NONDEGENERACY OF HARMONIC MAPS FROM \mathbb{R}^{2} TO \mathbb{S}^{2}

Guoyuan Chen
School of Data Sciences, Zhejiang University of Finance \& Economics
Hangzhou 310018, Zhejiang, China
Yong Liu
School of Mathematics, University of Science and Technology of China, Hefei, China

Juncheng Wei*
Department of Mathematics, University of British Columbia
Vancouver, B.C., Canada, V6T 1Z2
(Communicated by Chiun-Chuan Chen)
Dedicated to Professor Wei-Ming Ni on the occasion of his 70th birthday

Abstract

We prove that all harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} with finite energy are nondegenerate. That is, for any harmonic map u from \mathbb{R}^{2} to \mathbb{S}^{2} of degree $m \in \mathbb{Z}$, all bounded kernel maps of the linearized operator L_{u} at u are generated by those harmonic maps near u and hence the real dimension of bounded kernel space of L_{u} is $4|m|+2$.

1. Introduction. In this paper, we consider the harmonic maps given by

$$
\begin{equation*}
\Delta u+|\nabla u|^{2} u=0, \quad u: \mathbb{R}^{2} \rightarrow \mathbb{S}^{2} \tag{1}
\end{equation*}
$$

where $\mathbb{S}^{2}=\left\{u=\left(u_{1}, u_{2}, u_{3}\right):|u|=1\right\}$ is the unit sphere in \mathbb{R}^{3}, Δ is the Laplacian in \mathbb{R}^{2} and

$$
|\nabla u|^{2}=\sum_{j=1}^{2} \sum_{i=1}^{3}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}
$$

Harmonic maps are critical points of the following associated energy

$$
\begin{equation*}
\mathcal{E}(u)=\int_{\mathbb{R}^{2}}|\nabla u|^{2} d x \tag{2}
\end{equation*}
$$

Harmonic maps also can be defined between general Riemannian manifolds. We refer the interested readers to [4], [5], [18], [15], [11] and the references therein for more results in this direction.

One important case is the harmonic maps between Riemann surfaces. It is well known that oriented two-dimensional Riemannian manifold has a natural complex structure. Hence any holomorphic or anti-holomorphic map between oriented surfaces is a harmonic map. Conversely, harmonic map is not necessarily holomorphic

[^0]or anti-holomorphic. There is a topological obstruction. For example, if a harmonic map u from a surface M to \mathbb{S}^{2} satisfies certain degree conditions (for example, $|\operatorname{deg}(u)|$ is larger than the genus of $M)$, then u is holomorphic or anti-holomorphic. For more related results, see for example [6], [4], [5], [12], [11], and the references therein.

A map u from \mathbb{R}^{2} to \mathbb{S}^{2} is harmonic if and only if u is holomorphic or antiholomorphic. In particular, if we choose local coordinates of \mathbb{S}^{2} as stereographic projections \mathcal{S} and \mathcal{S}^{\prime} (see (7), (8) below) and consider \mathbb{R}^{2} as the complex plane, then a map u from \mathbb{R}^{2} to \mathbb{S}^{2} with finite topological degree is harmonic if and only if there is a (irreducible) rational complex valued function $f=q / p$ in \mathbb{C} such that $u=\mathcal{S}(f)$. Here q and p are complex polynomials with algebraic order l and n respectively. Some basic computations imply that $\operatorname{deg}(u)=\max \{l, n\}$ (see Section 2 below). We should mention that the classifications of harmonic maps from \mathbb{C} to Lie groups or other symmetric spaces were also investigated, see, for example, [21], [7], [8], and the references therein.

It is clear that changing the coefficients (complex numbers) of f continuously yields a family of harmonic maps. Therefore, it generates kernel maps for the linearized operators L_{u}

$$
L_{u}[v]:=\Delta v+|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u
$$

of (1) at some fixed harmonic maps u. Let us consider a simple example. Assume $u(z)=\mathcal{S}\left(\frac{z^{2}+1}{z}\right)$. The degree of u is 2 . Let

$$
u\left(z ; a_{0}, a_{1}, a_{2} ; b_{0}, b_{1}, b_{2}\right)=\mathcal{S}\left(\frac{\left(1+a_{0}\right) z^{2}+a_{1} z+1+a_{2}}{b_{0} z^{2}+\left(1+b_{1}\right) z+b_{2}}\right)
$$

with some small complex numbers $a_{0}, a_{1}, a_{2} ; b_{0}, b_{1}, b_{2}$. Then $u\left(z ; a_{0}, a_{1}, a_{2} ; b_{0}, b_{1}, b_{2}\right)$ are close to $u(z)$. Then this family of harmonic maps generates 10 linearly independent bounded kernels of L_{u}.

Our main theorem asserts the nondegeneracy of all harmonic maps. We prove that

Theorem 1.1. Let u be a harmonic map from \mathbb{R}^{2} to \mathbb{S}^{2} of degree $m \in \mathbb{Z}$. Then all the bounded maps in the kernel of L_{u} are generated by harmonic maps close to u. In particular, the real dimension of the bounded kernel space of L_{u} is $4|m|+2$.

Remark 1. (1) We should point out that the degree m of harmonic maps can be negative in Theorem 1.1. It corresponds to anti-holomorphic functions. See Section 2 below. Moreover, we emphasize that the harmonic maps we discussed here are general, especially, we do not restrict the harmonic maps to be corotational. For nondegeneracy within corotational classes, see [10] and [9].
(2) All bounded kernels of L_{u} can be written down explicitly. See the proof of Proposition 4. As an example, we will give the explicit formula of kernels for m-corotational case (Corollary 1).

Remark 2. (1) For $m=1$, the nondegeneracy of 1-corotational harmonic maps was obtained by [3]. For case of half-harmonic map from \mathbb{R} to \mathbb{S}^{1} of degree 1 , the nondegeneracy was verified by [20]. In [1], the authors proved the nondegeneracy of standard bubbles of degree 1 for $\Delta u=2 u_{x} \times u_{y}$ where u is a map from \mathbb{R}^{2} to \mathbb{R}^{3}.
(2) Since the set of harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} with finite topological degree corresponds to the space of complex rational functions by stereographic projection,
it introduces a natural algebraic structure. Similar phenomena were found in Toda system, see [22] [14].

Remark 3. Harmonic maps into \mathbb{S}^{2} can also be considered as stationary wave maps or stationary Schrödinger maps or stationary Landau-Lifshitz maps. See [10], [9] and [16].

Theorem 1.1 asserts that the kernel space of L_{u} is generated by changing the $2|m|+2$ complex coefficients of corresponding rational functions. Such kind of result was obtained for half wave maps from \mathbb{R} to \mathbb{S}^{2} in a recent paper [13]. To be more precise, traveling solitary waves from \mathbb{R} to \mathbb{S}^{2} with degree m can be generated by finite Blaschke products with degree m which are holomorphic or anti-holomorphic functions. These finite Blaschke products depend on $2|m|+1$ real parameters. The authors proved that the null space of linearized operators is generated by differentiation these parameters and x-, y-rotations. An important ingredient in the proof is the classification and nondegeneracy of half-harmonic maps from \mathbb{R} to \mathbb{S}^{1}. We should point out that the proof of nondegeneracy in [13] is done through analyzing the spectrum of linearized operator.

Our proof relies on the fact that all harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} are minimizers (locally stable critical points) in its degree class (see (11) and (13) below). That is, u is a harmonic map with degree $m \geq 0$ (resp. $m<0$) if and only if u satisfies the first order equation (12) (resp. (14)). Let $L_{1, u}$ be the linearized (first order) operator corresponding to (11) at u. Then we prove that for $m \geq 0$ the bounded kernel space of L_{u} is the same as that of $L_{1, u}$ (see Proposition 3 below). Then we verify that all maps in the kernel of $L_{1, u}$ satisfies Cauchy-Riemann equations after stereographic projection (see Proposition 4 below). For $m<0$, the similar results correspond to anti-holomorphic and anti-version of Cauchy-Riemann equations.

As a special case, we consider m-corotational harmonic maps. That is, $U_{m}(z)=$ $\mathcal{S}\left(z^{m}\right), m \in \mathbb{N}$, in \mathbb{C}. In polar coordinates (r, θ) in \mathbb{R}^{2}, the m-corotational harmonic maps can be written as

$$
U_{m}(r, \theta)=\left(\begin{array}{c}
\cos m \theta \sin Q_{m}(r) \tag{3}\\
\sin m \theta \sin Q_{m}(r) \\
\cos Q_{m}(r)
\end{array}\right)=\left(\begin{array}{c}
\frac{2 r^{m} \cos m \theta}{1+r^{2 m}} \\
\frac{2 r^{m} \sin m \theta}{1+r^{2 m}} \\
\frac{r^{2 m}-1}{r^{2 m}+1}
\end{array}\right)
$$

where $Q_{m}(r)=\pi-2 \arctan \left(r^{m}\right)$. Theorem 1.1 implies the explicit bounded kernel of the linearized operator at the standard m-corotational harmonic map U_{m}. For simplicity of notations, we set

$$
\begin{gathered}
E_{1}=\left(\begin{array}{c}
-\sin m \theta \\
\cos m \theta \\
0
\end{array}\right)=\binom{i e^{i m \theta}}{0} \\
E_{2}=\left(\begin{array}{c}
\cos m \theta \cos Q_{m} \\
\sin m \theta \cos Q_{m} \\
-\sin Q_{m}
\end{array}\right)=\binom{e^{i m \theta} \cos Q_{m}}{-\sin Q_{m}} .
\end{gathered}
$$

