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ABSTRACT. We consider half-harmonic maps from R (or S) to S. We prove that all (finite
energy) half-harmonic maps are non-degenerate. In other words, they are integrable critical
points of the energy functional. A full description of the kernel of the linearized operator
around each half-harmonic map is given. The second part of this paper devotes to studying
the quantitative stability of half-harmonic maps. When its degree is ±1, we prove that the
deviation of any map u : R → S from Möbius transformations can be controlled uniformly
by ‖u‖2

Ḣ1/2(R)− degu. This result resembles the quantitative rigidity estimate of degree ±1
harmonic maps R2 → S2 which is proved recently. Furthermore, we address the quantita-
tive stability for half-harmonic maps of higher degree. We prove that if u is already near
to a Blaschke product, then the deviation of u to Blaschke products can be controlled by
‖u‖2

Ḣ1/2(R)− degu. Additionally, a striking example is given to show that such quantitative
estimate can not be true uniformly for all u of degree 2. We conjecture similar things happen
for harmonic maps R2 → S2.

1. INTRODUCTION

1.1. Motivation and main results. The analysis of critical points of conformal invariant
lagrangians has drawn much attention since 1950, due to their important applications in
physics and geometry. One of the prominent examples is harmonic maps u : Ω → Sn,
which are critical points of the Dirichlet energy

E(u) =

�
Ω

|∇u|2dx. (1.1)

When the domain Ω is a subset of R2, E(u) is conformally invariant and this plays a cru-
cial role in the regularity theory of such maps (see Hélein [21], Rivière [30] and references
therein). The theory has been generalized to even-dimensional domains whose critical are
called poly-harmonic maps.

In the recent years, many authors are interested in the analog of Dirichlet energy in odd-
dimensional cases, for instance, Da Lio [11, 12], Da Lio and Rivière [13, 14], Millot and Sire
[27], Schikorra [31] and the references therein. In these works, a special but quite interesting
case is the so-called half-harmonic maps from R into S which can be defined as critical
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points of the following line energy

E(u) =
1

2π

�
R
|(−∆R)

1
4u|2dx. (1.2)

The functional E enjoys invariance under the Möbius group which is the trace of conformal
maps keeping invariant the half-space R2

+. In fact, E(u) coincides with ‖u‖2
Ḣ1/2(R)

, see (2.3)
below. Computing the associated Euler-Lagrange equation for (1.2), it is easy to see that if
u : R→ S is a half-harmonic map, then u satisfies

(−∆)
1
2u(x) =

(
1

2π
P.V.

�
R

|u(x)− u(s)|2

|x− s|2
ds

)
u(x) in R. (1.3)

Fundamental regularity of half-harmonic maps has been obtained in [13, 14]. A complete
classification has been known by [27, 12] (cf. Theorem 2.3 below). Associating1 u =
(u1, u2) to a complex function u = u1 + iu2, all half-harmonic maps consist of the following
products and their complex conjugates

ψϑ,~α := eiϑ
d∏

k=1

x− αk
x− ᾱk

(1.4)

where ϑ ∈ S, ~α = (α1, · · · , αd) with αk = xk + iλk lies in the upper half plane H, and d =
degu (see (2.19) for its definition). Modulo a Cayley transformation, the above expressions
are equivalent to Blaschke products or their conjugates.

Apart from the strong analogy to harmonic maps on R2, half-harmonic maps have intricate
connections to minimal surfaces with free boundary, for instance see [17, 25, 27, 23]. On the
other hand, in recent years, several papers were devoted to the study of the fractional Sobolev
spaceH1/2 with values into the circle, in particular in the framework of the Ginzburg-Landau
model, see the paper Mironescu and Pisante [28] and reference therein. The simplest of such
spaces is H1/2 (R;S).

The main purpose of this paper is twofold: First, we prove that each (finite energy)2

half-harmonic map is non-degenerate by characterising the kernel of the linearized operator
around each half-harmonic map. Second, we study the quantitative stability estimates near
each half-harmonic map. The non-degeneracy and stability are crucial to the half-harmonic
map heat flow, which is an analogy of harmonic map heat flow. There are vibrant researches
along this direction by Sire et al. [33], Schikorra et al. [32], Wettstein [36]. An interesting
conjecture in [33] states that half-harmonic map heat flow only blow-ups in infinite time,
which is quite different from what we know about harmonic map heat flow.

1Throughout this paper, bold font u denotes a vector-valued map, while u means a complex-valued map.
2According to [26], we do have some maps u : R→ S satisfies (1.3) but has infinite line energy. We do not

study it here.
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Evidently, differentiating (1.4) with ϑ, Reαk, Imαk, for k = 1, · · · , d respectively, gener-
ates kernel maps for the linearized operators Lψϑ,~α as

Lψϑ,~α(v) = (−∆R)
1
2v(x)−

(
1

2π
P.V.

�
R

|ψϑ,~α(x)−ψϑ,~α(s)|2

|x− s|2
ds

)
v(x)

−
(

1

π

�
R

(ψϑ,~α(x)−ψϑ,~α(y)) · (v(x)− v(y))

|x− y|2
dy

)
u(x)

(1.5)

where v ∈ Ḣ1/2(R;S) withψϑ,~α ·v = 0. Conversely, if the kernels maps of Lψϑ,~α are all gen-
erated by differentiating nearby half-harmonic maps, then we call ψϑ,~α is non-degenerate.
Such property is also known as integrability in the context of minimal surfaces [1] and har-
monic maps [20]. The non-degeneracy of harmonic maps from R2 to S2 has been established
in [20, 8].

The study to non-degeneracy of half-harmonic maps is initiated by Sire et al. [34] and
Lenzmann and Schikorra [26]. The authors in [34] confirm the case when degu = ±1.
The authors in [26] can deal with very special case of higher degree, more precisely, when
u = (x− i )m/(x+ i )m. After a stereographic projection (or Cayley transformation) such u
is equivalent to zm, z ∈ S. Their approach depend on the symmetry of zm crucially. In the
present paper, we completely solve the non-degeneracy for all half-harmonic maps.

Theorem 1.1. Suppose u is a half-harmonic map R → S, then all the Ḣ1/2(R) maps in the
kernel of Lu are generated by differentiating half-harmonic maps close to u. More precisely,
dimR kerLu = 2|degu|+ 1. In particular, if u = eiϑ∏k

j=1(
x−αj
x−ᾱj )

dj with {αj}kj=1 are distinct
and dj ≥ 1, then

kerLu = spanR

{
1,Re

1

(x− ᾱj)s
, Im

1

(x− ᾱj)s
: s = 1, · · · , dj, j = 1, · · · , k.

}
iu.

The second part of this paper deals with the quantitative stability of half-harmonic maps.
To describe it, we note that half-harmonic maps achieve the minimum of Ḣ1/2(R;S) norm
in its homotopy class. Namely

Theorem 1.2. Suppose that u ∈ Ḣ1/2(R; S). Then ‖u‖2
Ḣ1/2(R)

≥ |degu|. If the equality
holds, then u, or its complex conjugate, must be the form of (1.4).

A natural question is that whether the discrepancy ‖u‖2
Ḣ1/2(R)

− |degu| can control quan-
titatively the difference of u from the half-harmonic maps. Naively, one expects a linear
control as

inf
ϑ∈S,~α∈Hd

‖u− ψϑ,~α‖2
Ḣ1/2(R)

≤ C
(
‖u‖2

Ḣ1/2(R)
− |degu|

)
(1.6)

where C is independent of u.

Such type of question has been raised for many other topics. For instance, Brezis and
Lieb [5] ask a similar question of the classical Sobolev inequality on Rn. Later Bianchi and
Egnell [4] obtain a quantitative stability estimate in the spirit of (1.6). Fusco et al. [18] prove
a sharp quantitative stability about isoperimetric inequality. To authors’ knowledge, other
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types of quantitative stability estimates include (but not limited to) [16, 24, 2]. Reader can
see their papers and reference therein.

Recently Bernand-Mantel et al. [3] prove a quantitative stability for degree ±1 harmonic
maps from R2 → S2 similar to (1.6), whose proof is simplified by [22, 35]. Due to the strong
analogy between harmonic maps and half-harmonic ones, their works inspire us to prove the
following theorem. Denote

D(u) = ‖u‖2
Ḣ1/2(R)

− |degu|. (1.7)

Theorem 1.3. For u ∈ Ḣ1/2(R;S) with degu = 1, there exists an α ∈ H and ϑ ∈ S such
that

‖u− ψϑ,α‖2
Ḣ1/2(R)

≤ 36D(u). (1.8)

If degu = −1, then the above statement holds with ū.

The above theorem leaves us an intriguing question for half-harmonic maps with higher
degree. The answer to this could shed some light to harmonic maps with higher degree.
We find that there are some fundamental differences between the case degree ±1 and higher
degree. For instance, in degree 1, ψϑ,α is equivalent to ψ0,i after some harmless rotation and
Möbius transformation of H, while both sides of (1.8) is invariant under these operations.
Essentially, the stability estimates near ψϑ,α is equivalent to that of ψ0,i . Thus we have a
uniform constant in (1.8). However, in higher degree we do not have such equivalence. For
instance, consider ψϑ,(α1,α2) in degree 2. One can use Möbius transformation to bring α1 to
i , but there is no control of α2, which might be very near to the boundary of H. Indeed, we
prove the following dichotomy for deg = 2.

Theorem 1.4. For any M > 0, there exists u ∈ Ḣ1/2(R;S) with degu = 2 such that

inf
ϑ∈S,~α∈H2

‖u− ψϑ,~α‖2
Ḣ1/2(R)

≥M
(
‖u‖2

Ḣ1/2(R)
− 2
)
. (1.9)

The function u we choose is a perturbation of ψ0,~α with α1 = j2 + i and α2 = −j2 + i
with j → ∞. This exactly captures the dilemma in higher degree mentioned above. This
example shows that one should not hope the stability for higher degree as simple as (1.6).
Nevertheless, we can prove a local version of quantitative stability. Namely, if u is already
sufficiently close to some half-harmonic map, then (1.6) still holds.

Theorem 1.5. For any compact set Ω b H, there exists δd,Ω,ε with the following significance.
Suppose u ∈ Ḣ1/2(R;S) satisfies degu = d > 0 and

‖u− ψϑ,~β‖
2
Ḣ1/2(R)

≤ δd,Ω,ε (1.10)

for some ϑ ∈ S and ~β ∈ Ωd. Then there exists a constant Cd,Ω,ε > 0 (independent of u),
ϑ′ ∈ S and ~α ∈ Ωd

ε b Hd such that

‖u− ψϑ′,~α‖2
Ḣ1/2(R)

≤ Cd,Ω,εD(u). (1.11)

Here Ωε = ∪p∈ΩBε(p) with Bε(p) are open balls in D.
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For harmonic maps, one can expect similar things happening here. We conjecture that
there is local version of quantitative stability, while no uniform one as simple as (1.6) holds
for higher degree.

1.2. Comments on the proofs. We briefly sketch the main idea behind the proofs of The-
orem 1.1-1.5. To show the non-degeneracy, we start with the harmonic extension (denote
as U ) of any half-harmonic map u to R2

+. It has been proven by [27, 26] that the Hopf
differential of U

Φ = (|∂xU |2 − |∂yU |2)− 2i ∂xU · ∂yU ≡ 0. (1.12)

This actually implies U must be a holomorphic or anti-holomorphic function on H. If v ∈
kerLu, then we anticipate its harmonic extension V is also holomorphic or anti-holomorphic
on H. This is done by considering

Φ̃ = 2UzV̄z = ∂xU · ∂xV − ∂yU · ∂yV − i (∂xU · ∂yV + ∂xV · ∂yU). (1.13)

Note that Φ̃ can be thought of the derivative of Φ in (1.12). One can show that Φ̃ ≡ 0
which implies V is (anti-)holomorphic on H when U is (anti-)holomorphic. A crucial step is
defining W = V/U . Since u · v = 0 on R, then W is purely imaginary on ∂H. By Scharwz
reflection, we can extend W to a meromorphic function on C. One can show that W has no
essential pole at infinity and thus W is a rational functions. By counting the dimension of
admissible rational functions, we get dimR kerLu = 2|degu| + 1. This exactly matches the
dimension of parameters generating nearby half-harmonic maps.

