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Abstract. The use of inhomogeneous boundary conditions has become increasingly important
in the study of pattern forming reaction diffusion systems. Such inhomogeneities can be used to
describe, for example, the interaction between an individual cell with its environment. In this
paper we consider arbitrary mixed inhomogeneous boundary conditions for the activator in the
singularly perturbed Gierer-Meinhardt system. By using formal asymptotics we derive an algebraic
system and nonlocal eigenvalue problem respectively describing the structure and linear stability of
multi-spike solutions in the case of a one-dimensional domain, thereby extending previous results
obtained in the case of inhomogeneous Neumann boundary conditions by Gomez et. al. (J Nonlinear
Sci 31, 37, 2021). We also rigorously prove partial stability results and provide detailed stability
thresholds for two examples consisting of one- and two-spike solutions. In higher dimensions we
restrict our attention to the shadow limit in which the inhibitor is well-mixed and for which we
rigorously establish both the existence and stability of a boundary layer solution. In both the
one- and higher-dimensional cases we find that when the boundary conditions are symmetric then a
symmetric solution is stable only when the magnitude of the inhomogeneity exceeds some threshold.
Below this threshold we demonstrate that a stable asymmetric two spike solution emerges in the
case of a one-dimensional domain, while in the case of a two-dimensional domain we show numerical
simulations illustrating the formation of a near-boundary spike.

1. Introduction

Initiated by Alan M. Turing’s original insights into the role of diffusion and reaction-kinetics in
the emergence of spatial patterns [23], reaction-diffusion systems have become a staple in studies of
pattern formation. In such systems a change in the diffusivities of its constituents or other model
parameters can lead to a Turing, or diffusion-driven, instability in which a spatially homogeneous
steady state is driven out of equilibrium into a spatially patterned state. This provides an attractive
mechanism for symmetry breaking not only in morphogenesis during early development, the context
in which Turing’s original ideas were developed, but also more broadly in the emergence of self-
organization in complex systems.

While studies of pattern-forming reaction-diffusion systems typically assume the systems to be iso-
lated, an assumption reflected by the common choice of homogeneous Neumann boundary conditions
(BCs), the importance of different choices of boundary conditions has previously been highlighted
[2]. More recently it has been shown that the specific introduction of inhomogeneous boundary
conditions can lead to the formation of patterns that are isolated away from the boundary and
may be more robust to perturbations in the initial conditions [14]. Moreover, studies of pattern
formation in reaction-diffusion systems incorporating bulk-surface coupling [15, 21, 10, 16, 9, 5]
and stratified domains [13] have highlighted the necessity of inhomogeneous boundary conditions
for the bulk problem in models of intracellular pattern formation. In the context of singularly
perturbed reaction-diffusion systems there is a small but growing body of literature detailing the
effects of different boundary conditions on localized solutions. Such studies have investigated the
effects of homogeneous mixed, or Robin, boundary conditions for the slowly diffusing activator in
the Gierer-Meinhardt (GM) model [1, 17], as well as inhomogeneous mixed boundary conditions
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for the faster diffusing substrate in the two-dimensional Brusselator model [24]. More recently, it
was found that an inhomogeneous Neumann boundary condition for the slowly diffusing activator
in the one-dimensional GM model leads to the formation of stable asymmetric boundary layer type
solutions [7]. In this paper we extend the results found in [7] by studying the structure and stability
of boundary layer solutions to the one-dimensional singularly perturbed GM model with inhomoge-
neous mixed boundary conditions, which includes as a special case both inhomogeneous Neumann
and Dirichlet boundary conditions. In addition we consider the structure and stability of bound-
ary layer solutions in higher dimensional domains with the caveat that the inhibitor diffusivity is
infinitely large, i.e. in the so-called shadow limit.

In the singularly perturbed GM model the concentrations of an activator and inhibitor, U and
V respectively, are determined by the system of equations

Ut = ε2∆U − U +
U2

V
, τVt = D∆V − V +

1

ε
U2, x ∈ Ω, (1.1a)

∂V

∂ν
= 0,

{
ε∂U∂ν + κU = A, x ∈ ∂Ω (mixed BCs),

U = A, x ∈ ∂Ω (Dirichlet BCs).
(1.1b)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain, ∂/∂ν denotes the derivative in the direction of
the outward normal, and where ε � 1 is an asymptotically small parameter while κ = O(1)
and A = O(1). Note that the Dirichlet BCs can be formally obtained from the mixed BCs by
replacing A with κA and taking the limit κ → ∞. Originally introduced in 1972 [4] as a model
of pattern formation driven by short-range activation and long-range inhibition, the GM model
(1.1) has since become a prototypical model for the formal and rigorous study of localized solutions
[30]. Specifically, both the structure and dynamics of multi-spike quasi-equilibrium solutions to the
singularly perturbed GM model in one-, and three-dimensional domains have been obtained using
formal asymptotic methods in [11, 25, 26, 6]. Extensive rigorous existence and stability results have
likewise been obtained when D →∞ [8, 12, 27] as well as for finite values of D [3, 22, 29, 28]. The
particular scaling of the GM model used in (1.1) is chosen in such a way that steady-state boundary
solutions concentrating in an O(ε) neighbourhood of the (d−1)-dimensional boundary ∂Ω are O(1)
in magnitude as can readily be seen by integrating both the first and second equations in (1.1a)
and using the divergence theorem.

In the first part of this paper we restrict our attention to the case d = 1 for which our results can
be seen as a direct generalization of those obtain in [7]. Specifically in §2.1 we use the method of
matched asymptotic expansion to construct an asymptotic approximation to a multi-spike solution.
In §2.2 we very briefly outline the derivation of the nonlocal eigenvalue problem (NLEP) governing
the linear stability of such multi-spike solutions and in §2.3 we use a continuation argument to
rigorously establish partial stability results for a single boundary-bound spike solution. Finally
in §2.4 and §2.5 we consider two examples which illustrate in detail the behaviour of a solution
consisting of a single boundary-bound spike, as well as that of two boundary-bound spikes. In the
second part of the paper we consider the formation of analogous boundary-layer solutions in higher
dimensions when D → ∞ by rigorously establishing their existence in §3.1 and their stability in
§3.2. In §3.3 we perform numerical simulations to illustrate the stability properties of the boundary
layer solution as well as to probe their long time dynamics beyond the onset of instabilities.

2. Multi-Spike Solutions in a One-Dimensional Domain

In a one-dimensional domain given by the interval −1 < x < 1 the singularly perturbed GM
model (1.1) takes the form

ut = ε2uxx − u+ v−1u2, τvt = Dvxx − v + ε−1u2, −1 < x < 1, t > 0, (2.1a)
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with mixed

± εux + κu = A±, vx = 0, x = ±1. (2.1b)

or Dirichlet boundary conditions (BCs)

u = A±, vx = 0, vx = 0, x = ±1. (2.1c)

The study of multi-spike solutions in the case of homogeneous mixed BCs were previously considered
in [17] while inhomogeneous Neumann BCs (i.e. with κ = 0) with A± > 0 were considered in [7].
Note that by letting A± = κĀ± and taking the limit κ → ∞ we can formally obtain the Dirichlet
BCs (2.1c) from the mixed BCs (2.1). In the next section we will use the method of matched
asymptotic expansions to reduce the problem of constructing multi-spike solutions of (2.1) to that
of solving a system of algebraic equations for the spike heights and locations. This method has
been successfully used in many other studies to construct multi-spike solutions and study their liner
stability (see for example [11, 25]) and we therefore keep our presentation brief, providing only those
details most pertinent to this paper.

2.1. Multi-Spike Quasi-Equilibrium Solutions. In order for us to use the method of matched
asymptotic expansions to construct an N + 2 multi-spike solution consisting of N spikes concen-
trating at −1 < x1 < ... < xN < 1 and two spikes concentrating at the boundaries x = ±1 we must
assume that the spike locations are well separated in the sense that |x1+1|, |xN−1|, |xi+1−xi| = O(1)
for all i = 1, ..., N − 1. In this case the interaction between individual spikes is mediated by the
faster diffusing inhibitor. Proceeding as in [7] an N + 2 spike quasi-equilibrium solution can be
constructed in terms of the homoclinic solution wc satisfying

w′′c − wc + w2
c = 0, −∞ < y <∞; w′c(0) = 0, wc → 0, |y| → ∞, (2.2)

and the Neumann Green’s function Gµ(x, ζ) satisfying

D∂2
xGµ − (1 + µ)Gµ = −δ(x− ζ), −1 < x, ζ < 1; D∂xGµ(x, ζ) = 0, x = ±1, (2.3)

both of which are respectively given by

wc(y) =
3

2
sech2

(
1
2y
)
, Gµ(x, ζ) =

cosh
√

1+µ
D (2− |x− ζ|) + cosh

√
1+µ
D (x+ ζ)

2
√

(1 + µ)D sinh 2
√

1+µ
D

. (2.4)

In particular (see [7] for details) we find that as ε → 0+ an asymptotic approximation for such a
multi-spike solution is given by

u ∼
N∑
i=1

ξiwc
(
x−xi
ε

)
+
∑
±
ξ±wc

(
1∓x
ε + y±

)
, v ∼ 6

N∑
i=1

ξ2
iG0(x, xi) +

∑
±
η(y±)ξ2

±G0(x,±1), (2.5)

where

η(y0) ≡
∫ ∞

0
wc(y + y0)2dy = 6

e−2y0(3 + e−y0)

(1 + e−y0)3
, (2.6)

and where the boundary spike shift parameters, y− and y+, are chosen to satisfy

− w′c(y±) + κwc(y±) = ξ−1
± A±, (2.7)

while the spike heights, ξ± and ξ1, ..., ξN , are found by solving the nonlinear algebraic system

B = 0, where B ≡ ξ − G0Nξ2, (2.8)

where

ξ ≡ (ξ−, ξ1, · · · , ξN , ξ+)T , N ≡ diag(η(y−), 6, · · · , 6, η(y+)) (2.9)
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and

G0 ≡


G0(−1,−1) G0(−1, x1) · · · G0(−1, xN ) G0(−1, 1)
G0(x1,−1) G0(x1, x1) · · · G0(x1, xN ) G0(x1, 1)

...
...

