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Abstract

We study the following one-dimensional cubic nonlinear Schrödinger system:

u′′
i + 2

( N∑
k=1

u2
k

)
ui = −µiui in R, i = 1, 2, · · · , N,

where µ1 ≤ µ2 ≤ · · · ≤ µN < 0 and N ≥ 2. In this paper, we mainly focus on
the case N = 3 and prove the following results: (i). The solutions of the system
can be completely classified; (ii). Depending on the explicit values of µ1 ≤ µ2 ≤
µ3 < 0, there exist two different classes of normalized solutions u = (u1, u2, u3)
satisfying

∫
R u2

i dx = 1 for all i = 1, 2, 3, which are completely different from the
case N = 2; (iii). The linearized operator at any nontrivial solution of the system
is non-degenerate. The conjectures on the explicit classification and nondegeneracy
of solutions for the system are also given for the case N > 3. These address the
questions of [R. Frank, D. Gontier and M. Lewin, CMP, 2021], where the complete
classification and uniqueness results for the system were already proved for the case
N = 2.

Keywords: Quantum systems; Integral systems; Complete classification; Nondegeneracy

1 Introduction

In this paper, we consider the following one-dimensional cubic nonlinear Schrödinger
system

u′′i + 2
( N∑

k=1

u2k

)
ui = −µiui in R, ui ∈ H1(R) i = 1, 2, · · · , N, (1.1)

where µ1 ≤ µ2 ≤ · · · ≤ µN < 0 and N ≥ 2. The nonlinear Schrödinger system (1.1)
arises from various physical situations (cf. [8, 14]), such as multiple-component Bose-
Einstein condensates (cf. [11, 12]), nonlinear optics (cf. [21]), Langmuir waves (cf. [7]),
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and so on. Especially, the system (1.1) can be used to model the ground states of N -
component Bose gases, see [11, 12] and the references therein. On the other hand, the
system (1.1) can be also employed to discuss the ground states of N -particle fermionic
quantum systems, which were recently investigated in [5,6,8] and the references therein.

Another motivation of studying (1.1) is the relation with Lieb-Thirring inequality.
We note from [5,6] and Remark 1.1 below that the solutions u = (u1, u2, · · · , uN ) of the
system (1.1) are connected with the following finite-rank Lieb-Thirring inequality

N∑
n=1

∣∣µn

(
−∆− V (x)

)∣∣γ ≤ L
(N)
γ,d

∫
Rd

V (x)
γ+ d

2
+ dx, V (x) ∈ Lγ+ d

2 (Rd), (1.2)

in the critical case γ = 1
2 and d = 1, where V (x)+ = max{V (x), 0} and µn

(
−∆−V (x)

)
denotes the nth min-max level of

−∆− V (x) = −∆− 2
N∑

n=1

u2n in L2(Rd),

so that it equals to the nth negative eigenvalue (counted with multiplicity) when it exists,

and 0 otherwise. By the definition of (1.2), one can observe that the best constant L
(N)
γ,d

of (1.2) satisfies L
(N)
γ,d ≤ L

(N+1)
γ,d for all N ∈ N+. Especially, it was proved in [10,18] that

for the critical case γ = 1
2 and d = 1, the best constant L

(N)
γ,d satisfies

L 1
2
,1 := L

(∞)
1
2
,1

= lim
N→∞

L
(N)
1
2
,1

=
1

2
,

where the constant Lγ,d is called the best Lieb-Thirring constant, see [5, 6, 8, 10,18] and
the references therein.

When N = 1 and µ1 = −1, direct integration yields that up to the translation and
the sign ±, (1.1) admits a unique solution

u(x) ≡ 1

cosh(x)
. (1.3)

When N = 2, the system (1.1) was analyzed recently in [6], where the authors obtained
the complete classification on the general solutions of (1.1) by applying Hirota’s bilin-
earisation method (cf. [9,15,16]). Based on the classification on the general solutions of
(1.1), the authors in [6] derived successfully the following interesting uniqueness, up to
translations and the uncorrelated signs ±, of normalized solutions for (1.1) in the case
N = 2.

Theorem A ( [6, Theorem 8]) For µ1 ≤ µ2 < 0, suppose u = (u1, u2) ∈ H1(R)×H1(R)
is a normalized solution of (1.1) with N = 2, in the sense that ∥u1∥L2(R) = ∥u2∥L2(R) = 1.
Then it necessarily has µ1 = µ2 < 0, and up to translations, u satisfies

u1(x) ≡ ±
√
2

2 cosh(x)
, u2(x) ≡ ±

√
2

2 cosh(x)
(1.4)

for two uncorrelated signs ±.
The authors also conjectured in [6, Subsection 1.3] that the above mentioned results

can be probably generalized to the system (1.1) for any N ≥ 3. On the other hand, the
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existing results show that it is usually very useful to know the complete classification
and nondegeneracy of solutions for the system (1.1), which unfortunately seem very
challenging for general situations, see [1,2,12,13] and the references therein. Stimulated
by these facts, the main purpose of this paper is to address the complete classification,
the nondegeneracy and some other analytical properties of solutions for the system (1.1)
with N ≥ 3. It turns out that the analysis of the system (1.1) with N ≥ 3 is more
complicated, for which one requires new approaches. More precisely, in this paper we
are able to understand completely the case N = 3 of the system (1.1), and we finally
discuss some partial results, together with several conjectures, for the general case N > 3
of the system (1.1).

In this paper, we first focus on the case N = 3 of the system (1.1), which can be
rewritten explicitly as the follow form:

u′′1 + 2(u21 + u22 + u23)u1 = −µ1u1 in R,

u′′2 + 2(u21 + u22 + u23)u2 = −µ2u2 in R,

u′′3 + 2(u21 + u22 + u23)u3 = −µ3u3 in R,

(1.5)

where µ1 ≤ µ2 ≤ µ3 < 0 are arbitrary. Based on Hirota’s bilinearisation method
(cf. [6,9,15,16]), we shall employ the algebraic analysis to prove the following classification
on general solutions of (1.5).

Theorem 1.1. For µ1 ≤ µ2 ≤ µ3 < 0, suppose u = (u1, u2, u3) is a solution of (1.5) in
H1(R) ×H1(R) ×H1(R). Then there exists a unique vector (a1, a2, a3) ∈ R3 such that
u = (u1, u2, u3) can be written exactly as:

ui(x) =
gi(x)

f(x)
, i = 1, 2, 3, (1.6)

where gi(x) and f(x) satisfy for ηi =
√
|µi| > 0,

gi(x) = aie
ηix +

3∑
j=1

aia
2
j (ηi − ηj)

4η2j (ηi + ηj)
e(2ηj+ηi)x

+
∑

1≤j<k≤3

aia
2
ja

2
k(ηj − ηk)

2(ηi − ηj)(ηi − ηk)

16η2j η
2
k(ηj + ηk)2(ηi + ηj)(ηi + ηk)

e(ηi+2ηj+2ηk)x, i = 1, 2, 3,

and

f(x) = 1 +
3∑

j=1

a2j
4η2j

e2ηjx +
∑

1≤j<k≤3

a2ja
2
k(ηj − ηk)

2

16η2j η
2
k(ηj + ηk)2

e2(ηj+ηk)x

+
a21a

2
2a

2
3(η1 − η2)

2(η1 − η3)
2(η2 − η3)

2

64η21η
2
2η

2
3(η1 + η2)2(η1 + η3)2(η2 + η3)2

e2(η1+η2+η3)x.

Remark 1.1. In order to prove Theorem 1.1, we shall derive in Lemma 3.4 that if µ1 <
µ2 < µ3 < 0, then the solution (u1, u2, u3) ∈ H1(R) × H1(R) × H1(R) of (1.1) with
N = 3 satisfies

2

∫
R
u2n(x)dx = 4ηn = 4

√
|µn|, n = 1, 2, 3.
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This further implies that the solution (u1, u2, u3) ∈ H1(R) × H1(R) × H1(R) of (1.1)
with N = 3 satisfies

3∑
n=1

|µn|
1
2 =

1

4

∫
R
V (x)+dx, V (x) = 2

3∑
n=1

u2n, (1.7)

which seems related to the finite-rank Lieb-Thirring inequality (1.2).

Theorem 1.1 gives a similar classification of [6, Lemma 15], but the proof of Theorem
1.1 needs the more involved algebraic analysis. Actually, applying Hirota’s bilinearisation
method (cf. [9, 15, 16]), we shall first prove that any function u = (u1, u2, u3) defined by
(1.6) is a solution of (1.5). We then derive the associated integral system (2.13)–(2.15)
by applying the symmetry of (1.5). Following (2.13)–(2.15), if µ2 = µi holds for either
i = 1 or i = 3 or i = 1, 3, see Proposition 2.3, then the proof of Theorem 1.1 follows
essentially from the argument of [6, Lemma 15]. However, this unfortunately is not
applied to the challenging general case µ1 < µ2 < µ3 < 0, see Subsection 2.1 for more
details. Therefore, by algebraically analyzing the integral curves of the system (1.5),
we shall complete in Section 3 the proof of Theorem 1.1 for the general case where
µ1 < µ2 < µ3 < 0.

In the following we discuss several applications of Theorem 1.1. Since the normalized
solutions of the system (1.5) were studied widely in recent few years, see [1, 2] and the
references therein, we shall first employ Theorem 1.1 to establish the following refined
classification on the normalized solutions of (1.5):

Theorem 1.2. Suppose µ1 ≤ µ2 ≤ µ3 < 0. Then (1.5) admits normalized solutions
u = (u1, u2, u3) ∈ H1(R) ×H1(R) ×H1(R) satisfying

∫
R u2i dx = 1 for all i = 1, 2, 3, if

and only if one of the following conditions holds:

(i). µ1 = µ2 = µ3 = −9
4 ;

(ii). µ1 = µ2 = −1 and µ3 = −1
4 .

Moreover, if (i) holds, then up to translations, (1.5) admits a unique normalized solution,
in the sense that

u1(x) ≡ ±
√
3

2 cosh(3x2 )
, u2(x) ≡ ±

√
3

2 cosh(3x2 )
, u3(x) ≡ ±

√
3

2 cosh(3x2 )
(1.8)

hold for three uncorrelated signs ±. If (ii) holds, then up to translations, (1.5) admits
infinitely many normalized solutions, which satisfy

u1(x) =
Aex

f(x)

(
1 +

B2

3
ex
)
,

u2(x) = ± Aex

f(x)

(
1 +

B2

3
ex
)
,

u3(x) =
Be

1
2
x

f(x)

(
1− A2

6
e2x

)
,

(1.9)

together with

f(x) = 1 +B2ex +
A2

2
e2x +

A2B2

18
e3x, ∀A ̸= 0, ∀B ̸= 0.
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Theorem 1.2 shows that one cannot expect generally the uniqueness of normalized
solutions for the system (1.5), which depends on the exact value of µ1 ≤ µ2 ≤ µ3 < 0.
This is different completely from the uniqueness of Theorem A, which was studied in [6,
Theorem 8] for the case N = 2 of the system (1.1). As other applications of Theorem
1.1, we further establish the following uniqueness of least energy normalized solutions for
(1.5), and as well the nonexistence of orthonormal solutions u = (u1, u2, u3) ∈ H1(R)×
H1(R)×H1(R) for (1.5), in the sense that (ui, uj) = δij holds for all 1 ≤ i ≤ j ≤ 3.

Corollary 1.3. For µ1 ≤ µ2 ≤ µ3 < 0, we have the following conclusions:

(i). If u = (u1, u2, u3) ∈ H1(R)×H1(R)×H1(R) is a least energy normalized solution
of (1.5), then it necessarily has µ1 = µ2 = µ3 = −9

4 , and u must satisfy (1.8).

(ii). The system (1.5) does not admit any orthonormal solution u = (u1, u2, u3) ∈
H1(R)×H1(R)×H1(R).

One can note from Theorem 1.2 and Corollary 1.3 that the least energy normalized
solutions of (1.5) must be unique, up to translations and the uncorrelated signs ±. How-
ever, the higher energy normalized solutions of (1.5) must be either infinitely multiple
or empty, which depends on the exact value of µ1 ≤ µ2 ≤ µ3 < 0. These illustrate that
the structure of normalized solutions for (1.5) is more complicated than that of the case
N = 2 for the system (1.1).

For any solution u = (u1, u2, u3) of the system (1.5), we next consider the following
linearized system of (1.5) at the solution u:

ϕ′′
1 + 2(u21 + u22 + u23)ϕ1 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u1 = −µ1ϕ1 in R,

ϕ′′
2 + 2(u21 + u22 + u23)ϕ2 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u2 = −µ2ϕ2 in R,

ϕ′′
3 + 2(u21 + u22 + u23)ϕ3 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u3 = −µ3ϕ3 in R,

(1.10)

where the parameters µ1 ≤ µ2 ≤ µ3 < 0 are as in (1.5). The existing works (cf.
[1, 2, 12]) show that it is usually necessary to understand the structure of the solution
ϕ = (ϕ1, ϕ2, ϕ3) for (1.10) in H1(R) × H1(R) × H1(R), in order to analyze the refined
limiting behavior of nonlinear Schrödinger systems. Employing Theorem 1.1, we are
actually able to prove the following nondegeneracy of the general solution u for (1.5).

Theorem 1.4. For µ1 ≤ µ2 ≤ µ3 < 0, consider the linearized system (1.10) at any
solution u = (u1, u2, u3) of (1.5) satisfying ui ̸≡ 0 for all i = 1, 2, 3. Then the linearized
system (1.10) at u is non-degenerate, in the sense that the dimension of solutions for
the linearized system (1.10) in H1(R)×H1(R)×H1(R) is three.

Remark 1.2. Applying [6, Section 5.2], the argument of proving Theorem 1.4 yields that
any solution u of the system (1.1) with N = 2 must be non-degenerate. We leave the
detailed proof for this case to the interested reader.

Theorem 1.4 is another application of Theorem 1.1. As shown in Section 4, the proof
of Theorem 1.4 also makes full use of the integral system (4.3)–(4.5), which is essentially
the linearized version of (2.13)–(2.15) associated to the system (1.5). More precisely, the
proof of Theorem 1.4 is divided into the following four different cases:

Case 1. µ1 < µ2 < µ3 < 0; Case 2. µ1 = µ2 < µ3 < 0;

Case 3. µ1 < µ2 = µ3 < 0; Case 4. µ1 = µ2 = µ3 < 0;

5



Case 1 of Theorem 1.4 is proved directly by applying Theorem 1.1 and (4.3)–(4.5). In
spit of this fact, the argument of addressing Case 1 does not work for the rest three cases.
To address Cases 2 and 4 of Theorem 1.4, we shall actually utilize from Proposition 2.3
that for any solution u = (u1, u2, u3) of (1.5), µ1 = µ2 is the first eigenvalue of

Lu := − d2

dx2
− 2(u21 + u22 + u23) in L2(R),

where we also make full use of the fact that the non-degeneracy of the system (1.1) holds
essentially for both N = 2 and N = 1.