The proof of Theorem 1.3 follows closely the approach in [22]. They use harmonic poly-
nomials to do the computation there, while here we use Fourier series of functions S → S
instead. Thanks to the fact that the Ḣ1/2(S) norm and degree of any map u ∈ Ḣ1/2(S;S) can
be written explicitly using the coefficients of Fourier series, the proof here is much shorter
than that in [22]. The proof of Theorem 1.5 is a carefully refinement of the case degree ±1
and induction. Non-degeneracy can be used to prove quantitative stability estimates in some
cases. The reason behind this is that the linearized operator has a spectral gap on the orthog-
onal space of its kernel. For instance, one can see [4]. For similar approaches on fractional
Sobolev inequality, one can see [9]. There might be possible to prove Theorem 1.5 using the
non-degeneracy result we have shown. Since using Fourier series is more direct, we did not
pursue this direction.

To get an example violating the uniform quantitative stability, we choose to perturb ψ~α
with α1 = j2 + i and α2 = −j2 + i . For any u near to ψ~α, we formally decompose it to
the sum of one part in the kernel of linearized operator at ψ~α and the other part u⊥ in the
orthogonal space. If u⊥ is almost orthogonal to the kernel of the linearized operator at ψα1

or ψα2 , then one still gets (1.6). As j → ∞, ψα1 and ψα2 has very weak interaction. The
four elements of kerLψ~α split to two elements of kerLψα1

and two elements of kerLψα2
.

However, the element 1 ∈ kerLψ~α , which corresponds to the rotation, can not split. This
gives us some hope to find u⊥ which is almost orthogonal to kerLψ~α but lies in kerLψα1

and kerLψα2
approximately. One typical example is that u is 1 near j2 and is −1 near −j2,

which are centers of ψα1 and ψα2 respectively, as constructed in (5.21). Once realizing this,
the only job left is making sure the infimum in (1.9) can be achieved by ψ~α. This is done
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by using the implicit function theorem near ψ~α. We are inspired by the modulation analysis
near Talenti bubbles, for instance see [10].

1.3. Structure of the paper. In Section 2, we give a detailed preliminary on (−∆R)
1
2 ,

Ḣ1/2(R) and half-harmonic maps. The equivalence of half-harmonic maps defined on R
and S is used implicitly in the following sections. In Section 3, we prove the non-degeneracy
of the linearized operator at each half-harmonic map. We divert to consider the stability
from Section 4. There we prove the quantitative stability for degree ±1 and a local result
for higher degree. Section 5 devotes to constructing an example losing uniform stability.
Finally, we put some tedious computations in the Appendix which are needed in Section 5.

2. PRELIMINARY

In this section, we lay some foundations for half-harmonic maps. There are various per-
spective to define them.

2.1. Formulations on the real line.

Definition 2.1. For any f : R→ R, we define

(−∆R)
1
2f(x) =

1

π
P.V.

�
R

f(x)− f(y)

|x− y|2
dy. (2.1)

We call f ∈ Ḣ1/2(R) if

‖f‖2
Ḣ1/2(R)

:=
1

4π2

�
R×R

|f(x)− f(y)|2

|x− y|2
dxdy <∞. (2.2)

Suppose u = (u1, u2) is a map from R into S. Here and the following we always assume S
is embedded in R2 = C. Define the energy of u : R→ S by

E(u) :=
1

2π

�
R
u · (−∆R)

1
2udx. (2.3)

Using |u| = 1, it is easy to verify that

u · (−∆R)
1
2u(x) =

1

2π
P.V.

�
R

|u(x)− u(y)|2

|x− y|2
dy. (2.4)

Consequently

E(u) = ‖u‖2
Ḣ1/2(R)

= ‖u1‖2
Ḣ1/2(R)

+ ‖u2‖2
Ḣ1/2(R)

. (2.5)

The functional E is invariant under the trace of conformal maps keeping invariant the half-
space R2

+: the Möbius group.

The critical points of E are called half-harmonic maps.

Definition 2.2. A map u ∈ Ḣ1/2(R,S) is called a weak half-harmonic map if for any φ ∈
Ḣ1/2 (R,R2)∩ L∞ (R,R2) there holds

d

dt

∣∣∣∣
t=0

E
(
u+ tφ

|u+ tφ|

)
= 0.
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Computing the associated Euler-Lagrange equation of (2.3), we obtain that if u : R → S
is a half-harmonic map, then u satisfies the following equation:

(−∆R)
1
2 u(x) =

(
u · (−∆R)

1
2u
)
u(x) in R. (2.6)

All the half-harmonic maps (with finite energy) have been classified by Millot and Sire
[27]. In the sequel, we identify R2 with the complex plane C writing z = x1 + ix2. We shall
write u = u1 + iu2 for any map u = (u1, u2).

Theorem 2.3 (Millot and Sire [27]). Let u ∈ Ḣ1/2 (R;S) be a non-constant half-harmonic
map into S. Let U be the harmonic extension of u to R2

+. There exist some d ∈ N, ϑ ∈ R and
{αk}dk=1 ⊆ H = {z ∈ C : Im z > 0} such that U(z) or its complex conjugate equals

ψϑ,~α := eiϑ
d∏

k=1

z − αk
z − ᾱk

. (2.7)

Furthermore,

‖u‖2
Ḣ1/2(R)

=
1

2π

�
R2

+

|∇U |2 dz = d. (2.8)

The above theorem says that the Stereographic projection

S(x) =

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
: R→ S (2.9)

is a half-harmonic map. Actually one can verify it directly. It follows from (2.1) and some
computations that

(−∆)
1
2S(x) =

1

π
P.V.

�
R

S(x)− S(y)

|x− y|2
dy =

(
4x

(1 + x2)2 ,
2 (x2 − 1)

(1 + x2)2

)
, (2.10)

1

2π

�
R

|S(x)− S(y)|2

|x− y|2
dy =

2

1 + x2
. (2.11)

It is easy to verify that S satisfies (2.6). Therefore it is a half-harmonic map from R→ S.

2.2. Formulations on the unit circle. Using the Stereographic projection in (2.9), one can
reformulate the problem by the maps from S to S. To that end, we parametrize S = {ei θ :
θ ∈ [0, 2π)}. Let S(x) = ei θ, S(y) = eiϑ, then

|ei θ − eiϑ|2 = |S(x)− S(y)|2 =
4(x− y)2

(x2 + 1)(y2 + 1)
.

Using x = S−1(θ) := S−1(ei θ), we can write f(x) defined on R to f̃(θ) defined on S. By
the above identity and (2.1), we obtain

(−∆R)
1
2f(x) =

1

π
P.V.

�
R

f(x)− f(y)

|x− y|2
dy =

2

1 + x2

1

π
P.V.

�
S

f̃(θ)− f̃(ϑ)

|ei θ − eiϑ|2
dϑ. (2.12)

This leads to the definition of (−∆S)
1
2 .
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Definition 2.4. For any f̃ : S→ R, we define the

(−∆S)
1
2 f̃(θ) :=

1 + x2

2
(−∆R)

1
2f(x) =

1

π
P.V.

�
S

f̃(θ)− f̃(ϑ)

|ei θ − eiϑ|2
dϑ. (2.13)

We call f̃ ∈ Ḣ1/2(S) if and only if

‖f̃‖2
Ḣ1/2(S)

:=
1

4π2

�
S×S

|f̃(θ)− f̃(ϑ)|2

|ei θ − eiϑ|2
dϑdθ <∞.

Using (2.12), it is easy to see that for any f : R→ S,

‖f‖Ḣ1/2(R) = ‖f ◦ S−1‖Ḣ1/2(S). (2.14)

Therefore S is an isometric isomorphism of Ḣ1/2(R) and Ḣ1/2(S).

Now for any map u = (u1, u2) : S → S, we still adopt the notation u = u1 + iu2 is a
complex-valued function, we define (−∆S)

1
2u = (−∆S)

1
2u1 + i (−∆S)

1
2u2 and

‖u‖2
Ḣ1/2(S)

:= ‖u1‖2
Ḣ1/2(S)

+ ‖u2‖2
Ḣ1/2(S)

= Re
�
S
ū(−∆S)

1
2u. (2.15)

Here we have used the multiplication of two complex numbers and Re denotes the real part.
One readily derive that ‖idS‖2

Ḣ1/2(S)
= 1.

One also define the energy as E(u) = ‖u‖2
Ḣ1/2(S)

and the the critical points of E are called
half-harmonic maps S→ S, which satisfy

(−∆S)
1
2u(θ) =

(
1

2π
P.V.

�
S

|u(θ)− u(ϑ)|2

|ei θ − eiϑ|2
dϑ

)
u(θ) on S. (2.16)

The isometry in (2.14) infers the one-to-one correspondence of half-harmonic maps between
R→ S and S→ S through the stereographic projection.

One of the great advantages of working on S is that we have the Fourier expansion.
Namely for any u : S→ C, we formally have

u =
∞∑
−∞

cke
i kθ =

∑
k∈Z

ckz
k, where ck =

 
S
uz−kdθ.

Using the fact that (−∆S)
1
2 zk = |k|zk for any k ∈ Z (for instance, see [34]), we have the

following interpretation of (−∆S)
1
2 ,

(−∆S)
1
2u =

∑
k∈Z

|k|ckzk,

consequently (2.15) implies

‖u‖2
Ḣ1/2(S)

=
∑
k∈Z

|k||ck|2. (2.17)

Furthermore, if u maps S to S, then |u| = 1 is equivalent to∑
j∈Z

|cj|2 = 1,
∑
j∈Z

c̄jcj+k = 0, ∀ k ∈ Z. (2.18)
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Recall that the degree (or winding number) is well defined for Ḣ1/2(S;S) by de Monvel-
Berthier et al. [15] (see also Brezis and Nirenberg [6]). More precisely,

degu =
1

2πi

�
S
ūdu =

1

2π

�
S
u ∧ uθdθ =

∞∑
−∞

k|ck|2. (2.19)

Throughout this paper, we use the notation (z1 + i z2)∧ (w1 + iw2) = z1w2−z2w1. From the
above equation and (2.17), one can see that the degree is continuous in Ḣ1/2(S;S) topology.
For u ∈ Ḣ1/2(R;S), we shall define degu = degu ◦ S−1. We have the following simple
fact.

Lemma 2.5. If u, v ∈ Ḣ1/2(S;S), then deg (uv) = degu+ deg v.

Proof. Since u, v take values in S, then using (2.19) to obtain

deg (uv) =
1

2πi

�
S
ūv̄d(uv) =

1

2πi

�
S
ūdu+ v̄dv = degu+ deg v.

�

Define D = {ξ = x + i y : |ξ| < 1} and consider S = ∂D. Recall that f ∈ Ḣ1/2(S) if
and only if it is the trace of some function in Ḣ1(D). The energy for u ∈ Ḣ1/2(S; S) has a
tractable representation

‖u‖2
Ḣ1/2(S)

= inf

{
1

2π

�
D
|∇U |2 : U ∈ Ḣ1(D;D) with TrU = u

}
. (2.20)

This infimum is achieved by the harmonic extension of u. Since ∂U/∂ν = (−∆S)
1
2u on S,

where ν is the outward unit normal of ∂D, then (2.16) is equivalent to{
∆U = 0 in D,
∂U
∂ν
∧ U = 0 on S.

