k∑
j=1

µfkj r
2j+ν̃1

+O(µ2rν̃1+ν1+2k + µrν̃1+σ+2k) + o(r2k−
n−5
2 ), (3.37)

where dkj , e
k
j , f

k
j , E

k
j (j = 1, 2, · · · , k) are constants. Moreover,

d11 = Cp, e
1
1 =

√
a21 + b21, f

1
1 = Dp, sinE1

1 =
a1
e11
, cosE1

1 =
b1
e11

where Cp, a1, b1, Dp are given in Lemma 3.2.



14 ZONGMING GUO, JUNCHENG WEI, AND WEN YANG

Proof. Using Taylor’s expansion of vp and the expressions of v0(r), v1(r), · · · , vk−1(r),
we can obtain this proposition by the induction argument and direct calculations.
Note that

O(r2−
n−5
2 ) = o(r2−α).

�

Theorem 3.1. Let n+3
n−5 < p < pc(n− 1) and winn

ϵ,µ (θ) be the solution of (1.7) with

w(0) = ϵ−α, wθ(0) = 0, wθθ(0) = (b̃+ µ)ϵ−α−2, wθθθ(0) = 0.

Then for any sufficiently small ϵ > 0, θ
ϵ ∈ [eT , e10T ] with T ≫ 1 and µ =

O
((

ϵ
θ

)ν1−σ)
,

winn
ϵ,µ (θ) =

Ap

θα
+

Cp

θα−2
+Bpµϵ

−ν1θν̃1 +

∞∑
k=2

k∑
j=1

dkj ϵ
2(k−j)θ2j−α

+ ϵ
n−5
2 −α

[a0 cos(β ln θ
ϵ ) + b0 sin(β ln

θ
ϵ )

θ
n−5
2

+
a1 cos(β ln

θ
ϵ ) + b1 sin(β ln

θ
ϵ )

θ
n−5
2 −2

+
∞∑
k=2

( k∑
j=1

ekj ϵ
2(k−j)θ2j−

n−5
2 sin(β ln

θ

ϵ
+ Ek

j ) + o(θ2k−
n−5
2 )

)
+O(θ2−

n−5
2 )

]

+ ϵ−α
∞∑
k=1

[ k∑
j=1

(µfkj ϵ
2k−2j−ν̃1θ2j+ν̃1) +O

(
µ2θν̃1+ν1+2kϵ−ν̃1−ν1

+ µθν̃1+σ+2kϵ−ν̃1−σ
)]

+O
(
µ2

(θ
ϵ

)ν̃1+ν1

+ µ
(θ
ϵ

)ν̃1+σ)
.

Proof. This is a direct consequence of Proposition 3.1 by setting r = θ
ϵ . �

We now obtain the following lemmas which will be useful in the following proofs.

Lemma 3.3. Let n+3
n−5 < p < pc(n− 1) and

v(Q,µ, θ) = Qv0(Q
p−1
4 θ).

Then for Q
p−1
4 θ ∈ [eT , e10T ] with T ≫ 1; µ = O( 1

(Q(p−1)/4θ)ν1−σ ) and n = 0, 1, 2,

v(Q,µ, θ) satisfies

∂n

∂Qn
(v(Q,µ, θ)) =

∂n

∂Qn

(Ap

θα

)
+

∂n

∂Qn

{
Cθ−

n−5
2 Q−(

(p−1)(n−5)
8 −1) sin(β ln(Q

p−1
4 θ) + κ)

}
+Q

ν̃2
α +1−nO(θν̃2) + µBpQ

ν̃1
α +1−nθν̃1

+O(µ2Q
ν̃1+ν1

α +1−nθν̃1+ν1 + µQ
ν̃1+σ

α +1−nθσ+ν̃1),
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∂n

∂Qn
(v′θ(Q,µ, θ)) =

∂n

∂Qn

(
− α

Ap

θα+1

)
+

∂n+1

∂Qn∂θ

{
Cθ−

n−5
2 Q−(

(p−1)(n−5)
8 −1) sin(β ln(Q

p−1
4 θ) + κ)

}
+Q

ν̃2
α +1−nO(θν̃2−1) + µν̃1BpQ

ν̃1
α +1−nθν̃1−1

+O(µ2Q
ν̃1+ν1

α +1−nθν̃1+ν1−1 + µQ
ν̃1+σ

α +1−nθσ+ν̃1−1),

∂n

∂Qn
(
∂2

∂θ2
v(Q,µ, θ)) =

∂n

∂Qn

(
α(α+ 1)

Ap

θα+2

)
+

∂n+2

∂Qn∂θ2

{
Cθ−

n−5
2 Q−(

(p−1)(n−5)
8 −1) sin(β ln(Q

p−1
4 θ) + κ)

}
+Q

ν̃2
α +1−nO(θν̃2−2) + µν̃1(ν̃1 − 1)BpQ

ν̃1
α +1−nθν̃1−2

+O(µ2Q
ν̃1+ν1

α +1−nθν̃1+ν1−2 + µQ
ν̃1+σ

α +1−nθσ+ν̃1−2),

∂n

∂Qn
(
∂3

∂θ3
v(Q,µ, θ)) =

∂n

∂Qn

(
− α(α+ 1)(α+ 2)

Ap

θα+3

)
+

∂n+3

∂Qn∂θ3

{
Cθ−

n−5
2 Q−(

(p−1)(n−5)
8 −1) sin(β ln(Q

p−1
4 θ) + κ)

}
+Q

ν̃2
α +1−nO(θν̃2−3) + µν̃1(ν̃1 − 1)(ν̃1 − 2)BpQ

ν̃1
α +1−nθν̃1−3

+O(µ2Q
ν̃1+ν1

α +1−nθν̃1+ν1−3 + µQ
ν̃1+σ

α +1−nθσ+ν̃1−3).

