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Abstract

It is well known that Keller–Segel models serve as a paradigm to describe the self aggregation
phenomenon, which exists in a variety of biological processes such as wound healing, tumor growth,
etc. In this paper, we study the existence of monotone decreasing spiky steady states and its lin-
ear stability property in Keller–Segel models with logistic growth over one-dimensional bounded
domain subject to homogeneous Neumann boundary conditions. Under the assumption that chemo-
attractive coefficient is asymptotically large, we construct the single boundary spike and next show
this non-constant steady state is locally linear stable via Lyapunov-Schmidt reduction method. As
a consequence, the multi-symmetric spikes are obtained by reflection and periodic extension. In
particular, we present the formal analysis to illustrate our rigorous theoretical results.
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1 Introduction and Main results
Chemotaxis is a process in which the uni-cellular and multi-cellular organisms are stimulated by chem-
ical signal, then direct their movements along the gradient of stimulus. One of the most important
findings in biological processes involving chemotactic movement is the self-organized aggregation,
which refers to a situation, for instance initially evenly distributed bacteria together move towards high
concentrations of the chemical stimulus and finally form several groups of spatial aggregates. Since
this interesting phenomenon widely exists in physiological and pathological activities of organisms,
numerous researchers would like to investigate it from the viewpoint of mathematics. Before achieving
this goal, some appropriate mathematical models need to be initiated so as to describe the phenomenon.

1.1 Keller–Segel Models
To study the traveling bands of E. coli, Keller and Segel [20,21] in 1971 proposed one type of reaction-
diffusion systems which consist of two coupled partial differential equations (PDEs), and the forms
read as follows: 

ut = ∇ · (

random (flux)︷︸︸︷
d1∇u −

chemotactic (flux)︷      ︸︸      ︷
χρ(u, v)∇v ) +

source︷︸︸︷
f (u) , x ∈ Ω, t > 0,

vt =

chemical diffusion︷︸︸︷
d2∆v +

chemical creation/consumption︷︸︸︷
g(u, v) , x ∈ Ω, t > 0,

(K-S)
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where spatial region Ω is usually taken to be the whole space RN , N ≥ 1, or a bounded domain in
RN . Here u and v represent the cellular density and chemical concentration at location x and time
t, respectively. In addition, ρ is the so-called sensitivity function, which measures the chemotactic
fluctuation, while constants d1 > 0 and d2 > 0 denote the self-diffusion effect of u and v, respectively;
χ describes the strength of chemotactic movement. In particular, the environment is assumed to be
enclosed, and hence one imposes the no-flux boundary conditions on cellular density u and chemical
concentration v.

System (K-S) have been well studied over the past few decades and we refer the readers to survey
papers [12,14–16]. It is worthy mentioning that the seminal work of Nanjudiah [30] and Childress and
Percus [5] stimulate scholars to qualitatively analyze the rich properties of global solutions, blow-up
solutions, stationary solutions and traveling waves within (K-S) [11,17,27,28,33,36]. In the absence of
the source term f (u), there are a variety of results focusing on the global well-posedness and dynamics.
The classical form of (K-S) in this situation is the so-called minimal chemotaxis model, which reads

ut = ∆u − χ∇ · (u∇v), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂n (x, t) = ∂v

∂n (x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

where d1 = d2 = 1, (u0(x), v0(x)) are non-negative initial data and n is the unit outer normal vector.
The famous phenomenon in the 2D case of (1.1) is commonly referred to as “chemotactic collapse”,
which has been fairly understood. In fact, there exists some critical mass M0 := 4π

χ
for the bounded

domain or 8π
χ

for the whole space RN such that if
∫
Ω

u(x, 0)dx < M0, the solution to (1.1) will globally
exist [29]; otherwise (1.1) will admit finite time blow-up solutions [5,11,30,37,40]. Moreover, focusing
on the stationary counterpart of (1.1) in 2D, Wei and Delpino employed the “localized energy method”
to construct the multi-spiky solutions [6]. It is necessary to point out that the groundbreaking work
for the construction of large amplitude steady states in Keller–Segel models was completed by Lin, Ni
and Takagi [24, 31, 32]. Based on these results, researchers comprehensively studied the non-constant
stationary solutions with a single boundary or interior spike or multiple spikes, which refer to [1–3,
8, 9, 25]. In contrast with 2D case, it was shown that the solution to (1.1) in 1D globally exists for
all time [27, 34]. Furthermore, the results involving the formal and rigorous construction of the spiky
steady states can be found in [4,13,19]. In particular, Wang and Xu [41] adopted an innovative method
to directly tackle the stationary problem of (1.1) without converting it into a single equation.

In the presence of the source term f (u), the results for the global existence and large time behavior
of solutions in (1.1) are distinct. The common form of f (u) is the logistic growth satisfying f (u) =
u(ū − κu), which are usually used to model population dynamics. Hhere ū > 0 measures the carrying
capacity of the habitat for cells and κ > 0 represents the strength of cellular degradation. It is well-
known that the logistic growth can inhibit the occurrence of blow-up phenomenon in any dimension
when κ is large [26, 45–49]. For the stationary counterpart of (1.1) with the logistic source, there are
also a few results related to the construction of non-constant stationary solutions [18,35,38]. Recently,
we have rigorously constructed multi-spikes in 2D [23]. Our successful analysis applied in 2D gives
us motivation to perform the similar argument for one-dimensional minimal models with the logistic
growth. Actually, Kolokolnikov et al. in 2014 [38] did the formal computation to show the existence
of spiky steady states in 1D. Our goal in this paper is also to give the rigorous proof for these existence
results.
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1.2 Motivations and Main Results
In this paper, we focus on the 1D version of (1.1) with the logistic source in (0, L), which is

ut = uxx − χ(uvx)x + µu(ū − u), x ∈ (0, L), t > 0,
vt = vxx − v + u, x ∈ (0, L), t > 0,
ux(0, t) = ux(L, t) = vx(0, t) = vx(L, t) = 0, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L).

(1.2)

According to the results of Osaki and Yagi [34], the solution globally exists and is uniformly bounded
for all the time. However, it might admit the bounded non-constant steady states which possess the
striking structures such as spikes, transition layers, etc. To confirm our conjecture, it is necessary to
study the stationary system of (1.2), which is

uxx − χ(uvx)x + µu(ū − u) = 0, x ∈ (0, L),
vxx − v + u = 0, x ∈ (0, L),
ux(0) = ux(L) = vx(0) = vx(L) = 0.

(1.3)

It is well-known that when µ = 0, there exists the boundary layer to (1.3) under the asymptotically limit
of L ≫ 1 [19]. The natural generalization is to construct the boundary spikes with the similar profile
for arbitrary µ > 0. Under the assumption that the chemotactic coefficient χ is sufficiently large, we
show the existence of single boundary spikes to (1.3) via the standard Lyapunov-schmidt reduction and
the results are stated in the following Theorem:

Theorem 1.1. Let χ := 1
ϵ2 . Then there exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), (1.3) admits the

non-constant solution (u−, v−) which has the following asymptotical form:{
u− = U0

( x
ϵ

)
+ o(1), x ∈ (0, L),

v− = v0(x; L) + o(1), x ∈ (0, L), (1.4)

where U0(y) := a
2 sech2

( √
a

2 y
)

and v0(x; L) is given by

v0(x; L) = ϵ2 log
(1
4

sech2
( √a

2
x
ϵ

))
+ ϵ

√
a

sinh L
cosh(x − L) +

√
aϵx. (1.5)

In particular, a = 3ū + O(ϵ).