(2.21)

All half-harmonic maps, as classified in Theorem 2.3, are Blaschke products of d Möbius
transformations of D or their complex conjugate. This can seen from Cayley transformation.
Recall that Cayley transform is a bi-holomorphic mapping C : H→ D which is defined as

ξ = C(z) := i
z − i
z + i

. (2.22)

Here and the following, we use ξ to denote the complex coordinates of D and z to denote
that of H. Note that the boundary mapping of C(z) is just the stereographic projection (2.9).

By the one-to-one correspondence of half-harmonic maps in Ḣ1/2(R;S) and Ḣ1/2(S;S),
one can obtain all half-harmonic maps in Ḣ1/2(S;S) from (2.7). More precisely, it consists
of Blaschke products {φϑ′,~a : ϑ′ ∈ S, ~a = (a1, · · · , ad) ∈ Dd} and their complex conjugates,
where

φϑ′,~a(ξ) := eiϑ
′
d∏
j=1

ξ − aj
1− ājξ

. (2.23)
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The parameters in (2.7) and the above equation are related by

aj = C(αj), ϑ′ = ϑ+
d∑
j=1

θj, ei θj =
−αj − i
1 + i ᾱj

. (2.24)

Using some integration by parts, the degree of u (see (2.19)) can also be defined by

degu =
1

π

�
D
Ux ∧ Uydxdy. (2.25)

Notice the following identity when U = U1 + iU2

|∇U |2 =
(
U1
x − U2

y

)2
+
(
U1
y + U2

x

)2
+ 2Ux ∧ Uy > 2Ux ∧ Uy. (2.26)

Since φϑ,~a is holomorphic in D, φϑ,~a achieves the identity for the above equation. Combining
this with (2.20) and (2.25), we just proved (2.8) since

‖φϑ,~a‖2
Ḣ1/2(S)

= degφϑ,~a = d. (2.27)

We show the proof of Theorem 1.2 to end this section.

Proof of Theorem 1.2. The inequality is trivial by (2.26). The proof of equality is essen-
tially contained in [28]. For the reader’s convenience, we include it here. Suppose U is the
harmonic extension of u. It follows from ‖u‖Ḣ1/2(S) = |degu| and (2.26) that

U1
x = U2

y and U1
y = U2

x in L2(D).

By Weyl’s lemma, this is equivalent to U being holomorphic from D to D. Moreover,
|U(z)| → 1 uniformly as |z| → 1 (see [6]). Then the result of Burckel [7] implies all
such maps must be Blaschke products. �

3. NON-DEGENERACY OF THE LINEARIZED OPERATOR

Consider the half-harmonic map u = u1 + iu2 : R→ S, equation (2.6) is equivalent to

(−∆R)
1
2u ∧ u = 0. (3.1)

The linearized operator at u is

Lu[v] = (−∆R)
1
2u ∧ v + (−∆R)

1
2v ∧ u. (3.2)

We define

kerLu = {v = v1 + i v2 ∈ Ḣ1/2(R;C) : Lu[v] = 0, u1v1 + u2v2 = 0}.

Suppose V = V1 + iV2 is the harmonic extension of v to the upper half space H by Possion
kernel, then v ∈ kerLu is equivalent to{

∆V = 0 in H,
∂yU ∧ v + ∂yV ∧ u = 0 on ∂H.

(3.3)
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The stereographic projection induces an isometry between Ḣ1/2(R) and Ḣ1/2(S). For a
half-harmonic map u : S→ S, one can also define the linearized operator

L̃u[v] = (−∆S)
1
2u ∧ v + (−∆S)

1
2v ∧ u (3.4)

and ker L̃u = {v ∈ Ḣ1/2(S;C) : L̃u[v] = 0,Reuv̄ = 0}.

Lemma 3.1. For any half-harmonic map u : R→ S, let ũ = u ◦ S−1, we have

Lu = JS(L̃ũ ◦ S−1)

where JS = (1− sin θ) is the Jacobian of S. Consequently dimR kerLu = dimR ker L̃ũ.

Proof. It is easy to show that the Jacobian of S is

JS =
2

x2 + 1
= 1− sin θ.

Recall from (2.1) that

(−∆R)
1
2u(S(θ)) = (1− sin θ)(−∆S)

1
2 ũ(θ).

For any v ∈ Ḣ1/2(R;C), denote ṽ = v ◦ S−1 ∈ Ḣ1/2(S;C), then

Lu[v](x) = (−∆R)
1
2u ∧ v + (−∆R)

1
2v ∧ u = (1− sin θ)L̃ũ[ṽ].

�

The operator Lu (or L̃u) arise naturally in the linearization of the energy functional E . To
see that, let us use u⊥ denote the vector rotating u counterclockwise by π/2. Any variation
φ can be written as h̃u+ hu⊥ for some real-valued function h̃ and h in Ḣ1/2(R).

Lemma 3.2. Suppose that u is a half-harmonic map R → S and φ = h̃u + hu⊥ is a
variation satisfying |u+ φ| = 1. Then

E(u+ φ) = E(u) +

�
R
hLu[h] +O(h3) (3.5)

where the operator Lu is given by

Lu = (−∆R)
1
2 − (u · (−∆R)

1
2u) +R (3.6)

with the integral operator

(Rf)(x) =
1

2π

�
R

|u(x)− u(y)|2

|x− y|2
f(y)dy. (3.7)

Proof. The constraint |u + φ|2 = 1 a.e. implies that 2h̃ + h̃2 + h2 = 0. Then h̃ = −1
2
h2 +

O(h3). We have

E(u+ φ) = E(u) + 2

�
R
φ · (−∆R)

1
2u+

�
R
φ · (−∆R)

1
2φ

= E(u)−
�
R
(u · (−∆R)

1
2u)h2 +

�
R
φ · (−∆R)

1
2φ+O(h3).

(3.8)
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It follows from (2.1) that

(−∆R)
1
2 (hu⊥)(x) = ((−∆R)

1
2h(x))u⊥(x) +

1

π
P.V.

�
R

u⊥(x)− u⊥(y)

|x− y|2
h(y)dy. (3.9)

Using u⊥(x) · (u⊥(x)− u⊥(y)) = 1− u(x) · u(y) = 1
2
|u(x)− u(y)|2, we conclude that

�
R
φ · (−∆R)

1
2φ =

�
R
(h̃u+ hu⊥) · (−∆R)

1
2 (h̃u+ hu⊥)

=

�
R
hu⊥ · (−∆R)

1
2 (hu⊥) +O(h3)

=

�
R
h(−∆R)

1
2h+

1

2π

�
R×R

|u(x)− u(y)|2

|x− y|2
h(x)h(y)dxdy +O(h3).

Plugging it into (3.8), we get (3.5). �

For any v = v1 + i v2 ∈ Ḣ1/2(R;C) satisfying u1v1 +u2v2 = 0, we can write v = hiu for
some real-valued function h on R. Then one can verify that

Lu[v] = (−∆R)
1
2u ∧ (hiu) + (−∆R)

1
2 (hiu) ∧ u

=[(−∆R)
1
2u ∧ iu]h− (−∆R)

1
2h(iu ∧ u) +

1

π
P.V.

�
R

(iu(x)− iu(y)) ∧ u(x)

|x− y|2
h(y)dy

=(u · (−∆R)
1
2u)h− (−∆R)

1
2h−Rh

=− Lu[h].

Lemma 3.3. Suppose u is a half-harmonic map from R to S, then dimR kerLu ≥ 2|degu|+1.
More precisely, for instance, if u = eiϑ∏k

j=1(
x−αj
x−ᾱj )

dj with {αj}kj=1 are distinct and dj ≥ 1,
then

kerLu ⊃ spanR

{
1,Re

1

(x− ᾱj)s
, Im

1

(x− ᾱj)s
: s = 1, · · · , dj, j = 1, · · · , k.

}
iu.

Proof. Assume d = degu > 0. It is known that u takes form (1.4) if and only if there exists
c0, · · · , cd−1 ∈ C and ϑ ∈ S such that

u = eiϑx
d + cd−1x

d−1 + · · ·+ c1x+ c0

xd + c̄d−1xd−1 + · · ·+ c̄1x+ c̄0

(3.10)

with xd + cd−1x
d−1 + · · · + c1x + c0 has zeros all in H. This fact comes from the theorem

3.3.2 in [19] (page 43) and conformal equivalence between D and H.

It is clear that changing the parameters ϑ, cd−1, · · · , c0 (complex numbers) of u contin-
uously yields a family of half-harmonic maps. Therefore, it generates kernel maps for the
linearized operators Lu. Taking derivatives of u on ϑ, we get {iu} ⊂ kerLu. It is easy to
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see that for l = 0, · · · , d− 1,

∂cju = eiϑ xl

xd + c̄d−1xd−1 + · · ·+ c̄1x+ c̄0

=
xlu∏k

j=1(x− αj)dj
, (3.11)

∂c̄ju =
−xlu

xd + c̄d−1xd−1 + · · ·+ c̄1x+ c̄0

=
−xlu∏k

j=1(x− ᾱj)dj
. (3.12)

Note that x ∈ R. Taking derivative of u on the real part of cj , we get

∂cju+ ∂c̄ju = 2iu Im
xl∏k

j=1(x− ᾱj)dj
. (3.13)

Taking derivative of u on the imaginary part of cj , we get

i (∂cju− ∂c̄ju) = 2iu Re
xl∏k

j=1(x− ᾱj)dj
. (3.14)

Therefore, the R-linear combination of them must belong to kerLu.

kerLu ⊃ spanR

{
1,Re

xl∏k
j=1(x− ᾱj)dj

, Im
xl∏k

j=1(x− ᾱj)dj
: l = 0, · · · , d− 1

}
iu

= spanR

{
1,Re

1

(x− ᾱj)s
, Im

1

(x− ᾱj)s
: s = 1, · · · , dj, j = 1, · · · , k.

}
iu.

Obviously they are all R-linearly independent, therefore dimR kerLu ≥ 2|d|+ 1.

If d = 0, then obviously {iu} ⊂ kerLu and thus dimR kerLu ≥ 1. If d < 0, one can
prove similarly as above by working on the conjugate of u. �

Suppose that V = (V1, V2). We abuse the notation V = V1 + iV2 and denote it a complex-
valued function defined on upper half plane H. We also adopt the notation ∂z = 1

2
(∂x− i ∂y),

∂z̄ = 1
2
(∂x + i ∂y).

Lemma 3.4. Suppose u is half-harmonic map from R to S. If v ∈ kerLu with degu > 0
(degu < 0), then V is holomorphic (anti-holomorphic) in H. Moreover, V can be extended
to a meromorphic (anti-meromorphic) function with possible poles at poles of U . In addition,
V ◦ C−1 is smooth on D.

Proof. We just prove the case degu > 0. Define the Hopf differential

Φ = 2UzV̄z = ∂xU · ∂xV − ∂yU · ∂yV − i (∂xU · ∂yV + ∂xV · ∂yU). (3.15)

Here in the middle we are using complex multiplication and V̄z = ∂zV̄ . Since U is holomor-
phic, then

Φz̄ = 2Uzz̄V̄z + 2UzV̄zz̄ = 2UzVzz̄ =
1

2
Uz∆V = 0.

Therefore Φ is holomorphic in H. We claim that Im Φ = 0 on ∂H. To see that, the boundary
condition in (3.3) means

0 = ∂yV ∧ u+ (u · ∂yU)u ∧ v = (∂yV − (u · ∂yU)v) ∧ u on ∂H, (3.16)
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which means

∂yV = (u · ∂yU)v + (u · ∂yV )u, on ∂H. (3.17)

Since ∂xu · u = 0 and ∂xu · v + u · ∂xv = 0 on ∂H, then

∂xu · ∂yV + ∂xv · ∂yU = (u · ∂yU)∂xu · v + (u · ∂yU)∂xv · u = 0. (3.18)

Thus we have shown that g(z) := Im Φ vanishes on ∂H. By odd reflection across ∂H,
we can extend the harmonic function g to all of C. However, since g is harmonic and g ∈
L1(R2

+) because U, V ∈ Ḣ1(R2
+), we conclude that g ≡ 0 on C. Thus Φ is real-valued

and holomorphic, which implies that Φ is constant. Since Φ ∈ L1(R2
+), we deduce that

Φ(z) ≡ 0.