For n = 0, 1, we have

∂n

∂µn
(v(Q,µ, θ)) =µ1−nBpQ

ν̃1
α +1θν̃1

+O(µ2−nQ
ν̃1+ν1

α +1θν̃1+ν1 + µ1−nQ
ν̃1+σ

α +1θσ+ν̃1),

∂n

∂µn
(
∂

∂θ
v(Q,µ, θ)) =µ1−nν̃1BpQ

ν̃1
α +1θν̃1−1

+O(µ2−nQ
ν̃1+ν1

α +1θν̃1+ν1−1 + µ1−nQ
ν̃1+σ

α +1θσ+ν̃1−1),

∂n

∂µn

( ∂2

∂θ2
v(Q,µ, θ)

)
=µ1−nν̃1(ν̃1 − 1)BpQ

ν̃1
α +1θν̃1−2

+O(µ2−nQ
ν̃1+ν1

α +1θν̃1+ν1−2 + µ1−nQ
ν̃1+σ

α +1θσ+ν̃1−2),

∂n

∂µn

( ∂3

∂θ2
v(Q,µ, θ)

)
=µ1−nν̃1(ν̃1 − 1)(ν̃1 − 2)BpQ

ν̃1
α +1θν̃1−3

+O(µ2−nQ
ν̃1+ν1

α +1θν̃1+ν1−3 + µ1−nQ
ν̃1+σ

α +1θσ+ν̃1−3),

while for n = 2, we have

∂2

∂µ2

( ∂m

∂θm
v(Q,µ, θ)

)
= O(Q

ν̃1+ν1
α +1θν̃1+ν1−m), m = 0, 1, 2, 3,

where κ = tan−1 b0
a0
, C =

√
a20 + b20.
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Proof. These estimates are obtained by expansions of v01(r) and v02(r) given above
and direct calculations. �
Lemma 3.4. In the region θ = |O(Q

σ
(2−σ)α )|, µ = O(θ2−

2ν1
σ ), σ = − 1

2 (n− 5− 2α),
the solution w(Q,µ, θ) of (1.7) with w(Q,µ, 0) = Q,wθ(Q,µ, 0) = 0, wθθ(Q,µ, 0) =

(b̃+ µ)Q1+ 2
α , wθθθ(Q,µ, 0) = 0 satisfies

(1)
∣∣∣ ∂m+n

∂Qn∂θmw(Q,µ, θ)− ∂m+n

∂Qn∂θm v(Q,µ, θ)
∣∣∣ = Q− (n−5)(p−1)

8 −(n−1)
∣∣∣o(θ−n−5

2 −m)
∣∣∣,

(2)
∣∣∣ ∂m+n

∂µn∂θmw(Q, θ)− ∂n+m

∂µn∂θm v(Q, θ)
∣∣∣ = ∣∣∣O(µ2−nQ

ν̃1+ν1
α +1θν̃1+ν1−m)

∣∣∣.
Proof. This lemma can be obtained from Lemma 3.3 and Theorem 3.1. Note that

ϵ = Q− 1
α , −σ

α
=

(p− 1)(n− 5)

8
− 1.

Moreover
Q

p−1
4 θ ∈ [eT , e10T ]

provided that Q is sufficiently large. �
Now we write the inner solutions obtained in Theorem 3.1 in the form of param-

eter Q and µ:

Theorem 3.2. Let n+3
n−5 < p < pc(n− 1) and winn

Q,µ(θ) be an inner solution of (1.7)

with w(0) = Q, wθ(0) = 0, wθθ(0) = (b̃ + µ)Q1+ 2
α , wθθθ(0) = 0. Then for any

sufficiently large Q > 0 and θ = |O(Q
σ

(2−σ)α )| = |O(µ
σ

2σ−2ν1 )|,

winn
Q,µ(θ) =

Ap

θα
+

Cp

θα−2
+BpµQ

ν1
α θν̃1 +

∞∑
k=2

k∑
j=1

dkjQ
− (p−1)(k−j)

2 θ2j−α

+Q
σ
α

[a0 cos(β ln(Q p−1
4 θ)) + b0 sin(β ln(Q

p−1
4 θ))

θ
n−5
2

+
a1 cos(β ln(Q

p−1
4 θ)) + b1 sin(β ln(Q

p−1
4 θ))

θ
n−5
2 −2

+O(θ2−
n−5
2 )

+

∞∑
k=2

( k∑
j=1

ekjQ
− (p−1)(k−j)

2 θ2j−
n−5
2 sin(β ln(Q

p−1
4 θ) + Ek

j ) + o(θ2k−
n−5
2 )

)]

+Q
∞∑
k=1

[ k∑
j=1

(µfkj Q
− 2k−2j−ν̃1

α θ2j+ν̃1) +O(µ2Q
ν̃1+ν1

α θν̃1+ν1+2k

+ µQ
ν̃1+σ

α θν̃1+σ+2k)
]
.

4. Outer solutions

In this section we construct outer solutions for (1.7). Let w∗(θ) be the singular
solution given in (1.8), and we have the following lemma.

Lemma 4.1. Equation

T1ϕ(θ) + k1T2ϕ(θ) + k0ϕ = pwp−1
∗ (θ)ϕ(θ), 0 < θ <

π

2
, (4.1)
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admits a solution which can be written as

ϕ(θ) = θ−
n−5
2

[
c1 cos(β ln

θ

2
) + c2 sin(β ln

θ

2
)
]
+O(θ2−

n−5
2 ) as θ → 0, (4.2)

where c1, c2 are constants such that c21 + c22 ̸= 0, and also admits another solution
which can be written as

ψ(θ) = c0θ
ν̃2 +O(θν̃2+2) as θ → 0, (4.3)

where c0 is a nonzero constant. Here T1 and T2 are differential operators defined
in (1.7).

Proof. For the following equations,{
T1ϕ1(θ) + k1T2ϕ1(θ) + k0ϕ1(θ) = pwp−1

∗ (θ)ϕ1(θ), 0 < θ < π
2 ,

ϕ1(
π
2 ) = 1, ϕ′1(

π
2 ) = 0, ϕ′′1(

π
2 ) = 0, ϕ′′′1 (π2 ) = 0

(4.4)

and {
T1ϕ2(θ) + k1T2ϕ2(θ) + k0ϕ2(θ) = pwp−1

∗ (θ)ϕ2(θ), 0 < θ < π
2 ,

ϕ2(
π
2 ) = 0, ϕ′2(

π
2 ) = 0, ϕ′′2(

π
2 ) = 1, ϕ′′′2 (π2 ) = 0,

(4.5)

we claim that both ϕ1θ) and ϕ2(θ) are strictly decreasing for θ ∈ (0, π2 ). We only
show the case of ϕ2(θ), the case of ϕ1(θ) can be treated similarly.

