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Abstract. We consider the nonlinear half Laplacian heat equation

ut + (−∆)
1
2 u− |u|p−1u = 0, Rn × (−T, 0).

We prove that all blows-up are type I, provided that n ≤ 4 and 1 < p < p∗(n)

where p∗(n) is an explicit exponent which is below n+1
n−1

, the critical Sobolev

exponent. Central to our proof is a Giga-Kohn type monotonicity formula
for half Laplacian and a Liouville type theorem for self-similar nonlinear heat

equation. This is the first instance of a monotonicity formula at the level of

the nonlocal equation, without invoking the extension to the half-space.
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1. Introduction

In a series of seminal papers, Giga and Kohn [13–15] studied the asymptotic
behavior of blow-up solutions to nonlinear heat equations with subcritical power
nonlinearity: {

ut −∆u = |u|p−1u, (x, t) ∈ Rn × (0, T )
u(x, 0) = u0(x)

(1.1)

where 1 < p < n+2
n−2 for n ≥ 3 and 1 < p < +∞ when n = 1, 2. We recall that the

finite time blow up is said to be of type I if

lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖∞ < +∞,

and of type II if

lim sup
t→T

(T − t)
1
p−1 ‖u(·, t)‖∞ = +∞,

where T is the maximal existence time of the L∞ solution u.
1
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In [13], Giga-Kohn considered the equation

ws −∆w +
1

2
y · ∇w +

1

p− 1
w − |w|p−1w = 0, (1.2)

obtained from (1.1) by setting

w(y, s) = (−t)
1
p−1u(x, t), x = (−t) 1

2 y.

They proved that all bounded global stationary solutions to (1.2) are constants.
Then in [14], Giga and Kohn proved that all blow-ups of (1.1) are Type I. In [15],
Giga and Kohn showed that one can tell whether or not a point is a blow up
point by examining the asymptotic behavior of a solution in a backward spacetime
parabola. Moreover, they can give a local lower bound on the blow up rate. In [20]
and [22], Merle and Zaag classified all the bounded global nonnegative solutions to
(1.2) defined on Rn × R.

Two central ingredients in Giga-Kohn’s proof are: (1) a monotonicity formula
with Gaussian weight for solutions of (1.2); (2) a weighted Pohozaev identity applied
to steady states of (1.2). After these celebrated works, there have been many refined
estimates, simplifications and applications. We refer to the papers [11, 20–24] and
the book by Quittner and Souplet [26] for an up-to-date state of the art.

In this paper we initiate the attempt to generalize the Giga-Kohn program in
the nonlocal setting. More precisely we consider the following nonlinear half heat
equation

ut + (−∆)
1
2u− |u|p−1u = 0, Rn × (−T, 0), (1.3)

where u is real-valued, p > 1, 0 < T ≤ ∞ and (−∆)−
1
2 is the half Laplacian.

In general, the fractional Laplacian (−∆)α, α ∈ (0, 1), is defined in the following
way,

(−∆)αu(x) := cn,αP.V.

∫
Rn

u(x)− u(x′)

|x− x′|n+2α
dx′. (1.4)

The normalizing constant is

cn,α =
22αΓ(n+2α

2 )

π
n
2 |Γ(−α)|

(1.5)

where Γ(x) is the Gamma function. In our situation, α = 1
2 , we denote

cn := cn, 12 =
Γ(n+1

2 )

π
n+1
2

. (1.6)

Fractional Laplacian can also be defined as a pseudo-differential operator

F((−∆)
1
2u)(ξ) = |ξ|F(u)(ξ)

where F is defined by

F(u)(ξ) :=

∫
e−ix·ξu(x)dx

with i the imaginary unit.
The kernel of the half heat equation

ut + (−∆)
1
2u = 0 (1.7)
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has an explicit expression (see e.g. [4])

P (x, t) := F−1(e−t|ξ|) =
bnt

(t2 + |x|2)
n+1
2

, (1.8)

where

bn =
Γ(n+1

2 )

π
n+1
2

=
(∫ dx

(1 + |x|2)
n+1
2

)−1

. (1.9)

We denote

ρ(x) =
1

bn
P (x, 1) =

1

(1 + |x|2)
n+1
2

, (1.10)

then

(−∆)
1
2 ρ = nρ+ x · ∇ρ. (1.11)

Moreover, we have the following pointwise equality:

(−∆)
1
2 (x · ∇ρ) = (−∆)

1
2 ρ+ x · ∇(−∆)

1
2 ρ. (1.12)

By (1.11) and (1.12), we can get that

(−∆)
1
2 (x · ∇ρ) = nρ+ (1 + n)x · ∇ρ+ x · ∇(x · ∇ρ). (1.13)

Furthermore, it is easy to see that

x · ∇ρ(x) = −(n+ 1)
|x|2ρ

1 + |x|2
≤ 0. (1.14)

For more results about fractional heat kernel, we refer to [1] and [19].
In order to introduce our results, we define the quantity

Mn := sup
y∈Rn
{ 1

ρ(y)

∫
Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1

1

ρ(y′)
dy′}

+ sup
y∈Rn
{ 1

ρ(y)2

∫
Rn\Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1
dy′},

(1.15)

where

Ωy = B|y|(0) = {y′ ∈ Rn : |y′| < |y|}.

We also define the exponent

p∗(n) =
n+ 1− cnMn

4

n− 1 + cnMn

4

(1.16)

where cn is defined by (1.6).

Remark 1.1. Some comments on the exponent p∗(n) are in order. First a necessary
condition for p∗(n) > 1 is that cnMn < 4. Some numerical computations show that

c2M2 ≈ 2.1498, c3M3 ≈ 2.8406,

c4M4 ≈ 3.5561, c5M5 ≈ 4.2839.

As a consequence, our results hold only for n ≤ 4. Furthermore, it is easy to see
that p∗(n) < n+1

n−1 for n ≥ 2.
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Main results. We first give a classification of backward self-similar solutions. A
self-similar solution of (1.3) is of the form

u(x, t) = (−t)−βw(
x

−t
), β =

1

p− 1
,

where w satisfies

(−∆)
1
2w + y · ∇w + βw − |w|p−1w = 0, in Rn. (1.17)

It is easy to see that the only trivial solutions of (1.17) are w ≡ 0 and w ≡ ±ββ .
Our first result is a classification of self-similar solution for the semilinear equa-

tion (1.3), which generalizes Theorem 1′ in [13].

Theorem 1.2. Let n ≤ 4, 1 < p ≤ p∗(n) and let u be a self-similar solution of
(1.3) satisfying the estimate

sup
Rn×(−T,0)

(−t)β |u(x, t)| <∞, (1.18)

then u ≡ 0 or u ≡ ±ββ(−t)−β.

Our next goal is to characterize the asymptotic behavior of finite time blow up
solutions near a point, assuming suitable conditions.

If u is a solution of the half heat equation (1.3), then so do the rescaled functions

uλ(x, t) := λβu(λx, λt), β =
1

p− 1
, (1.19)

for each λ > 0. In order to analyze the asymptotic behavior, we introduce the
following backward self-similar transformation

w(y, s) := (−t)βu(x, t), (1.20)

x = (−t)y, t = −e−s. (1.21)

Then w(y, s) satisfies the equation

ws + (−∆)
1
2w + y · ∇w + βw − |w|p−1w = 0. (1.22)

The following theorem, which generalizes results of [13], classifies the backward
self-similar heat equation (1.22).

Theorem 1.3. Let n ≤ 4, 1 < p < p∗(n) and let u be a solution of (1.3) satisfying
the estimate

sup
Rn×(−T,0)

(−t)β |u(x, t)| <∞. (1.23)

We also assume the gradient of u satisfies the decay condition: fix δ > 0, for any
−T < t′′ < t′ < 0, there exists a constant C(t′, t′′) <∞ such that

|∇u(x, t)| ≤ C(t′, t′′)

1 + |x|δ
, (x, t) ∈ Rn × [t′′, t′]. (1.24)

Then

lim
λ→0

(−t)βuλ(x, t) = 0 or ± ββ . (1.25)

For each c > 0, the limit (1.25) exists uniformly for any |x| ≤ c(−t).
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Next, we could also obtain a Liouville-type theorem for ancient solutions of the
equation (1.3). Usually, a solution of (1.3) is called an ancient solution if it exists
for all time t ∈ (−∞, 0).

Theorem 1.4. Let n ≤ 4, 1 < p < p∗(n) and let u be an ancient solution of (1.3)
satisfying

sup
Rn×(−∞,0)

(−t)β |u(x, t)| <∞. (1.26)

We also assume the gradient of u satisfies the decay condition: fix δ > 0, for any
−∞ < t′′ < t′ < 0, there exists a constant C(t′, t′′) <∞ such that

|∇u(x, t)| ≤ C(t′, t′′)

1 + |x|δ
, (x, t) ∈ Rn × [t′′, t′]. (1.27)

If

lim sup
t→0

(−t)β |u(0, t)| > 0, (1.28)

then

u(x, t) = ±ββ(−t)−β . (1.29)

Our next goal is the growth rate estimate for the equation (1.3).

Theorem 1.5. Let n ≤ 4, T <∞ and u be a solution of (1.3) satisfying: fix δ > 0,
for any −T < t′ < 0, there exists a constant C(t′) <∞ such that

|u(x, t)|+ |∇u(x, t)|(1 + |x|δ) ≤ C(t′), (x, t) ∈ Rn × [−T, t′]. (1.30)

If

1 < p < p∗(n), u ≥ 0, (1.31)

or

1 < p < min{1 +
2

n
, p∗(n)}, (1.32)

then

sup
Rn×(−T,0)

(−t)β |u(x, t)| <∞. (1.33)

Furthermore,

lim
λ→0

(−t)βuλ(x, t) = 0 or ± ββ . (1.34)

For each c > 0, the limit (1.34) exists uniformly for any |x| ≤ c(−t).