. . .
...

...
G0(xN ,−1) G0(xN , x1) · · · G0(xN , xN ) G0(xN , 1)
G0(1,−1) G0(1, x1) · · · G0(1, xN ) G0(1, 1)

 . (2.10)

Without additional constraints on the interior spike locations the interior spikes undergo slow
drift dynamics over an O(ε−2) timescale. Although we will not be interested in interior spike
dynamics in this paper we remark that by letting xi = xi(ε

2t) a higher order solvability condition
(see for example §5 in [11] for details) yields the system of ODEs

1

ε2

dxi
dt

=− 6ξi
〈
∂xG0(x, xi)

〉
x=xi

− 2

ξi

(
6
∑
j 6=i

ξ2
j ∂xG0(xi, xj) +

∑
±
η(y±)ξ2

±∂xG0(xi,±1)

)
, (2.11)

for each i = 1, ..., N which is to be solved in conjunction with the algebraic system (2.8) and where

〈f(x)〉x=x0 ≡ lim
x→x+0

f(x) + lim
x→x−0

f(x). (2.12)

Thus, while (2.8) yields the spike heights for any spike configuration, only those solutions for which
the locations are steady states of (2.11) will be stationary on an O(ε−2) timescale.

2.1.1. Gluing Method. An alternative method for constructing multi-spike equilibrium solutions,
previously used to construct asymmetric multi-spike solutions in [25] and recently extended to the
case of inhomogeneous Neumann BCs in [7], first involves partitioning the interval −1 < x < 1 into
N + 2 mutually disjoint sub-intervals given by

I− = (−1,−1 + l−), I+ = (1− l+, 1), Ii = [xi − li, xi + li) (i = 1, ..., N),

where xi = −1+l−+2
∑i−1

j=1 lj+li and theN+2 positive parameters l±, l1, ..., lN are to be determined.
The multi-spike equilibrium solution is then asymptotically approximated by the piecewise functions
(see [7] for details)

ue(x) ∼

{
u0(1∓ x; l±, A±, κ), x ∈ I±
u0(|x− xi|; li, 0, 0), x ∈ Ii

, ve(x) ∼

{
v0(1∓ x; l±, A±, κ), x ∈ I±
v0(|x− xi|; li, 0, 0), x ∈ Ii

, (2.13)

in terms of

u0(x; l, A, κ) ≡ ξ0wc(ε
−1x+ y0), v0(x; l, A, κ) ≡ ξ0 cosh

(
l−x√
D

)
sech

(
l√
D

)
(2.14a)

where y0 and ξ0 are functions of l, A, and κ given by

ξ0 =

√
D

η(y0)
tanh

(
l√
D

)
, y0 =

log
(1−κ+3q+

√
(1−κ+3q)2+4(1+κ)q

2(1+κ)

)
, for 0 ≤ κ <∞,

log
(3q−1+

√
(3q−1)2+4q

2

)
, for Dirichlet BCs,

(2.14b)

(2.14c)

and where

q ≡ A/
√
D

tanh(l/
√
D)

. (2.14d)

The parameters l−, l1, ..., lN , l+ are then chosen in such a way that the resulting piecewise function
is continuous in −1 < x < 1 from which we deduce the constraints

l− + 2l1 + · · · 2lN + l+ = 2, (2.15a)

v0(l−; l−, A−, κ) = v0(l1; l1, 0, 0) = · · · = v0(lN ; lN , 0, 0) = v0(l+; l+, A+, κ). (2.15b)
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To ensure the argument of the logarithm in (2.14b) is real and nonnegative it can be shown that
we require that q ≥ qmin(κ) where

qmin(κ) ≡

{
κ−5+

√
(κ−5)2−9(κ−1)2

9 , for 0 ≤ κ < 1,

0, for κ ≥ 1 and Dirichlet BCs.
(2.16)

This in turn implies the lower bounds y0 > ymin(κ) where

ymin(κ) ≡

{
log
(1−κ+3qmin(κ)

2(1+κ)

)
, for 0 ≤ κ < 1,

−∞, for κ ≥ 1 and Dirichlet BCs,
(2.17)

as well as A >
√
Dqmin(κ) tanh(l/

√
D) which implies in particular that A must be strictly positive

for κ > 1 as well as Dirichlet BCs, though it may be negative for 0 ≤ κ < 1.
As previously identified in [17, 7] the shift parameter plays an important role in the linear

stability of a single spike solution. Using (2.4) it is easy to see that when 0 ≤ κ < 1 the function
−w′c(y0)+κwc(y0) has exactly two critical points at which it attains a global minimum and maximum
and which are respectively given by

ỹc(κ) ≡ log

(
3− κ−

√
κ2 + 3

3 + κ+
√
κ2 + 3

)
, yc(κ) ≡ log

(
3− κ+

√
κ2 + 3

3 + κ−
√
κ2 + 3

)
. (2.18)

As κ → 1− it is easy to see that ỹc → −∞ and in particular for κ ≥ 1 there is only one critical
point and it is a global maximum at y0 = yc(κ). Moreover for Dirichlet BCs there is a unique
global maximum at y0 = yc(+∞) = 0. It can further be shown that ỹc < ymin for 0 ≤ κ < 1. The
value yc(κ) plays an important role in the linear stability of single spike solutions and we use it to
distinguish between two types of spike solutions:

(1) large-shift solutions for which y0 > yc(κ) and hence −w′′c (y0) + κw′c(y0) < 0 (or y0 > 0 and
w′c(y0) < 0 for Dirichlet BCs), and

(2) small-shift solutions for which ymin(κ) < y0 < yc(κ) and hence −w′′c (y0) + κw′c(y0) > 0 (or
y0 < 0 and w′c(y0) > 0 for Dirichlet BCs).

We plot both ymin and yc (together with other critical values) in Figure 1a. In a sense made
more precise in §2.3, a large-shift solution is more stable than a small shift solution. Moreover
the stability of large shift solutions extends to higher dimensional boundary layer solutions as is
rigorously established in §3 below.

2.2. Linear Stability. To calculate the stability of the equilibrium multi-spike solutions con-
structed above we let u = ue + eλtφ and v = ve + eλtψ where u = ue and v = ve is constructed
using either of the methods outlined above. It can then be shown using the method of matched
asymptotic expansions that the eigenvalues λ = O(1) are determined by the system of nonlocal
eigenvalue problems (see §3 in [7] for details)

Lyiφi − 2wc(y + yi)
2

N∑
j=±,1

ξ̂jGτλ(xi, xj)

∫∞
0 wc(y + yj)φj(y) dy

η(yj)
= λφi, (2.19)

for i = ±, 1, ..., N where Gτλ(xi, xj) is the Green’s function defined in (2.4) and where

ξ̂± = η(y±)ξ±, ξ̂i = 12ξi, Lyiφ ≡ φ′′ − φ+ 2wc(y + yi)φ, (i = 1, ..., N), (2.20)

and we set y1 = ... = yN = 0 (i.e. no shift for the interior spikes). By decomposing each φ1, ..., φN
into even and odd components in y it can be shown that a nontrivial odd component always yields
λ ≤ 0. As a consequence, to determine conditions under which unstable eigenvalues arise it suffices
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to restrict our attention to the case where each φ1, ..., φN is even in y. In particular the problem
for each φ±, φ1, .., φN can be posed on the half interval 0 < y <∞ with the BCs{

−φ′± + κφ± = 0 or φ± = 0, φ′1 = ... = φ′N = 0, at y = 0,

φ±, φ1, ..., φN −→ 0, as y → +∞.
(2.21)

In the next subsection we rigorously establish some stability properties of th NLEP (2.19) in the case
of a single spike concentrating at x = −1 while in §2.4-2.5 we directly calculate stability thresholds
from (2.19) for a one- and a two-spike solution.

2.3. Rigorous Stability Results. In this section we rigorously prove partial stability and insta-
bility results for the NLEP

Ly0φ− µ
∫∞

0 w(y)φ(y)dy∫∞
0 w(y)2dy

w2 = λφ, 0 < y <∞, (2.22)

with φ→ 0 as y → +∞ and either mixed or Dirichlet BCs at y = 0 respectively given by

− φ′(0) + κφ(0) = 0, φ(0) = 0, (2.23)

where µ, κ, and y0 are real constants and where

Ly0φ ≡ φ′′ − φ+ 2wφ, w(y) ≡ wc(y + y0), (2.24)

and wc(y) is the homoclinic given in (2.4). The proofs in the remainder of this subsection closely
follow those used in [7] for the κ = 0 and A ≥ 0 case. The remainder of this subsection is organized
as follows. First we establish some key spectral properties of the linearized operator Ly0 . We then
establish partial stability results for small shift solutions in Theorem 2.1 and for large shift solutions
in Theorem 2.2. Finally, we conclude by proving partial instability results for small-shift solutions.

Lemma 2.1. Let Λ0 ≥ Λ1 be the two largest eigenvalues and Φ0 and Φ1 the corresponding eigen-
functions of Ly0 with mixed or Dirichlet BCs (2.23). Then for all κ ≥ 0 (with κ = +∞ for Dirichlet
BCs) we have:

(i) Φ0 is of one sign.
(ii) If ymin(κ) < y0 < yc(κ) then Λ0 > 0.

(iii) If y0 > yc(κ) then Λ0 < 0.
(iv) If y0 = yc(κ) then Λ = 0 and Φ0 = w′.
(v) Λ1 < 0 for all y0 > ymin(κ).