Now we have Φ = 2UzV̄z = 0. Since Uz only have isolated zeros in H, then V̄z = 0.
Consequently, V is holomorphic.

We shall rewrite U as

U(z) = eiϑ
k∏
j=1

(
z − αj
z − ᾱj

)dj
(3.19)

with αj ∈ H which are different from each other. Then d1 + · · · + dk = d. Now define
W = V/U . Then the previous argument implies that W is a meromorphic function on H
with possible poles at {α1, · · · , αk}. The orthogonality condition says that u1v1 + u2v2 = 0
on ∂H. Therefore the real part of W vanishes on ∂H because

W =
v1 + i v2

u1 + iu2

=
u1v1 + u2v2

u2
1 + u2

2

+ i
u1v2 − u2v1

u2
1 + u2

2

. (3.20)

By Schwarz reflection principle, we can extend W to a meromorphic function on C (we
still denote it as W ) by W (z) = −W (z̄) for the lower half plane. Now W has possible
poles at {α1, · · · , αk, ᾱ1, · · · , ᾱk}. The order of W at αj (or ᾱj) is at most dj . Since U is
a meromorphic function on C, then so does V = WU . The poles of V are contained in
{ᾱ1, · · · , ᾱk}.

Note that ᾱj , j = 1, · · · , k, are all away from the ∂H. Therefore V is holomorphic at
any point on ∂H. Since C is a holomorphic on H, then V ◦ C−1 is holomorphic in D \ {i}.
Because Ḣ1/2(R;C) is isometric to Ḣ1/2(S;C) through the stereographic projection, then
v ◦ C−1 ∈ Ḣ1/2(S;C). Thus v ◦ C−1 ∈ ker L̃u◦C−1 . However, we can repeat the above whole
process by using another bi-holomorphic mapping between H and D, say (z− i )/(z+ i ), to
show that V ◦ C−1 is holomorphic in D \ {1}. Combining with the previous statement, we
know V ◦ C−1 is holomorphic in D. �

Now we can prove the Theorem 1.1.

Proof of Theorem 1.1. We shall assume degu > 0 and U takes the form (3.19). Suppose
v ∈ kerLu and V is the harmonic extension to R2

+. Define W = V/U . Lemma 3.4 implies
that W is meromorphic on C with possible poles at {α1, · · · , αk, ᾱ1, · · · , ᾱk}. The order of
W at αj (or ᾱj) is at most dj .
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We claim that W is bounded at infinity. Indeed, this just follows from the fact that V ◦C−1

is holomorphic in D and consequently V is bounded on H.

Thus W is a rational function. There exists some polynomial P (x) such that

W (z) =
P (z)

Q(z)
, Q(x) =

k∏
j=1

(z − aj)dj(z − āj)dj . (3.21)

The boundedness of W implies degP ≤ 2d. Since W (z) = −W (z̄) and Q(z) = Q(z̄), it
holds that P (z) = −P (z̄). If P (z) = c0 + c1z + · · ·+ c2dz

2d, then one must have cj = −c̄j .
The dimension of all such polynomials is 2d+1. Thus dimR kerLu ≤ 2|degu|+1. Applying
Lemma 3.1 and Lemma 3.3, we conclude dimR kerLu = 2|degu| + 1. Furthermore, if
u = eiϑ∏k

j=1(
x−αj
x−ᾱj )

dj with {αj}kj=1 are distinct and dj ≥ 1, then

kerLu = spanR

{
1,Re

1

(x− ᾱj)s
, Im

1

(x− ᾱj)s
: s = 1, · · · , dj, j = 1, · · · , k.

}
iu.

�

Remark 3.5. Translating the above results to half-harmonic map ũ : S→ S (see (2.23)), we
can get

ker L̃ũ = spanR

{
1, Im

ξj∏d
i=1(ξ − ai)

,Re
ξj∏d

i=1(ξ − ai)
: j = 0, · · · , d− 1

}
i ũ.

In particular, if ũ = ξm, then

ker L̃ξm = i ξm spanR{1, Im ξj−m,Re ξj−m : j = 0, · · · ,m− 1}. (3.22)

Using ξ = cos θ + i sin θ on S, we can rewrite it as

ker L̃ξm = i ξm spanR{1, sin jθ, cos jθ : j = 1, · · · ,m}. (3.23)

This recovers the result of Lenzmann and Schikorra [26, Proposition 6.2].

4. STABILITY OF HALF-HARMONIC MAP

We only need to show the Theorem 1.3 for d = 1. The negative case follows from taking
complex conjugate in the proof. The case d = ±1 has a flavor of the main theorem proved
by Hirsch and Zemas [22] about the stability of harmonic maps S2 → S2 with degree ±1.
We will use induction to prove a local quantitative stability for higher degree.

Denote the set of all maps in Ḣ1/2(S;S) with degree d by

AdS = {u ∈ Ḣ1/2(S;S) : deg u = d}. (4.1)

Lemma 4.1. For any u ∈ AdS with |d| ≥ 1, there exists a0 ∈ D such that
�
S u ◦ φ0,a0 = 0.
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Proof. Assume first u ∈ Ḣ1/2(S;S) ∩ C∞. Since |degu| > 1, then u is surjective. We will
write φ0,a = φa for short. Define

F (a) =

 
S
u ◦ φ−a :=

1

2π

�
S
u ◦ φ−a. (4.2)

One readily knows F is continuous and maps D to D and F (0) =
�
S u. For any ζ ∈ ∂D = S,

one has
lim
r→1−

φ−rζ(θ) = ζ, ∀ θ 6= −ζ

and this convergence is uniform on {a ∈ D : |a + ζ| ≥ ε} for any ε > 0. This implies
that limr→1− F (rζ) = u(ζ) ∈ S uniformly in ζ . Hence F is a continuous function on D.
Moreover, the Lerary-Schauder degree of F with respect to 0 is the same as the winding
number of u (see [29]). By Leray-Schauder degree theory, there exists a0 ∈ D such that
F (a0) = 0.

In the general case of a map u ∈ A1
S, one can approximate u by a sequence of uj ∈

C∞(S;S) with the property that

uj → u strongly with u ∈ Ḣ1/2(S;S) and deguj = degu.

Going to a subsequence if necessary, we can assume uj → u a.e. S. By the previous
paragraph, there exists aj ∈ D such that 

D
uj ◦ φaj = 0.

We must have |aj| < 1− ε0. Suppose not, then there is a subsequence, which we still label
it as aj , converging to some −ζ ∈ ∂D. Then φaj → ζ a.e on S and uj ◦ φaj → u(ζ) a.e. on
S. So we can use Dominated Convergence Theorem to infer that

u(ζ) =

 
S
u(ζ) = lim

j→∞

 
S
uj ◦ φaj = 0.

However, since |uj ◦ φaj | ≡ 1,

|u(ζ)| =
 
S
|u(ζ)| = lim

j→∞

 
S
|uj ◦ φaj | = 1.

This is a contradiction. Now we can assume aj → a0 where a ∈ D and consequently 
S
u ◦ φa0 = 0.

�

Proof of Theorem 1.3. By the Lemma 4.1, it suffices to prove the stability (1.8) for u ∈ A1
S

with the additional assumption
�
S u = 0. This is due to the invariance of energy and the

degree under Möbius transformation of D, namely

E(u) = E(u ◦ φa), degu ◦ φa = degu = 1 (4.3)
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holds for any a ∈ D and the group structure of Möbius transformations

φb ◦ φa = φ a+b
1+āb

. (4.4)

If D(u) ≥ 1, then

D(u) ≥ 1 = degu = ‖u‖2
Ḣ1/2(S)

−D(u), (4.5)

which means ‖u‖2
Ḣ1/2(S)

≤ 2D(u). Consequently (1.8) holds. Thus for the following, we
can assume D(u) < 1.

Suppose that u =
∑

k∈Z ckz
k. By the previous step, we can assume c0 = 0. Since u ≡ 1

a.e. S, then

D(u) =‖u‖2
Ḣ1/2(S)

−
 
S
u2 =

∑
k≥1

[k − 1](|ck|2 + |c−k|2)

≥1

2

∑
k≥2

k(|ck|2 + |c−k|2) =
1

2
‖u− c1e

i θ − c−1e
−i θ‖2

Ḣ1/2(S)
.

That is

‖u− c1e
i θ − c−1e

−i θ‖2
Ḣ1/2(S)

≤ 2D(u). (4.6)

Again |u| ≡ 1 a.e. S and (2.18) implies∑
k≥1

|ck|2 + |c−k|2 = 1.

Combining with the consequence of (2.19), that is

1 = degu =
∑
k≥1

k(|ck|2 − |c−k|2),

one obtains

1− |c1|2 ≤
∑
k≥2

(|ck|2 + |c−k|2) ≤ D(u), (4.7)

|c−1|2 ≤
1

2

∑
k≥2

k(|ck|2 − |c−k|2) ≤ D(u). (4.8)

Therefore plugging in (4.7) and (4.8) to (4.6), we obtain

‖u− ei (θ+arg c1)‖2
Ḣ1/2(S)

≤ 9
[
2D(u) + ‖c−1e

−i θ‖2
Ḣ1/2(S)

+ ‖(ei arg c1 − c1)ei θ‖2
Ḣ1/2(S)

]
≤ 9[3D(u) + (1− |c1|)2] ≤ 9[3D(u) +D(u)2].

Since we assume D(u) < 1, then the above inequality implies

‖u− eiϑidS‖2
Ḣ1/2(S)

≤ 36D(u),

for some ϑ. Therefore (1.8) is established.

�
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Now we plan to prove Theorem 1.5. Before that, let us make some preparations. First, we
can expand φϑ,~b to be

φϑ,~b = eiϑ
∑
k≥0

Ak(~b)z
k (4.9)

where Ak(~b) is some function for~b for each k. For instance, for any a ∈ D,

φa =
z − a
1− āz

= (z − a)
∑
k≥0

ākzk = −a+
∑
k≥1

(1− |a|2)āk−1zk. (4.10)

Since φϑ,~b = eiϑφb1 · · ·φbd , one knows A0(~b) = (−1)d
∏d

j=1 bj . For any vector ~b ∈ Dd

and a set Ω ∈ D, we abuse the notation that ~b ∈ Ωd if b = (b1, · · · , bd) with bi ∈ Ω for
i = 1, · · · , d.

Lemma 4.2. Suppose Ω b D is compact. There exists a εΩ > 0 and NΩ such that, for any
Blaschke product φϑ,~b with~b ∈ Ωd, we have

max
1≤i≤NΩ

{|Ai(~b)|} ≥ εΩ. (4.11)

Proof. Let ε(N) =
∑

1≤k≤N |Ak(~b)|2. By the assumption, there exists ε1 = ε1(Ω) such that

|A0(~b)|2 ≤ 1− ε1, ∀~b ∈ Ωd.

By the property (2.18), we get
∑

k≥0 |Ak(~b)|2 = 1. Then∑
k≥N+1

|Ak(~b)|2 ≥ ε1 − ε(N).

Since degφϑ,~b = d and (2.19), we get
∑

k≥1 k|Ak(~b)|2 = d. Then∑
k≥N+1

k|Ak(~b)|2 ≤ d− ε(N).

Compare the above two inequalities, we get

d− ε(N) > (N + 1)(ε1 − ε(N)).