Unfortunately, it is more challenging to handle with the rest Case 3 of Theorem
1.4, for which case the parameter µ2 < 0 is not the first eigenvalue of Lu in L2(R).
Since µ2 = µ3 < 0 holds for Case 3, the eigenvalue µ2 of Lu in L2(R) may be multiple,
which would lead to the degeneracy of solutions for the system (1.10). To exclude this
possibility, in Section 4 we shall employ the comparison principle to analyze the limiting
behavior of solutions v ∈ H1(R) satisfying (Lu − µ2)v(x) = 0 as x → −∞, from which
we finally conclude that µ2 < 0 must be a simple eigenvalue of Lu in L2(R). The rest
proof of Case 3 is then similar to that of Case 2. As a byproduct, the proof of Theorem
1.4 implies that for any µ1 ≤ µ2 ≤ µ3 ≤ 0, each µi (i = 1, 2, 3) of (1.5) is always a simple
eigenvalue of Lu in L2(R).

The last section of this paper is devoted to the N−component Schrödinger system
(1.1), where µ1 ≤ µ2 ≤ · · · ≤ µN < 0 and N > 3. We shall mainly discuss whether all
main results of the present paper can be generalized to the N−component Schrödinger
system (1.1) with any N > 3. Roughly speaking, it is proved in Section 5 that the
system (1.1) still admits the integral system for any N > 3, see Lemma 5.1 for more
details. This stimulates us to guess in Conjecture 5.1 that the solutions of the system
(1.1) can be still classified for any N > 3, see (5.4), whose proof is however involved with
the more complicated algebraic analysis. Following Conjecture 5.1, one may further
guess from Conjecture 5.2 that (1.1) does not admit any orthonormal solution u =
(u1, u2, · · · , uN ) ∈ (H1(R))N , where (ui, uj) = δij holds for all 1 ≤ i, j ≤ N and N > 3.
Of course, motivated by Theorem 1.2, it is our another guess that for any N ≥ 3, one
cannot expect generally the uniqueness of normalized solutions for the system (1.1),
which depends on the exact value of µ1 ≤ µ2 ≤ · · · ≤ µN < 0. Finally, suppose
u = (u1, u2, · · · , uN ) is a solution of (1.1), then we consider the following linearized
system of (1.1) around the solution u:

u′′i + 2
(∑N

k=1 u
2
k

)
ϕi + 4

(∑N
k=1 ukϕk

)
ui = −µiϕi in R, i = 1, 2, · · · , N. (1.11)

We finally discuss in Section 5 that if Conjecture 5.1 holds true, then we have the non-
degeneracy of (1.11), see those around Theorem 5.2 for more details.

Lastly, we mention that the system (1.1) belongs to a large class of N-component
Schrödinger systems

∆ui +
∑N

j=1 βiju
2
jui = −µiui in Rd, i = 1, 2, · · · , N, (1.12)

where βij , µi ∈ R, d ≥ 1 and N ≥ 1. For the studies of (1.12) and its normalized
solutions, we refer to [2–4, 12, 19, 20] and the references therein. However, this paper
seems to be the first kind for a complete classification on the solutions of (1.12) with
N ≥ 3.

6



This paper is organized as follows. In Section 2, we employ Hirota’s bilinearisation
method [9] to analyze the general solutions of (1.5), after which we shall classify in
Subsection 2.1 the solutions of (1.5) for the degenerate cases. In Section 3, we first
carry with the further analysis of general solutions for (1.5), based on which we shall
complete in Subsection 3.1 the proofs of Theorems 1.1 & 1.2 and Corollary 1.3. Section
4 is devoted to the proof of Theorem 1.4 on the nondegeneracy of solutions for (1.5).
Finally, we discuss in Section 5 whether all main results of the present paper can be
extended generally to the N−component Schrödinger system (1.1).

2 Analysis of General Solutions

In this section, we first analyze the general solutions u = (u1, u2, u3) of (1.5), where
µ1 ≤ µ2 ≤ µ3 < 0. In Subsection 2.1, we then further discuss the classification on the
solutions of (1.5) for the degenerate cases where µ2 = µi holds for either i = 1 or i = 3
or i = 1, 3.

Stimulated by [6, 15,16], which employ Hirota’s bilinearisation method [9], we set

ui =
gi
f
, i = 1, 2, 3. (2.1)

It then follows from (1.5) that f and gi satisfy{
fg′′i + gif

′′ − 2f ′g′i + µifgi = 0, i = 1, 2, 3,

(f ′)2 − ff ′′ + (g21 + g22 + g23) = 0.
(2.2)

Using Hirota’s notation, this is of the form:

D(f, gi) + µifgi = 0, D(f, f) =
1

2

(
g21 + g22 + g23

)
, i = 1, 2, 3,

where the bilinear form D(f, g) satisfies D(f, g) = fg′′ + f ′′g − 2f ′g′. We consider the
following formal expansions:

gi = gi1X + gi3X
3 + gi5X

5, i = 1, 2, 3, (2.3)

and
f = 1 + f2X

2 + f4X
4 + f6X

6, (2.4)

so that

ui =
gi1X + gi3X

3 + gi5X
5

1 + f2X2 + f4X4 + f6X6
, i = 1, 2, 3. (2.5)

We then analyze the following cascade of equations in powers of X: for ηi =
√

|µi| > 0,

g′′i1 + µigi1 = 0, i = 1, 2, 3, (A-1)

− f ′′
2 + (g211 + g221 + g231) = 0, (A-2)

g′′i3 + (f2g
′′
i1 + gi1f

′′
2 − 2g′i1f

′
2) + µi(gi3 + gi1f2) = 0, i = 1, 2, 3, (A-3)

− f ′′
4 + (f ′

2)
2 − f2f

′′
2 + 2(g11g13 + g21g23 + g31g33) = 0, (A-4)
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g′′i5 + (f2g
′′
i3 + gi3f

′′
2 − 2g′i3f

′
2) + (f4g

′′
i1 + gi1f

′′
4 − 2f ′

4g
′
i1)

+ µi(gi5 + f2gi3 + gi3f2 + f4gi1) = 0, i = 1, 2, 3, (A-5)

− f ′′
6 − (f2f

′′
4 + f4f

′′
2 − 2f ′

2f
′
4) +

3∑
i=1

(2gi1gi5 + g2i3) = 0, (A-6)

(f6g
′′
i1 + gi1f

′′
6 − 2f ′

6g
′
i1) + (f4g

′′
i3 + gi3f

′′
4 − 2f ′

4g
′
i3)

+ (f2g
′′
i5 + gi5f

′′
2 − 2f ′

2g
′
i5) + µi(f6gi1 + f4gi3 + f2gi5) = 0, i = 1, 2, 3, (A-7)

(f ′
4)

2 − f ′′
4 f4 + (f6f

′′
2 + f2f

′′
6 − 2f ′

2f
′
6) + 2(g13g15 + g23g25 + g33g35) = 0, (A-8)

(f4g
′′
i5 + gi5f

′′
4 − 2g′i5f

′
4) + (f6g

′′
i3 + gi3f

′′
6 − 2g′i3f

′
6)

+ µi(f4gi5 + f6gi3) = 0, i = 1, 2, 3, (A-9)

− (f6f
′′
4 + f4f

′′
6 − 2f4

′f ′
6) + (g215 + g225 + g235) = 0, (A-10)

(f6g
′′
i5 + gi5f

′′
6 − 2g′i5f

′
6) + µigi5f6 = 0, i = 1, 2, 3, (A-11)

(f ′
6)

2 − f6f
′′
6 = 0. (A-12)

The following lemma solves the formal expansions of (2.3) and (2.4).

Lemma 2.1. The equations (A-1)–(A-12) are solved by

gi1 = aie
ηix, ηi =

√
|µi| > 0, i = 1, 2, 3, (2.6)

f2 =
3∑

j=1

a2j
4η2j

e2ηjx, (2.7)

gi3 =

3∑
j=1

aia
2
j (ηi − ηj)

4η2j (ηi + ηj)
e(2ηj+ηi)x, i = 1, 2, 3, (2.8)

f4 =
∑

1≤j<k≤3

a2ja
2
k(ηj − ηk)

2

16η2j η
2
k(ηj + ηk)2

e2(ηj+ηk)x, (2.9)

gi5 =
∑

1≤j<k≤3

aia
2
ja

2
k(ηj − ηk)

2(ηi − ηj)(ηi − ηk)

16η2j η
2
k(ηj + ηk)2(ηi + ηj)(ηi + ηk)

e(ηi+2ηj+2ηk)x, i = 1, 2, 3, (2.10)

and

f6 =
a21a

2
2a

2
3(η1 − η2)

2(η1 − η3)
2(η2 − η3)

2

64η21η
2
2η

2
3(η1 + η2)2(η1 + η3)2(η2 + η3)2

e2(η1+η2+η3)x, (2.11)

where a1, a2 and a3 are arbitrary.

Proof. We first derive from (A-1) that gi1 satisfies (2.6), where a1, a2 and a3 are arbi-
trary. Inserting the explicit form (2.6) into (A-2), we then obtain (2.7). Following the
explicit forms (2.6) and (2.7), we have

g′′i3 + µigi3 +

3∑
j=1

aia
2
j

ηj
e(ηi+2ηj)x = 0,

8



which further yields (2.8). Substituting the explicit forms (2.6)–(2.8) into (A-4), it follows
that

f ′′
4 −

∑
1≤j<k≤3

a2ja
2
k(ηj − ηk)

2

4η2j η
2
k

e2(ηj+ηk)x = 0,

which implies that

f4 =
∑

1≤j<k≤3

a2ja
2
k(ηj − ηk)

2

16η2j η
2
k(ηj + ηk)2

e2(ηj+ηk)x,

i.e., (2.9) holds true. Similarly, we next substitute (2.6)–(2.9) into (A-5), which gives
that

g′′i5 + µigi5 +
∑

1≤j<k≤3

aia
2
ja

2
k(ηi + ηj + ηk)(ηj − ηk)

2(ηi − ηj)(ηk − ηi)

4η2j η
2
k(ηj + ηk)2(ηi + ηj)(ηi + ηk)

e(ηi+2ηj+2ηk)x = 0.

This yields that

gi5 =
∑

1≤j<k≤3

aia
2
ja

2
k(ηj − ηk)

2(ηi − ηj)(ηi − ηk)

16η2j η
2
k(ηj + ηk)2(ηi + ηj)(ηi + ηk)

e(ηi+2ηj+2ηk)x,

i.e., (2.10) holds true.
Applying (2.6)–(2.10), we finally deduce from (A-6) that

f ′′
6 =

(
2f ′

2f
′
4 − f2f

′′
4 − f4f

′′
2

)
+

3∑
i=1

(2gi1gi5 + g2i3)

=
3∑

i=1

3∑
j=1

3∑
k=1

a2i a
2
ja

2
k

64η2i η
2
j η

2
k

(
− (ηj + ηk − ηi)

2(ηj − ηk)
2

(ηj + ηk)2

+
4(ηi − ηj)(ηi − ηk)η

2
i (η

2
j + η2k)

(ηi + ηj)(ηi + ηk)(ηj + ηk)2

)
e2(ηi+ηj+ηk)x

:=

3∑
i=1

3∑
j=1

3∑
k=1

a2i a
2
ja

2
k

64η2i η
2
j η

2
k

(
Ai,j,k +Bi,j,k

)
e2(ηi+ηj+ηk)x,

(2.12)

where

Ai,j,k := −(ηj + ηk − ηi)
2(ηj − ηk)

2

(ηj + ηk)2
,

and

Bi,j,k :=
4(ηi − ηj)(ηi − ηk)η

2
i (η

2
j + η2k)

(ηi + ηj)(ηi + ηk)(ηj + ηk)2
.

Note that the term
a2i a

2
ja

2
k

64η2i η
2
j η

2
k

e2(ηi+ηj+ηk)x

is invariant under the permutations of i, j, k.
One can check that if {i, j, k} ≠ {1, 2, 3}, then∑

all permutations of i,j,k

(Ai,j,k +Bi,j,k) = 0.

9



Therefore, we derive from (2.12) that

f ′′
6 =

a21a
2
2a

2
3

64η21η
2
2η

2
3

∑
all permutations of i, j, k,

where {i,j,k}={1,2,3}

(Ai,j,k +Bi,j,k)e
2(η1+η2+η3)x

=
a21a

2
2a

2
3(η1 + η2 + η3)

2(η1 − η2)
2(η1 − η3)

2(η2 − η3)
2

64η21η
2
2η

2
3(η1 + η2)2(η1 + η3)2(η2 + η3)2

e2(η1+η2+η3)x,

which further implies that

f6 =
a21a

2
2a

2
3(η1 − η2)

2(η1 − η3)
2(η2 − η3)

2

64η21η
2
2η

2
3(η1 + η2)2(η1 + η3)2(η2 + η3)2

e2(η1+η2+η3)x.

This proves (2.11), and we are done.
Applying the symmetry of the system (1.5), we next derive the following three con-

stants of motion for (1.5).

Lemma 2.2. For µ1 ≤ µ2 ≤ µ3 < 0, suppose u = (u1, u2, u3) is a solution of (1.5) in
H1(R)×H1(R)×H1(R). Then we have the following three constants of motion:

(u′1)
2 + (u′2)

2 + (u′3)
2 + (u21 + u22 + u23)

2 + µ1u
2
1 + µ2u

2
2 + µ3u

2
3 = 0, (2.13)

(u′1u2 − u1u
′
2)

2 + (u′1u3 − u1u
′
3)

2 + (u′3u2 − u3u
′
2)

2

+ (u21 + u22 + u23)
[
(µ2 + µ3)u

2
1 + (µ1 + µ3)u

2
2 + (µ1 + µ2)u

2
3

]
+
[
(µ2 + µ3)(u

′
1)

2 + (µ1 + µ3)(u
′
2)

2 + (µ1 + µ2)(u
′
3)

2
]

+
[
µ1(µ2 + µ3)u

2
1 + µ2(µ1 + µ3)u

2
2 + µ3(µ1 + µ2)u

2
3

]
= 0,

(2.14)

and

µ3(u
′
1u2 − u1u

′
2)

2 + µ2(u
′
1u3 − u1u

′
3)

2 + µ1(u
′
3u2 − u3u

′
2)

2

+ (u21 + u22 + u23)(µ2µ3u
2
1 + µ1µ3u

2
2 + µ1µ2u

2
3)

+
[
µ2µ3(u

′
1)

2 + µ1µ3(u
′
2)

2 + µ1µ2(u
′
3)

2
]

+ µ1µ2µ3(u
2
1 + u22 + u23) = 0.