We point out that the assumption made on the gradient is only used to justify our
computations. But this assumption can be verified if we consider suitable Cauchy
problems. More precisely, we consider the equation:{

ut + (−∆)
1
2u = |u|p−1u, (x, t) ∈ Rn × (0, T )

u(x, 0) = u0(x), x ∈ Rn (1.35)

where T is the finite blow up time in the sense of

T := sup
{
t > 0 : sup

(x,t)∈Rn×(0,t)

|u(x, t)| <∞
}
. (1.36)
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Remark 1.6. Let 1 < p < 1 + 1
n and let u0 be a nontrivial, nonnegative and

continuous function, then the nonegative solution of the equation (1.35) blows up
at some finite time (see [25]). For more local well-posedness of the Cauchy problem,
we refer to [8], [12] and [16].

Theorem 1.7. Let u0 be a nontrivial(6≡ 0), nonnegative and bounded continuous
function satisfying

|∇u0|(x) ≤ C

1 + |x|δ
, (1.37)

for some δ > 0. Let n ≤ 4, 1 < p < p∗(n) and let u be a finite time blow up solution
of the Cauchy problem (1.35), then

lim
t→T

(T − t)βu(x+ y(T − t), t) = 0 or ± ββ (1.38)

uniformly for y bounded, where T is the maximal existence time of the L∞ solution
u.

Main difficulties and ideas: as mentioned before, Giga-Kohn’s proof relies on
two ingredients: first there is the generalized Pohozaev identity for self-similar so-
lutions of (1.1)

(
n

p+ 1
+

2− n
2

)

∫
|∇w|2ρdy +

1

2
(
1

2
− 1

p+ 1
)

∫
|y|2|∇w|2ρdy = 0 (1.39)

where ρ = e−
1
4 |y|

2

is the Gaussian. Second the following Giga-Kohn energy func-
tional

E[w](s) =
1

2

∫
|∇w|2ρdy +

1

2
β

∫
|w|2ρdy − 1

p+ 1

∫
|w|p+1ρdy

is monotonically decreasing for backward self-similar nonlinear parabolic equation.
The proof of both facts depend on some cancellations which seem only to work
for the Laplace operator. Furthermore, the Gaussian weight ρ ensures that all the
computations are well-defined.

In our case, even with the explicit form (1.10), we are unable to obtain neither a
monotonicity formula nor Pohozaev identity for full range p < n+1

n−1 . Furthermore,

the weight (1.10) being polynomially decaying only, does not prevent our compu-
tations to be well-defined unless one assumes some a priori decay on the solutions.
This latter seems artificial but, even for the linear half heat equation, weak/strong
solutions have always at most polynomial decay and this is optimal as proven in [2].

Instead we make use of some special integral decay in the dimension n and we
are able to prove a modified Pohozaev identity and monotonicity formula for partial
range 1 < p < p∗(n). See Propositions 3.1 and 4.1 below. As far as we know this
seems to be the first kind of monotonicity formula for nonlinear fractional heat
equation at the level of the nonlocal operator.

In this paper we concentrate on half heat equations. The advantage is that the
kernel is explicit and hence all the computations can be made explicitly. It may
be possible to generalize to general α−Laplacian heat equations if one knows the

explicit formula for the kernel. Indeed, let ρα(x) = F−1(e−|ξ|
2α

), the profile of the
fractional heat kernel, and let w be a solution of

(−∆)
α
2 w +

1

2α
y · ∇w + βw − |w|p−1w = 0, in Rn, (1.40)
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similar to (3.2), we can obtain an inequality

0 ≥
(8α− cn,αMn,α

4
− (p− 1)n

(p+ 1)

)cn,α
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+2α
ρα(y′)dy′dy

− (p− 1)

(p+ 1)

cn,α
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+2α
(y′ · ∇ρα)dy′dy,

(1.41)

where

Mn,α := sup
y∈Rn
{ 1

ρα(y)

∫
B|y|

(ρα(y′)− ρα(y))2

|y′ − y|n+2α

1

ρα(y′)
dy′}

+ sup
y∈Rn
{ 1

ρα(y)2

∫
Rn\B|y|

(ρα(y′)− ρα(y))2

|y′ − y|n+2α
dy′}.

(1.42)

If cn,αMn,α < 8α, one can prove the corresponding results to general α-Laplacian
heat equation. Since we don’t know the explicit formula of ρα, it is very hard to
compute the value of Mn,α.

2. Preliminaries: some regularity estimates

In this section we collect some preliminary regularity estimates for half heat
equation which will be useful in subsequent sections.

Proposition 2.1. Let 0 < T <∞ and let u(x, t) be a solution of (1.3) satisfying

(−t)β |u(x, t)| ≤M, (x, t) ∈ Rn × (−T, 0), (2.1)

then

sup
Rn×(−r,0)

(−t)β+m|∇mu(x, t)| ≤ C, m = 1, 2, 3, (2.2)

for any 0 < r < T , with C depending only on n, p, r, T and M . If T = ∞ and
if (2.1) holds on Rn × (−∞, 0), then (2.2) is valid on all of Rn × (−∞, 0) and the
constant C only depends on n, p and M .

Proof. This follows from scaling arguments. First, we may assume T = 1 and
6
7 < r < r′ = 1+r

2 < 1. For any x0 ∈ Rn, we consider

ũ(x, t) = u(x+ x0, t), (2.3)

which still satisfies the half heat equation (1.3). The assumption (2.1) assures that

sup
Rn×(−1,− 1

2 )

|ũ(x, t)|p ≤ 2βpMp. (2.4)

The interior Hölder continuity for the half heat equation (see Theorem 1.3 in [10]
or references [9, 17]) yields,

‖ũ‖
C

1
2
t (B2×(−r′,− 2

3 )
+ ‖ũ‖

C
1
2
x (B2×(−r′,− 2

3 ))
≤ C, (2.5)

for some constant C depending only on n, p, r and M . Here we follow the notations
in [10], the Hölder seminorms are

[u]
C

1
2
x (Ω×I)

:= sup
(x,t)∈Ω×I
(x′,t)∈Ω×I

|u(x, t)− u(x′, t)|
|x− x′| 12

(2.6)



8 B. DENG, Y. SIRE, J. WEI, AND K.WU

and

[u]
C

1
2
t (Ω×I)

:= sup
(x,t)∈Ω×I
(x,t′)∈Ω×I

|u(x, t)− u(x, t′)|
|t− t′| 12

(2.7)

for any Ω × I ⊂ Rn+1. By the arbitrariness of x0, we can obtain the Hölder
regularities on the whole space for u and ũ, say

‖ũ‖
C

1
2
t (Rn×(−r′,− 2

3 ))
+ ‖ũ‖

C
1
2
x (Rn×(−r′,− 2

3 ))
≤ C. (2.8)

Therefore, the interior Schauder estimates for the half heat equation (see Theorem
1.2 in [10] or [11]) give,

‖ũ‖
C

1+ 1
2

t (B1×(−r,− 3
4 ))

+ ‖ũ‖
C

1+ 1
2

x (B1×(−r,− 3
4 ))
≤ C, (2.9)

for some constant C depending only on n, p, r and M . By an iteration argument,
change r if necessary, we obtain

‖ũ‖
C

3+ 1
2

t (B1×(−r,− 3
4 ))

+ ‖ũ‖
C

3+ 1
2

x (B1×(−r,− 3
4 ))
≤ C. (2.10)

By arbitrariness of x0, and t0 < −1, we conclude

|∇u|+ |∇2u|+ |∇3u| ≤ C, (2.11)

for all (x, t) ∈ Rn × (−r,− 3
4 ).

Now we are going to prove (2.2) when − 3
4 ≤ t < 0. Fixing such (x, t) ∈ Rn ×

[− 3
4 , 0), let λ = − 7

6 t and consider

v(z, τ) = λβu(x+ λz, λτ). (2.12)

It is easy to verifies that v is well defined in Rn × (−1, 0), and again (2.1) assures
that

sup
Rn×(−1,0)

(−τ)β |v(z, τ)| ≤M, (2.13)

Applying (2.11) with u replaced by v, and taking z = 0, τ = − 6
7 ∈ (−r,− 3

4 ), we
conclude that

λβ+1|∇u|+ λβ+2|∇2u|+ λβ+3|∇3u| ≤ C, at (x, t). (2.14)

It is (2.2) since λ = − 7
6 t.