Now we choose NΩ such that (NΩ + 1)ε1 > d. One readily see that

ε(NΩ) >
1

NΩ

[(NΩ + 1)ε1 − d].

This implies (4.11) holds for εΩ = (ε(NΩ)/NΩ)1/2. �

Proposition 4.3. Suppose Ω b D is compact. There exists a constant CΩ such that, for any
u ∈ AdS and~b ∈ Ωd, we have

‖u− φϑ,~b‖
2
L2(S) ≤ CΩ

(
‖u− φϑ,~b‖

2
Ḣ1/2(S)

+D(u) +D(u)2
)
. (4.12)
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Proof. Without loss of generality, we will assume ϑ = 0 in the assumption, and write φϑ,~b =

φ~b for short. Suppose that u ∈ AdS with the Fourier expansion u =
∑

k∈Z ckz
k. By (2.17),

(2.19) and (1.7),

D(u) =
∑
k∈Z

|k||ck|2 −
∑
k∈Z

k|ck|2 = 2
∑
k≤−1

|k||ck|2. (4.13)

Now since u− φ~b =
∑

k≥0(ck − Ak)zk +
∑

k≤−1 ckz
k, then

‖u− φ~b‖
2
Ḣ1/2(S)

=
∑
k≥1

k|ck − Ak(~b)|2 +
∑
k≤−1

|k||ck|2 (4.14)

and

‖u− φ~b‖
2
L2(S) = 2π

∑
k≥0

|ck − Ak(~b)|2 + 2π
∑
k≤−1

|ck|2. (4.15)

Combining (4.13), (4.14), we get

‖u− φ~b‖
2
L2(S) ≤ 2π

(
|c0 − A0(~b)|2 + ‖u− φ~b‖

2
Ḣ1/2(S)

+D(u)
)
. (4.16)

It suffices to establish the following claim.

Claim 1. There exists a constant CΩ independent of u and~b such that

|A0(~b)− c0| ≤ CΩ

(
‖u− φ~b‖Ḣ1/2(S) +D(u) +

√
D(u)

)
. (4.17)

In fact, Lemma 4.2 implies that there exists 1 ≤ k ≤ NΩ such that |Ak(~b)| ≥ εΩ. Without
loss of generality, we assume k = 1 and |A1(~b)| ≥ εΩ. The following proof still works for
other k with minor modification.

Since |u| = 1 and |φ~b| = 1 a.e. on S, (2.18) implies

c̄0c1 = −
∑

j∈Z\{0}

c̄jcj+1, Ā0A1 = −
∑
j≥1

ĀjAj+1. (4.18)

Here for the time being we write Ak(~b) = Ak for short. Subtract two equations and make
interpolation

A1(c̄0 − Ā0) =− c̄0(c1 − A1)−
∑
j≥1

[c̄jcj+1 − ĀjAj+1]−
∑
j≤−1

c̄jcj+1

=− c̄0(c1 − A1)−
∑
j≥1

[(c̄j − Āj)cj+1 + Āj(cj+1 − Aj+1)]−
∑
j≤−1

c̄jcj+1.

Applying Hölder’s inequality to get

|A1||c0 − A0| ≤

(∑
j≥1

|cj − Aj|2
) 1

2
(∑
j≥0

|cj|2 + |Aj|2
) 1

2

+ |D(u)|+ |c−1c0|

≤ 2‖u− φ~b‖Ḣ1/2(S) + |D(u)|+
√
D(u).

(4.19)

By our assumption |A1| ≥ εΩ, the inequality (4.17) holds.
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�

Lemma 4.4. Suppose Ω b D is compact. For any ε > 0, there exists δΩ,ε > 0 such that if
u ∈ AdS and

‖u− φϑ,~b‖
2
Ḣ1/2(S)

≤ δΩ,ε

for some ϑ ∈ S and ~b ∈ Ωd, then the harmonic extension of u has at least one zero at
Ωε = ∪p∈ΩBε(p). Here Bε(p) denotes an open ball in D.

Proof. Suppose u =
∑

k∈Z ckz
k. The harmonic extension U of u are simply U(z) =∑

k≥0 ckz
k +

∑
k<0 ckz̄

k where z ∈ D. Therefore

‖U − φϑ,~b‖
2
L2(D) = π2

∑
k≥0

|ck − Ak(~b)|2 + π2
∑
k≤−1

|ck|2 =
π

2
‖u− φϑ,~b‖

2
L2(S). (4.20)

Suppose ε > 0 is small enough such that Ωε b D. Otherwise, Leray-Schauder degree theory
tells us the conclusion holds obviously.

Since U − φϑ,~b is a harmonic function in D, then by the interior estimates

‖U − φϑ,~b‖C0(Ωε)
≤ CΩ,ε‖U − φϑ,~b‖L2(D). (4.21)

By the property of Leray-Schauder degree, there exists η = η(Ω, ε) such that if |U −
φϑ,~b|C0(∂Ωε) < η, then

deg (U,Ωε, 0) = deg (φϑ,~b,Ωε, 0).

Thus, we choose δΩ,ε = 2η2/(πC2
Ω,ε). The above equation will be true for any u satisfying

‖u − φϑ,~b‖2
Ḣ1/2(S)

< δΩ,ε. However, the zeros of φϑ,~b are b1, b2, · · · , bd, which all contained
in Ω. Therefore deg (φϑ,~b,Ωε, 0) = d. The above identity means u has at least one zero in
Ωε. �

Finally, we give the poof of the local version of quantitative stability.

Proof of Theorem 1.5. Here we work on the norm Ḣ1/2(S), but one can easily translate
results to norm Ḣ1/2(R) by (2.14). Without loss of generality, we will assume ϑ = 0 in the
assumption, and write φϑ,~b = φ~b for short. Choose any ε < dist(Ω, ∂D)/2 and fix it for the
rest of proof. Obviously Ωε b D. Suppose u ∈ AdS and

‖u− φ~b‖
2
Ḣ1/2(S)

≤ δd,Ω,ε (4.22)

holds for some small δd,Ω,ε, which is to be chosen later. If D(u) ≥ δd,Ω,ε, then we can take
~a = ~b and ϑ′ = 0. Then

‖u− φϑ′,~a‖2
Ḣ1/2(S)

≤ Cd,Ω,εD(u) (4.23)

holds for Cd,Ω,ε = 1. Therefore, we will assume D(u) < δd,Ω,ε for the rest of proof.

Claim 2. It suffices to prove the theorem for u ∈ AdS with the additional assumption
�
S u = 0.
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Indeed, it follows from Proposition 4.3 and Lemma 4.4 that there exists δ̃d,Ω,ε such that if
δd,Ω,ε < δ̃d,Ω,ε then the harmonic extension U of u has a zero, say a, within Ωε. Now consider
u ◦ φa. It satisfies

�
S u ◦ φa = 0, because u ◦ φa =

∑
ckφ

k
a, and�

S
u ◦ φa =

∑
k≥0

ck(−a)k +
∑
k≤−1

ck(−ā)k = U(−a) = 0. (4.24)

Since composing Möbius transformation does not alter the Ḣ1/2(S) norm,

‖u ◦ φa − φ~b ◦ φa‖
2
Ḣ1/2(S)

≤ δd,Ω,ε.

Moreover φ~b ◦ φa = φ~e with

ei =
bi + a

1 + ābi
= φ−a(bi), i = 1, · · · , d.

Note that a belongs to a compact set Ωε, which just depend on Ω. Then Ω ◦ φa := φ−a(Ω) is
uniformly away from ∂D, because for any z ∈ Ω

1− |φ−a(z)|2 = 1−
∣∣∣∣ z + a

1 + āz

∣∣∣∣2 =
(1− |a|2)(1− |z|2)

|1 + āz|2
≥ 1

6
dist(Ω, ∂D)2.

Suppose for Ω◦φa and u◦φa, we have find δd,Ω◦φa,ε̃ such that there exists ~a′ ∈ Ω◦φa+Bε̃(0)
and ϑ′ ∈ S

‖u ◦ φa − φϑ′,~a′‖2
Ḣ1/2(S)

≤ Cd,Ω◦φa,ε̃D(u ◦ φa).
Here ε̃ is chosen to satisfy

φa(Ω ◦ φa +Bε̃(0)) ⊂ Ωε, ∀a ∈ Ωε. (4.25)

Take δd,Ω,ε = min{δ̃d,Ω,ε, inf{δd,Ω◦φa,ε̃ : a ∈ Ωε}} and Cd,Ω,ε = sup{Cd,Ω◦φa,ε̃ : a ∈ Ωε}.
Again since Ω ◦ φa is uniformly away from ∂D, one must have δd,Ω,ε > 0 and Cd,Ω,ε < ∞.
Then for δd,Ω,ε, we can find ~a such that (4.23) holds with Cd,Ω,ε. Moreover, (4.25) means that
~a can be chosen in Ωε. Therefore Claim 2 is proved.

With the above claim in hand, we will prove the statement by induction.

Suppose d = 1, we write~b = b1 in (4.22). Theorem 1.3 guarantee the existence of ~a = a1

such that (4.23) holds with C1,Ω,ε = 36. It suffices to show |a1 − b1| < ε if δ1,Ω,ε is chosen
small enough. If fact, if (4.22) and (4.23) holds, then

‖φϑ,b1 − φϑ′,a1‖2
Ḣ1/2(S)

≤ 2‖u− φϑ,b1‖2
Ḣ1/2(S)

+ 2‖u− φϑ′,a1‖2
Ḣ1/2(S)

≤ 100δ1,Ω,ε. (4.26)

Direct computation shows that

‖φϑ,b1−φϑ′,a1‖2
Ḣ1/2(S)

= ‖φ
ϑ−ϑ′, b1−a1

1−ā1b1

− idS‖2
Ḣ1/2(S)

=

∣∣∣∣ei (ϑ−ϑ′)
(

1−
∣∣∣∣ b1 − a1

1− ā1b1

∣∣∣∣)− 1

∣∣∣∣2 +

∣∣∣∣ b1 − a1

1− ā1b1

∣∣∣∣2
(

2−
∣∣∣∣ b1 − a1

1− ā1b1

∣∣∣∣2
)
.

Now it is easy to deduce that
|b1 − a1| ≤ 20

√
δ1,Ω,ε.

Choose δ1,Ω,ε small so that |a1 − b1| < ε. This proves the case d = 1. Now by induction, we
can assume the theorem holds for the case d− 1 with δd−1,Ω,ε and Cd−1,Ω,ε.
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Claim 3. There exists δ̂d−1,Ω,ε such that if δd,Ω,ε < δ̂d−1,Ω,ε, then one can find~b′ ∈ Ωd−1 such
that

‖uz̄ − φ~b′‖
2
Ḣ1/2(S)

< δd−1,Ω,ε. (4.27)

To prove the claim, we notice that φ~b is invariant under the permutation of bi. Without loss
of generality, we assume |b1| ≤ · · · ≤ |bd|3. Recalling |A0(~b)| =

∏
1≤k≤d |bk| and (4.17), we

get |b1| ≤ 10δ
1/4d
d,Ω,ε. Let~b′ = (b2, · · · , bd) ∈ Ωd−1. By the Cauchy inequality

‖uz̄ − φ~b′‖
2
Ḣ1/2(S)

≤ 2‖uz̄ − z̄φ~b‖
2
Ḣ1/2(S)

+ 2‖z̄φ~b − φ~b′‖
2
Ḣ1/2(S)

. (4.28)

One can compute that

‖uz̄ − z̄φ~b‖
2
Ḣ1/2(S)

− ‖u− φ~b‖
2
Ḣ1/2(S)

=
∑
|k||ck+1 − Ak+1(~b)|2 −

∑
|k||ck − Ak(~b)|2

= −
∑
k≥1

|ck − Ak(~b)|2 +
∑
k≤0

|ck|2 < D(u).