(2.15)

Proof. Since (u1, u2, u3) ∈ H1(R)×H1(R)×H1(R) and µ1 ≤ µ2 ≤ µ3 < 0, it is standard
to deduce from (1.5) that both ui and u′i vanish at infinity, where i = 1, 2, 3. Therefore,
the above three identities can be derived in a similar way, i.e., by multiplying the j-th
equation in (1.5) by an integrating factor, where j = 1, 2, 3, summing up the resulting
identities, and finally taking the integration on R.

To derive (2.13), more precisely, we multiply the j-th equation of (1.5) by u′j , where
j = 1, 2, 3. Then we add together the resulting identities and integrate it on R, where
we use the fact that both uj and u′j vanish at infinity. This thus gives (2.13).

To obtain (2.14), we multiply the j-th equation of (1.5) by∑
1≤k≤3, k ̸=j

[
2uk(u

′
juk − uju

′
k) + 2µku

′
j

]
, j = 1, 2, 3.
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We then add together the resulting identities and integrate it on R again, which thus
yields (2.14).

Multiply the j-th equation of (1.5) by∑
1≤i<k≤3, i ̸=j, k ̸=j

[
2µkui(u

′
jui − uju

′
i) + 2µiuk(u

′
juk − uju

′
k) + 2µiµku

′
j

]
, j = 1, 2, 3,

which then gives (2.15) in the similar way as above. This therefore completes the proof
of the lemma.

2.1 Classification of solutions for degenerate cases

In this subsection, we classify the solutions of (1.5) for the degenerate cases where µ2 = µi

holds for either i = 1 or i = 3 or i = 1, 3. Our main results of this subsection can be
stated as the following proposition.

Proposition 2.3. For µ1 ≤ µ2 ≤ µ3 < 0, let u = (u1, u2, u3) ∈ H1(R)×H1(R)×H1(R)
be a solution of (1.5), and denote ηi =

√
|µi| > 0 for i = 1, 2, 3. Then we have the

following conclusions:

(i.) If µ1 = µ2 < µ3 < 0, then there exists (a1, a2, a3) ∈ R3 such that u = (u1, u2, u3)
satisfies 

u1(x) =
a1eη1x

f(x)

[
1 +

a23(η1−η3)

4η23(η1+η3)
e2η3x

]
,

u2(x) =
a2eη1x

f(x)

[
1 +

a23(η1−η3)

4η23(η1+η3)
e2η3x

]
,

u3(x) =
a3eη3x

f(x)

[
1 +

(a21+a22)(η3−η1)

4η21(η1+η3)
e2η1x

]
,

(2.16)

where f is given by

f(x) = 1 +
a23
4η23

e2η3x +
(a21 + a22)

4η21
e2η1x +

(a21 + a22)a
2
3(η3 − η1)

2

16η21η
2
3(η1 + η3)2

e2(η1+η3)x.

Furthermore, if u21 + u22 ̸≡ 0 and u3 ̸≡ 0, then we have
∫
R(u

2
1 + u22)dx = 2η1 and∫

R u23dx = 2η3.

(ii.) If µ1 < µ2 = µ3 < 0, then there exists (a1, a2, a3) ∈ R3 such that u = (u1, u2, u3)
satisfies 

u1(x) =
a1eη1x

f(x)

[
1 +

(a22+a23)(η1−η3)

4η23(η1+η3)
e2η3x

]
,

u2(x) =
a2eη2x

f(x)

[
1 +

a21(η2−η1)

4η21(η1+η2)
e2η1x

]
,

u3(x) =
a3eη2x

f(x)

[
1 +

a21(η2−η1)

4η21(η1+η2)
e2η1x

]
,

(2.17)

where f is given by

f(x) = 1 +
a21
4η21

e2η1x +
(a22 + a23)

4η23
e2η3x +

a21(a
2
2 + a23)(η1 − η3)

2

16η21η
2
3(η1 + η3)2

e2(η1+η3)x.

Furthermore, if u1 ̸≡ 0 and u22 + u23 ̸≡ 0, then we have
∫
R u21dx = 2η1 and

∫
R(u

2
2 +

u23)dx = 2η2.

11



(iii.) If µ1 = µ2 = µ3 < 0, then there exists (a1, a2, a3) ∈ R3 such that u = (u1, u2, u3)
satisfies

ui(x) =
aie

η1x

f(x)
, i = 1, 2, 3, (2.18)

where f(x) is given by

f(x) = 1 +
(a21 + a22 + a23)

4η21
e2η1x.

Furthermore, if
∑3

i=1 u
2
i ̸≡ 0, then we have

∑3
i=1

∫
R u2i dx = 2η1.

Proof. (i). Suppose µ1 = µ2 < µ3 < 0, then we have µ3 > µ0, where µ0 < 0 is the lowest
eigenvalue of −∂xx−2(u21+u22+u23) in R. Thus, u3 vanishes at some point, and hence we
can suppose u3(0) = 0 by a suitable translation. Also, we may assume that u′3(0) ̸= 0,
since otherwise we have u3 ≡ 0 in R, and a similar argument of [6, Lemma 15] further
gives (2.16). Similarly, we may assume that u2 ̸≡ 0, since otherwise the classification
(2.16) follows directly from [6, Lemma 15].

Since µ1 = µ2 < µ3 < 0 and u2 ̸≡ 0, we now claim that

u1 ≡ ku2 holds for some k ∈ R. (2.19)

Indeed, because u3(0) = 0 and µ1 = µ2, we derive from (2.13) and (2.14) that

u′1(0)
2 + u′2(0)

2 + u′3(0)
2 = −

[
(u1(0)

2 + u2(0)
2)2 + µ1(u1(0)

2 + u2(0)
2)
]
,[

u′1(0)u2(0)− u1(0)u
′
2(0)

]2
+ (µ1 + µ3)(u

′
1(0)

2 + u′2(0)
2)

+
[
u1(0)

2 + u2(0)
2 + 2µ1

]
u′3(0)

2

= −(µ1 + µ3)[u1(0)
2 + u2(0)

2]2 − µ1(µ1 + µ3)(u1(0)
2 + u2(0)

2).

(2.20)

Subtract (2.15) by the product between µ3 and (2.14), and then add the product of µ2
3

and (2.13). It thus yields that[
(u1(0)

2 + u2(0)
2)− (µ3 − µ1)

]
u′3(0)

2 = 0.

Since u′3(0)
2 ̸= 0, the above three equations give that

u′1(0)
2 + u′2(0)

2 + u′3(0)
2 = −

[(
u1(0)

2 + u2(0)
2
)2

+ µ1u1(0)
2 + µ2u2(0)

2
]
,[

u′1(0)u2(0)− u1(0)u
′
2(0)

]2
+

[
u1(0)

2 + u2(0)
2 + (µ1 − µ3)

]
u′3(0)

2 = 0,

u1(0)
2 + u2(0)

2 = (µ3 − µ1),

(2.21)

where the second equation is derived by subtracting the second equation of (2.20) from
the product between µ1 + µ3 and the first equation of (2.20).

By the last two equations of (2.21), it yields that

u′1(0)u2(0)− u1(0)u
′
2(0) = 0. (2.22)

12



If u2(0) = 0, then we derive from the last equation of (2.21) that u1(0) ̸= 0, and thus
u′2(0) = 0 by (2.22), which implies that u2 ≡ 0 in R, a contradiction. Hence, it must
have u2(0) ̸= 0. This means that there exists some k ∈ R such that

u1(0) = ku2(0). (2.23)

If u′2(0) ̸= 0, then we get from (2.22) that

u′1(0) : u
′
2(0) = u1(0) : u2(0) = k holds for the above k ∈ R.

Set u0 = u1 − ku2, so that u0 satisfies{
u0

′′ + 2V u0 + µ1u0 = 0, where V = u21 + u22 + u23,

u
′
0(0) = u0(0) = 0.

(2.24)

This further implies that u0 ≡ 0 in R, and hence the claim (2.19) holds. On the other
hand, if u′2(0) = 0, then we derive from (2.22) that u′1(0) = 0. This means that u′1(0) =
ku′2(0) still holds for the constant k of (2.23). Thus, the same argument as above shows
that the claim (2.19) still holds.

Applying (2.19), the system (1.5) is equivalent to the following form
u′′1 + 2

[
(1 + k2)u21 + u23

]
u1 + µ1u1 = 0,

u′′3 + 2
[
(1 + k2)u21 + u23

]
u3 + µ3u3 = 0,

u2 ≡ ku1, u3(0) = 0,

(2.25)

and the system (2.21) becomes

(1 + k2)u1(0)
2 = (µ3 − µ1) and (1 + k2)u′1(0)

2 + u′3(0)
2 = −µ3(µ3 − µ1), (2.26)

where k ∈ R is as in (2.19). Let (û1, û2, û3) = (û1, kû1, û3) be a solution of (2.25)
satisfying the form (2.16). We claim that for any solution (u1, u2, u3) = (u1, ku1, u3) of
(2.25), there exist suitable constants a1 and a3 such that

uj(0) = ûj(0) and u′j(0) = û′j(0), j = 1, 3. (2.27)

Once the claim (2.27) is true, the uniqueness of ODE implies from (2.25) that uj(x) ≡
ûj(x) holds for j = 1, 3, which therefore completes the proof of (2.16) in view of (2.19).

We next prove the above claim (2.27). Choose

a1 =

√
4η21(η1 + η3)

(1 + k2)(η1 − η3)
signu1(0). (2.28)

Since u21(0) is fixed by (2.26), we deduce from (2.16) and (2.28) that sign(a1) = sign(u1(0)),

û1(0) = u1(0), and û3(0) = 0 = u3(0).

On the other hand, it yields from (2.16) that for ηi =
√

|µi| > 0,

√
1 + k2û′1(0) =

−a1
|a1|

√
−µ3(µ3 − µ1)

4η23(η1 + η3)− a23(η1 − η3)

4η23(η1 + η3) + a23(η1 − η3)
, (2.29)
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where the last quotient of the right side is a decreasing function of a23 from [0,∞] to
[−1, 1]. We then derive from (2.26) and (2.29) that there exists a constant a23 ∈ (0,∞)
such that

û′1(0) = u′1(0),

which determines the absolute value of a23. Following this identity, the second identity
of (2.26) further gives that

û′3(0)
2 = u′3(0)

2,

where (2.16) is also used. The sign of a3 can be chosen so that û′3(0) = u′3(0) holds
true. This proves the claim (2.27). Hence, (u1, u2, u3) ≡ (û1, û2, û3), which completes
the proof of (2.16).

Finally, one can calculate from (2.16) that

∫
R
(u21 + u22)dx = −

 a23η1
2η23

e2η3x + 2η1

f(x)

′

= 2η1,

and ∫
R
(u23)dx = −

 (a21+a22)η3
2η21

e2η1x + 2η3

f(x)

′

= 2η3.

This completes the proof of (i).
(ii). Suppose µ1 < µ2 = µ3 < 0, then we have µ3 > µ1 ≥ µ0, where µ0 < 0 is the

lowest eigenvalue of −∂xx − 2(u21 + u22 + u23) in R. Thus, u3 vanishes at some point. As
before, we may assume that u3(0) = 0 and u′3(0) ̸= 0, which then implies that u3(x) ̸≡ 0.

Subtract (2.15) by the product of µ3 and (2.14), and then add the product of µ2
3 and

(2.13). It thus yields that
u2(0)

2u′3(0)
2 = 0, (2.30)

which further implies that u2(0) = 0, since u′3(0) ̸= 0. We hence have u2(0) = u3(0) = 0.
Because u′3(0) ̸= 0, there exists some k ∈ R such that u′2(0) = ku′3(0). Set u0 = u2−ku3,
so that u0 satisfies{

u′′0 + 2V u0 + µ2u0 = 0, where V = u21 + u22 + u23,
u′0(0) = u0(0) = 0,

(2.31)

Since µ1 < µ2 = µ3 < 0 and u3(x) ̸≡ 0, the same argument of (2.19) then yields from
(2.31) that

u2 ≡ ku3 holds for the above k ∈ R. (2.32)

Following (2.30) and (2.32), we derive from (2.13) and (2.14) that

u′1(0)
2 + (1 + k2)u′3(0)

2 + u1(0)
4 + µ1u

2
1(0) = 0, (2.33)(

1 + k2)u1(0)
2u′3(0)

2 + 2µ2u1(0)
4 + 2µ2u

′
1(0)

2

+ (µ1 + µ2)(1 + k2)u′3(0)
2 + 2µ1µ2u1(0)

2 = 0.
(2.34)

We then deduce from above that

u21(0) = (µ2 − µ1). (2.35)
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Substituting (2.35) into (2.33), we also have

u′1(0)
2 + (1 + k2)u′3(0)

2 = −µ2(µ2 − µ1). (2.36)

Similarly, let (û1, û2, û3) be a solution of (1.5) satisfying the form (2.17). We next claim
that for any solution u = (u1, u2, u3) of (1.5), there exist suitable constants a1, a2 and
a3 such that

uj(0) = ûj(0) and u′j(0) = û′j(0), j = 1, 2, 3. (2.37)

As before, once the claim (2.37) is true, the uniqueness of ODE implies that uj(x) ≡ ûj(x)
holds for j = 1, 2, 3, which therefore completes the proof of (2.17).

We now address the proof of the claim (2.37). Set

a1 =

√
4η21(η1 + η2)

(η1 − η2)
signu1(0), (2.38)

so that sign a1 = signu1(0). It then follows from (2.17) and (2.35) that

ûi(0) = ui(0) holds for i = 1, 2, 3,

since we have already known from those around (2.30) that u2(0) = u3(0) = 0. As for
a2 and a3, we calculate from (2.17) that for ηi =

√
|µi| > 0,

û′1(0) =
−a1
|a1|

√
−µ2(µ2 − µ1)

4η22(η1 + η2)− (a22 + a23)(η1 − η2)

4η22(η1 + η2) + (a22 + a23)(η1 − η2)
, (2.39)

where the last quotient of the right side is a decreasing function of a22 + a23 from [0,∞]
to [−1, 1]. We then deduce from (2.36) and (2.39) that there exists a constant a22 + a23 ∈
(0,∞) such that

û′1(0) = u′1(0). (2.40)

On the other hand, we derive from (2.36) that

u′2(0)
2 + u′3(0)

2 = û′2(0)
2 + û′3(0)

2.

Set
sign a2 = signu2(0), sign a3 = signu3(0),

and
a22 : a

2
3 = u′2(0)

2 : u′3(0)
2,

due to the fact that u′3(0) ̸= 0. By the forms of û2 and û3 in (2.17), it then gives that

û′2(0)
2 : û′3(0)

2 = u′2(0)
2 : u′3(0)

2.