Theorem 1.1 illustrates that (1.2) admits non-constant steady states for χ large enough in which
cellular density u = O(1) and chemical concentration v = O

( 1
√
χ

)
. The natural question is whether there

exist other nontrivial stationary solutions to (1.3). Indeed, it follows from the reflection and periodic
extension that there are symmetric multi-spikes for χ ≫ 1, which is summarized as

Corollary 1.1. Suppose m ≥ 1 be any fixed integer, then we can find constant ϵ0 such that for ϵ ∈ (0, ϵ0),
there exist the following two types of m-symmetric spikes to (1.3):

(U−m,V
−
m) =

[ m
2 ]∑

j=0

(Um,Vm)
(2 jL

m
− x

)
+ (Um,Vm)

(
x −

2 jL
m

)
, x ∈ (0, L), (1.6)

and

(U+m,V
+
m) =

[ m
2 ]+1∑
j=1

(Um,Vm)
( (2 j − 1)L

m
− x

)
+ (Um,Vm)

(
x −

(2 j − 1)L
m

)
, x ∈ (0, L), (1.7)
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where Um and Vm are defined as

Um =

{
U0

( x
ϵ

)
+ O(ϵ), x ∈

(
0, L

m
)
,

0, x <
(
0, L

m
)
,

and Vm =

 v0

(
x; L

m

)
+ O(ϵ), x ∈

(
0, L

m
)
,

0, x <
(
0, L

m
)
.

The other important finding is the stability property of (1.4). We state the relevant results in the
following Theorem:

Theorem 1.2. When ϵ ≪ 1, (u−, v−) defined by (1.4) is locally linear stable.

From the perspective of energy, Theorem 1.2 implies the energy of (u−, v−) is the smallest among a
class of solutions given in Corollary 1.1. Next, we exhibit the profile of these single and multiple spikes
in Figure 1. Moreover, as is shown in Figure 2, the solution (u, v)(·, t) of (1.2) converges to (u−, v−) after
we impose some small perturbation on the initial data.
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Figure 1: Given L = 2, ū = 1 and χ = 20. Top: Profiles of increasing and decreasing single spikes.
Bottom: Profiles of double boundary and single interior spikes. We find cellular density u is localized
and chemical concentration v globally varies over (0, L).

The remaining parts of this paper are organized as follows: In Section 2, we shall firstly convert (1.3)
into the single nonlocal equation, then show our idea for the choice of the ansatz to this single equation.
Section 3 is devoted to the existence of spiky stationary solutions via Lyapunov-schmidt reduction. In
this section, we mainly focus on the investigation of linear and nonlinear projected problems. In Section
4, we will linearize (1.2) around the single boundary spike then study the linearized eigenvalue problem
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Figure 2: Given L = 2, ū = 1 and χ = 50. The dynamics of single boundary spikes defined in Theorem
1.1. We can regard time-dependent solution (u, v)(·, t) at t ≈ 20000s as the stationary solution and
obtain (u, v)(·, t) finally converges to (u−, v−).

to prove this steady state is locally asymptotical stable. Finally, we exhibit the formal computation
which complements our rigorous analysis in Appendix A and Appendix B.

2 The Approximate Solution of u and v

In section 2, we shall introduce the selection of the ansatz. First of all, we set µ = 0 in the first equation
of (1.3) to obtain

u = Ceχv, (2.1)

where C > 0 is some constant need to be determined. Next, we define v̄ := χv and substitute it into the
second equation to arrive at

v̄xx − v̄ +Cχev̄ = 0, x ∈ (0, L). (2.2)

Define ϵ̃ := 1
√

Cχ and y = x
ϵ̃
, then we have (2.2) can be simplified as

v̄yy − ϵ̃
2v̄ + ev̄ = 0, y ∈ (0, L/ϵ̃). (2.3)

When ϵ ≪ 1, we note that (2.3) can be approximated by the following Liouville equation with the
Neumann boundary condition in the half space:

wyy + ew = 0, y ∈ (0,∞), wy(0) = 0. (2.4)

It is well-known that (2.4) has a family of solutions satisfying

w(y; ā) = log
[ ā
2

sech2
( √ā

2
y
)]
,

∫ ∞

0
ewdy < +∞, (2.5)

where ā > 0 is a free parameter. Hence, we regard w(y, ā) as the basic ansatz of v̄, then obtain from
u = Cev̄ and ϵ̃ := 1

√
Cχ that u0, the ansatz of u, can be defined as

u0 :=
āC
2

sech2
( √āC

2
y
)
=

āC
2

sech2
( √āC

2
x
ϵ

)
=

a
2

sech2
( √a

2
x
ϵ

)
, (2.6)
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where a > 0 is a free parameter and ϵ :=
√

1
χ

. It is necessary to determine the constant a so as to
establish the explicit form of u0. To this end, we integrate the u-equation in (1.3), then find from the
Neumann boundary condition that ∫ L

0
u(ū − u)dx = 0. (2.7)

Since u0 is defined as the approximate solution of u, one further substitutes (2.6) into (2.7) to get a ∼ 3ū.
Now, we have established the following rough ansatz of u and v̄:

u0 =
a
2

sech2
( √

a
2

x
ϵ

)
and v̄0 = log

[a
2

sech2
( √a

2
x
ϵ

)]
− log C. (2.8)

Step 1: Construction of (u0, v0)
It is necessary to point out that v̄0 is not the uniform expansion of v̄ since it does not satisfy the

Neumann boundary condition at x = L. To solve this issue and obtain the uniform expansion of v, we
define v0 as the following form in terms of the Neumann Green’s function:

v0(x) =
∫ L

0
G(z; x)u0(z)dz, (2.9)

where u0 is given in (2.8) and G(z; x) satisfies

G(z; x) =
{ cosh(x−L)

sinh L cosh z, z ∈ (0, x),
cosh x
sinh L cosh(z − L), z ∈ (x, L).

(2.10)

According to the potential theory, we have v0 is the solution to{
v0xx − v0 + u0 = 0, x ∈ (0, L),
v0x(0) = v0x(L) = 0,

which can be regarded as the uniform approximation of v.
To analyze the error generated by (u0, v0) comprehensively, we shall decompose v0 given by (2.9)

into v00 + v01 + v02. To begin with, we define v01 as the solution to{
vxx − v = 0, x ∈ (0, L),
vx(L) = 0, (2.11)

which satisfies

v01(x) = ϵ
√

a
sinh L

cosh(x − L). (2.12)

Noting that v01 does not satisfy the homogeneous Neumann boundary condition at x = 0, we define the
correction term ω as ϵ2ω(y) = v − v01 and substitute it into (2.2) to find the equation of ω is

ωyy − ϵ
2ω +CeV̄01+ω = 0, y ∈

(
0,

L
ϵ

)
, (2.13)

where V̄01(y) = χv01(x). We further define ω0 as the approximate solution of ω, then expand V̄01 as the
polynomial form and use C ∼ e−

√
aϵ−1 coth L to get

ω0yy + eω0−
√

ay = 0, y ∈ (0,∞). (2.14)
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In light of the Neumann boundary condition at x = 0, L, we have ω0(∞) = 0 and ω0y =
√

a. By solving
the equation of ω0, one finds

ω0 =
√

ay + log
(1
4

sech2
( √a

2
y
))
. (2.15)

Combining (2.12) and (2.15), we simplify (2.9) as

v0 = ϵ
2 log

(1
4

sech2
( √a

2
y
))
+ ϵ

√
a

sinh L
cosh(x − L) +

√
aϵ2y := v00 + v01 + v02, (2.16)

where a ∼ 3ū. Now, we have established the basic ansatz (u0, v0) of (u, v), which are given by (2.8) and
(2.16).