Then we have the following corollary.
Corollary 1. Assume that $m \geq 1$. The standard m-corotational harmonic map U_{m} is nondegenerate. That is, all bounded maps in the kernel of $L_{U_{m}}$ are linear
combinations of $\left\{E_{k j}, \tilde{E}_{\nu j}, \tilde{E}_{m j}\right\} \quad(k=0,1, \cdots, m, \nu=1, \cdots, m-1$ and $j=1,2)$. Here

$$
\begin{align*}
E_{k 1} & =\frac{r^{m-k}}{1+r^{2 m}}\left(-\cos k \theta E_{1}+\sin k \theta E_{2}\right) \\
E_{k 2} & =\frac{r^{m-k}}{1+r^{2 m}}\left(\sin k \theta E_{1}+\cos k \theta E_{2}\right) \tag{4}
\end{align*}
$$

where $k=0,1, \cdots, m$, and

$$
\begin{align*}
& \tilde{E}_{\nu 1}=\frac{r^{m+\nu}}{1+r^{2 m}}\left(-\cos \nu \theta E_{1}+\sin \nu \theta E_{2}\right) \\
& \tilde{E}_{\nu 2}=\frac{r^{m+\nu}}{1+r^{2 m}}\left(\sin \nu \theta E_{1}+\cos \nu \theta E_{2}\right) \tag{5}
\end{align*}
$$

where $\nu=1, \cdots, m-1$, and

$$
\tilde{E}_{m 1}=\left(\begin{array}{c}
0 \tag{6}\\
\frac{r^{2 m}-1}{r^{2 m}+1} \\
-\frac{2 r^{m} \sin m \theta}{r^{2 m}+1}
\end{array}\right), \quad \tilde{E}_{m 2}=\left(\begin{array}{c}
\frac{r^{2 m}-1}{r^{2 m}+1} \\
0 \\
-\frac{2 r^{m} \cos m \theta}{r^{2 m}+1}
\end{array}\right)
$$

In particular, $\operatorname{dim} \operatorname{ker} L_{U_{m}}=4 m+2$.
Remark 4. (1) For $m \leq-1, U_{m}(z)=\mathcal{S}\left(\bar{z}^{m}\right)$. The similar results can be verified by reversing the rotation direction.
(2) Nondegeneracy for m-corotational harmonic map U_{m} can also be proved by ODE method. See Appendix below.

This paper is organized as follows. In Section 2, we recall some basic classifications results and compute the degree of general harmonic maps in terms of algebraic order of rational functions. Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we give an explicit formula of the kernel maps in m-corotational case. In Appendix, we illustrate some details of computations, and prove Corollary 1 by ODE methods.
2. Preliminaries. In this section, we first recall the classification facts for harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} as well as compute their degrees.

It is well known that \mathbb{S}^{2} is a complex manifold. For our application, we give a system of local charts by the stereographic projection. Let $z=(x, y) \in \mathbb{R}^{2}=\mathbb{C}$ and $s=\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{S}^{2}$. Define

$$
\begin{equation*}
\mathcal{S}: \mathbb{C} \rightarrow \mathbb{S}^{2} \backslash\{N\} \quad \text { by } s_{1}=\frac{2 x}{1+|z|^{2}}, s_{2}=\frac{2 y}{1+|z|^{2}} \text { and } s_{3}=\frac{|z|^{2}-1}{|z|^{2}+1} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{S}^{\prime}: \mathbb{C} \rightarrow \mathbb{S}^{2} \backslash\{S\} \quad \text { by } s_{1}=\frac{2 x}{1+|z|^{2}}, s_{2}=-\frac{2 y}{1+|z|^{2}} \text { and } s_{3}=\frac{1-|z|^{2}}{1+|z|^{2}} \tag{8}
\end{equation*}
$$

Here $S=(0,0,-1)$ and $N=(0,0,1)$ denote the south and north pole respectively. Alternatively, in complex variable form,

$$
\begin{equation*}
\mathcal{S}=\frac{1}{1+|z|^{2}}\binom{2 z}{|z|^{2}-1}, \quad \mathcal{S}^{\prime}=\frac{1}{1+|z|^{2}}\binom{2 \bar{z}}{1-|z|^{2}} \tag{9}
\end{equation*}
$$

Therefore, the transition function between these two charts is $\frac{1}{z}$. It is holomorphic in $\mathbb{C} \backslash\{0\}$.

Topological degree of a $C^{1} \operatorname{map} u$ from \mathbb{R}^{2} to \mathbb{S}^{2} can be defined by the de Rham approach

$$
\begin{equation*}
\operatorname{deg}(u)=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} u \cdot\left(u_{y} \times u_{x}\right)=\frac{1}{4 \pi} \int_{\mathbb{R}^{2}} u_{x} \cdot\left(u \times u_{y}\right) \tag{10}
\end{equation*}
$$

It is well known that (10) is equivalent to the Brouwer's degree for all C^{1} maps. See, for example, [17, Chapter III].

Since $u \perp u_{x}$ and $u \perp u_{y}$, it holds that $\left|u \times u_{y}\right|=|u|\left|u_{y}\right|$. Then we have

$$
\mathcal{E}(u)=\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|u_{x}\right|^{2}+\left|u \times u_{y}\right|^{2}\right) d x d y
$$

Rewrite

$$
\begin{align*}
\mathcal{E}(u) & =\frac{1}{2} \int_{\mathbb{R}^{2}}\left|u_{x}-u \times u_{y}\right|^{2}+\int_{\mathbb{R}^{2}} u_{x} \cdot\left(u \times u_{y}\right) \\
& =\frac{1}{2} \int_{\mathbb{R}^{2}}\left|u_{x}-u \times u_{y}\right|^{2}+4 \pi \operatorname{deg}(u) \tag{11}
\end{align*}
$$

If

$$
\begin{equation*}
u_{x}=u \times u_{y}, \tag{12}
\end{equation*}
$$

then $\mathcal{E}(u)=4 \pi \operatorname{deg}(u)$. Hence $\operatorname{deg}(u) \geq 0$. Since Brouwer's degree is invariant by homotopy deformations, we find that u is a minimizer in its degree class.

On the other hand, we also have that

$$
\begin{align*}
\mathcal{E}(u) & =\frac{1}{2} \int_{\mathbb{R}^{2}}\left(\left|u \times u_{x}\right|^{2}+\left|u_{y}\right|^{2}\right) d x d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{2}}\left|u \times u_{x}-u_{y}\right|^{2} d x d y+\int_{\mathbb{R}^{2}}\left(u \times u_{x}\right) \cdot u_{y} d x d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{2}}\left|u \times u_{x}-u_{y}\right|^{2} d x d y-4 \pi \operatorname{deg}(u) \tag{13}
\end{align*}
$$

Hence if u satisfies

$$
\begin{equation*}
u_{y}=u \times u_{x}, \tag{14}
\end{equation*}
$$

then $\mathcal{E}(u)=-4 \pi \operatorname{deg}(u)$. It follows that $\operatorname{deg}(u) \leq 0$. Similarly by the invariance of deformations of Brouwer's degree, we have that u is a local minimizer in its degree class.

Before discussing the nondegeneracy problem, we first recall the classification result.

Proposition 1. A map u from \mathbb{R}^{2} to \mathbb{S}^{2} is harmonic if and only if u is holomorphic or anti-holomorphic.

Remark 5. For the relation between harmonic maps and holomorphic (or antiholomorphic) maps from general surfaces to \mathbb{S}^{2}, we refer the reader to $[4,11.6]$, [11, Section 2.2] and the references therein.

Note that if u satisfies (12) or (14), then u is a critical point of \mathcal{E}. That means that u is a solution of (1). Conversely, Proposition 1, Lemma A. 1 and Remark 9 below tell us that if u is a solution of (1), then u satisfies (12) or (14). Hence we find that all harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} are stable.

By Proposition 1, in local coordinates, the harmonic maps are holomorphic or anti-holomorphic functions.

Corollary 2. A map u from \mathbb{R}^{2} to \mathbb{S}^{2} is harmonic with $\operatorname{deg}(u) \geq 0$ (resp. $\operatorname{deg}(u)<$ 0) if and only if $u=\mathcal{S}(p / q)$ where p and q are complex polynomials of z (resp. $\bar{z})$. That is, u is a harmonic map if and only if u is a stereographic projection of a rational function of z (resp. \bar{z}). We call (irreducible) rational function p / q the generate function function of harmonic map u. Moreover, all harmonic maps from \mathbb{R}^{2} to \mathbb{S}^{2} are stable.

Remark 6. In what follows, we shall focus on the nonnegative degree harmonic maps. Harmonic maps of negative degree correspond to anti-holomorphic functions. The proof of nondegeneracy is similar.

We now in the position to compute the degree of harmonic maps. The degree of rational functions was computed in [19] (see also [2]). For our utilities, we give a basic computation. Let us investigate some examples first.

Example: Some direct computations verify that
(1) $\operatorname{deg}(\mathcal{S}(z))=\operatorname{deg}\left(\mathcal{S}\left(\frac{1}{z}\right)\right)=1 . \operatorname{deg}\left(\mathcal{S}\left(z^{2}\right)\right)=\operatorname{deg}\left(\mathcal{S}\left(\frac{1}{z^{2}}\right)\right)=2 . \operatorname{deg}\left(\mathcal{S} \circ z^{m}\right)=$ $\operatorname{deg}\left(\mathcal{S}\left(\frac{1}{z^{m}}\right)\right)=m$ with $m \geq 0$.
(2) $\operatorname{deg}\left(\mathcal{S}\left(z+\frac{1}{z}\right)\right)=2$.
(3) $\operatorname{deg}(\mathcal{S}(\bar{z}))=\operatorname{deg}\left(\mathcal{S}\left(\frac{1}{\bar{z}}\right)\right)=-1$. And $\operatorname{deg}\left(\mathcal{S}\left(\bar{z}^{m}\right)\right)=\operatorname{deg}\left(\mathcal{S}\left(\frac{1}{\bar{z}^{m}}\right)\right)=-m$ with $m>0$.
In general, we have the following result.
Proposition 2. Assume that $u=\mathcal{S}\left(g+\frac{p}{q}\right)$ where g, $p(\neq 0)$ and q are three polynomial complex functions with order s, l and t respectively, $l<t$, and p / q is irreducible. Then

$$
\begin{equation*}
\operatorname{deg}(u)=s+t \tag{15}
\end{equation*}
$$

Proof. Let $f(z)=g(z)+\frac{p(z)}{q(z)}$. Then $f(z)=0$ yields that

$$
\begin{equation*}
g(z) q(z)+p(z)=0 \tag{16}
\end{equation*}
$$

Without loss of generality, we may assume that there are $s+t$ different roots, $a_{1}, \cdots, a_{s}, a_{s+1}, \cdots, a_{s+t}$, for (16).