We thus conclude from above that there exist suitable constants a2 and a3 such that

û′2(0) = u′2(0), û′3(0) = u′3(0).

Applying (2.38) and (2.40), we further deduce from (2.35) and (2.36) that there exist
suitable constants a1, a2 and a3 such that uj(0) = ûj(0) and u′j(0) = û′j(0) hold for
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j = 1, 2, 3, and hence the claim (2.37) holds true. As mentioned before, this thus
completes the proof of (2.17).

Following (2.17), direct calculations yield that

∫
R
(u22 + u23)dx = −

 a21η3
2η21

e2η1x + 2η3

f(x)

′

= 2η2 = 2η3,

and ∫
R
u21dx = −

 (a23+a22)η1
2η23

e2η3x + 2η1

f(x)

′

= 2η1,

which give that ∫
R
u21dx = 2η1,

∫
R
(u22 + u23)dx = 2η2.

This completes the proof of (ii).
(iii). Suppose µ1 = µ2 = µ3 < 0. Subtracting (2.15) by the product between 2µ1

and (2.14), it yields that(
u′1(0)u2(0)− u1(0)u

′
2(0)

)2
+
(
u′1(0)u3(0)− u1(0)u

′
3(0)

)2
+
(
u′3(0)u2(0)− u3(0)u

′
2(0)

)2
= 0,

which further implies that

u′1(0)u2(0)− u1(0)u
′
2(0) = u′1(0)u3(0)− u1(0)u

′
3(0)

= u′3(0)u2(0)− u3(0)u
′
2(0) = 0.

(2.41)

Without loss of generality, we may assume that u3(x) ̸≡ 0. It then follows from (2.41)
that there exist k1, k2 ∈ R such that

u1(0) = k1u3(0), u′1(0) = k1u
′
3(0),

and
u2(0) = k2u3(0), u′2(0) = k2u

′
3(0).

The same argument of (2.24) gives that u1 ≡ k1u3 and u2 ≡ k2u3. Thus, u3 satisfies the
following equation

u′′3 + 2(1 + k21 + k22)u
3
3 = −µ1u3,

which admits the following constant of motion:

(u′3)
2 + (1 + k21 + k22)u

4
3 + µ1u

2
3 = 0.

Since u3 ̸≡ 0, the above equation gives that u3 cannot change sign. Indeed, on the
contrary, suppose u3 changes sign, after a suitable translation, then we may assume that
u3(0) = 0. Thus, we can deduce that u′3(0) = 0 and hence u3 ≡ 0, a contradiction.
Therefore, u3 is either positive or negative, which further yields that u3 is the unique
positive (or negative) solution of

u′′ + (1 + k21 + k22)u
3 + µ1u

2 = 0 in R.
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Hence, (2.18) holds true, where 1
1+k21+k22

= a3
a21+a22+a23

, and ki
1+k21+k22

= ai
a21+a22+a23

holds for

i = 1, 2. Direct computations further give that
∑3

i=1

∫
R u2i dx = 2η1. This completes the

proof of Proposition 2.3.
The above proof of Proposition 2.3 shows that if µ2 = µi holds for either i = 1 or

i = 3 or i = 1, 3, then the classification of general solutions for the system (1.5) follows
essentially from the argument of [6, Lemma 15], which unfortunately is not applied to
the general case µ1 < µ2 < µ3 < 0.

3 Classification of General Solutions

In this section we further analyze the properties of general solutions for (1.5), based on
which we shall complete in Subsection 3.1 the proofs of Theorems 1.1 & 1.2 and Corollary
1.3. We start with the following lemma.

Lemma 3.1. For µ1 < µ2 < µ3 < 0, suppose u = (u1, u2, u3) ∈ H1(R)×H1(R)×H1(R)
is a solution of (1.5) satisfying u3(x) ̸≡ 0 in R. Then we have the following conclusions:

(i). If ui(0) = u3(0) = 0 holds for either i = 1 or 2, then we have ui ≡ 0.

(ii). If u′1(0) = u′2(0) = u3(0) = 0, then we have either u1 ≡ 0 or u2 ≡ 0.

Proof. By the assumption u3(0) = 0 of Lemma 3.1, we subtract (2.15) by the product
between µ3 and (2.14), and then add the product of µ2

3 and (2.13). It thus yields that

(µ3 − µ2)u1(0)
2 + (µ3 − µ1)u2(0)

2 = (µ3 − µ1)(µ3 − µ2). (3.1)

We next follow (3.1) to complete the proof.
(i). We only consider the case i = 1, so that u1(0) = u3(0) = 0, since the other case

can be proved similarly. For this case, we first obtain from (3.1) that u2(0)
2 = µ3 − µ2.

Moreover, we derive from (2.13) and (2.14) that{
u′1(0)

2 + u′2(0)
2 + u′3(0)

2 = −µ3(µ3 − µ2),

u′2(0)
2 + u′3(0)

2 = −µ3(µ3 − µ2),
(3.2)

which implies that u′1(0) = 0. Hence u1 ≡ 0, and we are done.
(ii). Suppose u′1(0) = u′2(0) = u3(0) = 0, then we derive from (2.13), (2.14) and (3.1)

that 

u′3(0)
2 = −

[
(u1(0)

2 + u2(0)
2)2 + µ1u1(0)

2 + µ2u2(0)
2
]
,[

u1(0)
2 + u2(0)

2 + (µ2 − µ3)
]
u′3(0)

2

= −(µ2 − µ1)
[
u1(0)

2 + u2(0)
2 + µ1

]
u1(0)

2,

(µ3 − µ2)u1(0)
2 + (µ3 − µ1)u2(0)

2 = (µ3 − µ1)(µ3 − µ2).

(3.3)

By eliminating the variable u′3(0)
2 from the first two equations of (3.3), we obtain that

[
(u1(0)

2 + u2(0)
2)2 + µ1u1(0)

2 + µ2u2(0)
2
][
u1(0)

2 + u2(0)
2 + (µ2 − µ3)

]
= (µ2 − µ1)

[
u1(0)

2 + u2(0)
2 + µ1

]
u1(0)

2,

(µ3 − µ2)u1(0)
2 + (µ3 − µ1)u2(0)

2 = (µ3 − µ1)(µ3 − µ2).

(3.4)
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One can verify that the solution (u1(0)
2, u2(0)

2) of the above system has the following
three different forms:

(u1(0)
2, u2(0)

2) = (0, µ3 − µ2), (u1(0)
2, u2(0)

2) = (µ3 − µ1, 0),

(u1(0)
2, u2(0)

2) =
(
− (µ1 − µ3)µ1

µ1 − µ2
,
(µ2 − µ3)µ2

µ1 − µ2

)
.

Here the second component of the last one is negative, which is impossible. Therefore,
we have either u1(0) = 0, which implies that u1(x) ≡ 0, or u2(0) = 0, which implies that
u2(x) ≡ 0. Lemma 3.1 is therefore proved.

In the following, we consider the last case where µ1 < µ2 < µ3 < 0, and

u1(0) ̸= 0, u2(0) ̸= 0, u′i(0) ̸= 0 for some 1 ≤ i ≤ 2, u3(0) = 0, u′3(0) ̸= 0. (3.5)

Without loss of generality, the assumption of (3.5) is equivalent to the following form:
there exist a constant p ∈ R and a nonzero constant q ∈ R such that

u3(0) = 0,
u2(0)

u1(0)
= q ̸= 0, u′2(0) = pu′1(0), u′1(0) ̸= 0, u′3(0) ̸= 0. (3.6)

Define

f(p) : = −
{(1 + q2)2(µ3 − µ1)(µ3 − µ2)

(µ3 − µ2) + q2(µ3 − µ1)
+ µ1 + q2µ2

}
− (1 + p2)

q2(µ1 − µ2)
2(µ2

1q
2 − µ1µ3q

2 + µ2
2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)][(µ3 − µ2)p− (µ3 − µ1)q]2
.

(3.7)

We shall prove in (3.18) below that for any given q ̸= 0, f(p) admits exactly two different
zero points denoted by p = p(q) < p = p(q), i.e.,

f(p) = f(p) = 0, where p < p. (3.8)

We now address the following classification for the last case (3.6):

Proposition 3.2. For µ1 < µ2 < µ3 < 0, suppose the function u = (u1, u2, u3) ∈
H1(R)×H1(R)×H1(R) satisfies (3.6) at x = 0. Then(

u1(0), u2(0), u3(0), u
′
1(0), u

′
2(0), u

′
3(0)

)
satisfies (2.13)–(2.15) at x = 0, if and only if

q ̸= 0, p ∈ (p, p), (3.9)

where the constants p = p(q) and p = p(q) are as in (3.8). Moreover, if p satisfies (3.9),
then (2.13)–(2.15) at x = 0 admits at most the following four solutions:(

u1(0), u2(0), 0, u
′
1(0), u

′
2(0), u

′
3(0)

)
,(

− u1(0),−u2(0), 0,−u′1(0),−u′2(0), u
′
3(0)

)
,(

u1(0), u2(0), 0, u
′
1(0), u

′
2(0),−u′3(0)

)
,(

− u1(0),−u2(0), 0,−u′1(0),−u′2(0),−u′3(0)
)
.

(3.10)
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Proof. Suppose u = (u1, u2, u3) ∈ H1(R) × H1(R) × H1(R) is a solution of (2.13)–
(2.15) satisfying (3.6) at x = 0, then the standard elliptic regularity theory gives that
u ∈ C1(R)× C1(R)× C1(R). Applying (3.6), we derive from (2.13) and (2.14) that

(1 + p2)u′1(0)
2 + u′3(0)

2 = −
[
(u1(0)

2 + u2(0)
2)2 + µ1u1(0)

2 + µ2u2(0)
2
]
,[

(p− q)2u1(0)
2 + (µ2 + µ3) + p2(µ1 + µ3)

]
u′1(0)

2

+
[
u1(0)

2 + u2(0)
2 + (µ1 + µ2)

]
u′3(0)

2

= −
[
u1(0)

2 + u2(0)
2
][
(µ2 + µ3)u1(0)

2 + (µ1 + µ3)u2(0)
2
]

−
[
µ1(µ2 + µ3)u1(0)

2 + µ2(µ1 + µ3)u2(0)
2
]
.

(3.11)

Subtract (2.15) by the product of µ3 and (2.14), and then add the product of µ2
3 and

(2.13). It thus yields that[
(µ3 − µ2)u1(0)

2 + (µ3 − µ1)u2(0)
2 − (µ3 − µ1)(µ3 − µ2)

]
u′3(0)

2 = 0,

where u′3(0) ̸= 0 in view of (3.6). Following the above three equations, we then deduce
from (3.6) that

(1 + p2)u′1(0)
2 + u′3(0)

2 = −
[
(1 + q2)2u1(0)

2 + µ1 + q2µ2

]
u1(0)

2,[
(p− q)2u1(0)

2 − (µ1 − µ2)
]
u′1(0)

2 +
[
(1 + q2)u1(0)

2 + (µ2 − µ3)
]
u′3(0)

2

= (1 + q2)(µ1 − µ2)u1(0)
4 + µ1(µ1 − µ2)u1(0)

2,[
(µ3 − µ2) + q2(µ3 − µ1)

]
u1(0)

2 = (µ3 − µ1)(µ3 − µ2),

(3.12)

where the constants q and p are as in (3.6), and the second equation is derived by
subtracting the second equation of (3.11) from the product between µ1+µ3 and the first
equation of (3.11). Note that the values of u1(0)

2 and u2(0)
2 = q2u1(0)

2 are determined
by the last equation of (3.12).

By Cramer’s Rule, we obtain from (3.12) that

u′1(0)
2 =

D1

D
,

where

D = det

∣∣∣∣∣ (1 + p2) 1

(p− q)2u1(0)
2 − (µ1 − µ2) (1 + q2)u1(0)

2 + (µ2 − µ3)

∣∣∣∣∣ ,
and

D1 = det

∣∣∣∣∣ −[(1 + q2)2u1(0)
2 + µ1 + q2µ2]u1(0)

2 1

(1 + q2)(µ1 − µ2)u1(0)
4 + µ1(µ1 − µ2)u1(0)

2 (1 + q2)u1(0)
2 + (µ2 − µ3)

∣∣∣∣∣ .
Direct calculations then yield from (3.12) that

D = (pq + 1)2u1(0)
2 −

[
µ3 − µ1 + p2(µ3 − µ2)

]
=

[
q2u1(0)

2 − (µ3 − µ2)
]
p2 + 2pqu1(0)

2 +
[
u1(0)

2 − (µ3 − µ1)
]

= − 1

(µ3 − µ2) + q2(µ3 − µ1)

[
(µ3 − µ2)p− (µ3 − µ1)q

]2
,
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and

D1

u1(0)2
= (1 + q2)(µ1 − µ2)u1(0)

2 + µ1(µ1 − µ2) + (1 + q2)3u1(0)
4

+ (µ2 − µ3)(1 + q2)2u1(0)
2 + (µ1 + µ2q

2)(1 + q2)u1(0)
2

+ (µ1 + µ2q
2)(µ2 − µ3)

= −q2(µ1 − µ2)
2(µ2

1q
2 − µ1µ3q

2 + µ2
2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)]2
.

We then have

0 ≤ u′1(0)
2 =

D1

D

=
q2(µ1 − µ2)

2(µ3 − µ1)(µ3 − µ2)(µ
2
1q

2 − µ1µ3q
2 + µ2

2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)]2[(µ3 − µ2)p− (µ3 − µ1)q]2
.

(3.13)

Since D1
D is positive for any p ∈ R and 0 ̸= q ∈ R, there is no restriction on p and q to

ensure that u′1(0)
2 > 0.

We next analyze u′3(0)
2 as follows. It follows from (3.12) and (3.13) that for any

q ̸= 0,

0 ≤ u′3(0)
2

u1(0)2
= −

[
(1 + q2)2u1(0)

2 + µ1 + q2µ2

]
− (1 + p2)

q2(µ1 − µ2)
2(µ2

1q
2 − µ1µ3q

2 + µ2
2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)][(µ3 − µ2)p− (µ3 − µ1)q]2

= −
{(1 + q2)2(µ3 − µ1)(µ3 − µ2)

(µ3 − µ2) + q2(µ3 − µ1)
+ µ1 + q2µ2

}
(3.14)

− q2(µ1 − µ2)
2(µ2

1q
2 − µ1µ3q

2 + µ2
2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)]

1 + p2

[(µ3 − µ2)p− (µ3 − µ1)q]2

:= f(p).