For general T > 0, consider the rescaled function uλ(x, t) = λβu(λx, λt) with
λ = T . Then uλ satisfies the half heat equation (1.3) on Rn×(−1, 0). Then it is the
case considered above. The only difference is that we get a constant C depending
on T . If the bound (2.1) holds for Rn×(−∞, 0), then the same argument yields the
global version. Once again (2.1) assures (2.4), so (2.11) yields (2.14) as above. �

Translating results of Proposition 2.1 to w we have:

Proposition 2.2. Let 0 < T < ∞ and let w be a bounded solution of (1.22) in
Rn × (− lnT,∞). If |w| ≤M for some positive constant M , then

|∇w|+ |∇2w|+ |∇3w| ≤ C, (2.15)

|ws + y · ∇w|+ |∇(ws + y · ∇w)| ≤ C, (2.16)

for (y, s) ∈ Rn× (− ln r,∞), here 0 < r < T and C is a constant depending only on
n, p, r, T and M . If T =∞ and |w| ≤ M globally, then (2.15) and (2.16) are valid
on all of Rn+1, with C only depending on n, p and M .
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Proof. The estimates of ∇w,∇2w, and ∇3w are merely restatements of (2.2).
Since

|(−∆)
1
2w(y)| = cn

2
|
∫

(w(y + y′) + w(y − y′)− 2w(y)

|y′|n+1
dy′|

≤ 4cn|∇2w|L∞(B1(y))

∫
B1(0)

dy′

|y′|n−1

+ 4cn|w|L∞(Rn\B1(0))

∫
Rn\B1(0)

dy′

|y′|n+1

≤ C,

(2.17)

it is not hard to get the estimate of ws + y · ∇w by means of the equation (1.22).
Differentiating (1.22) with respect to yj , j = 1, · · · , n, we can get that

∂

∂yj
(ws + y · ∇w) + (−∆)

1
2
∂w

∂yj
+ β

∂w

∂yj
− p|w|p−2w

∂w

∂yj
= 0. (2.18)

Using (2.17) with w replaced by ∂w
∂yj

, it is easy to get the estimate of ∂
∂yj

(ws+y ·∇w)

by the estimates (2.15) and the equation (2.18). �

For the equation (1.17), we can obtain the following result.

Proposition 2.3. Let w be a bounded solution of (1.17) in Rn, with |w| ≤M . Then

|∇w|+ |∇2w|+ |∇3w| ≤ C,
|y · ∇w|+ |∇(y · ∇w)| ≤ C,

(2.19)

for all y ∈ Rn, and constant C depending only on n, p and M .

Proof. The estimates of ∇w,∇2w,∇3w, y · ∇w and ∇(y · ∇w) are merely restate-
ments of (2.15) and (2.16), since ws = 0 now. �

3. Proof of Theorem 1.2: Classification of Self-similar solutions

In this section we prove a modified Pohozaev identity and prove Theorem 1.2.
Following the line of ideas in [13], we first obtain a modified Pohozaev-type identity
(inequality). It is here where we first introduce the number Mn at (1.15). Observe
that we do not use the Caffarelli-Silvestre extension [5].

Proposition 3.1. If w(y) is a bounded solution of (1.17) in Rn, for any n ≥ 1 and
p > 1, then

0 =
(

1− (p− 1)n

(p+ 1)

)cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− (p− 1)

(p+ 1)

cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

+
cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|x− y|n+1
(y · ∇w)dy′dy

+

∫
(y · ∇w)2ρdy.

(3.1)
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As a consequence, we have

0 ≥
(4− cnMn

4
− (p− 1)n

(p+ 1)

)cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− (p− 1)

(p+ 1)

cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

(3.2)

with Mn defined by (1.15).

Proof. Let w ∈ C2(Rn) be a function such that ‖w‖C2(Rn) < ∞ and let ϕ(x) be a

function such that |ϕ(x)| ≤ C

(1+|x|2)
n+1
2

, we have the following identity

∫
ϕw(−∆)

1
2wdy =

cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ϕ(y′)dy′dy

+
1

2

∫
|w|2(−∆)

1
2ϕdy.

(3.3)

Indeed, (2.17) yields that (−∆)
1
2w is bounded. Using the dominated convergence

theorem and symmetrizing in y and y′, Bδ = Bδ(y), we have∫
ϕw(−∆)

1
2wdy

= cn lim
δ→0

∫
Rn
ϕ(y)w(y)(

∫
Rn\Bδ

w(y)− w(y′)

|y′ − y|n+1
dy′)dy

=
cn
2

lim
δ→0

∫∫
(Rn\Bδ)2

(w(y)− w(y′))(ϕ(y)w(y)− ϕ(y′)w(y′))

|y′ − y|n+1
dy′dy

+
cn
2

lim
δ→0

∫
Bδ

ϕ(y)w(y)

∫
Rn\Bδ

w(y)− w(y′)

|y′ − y|n+1
dy′dy.

It is easy to see that

|
∫
Bδ

ϕ(y)w(y)

∫
Rn\Bδ

w(y)− w(y′)

|y′ − y|n+1
dy′dy|

≤ C(‖w‖L∞ + ‖∇2w‖L∞)δn → 0

as δ → 0. By the assumptions on w and ϕ, we have

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
|ϕ(y′)|dy′dy ≤ C

∫∫
B1(y′)

|ϕ(y′)|
|y′ − y|n−1

dydy′

+ C

∫∫
Rn\B1(y′)

|ϕ(y′)|
|y′ − y|n+1

dydy′

≤ C
∫
|ϕ(y′)|dy′ <∞.
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Therefore, using Fubini’s theorem we obtain∫
ϕw(−∆)

1
2wdy

=
cn
2

lim
δ→0

∫∫
(Rn\Bδ)2

(w(y)− w(y′))2

|y′ − y|n+1
ϕ(y)dy′dy+

cn
2

lim
δ→0

∫∫
(Rn\Bδ)2

(w(y)− w(y′))(ϕ(y)w(y′)− ϕ(y′)w(y′))

|y′ − y|n+1
dy′dy

=
cn
2

lim
δ→0

∫∫
(Rn\Bδ)2

(w(y)− w(y′))2

|y′ − y|n+1
ϕ(y)dy′dy

+
cn
4

lim
δ→0

∫∫
(Rn\Bδ)2

(w(y)2 − w(y′)2)(ϕ(y)− ϕ(y′))

|y′ − y|n+1
dy′dy

=
cn
2

∫∫
(w(y)− w(y′))2

|y′ − y|n+1
ϕ(y)dy′dy

+
cn
2

∫∫
ϕ(y)− ϕ(y′)

|y′ − y|n+1
w(y)2dy′dy,

which is (3.3).
Multiplying (1.17) by ρw and using (3.3) with ϕ replaced by ρ and using inte-

gration by parts, we have

0 =
cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

1

2

∫
|w|2(−∆)

1
2 ρdy

− n

2

∫
|w|2ρdy − 1

2

∫
|w|2(y · ∇ρ)dy + β

∫
|w|2ρdy −

∫
|w|p+1ρdy.

Using equation (1.11), we have the first identity

0 =
cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy + β

∫
|w|2ρdy −

∫
|w|p+1ρdy. (3.4)

Since w is bounded, the estimate (2.19) implies that ‖w‖C2(Rn) < ∞. In view of
this fact and the observation that

R

2

∫
∂BR

|w|2ρdy ≤ C

R
→ 0 as R→∞,

the procedure of using integration by parts can be justified. Similarly, multiplying
the equation (1.17) by (y ·∇ρ)w and using (3.3) with ϕ replaced by y ·∇ρ and using
integration by parts, we have

0 =
cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy +

1

2

∫
|w|2(−∆)

1
2 (y · ∇ρ)dy

− n

2

∫
|w|2(y · ∇ρ)dy − 1

2

∫
|w|2y · ∇(y · ∇ρ)dy

+ β

∫
|w|2(y · ∇ρ)dy −

∫
|w|p+1(y · ∇ρ)dy.



12 B. DENG, Y. SIRE, J. WEI, AND K.WU

Using the equation (1.13), we obtain the second identity

0 =
cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy +

n

2

∫
|w|2ρdy

+ (
1

2
+ β)

∫
|w|2(y · ∇ρ)dy −

∫
|w|p+1(y · ∇ρ)dy.

(3.5)

Since

R

2

∫
∂BR

|w|2(y · ∇ρ)dy ≤ C

R
→ 0 as R→∞, (3.6)

the procedure of using integration by parts can also be justified. To get the third
identity, we define a quantity

E[u] :=
cn
4

∫∫
(u(y′)− u(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

β

2

∫
|u|2ρdy

− 1

p+ 1

∫
|u|p+1ρdy.

(3.7)

Let wλ(y) = w(λy), then

dE[wλ]

dλ
|λ=1 =

cn
2

∫∫
(w(y′)− w(y))(y′ · ∇w − y · ∇w)

|y′ − y|n+1
ρ(y′)dy′dy

+ β

∫
ρw(y · ∇w)dy −

∫
ρ|w|p−1w(y · ∇w)dy

= − cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|y′ − y|n+1
(y · ∇w)dy′dy

+

∫
ρ(y · ∇w)(−∆)

1
2wdy + β

∫
ρw(y · ∇w)dy

−
∫
ρ|w|p−1w(y · ∇w)dy

= − cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|y′ − y|n+1
(y · ∇w)dy′dy

−
∫

(y · ∇w)2ρdy.

(3.8)

By (2.19), we have∫∫
(y′ · ∇w − y · ∇w)2

|y′ − y|n+1
ρ(y′)dxdy ≤ C

∫∫
B1(y′)

ρ(y′)

|y′ − y|n−1
dydy′

+ C

∫∫
Rn\B1(y′)

ρ(y′)

|y′ − y|n+1
dydy′

≤ C

∫
ρ(y′)dy′ <∞

and ∫
(y · ∇w)2ρdy <∞.
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Therefore, the procedure of differentiating E[wλ] with respect to λ can be justified.
On the other hand,

E[wλ] =
λ1−ncn

4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρλ(y′)dy′dy +

βλ−n

2

∫
|w|2ρλdy

− λ−n

p+ 1

∫
|w|p+1ρλdy

with ρλ(y) = ρ( yλ ). Therefore,

dE[wλ]

dλ
|λ=1 =

1− n
4

cn

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y · ∇ρ)dy′dy

− nβ

2

∫
|w|2ρdy′ − β

2

∫
|w|2(y · ∇ρ)dy

+
n

p+ 1

∫
|w|p+1ρdy +

1

p+ 1

∫
|w|p+1(y · ∇ρ)dy.