Proof. We prove each item in the case of mixed BCs and remark that the same arguments hold for
Dirichlet BCs by taking the limit κ → ∞. From the variational characterization of the principal
eigenvalue

− Λ0 = inf
Φ∈H1([0,∞))

∫∞
0

[
|Φ′(y)|2 + Φ(y)2 − 2w(y)Φ(y)2

]
dy + κΦ(0)2∫∞

0 Φ(y)2dy
, (2.25)

we deduce that the principal eigenfunction can be achieved by a positive function (otherwise replac-
ing it with its absolute value) which proves (i). To prove (ii) we use the test function Φ(y) = w′(y)
in (2.25) and integrate by parts to get

− Λ0 ≤
w′(0)[−w′′(0) + κw′(0)]∫∞

0 w′(y)2dy
, (2.26)

for which we note that the right hand side is strictly negative if 0 < y0 < yc. On the other hand, if
ymin < y0 < 0 we multiply Ly0Φ0 = Λ0Φ0 by w′(y) and integrate from −y0 to ∞ to get

Λ0 =
Φ0(−y0)w′′c (0)∫∞
−y0 Φ0(y)w′(y)dy

> 0, (2.27)
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where we have used that w′′c (0) < 0 and w′(y) = w′c(y + y0) < 0 for all y > −y0. If instead y0 > yc
then we again multiply Ly0Φ0 = ΛΦ0 by w′(y) but this time integrate from 0 to ∞ to get

Λ0 = −Φ0(0)[−w′′(0) + κw′(0)]∫∞
0 Φ0(y)w′(y)dy

< 0, (2.28)

which proves (iii). The proof of (iv) is a direct calculation.
Finally, we prove (v) by considering the cases y0 ≥ 0 and ymin < y0 < 0 separately. When y0 ≥ 0

the proof is identical to the case κ = 0 which was proved in Lemma 4.2 of [7]. When y0 < 0 then
w′ is no longer of one sign and the argument from κ = 0 no longer holds. We begin by assuming
that Λ1 ≥ 0. First, since Φ0 is of one sign Φ1 must change signs at least once. Then since w′(y) < 0
for all y > −y0 the same argument from Lemma 4.2 [7] implies that Φ1 can’t have any zeros in
(−y0,+∞). Therefore we may assume Φ1 changes sign at least once in (0,−y0]. Letting a ∈ (0,−y0]
be the smallest value such that Φ1(0) = 0 we get the contradiction

0 ≤ Λ1

∫ a

0
w′(y)Φ1(y)dy = Φ1(a)w′(a)− Φ1(0)[−w′′(0) + κw′(0)] < 0, (2.29)

and therefore Λ1 < 0 for all y0 > ymin(κ) which proves (v). �

Turning now to the NLEP (2.22) we first determine the critical value µ = µc such that λ = 0.
Assuming that y0 6= yc(κ) so that −w′′(0) + κw′(0) 6= 0 we note that the solution to

Ly0φ = w2, y > 0;

{
−φ′(0) + κφ(0) = 0, or

φ(0) = 0,
; φ→ 0 as y →∞,

is given by φ = w+αw′ where α = − −w
′(0)+κw(0)

−w′′(0)+κw′(0) (for the Dirichlet BC we take κ→ +∞). Setting

λ = 0 in the NLEP (2.22) we calculate that the critical µ = µc is given by

µc(y0, κ) =

∫∞
0 w2dy∫∞

0 wL −1
y0 w

2dy
=

η(y0)

η(y0)− α
2w(0)2

, (2.30)

where η is given in (2.6). An immediate consequence is the following lemma.

Lemma 2.2. If µ 6= µc then the NLEP (2.22) does not have a zero eigenvalue.

Since −w′′(0) + κw′(0) = 0 at y0 = yc we deduce that y0 = yc is the only zero of µc in y0 > ymin

for all κ ≥ 0 and furthermore it is easy to see that µc ≷ 0 for y0 ≶ yc. In Figure 1b we plot
µc(y0, κ) versus y0 for different choices of κ ≥ 0. In light of the preceding discussion we have the
following conjectured stability result, the partial proof of which is provided in the remainder of this
subsection.

Conjecture 2.1. The NLEP (2.23) is stable if and only if µ > µc(y0, κ) for y0 < yc and is stable
for all µ ≥ 0 when y0 > yc(κ).

2.3.1. Stability Results. We determine sufficient conditions for the stability of (2.22) by using a
continuation argument that starts with the known results in [7] for the case κ = 0 and y0 = 0.
Writing φ = φR + iφI and λ = λR + iλI it can be shown that

λR = −L1(φR, φR) + L1(φI , φI)∫∞
0 |φ|2dy

, (2.31a)

where

L1(φ, φ) ≡
∫ ∞

0

(
|φ′|2 + φ2 − 2wφ2

)
dy + µ

∫∞
0 wφdy

∫∞
0 w2φdy∫∞

0 w2dy
. (2.31b)
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Figure 1. Plots of (A) important shift-parameter values, (B) the critical NLEP
multiplier for which λ = 0 is an eigenvalue, and (C) plots of the integral∫∞

0 wL −1
y0 wdy

∫∞
0 w2L −1

y0 w
2dy for y0 < yc (solid) and y0 > yc (dashed) while the

solid dots indicate the values of y0 = yc1 at which these integrals vanish.

If L1(φ, φ) > 0 for all φ ∈ H1([0,∞)) then the NLEP (2.22) is clearly stable. In fact L1(φ, φ) > 0
holds for all φ ∈ H1([0,∞)) for µ = 2 when y0 = 0 and κ = 0. By perturbing y0 and κ ≥ 0 we
can then determine a range of µ values for which the NLEP is linearly stable as described in the
proceeding theorem. First however we note of the following useful identities

L −1
y0 w

2 = w + αw′,L −1
y0 w = w +

1

2
yw′ + βw′, (2.32)

where

α =
w′(0)− κw(0)

−w′′(0) + κw′(0)
, β =

3
2w
′(0)− κw(0)

−w′′(0) + κw′(0)
, (2.33)

with which we obtain∫ ∞
0

wL −1
y0 w

2 dy =

∫ ∞
0

w2L −1
y0 w dy =

∫ ∞
0

w2 dy − αw(0)2

2
, (2.34a)∫ ∞

0
wL −1

y0 w dy =
3

4

∫ ∞
0

w2 dy − βw(0)2

2
, (2.34b)∫ ∞

0
w2L −1

y0 w
2 dy =

∫ ∞
0

w3 dy − αw(0)3

3
, (2.34c)

where we have used ∫ ∞
0

w3 dy =
6

5

∫ ∞
0

w2 dy +
3w(0)w′(0)

5
,

to simplify the last expression in (2.34). Numerically evaluating the above integrals we find that
there exists a yc1 ∈ (ymin, yc) such that

∫∞
0 wL −1

yc1wdy = 0 for 0 ≤ κ < 1 and moreover∫ ∞
0

wL −1
y0 wdy

∫ ∞
0

w2L −1
y0 w

2dy > 0,

only for y0 > ymin (adopting the notation that ymin = −∞ for κ ≥ 1) (see Figure 1c). We plot yc1
in Figure 1a and remark that it imposes a lower threshold on the shift parameter beyond which the
continuation argument in the proof of the following theorem is no longer valid.

Theorem 2.1. Let κ ≥ 0 and yc1(κ) < y0 < yc(κ) where yc is the critical shift parameter given by
(2.18) and yc1 is the unique solution to

∫∞
0 wL −1

y0 wdy = 0 in ymin < y < yc for 0 ≤ κ < 1 and
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yc1 = −∞ for κ ≥ 1. All eigenvalues of (2.22) are then stable if

µ1(y0, κ) < µ < µ2(y0, κ), (2.35)

where

µ1(y0, κ) ≡
2
∫∞

0 w2dy∫∞
0 wL −1

y0 w
2dy +

√∫∞
0 wL −1

y0 wdy
∫∞

0 w2L −1
y0 w

2dy
, (2.36)

µ2(y0, κ) ≡
2
∫∞

0 w2dy∫∞
0 wL −1

y0 w
2dy −

√∫∞
0 wL −1

y0 wdy
∫∞

0 w2L −1
y0 w

2dy
. (2.37)

Proof. To prove the claim we follow the continuation argument of [31]. First, by the results in [17]
we know that L1(φ, φ) > 0 for all φ ∈ H1([0,∞)) when µ = 2, κ = 0, y0 = 0 which by the above
discussion implies that (2.22) is stable for µ = 2. By the variational principle this also implies that
the self-adjoint operator

L1φ = Ly0φ−
µ

2

∫∞
0 wφdy∫∞
0 w2dy

w2 − µ

2

∫∞
0 w2φdy∫∞
0 w2dy

w (2.38)

is stable for µ = 2. We then do continuation in κ ≥ 0, ymin(κ) < y0 < yc(κ), and µ and assume
that L1(φ, φ) > 0 continues to hold for all φ ∈ H1([0,∞)) until some point at which the principal
eigenvalue of L1 becomes zero and for which the corresponding eigenfunction is given by

φ =
µ

2

∫∞
0 wφdy∫∞
0 w2dy

L −1
y0 w

2 +
µ

2

∫∞
0 w2φdy∫∞
0 w2dy

L −1
y0 w. (2.39)

Multiplying by w or w2 and then integrating yields the system of equations(µ
2

∫∞
0 wL −1

y0 w
2dy∫∞

0 w2dy
− 1
)
A+

µ

2

∫∞
0 wL −1

y0 wdy∫
w2dy

B = 0,

µ

2

∫∞
0 w2L −1

y0 w
2dy∫∞

0 w2dy
A+

(µ
2

∫∞
0 w2L −1

y0 wdy∫∞
0 w2dy

− 1
)
B = 0,

(2.40)

for A =
∫∞

0 wφdy and B =
∫∞

0 w2φdy and where we have used
∫∞

0 w2L −1
y0 wdy =

∫∞
0 wLy0w

2dy.
However this will have only a trivial solution if the determinant does not equal to zero and using
using (2.34) we deduce that when µ = 2, κ = 0, and y0 = 0 the determinant equals −9/10. As
a consequence the NLEP is stable provided the determinant is negative which is equivalent to
(2.35). �

Due to the singularities of L −1
y0 w and L −1

y0 w
2 when y0 = yc(κ) the continuation starting from

κ = 0, y0 = 0, and µ = 2 used in Theorem 2.1 cannot be extended to the region y0 > yc(κ). However,
by proving the stability of the NLEP (2.22) for all µ ≥ 0 sufficiently small when y0 > yc(κ) we can
proceed with a similar continuation argument. To proceed in this way we first need to establish the
following lemmas.