For any q ̸= 0, since µ1 < µ2 < µ3 < 0, the second term of f(p) is strictly negative, and

1 + p2

[(µ3 − µ2)p− (µ3 − µ1)q]2
=

1[
(µ3 − µ2)

p√
1+p2

− (µ3 − µ1)q
1√
1+p2

]2
=

1

[(µ3 − µ2)2 + (µ3 − µ1)2q2] cos2 θp
,

(3.15)

where θp ∈ [0, π2 ) ∪ (π2 , π] denotes the angle between the vectors (µ3 − µ2,−(µ3 − µ1)q)
and ( p√

1+p2
, 1√

1+p2
). It then implies from (3.14) and (3.15) that for any q ̸= 0, f(p)
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attains its maximal value, if and only if p ∈ R satisfies θp = 0 or π, where

max
p∈R

f(p) =
(q2 + 1)2(µ2 − µ3)(µ1 − µ3)

µ2 − µ3 + q2(µ1 − µ3)
− µ1 − µ2q

2

− q2(µ1 − µ2)
2(µ2

1q
2 − µ1µ3q

2 + µ2
2 − µ2µ3)

[(µ3 − µ2) + q2(µ3 − µ1)][(µ3 − µ2)2 + (µ3 − µ1)2q2]

=
(q2 + 1)2(µ2 − µ3)(µ1 − µ3)

µ2 − µ3 + q2(µ1 − µ3)
− µ2q

2 − µ1

− q2(µ1 − µ2)
2

(µ3 − µ2) + q2(µ3 − µ1)
+

q2µ3(µ1 − µ2)
2

(µ3 − µ2)2 + q2(µ3 − µ1)2

= −µ3
[q2(µ1 − µ3) + (µ2 − µ3)]

2

(µ3 − µ1)2q2 + (µ3 − µ2)2
> 0.

(3.16)

Moreover, we deduce from (3.14) and (3.15) that for any q ̸= 0, f(p) is monotonically
decreasing in θp ∈ [0, π/2), and f(p) is monotonically increasing in θp ∈ (π/2, π], where

lim
θp→π

2

f(p) = −∞. (3.17)

We thus conclude from (3.16) and (3.17) that for any q ̸= 0, f(p) admits exactly two
different zero points denoted by p = p(q) < p = p(q), i.e.,

f(p) = f(p) = 0, where p < p. (3.18)

This further shows from (3.14) that 0 < u′3(0)
2, i.e., f(p) > 0, if and only if

p ∈ (p, p), where p = p(q) < p = p(q) satisfy f(p) = f(p) = 0. (3.19)

Therefore, we conclude that the system (2.13)–(2.15) at x = 0 admits a solution(
u1(0), u2(0), u3(0), u

′
1(0), u

′
2(0), u

′
3(0)

)
,

if and only if q and p satisfy (3.9).
Finally, since u3(0) = 0, if q and p satisfy (3.9), then one can verify from (3.6) and

(3.12) that (2.13)–(2.15) admits at most four solutions of the form (3.10), due to the
symmetry of (3.11) with respect to u1(0), u2(0), u

′
1(0), and u′3(0). This completes the

proof of Proposition 3.2.
For µ1 < µ2 < µ3 < 0, Proposition 3.2 implies that for ũ3(0) = 0 and ũ2(0)

ũ1(0)
= q ̸= 0,

there exist at most four solutions(
u1(0), u2(0), u3(0), u

′
1(0), u

′
2(0), u

′
3(0)

)
of (2.13)–(2.15) satisfying (3.6) and (3.9). Since any solution u = (u1, u2, u3) of (1.5)
is uniquely determined by its initial condition

(
u1(0), u2(0), u3(0), u

′
1(0), u

′
2(0), u

′
3(0)

)
, it

follows from Proposition 3.2 that (1.5) admits at most four solutions satisfying (3.6) and
(3.9). For µ1 < µ2 < µ3 < 0, in the following we further prove that (1.5) admits exactly
four solutions, whose initial conditions satisfy (3.6) and (3.9). For this purpose, since
any solution ũ = (ũ1, ũ2, ũ3) of (1.5) can be written as ũi =

gi
f satisfying Lemma 2.1,
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which is determined by a1, a2, a3, it suffices to prove that for ũ3(0) = 0 and ũ2(0)
ũ1(0)

= q ̸= 0,

there exist at least four vectors (a1, a2, a3), where ai ̸= 0 holds for i = 1, 2, 3, so that(
ũ1(0), ũ2(0), 0, ũ

′
1(0), ũ

′
2(0), ũ

′
3(0)

)
satisfies (3.6) and (3.9). (3.20)

In order to prove (3.20), suppose ũ = (ũ1, ũ2, ũ3) is a solution of (1.5) and satisfies

ũ′3(0) ̸= 0, ũ3(0) = 0 and ũ2(0)
ũ1(0)

= q ̸= 0. Applying Lemma 2.1, u can be written as

ũi =
gi
f in terms of a1, a2 and a3, and it then follows from (2.1) that a1, a2 and a3 satisfy

1 +
1

4

(
a21(η3 − η1)

η21(η3 + η1)
+

a22(η3 − η2)

η22(η3 + η2)

)
+

1

16

a21a
2
2(η1 − η2)

2(η3 − η1)(η3 − η2)

η21η
2
2(η1 + η2)2(η3 + η1)(η3 + η2)

= 0, (3.21)

and

a2

[
1 + 1

4

(
a21(η2−η1)

η21(η2+η1)
+

a23(η2−η3)

η23(η2+η3)

)
+ 1

16
a21a

2
3(η1−η3)2(η2−η1)(η2−η3)

η21η
2
3(η1+η3)2(η2+η1)(η2+η3)

]
a1

[
1 + 1

4

(
a22(η1−η2)

η22(η1+η2)
+

a23(η1−η3)

η23(η1+η3)

)
+ 1

16
a22a

2
3(η2−η3)2(η1−η2)(η1−η3)

η22η
2
3(η2+η3)2(η1+η2)(η1+η3)

] = q ̸= 0, (3.22)

where and below ηi =
√
|µi| > 0 holds for i = 1, 2, 3. It yields from (3.22) that ai ̸= 0

holds for all i = 1, 2, 3, due to the assumption ũ′3(0) ̸= 0. Denote

X =
a1
η1

, Y =
a2
η2

, Z =
a3
η3

, (3.23)

and

0 < A12 =
η1 − η2
η1 + η2

< 1, 0 < A13 =
η1 − η3
η1 + η3

< 1, 0 < A23 =
η2 − η3
η2 + η3

< 1. (3.24)

Thus, the problem (a1, a2, a3) of (3.21) and (3.22) can be simplified as the problem
(X,Y, Z) of

1− 1

4

(
A13X

2 +A23Y
2
)
+

1

16
A2

12A13A23X
2Y 2 = 0, (3.25)

and
η2Y

[
1 + 1

4(−A12X
2 +A23Z

2)− 1
16A

2
13A12A23X

2Z2
]

η1X
[
1 + 1

4(A12Y 2 +A13Z2) + 1
16A

2
23A12A13Y 2Z2

] = q, (3.26)

where q ̸= 0, X ̸= 0, Y ̸= 0, and Z ̸= 0. Denote the intersection of (3.25) and (3.26) by

S :=
{
(X,Y, Z) : (X,Y, Z) satisfies (3.25) and (3.26),

where X ̸= 0, Y ̸= 0, and Z ̸= 0
}
.

(3.27)

One can check from (3.25) that a2
a1

is arbitrary. We then obtain from (3.26) that for any
q ̸= 0, there always exists a solution (X = X(a1), Y = Y (a2), Z = Z(a3)) satisfying the
above system (3.25) and (3.26). Therefore, for any q ̸= 0, we have S ̸= ∅.

For any fixed q ̸= 0, we define

p :=
ũ′2(0)

ũ′1(0)
, so that (3.6) is fully satisfied. (3.28)

In order to analyze p, it is obvious from Lemma 2.1 that

p is a continuous function of
(
X(a1), Y (a2), Z(a3)

)
.
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Figure 1: The curves (X,Y ) of (3.25).

Moreover, for any fixed q ̸= 0, p(X,Y, Z) can be thought of as:

p : the curve S → R1 is continuous. (3.29)

The following lemma shows that for any fixed q ̸= 0, the range of p(X,Y, Z) along at
least four connected branches of the curve S defined by (3.27) is equal to (p, p), where
p = p(q) < p = p(q) are as in (3.8). This implies equivalently that for ũ3(0) = 0 and
ũ2(0)
ũ1(0)

= q ̸= 0, there exist at least four vectors (a1, a2, a3), where ai ̸= 0 holds for all

i = 1, 2, 3, so that
(
ũ1(0), ũ2(0), 0, ũ

′
1(0), ũ

′
2(0), ũ

′
3(0)

)
also satisfies (3.9). Once Lemma

3.3 below is proved, this therefore completes the proof of (3.20) in view of (3.28).

Lemma 3.3. For any fixed q ̸= 0, let the curve S be defined by (3.27). Then S has four
connected branches S1, S2, S3 and S4, i.e., S1 ∪ S2 ∪ S3 ∪ S4 ⊂ S, along each of which
the function p defined in (3.28) is onto (p, p), i.e., p(Si) = (p, p) holds for i = 1, 2, 3, 4.

Proof. In view of (3.23) and (3.24), we rewrite (3.25) as(1
4
A13A12X

2 − 1

A12

)(1
4
A23A12Y

2 − 1

A12

)
=

1

A2
12

− 1 > 0, X ̸= 0, Y ̸= 0, (3.30)

which has eight connected branches in the XY plane, see above Figure 1. On the other
hand, (3.26) can be regarded as

Z2 : = F (X,Y )

=
−4

(
A12XY 2η1q +A12X

2Y η2 + 4Xη1q − 4Y η2
)(

A12A13A2
23XY 2η1q +A12A2

13A23X2Y η2 + 4A13Xη1q − 4A23Y η2
) , (3.31)

where F (X,Y ) is a rational function of X and Y , and continuous with respect to X and
Y along each connected branch of (3.25).

Since S ̸= ∅, we consider from (3.30) that the point (x0, y0, z0) ∈ S satisfies

z0 > 0,
1

4
A13A12x

2
0 −

1

A12
> 0 and

1

4
A23A12y

2
0 −

1

A12
> 0, (3.32)
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which corresponds to a point (x0, y0) on the bold black curve in the first quadrant of
Figure 1. Set

S1 :=
{
(x0, y0, z0)

}
∪
{
(x, y, z) : (x, y, z) ∈ S is connected with (x0, y0, z0)

}
, (3.33)

where (x0, y0, z0) is as in (3.32). We now prove that

sup
{
x2 + y2 : (x, y, z) ∈ S1 ⊂ S

}
< ∞. (3.34)

On the contrary, suppose (3.34) is false, then there exists a sequence {(xn, yn, zn)} ⊂ S1

such that either limn→∞ x2n = ∞ or limn→∞ y2n = ∞. Without loss of generality, we
assume that limn→∞ x2n = ∞. Since (xn, yn) satisfies (3.25), we obtain from (3.30) that
the sequence {yn} is bounded uniformly in n. Thus, we derive from (3.31) that

lim
n→∞

z2n = − 4

A2
13A23

< 0,

which is impossible. Thus, (3.34) holds true.
Define the left endpoint T1 = (x1, y1, z1) and the right endpoint T2 = (x2, y2, z2) of

S1 as follows:

x1 = inf
{
x : (x, y, z) ∈ S1

}
, y1 = sup

{
y : (x, y, z) ∈ S1

}
, z1 =

√
F (x1, y1),

x2 = sup
{
x : (x, y, z) ∈ S1

}
, y2 = inf

{
y : (x, y, z) ∈ S1

}
, z2 =

√
F (x2, y2),

(3.35)

where zi = +∞ is defined for i = 1, 2, provided that (xi, yi) is a singular point of
F (X,Y ). We next claim that the point zi of (3.35) satisfies

zi ∈ {0,+∞}, where i = 1, 2. (3.36)

Indeed, on the contrary, suppose (3.36) is false. Without loss of generality, then we may
assume from (3.32) that z1 ∈ (0,+∞) and F (x1, y1) = z21 . Taking a small enough ε > 0
so that z21 − ε > 0. Since F (X,Y ) is continuous with respect to the curve (3.25), we
obtain that

F−1
(
(z21 − ε, z21 + ε)

)
:=

{
(x, y) satisfies (3.25) and (3.32) : F (x, y) ∈ (z21 − ε, z21 + ε)

}
is a one dimensional open set of the curve (3.25). Moreover, for any (x3, y3) ∈ F−1

(
(z21−

ε, z21 +ε)
)
, it is obvious that

(
x3, y3,

√
F (x3, y3)

)
∈ S1. Since (x1, y1) ∈ F−1((z21 −ε, z21+

ε)), (x1, y1, z1) is an interior point of S1, which however contradicts with the fact that
(x1, y1, z1) is the left endpoint of S1. Therefore, the claim (3.36) holds true.

It yields from (3.36) that if

(X,Y, Z) :=
(a1
η1

,
a2
η2

,
a3
η3

)
= (xi, yi, zi), i = 1, 2,

where the point (xi, yi, zi) is as in (3.35), then the expression of ũ′3 in Lemma 2.1 gives

that ũ′3(0) = 0, which implies from (3.14) that f(p) =
ũ′
3(0)

2

ũ1(0)2
= 0. This further yields from

(3.8) that the point (xi, yi, zi) of (3.35) satisfies either p(xi, yi, zi) = p or p(xi, yi, zi) = p
for i = 1, 2, where p < p are as in (3.8).
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We now claim that {
p(x1, y1, z1), p(x2, y2, z2)

}
=

{
p, p

}
, (3.37)

where the point (xi, yi, zi) is as in (3.35) for i = 1, 2, and p < p are as in (3.8). Indeed,
suppose (3.37) is false. Without loss of generality, then we may assume from (3.37) that
p(x1, y1, z1) = p(x2, y2, z2) = p. Let M = max(x,y,z)∈S1

p(S1) > p. For any p0 ∈ (p,M),
we then obtain that there exist at least two points (x4, y4, z4) ∈ S1 and (x5, y5, z5) ∈ S1

such that p(x4, y4, z4) = p(x5, y5, z5) = p0. Due to the symmetry of p in (3.28) with
respect to z, we obtain that p(x4, y4,−z4) = p(x5, y5,−z5) = p0. On the other hand,
the expressions of ũ1(x) and ũ2(x) in Lemma 2.1 yield that p(x, y, z) = p(−x,−y, z).
By the symmetry of (3.25) and (3.26) with respect to (X,Y, Z), we thus obtain that
(−x4,−y4,±z4), (−x5,−y5,±z5), (x4, y4,−z4), (x5, y5,−z5) ∈ S, and

p(−x4,−y4,±z4) = p(−x5,−y5,±z5) = p(x4, y4,−z4) = p(x5, y5,−z5) = p0.

We hence conclude from above that p(x, y, x) = p0 has at least eight solutions, which
however contradicts with Proposition 3.2. Therefore, the claim (3.37) holds true.