Assume that $q(z)=0$ has roots b_{1}, \cdots, b_{t}. It is clear that b_{1}, \cdots, b_{t} can not be roots of (16). Now we prove that in $\Omega:=\mathbb{C} \backslash\left\{b_{1}, \cdots, b_{t}\right\}, \operatorname{deg}(f)=s+t$. Indeed, since $\mathcal{S} \circ f$ maps b_{1}, \cdots, b_{t} to N,

$$
\operatorname{deg}(f, \Omega, 0)=\sum_{j=1}^{s+t} \operatorname{deg}\left(f, B_{\varepsilon}\left(a_{j}\right), 0\right)
$$

where $\varepsilon>0$ is a sufficient small constant. Recall that

$$
\operatorname{deg}\left(f, B_{\varepsilon}\left(a_{j}\right), 0\right)=1, \quad \forall \varepsilon>0 \text { sufficiently small, }
$$

and

$$
\operatorname{deg}\left(\mathcal{S}, B_{\delta}\left(a_{j}\right), S\right)=1
$$

Hence by formula for degree of composition maps, we obtain (15). This completes the proof.

Remark 7. (1) In general, a rational function $f(z)$ in \mathbb{C} can be represented by

$$
f(z)=\sum_{l=0}^{s} a_{s-l} z^{l}+\sum_{k=1}^{K} \sum_{j=1}^{J_{k}} \frac{a_{k, j}}{\left(z-z_{k}\right)^{j}}, \quad \text { for } z \in \mathbb{C} \backslash\left\{z_{1}, \cdots, z_{K}\right\}
$$

where $a_{s} \neq 0$ and $a_{k, J_{k}} \neq 0(k=1, \cdots, K)$. In what follows, we call J_{k} the singular order of z_{k}. Hence the degree of harmonic map $u=\mathcal{S}(f)$ is

$$
\operatorname{deg}(u)=s+\sum_{k=1}^{K} J_{k}
$$

(2) If we write (irreducible) rational functions as $f=q / p$ where p and q are two polynomial complex functions with order l and n, then

$$
\operatorname{deg}(\mathcal{S}(f))=\max \{l, n\}
$$

We now consider the relation between harmonic maps $u(z)=\mathcal{S}(f)(z)$ and $w(z)=$ $\mathcal{S}(1 / f)(z)$ where $f(z)=f_{1}(z)+i f_{2}(z)$ is a rational function. That is,

$$
u_{1}=\frac{2 f_{1}}{|f|^{2}+1}, \quad u_{2}=\frac{2 f_{2}}{|f|^{2}+1}, \quad u_{3}=\frac{|f|^{2}-1}{|f|^{2}+1}
$$

Let $\tilde{u}=Q_{1, \alpha}(u)$ be a rotation of u with respect to u_{1}-axis. Hence,

$$
\begin{gathered}
\tilde{u}_{1}=\frac{2 f_{1}}{|f|^{2}+1} \\
\tilde{u}_{2}=\frac{2}{|f|^{2}+1}\left(f_{2} \cos \alpha-\left(|f|^{2}-1\right) \sin \alpha\right) \\
\tilde{u}_{3}=\frac{2}{|f|^{2}+1}\left(f_{2} \sin \alpha+\left(|f|^{2}-1\right) \cos \alpha\right)
\end{gathered}
$$

Some direct computations yield that

$$
\begin{equation*}
\mathcal{S}^{-1}\left(Q_{1, \alpha}(u)\right)=\frac{u_{1}+i \tilde{u}_{2}}{1-\tilde{u}_{3}}=-i \cot \frac{\alpha}{2}+\frac{1}{\sin ^{2} \frac{\alpha}{2}\left(f-i \cot \frac{\alpha}{2}\right)} . \tag{17}
\end{equation*}
$$

In particular, let $\alpha=\pi$, then (17) implies

$$
\frac{u_{1}+i \tilde{u}_{2}}{1-\tilde{u}_{3}}=-i \cot \frac{\alpha}{2}+\frac{1}{\sin ^{2} \frac{\alpha}{2}\left(f-i \cot \frac{\alpha}{2}\right)}=\frac{1}{f}
$$

That means that the difference between $u(z)=\mathcal{S}(f)$ and $w(z)=\mathcal{S}\left(\frac{1}{f}\right)$ is a rotation.
Moreover, note that the tangent map of $Q_{1, \alpha}$ is given by

$$
v:=\left.\frac{d}{d \alpha} Q_{1, \alpha}(u)\right|_{\alpha=0}=\left(\begin{array}{c}
0 \\
-u_{3} \\
u_{2}
\end{array}\right) .
$$

3. Proof of Theorem 1.1. In this section, we shall prove the nondegeneracy of harmonic maps.

Let us compute the associated linearized operators at harmonic maps first. The associated linearized operators of (1) and (12) at u are given by

$$
L_{u}[v]=\Delta v+|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u
$$

and,

$$
L_{1, u}[v]=v_{x}-v \times u_{y}-u \times v_{y}
$$

respectively, where v is a smooth map from \mathbb{C} to $T \mathbb{S}^{2}$. Let $C_{b}^{2}\left(\mathbb{C}, T \mathbb{S}^{2}\right)$ be the space of maps v from \mathbb{C} to $T \mathbb{S}^{2}$ satisfying $\sup _{z \in \mathbb{C}}\left(|v(z)|+|\partial v(z)|+\left|\partial^{2} v(z)\right|\right)<\infty$. Define $\operatorname{ker} L_{u}:=\left\{v \in C_{b}^{2}\left(\mathbb{C}, T \mathbb{S}^{2}\right) \mid L_{u}[v]=0\right\}, \operatorname{ker} L_{1, u}:=\left\{v \in C_{b}^{2}\left(\mathbb{C}, T \mathbb{S}^{2}\right) \mid L_{1, u}[v]=0\right\}$.

Proposition 3. Assume that u is a harmonic map with degree $m \geq 0$. It holds that

$$
\begin{equation*}
\operatorname{ker} L_{u}=\operatorname{ker} L_{1, u} . \tag{18}
\end{equation*}
$$

Proof. When $m=0$, (18) holds. Hence we only consider the case $m>0$.
Since $\operatorname{deg}(u)>0$ and $\mathcal{S}^{-1}(u)$ is holomorphic, we find that $\left|u_{x}\right|=\left|u_{y}\right| \neq 0$ almost everywhere in \mathbb{C}.
(1) ${ }^{\operatorname{ker}} L_{1, u} \Rightarrow \operatorname{ker} L_{u} "$. From $v_{x}-v \times u_{y}-u \times v_{y}=0$, we have that

$$
\begin{gathered}
v_{y}+v \times u_{x}+u \times v_{x}=0 \\
v_{x x}-v_{x} \times u_{y}-v \times u_{x y}-u_{x} \times v_{y}-u \times v_{x y}=0
\end{gathered}
$$

and

$$
v_{y y}+v_{y} \times u_{x}+v \times u_{x y}+u_{y} \times v_{x}+u \times v_{x y}=0
$$

Hence we obtain that

$$
\begin{equation*}
v_{x x}+v_{y y}-v_{x} \times u_{y}+v_{y} \times u_{x}-u_{x} \times v_{y}+u_{y} \times v_{x}=0 . \tag{19}
\end{equation*}
$$

Since

$$
\begin{array}{ll}
-\left(v_{x} \times u_{y}\right) \cdot u=u_{x} \cdot v_{x}, & \left(v_{y} \times u_{x}\right) \cdot u=u_{y} \cdot v_{y} \\
-\left(u_{x} \times v_{y}\right) \cdot u=u_{y} \cdot v_{y}, & \left(u_{y} \times v_{x}\right) \cdot u=u_{x} \cdot v_{x}
\end{array}
$$

it holds that

$$
\left(v_{x x}+v_{y y}\right) \cdot u+2 \nabla u \cdot \nabla v=0
$$

Similarly, (19) $\cdot u_{x}$ and (19) $\cdot u_{y}$ yield that

$$
\left(v_{x x}+v_{y y}\right) \cdot u_{x}+|\nabla u|^{2} v \cdot u_{x}=0, \quad\left(v_{x x}+v_{y y}\right) \cdot u_{y}+|\nabla u|^{2} v \cdot u_{y}=0 .
$$

Therefore, we obtain that

$$
\Delta v+|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u=0
$$

(2) " $\operatorname{ker} L_{u} \Rightarrow \operatorname{ker} L_{1, u}$ ". We shall prove this by Liouville theorem. Note that

$$
\begin{align*}
& \left(v_{x}-v \times u_{y}-u \times v_{y}\right) \cdot u=0 \\
& \left(v_{x}-v \times u_{y}-u \times v_{y}\right) \cdot u_{x}=u_{x} \cdot v_{x}-u_{y} \cdot v_{y} \tag{20}\\
& \left(v_{x}-v \times u_{y}-u \times v_{y}\right) \cdot u_{y}=u_{x} \cdot v_{y}+u_{y} \cdot v_{x}
\end{align*}
$$