Let us set A(θ) = d
dθ

(
sinn−2 θ dϕ2(θ)

dθ

)
. Before proving that ϕ2(θ) is decreasing,

we first present a useful fact that will be used in the following proof. If A(θ) > 0
for θ ∈ (θ0,

π
2 ), where θ0 ∈ (0, π2 ), then ϕ

′
2(θ) < 0 for θ ∈ (θ0,

π
2 ) and ϕ2(θ) > 0 for

θ ∈ (θ0,
π
2 ). The proof of this fact is simple, thus we omit it here. Next, we start

to show that ϕ2(θ) is decreasing. By using the boundary condition of ϕ2 at θ = π
2 ,

we have A(π2 ) = 1 and find θ1 ∈ (0, π2 ) such that A(θ) > 0 for θ ∈ (θ1,
π
2 ), then

ϕ2(θ) > 0 for θ ∈ (θ1,
π
2 ). Using the fact k1(n) < 0 and the second conclusion in

Lemma 6.1, we have

T1ϕ2(θ) = [pwp−1
∗ − k0]ϕ2(θ)− k1

A(θ)

sinn−2 θ
> 0, for θ ∈ (θ1,

π
2 ).

Now we are going to show that θ1 = 0. If not, θ1 ∈ (0, π2 ) and A(θ1) = 0. For
θ ∈ (θ1,

π
2 ), we have

d

dθ

(
sinn−2 θ

d

dθ

( A(θ)

sinn−2 θ

))
> 0,

using this inequality and the following fact

d

dθ

( A(θ)

sinn−2 θ

)∣∣∣
θ=π

2

= 0,

we have
d

dθ

( A(θ)

sinn−2 θ

)
< 0 for θ ∈ (θ1,

π
2 ). (4.6)

It follows from (4.6) that

A(θ)

sinn−2 θ
> 1 for θ ∈ (θ1,

π
2 ), (4.7)

which contradicts the fact that A(θ1) = 0. Thus, A(θ) > 0 and ϕ′2(θ) < 0 for
θ ∈ (0, π2 ). Hence, we prove the claim.

We now prove that there are D1 ̸= 0 and D2 ̸= 0 such that for θ near 0,

ϕ1(θ) = D1θ
ν̃2 +O(θ2+ν̃2) (4.8)
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and

ϕ2(θ) = D2θ
ν̃2 +O(θ2+ν̃2). (4.9)

We also only show (4.9). The proof of (4.8) is similar. Using Emden-Fowler trans-
formations:

ϕ̃(t) = (sin θ)αϕ2(θ), t = ln(tan
θ

2
),

we obtain that for t ∈ (−∞, 0), ϕ̃(t) satisfies the following homogeneous equation

ϕ̃(4)(t) + a3(t)ϕ̃
′′′(t) + a2(t)ϕ̃

′′(t) + a1(t)ϕ̃
′(t) + a0(t)ϕ̃(t) = 0, (4.10)

where

a3(t) = K3 +O(e2t), a2(t) = K2 +O(e2t), a1(t) = K1 +O(e2t), a0(t) = (1− p)K0.

Therefore,

ϕ̃(4)(t) +K3ϕ̃
′′′(t) +K2ϕ̃

′′(t) +K1ϕ̃
′(t) + (1− p)K0ϕ̃(t)

= O(e2t(ϕ̃′′′(t) + ϕ̃′′(t) + ϕ̃′(t))). (4.11)

Following the arguments in the proof of Lemma 3.1, we can write the solutions of
(4.11) as (for any T ≪ −1):

ϕ̃(t) =A5e
σt cosβt+A6e

σt sinβt+A7e
ν2t +A8e

ν1t

+B5

∫ t

−∞
eσ(t−s) sinβ(t− s)g(s, ϕ̃(s))ds

+B6

∫ t

−∞
eσ(t−s) cosβ(t− s)g(s, ϕ̃(s))ds

+B7

∫ t

−∞
eν2(t−s)g(s, ϕ̃(s))ds

+B8

∫ t

T

eν1(t−s)g(s, ϕ̃(s))ds, (4.12)

where g(t, ϕ̃(t)) is the right hand side of (4.11), A8 depends on T and each Bi+4

depends only on νi (i = 1, 2, 3, 4). It is known from (4.12) that if A7 = 0, then for
|t| sufficiently large,

ϕ̃(t) = A5e
σt cosβt+A6e

σt sinβt+O(e(2+σ)t) (4.13)

with A2
5 +A2

6 ̸= 0 or

ϕ̃(t) = A8e
ν1t +O(e(2+ν1)t) (4.14)

with A8 ̸= 0. Otherwise, if A2
5 + A2

6 = 0 and A8 = 0, we know that ϕ̃(t) =

O(e(2+ν1)t). Substituting this into (4.12), we see that ϕ̃(t) = O(e(4+ν1)t), repeating

this procedure, we eventually obtain that ϕ̃(t) ≡ 0. This is impossible. Therefore,
for θ near 0,

ϕ2(θ) = A5θ
−n−5

2 cos(β ln
θ

2
) +A6θ

−n−5
2 sin(β ln

θ

2
) +O(θ2−

n−5
2 )

or

ϕ2(θ) = A8θ
ν̃1 +O(θ2+ν̃1).

But these contradict the fact that ϕ2(θ) is strictly decreasing for θ ∈ (0, π2 ). Thus,
we prove the claim and get (4.9).
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Let ϕ(θ) = ϕ1(θ)− D1

D2
ϕ2(θ). Then ϕ(θ) satisfies the problem{

T1ϕ(θ) + k1T2ϕ(θ) + k0ϕ(θ) = pwp−1
∗ (θ)ϕ(θ), 0 < θ < π

2 ,
ϕ(π2 ) = 1, ϕ′(π2 ) = 0, ϕ′′(π2 ) = −D1

D2
, ϕ′′′(π2 ) = 0.