Applying (3.37), we conclude immediately that p(S1) = (p, p), due to the continuity
of p with respect to S1. By the symmetry of S and p(S1) = (p, p), we obtain from
Proposition 3.2 that S has exactly four connected branches, where S1 is given by (3.33),

S2 :=
{
(x, y, z) : (x, y,−z) ∈ S1

}
, S3 :=

{
(x, y, z) : (−x,−y,−z) ∈ S1

}
,

and
S4 :=

{
(x, y, z) : (−x,−y, z) ∈ S1

}
.

Here the curve S1 of the XY Z space satisfies Z > 0, and its projection onto the XY
plane is the bold black curve in the first quadrant of Figure 1, where the left endpoint
is at (x1, y1) and the right endpoint is at (x2, y2). S2 is the reflection of S1 about the
XY plane. S3 and S4 are the symmetric curves of S1 and S2 with respect to the origin,
respectively. Moreover, we have p(Si) = p(S1) = (p, p) for i = 1, 2, 3, 4, which completes
the proof of Lemma 3.3.

3.1 Proofs of main results

In this subsection, we first establish Theorem 1.1 on the classification of general solutions
for (1.5). As the applications of Theorem 1.1, we then address the proofs of Theorem
1.2 and Corollary 1.3.

Proof of Theorem 1.1. Suppose u = (u1, u2, u3) is a solution of (1.5). If either µ1 =
µ2 < µ3 < 0 or µ1 < µ2 = µ3 < 0 or µ1 = µ2 = µ3 < 0, then we derive from Proposition
2.3 that Theorem 1.1 holds true. Thus, the rest is to consider µ1 < µ2 < µ3 < 0, which
implies that u3 changes sign. Hence, we may assume that u3(0) = 0 and u′3(0) ̸= 0,
since otherwise we have u3 ≡ 0 and hence Theorem 1.1 follows directly from [6, Lemma
15]. Therefore, if µ1 < µ2 < µ3 < 0, then the proof of Theorem 1.1 is divided into the
following four different cases:

(i). ui(0) = u3(0) = 0 holds for i = 1 or 2.

(ii). u′1(0) = u′2(0) = u3(0) = 0.
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(iii). u2(0)
u1(0)

= q ̸= 0, u′2(0) = pu′1(0), u′1(0) ̸= 0, u3(0) = 0, u′3(0) ̸= 0.

(iv). u1(0)
u2(0)

= q ̸= 0, u′1(0) = pu′2(0), u′2(0) ̸= 0, u3(0) = 0, u′3(0) ̸= 0.

In the first two cases (i) and (ii), we derive from Lemma 3.1 that either u1 ≡ 0 or u2 ≡ 0.
Therefore, a similar argument of [6, Lemma 15] then yields Theorem 1.1, and we are
done. Moreover, since the proof of case (iv) is very similar to that of case (iii), the rest
is to address the proof of case (iii).

Indeed, suppose that case (iii) happens. It then follows from Proposition 3.2 that
for any q ̸= 0 and p ∈ (p, p), there exist at most four solutions of (1.5). On the other
hand, we obtain from Lemma 3.3 that for any q ̸= 0 and p ∈ (p, p), there exist at least
four solutions of (1.5) satisfying (1.6). We thus conclude from above that for any q ̸= 0
and p ∈ (p, p), there exist exact four solutions for (1.5), which must satisfy (1.6). This
completes the proof of Theorem 1.1.

To discuss the applications of Theorem 1.1, we next give the following mass analysis
of solutions for (1.5).

Lemma 3.4. For µ1 < µ2 < µ3 < 0, suppose (u1, u2, u3) ∈ H1(R)×H1(R)×H1(R) is a
solution of (1.5) satisfying ui ̸≡ 0 for all i = 1, 2, 3. Then it must have

∫
R u2i (x)dx = 2ηi

for i = 1, 2, 3.

Proof. Following Theorem 1.1, we claim that the identity

u2i (x)

=− 2ηi

(1 +∑3
j=1,j ̸=i

a2j
4η2j

e2ηjx +
∑

j ̸=i,k ̸=i,1≤j<k≤3

a2ja
2
k(ηj−ηk)

2

16η2j η
2
k(ηj+ηk)2

e2(ηj+ηk)x

f(x)

)′ (3.38)

holds true for all i = 1, 2, 3, where f(x) is as in Theorem 1.1. One can check that if the
identity (3.38) holds for all i = 1, 2, 3, then we have∫

R
u2i (x)dx = 2ηi, i = 1, 2, 3,

which thus proves the lemma.
In the following, we only need to prove the claim (3.38). Without loss of generality,

we just prove the claim (3.38) for i = 1. Actually, we note from Theorem 1.1 that

g1(x) = a1e
η1x

{
1 +

a22(η1 − η2)

4η22(η1 + η2)
e2η2x +

a23(η1 − η3)

4η23(η1 + η3)
e2η3x

+
a22a

2
3(η1 − η2)(η1 − η3)(η2 − η3)

2

16η22η
2
3(η1 + η2)(η1 + η3)(η2 + η3)2

e2(η2+η3)x
}
:= a1e

η1xĝ(x).

Define

f(x) = 1 +
a22
4η22

e2η2x +
a23
4η23

e2η3x +
a22a

2
3(η2 − η3)

2

16η22η
2
3(η2 + η3)2

e2(η2+η3)x,

and
f(x) = f(x)− f(x)

=
a21
4η21

e2η1x
{
1 +

a22(η1 − η2)
2

4η22(η1 + η2)2
e2η2x +

a23(η1 − η3)
2

4η23(η1 + η3)2
e2η3x

+
a22a

2
3(η1 − η2)

2(η1 − η3)
2(η2 − η3)

2

16η22η
2
3(η1 + η2)2(η1 + η3)2(η2 + η3)2

e2(η2+η3)x
}
.
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We also set
[F (x), G(x)] := F ′(x)G(x)− F (x)G′(x), (3.39)

so that

[F (x), F (x)] = 0, [F (x), G(x)] = −[G(x), F (x)],

and [F (x), H(x)F (x)] = −H ′(x)F 2(x).
(3.40)

We then derive from above that

RHS of (3.38) = −2η1
f2

[
f(x), f(x)

]
,

and

LHS of (3.38) = −2η1
f2

[
ĝ(x),

a21
4η21

e2η1xĝ(x)
]
.

Applying (3.40), one can calculate that

[
f(x), f(x)

]
=

[
ĝ(x),

a21
4η21

e2η1xĝ(x)
]
.

This proves the claim (3.38), and it therefore completes the proof of Lemma 3.4.
By employing Theorem 1.1, we are now ready to address the proofs of Theorem 1.2

and Corollary 1.3.

Proof of Theorem 1.2. Firstly, if µ1 = µ2 = µ3 = −9
4 , then we derive from Proposition

2.3 and Theorem 1.1 that (1.5) admits normalized solutions u = (u1, u2, u3) satisfying
(1.6), where |a1| = |a2| = |a3| = 1, and η1 = η2 = η3 = 3

2 . Thus, up to the translation,
u = (u1, u2, u3) must be unique, in the sense that

u1(x) ≡ ±
√
3

2 cosh(3x2 )
, u2(x) ≡ ±

√
3

2 cosh(3x2 )
, u3(x) ≡ ±

√
3

2 cosh(3x2 )

hold for three uncorrelated signs ±.
Similarly, if µ1 = µ2 < µ3 < 0, then we derive from Proposition 2.3 that any solution

u = (u1, u2, u3) of (1.5) satisfies u1 ≡ ku2,
∫
R(u

2
1 + u22)dx = 2η1 and

∫
R(u

2
3)dx = 2η3.

Further, if
∫
R u21dx =

∫
R u22dx =

∫
R u23dx = 1, then we have u1 ≡ ±u2, µ1 = µ2 = −1

and µ3 = −1
4 . In this case, we thus deduce from Theorem 1.1 that (1.5) admits infinitely

many normalized solutions u = (u1, u2, u3), which satisfy (1.9) for all A ̸= 0 and B ̸= 0.
Additionally, if µ1 < µ2 = µ3 < 0, then we obtain from Proposition 2.3 that∫

R u21dx = 2η1 >
∫
R(u

2
2 + u23)dx = 2η2, and hence

∫
R u21dx =

∫
R u22dx =

∫
R u23dx = 1

cannot occur, which implies the nonexistence of normalized solutions for (1.5). Fi-
nally, if µ1 < µ2 < µ3 < 0, then we deduce from Theorem 1.1 and Lemma 3.4 that∫
R u21dx =

∫
R u22dx =

∫
R u23dx = 1 cannot occur yet, which also implies the nonexistence

of normalized solutions for (1.5). This completes the proof of Theorem 1.2.

Proof of Corollary 1.3. (i). Suppose u = (u1, u2, u3) ∈ H1(R) × H1(R) × H1(R)
is a least energy normalized solution of (1.5), and let E(µ1, µ2, µ3, u1, u2, u3) be the
corresponding energy of the solution u, i.e.,

E(µ1, µ2, µ3, u1, u2, u3) :=

3∑
k=1

∫
R
(u′k)

2dx−
∫
R

( 3∑
k=1

(uk)
2
)2

dx. (3.41)
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Following Theorem 1.2, it suffices to show that

E(−9

4
,−9

4
,−9

4
, u1, u2, u3) < E(−1,−1,−1

4
, u1, u2, u3). (3.42)

Indeed, if (3.42) holds true, then it implies that Theorem 1.2 (i) must occur. We thus
conclude from Theorem 1.2 (i) that it necessarily has µ1 = µ2 = µ3 = −9

4 , and u must
satisfy (1.8).

To prove (3.42), we multiply the j-th equation in (1.5) by uj , sum up the resulting
identities, and finally integrate it on R. We then obtain that

−
3∑

k=1

∫
R
(u′k)

2dx+ 2

∫
R

( 3∑
k=1

(uk)
2
)2

dx = −(µ1 + µ2 + µ3). (3.43)

On the other hand, we derive from (2.13) that

3∑
k=1

∫
R
(u′k)

2dx+

∫
R

( 3∑
k=1

u2k

)2
dx = −(µ1 + µ2 + µ3). (3.44)

It then yields from (3.43) and (3.44) that

3∑
k=1

∫
R
(u′k)

2dx = −1

3
(µ1 + µ2 + µ3), and

∫
R

( 3∑
k=1

u2k

)2
= −2

3
(µ1 + µ2 + µ3),

which further implies that

E(µ1, µ2, µ3, u1, u2, u3) =
1

3
(µ1 + µ2 + µ3).

Direct computations thus yield that

E(−9

4
,−9

4
,−9

4
, u1, u2, u3) = −9

4
< E(−1,−1,−1

4
, u1, u2, u3) = −3

4
,

which proves (3.42), and we are done.
(ii). Following Theorem 1.2, we only need to prove the nonexistence of orthonormal

solutions for the following two cases:

(i). µ1 = µ2 = µ3 = −9
4 ;

(ii). µ1 = µ2 = −1 and µ3 = −1
4 .

Actually, one can directly conclude from Proposition 2.3 that u1 and u2 cannot be
orthogonal in L2(R) for each of above two cases, which hence proves Corollary 1.3.

4 Nondegeneracy of the System (1.5)

The purpose of this section is to establish Theorem 1.4 on the nondegeneracy of solutions
u = (u1, u2, u3) for the system (1.5) satisfying ui ̸≡ 0 for i = 1, 2, 3. Towards this aim,
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suppose that u = (u1, u2, u3) satisfies the system (1.5), where µ1 < µ2 < µ3 < 0 are
arbitrary. We define the operator

Lu := − d2

dx2
− 2(u21 + u22 + u23) in L2(R), (4.1)

and consider the following linearized system of (1.5) around the solution u:
ϕ′′
1 + 2(u21 + u22 + u23)ϕ1 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u1 = −µ1ϕ1 in R,

ϕ′′
2 + 2(u21 + u22 + u23)ϕ2 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u2 = −µ2ϕ2 in R,

ϕ′′
3 + 2(u21 + u22 + u23)ϕ3 + 4(u1ϕ1 + u2ϕ2 + u3ϕ3)u3 = −µ3ϕ3 in R.

(4.2)

We first address the following lemma on the constants of motion for (ϕ1, ϕ2, ϕ3)
satisfying (4.2), which is essentially the linearized version of Lemma 2.2.

Lemma 4.1. Suppose ϕ = (ϕ1, ϕ2, ϕ3) ∈ H1(R)×H1(R)×H1(R) is a solution of (4.2),
then we have the following three constants of motion:

u′1ϕ
′
1 + u′2ϕ

′
2 + u′3ϕ

′
3 + 2(u21 + u22 + u23)(u1ϕ1 + u2ϕ2 + u3ϕ3)

+ µ1u1ϕ1 + µ2u2ϕ2 + µ3u3ϕ3 = 0 in R,
(4.3)

∑
1≤j<k≤3

(u′juk − uju
′
k)(ϕ

′
juk + u′jϕk − ϕju

′
k − ujϕ

′
k)

+ (u21 + u22 + u23)
[
(µ2 + µ3)u1ϕ1 + (µ1 + µ3)u2ϕ2 + (µ1 + µ2)u3ϕ3

]
+ (u1ϕ1 + u2ϕ2 + u3ϕ3)

[
(µ2 + µ3)u

2
1 + (µ1 + µ3)u

2
2 + (µ1 + µ2)u

2
3

]
+ (µ2 + µ3)u

′
1ϕ

′
1 + (µ1 + µ3)u

′
2ϕ

′
2 + (µ1 + µ2)u

′
3ϕ

′
3

+ µ1(µ2 + µ3)u1ϕ1 + µ2(µ1 + µ3)u2ϕ2 + µ3(µ1 + µ2)u3ϕ3 = 0 in R,

(4.4)

and ∑
1≤j<k≤3, i ̸=j, i̸=k

µi(u
′
juk − uju

′
k)(ϕ

′
juk + u′jϕk − ϕju

′
k − ujϕ

′
k)

+ (u21 + u22 + u23)(µ2µ3u1ϕ1 + µ1µ3u2ϕ2 + µ1µ2u3ϕ3)

+ (u1ϕ1 + u2ϕ2 + u3ϕ3)(µ2µ3u
2
1 + µ1µ3u

2
2 + µ1µ2u

2
3)

+ µ2µ3u
′
1ϕ

′
1 + µ1µ3u

′
2ϕ

′
2 + µ1µ2u

′
3ϕ

′
3 + µ1µ2µ3(u1ϕ1 + u2ϕ2 + u3ϕ3) = 0 in R.