Notice that

‖z̄φ~b − φ~b′‖
2
Ḣ1/2(S)

= ‖1− b1z̄

1− b̄1z
φb2 · · ·φbd − φb2 · · ·φbd‖2

Ḣ1/2(S)
→ 0 (4.29)

as δd,Ω,ε → 0. Therefore, choosing δd,Ω,ε small enough, we can get (4.27).

Therefore, by induction, we have ϑ′ ∈ S and ~a′ ∈ Ωd−1
ε/2 such that

‖uz̄ − φϑ′,~a′‖2
Ḣ1/2(S)

≤ Cd−1,Ωε/2,εD(uz̄). (4.30)

Claim 4. We claim that there exists Cd,Ω,ε such that

‖u− zφϑ′,~a′‖2
Ḣ1/2(S)

≤ Cd,Ω,εD(u). (4.31)

Indeed, since uz̄ =
∑
ck+1z

k,

D(uz̄) =2
∑
k≤−1

|k||ck+1|2 = 2
∑
k≤−1

|k + 1||ck+1|2 + 2
∑
k≤−1

|ck+1|2

=D(u) + 2
∑
k≤0

|ck|2 ≤ 2D(u).
(4.32)

Here in the last step, we have used c0 = 0. Then (4.30) and (4.32) imply

‖uz̄ − φϑ′,~a′‖2
Ḣ1/2(S)

≤ 2Cd−1,Ωε/2,εD(u). (4.33)

Since u− zφϑ′,~a′ =
∑

(ck − eiϑ′Ak−1(~a′))zk, then

‖u− zφϑ′,~a′‖2
Ḣ1/2(S)

=
∑
|k||ck − eiϑ′Ak−1(~a′)|2 =

∑
|k + 1||ck+1 − eiϑ′Ak(~a

′)|2

=‖uz̄ − φϑ′,~a′‖2
Ḣ1/2(S)

+
∑
k≥0

|ck+1 − eiϑ′Ak(~a
′)|2 −

∑
k≤0

|ck|2.

3such ordering might not be unique, but it does not affect the proof
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Since (2.17), we have
∑

k≥1 k|ck+1 − eiϑ′Ak(~a
′)|2 ≤ ‖uz̄ − φϑ′,~a′‖2

Ḣ1/2(S)

‖u− zφϑ′,~a′‖2
Ḣ1/2(S)

≤2‖uz̄ − φϑ′,~a′‖2
Ḣ1/2(S)

+ |c1 − eiϑ′A0(~a)|2

≤4Cd−1,Ωε/2,εD(u) + |c1 − eiϑ′A0(~a)|2.
(4.34)

Since |u| = 1 and |φϑ′,~a′ | = 1 a.e. on S, (2.18) implies

c̄1c2 = −
∑

j∈Z\{1}

c̄jcj+1, Ā0A1 = −
∑
j≥1

ĀjAj+1. (4.35)

Here and the following we writeAk(~a′) = Ak for short. We subtract two equations and make
interpolations.

eiϑ′A1(c̄1 − e−iϑ′Ā0) =− c̄1(c2 − eiϑ′A1)−
∑
j≥2

[c̄jcj+1 − Āj−1Aj]−
∑
j≤−2

c̄jcj+1

=− c̄1(c2 − eiϑ′A1)−
∑
j≤−2

c̄jcj+1

−
∑
j≥2

[(c̄j − e−iϑ′Āj−1)cj+1 + e−iϑ′Āj−1(cj+1 − eiϑ′Aj)].

Applying Hölder’s inequality and (4.33), we have

|A1||c1 − eiϑ′A0| ≤

(∑
j≥2

|cj − eiϑ′Aj−1|2
) 1

2
(∑
j≥1

|cj|2 + |Aj|2
) 1

2

+D(u)

≤ 2‖uz̄ − φϑ′,~a′‖Ḣ1/2(S) +D(u) ≤ 3
√

2Cd−1,Ωε/2,εD(u).

(4.36)

Here we used D(u) < δ < 1. Using Lemma 4.2, we have

|c1 − A0| ≤ 3ε−1
Ωε

√
2Cd−1,Ωε/2,εD(u). (4.37)

Plugging this back to (4.34) to get

‖u− zφϑ′,~a‖2
Ḣ1/2(S)

≤ Cd,Ω,εD(u) (4.38)

with Cd,Ω,ε = (4 + 18ε−2
Ωε

)Cd−1,Ωε/2,ε. The (4.31) is proved.

Having established Claim 4, we can see (4.23) holds with the choice of ~a = (0,~a′) ∈ Ωd
ε ,

δd,Ω,ε = min{δ̃d,Ω,ε, δ̂d−1,Ω,ε} and CΩ,d,ε = max{(4 + 18ε−2
Ωε

)Cd−1,Ωε/2,ε, 1}. The induction is
complete. �

5. A COUNTER EXAMPLE FOR HIGHER DEGREE

In this section we shall prove that there is no uniform stability. Recall that all the half-
harmonic maps from R to S with positive degree can be written in (1.4). Within this section,
we will assume αi = xi + iλi with xi ∈ R and λi > 0. Then

ψϑ,~α = eiϑx− x1 + iλ1

x− x1 + iλ1

x− x2 − iλ2

x− x2 + iλ2

. (5.1)
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One can equip Ḣ1/2(R,R2) with the inner product,

〈φ1,φ2〉 =
1

2π

�
R×R

(φ1(x)− φ1(y)) · (φ2(x)− φ2(y))

|x− y|2
dxdy. (5.2)

If φ2 is smooth enough, then RHS of the above equation can be written
�
Rφ1 · (−∆R)

1
2φ2.

We shall abuse the notation by denoting 〈φ1,φ2〉 =
�
Rφ1 · (−∆R)

1
2φ2 for all φ1,φ2 ∈

Ḣ1/2(R,R2). It should be interpreted as the RHS of the above equation. Let us use ψ⊥

denote the vector rotating ψ counterclockwise by π/2. If φ1 = h1ψ
⊥
ϑ,~α and φ2 = h2ψ

⊥
ϑ,~α

with h1, h2 ∈ H1/2(R;R), then

〈φ1,φ2〉 =

�
R
h1ψ

⊥
ϑ,~α · (−∆R)

1
2 (h2ψ

⊥
ϑ,~α)

=

�
R
h1(−∆R)

1
2h2 +

1

2π

�
R×R

Qϑ,~α(x, y)h1(x)h2(y)dxdy,

(5.3)

where

Qϑ,~α(x, y) =
|ψϑ,~α(x)−ψϑ,~α(y)|2

|x− y|2
. (5.4)

Remark 5.1. For instance, in the very special case ψ = x−λi
x+λi , then

ψ(x)− ψ(y) =
2λ2(x2 − y2)

(λ2 + x2)(λ2 + y2)
+ i

2λ(y − x)(λ2 − xy)

(λ2 + x2)(λ2 + y2)
.

Then

Q(x, y) =
|ψ(x)− ψ(y)|2

|x− y|2
=

4λ2

(λ2 + x2)(λ2 + y2)
. (5.5)

It follows from the non-degeneracy result that kerL = span{K1, K2, K3} where

K1 = 1, K2 =
x2 − λ2

x2 + λ2
, K3 =

2λx

x2 + 1
.

Then it is easy to verify that

〈K1ψ
⊥, K2ψ

⊥〉 = 〈K1ψ
⊥, K3ψ

⊥〉 = 〈K2ψ
⊥, K3ψ

⊥〉 = 0.

Getting back to degree two case, we will mainly work on the case ϑ = 0, α1 = j2 + i and
α2 = −j2 + i in this section. For brevity, such ψϑ,~α will be written ψj for short. Denote

ρj(x) = ψj · (−∆R)
1
2ψj, Qj(x, y) =

|ψj(x)−ψj(y)|2

|x− y|2
. (5.6)

Lemma 5.2. One can compute that

ρj(x) =
4(1 + j4 + x2)

[1 + (x− j2)2][1 + (x+ j2)2]
, (5.7)

Qj(x, y) =
16(1 + xy + j4)2

[1 + (x− j2)2][1 + (x+ j2)2][1 + (y − j2)2][1 + (y + j2)2]
. (5.8)
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We always have �
R
ρj =

1

2π

�
R×R

Qj = 4π. (5.9)

Proof. By a straightforward computation, one can get (5.7) and (5.8). Note that ‖ψj‖2
Ḣ1/2(R)

=

|degψj| = 2, then we have�
R
ρj =

1

2π

�
R×R

Qj = 2π‖ψj‖2
Ḣ1/2(R)

= 4π. (5.10)

�

Introduce the notation

K1(x) = 1, K2(x) =
2

(x− j2)2 + 1
, K3(x) =

2(x− j2)

(x− j2)2 + 1
,

K4(x) =
2

(x+ j2)2 + 1
, K5(x) =

2(x+ j2)

(x+ j2)2 + 1
.

(5.11)

It is easy to know kerLψj = span{K1, K2, K3, K4, K5}.

Define J = (Jkl)1≤k,l≤5 with

Jkl = 〈Kkψ
⊥
j , Klψ

⊥
j 〉. (5.12)

Lemma 5.3. For any j > 0, one can show

J11 = 4π, J12 =
2(2 + j4)π

j4 + 1
= J14, J13 =

−2j2π

j4 + 1
= −J15,

J22 =

(
1 +

2j8 + 5j4 + 5

(j4 + 1)2

)
π, J23 =

−2j2

(j4 + 1)2
π, J24 =

2j4 + 6

(j4 + 1)2
π,

J25 =
2j2(j4 + 3)

(j4 + 1)2
π, J33 =

(
1 +

3j4 + 1

(j4 + 1)2

)
π = J55, J34 = −2j2(j4 + 3)

(1 + j4)2
π,

J35 =
2− 2j4

(j4 + 1)2
π, J44 = J22, J45 =

2j2π

(j4 + 1)2
.

The determinant of J = (Jkl)1≤k,l≤5 is

detJ =
j8(3j16 + 22j12 + 51j8 + 48j4 + 16)

(j4 + 1)6
π5. (5.13)

Proof. We shall use (5.3) to compute all the inner products. First, let us compute (−∆R)
1
2Ki

for i = 1, · · · , 5. It is easy to know (−∆R)
1
2K1 = 0. By the extension method, we can

obtain

(−∆R)
1
2K2 = − ∂

∂y

∣∣∣
y=0

2y + 2

(x− j2)2 + (y + 1)2
=

2(1− (x− j2)2)

(1 + (x− j2)2)2
,

(−∆R)
1
2K3 = − ∂

∂y

∣∣∣
y=0

2(x− j2)

(x− j2)2 + (y + 1)2
=

4(x− j2)

(1 + (x− j2)2)2
,
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(−∆R)
1
2K4 = − ∂

∂y

∣∣∣
y=0

2y + 2

(x+ j2)2 + (y + 1)2
=

2(1− (x+ j2)2)

(1 + (x+ j2)2)2
,

(−∆R)
1
2K5 = − ∂

∂y

∣∣∣
y=0

2(x+ j2)

(x+ j2)2 + (y + 1)2
=

4(x+ j2)

(1 + (x+ j2)2)2
.