(4.15)

We claim that for θ near 0,

ϕ(θ) = θ−
n−5
2

[
c1 cos(β ln

θ

2
) + c2 sin(β ln

θ

2
)
]
+O(θ2−

n−5
2 ) (4.16)

with c21 + c22 ̸= 0. Using Emden-Fowler transformations:

ϕ̂(t) = (sin θ)αϕ(θ), t = ln(tan
θ

2
) (4.17)

and (4.8), (4.9), we obtain that for t near −∞,

ϕ̂(t) = eσt[c1 cos(βt) + c2 sin(βt)] + c3e
ν1t +O(e(2+σ)t) (4.18)

provided c21 + c22 ̸= 0 or

ϕ̂(t) = c3e
ν1t +O(e(2+ν1)t) (4.19)

provided c21 + c22 = 0 and c3 ̸= 0. (Note that if both c21 + c22 = 0 and c3 = 0, we can

obtain ϕ̂(t) ≡ 0. This is impossible.) We now show that (4.19) can not occur. On
the contrary, we see that for θ near 0,

ϕ(θ) = c3θ
ν̃1 +O(θ2+ν̃1).

This implies that ϕ(θ) → 0 as θ → 0. Since

ϕ̂(t) = O(eν1t), ϕ̂′(t) = O(eν1t), ϕ̂′′(t) = O(eν1t), ϕ̂′′′(t) = O(eν1t),

we obtain from (4.17) that

ϕ′(θ) = O(θν̃1−1), sinn−2 θ
dϕ(θ)

dθ
= O(θn−3+ν̃1),

d

dθ

(
sinn−2 θ

dϕ(θ)

dθ

)
= O(θn−4+ν̃1).

The similar arguments imply that

sinn−2 θ
d

dθ

( 1

sinn−2 θ

d

dθ

(
sinn−2 θ

dϕ(θ)

dθ

))
= O(θn−5+ν̃1).

If we define e(θ) = sinn−2 θ d
dθ

(
1

sinn−2 θ
d
dθ

(
sinn−2 θ dϕ(θ)

dθ

))
, we see that e(0) = 0.

Then, we claim that ϕ changes sign in (0, π2 ). Suppose that this is not true, without
loss generality, we assume ϕ > 0 in (0, π2 ). Then it follows from the equation of ϕ
that for θ ∈ (0, π2 ),

d

dθ

[
e(θ)− k1

(
sinn−2 θ

dϕ(θ)

dθ

)]
= sinn−2 θ

[
pwp−1

∗ − k0

]
ϕ(θ) > 0. (4.20)

But integrating both sides of (4.20) in (0, π2 ) and using the boundary conditions :
ϕ′(π2 ) = ϕ′′′(π2 ) = 0, we obtain that∫ π

2

0

sinn−2 θ
[
pwp−1

∗ − k0

]
ϕ(θ)dθ = 0.

This is clearly impossible. Noticing that ϕ ̸= 0 for θ near 0, we see that there is a

minimal zero point θ̂ ∈ (0, π2 ) of ϕ. Without loss generality, we assume that ϕ > 0

in (0, θ̂). It follows from (4.20) that E(θ) := e(θ) + k1

(
sinn−2 θ dϕ(θ)

dθ

)
is increasing
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for θ ∈ (0, θ̂). Noticing E(0) = 0, we then obtain that E(θ) > 0 for θ ∈ (0, θ̂).
Therefore,

d

dθ

[ 1

sinn−2 θ

d

dθ

(
sinn−2 θ

dϕ(θ)

dθ

)
+ k1ϕ(θ)

]
> 0 for θ ∈ (0, θ̂). (4.21)

Moreover, by a similar argument, we have

d

dθ

(
sinn−2 θ

dϕ(θ)

dθ

)
> 0 for θ ∈ (0, θ̂), (4.22)

and
dϕ(θ)

dθ
> 0 for θ ∈ (0, θ̂). (4.23)

But (4.23) implies that ϕ(θ̂) > 0, which contradicts the fact that ϕ(θ̂) = 0. This
contradiction implies that (4.19) can not occur and thus (4.18) holds. As a conse-
quence, (4.16) holds and hence (4.2) holds.

Let ψ(θ) = ϕ1(θ). We easily know that (4.3) can be obtained from (4.8). This
completes the proof of this lemma. �

For any sufficiently small δ > η > 0, we set ψ1(θ) to be the solution of the
problem{

T1ψ1(θ) + k1T2ψ1(θ) + k0ψ1(θ) = η−2
[
(w∗ +Φ+Ψ)p − wp

∗ − pwp−1
∗ (Φ + η2ψ)

]
,

(ψ1 + ψ)(π2 ) = 2, (ψ1 + ψ)′(π2 ) = 0, (ψ1 + ψ)′′(π2 ) =
D1δ

2

D2η2 , (ψ1 + ψ)′′′(π2 ) = 0,

(4.24)
where ψ(θ) is given in Lemma 4.1, Φ = δ2ϕ(θ) and Ψ = η2(ψ1(θ) + ψ(θ)). We can
see that Ψ satisfies the problem{

T1Ψ(θ) + k1T2Ψ(θ) + k0Ψ(θ) = (w∗ +Φ+Ψ)p − wp
∗ − pwp−1

∗ Φ,

Ψ(π2 ) = 2η2, Ψ′(π2 ) = 0, Ψ′′(π2 ) =
D1δ

2

D2
, Ψ′′′(π2 ) = 0.

(4.25)

This implies that{
T1(Ψ + Φ) + k1T2(Ψ + Φ) + k0(Ψ + Φ) = (w∗ +Φ+Ψ)p − wp

∗,
(Ψ + Φ)(π2 ) = 2η2 + δ2, (Ψ + Φ)′(π2 ) = 0, (Ψ + Φ)′′(π2 ) = 0, (Ψ + Φ)′′′(π2 ) = 0.

(4.26)
Arguments similar to those in the proof of Lemma 4.1 imply that Ψ(θ) + Φ(θ) is
strictly decreasing, then

Ψ(θ) + Φ(θ) > 0 for θ ∈ (0, π2 ). (4.27)

Setting ψ2(θ) = ψ(θ) + ψ1(θ), we easily see that ψ2 satisfies the problem
T1ψ2(θ) + k1T2ψ2(θ) + k0ψ2(θ) = pwp−1

∗ ψ2

+η−2
[
(w∗ +Φ+ η2ψ2)

p − wp
∗ − pwp−1

∗ (Φ + η2ψ2)
]
,

ψ2(
π
2 ) = 2, ψ′

2(
π
2 ) = 0, ψ′′

2 (
π
2 ) =

D1δ
2

D2η2 , ψ′′′
2 (π2 ) = 0.