(4.5)

Proof. Since ϕ = (ϕ1, ϕ2, ϕ3) ∈ H1(R)×H1(R)×H1(R) is a solution of (4.2), we deduce
from (4.2) that ϕj and ϕ′

j vanish at infinity, where j = 1, 2, 3. We then get that ϕj , uj ,
ϕ′
j and u′j vanish at infinity, where j = 1, 2, 3. Thus, the three identities (4.3)–(4.5) can

be proved similarly, for which we multiply the j-th equation of (4.2) and (1.5) by an
integrating factor, respectively, add up the resulting identities, and finally integrate it
on R for j = 1, 2, 3.

To derive (4.3), we multiply the j-th equation of (4.2) and (1.5) by u′j and ϕ′
j for

j = 1, 2, 3, respectively. We then add together the resulting identities and integrate it
on R.

29



To obtain (4.4), we multiply the j-th equation of (4.2) and (1.5) by∑
1≤k≤3, k ̸=j

[
(u′juk − uju

′
k)uk + µku

′
j

]
and ∑

1≤k≤3, j ̸=k

[
(ϕ′

juk − ϕju
′
k + ϕku

′
j − ϕ′

kuj)uk + (u′juk − uju
′
k)ϕk + µkϕ

′
j

]
,

respectively, where 1 ≤ j ≤ 3. We then add together the resulting identities and integrate
it again on R.

To get (4.5), similarly we multiply the j-th equation of (4.2) and (1.5) by∑
1≤i<k≤3, i ̸=j, k ̸=j

[
µi(u

′
juk − uju

′
k)uk + µk(u

′
jui − uju

′
i)ui + µiµku

′
j

]
and ∑

1≤i<k≤3, i ̸=j, k ̸=j

[
µi(ϕ

′
juk − ϕju

′
k + ϕku

′
j − ϕ′

kuj)uk + µi(u
′
juk − uju

′
k)ϕk

+ µk(ϕ
′
jui − ϕju

′
i + ϕiu

′
j − ϕ′

iuj)ui + µk(u
′
jui − uju

′
i)ϕi + µiµku

′
j

]
,

respectively, where 1 ≤ j ≤ 3. We then add together the resulting identities and integrate
it on R. This proves Lemma 4.1.

Proposition 4.2. For µ1 < µ2 < µ3 < 0, let

D :=
{
(ϕ1, ϕ2, ϕ3) ∈ H1(R)×H1(R)×H1(R) : (ϕ1, ϕ2, ϕ3) is a

square integrable solution of (4.3)− (4.5)
}
,

(4.6)

then D is a linear subspace in R6 and satisfies dim(D) = 3.

Proof. It is obvious that D is a linear space, and the rest is to prove that the dimension
of D is equal to three. Actually, it follows from Theorem 1.1 that for any solution
u = (u1, u2, u3) of (1.5), there exists a vector (a1, a2, a3) ∈ R3 such that u = (u1, u2, u3)
satisfies (1.6). Applying (1.6), we can take a sufficiently large point −x0 ∈ R+ such that
for i = 1, 2, 3,

ui(x0) = [1 + o(1)]aie
ηix0 , u′i(x0) = [1 + o(1)]ηiaie

ηix0 as − x0 → +∞, (4.7)

where ηi =
√

|µi| > 0.
We derive from Lemma 4.1 that(

ϕ1(x0), ϕ2(x0), ϕ3(x0), ϕ
′
1(x0), ϕ

′
2(x0), ϕ

′
3(x0)

)
satisfies the linear homogeneous system (4.3)–(4.5), where the coefficient matrix D of(

ϕ1(x0), ϕ2(x0), ϕ3(x0)
)

satisfies

D =


[1 + o(1)]µ1a1e

η1x0 [1 + o(1)]µ2a2e
η2x0 [1 + o(1)]µ3a3e

η3x0

[1 + o(1)]µ1(µ2 + µ3)a1e
η1x0 [1 + o(1)]µ2(µ1 + µ3)a2e

η2x0 [1 + o(1)](µ1 + µ2)µ3a3e
η3x0

[1 + o(1)]µ1µ2µ3a1e
η1x0 [1 + o(1)]µ1µ2µ3a2e

η2x0 [1 + o(1)]µ1µ2µ3a3e
η3x0


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as −x0 → +∞, where the exponential decay (4.7) is used. Since µ1 < µ2 < µ3 < 0 and
ui ̸≡ 0 holds for i = 1, 2, 3, we calculate from above that

det(D) = [1 + o(1)]µ1µ2µ3a1a2a3(µ1 − µ2)(µ1 − µ3)

· (µ2 − µ3)e
(η1+η2+η3)x0 ̸= 0 as − x0 → +∞,

which further implies that Rank(D) = 3. Hence, the dimension of the coefficient matrix
of (

ϕ1(x0), ϕ2(x0), ϕ3(x0), ϕ
′
1(x0), ϕ

′
2(x0), ϕ

′
3(x0)

)
must be equal to 3. Therefore, we conclude from above that the dimension of{

(ϕ1(x0), ϕ2(x0), ϕ3(x0), ϕ
′
1(x0), ϕ

′
2(x0), ϕ

′
3(x0)) :

(ϕ1(x0), ϕ2(x0), ϕ3(x0), ϕ
′
1(x0), ϕ

′
2(x0), ϕ

′
3(x0)) satisfies (4.2)

}
must be equal to 3. Since (ϕ1, ϕ2, ϕ3) satisfies the system (4.3)–(4.5), we deduce from
(4.7) that (ϕ1, ϕ2, ϕ3) ∈ H1(R) × H1(R) × H1(R), which is uniquely determined by(
ϕ1(x0), ϕ2(x0), ϕ3(x0), ϕ

′
1(x0), ϕ

′
2(x0), ϕ

′
3(x0)

)
. Thus, we conclude that dim(D) = 3,

and we are done.
Applying Proposition 2.3, we are next ready to establish Theorem 1.4.

Proof of Theorem 1.4. For convenience, we define ηi =
√

|µi| > 0 for i = 1, 2, 3.
We address the proof of Theorem 1.4 by studying separately the following four different
cases:

Case 1. µ1 < µ2 < µ3 < 0; Case 2. µ1 = µ2 < µ3 < 0;

Case 3. µ1 < µ2 = µ3 < 0; Case 4. µ1 = µ2 = µ3 < 0;

where ui ̸≡ 0 always holds for all i = 1, 2, 3.
Case 1. Suppose µ1 < µ2 < µ3 < 0. Following Theorem 1.1, direct computations

yield that there exist at least three linear independent solutions, i.e., three tangent
vectors of the solutions manifold with regard to (a1, a2, a3), of the linearized system (4.2)
inH1(R)×H1(R)×H1(R). Thus, the dimension of the solutions for the linearized system
(4.2) is at least 3. On the other hand, we derive from Lemma 4.1 and Proposition 4.2
that the dimension of the solutions for the linearized system (4.2) is at most 3. Therefore,
the dimension of the solutions for the linearized system (4.2) must be exactly equal to
3, and we are done for this case.

Case 2. Suppose µ1 = µ2 < µ3 < 0. We then deduce from Proposition 2.3 that there
exists (a1, a2, a3) ∈ R3 such that (u1, u2, u3) satisfies (2.16) with ai ̸= 0 for i = 1, 2, 3. In
view of (2.16), we define

ũ1 = u1

√
1 +

(u2
u1

)2
=

√
1 +

a22
a21

u1, (4.8)

and

ϕ̃1 = ϕ1 +
a2
a1

ϕ2, ϕ̃3 =

√
1 +

a22
a21

ϕ3. (4.9)

One can verify from (1.5) that (ũ1, u3) satisfies the following system{
ũ′′1 + 2(ũ21 + u23)ũ1 = −µ1ũ1 in R,

u′′3 + 2(ũ21 + u23)u3 = −µ3u3 in R.
(4.10)
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Additionally, it follows from (4.2) that (ϕ̃1, ϕ̃3) satisfies ϕ̃′′
1 + 2(ũ21 + u23)ϕ̃1 + 4(ũ1ϕ̃1 + u3ϕ̃3)ũ1 = −µ1ϕ̃1 in R,

ϕ̃′′
3 + 2(ũ21 + u23)ϕ̃3 + 4(ũ1ϕ̃1 + u3ϕ̃3)u3 = −µ3ϕ̃3 in R.

(4.11)

Since µ1 < µ3 < 0 and (ũ1, u3) ̸= (0, 0), the same argument as above (i) implies
that (ũ1, u3) is a non-degenerate critical point of the system (4.10), and the dimension
of solutions (ϕ̃1, ϕ̃3) for (4.11) is two. Let v1 = (v11, v13) and v2 = (v21, v23) be the two
linearly independent solutions of (4.11). Thus, (ϕ̃1, ϕ̃3) solves (4.11), if and only if

(ϕ̃1, ϕ̃3) = a(v11, v13) + b(v21, v23) holds for some a, b ∈ R. (4.12)

Moreover, subtracting the second equation of (4.2) from the product between a2
a1

and the
first equation of (4.2), we obtain that(

ϕ2 −
a2
a1

ϕ1

)′′
+ 2(u21 + u22 + u23)

(
ϕ2 −

a2
a1

ϕ1

)
= −µ1

(
ϕ2 −

a2
a1

ϕ1

)
in R. (4.13)

We then follow from (4.8), (4.9) and (4.12) that (4.2) admits the following two linearly
independent solutions

(ϕ1, ϕ2, ϕ3) =
( a21
a21 + a22

v11,
a1a2

a21 + a22
v11,

a1√
a21 + a22

v13

)
(4.14)

and

(ϕ1, ϕ2, ϕ3) =
( a21
a21 + a22

v21,
a1a2

a21 + a22
v21,

a1√
a21 + a22

v23

)
. (4.15)

To seek for other nontrivial solutions (ϕ1, ϕ2, ϕ3) of (4.2), we now assume that

(ϕ̃1, ϕ̃3) =
(
ϕ1 +

a2
a1

ϕ2,

√
a21 + a22

a21
ϕ3

)
= (0, 0), (4.16)

which also implies that ϕ3 ≡ 0. Since it follows from (2.16) that u1 cannot change
sign, we deduce that µ1 < 0 is the first eigenvalue of Lu defined in (4.1). It then yields
from (4.1) and (4.13) that ϕ2 − a2

a1
ϕ1 ≡ Cu1 holds for some C1 ∈ R. If C1 = 0, i.e.,

ϕ2 − a2
a1
ϕ1 ≡ 0, then we derive from (4.16) that (ϕ1, ϕ2, ϕ3) = (0, 0, 0), which is however

trivial. Thus, ϕ2− a2
a1
ϕ1 ≡ Cu1 holds for some C1 ̸= 0. We then deduce from (4.16) that

the third solution (ϕ1, ϕ2, ϕ3) of (4.2) must satisfy

(ϕ1, ϕ2, ϕ3) = k
(
− a2

a1
u1, u1, 0

)
= k(−u2, u1, 0) for some k ̸= 0. (4.17)

One can verify that those three solutions (4.14), (4.15) and (4.17) of (4.2) are linearly
independent. Further, it follows from (4.11), (4.12) and (4.17) that any solution of (4.2)
can be expressed as a linear combination of these three independent solutions. Hence,
the dimension of solutions (ϕ1, ϕ2, ϕ3) for (4.2) is exactly three. This proves the non-
degeneracy of the system (1.5) in this case.

Case 3. Suppose µ1 < µ2 = µ3 < 0. We first prove that for any 0 < ε < 1, there
exists a sufficiently large constant N̄ > 0 such that∣∣∣u0(x1)

eη2x1
− u0(x2)

eη2x2

∣∣∣ < ε for any x2 < x1 < −N̄ , (4.18)
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where u0(x) ̸≡ 0 is any solution of Lu = µ2u in L2(R), and the operator Lu is defined in
(4.1).

To prove (4.18), we note from Theorem 1.1 that

2(u21 + u22 + u23) = 2[1 + o(1)]a21e
2η1x as x → −∞,

which implies that there exists a sufficiently large constant N1 > 0 such that

2(u21 + u22 + u23) ≤ 4a21e
2η1x, ∀x < −N1. (4.19)

Since u0(x) ̸≡ 0 is a solution of Lu = µ2u in L2(R), we can choose a sufficiently large value
−x0 > N1 such that u0(x0) ̸= 0. Moreover, for simplicity we may assume u0(x0) > 0.
Taking U1(x) := u0(x0)e

−η2x0eη2x as a comparison function, we have U1(x0) = u0(x0)
and

(Lu − µ2)U1 = − d2

dx2
U1 − µ2U1 − 2(u21 + u22 + u23)U1

= −2(u21 + u22 + u23)U1 < 0 in R.
By the comparison principle, we then obtain from above that

u0(x) ≥ U1(x) = u0(x0)e
−η2x0eη2x, x ≤ x0, (4.20)

where −x0 > N1 is sufficiently large.
On the other hand, we define for any 0 < ε < 1,

U2(x) :=
[
u0(x0)e

−η2x0 +
ε

2

]
eη2x −Be(η2+2η1)x,

where B = a21η
−2
1

(
∥u0∥L∞(R)e

−η2x0+1
)
> 0, and the sufficiently large constant −x0 > N1

is as in (4.20). We then have for any 0 < ε < 1,

U2(x0) = u0(x0) +
ε

2
eη2x0 − a21η

−2
1

[
∥u0∥L∞(R)e

−η2x0 +
ε

2

]
e(η2+2η1)x0

≥ u0(x0) +
ε

2
eη2x0 − a21η

−2
1

[
∥u0∥L∞(R)e

−η2x0 + 1
]
e(η2+2η1)x0

= u0(x0) + eη2x0

{ε

2
− a21η

−2
1

[
∥u0∥L∞(R)e

(2η1−η2)x0 + e2η1x0

]}
.

Since 2η1− η2 > 0 and η1 > 0, there exists a sufficiently large constant N2 > 0 such that

ε

2
− a21η

−2
1

[
∥u0∥L∞(R)e

(2η1−η2)x0 + e2η1x0

]
> 0 for all x0 < −N2,

which implies that U2(x0) > u0(x0) holds for all x0 < −N2. Moreover, we obtain from
(4.19) that

(Lu − µ2)U2

>− 4a21
[
u0(x0)e

−η2x0 +
ε

2

]
e(η2+2η1)x +B

[
(η2 + 2η1)

2 − η22
]
e(η2+2η1)x

>4
[
Bη21 − a21

(
∥u0∥L∞(R)e

−η2x0 + 1
)]
e(η2+2η1)x = 0 in R.