Using (5.3) and (5.8), we can compute each Jkl = 〈Kkψ
⊥
j , Klψ

⊥
j 〉 respectively. Since the

integrals here involve only rational functions, we take advantage of a symbolic software,
Mathematica, to aid our computation. �

Proposition 5.4. Fix any j ≥ 100, there exists δj such that for any u with ‖u−ψj‖Ḣ1/2(R) <

δj , then there exists a unique ϑ = ϑ(u), ~α = ~α(u) satisfying�
R
u · (−∆R)

1
2 (gψ⊥ϑ,~α) = 0, ∀ g ∈ kerLψϑ,~α . (5.14)

Proof. Define the following function

Φ : Ḣ1/2(R)×S×H2 → R5

(u, ϑ, ~α) 7→ (〈u,K1
ϑ,~α〉, 〈u,K2

ϑ,~α〉, 〈u,K3
ϑ,~α〉, 〈u,K4

ϑ,~α〉, 〈u,K5
ϑ,~α〉)

where Ki
ϑ,~α are obtained from kerLψϑ,~α = span{K1

ϑ,~α,K
2
ϑ,~α,K

3
ϑ,~α,K

4
ϑ,~α,K

5
ϑ,~α}. More

precisely

K1
ϑ,~α = ψ⊥ϑ,~α, K2

ϑ,~α =
2λ2

1

(x− x1)2 + λ2
1

ψ⊥ϑ,~α, K3
ϑ,~α =

2λ1(x− x1)

(x− x1)2 + λ2
1

ψ⊥ϑ,~α,

K4
ϑ,~α =

2λ2
2

(x− x2)2 + λ2
2

ψ⊥ϑ,~α, K5
ϑ,~α =

2λ2(x− x2)

(x− x2)2 + λ2
2

ψ⊥ϑ,~α.

(5.15)

Such Φ is well-defined, because u and Ki
ϑ,~α all belong to Ḣ1/2(R;R2). Moreover, since

Ki
ϑ,~α depends on ϑ, ~α smoothly, then Φ also depends on ϑ, ~α smoothly. Since the inner

product (5.3) depends on its arguments smoothly, consequently Φ depends on u smoothly.
Moreover, since

�
Rψϑ,~α · (−∆R)

1
2Ki

ϑ,~α =
�
R(−∆R)

1
2ψϑ,~α · Ki

ϑ,~α = 0 for any ϑ, ~α and
i = 1, · · · , 5, then

Φ(u, ϑ, ~α) = Φ(u−ψϑ,~α, ϑ, ~α) := Φ(vϑ,~α, ϑ, ~α). (5.16)

Here we introduced the notation vϑ,~α = u−ψϑ,~α.

We intend to apply implicit function theorem to Φ at (ψj, 0, (j
2 + i ,−j2 + i )). The

Jacobian matrix with respect to parameters ϑ, ~α at (ψj, 0, (j
2 + i ,−j2 + i )) is

JacΦ(ψj, 0, (j
2 + i ,−j2 + i )) = (∂ϑΦ, ∂x1Φ, ∂λ1Φ, ∂x2Φ, ∂λ2Φ)T . (5.17)

If ϑ = 0 and ~α = (j2 + i ,−j2 + i ), we will write vj = u−ψϑ,~α andKi
j = Ki

ϑ,~α for short.
At (ψj, 0, (j

2 + i ,−j2 + i )), one has vj = 0 and Ki
j = Kiψ

⊥
j , where Ki are defined in

(5.11). Therefore using (5.16), we have

∂ϑΦ = (〈∂ϑvj, K1ψ
⊥
j 〉, 〈∂ϑvj, K2ψ

⊥
j 〉, 〈∂ϑvj, K3ψ

⊥
j 〉, 〈∂ϑvj, K4ψ

⊥
j 〉, 〈∂ϑvj, K5ψ

⊥
j 〉).
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Similar equality holds for ∂x1Φ, ∂λ1Φ, ∂x2Φ and ∂λ2Φ. Furthermore, one can compute that
∂ϑvj = −K1ψ

⊥
j and

∂x1vj =
−2

(x− j2)2 + 1
ψ⊥j = −K2ψ

⊥
j , ∂λ1vj =

−2(x− j2)

(x− j2)2 + 1
ψ⊥j = −K3ψ

⊥
j ,

∂x2vj =
−2

(x+ j2)2 + 1
ψ⊥j = −K4ψ

⊥
j , ∂λ2vj =

−2(x+ j2)

(x+ j2)2 + 1
ψ⊥j = −K5ψ

⊥
j .

(5.18)

Plugging in these computations to the Jacobian matrix and using Lemma 5.3, we have

det JacΦ(ψj, 0, (j
2 + i ,−j2 + i )) = − detJ = −3π5 +O(1/j4) 6= 0. (5.19)

The implicit function theorem gives that there exists δj > 0 and unique smooth functions
ϑ(u), x1(u), x2(u), λ1(u), λ2(u) such that for any u with ‖u − ψj‖Ḣ1/2(R) < δj one has
Φ(u, ϑ, ~α) = 0, where ~α = (α1, α2), α1 = x1 + iλ1 and α2 = x2 + iλ2. That is�

R
u · (−∆R)

1
2 (gψ⊥ϑ,~α) = 0, ∀ g ∈ kerLψϑ,~α . (5.20)

�

We recall a function defined in [6]. For any j ∈ N, define fj on R as

fj(x) =


1 if |x| ≤ j,

2− log |x|
log j

if j ≤ |x| ≤ j2,

0 if |x| ≥ j2.

(5.21)

Lemma 5.5. There exists some uniform constant C such that ‖fj‖2
Ḣ1/2 ≤ C/| log j| for all

j ∈ N.

Proof. We extend fj to R2
+ by replacing |x| with |(x, y)|. Since

∂xfj =

{
x

x2+y2
1

log j
if j ≤

√
x2 + y2 ≤ j2,

0 otherwise.
(5.22)

One has a similar expression for ∂yfj . Then�
R2

+

(
|∂xfj|2 + |∂yfj|2

)
=

1

log2 j

�
Bj2\Bj

1

x2 + y2
dxdy ≤ C

log j
. (5.23)

Therefore by (2.20), we get the conclusion. �

For any j ≥ 100 we define

h(x) = fj(x− j2)− fj(x+ j2). (5.24)

Then h is an odd function. Moreover, ‖h‖Ḣ1/2(R) ≤ C/ log j.
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Lemma 5.6. For any j ≥ 100, we have�
R
ρjh

2 = 4π +O(1/j), (5.25)

and
1

2π

�
R×R

Qj(x, y)h(x)h(y)dxdy = 4π +O(1/j). (5.26)

Consequently we get�
R
hLψjh = O(1/ log j), 〈hψ⊥j , hψ⊥j 〉 = 4π +O(1/ log j). (5.27)

Lemma 5.7. For any j ≥ 100, we have 〈hψ⊥j , K1ψ
⊥
j 〉 = 0,

〈hψ⊥j , K2ψ
⊥
j 〉 = π +O(1/j), 〈hψ⊥j , K3ψ

⊥
j 〉 = O(1/j2),

〈hψ⊥j , K4ψ
⊥
j 〉 = −π +O(1/j), 〈hψ⊥j , K5ψ

⊥
j 〉 = O(1/j2).

(5.28)

In order not to interrupt the main thread of this section, We will defer the proof of these
two lemmas to the end of this paper.

Lemma 5.8. There exists εj with the following significance. For any ε < εj , there exists h⊥
such that u = εh⊥ψ

⊥
j +

√
1− ε2h2

⊥ψj satisfies�
R
u · (−∆R)

1
2 (Kiψ

⊥
j ) = 0, i = 1, 2, 3, 4, 5. (5.29)

Furthermore, �
R
h⊥Lψjh⊥ = O(1/ log j) +O(ε), (5.30)

〈h⊥ψ⊥j , h⊥ψ⊥j 〉 =
10

3
π +O(1/ log j) +O(ε). (5.31)

Proof. We can take

h⊥ = h− c1K1 − c2K2 − c3K3 − c4K4 − c5K5 (5.32)

with ci to be determined. Define a map

Φ : R+ × R5 → R5

(ε,~c) 7→(〈v, K1ψ
⊥
j 〉, 〈v, K2ψ

⊥
j 〉, 〈v, K3ψ

⊥
j 〉, 〈v, K4ψ

⊥
j 〉, 〈v, K5ψ

⊥
j 〉)

(5.33)

where ~c = (c1, c2, c3, c4, c5) and

v = h⊥ψ
⊥
j −

εh2
⊥√

1− ε2h2
⊥ + 1

ψj. (5.34)

The map Φ is well defined because v andKiψ
⊥
j all belong to Ḣ1/2(R). At ε = 0, Φ(0,~c) = 0

if and only if

J (c1, c2, c3, c4, c5)T = (b1, b2, b3, b4, b5)T (5.35)



NON-DEGENERACY AND STABILITY OF HALF-HARMONIC MAPS 29

where bi = 〈hψ⊥j , Kiψ
⊥
j 〉, i = 1, 2, 3, 4, 5. Since J is non-degenerate, by Lemma 5.3 and

5.7, we get c1 = O(1/j), c2 = 1/3 + O(1/j), c3 = O(1/j2), c4 = −1/3 + O(1/j), and
c5 = O(1/j2). We denote the solution of the above equations as ~c∗.

Note that the Jacobian of Φ at (0,~c∗) is

(∂c1Φ, ∂c2Φ, ∂c3Φ, ∂c4Φ, ∂c5Φ)(0,~c) = −J .

Again the non-degeneracy of J implies that we can invoke the implicit function theorem.
There exists εj > 0 such that for any 0 ≤ ε < εj , there exists ~c = ~c(ε) = ~c∗ +O(ε) satisfies
Φ(ε,~c) = 0. That is, �

R
v · (−∆R)

1
2 (Kiψ

⊥
j ) = 0, i = 1, 2, 3, 4, 5.

Consequently u = εv +ψj also satisfies the above orthogonality. Using the form of v, one
readily check u = εh⊥ψ

⊥
j +

√
1− ε2h2

⊥ψj takes the desired form.

Since Ki ∈ kerLψj , then
�
R
h⊥Lψjh⊥ =

�
R
hLψjh+O(ε) = O(1/ log j) +O(ε), (5.36)

where we used (5.27). To establish (5.31), we just need to use the results from Lemma 5.3,
Lemma 5.6 and Lemma 5.7.

〈h⊥ψ⊥j , h⊥ψ⊥j 〉 = 〈hψ⊥j −
5∑
i=1

ciKiψ
⊥
j , hψ

⊥
j −

5∑
i=1

ciKiψ
⊥
j 〉

= 〈hψ⊥j , hψ⊥j 〉 − 2
5∑
i=1

ci〈hψ⊥j , Kiψ
⊥
j 〉+

5∑
k,l=1

ckclJkl

= 4π − 2

3
π − 2

3
π +

1

3
π +

1

3
π +O(1/ log j) +O(ε)

=
10

3
π +O(1/ log j) +O(ε).

�

Proposition 5.9. Fix any j ≥ 100. Suppose that h⊥ and u are obtained from Lemma 5.8.
Then there exists εj such that for ε < εj the following infimum is achieved at ψj .

inf
ϑ∈S,~α∈H2

‖u−ψϑ,~α‖2
Ḣ1/2(R)

= ‖u−ψj‖2
Ḣ1/2(R)

= ε2〈h⊥, h⊥〉+O(ε3). (5.37)

Proof. Since degree is continuous in Ḣ1/2-topology, there exists ε′j such that if ε < ε′j , then
‖u − ψj‖Ḣ1/2(R) � 1 and degu = degψj = 2. First, we claim the infimum is achieved.
Indeed, take a minimizing sequence, ϑk, ~αk = (α1,k, α2,k) such that

‖u−ψϑk,~αk
‖2
Ḣ1/2(R)

→ inf
ϑ∈S,~α∈H2

‖u−ψϑ,~α‖2
Ḣ1/2(R)

, k →∞. (5.38)
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Since ‖ψϑk,~αk
‖2
Ḣ1/2(R)

= 2, going to a subsequence necessary, ψϑk,~αk
converges weakly to

ψ∗. Due to the specific form ofψϑj ,~αj
, ψ∗ can takes three possible formsψϑ∗,(α∗1,α

∗
2), ψϑ∗,α∗ ,

and eiϑ∗ . If ψ∗ = ψϑ∗,α∗ or ei θ∗ , then ‖ψ∗‖2
Ḣ1/2(R)

≤ 1.