(4.28)
By the Emden-Fowler transformation:

ψ̃2(t) = (sin θ)αψ2(θ), t = ln tan
θ

2
,
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we see that ψ̃2(t) satisfies the problem{
ψ̃
(4)
2 (t) + a3(t)ψ̃

′′′
2 (t) + a2(t)ψ̃

′′
2 (t) + a1(t)ψ̃

′
2(t) + a0(t)ψ̃2(t) = G(ψ̃2(t)), −∞ < t < 0,

ψ̃′
2(0) = 0, ψ̃′′′

2 (0) = 0,

(4.29)

where a0(t), a1(t), a2(t), a3(t) are defined in (4.10), and

G(ψ̃2(t)) = (sin θ)4+αη−2
{
[w∗+Φ+η2 sin−α θψ̃2]

p−wp
∗−pwp−1

∗ (Φ+η2 sin−α θψ̃2)
}
.

Moreover, we can rewrite (4.29) as the following form: (see the proof of Lemma
4.1)

ψ̃
(4)
2 (t) +K3ψ̃

′′′
2 (t) +K2ψ̃

′′
2 (t) +K1ψ̃

′
2(t) + (1− p)K0ψ̃2(t) = G(ψ̃2(t)) + g(t, ψ̃2(t)),

(4.30)

where g(t, ψ̃2(t)) = O
(
e2t(ψ̃′′′

2 (t)+ ψ̃′′
2 (t)+ ψ̃

′
2(t))

)
for t≪ −1. Therefore, for t < T

with any T ≪ −1,

ψ̃2(t) =D5e
ν2t +D6e

σt cosβt+D7e
σt sinβt+D8e

ν1t

+B5

∫ t

−∞
eσ(t−s) sinβ(t− s)(G(ψ̃2(s)) + g(s, ψ̃2(s)))ds

+B6

∫ t

−∞
eσ(t−s) cosβ(t− s)(G(ψ̃2(s)) + g(s, ψ̃2(s)))ds

+B7

∫ t

−∞
eν2(t−s)(G(ψ̃2(s)) + g(s, ψ̃2(s)))ds

+B8

∫ t

T

eν1(t−s)(G(ψ̃2(s)) + g(s, ψ̃2(s)))ds, (4.31)

where B5, B6, B7, B8 depend only on νi (i = 1, 2, 3, 4). Using the fact Ψ(θ)+Φ(θ) is
strictly decreasing in (0, π2 ) and equation (4.2), we conclude thatD5 ̸= 0. Let ϕ(θ) =

sin−α θϕ̃(t), we see that for t ∈ [10T, 2T ] and δ2 = O(e(2−σ)t), η2 = O(e(2−ν2)t),

G(ψ̃2(t)) = η−2O((δ2ϕ̃(t) + η2ψ̃2(t))
2) = O(e(2+ν2)t). (4.32)

Note that ϕ̃(t) = eσt(c1 cos(βt) + c2 sin(βt)) + O(e(2+σ)t) and ψ̃2(t) = D5e
ν2t +

O(e(2+ν2)t). Then

δ2ϕ̃(t) + η2ψ̃2(t) = O(e2t).

Therefore, it follows from (4.31) and (4.32) that

ψ̃2(t) = D5e
ν2t +D6e

σt cosβt+D7e
σt sinβt+O(e(2+ν2)t) (4.33)

provided δ2 = O(e(2−σ)t) and η2 = O(e(2−ν2)t). Hence, for θ near 0,

Ψ(θ) = η2
[
D5θ

ν̃2 + θ−
n−5
2

(
D6 cos(β ln

θ

2
) +D7 sin(β ln

θ

2
)
)
+O(θ2+ν̃2)

]
(4.34)

with D5 ̸= 0 provided that θ = O(δ
2

2−σ ) = O(η
2

2−ν2 ). Since ν̃2 < 3 − n, we easily

know that ν̃2 + 2 < −(n− 5) < −(n− 5)/2. Thus, θ−
n−5
2 = o(θ2+ν̃2).

Now we can obtain the following theorem.
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Theorem 4.1. For any δ > η > 0 sufficiently small, problem (1.7) admits outer
solutions wout

δ,η ∈ C4(0, π2 ) satisfying

wout
δ,η (θ) = w∗(θ) + Φ(θ) + Ψ(θ), θ ∈ (0,

π

2
) (4.35)

with (wout
δ,η )

′(π2 ) = (wout
δ,η )

′′′(π2 ) = 0. Moreover,

wout
δ,η (θ) =

Ap

θα
+

2Ap

3(p− 1)

1

θα−2
+ δ2

[ϑ1 cos(β ln θ
2 ) + ϑ2 sin(β ln

θ
2 )

θ
n−5
2

+O
( 1

θ
n−5
2 −2

)]
+ η2

[
ϑ3θ

ν̃2 +O(θν̃2+2)
]

(4.36)

provided that θ = O(δ
2

2−σ ) = O(η
2

2−ν2 ), where ϑ1, ϑ2, ϑ3 are constants independent
of δ, η such that ϑ21 + ϑ22 ̸= 0, ϑ3 ̸= 0.

Proof. The proof can be obtained from the expressions of w∗(θ), Φ(θ) and Ψ(θ)
given in (1.8), (4.16) and (4.34). �

5. Infinitely many solutions of (1.7) and Proof of Theorem 1.1

In this section, we construct infinitely many regular solutions for (1.7) by match-
ing the inner and outer solutions.

We construct solutions of the problem{
T1w + k1T2w + k0w = wp, w(θ) > 0, 0 < θ < π

2 ,

w(0) = Q(:= ϵ−α), w′(π2 ) = 0, w′′(0) = (b̃+ µ)ϵ−α−2, w′′′(π2 ) = 0
(5.1)

by matching the inner and outer solutions given in Theorems 3.2 and 4.1. To do
so, we will find Θ ∈ (0, π/2) with

Θ = O(Q
σ

(2−σ)α ) (Q≫ 1)

such that the following identities hold:

[winn
Q,µ(θ)− wout

δ,η (θ)]|θ=Θ = 0, (5.2)

[winn
Q,µ(θ)− wout

δ,η (θ)]
′
θ|θ=Θ = 0, (5.3)

[winn
Q,µ(θ)− wout

δ,η (θ)]
′′
θ |θ=Θ = 0, (5.4)

[winn
Q,µ(θ)− wout

δ,η (θ)]
′′′
θ |θ=Θ = 0. (5.5)

These will be done by arguments similar to those in the proof of Lemma 6.1 of [1] and
Theorem 1.1 of [4]. Then, we obtain a C4 function w(θ) defined by w(θ) = winn

Q,µ(θ)

for θ ≤ Θ and w(θ) = wout
δ,η (θ) for θ ≥ Θ which is a solution to (5.1).