By the comparison principle, we then deduce from above that for all 0 < ε < 1,

u0(x) ≤ U2(x) =
[
u0(x0)e

−η2x0 +
ε

2

]
eη2x

− a21η
−2
1

(
∥u0∥L∞(R)e

−η2x0 + 1
)
e(η2+2η1)x, ∀x ≤ x0,

(4.21)
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where −x0 > max
{
N1, N2

}
is sufficiently large. We now conclude from (4.20) and (4.21)

that for all 0 < ε < 1,

u0(x0)e
−η2x0 ≤ u0(x)

eη2x
≤ u0(x0)e

−η2x0 +
ε

2
− a−2

1

(
∥u0∥L∞(R)e

−η2x0 + 1
)
e2η1x

≤ u0(x0)e
−η2x0 +

ε

2
, if x ≤ x0 < −max

{
N1, N2

}
,

(4.22)

which therefore gives that (4.18) hold true.
By Cauchy’s convergence criteria, we further derive from (4.18) that if u0(x) ̸≡ 0 is

a nonzero solution of Lu = µ2u in L2(R), where the operator Lu is defined in (4.1), then
u0(x) satisfies

lim
x→−∞

u0(x)

eη2x
= A ∈ R\{0}. (4.23)

Suppose now that v1 ̸≡ 0 and v2 ̸≡ 0 are two different solutions of (Lu − µ2)v = 0 in R.
Following (4.23), we may assume that

lim
x→−∞

vi(x)

eη2x
= Ai ̸= 0, where i = 1, 2.

Set v0 = v1−A1
A2

v2, which yields from above that limx→−∞
v0(x)
eη2x = 0 holds for η2 > 0. This

further implies that v0 ≡ 0 in R. We therefore conclude that µ2 is a simple eigenvalue
of Lu in R, where the operator Lu is defined in (4.1).

We derive from Proposition 2.3 (ii) that there exists (a1, a2, a3) ∈ R3 such that
(u1, u2, u3) satisfies (2.17), where ai ̸= 0 holds for i = 1, 2, 3. Denote

ũ2 = u2

√
1 +

(u3
u2

)2
=

√
1 +

a23
a22

u2, (4.24)

and

ϕ̃2 = ϕ2 +
a3
a2

ϕ3, ϕ̃1 =

√
1 +

a23
a22

ϕ1. (4.25)

Since µ2 is a simple eigenvalue of Lu defined in (4.1), the rest proof is similar to that
of Case 2. More precisely, we can conclude that (4.2) has exactly the following three
linearly independent solutions:

(ϕ1, ϕ2, ϕ3) = (0,−u3, u2), (4.26)

(ϕ1, ϕ2, ϕ3) =
( a2√

a22 + a23
w11,

a22
a22 + a23

w12,
a2a3

a22 + a23
w12

)
, (4.27)

and

(ϕ1, ϕ2, ϕ3) =
( a2√

a22 + a23
w21,

a22
a22 + a23

w22,
a2a3

a22 + a23
w22

)
, (4.28)

where (w11, w12) and (w21, w22) are two linearly independent solutions of the following
linearized system ϕ̃′′

1 + 2(u21 + ũ22)ϕ̃1 + 4(u1ϕ̃1 + ũ2ϕ̃2)u1 = −µ1ϕ̃1 in R,

ϕ̃′′
2 + 2(u21 + ũ22)ϕ̃2 + 4(u1ϕ̃1 + ũ2ϕ̃2)ũ2 = −µ2ϕ̃2 in R.

(4.29)
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This proves the non-degeneracy of Case 3.
Case 4. Suppose µ1 = µ2 = µ3 < 0. In this case, we deduce from Proposition 2.3

that there exists (a1, a2, a3) ∈ R3 satisfying ai ̸= 0 (i = 1, 2, 3) such that (u1, u2, u3)
satisfies

ui(x) =
aie

η1x

f(x)
, i = 1, 2, 3,

where and below ηi =
√
|µi| > 0 holds for i = 1, 2, 3, and f(x) is given by

f(x) = 1 +
(a21 + a22 + a23)

4η21
e2η1x.

Define

ũ = u1

√
1 +

(u2
u1

)2
+
(u3
u1

)2
=

√
1 +

a22
a21

+
a23
a21

u1, (4.30)

and
ϕ̃ = ϕ1 +

a2
a1

ϕ2 +
a3
a1

ϕ3, (4.31)

so that
ũ′′ + 2ũ3 = −µ1ũ in R, (4.32)

and
ϕ̃′′ + 4ũ2ϕ̃ = −µ1ϕ̃ in R. (4.33)

The nondegeneracy of (4.33) yields that there exists a constant C0 ∈ R such that

ϕ̃ = ϕ1 +
a2
a1

ϕ2 +
a3
a1

ϕ3 = C0ũ
′.

Moreover, similar to (4.13), we have(
ϕj −

aj
a1

ϕ1

)′′
+2(u21+u22+u23)

(
ϕj −

aj
a1

ϕ1

)
= −µ1

(
ϕj −

aj
a1

ϕ1

)
in R, j = 1, 2. (4.34)

Since it follows from Proposition 2.3 (iii) that µ1 < 0 is the first eigenvalue of Lu defined
in (4.1), we obtain that there exist constants Cj ∈ R (j = 1, 2) such that

ϕj −
aj
a1

ϕ1 = Cju1, j = 1, 2.

Similar to Case 2, we can further deduce that the system (4.2) admits the following three
linearly independent solutions:

(ϕ1, ϕ2, ϕ3) = (−u2, u1, 0), (−u2, 0, u3) or (u′1, u
′
2, u

′
3),

and any solution of (4.2) can be expressed as a linear combination of the above three
solutions. This further proves the non-degeneracy of Case 4, which therefore completes
the proof of Theorem 1.4.
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5 The General Case of N > 3

In this section, we discuss whether all main results of the present paper can be extended
generally to the N−component Schrödinger system (1.1), where µ1 ≤ µ2 ≤ · · · ≤ µN < 0
and N > 3. We first have the following similar version of Lemma 2.2.

Lemma 5.1. Suppose u = (u1, u2, · · · , uN ) ∈ (H1(R))N is a solution of (1.1), where
µ1 ≤ µ2 ≤ · · · ≤ µN < 0 and N > 3. Then we have the following N constants of motion:

N∑
i=1

(u′i)
2 +

( N∑
i=1

u2i

)2
+

N∑
i=1

µiu
2
i = 0 in R, (5.1)

∑
1≤j1<j2≤N

(u′j1uj2 − uj1u
′
j2)

2 +
( N∑

i=1

u2i

) ∑
1≤j1, j2≤N, j1 ̸=j2

µj1u
2
j2

+
∑

1≤j1, j2≤N, j1 ̸=j2

µj1(u
′
j2)

2 +
∑

1≤j1, j2≤N, j1 ̸=j2

µj1µj2u
2
j2 = 0 in R,

(5.2)

and the k-th (3 ≤ k ≤ N) identity satisfies∑
1≤j1<j2<···<jk−2≤N, 1≤jk−1<jk≤N,∏

1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−2
(u′jk−1

ujk − ujk−1
u′jk)

2

+
( N∑

i=1

u2i

) ∑
1≤j1<j2<···<jk−1≤N, 1≤jk≤N,

∏
1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−1
u2jk

+
∑

1≤j1<j2<···<jk−1≤N, 1≤jk≤N,
∏

1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−1
(u′jk)

2

+
∑

1≤j1<j2<···<jk−1≤N, 1≤jk≤N,
∏

1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−1
µjku

2
jk

= 0 in R.

(5.3)

Proof. The process of proving Lemma 5.1 is very similar to that of Lemma 2.2. Espe-
cially, the k-th (3 ≤ k ≤ N) identity (5.3) is obtained through multiplying the j-th of
(1.5) by the following integral factor∑

1≤j1<j2<···<jk−2≤N, 1≤jk−1≤N,∏
1≤l<m≤k(jl−jm)(jl−j)(jm−j)̸=0

2
[
µj1µj2 · · ·µjk−2

(u′jujk−1
− u′jk−1

uj)ujk−1

+
µj1µj2 · · ·µjk−1

k − 1
u′j

]
.

We leave the detailed proof to the interested reader.
In view of Lemma 5.1, we then have the following two conjectures, which are expected

to be involved with more complicated algebraic analysis.

Conjecture 5.1. Suppose u = (u1, u2, · · · , uN ) ∈ (H1(R))N is a solution of (1.1),
where µ1 ≤ µ2 ≤ · · · ≤ µN < 0 and N > 3. Then there exists a unique vector
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(a1, a2, · · · , aN ) ∈ RN such that the solution u satisfies

ui(x) =
gi(x)

f(x)
, i = 1, 2, · · · , N, (5.4)

where gi(x) and f(x) satisfy for ηi =
√
|µi| > 0,

gi(x) = aie
ηix +

N∑
j=1

aia
2
j (ηi − ηj)

4η2j (ηi + ηj)
e(ηi+2ηj)x

+
∑

1≤j1<j2≤N

aia
2
j1
a2j2(ηj1 − ηj2)

2(ηi − ηj1)(ηi − ηj2)

42η2j1η
2
j2
(ηj1 + ηj2)

2(ηi + ηj1)(ηi + ηj2)
e(ηi+2ηj1+2ηj2 )x

+ · · · · · ·

+
∑

1≤j1<j2<···<jk≤N

1

4k

k∏
l=1

aia
2
jl
(ηi − ηjl)

η2jl(ηi + ηjl)

∏
1≤l<m≤k

(ηjl − ηjm)
2

(ηjl + ηjm)
2
e(ηi+2ηj1+2ηj2+···+2ηjk )x

+ · · · · · ·

+
∑

1≤j1<j2<···<jN−1≤N

1

4N−1

N∏
l=1

aia
2
jl
(ηi − ηjl)

η2jl(ηi + ηjl)

·
∏

1≤l<m≤N

(ηjl − ηjm)
2

(ηjl + ηjm)
2
e(ηi+2ηj1+2ηj2+···+2ηjN )x, i = 1, 2, · · · , N,

and

f(x) = 1 +
N∑
j=1

a2j
4η2j

e2ηjx +
∑

1≤j1<j2≤N

a2j1a
2
j2
(ηj1 − ηj2)

2

42η2j1η
2
j2
(ηj1 + ηj2)

2
e(2ηj1+2ηj2 )x

+ · · · · · ·

+
∑

1≤j1<j2<···<jk≤N

1

4k

∏
1≤l<m≤k

a2jl(ηjl − ηjm)
2

η2jl(ηjl + ηjm)
2
e(2ηj1+2ηj2+···+2ηjk )x

+ · · · · · ·

+
∑

j1=1, j2=2, ··· , jN=N

1

4N

∏
1≤l<m≤N

a2jl(ηjl − ηjm)
2

η2jl(ηjl + ηjm)
2
e(2ηj1+2ηj2+···+2ηN )x

.

Conjecture 5.2. For µ1 ≤ µ2 ≤ · · · ≤ µN < 0, where N > 3, (1.1) does not admit
any orthonormal solution u = (u1, u2, · · · , uN ) ∈ (H1(R))N satisfying (ui, uj) = δij for
all 1 ≤ i, j ≤ N .

For any solution u = (u1, u2, · · · , uN ) of (1.1), we next consider the following lin-
earized system of (1.1) around the solution u:

u′′i + 2
(∑N

k=1 u
2
k

)
ϕi + 4

(∑N
k=1 ukϕk

)
ui = −µiϕi in R, i = 1, 2, · · · , N. (5.5)

If Conjecture 5.1 holds true, then we are able to prove the following non-degeneracy of
(5.5).
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Theorem 5.2. Suppose u = (u1, u2, · · · , uN ) ∈ (H1(R))N is a solution of (1.1) satisfy-
ing ui ̸≡ 0 for i = 1, 2, · · · , N , where µ1 < µ2 < · · · < µN < 0 and N > 3. If Conjecture
5.1 holds true, then u is non-degenerate, in the sense that the dimension of solutions for
the linearized system (5.5) in H1(R)×H1(R)× · · · ×H1(R) is equal to N .

Proof. Similar to Lemma 4.1, one can derive that (ϕ1, ϕ2, · · · , ϕN ) satisfies the following
N constants of motion, which correspond to the linearized version of Lemma 5.1:

N∑
i=1

u′iϕ
′
i + 2

( N∑
i=1

u2i

)( N∑
i=1

uiϕi

)
+

N∑
i=1

µiuiϕi = 0 in R, (5.6)

∑
1≤j1<j2≤N

(
u′j1uj2 − uj1u

′
j2

)(
ϕ′
j1uj2 + u′j1ϕj2 − ϕj1u

′
j2 − uj1ϕ

′
j2

)

+
∑

1≤j1, j2≤N, j1 ̸=j2

[( N∑
i=1

u2i

)
µj1uj2ϕj2 +

( N∑
i=1

uiϕi

)
µj1u

2
j2

]
+

∑
1≤j1, j2≤N, j1 ̸=j2

µj1u
′
j2ϕ

′
j2 +

∑
1≤j1,j2≤N,j1 ̸=j2

µj1µj2uj2ϕj2 = 0 in R,

(5.7)

and the k-th (3 ≤ k ≤ N) identity satisfies∑
1≤j1<j2<···<jk−2≤N, 1≤jk−1<jk≤N,∏

1≤l<m≤k(jl−jm) ̸=0

µj1µj2 · · ·µjk−2
(u′jk−1

ujk − ujk−1
u′jk)

·
[
(ϕ′

jk−1
ujk + u′jk−1

ϕjk − ϕjk−1
u′jk − ujk−1

ϕ′
jk
)
]

+

N∑
i=1

u2i
∑

1≤j1<j2<···<jk−1≤N, 1≤jk≤N,∏
1≤l<m≤k(jl−jm) ̸=0

µj1µj2 · · ·µjk−1
ujkϕjk

+
N∑
i=1

uiϕi

∑
1≤j1<j2<···<jk−1≤N, 1≤jk≤N,∏

1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−1
u2jk

+
∑

1≤j1<j2<···<jk−1≤N, 1≤jk≤N,∏
1≤l<m≤k(jl−jm )̸=0

µj1µj2 · · ·µjk−1
(u′jkϕ

′
jk
)

+
∑

1≤j1<j2<···<jk−1≤N, 1≤jk≤N,∏
1≤l<m≤k(jl−jm) ̸=0

µj1µj2 · · ·µjk−1
µjkujkϕjk = 0 in R.

(5.8)

If Conjecture 5.1 holds true, then we can take a sufficiently large point −x0 ∈ R+ so
that

ui(x0) = [1 + o(1)]aie
ηix0 , u′i(x0) = [1 + o(1)]ηiaie

ηix0 as − x0 → +∞, (5.9)
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where i = 1, 2, · · · , N . Applying (5.6)–(5.8), the same argument of Proposition 4.2 then
yields that Theorem 5.2 holds true, and we are done.

We finally comment that the proof of Theorem 5.2 depends strongly on the assump-
tion µ1 < µ2 < · · · < µN < 0. Stimulated by Theorem 1.4, we guess that if µj = µi holds
for some i ̸= j, then the non-degeneracy of Theorem 5.2 is still true for all N > 3, but
its proof is more involved with the inductive analysis, which is also left to the interested
reader.
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