It is natural to study the error generated by u0 and v0. Before this, we rewrite v as v = −(∆x − 1)−1u
and convert (1.3) into the following single nonlocal equation:

S (u) :=
[
ux +

1
ϵ2 u

(
(∆x − 1)−1u

)
x

]
x
+ µu(ū − u) = 0, (2.17)

where ϵ ≪ 1, µ > 0 and ū > 0 are constants. We define ϕ and ψ as ϕ = u − u0 and ψ = v − v0, then
substitute them into (2.17) to obtain

S (u) =(u0 + ϕ)xx −
1
ϵ2 [(u0 + ϕ)(v0 + ψ)x]x + µ(u0 + ϕ)(ū − u0 − ϕ). (2.18)

Then we rearrange (2.18) and find

S (u) =u0xx −
1
ϵ2 (u0v00x)x

I11︷                    ︸︸                    ︷
−

1
ϵ2 (u0(v01 + v02)x)x

+ ϕxx −
1
ϵ2 (u0ψx)x −

1
ϵ2 (ϕv00x)x

I12︷                                            ︸︸                                            ︷
−

1
ϵ2 (ϕv01x)x −

1
ϵ2 (ϕv02x)x −

1
ϵ2 (ϕψx)x

+

I13︷                                          ︸︸                                          ︷
µu0(ū − u0) − µu0ϕ + µϕ(ū − u0 − ϕ) . (2.19)

It can be seen that I11 makes the main contribution on the error generated by u0 and v0. We further use
(2.16) to calculate I11 and find

I11 = −
1
ϵ2 u0xv01x −

1
ϵ2 u0v01xx −

1
ϵ2 u0xv02x −

1
ϵ2 u0v02xx

= −
1
ϵ

a
3
2

2 sinh L
sech2

( √a
2

x
ϵ

)
cosh(x − L) −

1
ϵ2 u0x(v01 + v02)x

= −
1
ϵ

a
3
2

2 sinh L
sech2

( √a
2

x
ϵ

)
cosh(x − L)

+
a

3
2

2ϵ2

[ √a
sinh L

sinh(x − L) +
√

a
]
sech2

( √a
2

x
ϵ

)
tanh

( √a
2

x
ϵ

)
. (2.20)

Define Φ(y) := ϕ(x), Ψ(y) := ψ(x) and L[Φ] = Φyy −
1
ϵ2 (U0Ψy)y −

1
ϵ2 (ΦV00y)y with U0(y) := u0(x) and
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V00(y) := v00(x), then we utilize (2.20) to simplify (2.19) as

S (u) =
1
ϵ2 L[Φ] −

1
ϵ

a
3
2

2 sinh L
sech2

( √a
2

y
)

cosh(ϵy − L)

+
a

3
2

2
1
ϵ2

[ √a
sinh L

sinh(ϵy − L) +
√

a
]
sech2

( √a
2

y
)

tanh
( √a

2
y
)

+ I12 + I13

=
1
ϵ2 L[Φ] −

1
ϵ

a
3
2

2 sinh L
sech2

( √a
2

y
)
[cosh L − ϵ sinh Ly + O(ϵ2)y2]

+
a

3
2

2
1
ϵ

[√
a coth Ly + O(ϵ)y2

]
sech2

( √a
2

y
)

tanh
( √a

2
y
)

+ I12 + I13. (2.21)

It is shown in (2.21) that the leading term is O
(

y
ϵ
e−
√

ay
)
.

Step 2: Construction of (u1, v1)
To balance this leading term and reduce the error, we shall add the O(ϵ) term in the ansatz of u and

v. To be more precisely, we set the refined ansatz as u = u0 + ϵu1 +ϕ and v = v0 + ϵv1 +ψ, where u1 and
v1 will be determined later on. It is convenient to calculate them in y-variable. Define U1(y) := u1(x),
V1(y) := v1(x), V̄00 := 1

ϵ2 V00 and V̄10 := 1
ϵ2 V10, then we have U1 and V̄10 satisfies

U1yy −
(
U1V̄00y

)
y −

(
U0V̄10y

)
y

= cosh L
a

3
2

2 sinh L
sech2

( √a
2

y
)
−

a2

2
coth Lsech2

( √a
2

y
)

tanh
( √a

2
y
)
y, (2.22)

where −V̄10yy = U1. Since U0y = U0V̄00y, one has (2.22) can be transformed into the following quadratic
form:

(
U0g1y

)
y =

a
3
2 coth L

2
sech2

( √a
2

y
)

−
a2 coth L

2
ysech2

( √a
2

y
)

tanh
( √a

2
y
)
, (2.23)

where

g1 =
U1

U0
− V̄10, −V̄10yy = U1. (2.24)

By integrating (2.23), we find

U0g1y =a coth L tanh
( √a

2
y
)

−
a
2

coth L[sinh(
√

ay) −
√

ay]sech2
( √a

2
y
)
+ c1, (2.25)

where c1 is any arbitrary constant. We further solve (2.25) to get

g1 =
coth L
√

a
cosh(

√
ay) +

√
ay2

2
coth L + c2

[ sinh(
√

ay)
√

a
+ y

]
+ c3, (2.26)

where c2 and c3 are arbitrary constants. Thus, one obtains the following equation of V̄10:

V̄10yy + U0V̄10 = −U0g1,
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where −U0g1 is chosen to satisfy

−U0g1 = −
a

3
2

4
sech2

( √a
2

y
)

coth Ly2.

By applying the variation of parameters formula, we choose V̄10 as

V̄1(y) =z(y)
∫ y

0
U0(r)g1(r)z̃(r)dr − z̃(y)

∫ y

0
U0(r)g1(r)z(r)dr + c4z(y) + c5z̃(y), (2.27)

where c4 and c5 need to be determined later on. In particular, z and z̃ are defined as the linearly
independent kernels of the equation

Ψyy +
a
2

sech2
( √a

2
y
)
Ψ = 0.

To guarantee z and z̃ satisfies zz̃y − z̃zy = 1, we set the form of kernel z and z̃ as

z(y) =
e
√

ay − 1
e
√

ay + 1
, z̃(y) =

√
ay(e

√
ay − 1) − 4

√
a(e
√

ay + 1)
. (2.28)

Noting that there are linear growth terms in (2.27), we would like to eliminate them by choosing ap-
propriate constants c4 and c5. Define c5 as

c5 =

∫ ∞

0
U0(r)g1(r)z(r)dr

and c4 = −c5
z̃y(0)
zy(0) , then we obtain V̄10 is uniformly bounded and satisfies the Neumann boundary con-

dition at y = 0. Moreover, U1 is defined by

U1 = U0g1 + U0V̄10. (2.29)

We next rewrite U1(y) in the x-variable as u1(x) then employ the representation formula in terms of the
Neumann Green’s function G(z; x) to conclude that

v1(x) =
∫ L

0
G(z; x)u1(z)dz, (2.30)

where G(z; x) is given by (2.10). In summary, we have established the form of u1 and v1, which are
defined as (2.29) and (2.30), respectively. It can be seen that there exists constant C > 0 such that
V̄10 ≤ C and U1 ≤ Cy2e−

√
ay.

Step 3: Construction of (u2, v2)
Similarly, our next goal is to balance the error generated by the logistic term. By defining u =

u0 + ϵu1 + ϵ
2u2 + ϕ and v = v0 + ϵv1 + ϵ

2v2 + ψ, we have U2(y) := u(x) and V̄20(y) := 1
ϵ2 V20(y) satisfy

U2yy − (U0V̄20y)y − (U2V̄00y)y + µU0(ū − U0) = 0,

where V̄20yy = −U2. Denote g2 as g2 := U2
U0
− V̄20, then one similarly gets

(
U0g2y

)
y = −µ

a
2

sech2
( √a

2
y
)[

ū −
a
2

sech2
( √a

2
y
)]
. (2.31)

We solve (2.31) to arrive at

g2 = −
µ

a
ū cosh(

√
ay) +

µ

3

(
cosh(

√
ay) + 2 log

[
cosh

( √ay
2

)]
+ 1

)
+ c6

( sinh(
√

ay)
√

a
+ y

)
+ c7,

(2.32)
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where c6 and c7 are arbitrary constants. Letting c6 = c7 = 0, we utilize a ∼ 3ū to simplify (2.32) as

g2 =
2µ
3

log
[

cosh
( √3ū

2
y
)]
+
µ

3
+ O(ϵ). (2.33)

Noting that V̄20 satisfies

− V̄20yy −
a
2

sech2
( √a

2
y
)
V̄20 =

a
2

sech2
( √a

2
y
)
g2 := U0g2, (2.34)

we employ the variation of parameters formula to choose V̄20 as

V̄20 =z
∫ y

0
U0(r)g(r)z̃(r)dr − z̃

∫ y

0
U0(r)g(r)z(r)dr + c3z + c4z̃

=z(y)
∫ y

0
U0(r)g(r)z̃(r)dr − z̃(y)

[ ∫ ∞

0
U0(r)g(r)z(r)dr −

∫ ∞

y
U0(r)g(r)z(r)dr

]
+ c8z + c9z̃, (2.35)

where U0g is given in (2.34). To establish the uniformly boundedness of V̄20, we similarly choose c9
such that

c9 =

∫ ∞

0
U0(r)g(r)z(r)dr. (2.36)

Meanwhile, c8 is defined as c8 = −c9
z̃y(0)
zy(0) to satisfy the Neumann boundary condition at y = 0. Thus,