(3.9)

By (3.8) and (3.9), we can obtain the third identity

0 =
1− n

4
cn

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

− nβ

2

∫
|w|2ρdy′ − β

2

∫
|w|2(y · ∇ρ)dy

+
n

p+ 1

∫
|w|p+1ρdy +

1

p+ 1

∫
|w|p+1(y · ∇ρ)dy

+
cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|y′ − y|n+1
(y · ∇w)dy′dy

+

∫
(y · ∇w)2ρdy.

(3.10)

Combining the identities (3.4), (3.5) and (3.10) in the following way:

n

p+ 1
· (3.4) +

1

p+ 1
· (3.5) + 1 · (3.10),

we have derived (3.1).
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Now we estimate the third term in the above Pohozaev’s type identity (3.1) using
Cauchy-Schwarz inequality and Hölder inequality,

I := |
∫ ( ∫ (ρ(y′)− ρ(y))(w(y′)− w(y))

|y′ − y|n+1
dy′
)
(y · ∇w)dy|

≤ ε

2

∫ ( ∫ (ρ(y′)− ρ(y))(w(y′)− w(y))

|y′ − y|n+1
dy′
)2 1

ρ(y)
dy

+
1

2ε

∫
ρ(y · ∇w)2dy

≤ ε

2

∫ ( ∫
Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1

1

ρ(y′)
dy′
)( ∫

Ωy

(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′

) 1

ρ(y)
dy

+
ε

2

∫ ( ∫
Rn\Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1
dy′
)( ∫

Rn\Ωy

(w(y′)− w(y))2

|y′ − y|n+1
dy′
) 1

ρ(y)
dy

+
1

2ε

∫
ρ(y · ∇w)2dy,

here ε > 0 is a constant which will be determined later. Let

f1(y) :=
1

ρ(y)

∫
Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1

1

ρ(y′)
dy′,

f2(y) :=
1

ρ(y)2

∫
Rn\Ωy

(ρ(y′)− ρ(y))2

|y′ − y|n+1
dy′,

(3.11)

and let

Ωy = B|y|(0) = {y′ ∈ Rn : |y′| < |y|}. (3.12)

We have

I ≤ ε

2

∫
f1(y)

( ∫
Ωy

(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′

)
dy +

1

2ε

∫
ρ(y · ∇w)2dy

+
ε

2

∫
f2(y)

( ∫
Rn\Ωy

(w(y′)− w(y))2

|y′ − y|n+1
ρ(y)dy′

)
dy

≤ ε

2
( sup
y∈Rn

f1(y))

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

1

2ε

∫
ρ(y · ∇w)2dy

+
ε

2
( sup
y∈Rn

f2(y))

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y)dy′dy.

(3.13)

Let
Mn = sup

y∈Rn
f1(y) + sup

y∈Rn
f2(y).

Then, by symmetry of y and y′, we get

I ≤ Mnε

2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

1

2ε

∫
ρ(y · ∇w)2dy. (3.14)

Selecting ε = cn
4 in (3.14) and plugging it into (3.1) yields (3.2). �

If cnMn < 4 and 1 < p ≤ p∗(n), the coefficients in the right hand side of (3.2)
will become positive. Therefore, we can obtain the following result.

Theorem 3.2. Let n ≤ 4, 1 < p ≤ p∗(n) and let w be a bounded solution of the
equation (1.17) in Rn. Then w ≡ 0 or w ≡ ±ββ.
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Proof of Theorem 1.2. It follows from (1.17) and Theorem 3.2. �

4. Monotonicity Formula and Proof of Theorems 1.3 and 1.4

In this section we derive a modified Giga-Kohn monotonicity formula and prove
Theorems 1.3 and 1.4. Let 0 < T ≤ ∞. We consider solutions u of (1.3) which
satisfy

|u(x, t)| ≤ C(−t)−β , (x, t) ∈ Rn × (−T, 0) (4.1)

and the decay condition: fix δ > 0, for any −T < t′′ < t′ < 0, there exists a
constant C(t′, t′′) <∞ such that

|∇u|(x, t)| ≤ C(t′, t′′)

1 + |x|δ
, (x, t) ∈ Rn × [t′′, t′]. (4.2)

Let uλ(x, t) = λβu(λx, λt), then uλ(x, t) remain bounded independently of λ
away from t = 0 since

|λβu(λx, λt)| < Cλβ(−λt)−β = C(−t)−β . (4.3)

By Proposition 2.1, we can take weak limits

lim
λj→0

uλj = u0, lim
λ′j→∞

uλ′j = u∞, (4.4)

for suitable sequences λj → 0, λ′j →∞.

Heuristically, the rescaled function w(y, s) = (−t)βu(x, t), with x = (−t)y and
t = −e−s, is a bounded solution of (1.22). By (4.2), w also satisfies the decay
condition: fix δ > 0, for any − lnT < s′′ < s′ < ∞, there exists a constant
C(s′′, s′) <∞ such that

|y · ∇w(y, s)| ≤ C(s′′, s′)
|y|

1 + |y|δ
, (y, s) ∈ Rn × [s′′, s′]. (4.5)

Then it is easy to get the estimate for ws by means of the equation (1.22) , i.e.,

|ws(y, s)| ≤ C(s′′, s′)
|y|

1 + |y|δ
, (y, s) ∈ Rn × [s′′, s′]. (4.6)

In the following, we use w(y) instead of w(y, s) in all double integral for simplicity.
At the beginning, we define a quantity which plays the role of ‘energy’ in our

situation,

Ê[w](s) :=
cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

β

2

∫
|w|2ρdy

+
1

2(p+ 1)

∫
|w|2(−∆)

1
2 ρdy − 1

p+ 1

∫
|w|p+1ρdy.

(4.7)

Then we have the following monotonicity formula.
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Proposition 4.1. Let n ≤ 4,− lnT < a < b < ∞ and let w be a bounded solution
of (1.22) on Rn × (− lnT,∞) satisfying (4.5), then

−Ê[w]|ba = Ê[w](a)− Ê[w](b)

≥
(
1− cn

4ε

) ∫ b

a

∫
(ws + y · ∇w)2ρdyds

+ dn,p,ε

∫ b

a

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dyds

− dn,p
∫ b

a

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds,

(4.8)

where ε ∈ [ cn4 ,
(p+1)−(p−1)n

(p+1)Mn
], dn,p,ε = ( 1−Mnε

4 − (p−1)n
4(p+1) )cn ≥ 0 and dn,p = (p−1)cn

4(p+1) .

Proof. Similar to the proof in section 3, we first derive two identities.
Multiplying the equation (1.22) with ρw and using integration by parts, we have

0 =

∫
wswρdy +

cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

+ β

∫
|w|2ρdy −

∫
|w|p+1ρdy.

(4.9)

Multiplying the equation (1.22) with (y · ∇ρ)w and using integration by parts, we
have

0 =

∫
wsw(y · ∇ρ)dy +

cn
2

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

+
n

2

∫
|w|2ρdy + (

1

2
+ β)

∫
|w|2(y · ∇ρ)dy

−
∫
|w|p+1(y · ∇ρ)dy.

(4.10)

Thanks to (2.15), (4.5) and (4.6), the procedures of using integration by parts are
easy to justify for any − lnT < s <∞. We point out that (4.5) and (4.6) are only
used to ensure that

∫
wswρdy and

∫
(y · ∇w)wρdy are well-defined.

In order to continue the proof, we define

E[w](s) :=
cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy +

β

2

∫
|w|2ρdy

− 1

p+ 1

∫
|w|p+1ρdy.

(4.11)

If wλ(y, s) = w(λy, s+ lnλ), then dwλ
dλ |λ=1 = ws + y ·∇w. Similar to (3.8), we have

dE[wλ]

dλ
|λ=1 = −

∫
(ws + y · ∇w)2ρdy

− cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|y′ − y|n+1
(ws + y · ∇w)dy′dy

(4.12)
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On the other hand, similar to (3.9),

dE[wλ]

dλ
|λ=1 =

dE[w]

ds
+

1− n
4

cn

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

− nβ

2

∫
|w|2ρdy′ − β

2

∫
|w|2(y · ∇ρ)dy

+
n

p+ 1

∫
|w|p+1ρdy +

1

p+ 1

∫
|w|p+1(y · ∇ρ)dy.

(4.13)

Therefore,

−dE[w]

ds
=

1− n
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− cn
4

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

− nβ

2

∫
|w|2ρdy′ − β

2

∫
|w|2(y · ∇ρ)dy

+
n

p+ 1

∫
|w|p+1ρdy +

1

p+ 1

∫
|w|p+1(y · ∇ρ)dy

+

∫
(ws + y · ∇w)2ρdy + II,

(4.14)

here

II :=
cn
2

∫∫
(w(y′)− w(y))(ρ(y′)− ρ(y))

|y′ − y|n+1
(ws + y · ∇w)dy′dy. (4.15)

Combining the identities (4.9), (4.10) and (4.14) in the following way,

n

p+ 1
· (4.9) +

1

p+ 1
· (4.10) + 1 · (4.14),

we have

−dE[w]

ds
=

n

p+ 1

∫
wswρdy +

1

p+ 1

∫
wsw(y · ∇ρ)dy

+ (
1

4
− (p− 1)n

4(p+ 1)
)cn

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− (p− 1)cn
4(p+ 1)

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy

+

∫
(ws + y · ∇w)2ρdy + II.