Claim: It holds that

$$
\begin{align*}
& u_{x} \cdot v_{x}-u_{y} \cdot v_{y}=0 \tag{21}\\
& u_{x} \cdot v_{y}+u_{y} \cdot v_{x}=0 \tag{22}
\end{align*}
$$

Indeed, we compute $\Delta\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)$. By some direct computations, we get that

$$
\begin{aligned}
\partial_{x}\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)=u_{x x} \cdot & v_{x}+u_{x} \cdot v_{x x}-u_{y x} \cdot v_{y}-u_{y} \cdot v_{y x} \\
\partial_{x}^{2}\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)= & u_{x x x} \cdot v_{x}+2 u_{x x} \cdot v_{x x}+u_{x} \cdot v_{x x x} \\
& -u_{x x y} \cdot v_{y}-2 u_{x y} \cdot v_{x y}-u_{y} \cdot v_{x x y} .
\end{aligned}
$$

Similarly, it holds that

$$
\begin{aligned}
& \partial_{y}\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)=u_{x y} \cdot v_{x}+u_{x} \cdot v_{x y}-u_{y y} \cdot v_{y}-u_{y} \cdot v_{y y} \\
& \qquad \begin{aligned}
\partial_{y}^{2}\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)= & u_{x y y} \cdot v_{x}+2 u_{x y} \cdot v_{x y}+u_{x} \cdot v_{x y y} \\
& -u_{y y y} \cdot v_{y}-2 u_{y y} \cdot v_{y y}-u_{y} \cdot v_{y y y}
\end{aligned}
\end{aligned}
$$

Hence we have that

$$
\begin{aligned}
\Delta\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)= & \left(u_{x x x}+u_{x y y}\right) \cdot v_{x}+2\left(u_{x x} \cdot v_{x x}-u_{y y} \cdot v_{y y}\right) \\
& +u_{x} \cdot\left(v_{x x x}+v_{x y y}\right)-\left(u_{x x y}+u_{y y y}\right) \cdot v_{y}-u_{y} \cdot\left(v_{x x y}+v_{y y y}\right) \\
= & \partial_{x}(\Delta u) \cdot v_{x}+2\left((\Delta u) \cdot v_{x x}-u_{y y} \cdot(\Delta v)\right) \\
& +u_{x} \cdot \partial_{x}(\Delta v)-\partial_{y}\left((\Delta u) \cdot v_{y}\right)-u_{y} \cdot \partial_{y}(\Delta v), \\
= & \partial_{x}\left((\Delta u) \cdot v_{x}\right)-\partial_{y}\left(u_{y} \cdot(\Delta v)\right)+(\Delta u) \cdot v_{x x}+u_{x} \cdot \partial_{x}(\Delta v) \\
& -u_{y y} \cdot(\Delta v)-\partial_{y}(\Delta u) \cdot v_{y}
\end{aligned}
$$

Further, compute

$$
\begin{gathered}
\partial_{x}\left((\Delta u) \cdot v_{x}\right)=-\partial_{x}\left(|\nabla u|^{2} u \cdot v_{x}\right), \\
-\partial_{y}\left((\Delta u) \cdot v_{y}\right)=\partial_{y}\left(|\nabla u|^{2} u \cdot v_{y}\right), \\
(\Delta u) \cdot v_{x x}+u_{x} \cdot \partial_{x}(\Delta v) \\
=\quad-|\nabla u|^{2} u \cdot v_{x x}+\partial_{x}\left[u_{x} \cdot(\Delta v)\right]-u_{x x} \cdot(\Delta v) \\
=\quad-|\nabla u|^{2} u \cdot v_{x x}-\partial_{x}\left[u_{x} \cdot\left(|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u\right)\right]+u_{x x} \cdot\left[|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u\right] \\
=\quad-|\nabla u|^{2} u \cdot v_{x x}-\partial_{x}\left[|\nabla u|^{2} v \cdot u_{x}\right]+|\nabla u|^{2} v \cdot u_{x x}+2(\nabla u \cdot \nabla v) u \cdot u_{x x},
\end{gathered}
$$

and

$$
\begin{aligned}
& -u_{y y} \cdot(\Delta v)-\partial_{y}(\Delta u) \cdot v_{y} \\
= & u_{y y} \cdot\left(|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u\right)-\partial_{y}\left[(\Delta u) \cdot v_{y}\right]+(\Delta u) \cdot v_{y y} \\
= & |\nabla u|^{2} v \cdot u_{y y}+2(\nabla u \cdot \nabla v) u \cdot u_{y y}+\partial_{y}\left[|\nabla u|^{2} u \cdot v_{y}\right]-|\nabla u|^{2} u \cdot v_{y y} .
\end{aligned}
$$

Moreover, note that

$$
\begin{gathered}
\partial_{x}\left(|\nabla u|^{2} u \cdot v_{x}\right)+\partial_{x}\left[|\nabla u|^{2} v \cdot u_{x}\right]=0, \\
\partial_{y}\left(|\nabla u|^{2} u \cdot v_{y}\right)+\partial_{y}\left[|\nabla u|^{2} u \cdot v_{y}\right]=0, \\
-|\nabla u|^{2} u \cdot\left(v_{x x}+v_{y y}\right)=|\nabla u|^{2} u \cdot\left[|\nabla u|^{2} v+2(\nabla u \cdot \nabla v) u\right]=2|\nabla u|^{2}(\nabla u \cdot \nabla v), \\
|\nabla u|^{2} v \cdot\left[u_{x x}+u_{y y}\right]=-|\nabla u|^{2} v \cdot\left[\left.|\nabla| u\right|^{2} u\right]=0, \\
2(\nabla u \cdot \nabla v) u \cdot\left[u_{x x}+u_{y y}\right]=-2|\nabla u|^{2}(\nabla u \cdot \nabla v) .
\end{gathered}
$$

Therefore, we have that

$$
\Delta\left(u_{x} \cdot v_{x}-u_{y} \cdot v_{y}\right)=0
$$

Hence $u_{x} \cdot v_{x}-u_{y} \cdot v_{y}$ is a harmonic function. Since $v \in C^{1}\left(\mathbb{C}, T \mathbb{S}^{2}\right)$ and $\mathcal{E}(u)<\infty$, the claim (21) holds.

Similar computations yield

$$
\Delta\left(u_{x} \cdot v_{y}+u_{y} \cdot v_{x}\right)=0
$$

Hence we have (22).

Summarizing (20) and the claim, we obtain that

$$
v_{x}-v \times u_{y}-u \times v_{y}=0
$$

This completes the proof.
We now compute the tangent map $D \mathcal{S}^{-1}$. Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{S}^{2}$. Then

$$
\mathcal{S}^{-1}(u)=\left(\frac{u_{1}}{1-u_{3}}, \frac{u_{2}}{1-u_{3}}\right)=\frac{u_{1}+i u_{2}}{1-u_{3}} .
$$

Let u be a harmonic map with degree $m \geq 0$. Let $u(t)(t \in[0, \epsilon))$ be a family of harmonic maps with $u^{\prime}(0)=v$. Hence v is a map from \mathbb{C} to $T \mathbb{S}^{2}$ with $u \cdot v=0$. Direct calculations yield that

$$
D \mathcal{S}_{u}^{-1}(v)=\left.\frac{d}{d t} \mathcal{S}^{-1}(u(t))\right|_{t=0}=\left(\frac{u_{1} v_{3}-u_{3} v_{1}+v_{1}}{\left(1-u_{3}\right)^{2}}, \frac{u_{2} v_{3}-u_{3} v_{2}+v_{2}}{\left(1-u_{3}\right)^{2}}\right)
$$

On the other hand, assume that $u=\mathcal{S}(f)$ where $f(z)=f_{1}(z)+i f_{2}(z)$ is a complex (irreducible) function, $g(z)=g_{1}(z)+i g_{2}(z)$. Then the tangent map of \mathcal{S} is given by

$$
D \mathcal{S}_{f}(g)=\left(\begin{array}{c}
2 \frac{-f_{1}^{2}+f_{2}^{2}+1}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{1}-\frac{4 f_{1} f_{2}}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{2} \tag{23}\\
2 \frac{f_{1}^{2}-f_{2}^{2}+1}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{2}-\frac{4 f_{1} f_{2}}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{1} \\
\frac{4 f_{1}}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{1}+\frac{4 f_{2}}{\left(f_{1}^{2}+f_{2}^{2}+1\right)^{2}} g_{2}
\end{array}\right)
$$

We should point out that if g is holomorphic with large orders of singularities, then $D \mathcal{S}_{f}(g)$ becomes unbounded. Whereas, if the order of g is small but still larger than $f, D \mathcal{S}_{f}(g)$ may be bounded. Let us consider the following examples.