U2 can be expressed as

U2 = U0g2 + U0V̄20. (2.37)

We transform U2(y) into u2(x) in the x-variable and define v2 as

v2(x) =
∫ L

0
G(z; x)u2(z)dz (2.38)

in terms of the Neumann Green’s function G(z; x). Now, we obtain there exist some constant C > 0
such that U2 ≤ Cye−

√
ay and V̄20 ≤ C. By collecting (2.29), (2.30), (2.37) and (2.38), one finds u and v

can be decomposed as

u = u0 + ϵu1 + ϵ
2u2 + ϕ, v = v0 + ϵv1 + ϵ

2v2 + ψ. (2.39)

It is similar to (2.16) that v1 and v2 can be decomposed as v1 = v10 + v11 + v12 and v2 = v20 + v21 + v22,
respectively. By substituting (2.39) into S (u) and defining Φ(y) := ϕ(x), Ψ(y) = ψ(x), we obtain

S (u) =
1
ϵ2 L̄[Φ] + sinh Ly

a
3
2

2 sinh L
sech2

( √a
2

y
)

+ O(1)a
3
2 ysech2

( √a
2

y
)

tanh
( √a

2
y
)

− ϵ−1(u0(v11 + v12)x)x − (u0(v21 + v22)x)x − ϵ
−2(u0ψx)x

− ϵ−1(u1(v01 + v02)x)x − (u1v1x)x − ϵ(u1v2x)x − ϵ
−1(u1ψx)x

− (u2(v01 + v02)x)x − ϵ(u2v1x)x − (u2ψx)x

− ϵ−1(ϕv1x)x − (ϕv2x)x − ϵ
−2(ϕψx)x

− µu0(ϵu1 + ϵ
2u2 + ϕ) + µ(ϵu1 + ϵ

2u2 + ϕ)(ū − u0 − ϵu1 − ϵ
2u2 − ϕ), (2.40)

10



where L̄[Φ] := Φyy −
1
ϵ2 (U0Ψy)y −

1
ϵ2 (ΦV0y)y. Next, we establish the equation of Φ by analyzing (2.40).

By defining

L̄1[Φ] = L̄[Φ] + ϵ2µūΦ, (2.41)

one has from (2.40) and S (u) = 0 that

L̄1[Φ] + F(Φ,Ψ; ϵ) = 0, (2.42)

where Ψ is uniquely determined by Ψyy − ϵ
2Ψ + ϵ2Φ = 0 and F is defined as

F(Φ,Ψ; ϵ) :=ϵ2 sinh Ly
a

3
2

2 sinh L
sech2

( √a
2

y
)

+ O(1)ϵ2a
3
2 ysech2

( √a
2

y
)

tanh
( √a

2
y
)

− ϵ−1(U0(V11 + V12)y)y − (U0(v21 + v22)y)y − ϵ
−2(U0Ψy)y

− ϵ−1(U1(V01 + V02)y)y − (U1V1y)y − ϵ(U1V2y)y − ϵ
−1(U1Ψy)y

− (U2(V01 + V02)y)y − ϵ(U2V1y)y − (U2Ψy)y

− ϵ−1(ΦV1y)y − (ΦV2y)y − ϵ
−2(ΦΨy)y

− ϵ2µU0(ϵU1 + ϵ
2U2 + Φ)

+ ϵ2µ(ϵU1 + ϵ
2U2 + Φ)(ū − U0 − ϵU1 − ϵ

2U2 − Φ) − ϵ2µūΦ. (2.43)

Now, we have found it is equivalent to prove the existence of solution Φ to (2.42) so as to obtain the
construction results stated in Theorem 1.1. Before proving this via the Lyapunov-schmidt reduction
method, we need to study the property of operator L̄1.

3 Lyapunov-schmidt Reduction Method
In Section 3, we proceed to prove the existence of spikes to (1.3) with the ansatz given by (2.39).
The approach what we shall employ is the well-known Lyapunov-schmidt reduction method [7,42,43].
This method is well-used to study the boundary layer and interior spikes arising from reaction-diffusion
systems [9, 10, 44].

3.1 Linearized Projected Problem
Subsection 3.1 is devoted to the linear theory of L̄1. To begin with, we consider the following space:

H :=
{

u ∈ H2
N

((
0,

L
ϵ

))
:
∫ L

ϵ

0
udy = 0

}
, (3.1)

where H2
N

((
0, L

ϵ

))
is defined as

H2
N

((
0,

L
ϵ

))
:=

{
u ∈ H2

((
0,

L
ϵ

))
: uy(0) = uy

(
L
ϵ

)
= 0

}
.

Now, we turn our attention to the following linearized problem:
Φyy −

1
ϵ2 (V0yΦ)y −

1
ϵ2 (U0Ψy)y + ϵ

2µūΦ = h + m1W0 in
(
0, L

ϵ

)
,

Ψyy − ϵ
2Ψ = −ϵ2Φ in

(
0, L

ϵ

)
,

Φy(0) = Φy
( L
ϵ

)
= 0, Φ ∈ H ,

(3.2)
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where U0, V0 are given by (2.8) and (2.16). In addition, compactly supported function W0 is chosen

to satisfy
∫ L

ϵ

0 W0dy = 1 and constant m1 is defined as m1 = −
∫ L/ϵ

0 hdy. Moreover, the norm ∥ · ∥σ is
defined as

∥h∥σ = sup
y∈(0, L

ϵ )
|h(y)|eσy (3.3)

for some constant σ > 0. We consider the space H equipped with norm (3.3), then analyze (3.2) to
obtain the following proposition:

Proposition 3.1. Assume ∥h∥σ ≤ +∞ for some constant σ > 0, then we have there exist constants
ϵ0 > 0 and C > 0 such that (3.2) admits the unique solution (Φ,m1) with Φ ∈ H . In particular, m1 is

defined by m1 = −
∫ L

ϵ

0 hdy and Φ satisfies the following estimate:

∥Φ∥σ1 ≤ C∥h̃∥σ, (3.4)

where σ1 is a constant and 0 < σ1 < σ.

Proof. We shall give an indirect proof and divide it into two steps.

Step 1: A Priori Estimates
We argue by contradiction and assume there exist sequences ϵn, Rn, hn, mn

1 and Φn such that ϵn → 0,
Rn → ∞, ∥hn∥σ → 0 but ∥Φn∥σ1 ≡ 1 as n → ∞. First of all, we focus on the case of any bounded
domain BR(0) ∩

(
0, L

ϵ

)
, where R > 0 is any constant. We have Φn and Ψn satisfy

L̄1[Φn] = hn − mn
1W0, (3.5)

where Ψnyy − ϵ
2Ψn = −ϵ

2Φn. It is similar to rewrite (3.5) as the following divergence form:
(
U0gny

)
y = hn +

1
ϵ2 (ΦnV01y)y +

1
ϵ2 (ΦnV02y)y − ϵ

2µūΦn + mn
1W0 in BRn (0) ∩

(
0, L

ϵ

)
,

−Ψnyy + ϵ
2Ψn = ϵ

2Φn, gn := Φn
U0
− 1

ϵ2Ψn.
(3.6)

We claim that mn
1 → 0 as n → ∞. To prove this, we integrate the first equation in (3.6) over (0,Rn) to

get

U0gny

∣∣∣Rn

0 =

∫ Rn

0
hndy +

1
ϵ2 [Φn(V01 + V02)y]