Lemma 2.3. Let r ≥ 1, κ ≥ 0, y0 > yc(κ), and λ ≥ 0. Then the solution to

Ly0φ− λφ = wr, 0 < y < +∞, (2.41)

with φ→ 0 as y →∞ and either −φ′(0) + κφ(0) = 0 or φ(0) = 0 satisfies φ < 0.

Proof. Assume that φ > 0 for − ≤ a < y < b ≤ ∞ with φ(b) = 0, φ′(b) ≤ 0, and assume also for
the moment that a > 0 so that φ(a) = 0 and φ′(a) ≥ 0. Noting that Ly0w

′ = 0 we obtain the
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contradiction.

0 >

∫ b

a
wrw′dy + λ

∫ b

a
φw′dy =

∫ b

a

(
w′(Ly0 − λ)φ− φ(Ly0 − λ)w′

)
dy

= w′(b)φ′(b)− w′(a)φ′(a)− w′′(b)φ(b) + w′′(a)φ(a) ≥ 0,

where we have used that w′(y) < 0 for all y ≥ 0. If instead a = 0 then if φ(a) = 0 the same
contradiction is achieved whereas if φ(0) > 0 (only possible for mixed BCs) then we use the boundary
condition −φ′(0) + κφ(0) = 0 to get the contradiction

0 > −w′(a)φ′(a) + w′′(a)φ(a) = −φ(0)(−w′′(a) + κw′(a)) > 0.

�

A consequence of the above lemma is the following result.

Lemma 2.4. If y0 > yc(κ) and µ > 0 then all real eigenvalues of (2.22) are stable.

Proof. Letting λ be a real eigenvalue of (2.22) and φ the corresponding eigenfunction we write We
have

φ = µ

∫∞
0 wφdy∫∞
0 w2dy

(Ly0 − λ)−1w2,

which upon multiplying by w and integrating gives the contradiction

1 = µ

∫∞
0 w(Ly0 − λ)−1w2dy∫∞

0 w2dy
< 0

by Lemma 2.3. �

From Lemma 2.3 and 2.4, we see that for µ > 0 small sufficiently small the NLEP (2.22) is stable
for all y0 > yc(κ) and κ ≥ 0. We vary µ until we reach some point where Hopf bifurcation (HB)
occurs. By the same argument as in Theorem 2.1 we obtain the following result in the case of
y0 > yc(κ).

Theorem 2.2. Let κ ≥ 0 and y0 > yc(κ) where yc are given by (2.18). Then the eigenvalues of
(2.22) are stable for all µ satisfying 0 ≤ µ ≤ µ+(y0, κ) where

µ+(y0, κ) ≡
2
∫∞

0 w2dy(√∫∞
0 wL −1

y0 w
∫∞

0 w2L −1
y0 w

2 − |
∫∞

0 wL −1
y0 w

2|
)

+

, (2.42)

and where (z)+ = z if z > 0 and 0 otherwise.

Proof. From (2.31) it suffices to determine the range of µ values such that L1(φ, φ) > 0 for all
φ ∈ H1([0,∞)). By Lemma 2.4 this holds for sufficiently small values of µ ≥ 0. Proceeding as
in the proof of Theorem 2.1 we recover the system (2.40) whose determinant is now positive when
µ = 0. Therefore the NLEP will remain stable as µ ≥ 0 is varied provided that the determinant
remains positive and we write this condition explicitly as(

µ

2

∫∞
0 wL −1

y0 w
2dy∫∞

0 w2dy
− 1

)2

−
(
µ

2

)2
∫∞

0 wL −1
y0 wdy∫∞

0 w2dy

∫∞
0 w2L −1

y0 w
2dy∫∞

0 w2dy
> 0.

Using that
∫∞

0 wL −1
y0 w

2dy < 0,
∫∞

0 wL −1
y0 wdy < 0, and

∫∞
0 w2L −1

y0 w
2dy < 0 by Lemma 2.3 we

can rewrite this as

µ

(√∫ ∞
0

wL −1
y0 wdy

∫ ∞
0

w2L −1
y0 w

2dy −
∣∣∣∣∫ ∞

0
wL −1

y0 w
2dy

∣∣∣∣) < 2

∫ ∞
0

w2dy.

If the term in the brackets on the left hand side is negative or zero then the NLEP is stable for all
µ ≥ 0, and otherwise we obtain an upper bound for µ which proves the result. �
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Figure 2. Plots of upper and lower stability bounds for µ. The legend in the
top-left figure applies to all plots while the vertical dashed blue and dashed-dotted

green line correspond to y0 = yc and and y0 = yc2 respectively.

Using (2.34) we find that there exists a unique value yc2 > yc plotted in Figure 1a such that√∫ ∞
0

wL −1
yc2w

∫ ∞
0

w2L −1
yc2w

2 −
∣∣∣∣∫ ∞

0
wL −1

yc2w
2

∣∣∣∣ = 0.

Moreover the quantity on the left-hand-side above is negative for yc < y0 < yc2 and positive
otherwise. Thus in the small interval yc < y0 < yc2 the theorem states the problem is stable for all
µ ≥ 0. We conjecture that this in fact holds for all y0 > yc, though the continuation used in the
proof above establishes this only for µ < µ+(κ) for y0 > yc2.

2.3.2. Instability Results. Having established partial stability results we demonstrate next that the
NLEP is unstable when µ < µc for ymin < y0 < yc(κ). Note that when y0 > yc(κ) then µc < 0 and
we conjecture that the NLEP is linearly stable for all µ ≥ 0 in this case.

Lemma 2.5. If ymin(κ) < y0 < yc(κ) and µ < µc then the NLEP (2.22) has a positive real
eigenvalue.

Proof. By Lemma 2.1 the principle eigenvalue of the linearized operator Ly0 is positive Λ0 > 0 and
the corresponding eigenfunction Φ0 is of one sign, while the second eigenvalue is strictly negative.
If Λ0 is an eigenvalue of the NLEP then we are done. Seeking instead a positive eigenvalue λ 6= Λ0

we can rewrite (2.22) as

φ = µ

∫∞
0 wφdy∫∞
0 w2dy

(Ly0 − λ)−1w2.

Multiplying by w and integrating we obtain the equivalent expression h(λ) = 0 where

h(λ) ≡
∫ ∞

0
w(Ly0 − λ)−1w2dy −

∫∞
0 w2dy

µ
. (2.43)

Recalling the definition of µc in (2.30) we obtain h(0) =
(
µ−1
c − µ−1

) ∫∞
0 w2dy < 0.

On the other hand we claim that h(λ) → +∞ as λ → Λ−0 . Indeed, letting ψ be the unique
solution to

(Ly0 − λ)ψ = w2, y >∞,
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with ψ → 0 as y → ∞ and either −ψ′(0) + κψ(0) = 0 or ψ(0) = 0. Writing ψ = c0Φ0 + ψ⊥ where∫∞
0 Φ0ψ

⊥dy = 0 we obtain

(Ly0 − λ)ψ⊥ = c0(λ− Λ0)Φ0 + w2. (2.44)

Multiplying by Φ0 and integrating we calculate c0 = (Λ0 − λ)−1
∫∞

0 Φ0w
2dy and therefore

h(λ) =

∫∞
0 w2Φ0dy

∫∞
0 wΦ0dy

Λ0 − λ
+

∫ ∞
0

wψ⊥dy − µ−1

∫ ∞
0

w2dy. (2.45)

On the other hand, multiplying (2.44) by ψ⊥ and integrating we can then use the variational
characterization of the second eigenvalue of Ly0 , which is negative by Lemma 2.1, to deduce that∫∞

0 wψ⊥dy is bounded as λ→ Λ−0 and therefore h(λ)→ +∞ as λ→ Λ−0 . By a continuity argument
we then deduce the existence of an unstable eigenvalue of the NLEP (2.22) between 0 and Λ0. �

In the remainder of this section we consider specific examples of one- and two-spike solutions for
which we calculate their profiles and characterize their linear stability.