Example: (1) Let $u(\cdot, a, b)=\mathcal{S}\left(\frac{1}{z-(a+i b)}\right)$. Then

$$
u(z, a, b)=\left(\begin{array}{c}
\frac{2(x-a)}{a^{2}-2 a x+b^{2}-2 b y+x^{2}+y^{2}+1} \\
-\frac{2(y-b)}{a^{2}-2 a x+b^{2}-2 b y+x^{2}+y^{2}+1} \\
-\frac{a^{2}-2 a x+b^{2}-2 b y+x^{2}+y^{2}-1}{a^{2}-2 a x+b^{2}-2 b y+x^{2}+y^{2}+1}
\end{array}\right)
$$

It follows that

$$
v(z)=\left.\frac{d}{d a} u(z, a, b)\right|_{a=0, b=0}=\left(\begin{array}{c}
-2 \frac{-x^{2}+y^{2}+1}{\left(x^{2}+y^{2}+1\right)^{2}} \\
\frac{-4 x y}{\left(x^{2}+y^{2}+1\right)^{2}} \\
\frac{4 x}{\left(x^{2}+y^{2}+1\right)^{2}}
\end{array}\right)
$$

The generate function of $\left.\frac{d}{d a} u(z, a, b)\right|_{a=0, b=0}$ is

$$
D \mathcal{S}_{u}^{-1}(v(z))=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}+i\left(\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}\right)=\frac{1}{z^{2}}
$$

(2) Let $u(\cdot, a, b)=\mathcal{S}\left(\frac{1}{(z-(a+i b))^{2}}\right)$. Direct calculations yield that

$$
v(z)=\left.\frac{d}{d a} u(z, a, b)\right|_{a=0, b=0}=\left(\begin{array}{c}
\frac{-4 x\left(-x^{4}+2 x^{2} y^{2}+3 y^{4}+1\right)}{\left(x^{4}+2 x^{2} y^{2}+y^{4}+1\right)^{2}} \\
\frac{-4 y\left(3 x^{4}+2 x^{2} y^{2}-y^{4}-1\right)}{\left(x^{4}+2 x^{2} y^{2}+y^{4}+1\right)^{2}} \\
\frac{8 x\left(x^{2}+y^{2}\right)}{\left(x^{4}+2 x^{2} y^{2}+y^{4}+1\right)^{2}}
\end{array}\right)
$$

Hence

$$
D \mathcal{S}_{u}^{-1}(v(z))=\frac{2 x^{3}-6 x y^{2}}{\left(x^{2}+y^{2}\right)^{3}}+i \frac{2 y^{3}-6 x^{2} y}{\left(x^{2}+y^{2}\right)^{3}}=\frac{2}{z^{3}}
$$

(3) Let $u=\mathcal{S}(f)$ where f is a complex rational function. Compute

$$
\begin{aligned}
D \mathcal{S}_{u}^{-1}(v) & =\frac{u_{1} u_{2}+i\left(1-u_{3}-u_{1}^{2}\right)}{\left(1-u_{3}\right)^{2}} \\
& =f_{1} f_{2}+\frac{i}{2}\left(f_{2}^{2}-f_{1}^{2}+1\right)=-\frac{i}{2} f^{2}+\frac{i}{2}
\end{aligned}
$$

We turn to compute the kernel of the linearized operators $L_{1, u}$.
Proposition 4. Assume that $u=\mathcal{S}(f)$ is a harmonic map with degree $m \geq 0$, where a irreducible rational function is given by $f(z)=\frac{q(z)}{p(z)}$. Here p, q are two polynomials with order l, n, respectively. Then all bounded kernel maps of $\operatorname{ker} L_{1, u}$ are generated by changing of coefficients of p and q. In particular, the real dimension of $\operatorname{ker} L_{1, u}$ is $4 m+2$.

Proof. (1) Assume $\operatorname{deg}(u)=m$. Then $m=l$ or $m=n$. We first consider $l=m$. Assume that

$$
\begin{aligned}
& p(z)=a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m} \\
& q(z)=b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n-1} z+b_{n}
\end{aligned}
$$

where a_{0}, \cdots, a_{m} and b_{0}, \cdots, b_{n} are complex numbers with $a_{0} \neq 0$ and $b_{0} \neq 0$. Let

$$
\begin{gathered}
a_{j}=a_{j}^{1}+i a_{j}^{2}, \quad j=0, \cdots, m \\
b_{k}=b_{k}^{1}+i b_{k}^{2}, \quad k=0, \cdots, n
\end{gathered}
$$

where $a_{j}^{1}, a_{j}^{2}(j=0, \cdots, m)$ and $b_{k}^{1}, b_{k}^{2}(k=0, \cdots, n)$ are real numbers. Set

$$
\begin{aligned}
& F\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n} ; c_{1}, \cdots, c_{m-n}\right) \\
= & \frac{c_{1} z^{m}+\cdots+c_{m-n} z^{n+1}+b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n-1} z+b_{n}}{a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}}
\end{aligned}
$$

where $c_{1}=c_{1}^{1}+i c_{1}^{2}, \cdots, c_{m-n}=c_{m-n}^{1}+i c_{m-n}^{2}$ are complex numbers. Hence

$$
\begin{align*}
& w\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n} ; c_{1}, \cdots, c_{m-n}\right) \\
:= & \mathcal{S}\left(F\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n} ; c_{1}, \cdots, c_{m-n}\right)\right) \tag{24}
\end{align*}
$$

is a family of harmonic maps with

$$
\mathcal{S}\left(F\left(a_{0}, \cdots, a_{m} ; b_{0}, \cdots, b_{n} ; 0, \cdots, 0\right)\right)=u
$$

Taking derivative on w with respect to the real and imaginary part of the complex coefficients, from (23) we fine the following bounded kernels

$$
\begin{aligned}
v^{1, c_{\nu}}(z) & =D \mathcal{S}_{u}\left[\frac{z^{m-\nu+1}}{a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}}\right] \\
v^{2, c_{\nu}}(z) & =D \mathcal{S}_{u}\left[i \frac{z^{m-\nu+1}}{a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}}\right]
\end{aligned}
$$

with $\nu=1, \cdots, m-n$, and

$$
\begin{aligned}
& v^{1, b_{k}}(z)=D \mathcal{S}_{u}\left[\frac{z^{n-k}}{a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}}\right] \\
& v^{2, b_{k}}(z)=D \mathcal{S}_{u}\left[i \frac{z^{n-k}}{a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}}\right]
\end{aligned}
$$

with $k=0, \cdots, n$, and

$$
\begin{aligned}
& v^{1, a_{j}}(z)=D \mathcal{S}_{u}\left[-\frac{z^{m-j}}{\left(a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}\right)^{2}}\right] \\
& v^{2, a_{j}}(z)=D \mathcal{S}_{u}\left[-i \frac{z^{m-j}}{\left(a_{0} z^{m}+a_{1} z^{m-1}+\cdots+a_{m-1} z+a_{m}\right)^{2}}\right]
\end{aligned}
$$

with $j=0, \cdots, m$. Note that $v^{1, b_{k}}, v^{2, b_{k}}$ and can be linearly represented by $v^{1, a_{0}}, \cdots, v^{1, a_{m}}, v^{2, a_{0}}, \cdots, v^{2, a_{m}}$. Therefore, we obtain that

$$
\operatorname{span}\left\{\begin{array}{c}
v^{1, c_{1}}, \cdots, v^{1, c_{m-n}} ; v^{2, c_{1}}, \cdots, v^{2, c_{m-n}} \\
v^{1, b_{0}}, \cdots, v^{1, b_{n-1}} ; v^{2, b_{0}}, \cdots, v^{2, b_{n-1}} \\
v^{1, a_{0}}, \cdots, v^{1, a_{m}} ; v^{2, a_{0}}, \cdots, v^{2, a_{m}}
\end{array}\right\} \subset \operatorname{ker} L_{1, u} .
$$

Similarly, we can compute the bounded kernels generated by the harmonic maps near u of form (24) for $n=m$.
(2) Next, we prove that for all $v \in \operatorname{ker} L_{1, u}, D \mathcal{S}_{u}^{-1}(v)$ satisfies Cauchy-Riemann equation in $\mathbb{C} \backslash\left\{z_{1}, \cdots, z_{K}\right\}$ where z_{1}, \cdots, z_{K} are poles of f. That is, we want to verify that

$$
\left\{\begin{array}{c}
\partial_{x}\left(\frac{u_{1} v_{3}-u_{3} v_{1}+v_{1}}{\left(1-u_{3}\right)^{2}}\right)=\partial_{y}\left(\frac{u_{2} v_{3}-u_{3} v_{2}+v_{2}}{\left(1-u_{3}\right)^{2}}\right) \\
\partial_{y}\left(\frac{u_{1} v_{3}-u_{3} v_{1}+v_{1}}{\left(1-u_{3}\right)^{2}}\right)=-\partial_{x}\left(\frac{u_{2} v_{3}-u_{3} v_{2}+v_{2}}{\left(1-u_{3}\right)^{2}}\right)
\end{array}\right.
$$

That is,

$$
\left\{\begin{aligned}
\partial_{x}\left(\frac{(v \times u)_{2}+v_{1}}{\left(1-u_{3}\right)^{2}}\right) & =\partial_{y}\left(\frac{(u \times v)_{1}+v_{2}}{\left(1-u_{3}\right)^{2}}\right) \\
\partial_{y}\left(\frac{(v \times u)_{2}+v_{1}}{\left(1-u_{3}\right)^{2}}\right) & =-\partial_{x}\left(\frac{(u \times v)_{1}+v_{2}}{\left(1-u_{3}\right)^{2}}\right)
\end{aligned}\right.
$$

So it is sufficient to check that

$$
\left\{\begin{array}{c}
\partial_{x}\left[(v \times u)_{2}+v_{1}\right]\left(1-u_{3}\right)+2\left[(v \times u)_{2}+v_{1}\right] \partial_{x} u_{3} \tag{25}\\
\quad=\partial_{y}\left[(u \times v)_{1}+v_{2}\right]\left(1-u_{3}\right)+2\left[(u \times v)_{1}+v_{2}\right] \partial_{y} u_{3} \\
\partial_{y}\left[(v \times u)_{2}+v_{1}\right]\left(1-u_{3}\right)+2\left[(v \times u)_{2}+v_{1}\right] \partial_{y} u_{3} \\
\quad=-\partial_{x}\left[(u \times v)_{1}+v_{2}\right]\left(1-u_{3}\right)-2\left[(u \times v)_{1}+v_{2}\right] \partial_{x} u_{3}
\end{array}\right.
$$

In fact, note that

$$
\begin{equation*}
u_{x}=u \times u_{y} \quad \text { and } \quad u_{y}=-u \times u_{x} \tag{26}
\end{equation*}
$$

Moreover, since $v \in \operatorname{ker} L_{1, u}$, we have that

$$
v_{x}-v \times u_{y}-u \times v_{y}=0, \quad v_{y}+v \times u_{x}+u \times v_{x}=0 .
$$