∣∣∣Rn

0 − ϵ
2µū

∫ Rn

0
Φndy + mn

1

∫ Rn

0
W0dy. (3.7)

We further simplify (3.7) as

U0(Rn)gny(Rn) − U0(0)gny(0) =
∫ Rn

0
hndy +

I21︷                            ︸︸                            ︷
1
ϵ2Φn(Rn)(V01 + V02)y(Rn)

I22︷                          ︸︸                          ︷
−

1
ϵ2 (Φn(0)V01 + V02)y(0)−ϵ2µū

∫ Rn

0
Φndy

+ mn
1

∫ Rn

0
W0dy. (3.8)

It is necessary to estimate I21 and I22. In light of (V01 + V02)y(0) = 0, one has I22 = 0. On the other
hand, since V01 + V02 ≲ ϵ

3y2, we find there exists constant C > 0 such that

|I21| ≤ Cϵ(|Φn(Rn)|eσ1Rn )e−σ1Rn Rn ≤ Cϵ∥Φ∥σ1 e−σ2Rn → 0, (3.9)
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where 0 < σ2 < σ1 is a constant. Moreover, it follows from ∥hn∥σ < +∞ and hn → 0 as n → ∞ that∫ Rn

0 hndy → 0. Furthermore, gny(0) = 0 due to the Neumann boundary condition of gn at y = 0 and

ϵ2µū
∫ Rn

0 Φndy→ 0 thanks to ∥Φn∥σ1 < +∞. Thus, we conclude from (3.8) that

lim
n→∞

U0(Rn)gny(Rn) = lim
n→∞

mn
1.

By using the orthogonality condition of hn, which is
∫ Rn

0 (hn + mn
1W0)dy→ 0, one can further obtain

U0gny|y=Rn → 0 as n→ ∞.

This finishes the proof of our claim.
Noting that the right hand side of the first equation in (3.6) has perturbation terms, we need to

establish the good estimate for them. By straightforward computation, we have

I23 :=
1
ϵ2 (ΦnV01y)y +

1
ϵ2 (ΦnV02y)y

= −
1
ϵ2ΦnyV01y −

1
ϵ2ΦnV01yy −

1
ϵ2ΦnyV02y −

1
ϵ2ΦnV02yy

= − ϵ

√
a

sinh L
cosh(ϵy − L)Φn −

1
ϵ2Φny(V01 + V02)y

= − ϵ

√
a

sinh L
cosh(ϵy − L)Φn −

[ √a
sinh L

sinh(ϵy − L) +
√

a
]
Φny

= − ϵ

√
a

sinh L
cosh(ϵy − L)Φn −

[
ϵ
√

a(coth L)y + O(ϵ2)y2]Φny. (3.10)

It follows from (3.10) that there exists some constant C > 0 such that

∥I23∥σ ≤ Cϵ∥Φn∥σ. (3.11)

In addition, we estimate ϵ2µūΦn to obtain

∥ϵ2µūΦn∥σ ≤ Cϵ2∥Φn∥σ.

Our next aim is to establish the limiting problem of Φn. To this end, we apply the standard elliptic
estimate into (3.6) over any compact set in

(
0, L

ϵ

)
. In fact, Φn ∈ H implies Φn ∈ L∞ and Ψn ∈ L∞.

According to the definition of gn, one has gn ∈ L∞. It immediately follows from the interior Lp estimate
that gn ∈ W2,p for p ∈ [1,+∞). Moreover, the embedding Theorem tells us that gn ∈ C0,α, which yields
Ψn ∈ C2,α thanks to the second equation in (3.6). Then, we again obtain from the gn-equation that
gny ∈ L∞. By solving the gn-equation in (3.6), we get

gn(y) =
2
√

a

∫ y

0
cosh2

( √a
2
ρ
) ∫ ρ

0
[hn(r) + mn

1W0]drdρ

+
2
√

a

∫ y

0
cosh2

( √a
2
ρ
) ∫ ρ

0
[hn(r) + mn

1W0]drdρ. (3.12)

With the help of the orthogonality condition, one can estimate gn to find

|gn| ≤ C∥hn∥σ
(
e(
√

3ū−σ)y + 1
)
+Cϵ∥Φn∥σe(

√
3ū−σ)y (3.13)

for some constant C > 0. Noting |I21| → 0 shown in (3.9), we have for n large,

|gn| = o
(
e(
√

3ū−σ)y
)
+ O(ϵ)∥Φn∥σe(

√
3ū−σ)y. (3.14)
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According to the regularity of gn and Ψn, we utilize the Arzela-Ascoli’s theorem to prove that for n
large, Ψn satisfies

Ψnyy + U0Ψn = o(ϵ2)e−σy, Ψny(0) = 0. (3.15)

Recall the following representation formula of Ψn:

Ψn =ϵ
2z

∫ y

0
[U0(r)gn(r) − Ψn]z̃dr − ϵ2z̃

[ ∫ ∞

0
U0(r)gn(r)z(r)dr −

∫ ∞

y
U0(r)gn(r)z(r)dr

]
− ϵ2z̃

∫ y

0
Ψn(r)z(r)dr + ϵ2cn

1z + ϵ2cn
2z̃, (3.16)

where cn
1 and cn

2 are chosen as

cn
1 = −cn

2
z̃y(0)
zy(0)

, cn
2 =

∫ ∞

0
U0(r)gn(r)z(r)dr, (3.17)

then we have from (3.14) that gn = o(e−σy), which yields cn
1 = o(1) and cn

2 = o(1). By considering
Ψ̄n := 1

ϵ2Ψn and using (3.16), it is easy to find

|Ψ̄n| = o(1) + O(ϵ2)y2|Ψ̄n| + O(ϵ)∥Φn∥σ, (3.18)

which implies |Ψ̄n| = o(1) + O(1)ϵ∥Φn∥σ. Noting Φn = U0gn + U0Ψ̄n, we combine (3.14) and (3.18) to
obtain ∥Φn∥σ(0,Rn) = o(1) for Rn large.

We next develop the outer estimate of Φn and focus on the region
(
0, L

ϵ

)
\BR(0) for R sufficiently

large but fixed. It is convenient to rewrite the Neumann Green’s function G(z; x) in the y-variable.
Recall that G(z; y) satisfies {

Gyy − ϵ
2G = −δ(y − y0), y ∈

(
0, L

ϵ

)
,

Gy(0) = Gy
( L
ϵ

)
= 0,

then we solve it to get the following explicit form of G:

G =
{ cosh(ϵy−L)

ϵ sinh L cosh(ϵy), y ∈ (0, y0),
cosh(ϵy0)
ϵ sinh L cosh(ϵy − L), y ∈

(
y0,

L
ϵ

)
.

(3.19)

Thus, we employ the representation formula to estimate Ψn and obtain

Ψn(y) =ϵ2
∫ L

ϵ

0
G(z; y)Φn(z)dz

≲
ϵ cosh(ϵy − L)

sinh L

∫ y

0
cosh(ϵz)e−σ1zdz∥Φn∥σ1 +

ϵ cosh(ϵy)
sinh L

∫ L
ϵ

y
cosh(ϵz − L)e−σ1zdz∥Φn∥σ1

≲ϵ
cosh(ϵy − L)

sinh L
∥Φn∥σ1 + O(ϵ)∥Φn∥σ1

=O(1)(ϵ + ϵ2y)∥Φn∥σ1 .

It is similar to estimate Ψny and Ψnyy, which are

Ψny ≲
ϵ2 sinh(ϵy − L)

sinh L

∫ y

0
cosh(ϵz)e−σ1zdz∥Φn∥σ1 +

ϵ cosh(ϵy − L)
sinh L

cosh(ϵy)e−σ1y∥Φn∥σ1

+
ϵ2 sinh(ϵy)

sinh L

∫ L
ϵ

y
cosh(ϵz − L)ϵ−σ1zdz∥Φ∥σ1 −

ϵ cosh(ϵy)
sinh L

cosh(ϵy − L)ϵ−σ1y∥Φ∥σ1

=O(1)ϵ2∥Φ∥σ1 ,
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and Ψyy = O(1)ϵ2∥Φ∥σ1 . Thanks to these inequalities, we establish the estimate for the nonlocal term
U0Ψny, which is shown as follows:

1
ϵ2 |(U0Ψny)y| =

1
ϵ2 |(U0yΨny + U0Ψnyy)|

≲e−
√

3ūy∥Φn∥σ1 ≲ e−
√

ūRe−σy∥Φn∥σ1 , y ∈
(
R,

L
ϵ

)
.