First, we observe that

2Ap

3(p− 1)
= Cp (5.6)

by (3.35), where Ap, Cp are given in Section 3.
Define Q∗, µ∗, δ

2
∗ and η2∗ by

β lnQ
p−1
4

∗ + κ = β ln 2−1 + ω + 2mπ, (5.7)

δ2∗ =

√
a20 + b20
ϑ21 + ϑ22

Q
σ
α
∗ , (5.8)
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η2∗ = O(Q
(2−ν2)σ

(2−σ)α
∗ ), µ∗ = O(Q

2σ−2ν1
(2−σ)α
∗ ), (5.9)

µ∗BpQ
ν1
α
∗ = ϑ3η

2
∗Θ

ν̃2−ν̃1
∗ , (5.10)

where κ, ω are given by

κ = tan−1(
b0
a0

), ω = tan−1(
ϑ2
ϑ1

),

and m ≫ 1 is an integer. The integer m is chosen such that the results in Section
3 and Section 4 hold.

Note that

O(δ
2

2−σ
∗ ) = O(Q

σ
α(2−σ)
∗ ),

a0 cos(β ln(Q
p−1
4 θ)) + b0 sin(β ln(Q

p−1
4 θ)) =

√
a20 + b20 sin(β ln θ + β lnQ

p−1
4 + κ),

ϑ1 cos(β ln
θ

2
) + ϑ2 sin(β ln

θ

2
) =

√
ϑ21 + ϑ22 sin(β ln θ + β ln 2−1 + ω).

We will see that Q, µ, δ2 and η2 required to satisfy the matching conditions (5.2)-
(5.5) can be obtained as small perturbations of Q∗, µ∗, δ

2
∗ and η2∗ given in (5.7)-

(5.10), i.e.,

Q = Q∗(1 +O(Q
2σ

(2−σ)α
∗ )), (5.11)

µ = µ∗(1 +O(Q
2σ

(2−σ)α
∗ )), (5.12)

δ2 = δ2∗(1 +O(Q
2σ

(2−σ)α
∗ )), (5.13)

η2 = η2∗(1 +O(Q
2σ

(2−σ)α
∗ )). (5.14)

To show this we define the function F(Q,µ, δ, η) by

F(Q,µ, δ2, η2) =


Θ

n−5
2 (winn

Q,µ(Θ)− wout
δ,η (Θ))

Θ[θ
n−5
2 (winn

Q,µ(θ)− wout
δ,η (θ))]

′
θ |θ=Θ

Θ2[θ
n−5
2 (winn

Q,µ(θ)− wout
δ,η (θ))]

′′
θ |θ=Θ

Θ3[θ
n−5
2 (winn

Q,µ(θ)− wout
δ,η (θ))]

′′′
θ |θ=Θ


T

.

Now, we regard δ2, η2 as new variables. Taking Q∗,µ∗,δ
2
∗ and η2∗, we find a bound

for F(Q∗, µ∗, δ
2
∗, η

2
∗) by making use of the behaviors of winn

Q,µ(θ) and w
out
δ,η (θ) given in

Theorems 3.2 and Theorem 4.1 respectively. Accordingly we find for some M > 1
suitably large,∣∣∣Θ−n−5

2 F(Q∗, µ∗, δ
2
∗, η

2
∗)
∣∣∣ ≤MΘ4−σ−n−5

2 + small terms. (5.15)

We now seek values of Q,µ, δ2, η2 which are small perturbations of Q∗, µ∗, δ
2
∗, η

2
∗

and such that F(Q,µ, δ2, η2) = 0. As in [4], we need to evaluate the Jacobian of F
at (Q∗, µ∗, δ

2
∗, η

2
∗):

∂F(Q,µ, δ2, η2)

∂(Q,µ, δ2, η2)
=


I1 + I3 I4 −D sin τ I5

βI2 + q1I3 q1I4 −βD cos τ q4I5
I6 q2I4 I8 q5I5
I7 q3I4 I9 q6I5

+ h.o.t.,

where

I1 = C(
σ

α
sin τ +

β(p− 1)

4
cos τ)Q

σ
α−1
∗ , I2 = C(

σ

α
cos τ − β(p− 1)

4
sin τ)Q

σ
α−1
∗ ,
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I3 =
ν1
α
Bpµ∗Θ

ν̃1+
n−5
2 Q

ν1
α −1
∗ , I4 = BpQ

ν1
α
∗ Θν̃1+

n−5
2 , I5 = −ϑ3Θν̃2+

n−5
2 ,

I6 = −β2I1 − βI2 + q2I3, I7 = −β3I2 + 3β2I1 + 2βI2 + q3I3,

I8 = β2D sin τ + βD cos τ, I9 = β3D cos τ − 3β2D sin τ − 2βD cos τ,

q1 = ν̃1 +
n− 5

2
, q2 = (ν̃1 +

n− 7

2
)q1, q3 = (ν̃1 +

n− 9

2
)q2,

q4 = ν̃2 +
n− 5

2
, q5 = (ν̃2 +

n− 7

2
)q4, q6 = (ν̃1 +

n− 9

2
)q5,

C =
√
a20 + b20, D =

√
ϑ21 + ϑ22,

and

τ = β lnΘ + β lnQ
p−1
4

∗ + κ = β lnΘ + β ln 2−1 + ω + 2mπ.

We define the function G(x, y) by

G(x, y, z, w) = F(Q∗ + xQ
1− σ

α
∗ , µ∗ +Θ−ν̃1−n−5

2 Q
− ν1

α
∗ y, δ2∗ + z, η2∗ +Θ−ν̃2−n−5

2 w).