2.4. Example: A One Boundary Spike Solution. We consider an equilibrium solution in which
a single spike concentrating at x = −1 is an equilibrium solution of (2.1a) with boundary conditions

− εux + κu = A, x = −1, −εux = 0, x = 1. (2.46)

Following §2.1 we find that

u ∼ ξ0wc
(
x+1
ε + y0

)
, v ∼ ξ0sech

(
2√
D

)
cosh

(
1−x√
D

)
, (2.47)

where ξ0 and y0 are given by (2.14b) with l = 2. The single spike solution is pinned to the left
boundary and therefore does not undergo slow drift dynamics. Its linear stability is therefore
governed solely by the O(1) eigenvalues of the NLEP (2.19) which is explicitly given by

Ly0φ− µ(λ)

∫∞
0 wc(y + y0)φ(y)dy∫∞

0 wc(y + y0)2dy
wc(y + y0)2 = λφ, (2.48)

where

µ(λ) ≡ 2
tanh 2√

D
√

1 + τλ tanh 2
√

1+τλ
D

. (2.49)

We rewrite the NLEP as

A (λ) =
1

µ(λ)
−Fy0(λ) = 0, Fy0(λ) ≡

∫∞
0 wc(y + y0)(Ly0 − λ)−1wc(y + y0)2dy∫∞

0 wc(y + y0)2dy
. (2.50)

Using (2.34) we can calculate Fy0(0) explicitly from which we find that Fy0(0) > 1/2 for all
ymin < y0 < yc and Fy0(0) < 0 for all y0 > yc. In particular, we find that A (0) = 1/2 −Fy0(0)
is strictly negative (resp. positive) for all ymin < y0 < yc (resp. y0 > yc). As a consequence,
instabilities must arise through a HB. We seek conditions under which (2.50) admits unstable
eigenvalues by using the argument principle. Specifically we let ΓR be the counter-clockwise contour
consisting of the semicircle {Reiθ| − π

2 ≤ θ ≤
π
2 } together with the segment {z = iy | −R ≤ y ≤ R}

of the imaginary axis. Then as R→∞ the change in the argument of A (λ) along ΓR is determined
by the number of zeros and poles of A (λ) having a positive real part. In view of Lemma 2.1 and

noting that µ(λ) = O(λ−1/2) and Fy0(λ) = O(λ−1) as |λ| → ∞ with Re(λ) ≥ 0 we conclude that
the number of unstable eigenvalues is given by

Z =
1

π
∆ arg A (iλI)

∣∣∣∣0
+∞

+

{
5/4, y0 < yc(κ),

1/4, y0 > yc(κ)
, (2.51)

where ∆ arg A (iλI)|0+∞ indicates the change in argument as λI varies from +∞ to 0. The problem
of finding the HB threshold is thus reduced to determining the behaviour of A (λ) on the imaginary



BOUNDARY LAYER 13

0.0 0.5 1.0 1.5 2.0
A

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

D

HB Regions for 0 < 1

0.0
0.2
0.4
0.8

(a)

0.0 2.5 5.0 7.5 10.0
A

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

D

HB Regions for 1

1
2
5
10

(b)

0.0 0.2 0.4 0.6 0.8
A

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

D

HB Region for Dirichlet BC

(c)

Figure 3. Boundaries for the existence of the Hopf bifurcation thresholds. Solid
curves correspond to Ac = qc

√
D tanh(2/

√
D) for a single boundary spike solution

for mixed BCs with (A) 0 ≤ κ < 1 and (B) κ ≥ 1, as well as for (C) Dirichlet BCs.
In (A) the dashed curves indicate the existence threshold for a single spike solution

A > qmin

√
D tanh(2/

√
D). In each of (A), (B), and (C) no Hopf bifurcation may

occur if A > Ac, whereas a Hopf bifurcation threshold τ = τh(D) may be computed
for A < Ac.

axis. We have arg A (iλI) = π/4 as λI →∞ whereas A (0) is real valued. Furthermore, numerical
calculations of ReA (iλI) indicate that it is monotone decreasing in λI > 0 when it is positive.

Since A (0) > 0 when y0 > yc this implies that ∆A (iλI)
∣∣0
+∞ = −π/4 and therefore Z = 0. On

the other hand since A (0) < 0 when y0 < yc, from the monotonicity of ReA (iλI) we deduce that

there exists a unique value λ?I such that ReA (iλ∗I) = 0. It follows that ∆A (iλI)
∣∣0
+∞ = 3π/4 if

ImA (iλ∗I) > 0 or ∆A (iλI)
∣∣0
+∞ = −5π/4 if ImA (iλ∗I) < 0 in which case either Z = 2 or Z = 0

respectively. Therefore any instability arises from a HB and furthermore the HB threshold can be
determined by calculating parameter values such that ImA (iλ∗I) = 0.

The above discussion implies that a single spike solution is linearly stable if y0 > yc. In particular,
using equation (2.14b) for the shift parameter in both the mixed and Dirichlet boundary condition
cases it can be shown that y0 > yc if and only if A > Ac(D,κ) where

Ac(D,κ) = qc
√
D tanh(2/

√
D), qc(κ) =

{
2κ+
√
κ2+3

6−κ+
√
κ2+3

3−κ+
√
κ2+3

3+κ−
√
κ2+3

, (Mixed),
1
2 , (Dirichlet).

(2.52)

Therefore A ≤ qc
√
D tanh(2/

√
D) is a necessary condition for the single spike solution to undergo

a HB and in Figure 3 we plot the boundaries of this region for select values of 0 ≤ κ < 1, κ ≥ 1, as
well as for Dirichlet BCs.

Before calculating the HB threshold for general parameter values it is instructive to first consider
the shadow limit obtained by letting D →∞. The region for which HB thresholds may be calculated
then becomes A < 2qc (in addition to A > 2qmin when 0 ≤ κ < 1). Furthermore, since µ(iλI) ∼
2(1 + iτλI)

−1 we obtain the simplified equations for the HB threshold

1− 2ReFy0(iλI) = 0, τλI − 2ImFy0(iλI) = 0,

to be solved for λI = λ∞h (A) and τ = τ∞h (A). In fact it suffices to numerically solve the first
equation for λ∞h (A), with the second equation immediately giving us τ∞h (A). By the preceding
discussion we also determine that the single-spike pattern is unstable with respect to a HB when
τ > τ∞h (A) (since ImA (iλ∞h ) > 0 in this case) and is linearly stable otherwise. Using the shadow



14 DANIEL GOMEZ, LINFENG MEI, JUNCHENG WEI

0 1 2 3
A

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

, 
I

Mixed BC HB Threshold (D )

0.0
0.5
1.0
2.0

(a)

0.00 0.25 0.50 0.75 1.00
A

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

, 
I

Dirichlet HB Threshold (D )

h

h

(b)

0 5 10 15
D

0

2

4

6

8

10

h (
so

lid
), 

h (
da

sh
ed

)

HB Threshold for =0.0
A

-0.1
0.0
0.2
0.5
1.0

(c)

0 5 10 15
D

0

2

4

6

8

10
h (

so
lid

), 
h (

da
sh

ed
)

HB Threshold for =2.0
A

0.2
0.5
1.0
1.5
2.0

(d)

0 5 10 15
D

0

2

4

6

8

10

h (
so

lid
), 

h (
da

sh
ed

)

HB Threshold for Dirichlet BC
A

0.2
0.4
0.6
0.8

(e)

Figure 4. Plots of the Hopf bifurcation threshold (solid) and corresponding
eigenvalue (dashed) as functions of A in the shadow limit for (A) mixed and (B)

Dirichlet BCs. Similar plots of the HB and eigenvalue as a function of D for mixed
BCs with (C) κ = 0, (D) κ = 2, and for (E) Dirichlet BCs. In all plots the single

spike solution undergoes a Hopf bifurcation as τ exceeds τh.

limit threshold as an initial guess, we can then numerically continue the HB threshold τh(D,A) by
decreasing D from a large value for which the shadow limit provides a suitable approximation. In
Figures 4a and 4b we plot the HB threshold and corresponding eigenvalue in the shadow limit for
both mixed and Dirichlet BCs respectively. Similarly in Figures 4c, 4d, and 4e we plot τh(D,A) and
λh(D,A) for κ = 0, κ = 2, and for Dirichlet BCs respectively. Finally in Figure 5 we plot v(−1, t)
obtained by numerically solving (2.1) using FlexPDE 6 [20] for different values of τ > 0 and using
the single spike solution at the given parameter values of D = 4, A = 0.2, ε = 0.005, and κ as the
initial condition. These plots, together with more numerical simulations (not shown) support our
calculated stability thresholds.

2.5. Example: Two Boundary Spikes. Suppose that A− = A+ = A and consider an equilibrium
solution in which two-spikes concentrate at the endpoints x = −1 and x = +1. Following (2.1.1)
such a two-spike equilibrium solution is given by (2.13) with l− = l and l+ = 2− l where 0 < l < 2
satisfies the algebraic equation (2.15b) which we write explicitly as

η(y+) tanh l√
D

cosh 2−l√
D
− η(y−) tanh 2−l√

D
cosh l√

D
= 0 (2.53)
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Figure 5. Inhibitor values at x = −1 obtained by numerically simulating (2.1a)
with boundary conditions (2.46) using FlexPDE 6 [20] where ε = 0.005 and the

remaining values of A, D, τ , and κ are indicated in the figure and their individual
captions.
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Figure 6. (A)-(D) Plots of A = A(D, l) obtained by solving (2.53) for A as a
function of D > 0 and 0 < l < 1. The dashed orange curves correspond to values
where A = 0 in (A) and (B) and where A→ 0+ in (C) and (D). The dotted red

curve indicates the values where of l = lmax where A is maximized for a given value
of D. Note that there is a threshold value of D beyond which lmax = 1. In (E)-(H)

we plot the values of A obtained along the curves l = 1 (for D beyond some
threshold) and along l = lmax as a function of D.

where

y± =

log
(1−κ+3q±+

√
(1−κ+3q±)2+4(1+κ)q±

2(1+κ)

)
, 0 ≤ κ <∞

log
(3q±−1+

√
(3q±−1)2+4q±

2

)
, Dirichlet BCs.

(2.54a)
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and

q− =
A√
D

coth
l√
D
, q+ =

A√
D

coth
2− l√
D
. (2.54b)

Note that l = 1 is always a solution to (2.53) and this yields a a symmetric two-spike solution in

which both boundary spikes are identical for all A >
√
Dqmin(κ) tanh(1/

√
D) and D > 0. The

remaining asymmetric solutions correspond to solutions of (2.53) with 0 < l < 1 (or equivalently

1 < l < 2). Note that from (2.15b) we calculate ξ−/ξ+ = sech((2 − l)/
√
D)/sech(l/

√
D) so that

ξ− < ξ+ when 0 < l < 1. To find such asymmetric solutions we need to numerically solve (2.53)
for l = l(A,D). However, as previously observed in [7] for specific values of D and A this possesses
two distinct solution. It is therefore more convenient to numerically solve for A = A(D, l) for fixed
values of D > 0 and 0 < l < 1 as outlined below.