Then, we simplify the first equation in (3.6) as
(
Φny −

1
ϵ2 V0yΦn

)
y
+ ϵ2µūΦn = O(1)hn, y ∈

(
R, L

ϵ

)
,

Φn
( L
ϵ

)
= 0.

(3.20)

The inner estimate tells us ∥Φn∥σ1(0,R) → 0 for any R > 0. Hence, we have for R sufficiently large but
fixed,

|Φn(R)| = o(1)e−σ1R,

where σ1 < σ is some constant. We next integrate the Φ-equation in (3.20) over
(
R, L

ϵ

)
and use the

Neumman boundary condition to obtain

Φny −
1
ϵ2 V0yΦn + ϵ

2O(1)e−σy∥Φn∥σ = O(1)hn, (3.21)

hence we solve (3.21) to get

Φn(y) =Φn(R)e
V0(ϵy)−V0(ϵR)

ϵ2 + O(1)
∫ y

R
e

V0(ϵy)−V0(ϵs)

ϵ2 e−σsds∥hn∥σ

+ O(ϵ2)
∫ y

R
e

V0(ϵy)−V0(ϵs)

ϵ2 e−σsds∥Φn∥σ. (3.22)

To estimate Φn in (3.22), we first recall V0 satisfies

V0x(ϵy) =
√

a
sinh L

ϵ sinh(ϵy − L) + O(ϵ2)

and
V0(ϵy) − V0(ϵR)

ϵ2 =
V0x(ϵξ)

ϵ
(y − y0)

where ξ ∈ (R, y), then we find when L − ϵy > Cσ for some constant C > 0,

V0x(ϵξ)
ϵ

=
sinh(ϵξ − L)

sinh L
+ O(ϵ) ≤ −2σ for ϵ ≪ 1,

and thereby one has the first term in (3.22) satisfies∣∣∣∣Φn(R)e
V0(ϵy)−V0(ϵR)

ϵ2

∣∣∣∣ = o(1)e−σ1Re−2σ(y−R).

Concerning the second term in (3.22), we similarly obtain when L − ϵy > Cσ,∫ y

R
e

V0(ϵy)−V0(ϵs)

ϵ2 e−σsds∥hn∥σ ≲

∫ y

y0

e−2σ(y−s)e−σsds∥hn∥σ ≲ e−σy∥hn∥σ.

For the third term, one can show

ϵ2
∫ y

R
e

V0(ϵy)−V0(ϵs)

ϵ2 e−σsds∥Φn∥σ ≲ ϵ
2
∫ y

y0

e−2σ(y−s)e−σsds∥Φn∥σ ≲ ϵ
2e−σy∥Φn∥σ.
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By summarizing the above estimates, we have for L − ϵy > Cσ,

∥Φn∥σ = o(1)e−σ1Reσye−2σ(y−R) + o(1) + ϵ2∥Φn∥σ, (3.23)

where we use the fact that ∥hn∥σ → 0 and |Φn(R)| = o(1). It follows that

∥Φn∥σ = o(1)e−σ1Reσye−2σ(y−R) + o(1)→ 0. (3.24)

We next discuss the region for y ∈ ( L−Cσ
ϵ
, L
ϵ
). In this case, we have from (3.24) and continuity that∣∣∣∣Φn

(L −Cσ
ϵ

)∣∣∣∣ = o(1)e−σ1Re−2σ( L−Cσ
ϵ −R) + o(1)e−σ

L−Cσ
ϵ .

Then we rewrite the Φ-equation (3.20) in ( L−C̄σ
ϵ
, L
ϵ
) as(

Φny −
1
ϵ2 V0yΦn

)
y
+ ϵ2µūΦn + O(e−σy)∥hn∥σ

=Φnyy −
1
ϵ2 V0yΦny −

1
ϵ2 V0yyΦn + ϵ

2µūΦn + o
(
e−σ

L−Cσ
ϵ

)
= 0. (3.25)

Noting that V0 satisfies
1
ϵ2 V0yy = V0 = O(ϵ) cosh(x − L),

we apply the Maximum Principle into (3.25) to obtain for L−Cσ
ϵ

< y < L
ϵ
,

|Φn(y)| = o(1)e−σ1Re−2σ( L−Cσ
ϵ −R) + o(1)e−σ

L−Cσ
ϵ + o

(1
ϵ

)
e−σ

L−Cσ
ϵ .

which yields

∥Φn∥σ1 = o(1) for
L −Cσ

ϵ
< y <

L
ϵ
.

In summary, we have ∥Φn∥σ1((0,L/ϵ)\BR(0)) → 0 as n→ ∞.
Therefore, by combining the arguments for the inner and outer estimates, we can find ∥Φn∥σ(0,L/ϵ) →

0, which is contradicted to ∥Φn∥σ(0,L/ϵ) ≡ 1. This gives the desired estimate (3.4).

Step 2: Existence of Φ
Assume Φ ∈ H , then the equation of Φ stated in (3.6) can be rewritten as

Φ + K(Φ) = h̄ in H ,

where h̄ is the duality and K : H → H is a linear compact operator. Thanks to the Fredholm alternative
theorem, we have there exists a unique solution for each h̄ is equivalent to show the homogeneous
equation has a unique solution with h̄ = 0. A priori estimates shown as above yield the homogeneous
problem admits the unique solution Φ ≡ 0. This indicates the existence of Φ to 3.6, then finishes the
proof of this Proposition. □

Remark 3.1. Proposition 3.1 demonstrates that for any Φ ∈ H being the unique solution to (3.6), we
can write Φ as Φ = A(h), which satisfies

∥A(h)∥σ1 ≤ C∥h∥σ (3.26)

for some constant C > 0.

In the following subsection, we shall develop the nonlinear theory for operator L̄1 shown in (3.6).
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3.2 Nonlinear Projected Problem
We are concerned with the following nonlinear problem:{

L̄1[Φ] := Φyy −
1
ϵ2 (U0Ψy)y −

1
ϵ2 (ΦV0y)y = m1W0 − F,

Φ ∈ H ,
(3.27)

where W0 is a compact supported function satisfying
∫ L/ϵ

0 W0dy = 1, constant m1 is chosen such that

m1 =
∫ L

ϵ

0 Fdy and

F :=ϵ2 a
3
2

2 sinh L
sinh Lysech2

( √a
2

y
)

+ O(ϵ2)a
3
2 ysech2

( √a
2

y
)

tanh
( √a

2
y
)

− ϵ−1(U0(V11 + V12)y)y − (U0(V21 + V22)y)y − ϵ
−2(U0Ψy)y

− ϵ−1(U1(V01 + V02)y)y − (U1V1y)y − ϵ(U1V2y)y − ϵ
−1(U1Ψy)y

− (U2(V01 + V02)y)y − ϵ(U2V1y)y − (U2Ψy)y

− ϵ−1(ΦV1y)y − (ΦV2y)y − ϵ
−2(ΦΨy)y

− ϵ2µU0(ϵU1 + ϵ
2U2 + Φ) + ϵ2µ(ϵU1 + ϵ

2U2 + Φ)(ū − U0 − ϵU1 − ϵ
2U2 − ϕ) − ϵ2µūΦ.