Using Lagrange identity and Jacobi identity for cross product, we obtain that

$$
\begin{aligned}
\partial_{x}\left[(v \times u)_{2}+v_{1}\right] & =\left(v_{x} \times u\right)_{2}+\left(v \times u_{x}\right)_{2}+\left(v_{1}\right)_{x} \\
& =2\left(v \times u_{x}\right)_{2}+\left(v_{2}\right)_{y}+\left(v_{1}\right)_{x}, \\
\partial_{y}\left[(u \times v)_{1}+v_{2}\right] & =\left(u_{y} \times v\right)_{1}+\left(u \times v_{y}\right)_{1}+\left(v_{2}\right)_{y} \\
& =2\left(u_{y} \times v\right)_{1}+\left(v_{1}\right)_{x}+\left(v_{2}\right)_{y} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \quad \partial_{x}\left[(v \times u)_{2}+v_{1}\right]\left(1-u_{3}\right)+2\left[(v \times u)_{2}+v_{1}\right] \partial_{x} u_{3} \\
& \quad-\partial_{y}\left[(u \times v)_{1}+v_{2}\right]\left(1-u_{3}\right)-2\left[(u \times v)_{1}+v_{2}\right] \partial_{y} u_{3} \\
& =\quad 2\left[\left(v \times u_{x}\right)_{2}-\left(u_{y} \times v\right)_{1}\right]\left(1-u_{3}\right)+2\left[(v \times u)_{2}+v_{1}\right] \partial_{x} u_{3} \\
& -2\left[(u \times v)_{1}+v_{2}\right] \partial_{y} u_{3} .
\end{aligned}
$$

Further,

$$
\begin{aligned}
& {\left[\left(v \times u_{x}\right)_{2}-\left(u_{y} \times v\right)_{1}\right]\left(1-u_{3}\right) } \\
= & {\left[\left(1-u_{3}\right)\left(-\left(u_{3}\right)_{x}\right)\right] v_{1}+\left[\left(1-u_{3}\right)\left(-\left(u_{3}\right)_{y}\right)\right] v_{2}+\left[\left(\left(u_{1}\right)_{x}-\left(u_{2}\right)_{y}\right)\left(1-u_{3}\right)\right] v_{3}, }
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[(v \times u)_{2}+v_{1}\right] \partial_{x} u_{3}-\left[(u \times v)_{1}+v_{2}\right] \partial_{y} u_{3} } \\
= & \left(1-u_{3}\right)\left(u_{3}\right)_{x} v_{1}+\left(1-u_{3}\right)\left(u_{3}\right)_{y} v_{2}+\left(u_{1}\left(u_{3}\right)_{x}-u_{2}\left(u_{3}\right)_{y}\right) v_{3} .
\end{aligned}
$$

By (26), we find that

$$
\begin{aligned}
& \left(\left(u_{1}\right)_{x}-\left(u_{2}\right)_{y}\right)\left(1-u_{3}\right)+u_{1}\left(u_{3}\right)_{x}-u_{2}\left(u_{3}\right)_{y} \\
= & \left(u_{1}\right)_{x}-\left(u_{2}\right)_{y}-\left(u_{1}\right)_{x} u_{3}+\left(u_{2}\right)_{y} u_{3}+u_{1}\left(u_{3}\right)_{x}-u_{2}\left(u_{3}\right)_{y} \\
= & \left(u_{1}\right)_{x}-\left(u_{2}\right)_{y}-\left(u \times u_{y}\right)_{1}-\left(u \times u_{x}\right)_{2}=0 .
\end{aligned}
$$

Similar computations yield the second equation of (25).
(3) By using Equation (23) and Step 1 and 2, we have all bounded kernels must be generated by harmonic maps near u. This completes the proof.

Remark 8. For the harmonic maps with negative degree, replacing holomorphic maps by anti-holomorphic ones, we can show the nondegeneracy similarly.
Proof of Theorem 1.1. Combining Proposition 3 and Proposition 4, we obtain the result in Theorem 1.1.

As a consequence of Theorem 1.1, we can give an explicit formula for the bounded kernel of linearized operator.

Proof of Corollary 1. Let $g_{k}(z)=z^{m-k}, k=0,1, \cdots, m$. From (23),

$$
D \mathcal{S}_{U_{m}}\left(i g_{k}\right)=-2 E_{k 1}, \quad D \mathcal{S}_{U_{m}}\left(g_{k}\right)=-2 E_{k 2}
$$

They are generated by the families of form $u_{t}(z)=z^{m}+t z^{m-k}, t \in \mathbb{C}$. Let $\tilde{g}_{\nu}(z)=z^{m+\nu}(\nu=1, \cdots, m)$. Then

$$
D \mathcal{S}_{U_{m}}\left(i \tilde{g}_{\nu}\right)=-2 \tilde{E}_{\nu 1}, \quad D \mathcal{S}_{U_{m}}\left(\tilde{g}_{\nu}\right)=-2 \tilde{E}_{\nu 2}
$$

These kernels are generated by $u_{t}(z)=\frac{z^{m}}{t z^{\nu}+1}, t \in \mathbb{C}$.

Appendix A. Details of computations. In this appendix, we give some details of computations and an alternative proof of Corollary 1 by ODE method.
Lemma A.1. Map u satisfies (12) if and only if

$$
\begin{equation*}
\mathcal{S}^{-1}(u)=\frac{u_{1}+i u_{2}}{1-u_{3}} \tag{27}
\end{equation*}
$$

satisfies Cauchy-Riemann equations in $\mathbb{C} \backslash \mathcal{S}^{-1}(N)$.
Proof. 1. The equation (12) is equivalent to

$$
\left\{\begin{array}{l}
\partial_{x} u_{1}=u_{2} \partial_{y} u_{3}-u_{3} \partial_{y} u_{2} \\
\partial_{x} u_{2}=u_{3} \partial_{y} u_{1}-u_{1} \partial_{y} u_{3} \\
\partial_{x} u_{3}=u_{1} \partial_{y} u_{2}-u_{2} \partial_{y} u_{2}
\end{array} \quad \text { and } \quad u_{y}=-u \times u_{x}\right.
$$

Hence

$$
\left\{\begin{array}{l}
\partial_{y} u_{1}=u_{3} \partial_{x} u_{2}-u_{2} \partial_{x} u_{3} \\
\partial_{y} u_{2}=u_{1} \partial_{x} u_{3}-u_{3} \partial_{x} u_{1} \\
\partial_{y} u_{3}=u_{2} \partial_{x} u_{2}-u_{1} \partial_{x} u_{2}
\end{array}\right.
$$

Therefore we find that

$$
\left\{\begin{array}{l}
\frac{\partial_{x} u_{1}+u_{1} \partial_{x} u_{3}-u_{3} \partial_{x} u_{1}}{\left(1-u_{3}\right)^{2}}=\frac{\partial_{y} u_{2}+u_{2} \partial_{y} u_{3}-u_{3} \partial_{x_{2}} u_{2}}{\left(1-u_{3}\right)^{2}} \tag{28}\\
\frac{\partial_{y} u_{1}+u_{1} \partial_{y} u_{3}-u_{3} \partial_{y} u_{1}}{\left(1-u_{3}\right)^{2}}=-\frac{\partial_{x} u_{2}+u_{2} \partial_{x} u_{3}-u_{3} \partial_{x} u_{2}}{\left(1-u_{3}\right)^{2}}
\end{array}\right.
$$

This yields that (27) satisfies Cauchy-Riemann equations in $\mathbb{C} \backslash \mathcal{S}^{-1}(N)$.
2. Conversely, Cauchy-Riemann equation yields (28). Then after a stereographic projection,

$$
D \mathcal{S}_{u}^{-1}\left(u_{x}\right)=\binom{\frac{u_{1} \partial_{x} u_{3}-u_{3} \partial_{x} u_{1}+\partial_{x} u_{1}}{\left(1-u_{3}\right)^{2}}}{\frac{u_{2} \partial_{x} u_{3}-u_{3} \partial_{x} u_{2}+\partial_{x} u_{2}}{\left(1-u_{3}\right)^{2}}}
$$

and

$$
\begin{aligned}
& D \mathcal{S}_{u}^{-1}\left(u \times u_{y}\right) \\
= & \binom{\frac{u_{1}\left(u_{1} \partial_{y} u_{2}-u_{2} \partial_{y} u_{1}\right)-u_{3}\left(u_{2} \partial_{y} u_{3}-u_{3} \partial_{y} u_{2}\right)+u_{2} \partial_{y} u_{3}-u_{3} \partial_{y} u_{2}}{\left(1-u_{3}\right)^{2}}}{\frac{u_{2}\left(u_{1} \partial_{y} u_{2}-u_{2} \partial_{y} u_{1}\right)-u_{3}\left(u_{3} \partial_{y} u_{1}-u_{1} \partial_{y} u_{3}\right)+u_{3} \partial_{y} u_{1}-u_{1} \partial_{y} u_{3}}{\left(1-u_{3}\right)^{2}}} \\
= & \binom{\frac{u_{2} \partial_{y} u_{3}-u_{3} \partial_{y} u_{2}+\partial_{y} u_{2}}{\left(1-u_{3}\right)^{2}}}{-\frac{u_{1} \partial_{y} u_{3}-u_{3} \partial_{y} u_{1}+\partial_{y} u_{1}}{\left(1-u_{3}\right)^{2}}}=D \mathcal{S}_{u}^{-1}\left(u_{x}\right) .
\end{aligned}
$$

Hence $u_{x}=u \times u_{y}$. This completes the proof.
Remark 9. A similar computation yields that u satisfies (14) if and only if

$$
\mathcal{S}^{-1}(u)=\frac{u_{1}+i u_{2}}{1-u_{3}}
$$

satisfies the anti-version of Cauchy-Riemann equations in $\mathbb{C} \backslash \mathcal{S}^{-1}(N)$.
Lemma A.2. u satisfies (1) if and only if u satisfies (12) or (14).