Our method for numerically calculating A(D, l) differs in the cases 0 ≤ κ < 1 and κ > 1 (the
latter including the formal limit κ → ∞ corresponding to Dirichlet BCs). In the former we may
substitute A = 0 into (2.53) to obtain a κ-independent equation which we can solve for D = D0(l).
It is then straightforward to calculate A = A(D, l) for fixed values of l using numerical continuation
in D starting from D = D0(l) for which A = 0. Note than when decreasing A the existence

constraint A >
√
Dqmin(κ) tanh((2 − l)/

√
D) must be satisfied where qmin is given by (2.16). On

the other hand, since A must be strictly positive when κ ≥ 1 we instead first consider the shadow
limit D →∞ for which q− → A/l and q+ → A/(2− l) and with which we numerically solve (2.53)
for A = A(∞, l). For finite values of D > 0 we can solve (2.53) for A = A(D, l) by again using
numerical continuation in D but this time starting from a large value for which A(∞, l) is a good
approximation.

In Figures 6a-6d we plot A = A(D, l) for mixed BCs at select values of 0 ≤ κ < ∞ as well
as for Dirichlet BCs. In each plot the dashed orange curves correspond to D = D0(l) while the
dotted red curves correspond to the values of l = lmax(D) along which A(D, l) is maximized at
each D > 0. Note that lmax(D) = 1 beyond some value of D > 0. Moreover the solid blue curves
in Figures 6a and 6b indicate the existence threshold given by the intersection of A = A(D, l)

and A =
√
Dqmin(κ) tanh((2 − l)/

√
D). Interestingly, as can be seen in Figures 6a-6d, and as

previously highlighted in [7], there is a finite range of D values for which two distinct asymmetric
solutions can be constructed for a fixed value of A > 0: one with l < lmax(D) and the other with
l > lmax(D). Values of A > 0 and D > 0 for which two such asymmetric solutions can be constructed
lie in the region between the curves A(D, lmax(D)) and A(D, 1) as indicated in Figures 6e - 6h. If
A > A(D, lmax(D)) then there are no asymmetric two-spike solutions and only a symmetric solution
can be constructed, whereas if A < A(D, 1) then there is exactly one asymmetric solution. Note that
A(D, 1) is bounded and approaches a horizontal asymptote as D → ∞ which can be numerically
calculated. Finally we neglect asymmetric solutions with A < 0 since, as seen below, they are
always linearly unstable.

By assuming that τ is sufficiently small we can assume that there are no HBs and therefore focus
solely on instabilities that arise from an eigenvalue of the NLEP (2.19) crossing the origin into
the right half-plane where the real-part is positive, i.e. the so-called competition instabilities. As
described in [29] and [7] the NLEP (2.19) admits a zero eigenvalue only when the Jacobian of B
in (2.8) is singular. In particular, differentiating (2.8) with respect to l it can be shown (see [7])
that for 0 < l < 1 the NLEP (2.19) admits a zero eigenvalue along the curves where ∂lA(D, l) = 0,
that is when l = lmax(D) and l = 1. Moreover, since asymmetric two spike solutions are unstable
along A = 0 and D = D0(l) (see Appendix C of [7]) we can deduce that only those asymmetric
solutions with 0 < l < lmax(D) are linearly stable. Similarly, we can deduce that the symmetric
two-spike solutions are stable for A > A(D, 1) and unstable otherwise. In light of this the curves
A = A(D, 1) and A = A(D, lmax(D)) in Figures 6e-6h separate the A > 0 and D > 0 values into
three distinct regions. Fist, in the region A > A(D, lmax(D)) the symmetric two-spike solution is
stable and there are no asymmetric solutions. Second in the region bounded by A = A(D, lmax(D))
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Figure 7. Values of v(−1, t) (solid) and v(+1, t) (dashed) obtained by numerically
solving (2.1) using FlexPDE 6 [20] and using the two boundary spike solutions

obtained using the gluing with the indicated values of values of l, A > 0, D > 0,
and κ as an initial condition. The remaining problem parameters used are

ε = 0.005 and τ = 0.2.

and A = A(D, 1) both the symmetric two-spike solution and a unique asymmetric solutions are
linearly stable. Finally in the region A < A(D, 1) the symmetric two-spike solution is linearly
unstable and there is a unique stable asymmetric two solution.

In Figures 7 we plot the values of v(±, t) obtained by numerically solving (2.1) using FlexPDE
6 [20] for several values of A > 0 and D > 0. The initial condition used in each simulation is
obtained by using the value of l > 0 obtained by solving (2.53) and indicated in the legend. In
particular, in the top row of Figure 7 the values of A > 0 and D > 0 are chosen in the region
where the system possesses one stable symmetric solution and two asymmetric solutions: one stable
solution with l < lmax and the other an unstable solution with lmax < l < 1. The plots illustrate
how the solution with lmax < l < 1 is destabilized in finite time, and furthermore appears to settle
to the stable asymmetric solution with l < lmax. On the other hand, in the bottom row of Figure
7 we choose values of A > 0 and D > 0 for which the symmetric solution is linearly unstable
and for which a unique stable asymmetric solution can be constructed. The resulting numerical
solutions illustrate that the symmetric solution is unstable and furthermore collapses to the stable
asymmetric solution in finite time. As highlighted in [7] this behaviour suggests the association
of the boundary spike with the smaller value of l with a boundary layer. Indeed, in the absence
of inhomogeneous boundary conditions a two-spike solution undergoing a competition instability
becomes a one-spike solution. However since a one-spike solution cannot simultaneously satisfy both
inhomogeneous boundary conditions a second boundary-bound spike must persist. The association
of this boundary layer with the spike corresponding to the smaller value of l is supported by the
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plots of A(D, l) in Figures 6a-6d which show that the stable asymmetric solution emerges from l = 0
as A is increased from zero.

Interestingly, the symmetric two-spike solution constructed above has an analogous symmetric
solution in higher-dimensional bounded domains consisting of a one-dimensional boundary-bound
spike extended along the domain’s boundary. As discussed in more detail in the next section these
boundary-layer solutions have qualitatively similar stability properties to their one-dimensional
counterparts. In particular these solutions become unstable as the inhomogeneous term A is de-
creased below some critical threshold (c.f. Figures 6e-6h). However, rather than leading to the
collapse of one of the spikes as in a one-dimensional domain, a behaviour that is made impossible
by the connectivity of the domain’s boundary in dimensions greater than two, the instability of the
boundary layer solution instead leads to a composite solution consisting of both a boundary layer
and a near-boundary spike (see Figure 9).

3. Boundary Layer Solutions in the Shadow Limit in Ω ⊂ RN (N ≥ 2)

We now consider the existence and linear stability of boundary layer solutions to (1.1) in the
so-called shadow limit obtained by taking the limit D → ∞. Assuming that Ω is connected then
in such a limit V formally approaches a constant value V ∼ ξ so that by integrating the second
equation in (1.1a) and using the divergence theorem we obtain the shadow system

Ut = ε2∆U − U +
U2

ξ
, τξt = −ξ +

1

ε|Ω|

∫
Ω
U2dx, x ∈ Ω, t > 0 (3.1a)

with either mixed or Dirichlet boundary condition{
ε∂νU + κU = A, for x ∈ ∂Ω, t > 0, or

U = A for x ∈ ∂Ω, t > 0.
(3.1b)

Steady state solutions of (3.1) satisfy the system

ε2∆U − U +
U2

ξ
= 0, ξ =

1

ε|Ω|

∫
Ω
U2dx, x ∈ Ω

ε∂νU + κU = A, x ∈ ∂Ω.

(3.2)

for which we seek to construct positive boundary layer solutions (Uε, ξε) for small ε > 0.

3.1. The existence of boundary layer solutions. Using the change of variables x = εy and
letting U = ξu and a = A/ξ, problem (3.2) reduces to the following scalar problem

∆yu− u+ u2 = 0, x ∈ Ωε,

∂νyu+ κu = a, x ∈ ∂Ωε.
(3.3)

where Ωε ≡ {y ∈ RN | εy ∈ Ω} and νy is the outward unit normal to ∂Ωε at y = ε−1x ∈ ∂Ωε.
Recall from our analysis of the one-dimensional problem above that yc(κ) given by (2.18) is the

unique (positive) value of y at which −w′c(y) + κwc(y) is maximized. Denote this maximum value
by amax(κ) ≡ −w′c(yc(κ)) + κwc(yc(κ)). Then for any 0 ≤ a < amax(κ) we can define

wa(s) ≡ wc(s+ ya), (3.4)

where wc is given by (2.4) and ya is the unique solution to

−w′c(ya) + κwc(ya) = a, y0 > yc(κ).

In the remainder of this section we will use the method of sub- and super-solutions to prove the
following existence existence result.
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Theorem 3.1. Let κ ≥ 0 be arbitrary and assume that A > 0 satisfies

A > Amin(κ) ≡ |Ω|
|∂Ω|

−w′c(yc(κ)) + κwc(yc(κ))∫∞
yc(κ)w

2
c (s)ds

, (3.5)

where wc is given by (2.4) and yc is the critical shift parameter given by (2.18). Then there exists
an ε0 > 0 such that for all 0 < ε < ε0 problem (3.1) has a positive steady state solution (Uε, ξε)
satisfying

Uε(x) = ξε(wa(h/ε) +O(ε)), (3.6)

ξε ∼
|Ω|
|∂Ω|

[∫ ∞
0

w2
a(s)ds

]−1

, (3.7)

where h = dist(x, ∂Ω), wa = wc(y + ya), and ya is the unique solution to the nonlinear equation

−w′c(ya) + κwc(ya)∫∞
ya
w2
c (s)ds

=
|∂Ω|
|Ω|

A, on yc(κ) < ya <∞. (3.8)

We make the following remarks.

Remark 3.1. The proof of Theorem 3.1 given below utilized the method of sub- and super-solutions
and relies on the stability of a certain linearized operator which holds only when ya > yc. For this
reason we assume in the theorem that ya > yc and since the left-hand-side of (3.8) is monotone
increasing in ya for ya > yc this imposes the lower bound (3.5). We note that (3.6) and (3.7) can be
formally shown to hold for values of A < Amin by using the method of matched asymptotic expan-
sions. However these solutions are expected to be linearly unstable since the local linearized operator
contains a unstable eigenvalue which produces resonance when embedded in higher dimensions (see
[18]). This is supported by our numerical calculations in Section 3.3.