Before establishing the good estimate for F, we decompose F as F = E +N(Φ), where E and N(Φ) are
defined as

E :=ϵ2 a
3
2

2 sinh L
sinh Lysech2

( √a
2

y
)
+ O(ϵ2)a

3
2 ysech2

( √a
2

y
)

tanh
( √a

2
y
)

− ϵ−1(U0(V11 + V12)y)y − (U0(V21 + V22)y)y

− ϵ−1(U1(V01 + V02)y)y − (U1V1y)y − ϵ(U1V2y)y

− ϵ2µU0(ϵU1 + ϵ
2U2) + ϵ2µ(ϵU1 + ϵ

2U2)(ū − U0 − ϵU1 − ϵ
2U2), (3.28)

and

N(Φ) = − ϵ−2(U0Ψy)y − ϵ
−1(U1Ψy)y − (U2Ψy)y

− ϵ−1(ΦV1y)y − (ΦV2y)y − ϵ
−2(ΦΨy)y

− ϵ2µU0Φ − ϵ
2µ(ϵU1 + ϵ

2U2 + Φ)Φ + ϵ2µΦ(−U0 − ϵU1 − ϵ
2U2 − Φ). (3.29)

With the help of Proposition 3.1, we rewrite the solution Φ to (3.27) as

Φ = −A(F(Φ)) = −A(E + N(Φ)), (3.30)

where A is defined as (3.26). Now, we transform our problem to find a fixed point for the operator T ,
which is given by

T (Φ) := −A(E + N(Φ)). (3.31)

Our next goal is to show that the operator T is a contraction mapping on

B =

{
Φ ∈ H2

N((0, L/ϵ)) : ∥Φ∥σ1 ≤ Cϵ2,

∫ L
ϵ

0
Φdy = 0

}
(3.32)

for some large C > 0. Before proving it, we need to show the following Lemma:
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Lemma 3.1. There exist constants ϵ0 > 0, C > 0 such that for all ϵ ∈ (0, ϵ0), the following estimates
hold:

∥E∥σ ≤ Cϵ2, (3.33)

and

∥N(Φ)∥σ = o(1)∥Φ∥σ1 . (3.34)

Proof. We analyze (3.28) and find the worse term is U0(V11 + V12)y)y. Since |V11 + V12| ≲ ϵ3y2, we
estimate this term to obtain

ϵ−1|(U0(V11 + V12)y)y| ≲ ϵ
2e−σy

for some constant C > 0. Thus, we have there exists constant C > 0 such that

∥E∥σ ≤ Cϵ2,

which proves estimate (3.33).
We next investigate the nonlinear error N(Φ). It can be observed that the terms involving U0, U1

and U2 have good estimates since U0, U1 and U2 have fast decay properties. Focusing on the error
shown in the divergence form, we find the one involving Φ need to be estimated in a delicate way.
Taking ϵ−1(ΦV1y)y as an example, we find from V1 + V2 ≲ ϵ

3y2 that when y ∈ (0,R) with R being large
but fixed,

ϵ−1(ΦV1y)y =O(1)ϵ2(Φy)y = O(1)ϵ2(Φyy + Φ). (3.35)

By choosing σ and σ1 such that Cσ2 + ϵ| ln ϵ | < (σ − σ1)L < 2ϵ | ln ϵ| and ϵ| ln ϵ | ≲ σ ≲
√
ϵ| ln ϵ |, we

then have from (3.35) that

ϵ−1∥(ΦV1y)y∥σ = o(1)∥Φ∥σ1 for y ∈ (0,R). (3.36)

It is similar to tackle the other terms only involving Φ and Ψ in the error. Finally, we are concentrated
at the nonlinear growth and find the only worse term is ϵ2µΦ2. By choosing σ and σ1 such that
0 < 2σ1 ≤ σ, we obtain

ϵ2µ∥Φ2∥σ = o(1)∥Φ∥σ1 .

In summary, we have proved (3.34) and finished the proof of this Lemma. □

Now, we are well prepared to study operator T and the results are summarized as follows:

Proposition 3.2. There exist positive numbers ϵ0 and C such that for all ϵ ∈ (0, ϵ0), there is a unique
solution (Φ,m1) to (3.27). Moreover, Φ satisfies

∥Φ∥σ1 ≤ Cϵ2. (3.37)

Proof. We firstly show that T is a mapping from B to B. Indeed, for any B, we have from Lemma 3.1
that

∥T (Φ)∥σ1 ≤ C∥F∥σ ≤ C∥E + N(Φ)∥σ ≤ C(ϵ2 + o(1)∥Φ∥σ1 ) ≤ Cϵ2, (3.38)

which indicates T maps on B into itself. Next, we will prove operator T is a contraction. By taking Φ1
and Φ2 in B, thanks to Lemma 3.1, one finds there exists constant C > 0 such that

∥T (Φ1) − T (Φ2)∥σ1 ≤C∥N(Φ1) − N(Φ2)∥σ
=o(1)∥Φ1 − Φ2∥σ1 , (3.39)

which implies T is a contraction mapping from B to itself. Therefore, we obtain the existence result
according to the contraction mapping theorem. □
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Proposition 3.2 demonstrates that if the right hand side h satisfy the orthogonality condition, (3.6)
admits the unique solution Φ with the good estimate. It is necessary to verify this orthogonality condi-
tion, which are discussed in the following subsection.

3.3 Reduced Problem
Now, we look for the next order of a given in (2.8) to guarantee the orthogonality condition. Noting
that L̄1[Φ] = F given by (2.42), we integrate F over (0, L

ϵ
) and find the leading term in the divergence

form is from 1
ϵ2 (U0(V01 + V02)y)y. Since V01 + V02 = ϵ

√
a coth L + O(ϵ3)y2 + O(ϵ4)y3, we rewrite it as

1
ϵ2 (U0(V01 + V02)y)y = O(ϵ)(U0(y2 + ϵy3)y)y. (3.40)

Since the term (U0(y2)y)y in (3.40) was balanced by U1, we find the next order term is (U0(y3)y)y and
the corresponding integral satisfies

O(ϵ2)
∫ L

ϵ

0
(U0(y3)y)ydy = O(ϵ2)

(L
ϵ

)2
sech2

(L
ϵ

)
= o(ϵ3). (3.41)

Similarly, we use the divergence theorem, then obtain from the exponential decay property of U0 and
Neumann boundary condition that all the terms in the divergence form are both o(ϵ3). On the other
hand, focusing on the logistic growth, we find

ϵ2
∫ L

ϵ

0
f (U)dy =ϵ2

∫ L
ϵ

0
U0(ū − U0)dy + O(ϵ3)

=
aϵ2

2

∫ L
ϵ

0
sech2

( √a
2

y
)(

ū −
a
2

sech2
( √a

2
y
))

dy + O(ϵ3)

=
√

aϵ2
∫ √

aL
2ϵ

0
sech2z

(
ū −
√

a
2

sech2z
)
dz + O(ϵ3). (3.42)

Define a as a = a0 + a1 with a0 = 3ū, then we obtain

ϵ2
∫ L

ϵ

0
f (U)dy = ϵ2

√
3ū + a1

∫ √
3ū+a1L

2ϵ

0
sech2z

(
ū −
√

3ū + c1

2
sech2z

)
dz. (3.43)

Since
∫ ∞

0 sech2z
(
ū −

√
3ū
2 sech2z

)
dz = 0, we combine (3.41) and (3.43) to get

a1 = O(ϵ), (3.44)

which implies a = 3ū + O(ϵ).
In summary, we have finished the rigorous proof of Theorem 1.1 via Lyapunov-schmidt reduction

method. A natural question is whether the non-constant steady state constructed in Theorem 1.1 is
linear stable.

4 Stability Analysis
In this section, we study the linearized stability of the single boundary spike (1.4). Define

u(x, t) = u−(x) + eλtϕ(x), v(x, t) = v−(x) + eλtψ(x), |ϕ|, |ψ| ≪ 1,
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then we substitute them into (1.2) to collect the following linearized eigenvalue problem:
λϕ = ϕxx − χ(uψx + ϕvx)x + µ(ū − 2u)ϕ, x ∈ (0, L),
λψ = ψxx − ψ + ϕ, x ∈ (0, L),
ϕx(0) = ψx(0) = ϕx(L) = ψx(L) = 0,

(4.1)

where (ϕ, ψ) ∈ H2
N((0, L)) × H2

N((0, L)) and H2
N((0, L)) is defined as

H2
N((0, L)) = {w ∈ H2((0, L))|wx(0) = wx(L) = 0}.