‖u−ψ∗‖Ḣ1/2(R) ≤ lim inf
k→∞

‖u−ψϑk,~αk
‖Ḣ1/2(R) ≤ ‖u−ψj‖Ḣ1/2(R) � 1. (5.39)

On the other hand, by the Young’s inequality and (2.2), we obtain

‖u‖2
Ḣ1/2(R)

≤ 3

2
‖ψ∗‖2

Ḣ1/2(R)
+

8

3
‖u−ψ∗‖2

Ḣ1/2(R)
< 2. (5.40)

However, this contradict to the fact that degu = 2 and Theorem 1.2. Therefore we must
have ψ∗ = ψϑ∗,(α∗1,α

∗
2), then ‖ψ∗‖2

Ḣ1/2(R)
= 2, consequently ψϑk,~αk

converges to ψ∗ strongly
and ψ∗ is one minimizer.

Suppose δj is defined in Proposition 5.4. Apparently, there exists εj > 0, such that for
ε < εj , one has ‖u−ψj‖Ḣ1/2(R) <

1
2
δj . Then any minimizer ψ of the infimum satisfies

‖ψ −ψj‖2
Ḣ1/2(R)

≤ 2‖ψ − u‖2
Ḣ1/2(R)

+ 2‖u−ψj‖2
Ḣ1/2(R)

≤ 4‖u−ψj‖2
Ḣ1/2(R)

< δ2
j .

(5.41)

Suppose u can be decomposed to

u = fψ⊥ +
√

1− f 2ψ. (5.42)

Since the infimum achieves at ψ, then�
R
u · (−∆R)

1
2 (gψ⊥) = 0, ∀ g ∈ kerLψ. (5.43)

It follows from Proposition 5.4 that for any u with ‖u−ψj‖Ḣ1/2(R) <
1
2
δj , there exist unique

ϑ, ~α such that u satisfies (5.42) withψ = ψϑ,~α. This implies the minimizer is unique. Recall
that the choice of f = εh⊥ with ϑ = 0 and ~α = 0 make (5.42) and (5.43) happen at the same
time. Thus the infimum is achieved at ψj .

Finally, we can compute explicitly

‖u−ψj‖2
Ḣ1/2(R)

= ‖εh⊥ψ⊥j +O(ε2h2
⊥)ψj‖2

Ḣ1/2(R)
= ε2〈h⊥, h⊥〉+O(ε3). (5.44)

�

Finally, we can prove the main theorem of this section.

Proof of Theorem 1.4. We take u = εh⊥ψ
⊥
j +

√
1− ε2h2

⊥ψj as stated in Lemma 5.8.
Proposition 5.9 implies that, if ε < εj , then

inf
ϑ∈S,~α∈H2

‖u−ψϑ,~α‖2
Ḣ1/2(R)

= ‖u−ψj‖2
Ḣ1/2(R)

= ε2〈h⊥, h⊥〉+O(ε3). (5.45)

Using (5.31), we obtain

inf
ϑ∈S,~α∈H2

‖u−ψϑ,~α‖2
Ḣ1/2(R)

=
10

3
πε2 +O(ε2/ log j + ε3). (5.46)
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On the other hand, Lemma 3.2 infers

E(u) = E(ψj) + ε2

�
R
h⊥Lψj [h⊥] +O(ε3). (5.47)

Note (2.3) implies E(u) = ‖u‖2
Ḣ1/2(R)

and E(ψj) = ‖ψj‖2
Ḣ1/2(R)

= degu = 2. Combing
with (5.30), it leads to

‖u‖2
Ḣ1/2(R)

− 2 = ε2O(1/ log j). (5.48)

Now compare (5.46) and (5.48) to get

inf
ϑ∈S,~α∈H2

‖u−ψϑ,~α‖2
Ḣ1/2(R)

≥ C(log j)
(
‖u‖2

Ḣ1/2(R)
− 2
)
. (5.49)

Choosing j sufficiently large such that C log j ≥M , our theorem is established. �
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APPENDIX A. PROOFS OF LEMMA 5.6 AND LEMMA 5.7

In this appendix, we give the proofs of Lemma 5.6 and Lemma 5.7.

Proof of Lemma 5.6. Notice that if |x− j2| ≥ j and x > 0, then

ρj(x) ≤ C

1 + (x− j2)2
. (A.1)

Since ρj is even, then we have�
R
ρjh

2 =

� ∞
0

8(1 + j4 + x2)h(x)2

[1 + (x− j2)2][1 + (x+ j2)2]
dx

=

� j2+j

j2−j

8(1 + j4 + x2)

[1 + (x− j2)2][1 + (x+ j2)2]
dx+O(1/j)

=

� ∞
0

8(1 + j4 + x2)

[1 + (x− j2)2][1 + (x+ j2)2]
dx+O(1/j) = 4π +O(1/j).

(A.2)

Then we prove (5.25). To prove (5.26), we divide the support of h(x)h(y), i.e., {|x| ≤
2j2} ∩ {|y| ≤ 2j2} into Ωi, i = 1, · · · , 9, according to their types. Let

Ω1 = {|x− j2| ≤ j, j ≤ |y − j2| ≤ j2} ∪ {j ≤ |x− j2| ≤ j2, |y − j2| ≤ j},
Ω2 = {|x− j2| ≤ j, j ≤ |y + j2| ≤ j2} ∪ {j ≤ |x− j2| ≤ j2, |y + j2| ≤ j},
Ω3 = {|x+ j2| ≤ j, j ≤ |y + j2| ≤ j2} ∪ {j ≤ |x+ j2| ≤ j2, |y + j2| ≤ j},
Ω4 = {|x+ j2| ≤ j, j ≤ |y − j2| ≤ j2} ∪ {j ≤ |x+ j2| ≤ j2, |y − j2| ≤ j}.
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Using the expression (5.8), and there |1 + xy + j4| ≤ 8j4, it is easy to see that

Qj(x, y) ≤ C


[1 + (x− j2)2]−1[1 + (y − j2)2]−1, Ω1,

[1 + (x− j2)2]−1[1 + (y + j2)2]−1, Ω2,

[1 + (x+ j2)2]−1[1 + (y + j2)2]−1, Ω3,

[1 + (x+ j2)2]−1[1 + (y − j2)2]−1, Ω4.

Consequently, for example, on Ω1 we have, by the symmetry of x and y,∣∣∣∣�
Ω1

Qj(x, y)h(x)h(y)dxdy

∣∣∣∣ ≤ C

�
{|x−j2|≤j,j≤|y−j2|≤j2}

dxdy

[1 + (x− j2)2][1 + (y − j2)2]

= 4C arctan j

� j2

j

dy

1 + y2
= O(1/j).

(A.3)

Similarly, the integral on Ωi, i = 2, 3, 4 is also of order O(1/j).

On both of sets Ω5 = {|x−j2| ≤ j}∩{|y+j2| ≤ j} and Ω6 = {|x+j2| ≤ j}∩{|y−j2| ≤
j}, it holds that

|1 + xy + j4| ≤ 4j3. (A.4)

It is easy to see that

Qj(x, y) ≤ C

j2

{
[1 + (x− j2)2]−1[1 + (y + j2)2]−1, Ω5,

[1 + (x+ j2)2]−1[1 + (y − j2)2]−1, Ω6.

Then we obtain ∣∣∣∣�
Ωi

Qj(x, y)h(x)h(y)dxdy

∣∣∣∣ = O(1/j2), i = 5, 6. (A.5)

Let Ω7 = {|x− j2| ≤ j} ∩ {|y − j2| ≤ j} and Ω8 = {|x + j2| ≤ j} ∩ {|y + j2| ≤ j}, and
Ω9 = {|x| ≤ 2j2, |y| ≤ 2j2} \ ∪8

i=1Ωi. On Ω9, we have∣∣∣∣�
Ω9

Qj(x, y)h(x)h(y)dxdy

∣∣∣∣ ≤ C

� j2

j

� j2

j

dxdy

(1 + x2)(1 + y2)
= O(1/j2). (A.6)

Together with (A.3), (A.6) and (A.5), we have
1

2π

�
R×R

Qj(x, y)h(x)h(y)dxdy

=
1

2π

�
Ω7

Qj(x, y)dxdy +
1

2π

�
Ω8

Qj(x, y)dxdy +O(1/j)

=
1

2π

�
R×R

Qj(x, y)dxdy +O(1/j) = 4π +O(1/j).

(A.7)

This is (5.26). Once we obtain (5.25), (5.26) and Lemma 5.5, it follows that�
R
hLψjh =

�
R
h(−∆R)

1
2h−

�
R
ρjh

2 +
1

2π

�
R×R

Qj(x, y)h(x)h(y)dxdy

= O(1/ log j)

(A.8)
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and

〈hψ⊥j , hψ⊥j 〉 =

�
R
h(−∆R)

1
2h+

1

2π

�
R×R

Qj(x, y)h(x)h(y)dxdy

= 4π +O(1/ log j).

(A.9)

�

Proof of Lemma 5.7. Since h is odd and Q(x, y) = Q(y, x) = Q(−x,−y), it is easy to get

〈hψ⊥j , K1ψ
⊥
j 〉 =

1

2π

�
R×R

Qj(x, y)h(x)dxdy = 0. (A.10)

By a direct computation, we have

〈hψ⊥j , K2ψ
⊥
j 〉 =

�
R
h(−∆R)

1
2K2 +

1

2π

�
R×R

Qj(x, y)h(x)K2(y)dxdy

=

�
R

2(1− (x− j2)2)h(x)

[1 + (x− j2)2]2
dx+

�
R

2(3 + (x+ j2)2)h(x)

[1 + (x− j2)2][1 + (x+ j2)2]
dx

= I1 + I2.

Since

I1 =

�
|x|≤j

2(1− x2)h(x)

(1 + x2)2
≤
∣∣∣∣�
|x|≤j

2(1− x2)

(1 + x2)2
dx

∣∣∣∣+

�
|x|≥j

∣∣∣∣2(1− x2)

(1 + x2)2

∣∣∣∣ dx
= O(1/j),

(A.11)

and

I2 =

�
R

2h(x)

1 + (x− j2)2
dx+

�
R

4h(x)

[1 + (x− j2)2][1 + (x+ j2)2]
dx

= 2 arctan j +O(1/j2) = π +O(1/j).

(A.12)

Then we get 〈hψ⊥j , K2ψ
⊥
j 〉 = π +O(1/j).

We also have

〈hψ⊥j , K3ψ
⊥
j 〉 =

�
R

4(x− j2)h(x)

[1 + (x− j2)2]2
dx+

�
R

4(x− j2)h(x)

[1 + (x− j2)2][1 + (x+ j2)2]
dx.

Since ∣∣∣∣�
R

4(x− j2)h(x)

[1 + (x− j2)2]2
dx

∣∣∣∣ ≤ �
|x|≥j

4x

(1 + x2)2
dx = O(1/j2), (A.13)

and∣∣∣∣�
R

4(x− j2)h(x)

[1 + (x− j2)2][1 + (x+ j2)2]
dx

∣∣∣∣
≤
∣∣∣∣�
|x−j2|≤j

4(x− j2)

j4[1 + (x− j2)2]
dx

∣∣∣∣+

∣∣∣∣�
|x−j2|≥j

4

j[1 + (x+ j2)2]
dx

∣∣∣∣ = O(1/j2).

(A.14)
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Then we get 〈hψ⊥j , K3ψ
⊥
j 〉 = O(1/j2). Similarly, note that h(x) = −1 when |x + j2| ≤ j,

we can get

〈hψ⊥j , K4ψ
⊥
j 〉 = −π +O(1/j), 〈hψ⊥j , K5ψ

⊥
j 〉 = O(1/j2). (A.15)

�
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