Proof. 1. " $\Longrightarrow "$: Since $u_{x}=J^{u} u_{y}$, we find that

$$
u_{x x}=u_{x} \times u_{y}+u \times u_{x y}
$$

Further note that $u_{y}=-J^{u} u_{x}$, then

$$
u_{y y}=-u_{y} \times u_{x}-u \times u_{x y}
$$

It follows that

$$
\Delta u=2 u_{x} \times u_{y} .
$$

Recall that it is the standard H-bubble equation. On the other hand, from (12) we have that

$$
2\left(u_{x} \times u_{y}\right) \cdot u=-|\nabla u|^{2} .
$$

Therefore, (1) holds.
2. " $\Longleftarrow ":$ Compute

$$
\begin{aligned}
& \partial_{x x} u \cdot \partial_{x} u=\frac{1}{2} \partial_{x}\left|\partial_{x} u\right|^{2} \\
\partial_{y y} u \cdot \partial_{x} u= & \partial_{x}\left(\partial_{y y} u \cdot u\right)-\left(\partial_{x} \partial_{y y} u\right) \cdot u \\
= & \partial_{x}\left(\partial_{y}\left(\partial_{y} u \cdot u\right)-\partial_{y} u \cdot \partial_{y} u\right)-\left(\partial_{y}\left(\partial_{x y} u \cdot u\right)-\partial_{x y} u \cdot \partial_{y} u\right) \\
= & -\partial_{x}\left|\partial_{y} u\right|^{2}-\partial_{y}\left(\partial_{x y} u \cdot u\right)+\partial_{x y} u \cdot \partial_{y} u \\
= & -\partial_{x}\left|\partial_{y} u\right|^{2}+\partial_{y}\left(\partial_{x} u \cdot \partial_{y} u\right)+\partial_{y}\left(\partial_{x} u \cdot \partial_{y} u\right)-\partial_{x} u \cdot \partial_{y y} u
\end{aligned}
$$

It follows that

$$
\partial_{y y} u \cdot \partial_{x} u=-\frac{1}{2} \partial_{x}\left|\partial_{y} u\right|^{2}+\partial_{y}\left(\partial_{x} u \cdot \partial_{y} u\right)
$$

By (1), we have that

$$
0=\partial_{x x} u \cdot \partial_{x} u+\partial_{y y} u \cdot \partial_{x} u=\frac{1}{2} \partial_{x}\left(\left|\partial_{x} u\right|^{2}-\left|\partial_{y} u\right|^{2}\right)+\partial_{y}\left(\partial_{x} u \cdot \partial_{y} u\right)
$$

Similarly,

$$
0=\partial_{x x} u \cdot \partial_{y} u+\partial_{y y} u \cdot \partial_{y} u=\frac{1}{2} \partial_{y}\left(\left|\partial_{y} u\right|^{2}-\left|\partial_{x} u\right|^{2}\right)+\partial_{x}\left(\partial_{x} u \cdot \partial_{y} u\right)
$$

It follows that

$$
\Delta\left(\partial_{x} u \cdot \partial_{y} u\right)=0
$$

From $\left|\partial_{x} u \cdot \partial_{y} u\right| \leq \frac{1}{2}|\nabla u|^{2}$, mean value property and $\mathcal{E}(u)<\infty$, it holds that

$$
\partial_{x} u \cdot \partial_{y} u=0
$$

Then recalling that $u_{x} \cdot u=0$ and $u_{y} \cdot u=0$, we may assume that

$$
k u_{x}=u \times u_{y}
$$

That means

$$
k u_{y}=-u \times u_{x} .
$$

Note that

$$
k u_{x} \cdot u_{x}=\left(u \times u_{y}\right) \cdot u_{x} \quad \text { and } \quad k u_{y} \cdot u_{y}=-\left(u \times u_{x}\right) \cdot u_{y} .
$$

Then we find that

$$
\left|u_{x}\right|=\left|u_{y}\right|
$$

Therefore, $|k|=1$. This completes the proof.

We now give a proof of Corollary 1 by ODE.
Let

$$
u=\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{c}
\cos \phi \sin Q \\
\sin \phi \sin Q \\
\cos Q
\end{array}\right)
$$

where ϕ and Q are two real functions on \mathbb{R}^{2}. In polar coordinates, the energy functional becomes

$$
\begin{equation*}
\mathcal{E}(u)=\mathcal{E}(\phi, Q)=\int_{\mathbb{R}^{2}}\left(\sin ^{2} Q|\nabla \phi|^{2}+|\nabla Q|^{2}\right) \tag{29}
\end{equation*}
$$

Hence if (ϕ, Q) is a critical point, then it satisfies the following system:

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\sin ^{2} Q \nabla \phi\right)=0 \tag{30}\\
-2 \Delta Q+\sin (2 Q)|\nabla \phi|^{2}=0
\end{array}\right.
$$

Choose $\phi=\phi_{m}=m \theta, Q=Q_{m}=\pi-2 \arctan r^{m}$. The linearized system of (30) at $\left(\phi_{m}, Q_{m}\right)$ is

$$
\left\{\begin{array}{l}
\left(\frac{1}{2} \tan Q_{m}\right) \Delta \xi+\left(Q_{m}\right)_{r} \xi_{r}+\frac{m}{r^{2}} \eta_{\theta}=0 \tag{31}\\
-\Delta \eta+\frac{m^{2}}{r^{2}} \cos \left(2 Q_{m}\right) \eta+\sin \left(2 Q_{m}\right) \frac{m}{r^{2}} \xi_{\theta}=0
\end{array}\right.
$$

By some direct computations, (31) becomes

$$
\left\{\begin{array}{l}
-\xi_{r r}-\frac{1}{r} \xi_{r}-\frac{1}{r^{2}} \partial_{\theta}^{2} \xi-\frac{2 m\left(1-r^{2 m}\right)}{r\left(1+r^{2 m}\right)} \xi_{r}+\frac{m\left(1-r^{2 m}\right)}{r^{m+2}} \eta_{\theta}=0 \tag{32}\\
-\eta_{r r}-\frac{\eta_{r}}{r}-\frac{1}{r^{2}} \partial_{\theta}^{2} \eta+\frac{r^{4 m}-6 r^{2 m}+1}{\left(1+r^{2 m}\right)^{2}} \frac{m^{2}}{r^{2}} \eta-\frac{4 r^{m}\left(1-r^{2 m}\right)}{\left(1+r^{2 m}\right)^{2}} \frac{m}{r^{2}} \xi_{\theta}=0
\end{array}\right.
$$

In \mathbb{R}^{3}, the kernel maps are given by

$$
\begin{align*}
E & =\left.\frac{d}{d t}\left(\begin{array}{c}
\cos \left(\phi_{m}+t \xi\right) \sin \left(Q_{m}+t \eta\right) \\
\sin \left(\phi_{m}+t \xi\right) \sin \left(Q_{m}+t \eta\right) \\
\cos \left(Q_{m}+t \eta\right)
\end{array}\right)\right|_{t=0} \\
& =\left(\begin{array}{c}
-\xi \sin \phi_{m} \sin Q_{m}+\eta \cos \phi_{m} \cos Q_{m} \\
\xi \cos \phi_{m} \sin Q_{m}+\eta \sin \phi_{m} \cos Q_{m} \\
-\eta \sin Q_{m}
\end{array}\right) \tag{33}
\end{align*}
$$

Assume that $\xi(r, \theta)=\xi_{1}(r) \cos (k \theta)+\xi_{2}(r) \sin (k \theta)$ and $\eta(r, \theta)=\eta_{1}(r) \cos (k \theta)+$ $\eta_{2}(r) \sin (k \theta)$ with $k \in \mathbb{N}$. Then we have

$$
\left\{\begin{array}{l}
-\xi_{1 r r}-\frac{1}{r} \xi_{1 r}+\frac{k^{2}}{r^{2}} \xi_{1}-\frac{2 m\left(1-r^{2 m}\right)}{r\left(1+r^{2 m}\right)} \xi_{1 r}+\frac{m k\left(1-r^{2 m}\right)}{r^{m+2}} \eta_{2}=0 \tag{34}\\
-\xi_{2 r r}-\frac{1}{r} \xi_{2 r}+\frac{k^{2}}{r^{2}} \xi_{2}-\frac{2 m\left(1-r^{2 m}\right)}{r\left(1+r^{2 m}\right)} \xi_{2 r}-\frac{m k\left(1-r^{2 m}\right)}{r^{m+2}} \eta_{1}=0 \\
-\eta_{1 r r}-\frac{\eta_{1 r}}{r}+\frac{k^{2}}{r^{2}} \eta_{1}+\frac{r^{4 m}-6 r^{2 m}+1}{\left(1+r^{2 m}\right)^{2}} \frac{m^{2}}{r^{2}} \eta_{1}+\frac{-4 m k r^{m-2}\left(1-r^{2 m}\right)}{\left(1+r^{2 m}\right)^{2}} \xi_{2}=0 \\
-\eta_{2 r r}-\frac{\eta_{2 r}}{r}+\frac{k^{2}}{r^{2}} \eta_{2}+\frac{r^{4 m}-6 r^{2 m}+1}{\left(1+r^{2 m}\right)^{2}} \frac{m^{2}}{r^{2}} \eta_{2}-\frac{-4 m k r^{m-2}\left(1-r^{2 m}\right)}{\left(1+r^{2 m}\right)^{2}} \xi_{1}=0
\end{array}\right.
$$