Remark 3.2. When the boundary condition (3.1b) are replaced with the Dirichlet boundary condi-
tion U = A on ∂Ω the above theorem continues to hold with the following modifications obtained by
replacing A with κA and formally taking the limit κ→∞. Since the critical shift parameter yc = 0
for Dirichlet BCs the constraint for A and nonlinear equation for ya are respectively replaced with

A > Amin ≡
1

2

|Ω|
|∂Ω|

,
wc(ya)∫∞

ya
w2
c (s)ds

=
|∂Ω|
|Ω|

A, on yc(κ) < ya <∞. (3.9)

Before proving Theorem 3.1 we first establish the following geometric results.

3.1.1. Geometric Preliminaries: Fermi Coordinates and the Laplace-Beltrami Operator. To present
and prove our results we first collect the following notation and results from Riemannian geometry
similar to that of Section 3 of [19]. For a fixed γ ∈ (0, 1) let

Jε = {x ∈ Ω̄ : dist(x,Γ) < εγ},
where dist(x,Γ) denotes the Euclidean distance of a point x ∈ RN to the manifold Γ. Note that for
small ε > 0 the region Jε is part of the normal bundle of Γ which we denote by NΓ. The normal
bundle NΓ is endowed with the metric ḡ induced from its embedding into RN . Specifically

ḡ = gT + gh,

where gT is the metric of Γ induced from its embedding into RN and gh ≡ dh2 is the Euclidean
metric on the normal fibres

In a neighbourhood of a given point P ∈ Γ, the inward unit normal ν(P ) together with an
orthonormal frame in the tangent bundle TΓ can be viewed as a moving orthonormal frame in a
neighbourhood of (P, 0) ∈ Γ×R. We can then define a local parametrization from a neighbourhood
of (P, 0) ∈ Γ× R into a neighbourhood of y ∈ RN by

Φ (P, h) ≡ P + hν(P ).
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Let (t1, . . . , tN−1) 7−→ P (t1, . . . , tN−1) be a parametrization of Γ close to a given point P• for which
we assume, without loss of generality, that P (0) = P•. To keep the notation short we suppress the
explicit dependence of ν(P ) on P and denote it simply by ν. Hence

X (t1, . . . , tN−1, h) ≡ Y (t1, . . . , tN−1) + hν (t1, . . . , tN−1) (3.10)

where Y (t1, ..., tN−1) = (Y1, Y2, ..., YN ) ∈ RN with Y (0) = P• is a parametrization of RN close to
P•. For the remainder of the paper we will refer to (t1, . . . , tN−1, h) as the Fermi coordinates in the
neighbourhood of P•. Using the Fermi coordinates any point X ∈ Jε can be represented as

X = Y + hν(Y ), Y ∈ Γ, 0 ≤ h < εγ ,

and in this parametrization the Euclidean metric, or more precisely the pull-back of g by Φ, is close
to the induced metric on NΓ by the following lemma.

Lemma 3.1. In the above-defined coordinates,

Φ∗g = ḡ + h(Θ + 2Θ̂) + h2Θ̃,

where Θ and Θ̃ are tensors acting on TΛ and have coefficients which are smooth functions on Λ.

Proof. Recall that (3.10) is a parametrization of RN close to P•. To compute the coefficients of
the Euclidean metric in these coordinates it is enough to compute ∂tiX · ∂tjX, ∂tiX · ∂hX, and
∂hX · ∂hX. Observe that ∂tiY is a tangent vector to Γ while ∂h is a normal vector to Γ and hence
∂tiY · ν ≡ 0. Using this it is easy to check that

∂tiX · ∂tjX = ∂tiY · ∂tjY + h
(
∂tiY · ∂tjν + ∂tjY · ∂tiν

)
+ h2∂tiν · ∂tjν

∂tiX · ∂hX = h∂tiY · ν, ∂hX · ∂hX = ν · ν.

We then set

Θ ≡
N−1∑
i,j=1

(
∂tiY · ∂tjν + ∂tjY · ∂tiν

)
dtidtj ,

Θ̂ ≡
N−1∑
i=1

∂tiY · νdtidh, Θ̃ ≡
k∑

i,j=1

∂tiν · ∂tjνdtidtj ,

and observe that the coefficients of Θ, Θ̂, and Θ̃ are smooth functions on Γ. With this notation, we
can then write

g =

N−1∑
i,j=1

(
(gT )ij + hΘij + h2(Θ̃)ij

)
dtidtj + 2

N−1∑
i=1

h(Θ̂)iNdtidh+ dh2, (3.11)

which completes the proof of the lemma. �

Recall that if the metric tensor on a manifoldM is given in local coordinates by g =
∑m

i,j=1 gijdxidxj
and f is a (smooth) function defined on M then the gradient and the Laplace-Beltrami operator
acting on f are respectively given by

∇gf =

N∑
i,j=1

(
gij∂xif

)
∂xj , ∆gf ≡

1√
det g

N∑
i,j=1

∂xi

(√
det ggij∂xjf

)
where

(
gij
)

is the inverse matrix of the matrix (gij). When ε > 0 is sufficiently small we can use
the expansion of g in Lemma 3.1, especially formula (3.11), to obtain the following decomposition
of the Euclidean Laplacian in Jε.
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Lemma 3.2. The Euclidean Laplacian ∆ in Jε can be decomposed as

∆ ≡
N∑
i=1

∂2
xi = ∆ḡ +D,

where ∆ḡ = ∆gT + ∂2
hh denotes the Laplace-Beltrami operator on Jε (seen as part of the normal

bundle of Γ) for the metric ḡ = gT + gh, and D is a second-order differential operator which, in
Fermi coordinates, can be expanded as

D = hD(2) +D(1)

where D(2) ( respectively D(1)
)

are second-order (respectively first-order) partial differential opera-
tors whose coefficients are smooth and bounded in Jε.

The Euclidean gradient ∇ in Jε can be decomposed as

∇ ≡
N∑
i=1

∂xi(·)∂xi = ∇ḡ + hD̃

where ∇ḡ = ∇gT + ∂h(·)∂h denotes the gradient operator on Jε for the metric ḡ = gT + gh, and D̃
is a first-order partial differential operators, whose coefficients are smooth and bounded in Jε.

Finally, we can define in a fixed tubular neighbourhood of Γ the function χ by

dvolg = χdvolḡ = χdσdh, (3.12)

where σ is the volume element of Γ. Such a χ is smooth and χ ≡ 1 along Γ. Moreover, it follows
from Lemma 3.1 that there exists a constant C > 0 such that

|χ− 1| ≤ C|h| in Jε. (3.13)

3.1.2. Proof of Theorem 3.1. Using the rescaling x = εy and the corresponding rescaled Fermi
coordinate (t1, . . . , tN−1, h) = ε(τ1, . . . , τN−1, s), problem (3.3) can be written in ε−1Jε as

∆ε−2gT u+ ∂2
ssu+ ε(sD̃(2) + D̃(1))u− u+ u2 = 0, in ε−1Jε,

− ∂su+ κu = a, on ε−1Γ,
(3.14)

where D̃(2) and D̃(1) are, respectively, second and first order differential operators with bounded
coefficients in ε−1Jε.

Using wa given in (3.4) as a first approximation for a solution of (3.14) we calculate

∆ywa − wa + w2
a = ε(sD̃(2) + D̃(1))wa ≤ cε(|s|+ 1)e−s for some constant c > 0.

The boundary condition is obviously satisfied. Next we let η(t) be a cut-off function such that
η(t) = 1 for t ≤ 1 and η(t) = 0 for t ≥ 2. Letting ηδ(t) = η(t/δ) we find that

w̃a = η− 1
2

(γ+1)ε log ε(s)wa(s),

is a good approximation of problem (3.3).
Consider next the eigenvalue problem

− (∆ε−2gT φ+ ∂2
ssφ− φ+ 2waφ) = µφ, −∂sφ+ κφ = 0, (3.15)

and note that −w′a(s) is positive (since ya > yc > 0) and moreover it is also a super-solution of

−(∆ε−2gT φ+ ∂2
ssφ− φ+ 2waφ) = 0, −∂sφ+ κφ = 0.

and the eigenvalues, {µj}i≥1, of (3.15) are therefore positive. Thus, for ε > 0 sufficiently small, the
eigenvalues {µεj}i≥1, of the eigenvalue problem problem

− (∆yφ− φ+ 2w̃aφ) = µφ, −∂sφ+ κφ = 0, (3.16)
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on H1(Ωε) are likewise positive and moreover they satisfy µεj → µj as ε→ 0+ for all j ≥ 0. In fact,

if we denote the eigenvalues of ∆∂Ω(= −∆gT ) by 0 < µ∗1 < µ∗2 ≤ . . ., then µεj = µj + µ∗jε
2 for all

j ≥ 0.
To obtain an exact solution of (3.14) we let uε(y) = w̃a + vε(y) and put it into the equation for

uε with which we obtain the equation for vε

(∆y − 1 + 2w̃a) vε + Eε +Kε(vε) = 0, in Ωε, (3.17a)

−∂svε + κvε = 0 on ∂Ωε, (3.17b)

where

Eε ≡ ∆yw̃a − w̃a + w̃2
a, Kε(vε) ≡ |w̃a + vε|2 − w̃2

a − 2w̃avε.

It is easy to estimate that

|Eε| ≤ cε(1 + |s|)e−s, |Kε(vε)| ≤ c|vε|2.