(4.16)
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Estimating II in the same way as to estimate I in (3.14), and using (1.11), we have

−dE[w]

ds
≥ 1

2(p+ 1)

d

ds

∫
|w|2(−∆)

1
2 ρdy

+ (1− cn
4ε

)

∫
(ws + y · ∇w)2ρdy

+ dn,p,ε

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− dn,p
∫∫

(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy,

(4.17)

here dn,p,ε = ( 1−Mnε
4 − (p−1)n

4(p+1) )cn and dn,p = (p−1)cn
4(p+1) . By the definition of Ê[w] and

(4.17), we can get the following monotonicity formula

−dÊ[w]

ds
≥ (1− cn

4ε
)

∫
(ws + y · ∇w)2ρdy

+ dn,p,ε

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− dn,p
∫∫

(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy.

(4.18)

Integrating (4.18) over [a, b], for any − lnT < a < b < ∞, yields (4.8). Since

1 < p < p∗(n), we have cn
4 < (p+1)−(p−1)n

(p+1)Mn
. �

Since

(−t)βλβu(λx, λt) = w(λy, s− lnλ), (4.19)

we will work with weak limits

w∞(y, s) = lim
sj→∞

w(y, s+ sj),

w−∞(y, s) = lim
sj→−∞

w(y, s+ s′j),
(4.20)

with sj = − lnλj , s
′
j = − lnλ′j . Asserting that u0 and u∞ are self-similar is the same

as saying that w∞ and w−∞ are independent of s, and this is the main conclusion
of the following proposition.

Proposition 4.2. Let w be a bounded solution of (1.22) on Rn+1 satisfying (4.5)
and let {sj} be a sequence such that

sj → ±∞, sj+1 − sj → ±∞ as j →∞.

Assume that wj(y, s) = w(y, s + sj) converges to a limit w±∞(y, s) uniformly on
compact subsets of Rn+1. If 1 < p < p∗(n) and n ≤ 4, then the limit w±∞ is inde-

pendent of s, and equal to 0, ββ or −ββ . Also, the energy Ê[w±∞] is independent
of the choice of the sequence {sj}.

Proof. We shall discuss only the case sj → +∞; the proof for sj → −∞ would be
derived in the same way.
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Selecting w = wj , b = a+ sj+1− sj in Proposition 4.1 for any real number a, we
obtain

δjÊ[w](a) := Ê[wj ](a)− Ê[wj+1](a)

= Ê[wj ](a)− Ê[wj ](a+ sj+1 − sj)

≥
(
1− cn

4ε

) ∫ b

a

∫
(wjs + y · ∇wj)2ρdyds

+ dn,p,ε

∫ b

a

∫∫
(wj(y

′)− wj(y))2

|y′ − y|n+1
ρ(y′)dy′dyds

− dn,p
∫ b

a

∫∫
(wj(y

′)− wj(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds

(4.21)

with dn,p,ε = ( 1−Mnε
4 − (p−1)n

4(p+1) )cn and dn,p = (p−1)cn
4(p+1) . Now we choose ε =

p+1−(p−1)n
(p+1)Mn

, then dn,p,ε = 0 and 1− cn
4ε > 0 when 1 < p < p∗(n).

Thanks to the bounds of w and ∇w, we know that wj and ∇wj are bounded
independently of j. Therefore,∫∫

(wj(y
′)− wj(y))2

|y′ − y|n+1
ρ(y′)dy′dy

= lim
j→∞

∫∫
(w∞(y′)− w∞(y))2

|y′ − y|n+1
ρ(y′)dy′dy.

(4.22)

Arguing similarly for the other terms we see that Ê[wj ](a)→ Ê[w∞](a) as j →∞.

In particular, we know that δjÊ[w](a)→ 0. Since sj+1 − sj →∞, it follows that

0 ≥ lim
j→∞
{
(
1− cn

4ε

) ∫ a′

a

∫
(wjs + y · ∇wj)2ρdyds

− dn,p
∫ a′

a

∫∫
(wj(y

′)− wj(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds},

(4.23)

for any real number a < a′. (4.22) and (4.23) imply that∫ a′

a

∫∫
(w∞(y′)− w∞(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds = 0, (4.24)

for any real number a < a′. Thus,

w∞(y, s) ≡ C(s), ∀y ∈ Rn. (4.25)

Using the dominated convergence theorem and using integration by parts, we con-
clude that w∞ = C(s) is a weak solution of

ws + y · ∇w + (−∆)
1
2w + βw − |w|p−1w = 0. (4.26)

By (4.23), we have

lim
j→∞

∫ a′

a

∫
(wjs + y · ∇wj)2ρdyds = 0 (4.27)

for any real number a < a′. Now, we have that |wjs + y · ∇wj | ≤ C with C
independent of j from (2.16), and wjs + y · ∇wj converges weakly to w∞s by the
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equation (4.26). Then the integral (4.27) is lower-semicontinuous and we obtain∫ ∫ a′

a

|w∞s|2ρdsdy = 0. (4.28)

Since a and a′ are arbitrary, this means that w∞ is independent of s; thus we can
conclude that w∞ equals to 0, ββ or −ββ by means of equation (4.26).

It remains to prove that Ê[w∞] is independent of the choice of sequence. If
it is not true, then there is another sequence {s̃j} satisfying the hypotheses of

the proposition for which Ê[w∞] 6= Ê[w̃∞], where w̃∞ = lim
j→∞

w̃j with w̃j(y, s) =

w(y, s+ s̃j). Relabeling and passing to a subsequence if necessary, we may suppose

that Ê[w∞] < Ê[w̃∞] and sj < s̃j .
Selecting a = sj , b = s̃j in Proposition 4.1, we obtain

Ê[wj ](0)− Ê[w̃j ](0) = Ê[w](sj)− Ê[w](s̃j)

≥
(
1− cn

4ε

) ∫ s̃j

sj

∫
(ws + y · ∇w)2ρdyds.

(4.29)

Since Ê[wj ](0) − Ê[w̃j ](0) → Ê[w∞] − Ê[w̃∞] < 0, the left hand side of (4.29) is
negative for sufficiently large j. This is a contradiction, because of the right side is
non-negative. Hence Ê[w∞] = Ê[w̃∞], and the proof is complete. �

Proposition 4.3. Let w be a bounded solution of (1.22) in Rn+1 satisying (4.5). If
1 < p < p∗(n) and n ≤ 4, then lim

s→±∞
w(y, s) exists and equals to 0, ββ or −ββ .

The convergence is uniform on every compact subset of Rn.

Proof. Let {sj} be a sequence such that limj→∞ sj =∞. Since |∇w| and |ws| are
bounded on compact sets by Proposition 2.2, there is a subsequence of {w(y, s+sj)}
which converges uniformly on compact sets to some function w∞(y, s). By taking
another subsequence if necessary, we may assume that sj+1 − sj →∞. Therefore,
Proposition 4.2 tells us that w∞ equals to 0 or ±ββ .

Now we prove that the limit is independent of the choice of sequence. Suppose
that {sj} and {s̃j} both tend to infinity and satisfy the hypotheses of Proposition
4.2, with

wj(y, s) = w(y, s+ sj)→ w∞ and w̃j(y, s) = w(y, s+ s̃j)→ w̃∞.

It is easy to see that

Ê[±ββ ] =
β2β

2(p+ 1)

∫
ρdy > 0 = Ê[0]. (4.30)

In order to get (4.30), we have used the fact that∫
(−∆)

1
2 ρdy = 0. (4.31)

Since Ê[w∞] = Ê[w̃∞] by Proposition 4.2 , we see that w∞, w̃∞ are either both 0
or both ±ββ . If w∞ = ββ , w̃∞ = −ββ or vice versa, then there must be a sequence
s′j → ∞ with w(0, s′j) = 0, by the continuity of w. Taking subsequences as before
(and denoting the result again by s′j) we can see that w′j = w(y, s+ s′j)→ w′∞ = 0.

This contradicts the fact that Ê[w∞] = Ê[w′∞], and it follows that w∞ = w̃∞.
By a parallel way, we can also prove results for the case s→ −∞. �
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Proof of Theorem 1.3 . Proposition 4.3 implies Theorem 1.3 as we only consider
the case s→∞. �

Furthermore, we have

Theorem 4.4. Let w be a bounded, global solution of (1.22) in Rn+1 satisfying
(4.5), with

lim sup
s→∞

|w(0, s)| > 0. (4.32)

If 1 < p < p∗(n) and n ≤ 4, then w ≡ ±ββ.

Proof. Replacing w by −w if necessary, we may assume that

lim sup
s→∞

w(0, s) > 0. (4.33)

Let ε = p+1−(p−1)n
(p+1)Mn

in (4.8). For any τ > 0,

Ê[w](−τ)− Ê[w](τ) ≥
(
1− cn

4ε

) ∫ τ

−τ

∫
(ws + y · ∇w)2ρdyds

− dn,p
∫ τ

−τ

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds.