Therefore, the solutions of these systems are of form

$$
\binom{\xi}{\eta}=C_{1}\binom{\xi_{1} \cos k \theta}{\eta_{2} \sin k \theta}+C_{2}\binom{\xi_{2} \sin k \theta}{\eta_{1} \cos k \theta}
$$

where C_{1}, C_{2} are two arbitrary constants. By (33), we have that

$$
\begin{align*}
E= & C_{1}\left[\xi_{1} \cos k \theta \sin Q_{m} E_{1}+\eta_{2} \sin k \theta E_{2}\right] \\
& +C_{2}\left[\xi_{2} \sin k \theta \sin Q_{m} E_{1}+\eta_{1} \cos k \theta E_{2}\right] \\
= & C_{1}\left[\xi_{1} \frac{2 r^{m}}{1+r^{2 m}} \cos k \theta E_{1}+\eta_{2} \sin k \theta E_{2}\right] \\
& +C_{2}\left[\xi_{2} \frac{2 r^{m}}{1+r^{2 m}} \sin k \theta E_{1}+\eta_{1} \cos k \theta E_{2}\right] . \tag{35}
\end{align*}
$$

System (34) can be solved by different cases of k. If $k=0$, then

$$
\begin{gathered}
\xi_{1}(r)=C_{1}+C_{2} \frac{r^{4 m}+4 m r^{2 m} \ln r-1}{2 m r^{2 m}} \\
\eta_{1}(r)=C_{3} \frac{r^{m}}{1+r^{2 m}}+C_{4} \frac{r^{4 m}+4 m r^{2 m} \ln r-1}{r^{m}\left(1+r^{3 m}\right)}
\end{gathered}
$$

If $k \neq m$, then the solutions of (34) can be given by

$$
\begin{aligned}
& \xi_{1}(r)=C_{1}\left(-\frac{1}{2 r^{k}}\right)+C_{2} \frac{r^{k}}{2} \\
& -C_{3} \frac{r^{k+4 m}+\frac{4 k+4 m}{k} r^{k+2 m}+\frac{k+m}{k-m} r^{k}}{2 r^{2 m}}+C_{4} \frac{-r^{4 m}+\frac{4 k-4 m}{k} r^{2 m}+\frac{k-m}{k+m}}{r^{k+2 m}} \\
& \eta_{2}(r)=C_{1} \frac{1}{\left(1+r^{2 m}\right) r^{k-m}}+C_{2} \frac{r^{k+m}}{1+r^{2 m}}+C_{3} \frac{r^{k+4 m}+\frac{k+m}{k-m} r^{k}}{\left(1+r^{2 m}\right) r^{m}}+C_{4} \frac{2 r^{4 m}+\frac{2 k-2 m}{k+m}}{\left(1+r^{2 m}\right) r^{k+m}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \xi_{2}(r)=C_{5}\left(-\frac{1}{2 r^{k}}\right)+C_{6} \frac{r^{k}}{2} \\
& -C_{7} \frac{r^{k+4 m}+\frac{4 k+4 m}{k} r^{k+2 m}+\frac{k+m}{k-m} r^{k}}{2 r^{2 m}}+C_{8} \frac{-r^{4 m}+\frac{4 k-4 m}{k} r^{2 m}+\frac{k-m}{k+m}}{r^{k+2 m}}, \\
& \eta_{1}(r)=-C_{5} \frac{1}{\left(1+r^{2 m}\right) r^{k-m}}-C_{6} \frac{r^{k+m}}{1+r^{2 m}}-C_{7} \frac{r^{k+4 m}+\frac{k+m}{k-m} r^{k}}{\left(1+r^{2 m}\right) r^{m}}-C_{8} \frac{2 r^{4 m}+\frac{2 k-2 m}{\left(1+r^{2 m}\right) r^{k+m}}}{} .
\end{aligned}
$$

If $k=m$, the solutions are

$$
\begin{aligned}
& \xi_{1}(r)= C_{1} \frac{r^{2 m}-1}{2 r^{m}}-C_{2} \frac{1}{4 m r^{m}} \\
&+C_{3} \frac{-r^{6 m}+4 m r^{4 m} \ln r-7 r^{4 m}-4 m r^{2 m} \ln r-13 r^{2 m}-1}{4 m r^{3 m}} \\
&+C_{4} \frac{4 m r^{4 m} \ln r-7 r^{2 m}-1}{4 m r^{3 m}}, \\
& \eta_{2}(r)=C_{1}+C_{2} \frac{1}{2 m\left(1+r^{2 m}\right)}+C_{3} \frac{r^{6 m}+4 m r^{4 m} \ln r+r^{4 m}+4 m r^{2 m} \ln r+5 r^{2 m}-1}{2 m r^{2 m}\left(1+r^{2 m}\right)} \\
&+C_{4} \frac{4 m r^{4 m} \ln r-r^{2 m}-1}{2 m r^{2 m}\left(1+r^{2 m}\right)},
\end{aligned}
$$

and

$$
\begin{aligned}
\xi_{2}(r)= & C_{5} \frac{r^{2 m}-1}{2 r^{m}}-C_{6} \frac{1}{4 m r^{m}} \\
& +C_{7} \frac{-r^{6 m}+4 m r^{4 m} \ln r-7 r^{4 m}-4 m r^{2 m} \ln r-13 r^{2 m}-1}{4 m r^{3 m}} \\
& +C_{8} \frac{4 m r^{4 m} \ln r-7 r^{2 m}-1}{4 m r^{3 m}}, \\
\eta_{1}(r)= & -C_{5}-C_{6} \frac{1}{2 m\left(1+r^{2 m}\right)} \\
& -C_{7} \frac{r^{6 m}+4 m r^{4 m} \ln r+r^{4 m}+4 m r^{2 m} \ln r+5 r^{2 m}-1}{2 m r^{2 m}\left(1+r^{2 m}\right)} \\
& -C_{8} \frac{4 m r^{4 m} \ln r-r^{2 m}-1}{2 m r^{2 m}\left(1+r^{2 m}\right)} .
\end{aligned}
$$

Investigating these explicit solutions and using (35), we find that the bounded kernel maps are linearly combinations (4) (5) and (6) .

Acknowledgments. Part of this work was finished while the first two authors were visiting the University of British Columbia in 2017.

REFERENCES

[1] S. Chanillo and A. Malchiodi, Asymptotic morse theory for the equation $\Delta v=2 v_{x} \wedge v_{y}$, Comm. Anal. Geom, 13 (2005), 187-251.
[2] F. Cohen, R. Cohen, B. Mann and R. Milgram, The topology of rational functions and divisors of surfaces, Acta Mathematica, 166 (1991), 163-221.
[3] J. Davila, M. del Pino and J. Wei, Singularity formation for the two-dimensional harmonic map flow into \mathbb{S}^{2}, arXiv preprint arXiv:1702.05801.
[4] J. Eells and L. Lemaire, A report on harmonic maps, Bulletin of the London Mathematical Society, 10 (1978), 1-68.
[5] J. Eells and L. Lemaire, Another report on harmonic maps, Bulletin of the London Mathematical Society, 20 (1988), 385-524.
[6] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, American journal of mathematics, 86 (1964), 109-160.
[7] J. Eells and C. Wood, Harmonic maps from surfaces to complex projective spaces, Advances in Mathematics, 49 (1983), 217-263.
[8] M. A. Guest, Harmonic maps, loop groups, and integrable systems, vol. 38, Cambridge University Press, 1997.
[9] S. Gustafson, K. Kang and T.-P. Tsai, Schrödinger flow near harmonic maps, Communications on Pure Applied Mathematics, 60 (2007), 463-499.
[10] S. Gustafson, K. Kang and T.-P. Tsai, Asymptotic stability of harmonic maps under the Schrödinger flow, Duke Mathematical Journal, 145 (2008), 537-583.
[11] F. Hélein and J. C. Wood, Harmonic maps, Handbook of global analysis, 1213 (2008), 417491.
[12] J. Jost, Harmonic maps between surfaces:(with a special chapter on conformal mappings), vol. 1062, Springer, 2006.
[13] E. Lenzmann and A. Schikorra, On energy-critical half-wave maps into \mathbb{S}^{2}, Inventiones Mathematicae, 1-82.
[14] C.-S. Lin, J. Wei and D. Ye, Classification and nondegeneracy of $S U(n+1)$ Toda system with singular sources, Inventiones Mathematicae, 190 (2012), 169-207.
[15] F. Lin and C. Wang, The analysis of harmonic maps and their heat flows, World Scientific, 2008.
[16] F. Merle, P. Raphaël and I. Rodnianski, Blowup dynamics for smooth data equivariant solutions to the critical Schrödinger map problem, Inventiones Mathematicae, 193 (2013), 249365.
[17] E. Outerelo and J. M. Ruiz, Mapping degree theory, vol. 108, American Mathematical Soc., 2009.
[18] R. M. Schoen and S.-T. Yau, Lectures on harmonic maps, vol. 2, Amer Mathematical Society, 1997.
[19] G. Segal, The topology of spaces of rational functions, Acta Mathematica, 143 (1979), 39-72.
[20] Y. Sire, J. Wei and Y. Zheng, Nondegeneracy of half-harmonic maps from \mathbb{R} into \mathbb{S}^{1}, arXiv preprint arXiv:1701.03629.
[21] K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, Journal of Differential Geometry, 30 (1989), 1-50.
[22] J. Wei, C. Zhao and F. Zhou, On nondegeneracy of solutions to $S U(3)$ Toda system, Comptes Rendus Mathematique, 349 (2011), 185-190.

Received xxxx 20xx; revised xxxx 20xx.
E-mail address: gychen@zufe.edu.cn
E-mail address: yliumath@ustc.edu.cn
E-mail address: jcwei@math.ubc.ca

[^0]: 2010 Mathematics Subject Classification. Primary: 53C43; Secondary: 35J60.
 Key words and phrases. Harmonic maps, nondegeneracy, rational functions, bounded kernels, degree.

 The first author is supported by ZPNFSC (No. LY18A010023), the third author is partially supported by NSERC of Canada.

 * Corresponding author: Juncheng Wei.