Using (5.15), (4.36) and the results in Lemmas 3.3, 3.4, we express G(x, y, z, w) in
the form

G(x, y, z, w) =C+


I ′1 + I ′3 I ′4 −D sin τ I ′5

βI ′2 + q1I
′
3 q1I

′
4 −βD cos τ q4I

′
5

I ′6 q2I
′
4 I ′8 q5I

′
5

I ′7 q3I
′
4 I ′9 q6I

′
5

+ small terms




x
y
z
w


+E(x, y, z, w,Q∗, µ∗, δ

2
∗, η

2
∗),

where

I ′1 = C
(σ
α
sin τ +

β(p− 1)

4
cos τ

)
, I ′2 = C

(σ
α
cos τ − β(p− 1)

4
sin τ

)
,

I ′3 =
ν1
α
Bpµ∗Θ

ν̃1+
n−5
2 Q

ν1−σ
α

∗ , I ′4 = Bp, I
′
5 = −ϑ3,

I ′6 = −β2I ′1 − βI ′2 + q2I
′
3, I

′
7 = −β3I ′2 + 3β2I ′1 + 2βI ′2 + q3I

′
3,

I ′8 = β2D sin τ + βD cos τ, I ′9 = β3D cos τ − 3β2D sin τ − 2βD cos τ,

C is a constant vector independent of (x, y, z, w) which is bounded above byMδ4∗Θ
σ,

and |E| is bounded independently of x, y, , z, w,Q, µ, δ and η. Thus,

G(x, y, z, w) = C+ L


x
y
z
w

+T(x, y, z, w),

where L is a linear operator which is invertible, we shall prove this fact in Lemma
6.1). If we define the operator J mapping R4 into itself by

J(x, y, z, w) = −(L−1C+ L−1T(x, y, z, w)),

then, provided that Q∗ is sufficiently large, a direct calculation shows that J maps
the set I into itself, where I is the ball

I = {(x, y, z, w) : (x2 + y2 + z2 + w2)
1
2 ≤ 4M(detL)−1Θ4−σ}, (5.16)
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and detL is the determindent of L which depends on
√
a20 + b20, β,D, α,Bp, ϑ3 and

νi, i = 1, 2, 3, 4. An application of the Brouwer Fixed Point Theorem to conclude
that J has a fixed point in I. This point (x, y, z, w) satisfies G(x, y, z, w) = 0 and

(x2 + y2 + z2 + w2)
1
2 ≤M ′Θ4−σ,

where M ′ is a constant defined in (5.16) and is independent of Q∗, µ∗, δ∗, η∗ and Θ.
By substituting for Q, µ δ and η, then taking Θ to have the upper limiting value of

Q
σ

(2−σ)α
∗ , we obtain (5.11)- (5.14). Therefore, we can find a solution to (5.1) such

that (5.2)-(5.5) holds.
We have shown that (5.2)-(5.5) has a solution for each fixed m large. This yields

a solution of (5.1) and also gives the proof of Theorem 1.1. Hence we have

Theorem 5.1. For m ≫ 1 large and Q, µ, δ and η being given in (5.11)-(5.14),
problem (5.1) admits a classical solution wQ,µ,δ,η(θ). Moreover, there is Θ =

|O(Q
σ

(2−σ)α )| such that (5.2)-(5.5) hold.
As a consequence, problem (1.7) admits infinitely many nonconstant positive

solutions. Hence, we prove Theorem 1.1.

6. Appendix

In the following lemma, we will show the results which were used in the previous
sections.

Lemma 6.1. For the terms E2, k0(n), and matrixes K and L, which were defined
in previous sections, we have

(1) E2 ̸= 0,
(2) If p ∈ (n+3

n−5 , pc(n− 1)), we have pk0(n− 1) ≥ k0(n),

(3) detK ̸= 0,
(4) detL ̸= 0.

Proof. First, we show that E2 ̸= 0, it is known that

E2 = (ν̃1 + 2)ν̃1(ν̃1 + n− 3)(ν̃1 + n− 1)− p(n− 5− α)(n− 3− α)(2 + α)α. (6.1)

For convenience, we use n instead of n − 1 and ν̃1(n) instead of ν̃1(n − 1), i.e. we
study the following term

E2 = (ν̃1 + 2)ν̃1(ν̃1 + n− 2)(ν̃1 + n)− p(n− 4− α)(n− 2− α)(2 + α)α. (6.2)

Let f(α) = p(n− 4−α)(n− 2−α)(2+α)α, through a simple computation, we get
f(α) and its derivative f ′(α)

f(α) = α4+(12− 2n)α3+(n2− 18n+52)α2+(6n2− 52n+96)α+8(n− 2)(n− 4),

and

f ′(α) = 4α3 + (36− 6n)α2 + (2n2 − 36n+ 104)α+ (6n2 − 52n+ 96).

We compute the roots of f ′(α) and get all its zero points 1
2 (n−6±

√
n2 + 4), 12 (n−6).

It is easy to see that f(α) is strictly increasing in α ∈ (0, 12 (n− 6)) and decreasing

in α ∈ ( 12 (n − 6), 12 (n − 6 +
√
n2 + 4)). We know that α = 4

p−1 <
n−4
2 and n−4

2 ∈
( 12 (n− 6), 12 (n− 6 +

√
n2 + 4)). As a consequence, we can conclude

f(α) ≤ f(
n− 6

2
) =

n4

16
− n2

2
+ 1 for all p ∈ (

n+ 4

n− 4
, pc(n)).
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Let g(x) = x(x+2)(x+n)(x+n− 2) = x4 +2nx3 +(n2+2n− 4)x2+(2n2− 4n)x,
we compute its derivative g′(x) = 4x3 + 6nx2 + (2n2 + 4n− 8)x+ (2n2 − 4n) and
find g′(x) > 0 for x > 0 when n ≥ 5. On the other hand, using 4

√
N3 > N2 for

p ∈ (n+4
n−4 , pc(n)), we find

ν̃1 >

√
2(n2 − 4n+ 8)− (n− 4)

2
,

therefore,

g(ν̃1) ≥ g(

√
2(n2 − 4n+ 8)− (n− 4)

2
) = 96− 40n+ 11n2 − n3

2
+
n4

16

+
√
2(24− 4n+ n2)

√
8− 4n+ n2.

(6.3)

Comparing n4

16 − n2

2 +1 and the right hand side of (6.3), by direct computation, we
can get

g(

√
2(n2 − 4n+ 8)− (n− 4)

2
) >

n4

16
− n2

2
+ 1 for n ∈ (0,∞).