Since − (∆y − 1 + 2w̃a) is an increasing operator, by the Krein-Rutman theorem, the eigenfunc-
tion φε1 corresponding to the principal eigenvalue µε1 can be chosen positive in Ω̄ε and satisfying
‖φε1‖L∞(Ωε) = 1. By elliptic regularity we also have |φε1| . exp(−cε−1d(x, ∂Ω)). Then we can choose
c∗ > 0 sufficiently large such that c∗εφ

ε
1 is a positive super-solution and −c∗εφε1 is a negative sub-

solution of (3.17). Therefore the problem (3.17) has a solution vε and uε = w̃a + vε is a solution
of (3.3). Moreover, by the maximum principle uε is positive. With Uε = ξεuε equation (3.6) is
established.

To complete the proof we use the expansion of the volume form (3.12) and (3.13) to obtain

ξε =
1

ε|Ω|

∫
Ω
U2
ε dx =

ξ2
ε

ε|Ω|

∫
Ω
w2
a(h/ε)χdσdh+O(1)ξ2

ε

= (1 +O(ε))
ξ2
ε

ε|Ω|

∫
Jε

w2
a(h/ε)dσdh = (1 +O(ε))

ξ2
ε |∂Ω|
|Ω|

∫ εγ−1

0
w2
a(s)ds.

The estimate (3.7) then follows from the facts that γ − 1 < 0 and that the function wa(s) decays
exponentially as s→∞.

3.2. The stability of the boundary layer solution. In this section we prove that the boundary
layer solution from the preceding section is linearly stable. Our main result is the following.

Theorem 3.2. If τ ≥ 0 is sufficiently small then the boundary layer solution in Theorem 3.1 is
linearly stable.

Proof. Linearizing (3.1) at the solution (Uε, ξε) in Theorem 3.1 yields the eigenvalue problem

λεφε = ε2∆φε − φε +
2Uεφε
ξε

− U2
ε

ξ2
ε

ψε, (3.18)

τλεψε = −ψε +
2

ε|Ω|

∫
Ω
Uεφε, (3.19)

with the boundary condition

ε∂νφε + κφε = 0.

Assume to the contrary that (3.18) admits an eigenvalue λε such that Reλε ≥ 0 with correspond-
ing eigenfunction φε. By comparing with the principal eigenfunction φε1 of − (∆y − 1 + 2w̃a) (see

above) we get |φε| . exp(−cd(x,∂Ω)
ε ).

Using the Fermi coordinates, we write φε = φε(x
′, h) and Uε = Uε(x

′, h), where x′ ∈ ∂Ω and
h ∈ [0, εγ), as in (3.10). Letting

φ̃ε(x
′, s) = φε(x

′, εs), Ũε(x
′, s) = Uε(x

′, εs),
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Figure 8. Plots of maxx∈Ω U(x, t) versus t > 0 for selected values of A obtained
by numerically solving (3.18) with ε = 0.05 and τ = 0.2 and with (A) Neumann
BCs, mixed BCs with (B) κ = 1 and (C) κ = 10, and (D) Dirichlet BCs. In each

case (3.6) and (3.7) were used as the initial conditions.

and using the profile of (Uε, ξε) we may assume that Ũε(x
′, s)→ ξεwa(s) and φ̃ε(x

′, s)→ φ̃(x′, s) in
H2(∂Ω× [0,+∞)) ∩ C2

loc(∂Ω× [0,+∞)) as ε→ 0. Then∫
Ω
Uεφε dx ∼ ξεε

∫ ∞
0

wa(s)

∫
∂Ω
φ̃(x′, s)dσds

and therefore

ψε ∼
1

1 + τλε

2

|∂Ω|

∫∞
0 wa(s)

∫
∂Ω φ̃(x′, s)dσds∫∞

0 w2
a(s)ds

Since τ ≥ 0 and Reλε > 0 the boundedness of φε and hence also of φ̃ implies that the eigenvalues λε
are bounded and we may assume further that λε → λ locally in C. Using the profile of the functions
(Uε, ξε) we deduce from (3.18) that for small ε > 0

λφ̃ ∼ ∂2
ssφ̃+ ε2∆∂Ωφ̃− φ̃+ 2waφ̃−

1

1 + τλ

2

|∂Ω|

∫∞
0 wa(s)

∫
∂Ω φ̃(x′, s)dσds∫∞

0 w2
a(s)ds

w2
a, (3.20)

and integrating over ∂Ω we arrive at the following equation for φ1(s) =
∫
∂Ω φ̃(x′, s)dσ

λφ1 = ∂2
ssφ1 − φ1 + 2waφ1 −

2

1 + τλ

∫∞
0 wa(s)φ1(s)ds∫∞

0 w2
a(s)ds

w2
a. (3.21)

By the results in Section 2.3 and in particular Theorem 2.2 we deduce that for τ ≥ 0 sufficiently
small if Re(λ) ≥ 0 then φ1(s) ≡ 0. Therefore we assume that

∫
∂Ω φ̃(x′, s)dσ ≡ 0 so that the relevant

eigenvalue problem is

λφ̃ = ∂2
ssφ̃+ ε2∆∂Ωφ̃− φ̃+ 2waφ̃, (3.22a)

together with the boundary condition

− ∂sφ̃+ κφ̃ = 0 for s = 0. (3.22b)

Since the shift parameter exceeds the critical value yc(κ), by Lemma 2.1 the principal eigenfunction
Φ0 of the one-dimensional linearized operator ∂2

ss − 1 + 2wa is of one sign and the corresponding
principal eigenvalue satisfies Λ0 < 0 . In particular choosing Φ0 to be strictly positive and multi-
plying it by an appropriate cut-off function we obtain a super-solution to the higher-dimensional
problem (3.22) from which we deduce the contradiction Reλ ≤ Λ0 < 0.

�
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Figure 9. Plots of the rescaled solution εU(x, t) to (3.18) at selected times t > 0
with A = 0.95Amin and (A) Neumann BCs, mixed BCs with (B) κ = 1 and (C)
κ = 10, and (D) Dirichlet BCs. Remaining parameters used are τ = 0.5 and

ε = 0.05.

3.3. Numerical Simulations. To illustrate Theorems 3.1 and 3.2 above we use FlexPDE 6 [20]
to numerically solve (3.18) with τ = 0.5 and ε = 0.05 for different choices of BCs obtained by
varying κ and A. For each simulation we use (3.6) and (3.7) as initial conditions. In Figure 8 we
plot maxx∈Ω U(x, t) versus t > 0 for mixed BCs with κ = 0, 1, 10 as well as with Dirichlet BCs.
For each choice of BCs we select three values of A corresponding to 90%, 95%, and 105% of the
minimum value Amin given by (3.5) and (3.9) for mixed and Dirichlet BCs respectively. In each
case our numerical simulations support the results of Theorem 3.2 that the boundary layer solution
is linearly stable for A > Amin. Moreover, for values of A < Amin we observe that the boundary
layer solution is linearly unstable. Interestingly, as illustrated in Figure 9, we observe that when
A < Amin the unstable boundary layer tends to a solution consisting of a small boundary layer
together with a near boundary spike. The detailed study of this boundary layer and near-boundary
spike solution is beyond the scope of this paper and will be addressed in a future study.

4. Conclusion

We have used a combination of asymptotic and rigorous methods as well as numerical simu-
lations to study the structure and linear stability of boundary-layer type localized solutions to
the singularly perturbed Gierer-Meinhardt system in multi-dimensional domains. In the case of
a one-dimensional domain we used the method of matched asymptotic expansions to reduce the
construction of multi-spike solutions to that of solving a nonlinear algebraic system for the spike
heights and their locations. This method has been extensively used in the context of singularly
perturbed reaction-diffusion systems and our primary contribution here is the extension to the case
where the slowly diffusing activator has inhomogeneous Neumann, mixed, or Dirichlet boundary
conditions. Our results in this direction can be seen as an extension of those obtained for inhomo-
geneous Neumann boundary conditions in [7] and homogeneous mixed boundary conditions in [17].
In particular we found that the shift-parameter continues to play a critical role in the stability of
a single spike solution, and furthermore we found that for each of the boundary conditions consid-
ered the resulting two-spike solutions share many qualitative similarities. Specifically, the stability
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of an asymmetric solution for certain parameter regimes was observed for all choices of boundary
conditions.

When the GM model is posed on a connected and bounded domain with smooth boundary in
two and higher dimensions we restricted our attention to the shadow limit in which the inhibitor
diffusivity is taken to be infinitely large. In this limit we provided a rigorous treatment of both
the existence and stability of a boundary layer solution when the value of the inhomogeneity at
the boundary exceeds a critical value. Specifically we proved that when A > Amin(κ) as in (3.5)
and (3.9) for mixed and Dirichlet BCs respectively, then a boundary-layer solution obtained by
extending a one-dimensional spike along the boundary of the domain both exists and is linearly
stable. The asymptotic expression given for this boundary layer in Theorem 3.1 can be formally
used when A < Amin(κ) though our proofs, which rely crucially on the stability of the linearized
operator, are no longer valid in this regime. However we anticipate that when A < Amin(κ) such a
boundary layer solution is unstable and this prediction is supported in our numerical simulations.

We conclude with some suggestions for future research. First, the rigorous stability analysis for
the single-spike solution performed in §2.3 used a continuation argument which provides stability
properties for a limited range of y0 and µ values. An open problem is to extend these regions
to provide a complete characterization of the linear stability of the single spike solution, and in
particular to prove the conjecture that the single spike solution is stable for all µ > max(µc(y0, κ), 0)
for all ymin < y0 <∞. In the case of a higher dimensional domain it would be worthwhile to perform
a detailed analysis, either formal or rigorous, of localized solutions that arise when A < Amin. It
would be particularly interesting to provide a detailed analysis of the solution consisting of both a
boundary layer and a near-boundary spike that was observed in our numerical simulations in Figure
9. One question to ask is whether a similar situation to the one-dimensional case, where both a
symmetric and asymmetric solution can be stable for certain parameter values, arises in higher
dimensions. In addition to being mathematically interesting we also anticipate that such solutions
will play an important role in singularly perturbed problems incorporating bulk-surface coupling
[5] and will also provide insights into the phenomena of isolated patterns [14].
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