(4.34)

Applying Proposition 4.3 and passing to the limit,

Ê[w−∞]− Ê[w∞] ≥
(
1− cn

4ε

) ∫ ∞
−∞

∫
(ws + y · ∇w)2ρdyds

− dn,p
∫ ∞
−∞

∫∫
(w(y′)− w(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds,

(4.35)

with w∞ = lim
s→∞

w(y, s) (respectively w−∞), and the hypothesis on w assures that

w∞ = ββ . If w−∞ = 0, then the right side of (4.35) would be negative by (4.30),
which cannot happen. Therefore, w−∞ = ±ββ , and then (4.35) implies that w ≡ C.
It follows that w = w∞ = ββ , and we complete the proof. �

Proof of Theorem 1.4. Theorem 1.4 is just an equivalent statement of Theorem 4.4
for u. �

5. Proof of Theorem 1.5: Growth rate estimate for 1 < p < p∗(n)

Let T <∞ and let u : Rn×(−T, 0)→ R be a classical solution of the semi-linear
half heat equation

ut + (−∆)
1
2u− |u|p−1u = 0 (5.1)

such that, for any −T < t′ < 0,

u,∇u,∇2u,∇3u, and ut are bounded and continuous

on Rn × [−T, t′].
(5.2)

We recall that a solution u blows up at t = 0 if

sup
x∈Rn

|u(x, t)| → ∞, as t→ 0. (5.3)

In this section, we want to obtain the following blow up rate estimate:

sup
Rn×(−T,0)

{|u|p−1 + |∇u|
p−1
p + |∇2u|

p−1
2p−1 }(−t) <∞. (5.4)
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As before, we also need a further assumption: fix δ > 0, for any −T < t′ < 0,

|∇u|(1 + |x|δ) is bounded on Rn × [−T, t′]. (5.5)

Assume that estimate (5.4) fails. Since T < ∞, there is an increasing sequence
of times tk → 0 such that

sup
Rn×(−T,tk)

{|u|p−1 + |∇u|
p−1
p + |∇2u|

p−1
2p−1 }(−t)

= sup
Rn
{|u|p−1(x, tk) + |∇u(x, tk)|

p−1
p + |∇2u(x, tk)|

p−1
2p−1 }(−tk) = Mk

(5.6)

with tk → 0 and Mk → ∞ as k → ∞. We may choose a sequence xk ∈ Rn such
that

1

2
Mk ≤ {|u|p−1(xk, tk) + |∇u(xk, tk)|

p−1
p + |∇2u(xk, tk)|

p−1
2p−1 }(−tk) ≤Mk. (5.7)

In order to study u near (xk, tk), we use the similarity variables defined by

wk(y, s) = (−t)βu(x, t), (5.8)

x− xk = (−t)y, t = −e−s. (5.9)

It is easy to verify that the rescaled function wk satisfies

wks + (−∆)
1
2wk + y · ∇wk + βwk − |wk|p−1wk = 0, (5.10)

and inherits bounds from those on u: for any − lnT < s′ <∞,

wk,∇wk,∇2wk,∇3wk, wks + y · ∇wk and ∇(wks + y · ∇wk) are

bounded and continuous on Rn × [− lnT, s′].
(5.11)

By (5.5), we know that wk also satisfies: for any − lnT < s′ <∞,

|∇wk(y, s)|(1 + |y|δ) <∞, on Rn × [− lnT, s′]. (5.12)

Remark 5.1. In the following computations, the integration by parts can be justified
if we assume (5.11) and (5.12).

Proposition 5.2. For any k, the rescaled solution wk satisfies

1

2

d

ds

∫
|wk|2ρdy =

1

p+ 1

∫
|wk|2(−∆)

1
2 ρdy

− 2Ê[wk](s) +
p− 1

p+ 1

∫
|wk|p+1ρdy

(5.13)

and

−dÊ[wk]

ds
≥
(
1− cn

4ε

) ∫
(wks + y · ∇wk)2ρdy

+ dn,p,ε

∫∫
(wk(y′)− wk(y))2

|y′ − y|n+1
ρ(y′)dy′dy

− dn,p
∫∫

(wk(y′)− wk(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dy,

(5.14)

where ε ∈ ( cn4 ,
(p+1)−(p−1)n

(p+1)Mn
), dn,p,ε = ( 1−Mnε

4 − (p−1)n
4(p+1) )cn > 0 and dn,p = (p−1)cn

4(p+1) .

Ê[w](s) is defined by (4.7).



CLASSIFICATION OF BLOW-UPS FOR HALF LAPLACIAN 23

Proof. Since

d

ds

∫
|wk|2ρdy = 2

∫
wkwksρdy, (5.15)

multiplying the equation (5.10) by ρwk and using integration by parts, by the

definition of Ê[w](s), it is easy to get (5.13).
Inequality (5.14) is merely a restatement of (4.18) with w replaced by wk. �

Proposition 5.3. If 1 < p < p∗(n) and n ≤ 4, there exists a constant C such that

Ê[wk](− lnT ) ≤ C, for all k. (5.16)

We also have

M ′ ≥ Ê[wk](− lnT )− Ê[wk](∞)

≥
(
1− cn

4ε

) ∫ ∞
− lnT

∫
(wks + y · ∇wk)2ρdyds

+ dn,p,ε

∫ ∞
− lnT

∫∫
(wk(y′)− wk(y))2

|y′ − y|n+1
ρ(y′)dy′dyds

− dn,p
∫ ∞
− lnT

∫∫
(wk(y′)− wk(y))2

|y′ − y|n+1
(y′ · ∇ρ)dy′dyds,

(5.17)

where ε ∈ ( cn4 ,
(p+1)−(p−1)n

(p+1)Mn
), dn,p,ε = ( 1−Mnε

4 − (p−1)n
4(p+1) )cn > 0 and dn,p = (p−1)cn

4(p+1) .

In (5.17), the constant M ′ depends only on n, p and the bound C in (5.16) which
is independent of k.

Proof. We have assumed that T <∞ and u(x,−T ) and its derivatives up to order
three are bounded on Rn; see (5.2). Recall that

wk(y,− lnT ) = T βu(xk + Ty,−T ) =: T βU(y),

then we have, for s = − lnT ,∫∫
(wk(y′)− wk(y))2

|y′ − y|n+1
ρ(y′)dy′dy = T 2β

∫∫
(U(y′)− U(y))2

|y′ − y|n+1
ρ(y′)dy′dy

≤ T 2β+2 sup
Rn×{−T}

|∇u|2
∫∫

B1(y′)

ρ(y′)

|y′ − y|n−1
dydy′

+ 4T 2β sup
Rn×{−T}

|u|2
∫∫

Rn\B1(y′)

ρ(y′)

|y′ − y|n+1
dydy′

≤ C <∞.

The other terms in Ê[wk](− lnT ) are handled similarly. It is easy to obtain (5.16).

Inequality (5.14) in Proposition 5.2 implies that Ê[wk](s) is a decreasing funcition
of s when p < p∗(n).

We claim that there exists a positive constant A such that Ê[wk](s) ≥ −A for
all s.

Recall that

(−∆)
1
2 ρ = nρ+ y · ∇ρ

=
(
n− (n+ 1)

|y|2

1 + |y|2
)
ρ

≥ − ρ.

(5.18)
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Let

qn :=

∫
ρdy =

π
n+1
2

Γ(n+1
2 )

, (5.19)

and let

g(s) =
(∫
|wk|2ρdy

) 1
2

. (5.20)

By (5.13), (5.18) and Jensen’s inequality, we know that

1

2

d

ds

(
g2(s)

)
≥ − 1

p+ 1
g2(s)− 2Ê[wk](s) + cn,pg

p+1(s),

where

cn,p =
p− 1

p+ 1
q
−n(p−1)

4
n .

Now we choose

A =
1

p+ 1

( 2

(p+ 1)cn,p

) 2
p−1

. (5.21)

Suppose there exists a constant s1 such that Ê[wk](s1) < −A, then

Ê[wk](s) < −A for all s > s1. (5.22)

In (5.22), we have applied (5.14). If g(s) <
(

2
(p+1)cn,p

) 1
p−1

, then

1

2

d

ds

(
g2(s)

)
≥ A+ cn,pg

p+1(s). (5.23)

If g(s) ≥
(

2
(p+1)cn,p

) 2
p−1

, then

1

2

d

ds

(
g2(s)

)
≥ 2A+

1

2
cn,pg

p+1(s). (5.24)

Therefore, we conclude that

1

2

d

ds

(
g2(s)

)
≥ A+

1

2
cn,pg

p+1(s) for all s > s1. (5.25)

(5.25) implies that g(s) blows up in finite time, contradicting the global existence
of wk. Therefore,

−A ≤ Ê[wk](s) ≤ Ê[wk](− lnT ) for all s <∞. (5.26)

(5.26) and Proposition 4.1 imply that Ê[wk](s) have a limit Ê[wk](∞)≥ −A as
s→∞. Integrating (5.14) gives (5.17) since we may set M ′ = C +A. �

Proof of Theorem 1.5. If (5.4) fails, then (5.6) and (5.7) are true. Let wk(y, s) be
the recaled solution around xk defined by (5.8). Setting sk = − ln(−tk), (5.6) and
(5.7) become

|wk|p−1(y, s) + |∇wk(y, s)|
p−1
p + |∇2wk(y, s)|

p−1
2p−1 ≤Mk, − lnT < s ≤ sk (5.27)

and

1

2
Mk ≤ wp−1

k (0, sk) + |∇wk(0, sk)|
p−1
p + |∇2wk(0, sk)|

p−1
2p−1 ≤Mk. (5.28)
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We may therefore rescale {wk}, defining

vk(z, τ) = λβkwk(λkz, λkτ + sk), β =
1

p− 1
, (5.29)

with λk → 0 determined by λβkMk = 1. Each vk is defined on Rn × (− 1
λk
, 0], and

(5.27) and (5.28) gives

|vk|p−1 + |∇vk|
p−1
p + |∇2vk|

p−1
2p−1 ≤ 1 on Rn × (− 1

λk
, 0] (5.30)

and
1

2
≤ |vk|p−1(0, 0) + |∇vk(0, 0)|

p−1
p + |∇2vk(0, 0)|

p−1
2p−1 ≤ 1. (5.31)

The equation for vk is obtained by changing variables in (5.10) for wk:

vkτ + (−∆)
1
2 vk − |vk|p−1vk = −λk(z · ∇vk + βvk). (5.32)

By (5.31) and the equation (5.32), we know that vkτ are uniformly bounded on
Rn × (− 1

λk
, 0].