As a result, g(ν̃1) > f(α). Hence, E2 is nonzero.

Next, we prove the inequality pk0(n − 1) ≥ k0(n) for p ∈ (n+3
n−5 , pc(n − 1)).

According to the definition of k0(n), it is enough for us to show the following

p(n− 5− α)(n− 3− α) ≥ (n− 4− α)(n− 2− α). (6.4)

Using the relation p = 4
α +1, it is equivalent to show the following (after computa-

tion)

6α2 + (39− 10n)α+ 4n2 − 32n+ 60 ≥ 0. (6.5)

It is known that (6.5) holds provided

α ≥ 10n− 39 +
√
4n2 − 12n+ 81

12
or α ≤ 10n− 39−

√
4n2 − 12n+ 81

12
.

On the other hand, since p ∈ (n+3
n−5 , pc(n− 1)), we have α < n−5

2 . It is easy to show
n−5
2 ≤ 10n−39−

√
4n2−12n+81
12 when n ≥ 5. Hence, (6.5) holds. Therefore (6.4) holds.

Then, we show K is invertible, it is enough for us to show B ̸= 0 or A ̸= 0. we
recall

B = (2n2 − 12n− 6)β + 8β3 = (2(n− 3)2 − 24)β + 8β3.

It is known that 2(n− 3)2 − 24 < 0 only when n = 6. Since β > 0, therefore B ̸= 0
when n ≥ 7. When n = 6, we find

A = β4 − 35

2
β2 − 135

2
− (1− α)(3− α)(2 + α)α, B = −6β + 8β3.

If B ̸= 0 for n = 6, we have K is invertible, while if B = 0 for n = 6, then
A = −21 − (1 − α)(3 − α)(2 + α)α < 0 for α ∈ (0, 1/2) and K is also invertible.
Therefore, we proved the third conclusion.
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Finally, we show the matrix L is invertible. Recall that the matrix L is given by

L :=


I ′1 + I ′3 I ′4 −D sin τ I ′5

βI ′2 + q1I
′
3 q1I

′
4 −βD cos τ q4I

′
5

I ′6 q2I
′
4 I ′8 q5I

′
5

I ′7 q3I
′
4 I ′9 q6I

′
5

 , (6.6)

where

I ′1 = C
(σ
α
sin τ +

β(p− 1)

4
cos τ

)
, I ′2 = C

(σ
α
cos τ − β(p− 1)

4
sin τ

)
,

I ′3 =
ν1
α
Bpµ∗Θ

ν̃1+
n−5
2 Q

ν1−σ
α

∗ , I ′4 = Bp, I
′
5 = ϑ3,

I ′6 = −β2I ′1 − βI ′2 + q2I
′
3, I

′
7 = −β3I ′2 + 3β2I ′1 + 2βI ′2 + q3I

′
3,

I ′8 = β2D sin τ + βD cos τ, I ′9 = β3D cos τ − 3β2D sin τ − 2βD cos τ.

Using simple linear transformations, we see that
I ′1 + I ′3 I ′4 −D sin τ I ′5

βI ′2 + q1I
′
3 q1I

′
4 −β cos τ q4I

′
5

I ′6 q2I
′
4 I ′8 q5I

′
5

I ′7 q3I
′
4 I ′9 q6I

′
5

 ∼


I ′1 I ′4 −D sin τ I ′5
βI ′2 q1I

′
4 −βD cos τ q4I

′
5

I ′6 − q2I
′
3 q2I

′
4 I ′8 q5I

′
5

I ′7 − q3I
′
3 q3I

′
4 I ′9 q6I

′
5



∼


I ′1 −D sin τ I ′4 I ′5
βI ′2 −βD cos τ q1I

′
4 q4I

′
5

I ′6 − q2I
′
3 I ′8 q2I

′
4 q5I

′
5

I ′7 − q3I
′
3 I ′9 q3I

′
4 q6I

′
5

 ∼


I ′1 −D sin τ I ′4 −I ′5
βI ′2 −βD cos τ q1I

′
4 −q4I ′5

0 0 I ′10 I ′11
0 0 I ′12 I ′13,

 ,
where

I ′10 = q2Bp + q1Bp + β2Bp, I
′
12 = q3Bp + β2q1Bp − 3β2Bp − 2q1Bp,

I ′11 = q5ϑ3 + q4ϑ3 + β2ϑ3, I
′
13 = q6ϑ3 + β2q4ϑ3 − 3β2ϑ3 − 2q4ϑ3.

Since

det

[
I ′1 −D sin τ
βI ′2 −βD cos τ

]
̸= 0,

showing that L is invertible is equivalent to proving that the following two by two
matrix is invertible:[

q2 + q1 + β2 q5 + q4 + β2

q3 + β2q1 − 3β2 − 2q1 q6 + β2q4 − 3β2 − 2q4

]
. (6.7)

It follows from the definitions of qi, (i = 1, 2, 3, 4, 5, 6) and β that q2 + q1 + β2 =
q5 + q4 + β2 ̸= 0. Let

χ1 = q3 + β2q1 − 3β2 − 2q1, χ2 = q6 + β2q4 − 3β2 − 2q4.

Then

χ1 − χ2 =q3 − q6 − (q1 − q4)(2− β2)

=(ν̃1 − ν̃2)[(ν̃1 + ν̃2)
2 − ν̃1ν̃2 +

3n− 21

2
(ν̃1 + ν̃2) +

3n2 − 42n+ 135

4
+ β2]

=(ν̃1 − ν̃2)[
n2 − 10n+ 25

4
− ν̃1ν̃2 + β2],



28 ZONGMING GUO, JUNCHENG WEI, AND WEN YANG

where we are using the fact ν̃1 + ν̃2 = −(n− 5). It is known that (from Section.2)

ν̃1ν̃2 =
n2 − 10n+ 25

4
− N2 + 4

√
N3

4(p− 1)2
,

and

β2 =
4
√
N3 −N2

4(p− 1)2
,

where N2 and N3 (with the dimension n being replaced by n − 1) are defined in
Section 2. Therefore,

χ1 − χ2 =(ν̃1 − ν̃2)
2
√
N3

(p− 1)2
̸= 0.

Hence, the above two by two matrix (6.7) is invertible. �
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