We denote
Q(r) = {(z, τ) ∈ Rn+1 : |z| < r,−r ≤ τ ≤ 0} (5.33)

and
Q′(r) = {(z, τ) ∈ Rn+1 : |z| < r,−r ≤ τ < 0}. (5.34)

For each r, there exists a large K, such that Q(r) ⊂⊂ Rn × (− 1
λk
, 0] for all k ≥ K.

To get the limit equation of vk, we need some regularities independent of k in each
Q(r). By Theorem 1.3 in [10] and (5.30), we can get

|vk|
C

1
2
, 1
2

z,τ (Q′(r))
≤ C (5.35)

where constant C independent of k, and following the notations in [10] as

[vk]
C

1
2
, 1
2

z,τ (Ω×I)
:= sup

(z,τ)∈Ω×I
(z′,τ ′)∈Ω×I

|vk(z, τ)− vk(z′, τ ′)|
|z − z′| 12 + |τ − τ ′| 12

(5.36)

for any Ω× I ⊂ Rn+1. By continuity and (5.30), we can obtain

|vk|
C

1
2
, 1
2

z,τ (Q(r))
≤ C. (5.37)

Taking the derivative with respect to z in (5.32) yields

∂zvkτ + (−∆)
1
2 ∂zvk = pvp−1

k ∂zvk − λk∂z(z · ∇vk + βvk). (5.38)

Similar to the discussion used to derive (5.37), we could obtain

|∇vk|
C

1
2
, 1
2

z,τ (Q(r))
≤ C. (5.39)

Moreover, by an iteration argument, we could also obtain

|∇2vk|
C

1
2
, 1
2

z,τ (Q(r))
≤ C. (5.40)

At last, we need to prove that

|vkτ |
C

1
2
, 1
2

z,τ (Q(r))
≤ C (5.41)

with C independent of k. Let ψ be a smooth function such that

0 ≤ ψ ≤ 1, suppψ ⊂ Q(2r), ψ ≡ 1 on Q(r).
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and let ṽk(z, τ) be the function defined by ṽk(z, τ) = ψ(z, τ)vk(z, τ). It is easy to
verify that ṽk satisfies the equation

ṽkτ + (−∆)
1
2 ṽk = fk, (5.42)

here the function fk is given by

fk = [(−∆)
1
2 vkτ + vkτ ]ψ + [(−∆)

1
2ψ + ψτ ]vk

+ cn

∫
(vk(z)− vk(y))(ψ(z)− ψ(y))

|z − y|n+1
dy.

(5.43)

By (5.30) and the definition of ṽk, we can get that fk ∈ L∞(Q(2r)), ṽk ∈ L∞(Rn×
(−2r, 0)). It follows from Theorem 1.3 in [10] that ṽk ∈ C

1
2
τ (Q′(2r)). Since ṽk = 0

on Rn× (−2r, 0)\Q(2r). It is easy to see that ṽ ∈ C
1
2 ,

1
2

z,τ (Rn× (−2r, 0)). We deduce

from Theorem 1.1 in [10] that ṽτ ∈ C
1
2 ,

1
2

z,τ (Q′(2r)). In particular, we have

|vkτ |
C

1
2
, 1
2

z,τ (Q′(r))
≤ C (5.44)

with C independent of k. By the continuity, the equation (5.38) and (5.40), we
could also get (5.41).

Thanks to (5.37), (5.39), (5.40) and (5.41), we can use the Arzela-Ascoli theo-
rem and a diagonal argument to get a subsequence (still denoted vk) converging
uniformly to a limit v on each Q(r). This v is defined on Rn × (−∞, 0], and it
satisfies  vτ + (−∆)

1
2 v − |v|p−1v = 0,

1

2
≤ {|v|p−1 + |∇v|

p−1
p + |∇2v|

p−1
2p−1 }(0, 0) ≤ 1

(5.45)

by passing to the limit in (5.30), (5.31) and (5.32).
We may assume λk ≤ 1, then ρ(z) ≤ ρ(y) for y = λkz. In (5.17), we fix

ε ∈ ( cn4 ,
p+1−(p−1)n

(p+1)Mn
) such that dn,p,ε > 0 and 1− cn

4ε > 0.

(i)1 < p < p∗(n) and u ≥ 0. By changing variables and applying (5.17) we have∫
Q( 1

λk
)

(vkτ + λkz · ∇vk)2ρdzdτ ≤ λσ
′

k

∫
Ωk

(wks + y · ∇wk)2ρdyds

≤
(
1− cn

4ε

)−1
λσ
′

k M
′

(5.46)

with σ′ = 2β + 1− n > 0 since 1 < p < p∗(n) < n+1
n−1 , and

Ωk = {(y, s) ∈ Rn+1 : |y| ≤ 1, sk − 1 ≤ s ≤ sk}.
It follows that ∫

D

|vτ |2ρdzdτ = 0 (5.47)

for any compact subset D ⊂ Rn × (−∞, 0]. It means that v is independent of τ .
By the assumption and maximum principle, v is a positive bounded solution of the
limit equation,

(−∆)
1
2 v = vp, on Rn. (5.48)

The corollary 1 in [6] tell us that (5.48) has no positive bounded solution. This is
a contradiction. Thus, (5.4) is true.
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(ii)1 < p < min{1 + 2
n , p∗(n)}. By changing variables and applying (5.17) we

have ∫
Q̃k

(vk(z′)− vk(z))2

|z′ − z|n+1
ρ(z)dz′dzdτ

≤ λσk
∫

Ω̃k

(wk(y′)− wk(y))2

|y′ − y|n+1
ρ(y)dy′dyds

≤ λσk
M ′

dn,p,ε

(5.49)

with σ = 2β − n > 0 since 1 < p < 1 + 2
n , and

Q̃k = {(z, z′, τ) ∈ R2n+1 : |z| ≤ 1

λk
, |z′| ≤ 1

λk
,− 1

λk
< τ ≤ 0},

Ω̃k = {(y, y′, s) ∈ R2n+1 : |y| ≤ 1, |y′| ≤ 1, sk − 1 < s ≤ sk}.

Therefore, ∫
D

(v(z′)− v(z))2

|z′ − z|n+1
ρ(z)dz′dzdτ = 0, (5.50)

for any compact subset D ⊂ R2n × (−∞, 0], which means that v ≡ C(τ). On the
other hand, (5.17) also tells us that∫

Q( 1
λk

)

(vkτ + λkz · ∇vk)2ρdzdτ ≤ λσ
′

k

∫
Ωk

(wks + y · ∇wk)2ρdyds

≤
(
1− cn

4ε

)−1
λσ
′

k M
′

(5.51)

with σ′ = 2β + 1− n > 0. It follows that∫
D

|vτ |2ρdzdτ = 0, (5.52)

for any compact subset D ⊂ Rn × (−∞, 0], which means that v ≡ C for some con-
stant C. It is easy to see that C = 0 by the limiting equation (5.45), contradicting

{|v|p−1 + |∇v|
p−1
p + |∇2v|

p−1
2p−1 }(0, 0) ≥ 1

2 . Thus, (5.4) is true.
Therefore, we conclude that (5.4) is true in both cases. Applying Theorem 1.3

and (5.3), we complete the proof of Theorem 1.5. �

6. Proof of theorem 1.7

In order to prove Theorem 1.7, we need the following lemma.

Lemma 6.1. Let 0 < δ < 1 and let η(x) = (1 + |x|)−δ, then there exists a positive
constant c = c(n, δ) such that

|(−∆)
1
2 η|(x) ≤ cη(x) for all x ∈ Rn. (6.1)

Proof. Let η(x) = (1 + |x|)−δ, we estimate

|P.V.
∫
Rn

η(x)− η(y)

|x− y|n+1
dy|.

If |x| is bounded, the inequality (6.1) holds by choosing a suitable constant c.
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If |x| is large enough, similar to [7], we decompose the above integral as follows:

P.V.

∫
Rn

η(x)− η(y)

|x− y|n+1
dy = I1 + I2 + I3 + I4,

here

I1 = P.V.

∫
|x|
2 ≤|x−y|≤2|x|

η(x)− η(y)

|x− y|n+1
dy,

I2 = P.V.

∫
1≤|y−x|≤ |x|2

η(x)− η(y)

|x− y|n+1
dy,

I3 = P.V.

∫
|y−x|≤1

η(x)− η(y)

|x− y|n+1
dy,

I4 = P.V.

∫
|y−x|>2|x|

η(x)− η(y)

|x− y|n+1
dy.

For the first integral, we have

|I1| ≤ c|x|−(n+1)

∫
|x|
2 ≤|x−y|≤2|x|

|η(x)− η(y)|dy ≤ c|x|−1.

Since

η(x)− η(y) = ∇η(ξ) · (x− y)

where ξ = x+ λ(y − x) with some λ ∈ [0, 1]. If 1 ≤ |y − x| ≤ |x|2 , then

|η(x)− η(y)| ≤ c(1 + |x|)−1−δ|x− y|.

Therefore, the second one satisfies

|I2| ≤ c|x|−1−δ
∫

1≤|y−x|≤ |x|2
|x− y|−ndy ≤ c|x|−δ.

To bound the third one, notice that

|I3| = |
∫
|y−x|≤1

η(y)− η(x)−∇η(x) · (x− y)

|x− y|n+1
dy|

≤ c|D2η|(x)

∫
|y−x|≤1

|x− y|1−ndy ≤ c|x|−δ.

The last one can be bound as follows.

|I4| ≤ c|x|−δ
∫
|y−x|>2|x|

|x− y|−n−1dy ≤ c|x|−δ.

Since 0 < δ < 1, we can get that

|P.V.
∫
Rn

η(x)− η(y)

|x− y|n+1
dy| ≤ c|x|−δ ≤ 2c(1 + |x|)−δ

if |x| is large enough. In conclusion, the inequality (6.1) holds for all x ∈ Rn. �

Proof of Theorem 1.7. Let hj = ∂u
∂xj

, j = 1, · · · , n, the derivatives of the solution u

of the Cauchy problem (1.35). Then each hj satisfies the Cauchy problem:{
L[hj ] := ∂thj + (−∆)

1
2hj − p|u|p−1hj = 0, (x, t) ∈ Rn × (0, T )

hj(x, 0) = ∂u0

∂xj
(x), x ∈ Rn. (6.2)
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By the decay assumption (1.37) on the gradient of the initial value u0, we can take
a suitable δ0 ∈ (0, 1), η(x) = (1 + |x|)−δ0 such that

|hj(x, 0)| ≤ Cη(x). (6.3)

Let g(x, t) = Keλtη(x), here K and λ will be determined later. For any 0 < T ′ < T ,
by the definition of the finite blow up time T , we have

MT ′ := sup
Rn×(0,T ′)

|u(x, t)| <∞. (6.4)

Hence, by Lemma 6.1, we get

L[g] = Keλtη(λ− c− p|u|p−1)

≥ 0,
(6.5)

provided λ = pMp−1
T ′ + c+ 1. By the decay condition (6.3),

g(x, 0) ≥ hj(x, 0), x ∈ Rn, (6.6)

if we choose K = C + 1. Then the maximum principle (see lemma 4.1 in [18]) tells
us that

hj(x, t) ≤ g(x, t), (x, t) ∈ Rn × (0, T ′], (6.7)

for any 0 < T ′ < T . Obviously, −g is a sub barrier for hj , j = 1, · · · , n. In
conclusion, we have the decay condition

|∇u|(x, t) ≤ C(T ′)

1 + |x|δ0
, (x, t) ∈ Rn × (0, T ′], (6.8)

for any 0 < T ′ < T . C(T ′) = KeλT
′

converges to infinite as T ′ → T .
On the other hand, since u0 is nonnegative, the maximum principle also tells us

that u ≥ 0. Since the decay condition (6.8) and the nonnegativity of u hold, we
can use Theorem 1.5 to prove Theorem 1.7. �

Finally, we want to show that for some special initial value problems, the case
limt→T (T − t)βu(x+ y(T − t), t) = 0 in (1.38) can be excluded. More precisely, we
have the following result.

Proposition 6.2. Let u0 be a nontrivial(6≡ 0), nonnegative, radially symmetric func-
tion which is also nonincreasing in |x| and satisfies

|∇u0|(x) ≤ C

1 + |x|δ
, (6.9)

for some δ > 0. Let u(x, t) be a finite time blow up solution of the equation (1.35),
then

lim
t→T

(T − t)βu(0, t) > 0. (6.10)

where T is the finite blow up time in the sense of

T := sup
{
t > 0 : sup

(x,t)∈Rn×(0,t)

u(x, t) <∞
}
. (6.11)

Proof. Since u0 is a nonnegative, radially symmetric function which is also nonin-
creasing in |x| and satisfies (6.9), it is easy to show that u(x, t) is also nonnegative,
radially symmetric function and nonincreasing. Indeed, for any e ∈ Sn, let l be the
plane of e·x = 0 which through the origin. For any x ∈ Rn, denote x′ = x−2(e·x)e,
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the mirror image of x among the plane l. Let w(x, t) = u(x, t) − u(x′, t), for any
T ′ < T , we have{

∂tw + (−∆)
1
2w + b(x, t)w = 0, (x, t) ∈ Rn × (0, T ′]

w(x, 0) = 0, x ∈ Rn,

where b(x, t) is bounded on Rn × [0, T ′]. Then the maximum principle (see lemma
4.1 in [18]) tells us that w ≡ 0, which means u is symmetric among the plane l.
Since the arbitrariness of l, we prove the radial symmetry of u. Next, we consider
hj = ∂u

∂xj
, j = 1, · · · , n. For simplicity, we only consider j = n. By the radial

symmetry of u, hn(x̃, xn, t) = −hn(x̃,−xn, t) for all (x̃, xn, t) ∈ Rn−1 × R× [0, T ′].
By (6.8), we also have

lim
|x|→∞

hn(x, t) = 0, for any t ∈ [0, T ′]. (6.12)

Since hn satisfies the equation{
∂thn + (−∆)

1
2hn − p|u|p−1hn = 0, (x, t) ∈ Rn × (0, T ′]

hn(x, 0) ≤ 0, x ∈ Rn+,

where Rn+ = {(x̃, xn) ∈ Rn−1 × R : xn > 0}. Then the maximum principle (see
lemma 2.1 in [18]) tells us that hn ≤ 0 on Rn+ × (0, T ′]. In general, we have hj ≤ 0
when xj > 0, j = 1, · · · , n, which means u is decreasing in |x|.

By a contradiction argument, we assume

lim
t→T

(T − t)βu(0, t) = 0,

then for every ε > 0, there exists a δ > 0 such that

u(x, t) < ε(T − t)−β on Rn × (T − δ, T ).

Let û(x, t) = δβu(δx, δ(t+ T )), then û(x, t) satisfies{
ût + (−∆)

1
2 û− ûp = 0 in Rn × (−1, 0)

û(x, t) < ε(−t)−β in Rn × (−1, 0).
(6.13)

The semigroup representation formula for û(x, t) gives

û(x, t) =

∫
Rn
P (x−y, t+1)û(y,−1)dy+

∫ t

−1

∫
Rn
P (x−y, t−s)ûp(y, s)dyds. (6.14)

Here P (x, t) is the fractional heat kernel defined by (1.8). By (6.14), we know that

‖û(·, t)‖L∞(Rn) ≤ ε+

∫ t

−1

εp−1s−1‖û(·, t)‖L∞(Rn)ds, (6.15)

By Gronwall’s inequality, we can get that

‖û(·, t)‖L∞(Rn) ≤ ε exp

∫ t

−1

εp−1s−1ds

≤ 2ε(−t)−ε
p−1

.

(6.16)

We take (6.16) into (6.14), then

‖û(·, t)‖L∞(Rn) ≤ ε+

∫ t

−1

(2ε)p−1(−s)−(p−1)εp−1

‖û(·, t)‖L∞(Rn)ds. (6.17)

Let ε be a constant which is small enough. If we apply Gronwall’s inequality again,
then we can get that û is bounded. It follows that u(x, t) is bounded near t = T .
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Since we have assumed that u(x, t) is a finite time blow up solution, this is a
contradiction. �

7. Appendix: Computation of c1M1

For n = 1, fj(y), j = 1, 2 defined by (3.11) has an explicit expression. Indeed,
recall that ρ(y) = 1

1+y2 , then

f1(y) :=
1

ρ(y)

∫
B|y|(0)

(ρ(y′)− ρ(y))2

|y′ − y|2
1

ρ(y′)
dy′

=
1

1 + y2

∫
B|y|(0)

(y′ + y)2

1 + y′2
dy′

=
2

1 + y2

∫ |y|
0

dy′ +
2(y2 − 1)

1 + y2

∫ |y|
0

dy′

1 + y′2

=
2|y|

1 + y2
+

2(y2 − 1)

1 + y2
arctan |y|.

(7.1)

Similarly,

f2(y) :=
1

ρ(y)2

∫
R\B|y|(0)

(ρ(y′)− ρ(y))2

|y′ − y|2
dy′

=

∫
R\B|y|(0)

(y′ + y)2

(1 + y′2)2
dy′

= 2

∫ ∞
|y|

dy′

1 + y′2
+ 2(y2 − 1)

∫ ∞
|y|

dy′

(1 + y′2)2

= π − 2 arctan |y|+ (y2 − 1)
(π

2
− arctan |y| − |y|

1 + y2

)
.

(7.2)

Since c1 = 1
π , we are going to prove that M1 < 4π. Since fj(y), j = 1, 2 are even,

we may assume y ∈ [0,+∞). It is not hard to see that

2|y|
1 + y2

≤ 1,

2(y2 − 1)

1 + y2
arctan |y| ≤ π,

π − 2 arctan |y| ≤ π.

(7.3)

Let

f(y) = (y2 − 1)
(π

2
− arctan |y| − |y|

1 + y2

)
, (7.4)

then

f ′(y) = 2y
(π

2
− arctan |y| − |y|

1 + y2

)
− 2(y2 − 1)

(1 + y2)2
. (7.5)

Observe

f(y) < 0 = f(1), for all y ∈ [0, 1), (7.6)
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and, by the L’Hôpital’s rule,

lim
y→∞

f(y) = lim
y→∞

2
(1+y2)2

2y
(y2−1)2

= lim
y→∞

2

y
= 0.

(7.7)

Then f achieves its maximum at some critical point y1 ≥ 1. f ′(y1) = 0 implies that

π

2
− arctan y1 −

y1

1 + y2
1

=
y2

1 − 1

y1(1 + y2
1)2

. (7.8)

It follows that

f(y1) =
(y2

1 − 1)2

y1(1 + y2
1)2

<
1

y1
≤ 1. (7.9)

Therefore, we conclude

M1 ≤ 1 + π + π + 1 < 4π. (7.10)

In fact, a numerical calculation shows that M1 ≈ 4.8271 < 4π. As a consequence,
p∗(1) ≈ 4.2072.
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