We define

y :=
x
ϵ
, τ := ϵ2λ, ,U(y) := u(x), V̄(y) :=

1
ϵ2 v(x), Φ(y) := ϕ(x), Ψ(y) := ψ(x), Ψ̄(y) :=

1
ϵ2Ψ(y)

and rescale (4.1) to obtain the following system:
τΦ = Φyy − (UΨ̄y + ΦV̄y)y + ϵ

2µ(ū − 2U)Φ, y ∈ (0, L/ϵ),
τΨ̄ = Ψ̄yy − ϵ

2Ψ̄ + Φ, y ∈ (0, L/ϵ),
Φ(0) = Φ(L/ϵ) = Ψ̄(0) = Ψ̄(L/ϵ).

(4.2)

First of all, we give a priori estimates for |τ|, which is

Proposition 4.1. Assume Re(τ) ≥ 0, then we have |τ| ≤ C, where C is a large constant independent of
ϵ.

Proof. First of all, we multiply the first equation of (4.2) by Φ∗ and integrate it over (0, L/ϵ) to obtain

τ

∫ L
ϵ

0
|Φ|2dy = −

∫ L
ϵ

0
|Φy|

2dy +
∫ L

ϵ

0
Φy(UΨ̄y + ΦV̄y)dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)|Φ|2dy. (4.3)

We rearrange (4.3) to get from Young’s inequality that∣∣∣∣τ∫ L
ϵ

0
|Φ|2dy +

∫ L
ϵ

0
|Φy|

2dy
∣∣∣∣ ≤ 1

2

∫ L
ϵ

0
|Φy|

2dy +C
∫ L

ϵ

0
|Φ|2dy +C

∫
|Ψ̄y|

2dy +C
∫ L

ϵ

0
|Φ|2dy, (4.4)

where C > 0 is a constant. Similarly, we test the second equation of (4.2) against Ψ̄∗, then integrate by
parts over (0, L/ϵ) to arrive at∣∣∣∣(ϵ2 + τ)

∫ L
ϵ

0
|Ψ̄|2dy +

∫ L
ϵ

0
|Ψ̄y|

2dy
∣∣∣∣ ≤ 1

2

∫ L
ϵ

0
|Φ|2dy +

1
2

∫ L
ϵ

0
|Ψ̄|2dy. (4.5)

Since Re(τ) ≥ 0, we claim that ∫ L
ϵ

0
|Ψ̄y|

2dy ≤ C
∫ L

ϵ

0
|Φ|2dy,

where C > 0 is a constant independent of ϵ. To prove this, we analyze the left hand side of (4.5) then
obtain from Young’s inequality that∣∣∣∣(τR + ϵ

2)
∫ L

ϵ

0
|Ψ̄|2dy +

∫ L
ϵ

0
|Ψ̄y|

2dy + iτI

∫ L
ϵ

0
|Ψ̄|2dy

∣∣∣∣
≥

[
(τR + ϵ

2)2
( ∫ L

ϵ

0
|Ψ̄|2dy

)2
+

( ∫ L
ϵ

0
|Ψ̄y|

2dy
)2
+ τ2

I

( ∫ L
ϵ

0
|Ψ̄|2dy

)2
] 1

2

≥
|τ|

2

∫ L
ϵ

0
|Ψ̄|2dy +

1
2

∫ L
ϵ

0
|Ψ̄y|

2dy. (4.6)
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Suppose |τ| ≥ 1, we have from (4.6) that

1
2

∫ L
ϵ

0
|Ψ̄y|

2dy ≤
1
2

∫ L
ϵ

0
|Φ|2dy, (4.7)

which finishes the proof of our claim. Otherwise if |τ| ≤ 1, we have proved the uniformly boundedness
of |τ|.

Now, we focus on (4.4) and similarly find the left hand side satisfies∣∣∣∣τ∫ L
ϵ

0
|Φ|2dy +

∫ L
ϵ

0
|Φy|

2dy
∣∣∣∣ =[(τR

∫ L
ϵ

0
|Φ|2dy +

∫ L
ϵ

0
|Φy|

2dy
)2
+ τ2

I

( ∫ L
ϵ

0
|Φ|2dy

)2
] 1

2

≥
[
|τ|2

( ∫ L
ϵ

0
|Φ|2dy

)2
+

( ∫ L
ϵ

0
|Φy|

2dy
)2] 1

2

≥
|τ|

2

∫ L
ϵ

0
|Φ|2dy +

1
2

∫ L
ϵ

0
|Φy|

2dy. (4.8)

Combining (4.4), (4.7) and (4.8), we show that for C > 0 independent of ϵ,

|τ|

∫ L
ϵ

0
|Φ|2dy ≤ C

∫ L
ϵ

0
|Φ|2dy, (4.9)

which proves |τ| ≤ C. □

We next rule out the large eigenvalue case for (4.2). In other words, we shall prove the instability
of (1.4) only probably occurs when τ → 0 as ϵ → 0. In fact, Proposition 4.1 indicates |τ| is uniformly
bounded in ϵ, then one can choose the subsequence Un, V̄n := χVn, Φn, Ψ̄n := χΨn and τn such that as
ϵn → 0, Un → U0, V̄n → V̄0, Φn → Φ0, Ψ̄n → Ψ̄0 and τn → τ0 over any compact set. Moreover, they
satisfy the following limiting problem:

τ0U0(g0 + Ψ̄0) = (U0g0y)y, y ∈ (0,∞),
τ0Ψ̄0 = Ψ̄0yy + U0(g0 + Ψ̄0), y ∈ (0,∞),
Φ0y(0) = Ψ̄0y(0) = Φ0y(∞) = Ψ̄0y(∞) = 0, g0 =

Φ0
U0
− Ψ̄0.

(4.10)

Since the structure of (4.10) is the same as the minimal Keller–Segel models, we follow the same
approach in [22, 50] to analyze it. As a consequence, we have the following Proposition:

Proposition 4.2. Assume that (τ0, < g0, Ψ̄0 >) is the solution to (4.10) and τ0 , 0, then we have τ0 is
real.

Proof. First of all, we multiply the first equation in (4.10) by g∗0 and integrate it over (0,∞) to obtain

−

∫ ∞

0
U0|g0y|

2dy = τ0

∫ ∞

0
U0|g0|

2dy + τ0

∫ ∞

0
U0g∗0Ψ̄0dy. (4.11)

Then, we test the conjugate of the second equation in (4.10) against τ0Ψ̄0 and integrate by parts to get

|τ0|
2
∫ ∞

0
|Ψ̄0|

2dy = −τ0

∫ ∞

0
|Ψ̄0y|

2dy + τ0

∫ ∞

0
U0g∗0Ψ̄0dy + τ0

∫ ∞

0
U0|Ψ̄0|

2dy. (4.12)

We further subtract (4.12) from (4.11) to find

|τ0|
2
∫ ∞

0
|Ψ̄0|

2dy +
∫ ∞

0
U0|g0y|

2dy

=τ0

[
−

∫ ∞

0
|Ψ̄0y|

2dy +
∫ ∞

0
U0|Ψ̄0|

2dy
]
− τ0

∫ ∞

0
U0|g0|

2dy. (4.13)

21



To simplify (4.13), we define LΨ̄0 such that

< LΨ̄0, Ψ̄0 >:=
∫ ∞

0
U0|Ψ̄0|

2dy −
∫ ∞

0
|Ψ̄0y|

2dy −
|
∫ ∞

0 Ψ̄0U0dy|2∫ ∞
0 U0dy

, (4.14)

then we rewrite (4.13) as

τ0

[
−

∫ ∞

0
|Ψ̄0y|

2dy +
∫ ∞

0
U0|Ψ̄0|

2dy
]
− τ0

∫ ∞

0
U0|g0|

2dy

=τ0 < LΨ̄0, Ψ̄0 > +τ0

∣∣∣∣ ∫ ∞0 Ψ̄0U0dy
∣∣∣∣2∫ ∞

0 U0dy
− τ0

∫ ∞

0
U0|g0|

2dy. (4.15)

On the other hand, according to the first equation shown in (4.10), we have
∫ ∞

0 Φ0dy = 0 since τ0 , 0.
Hence, we find ∫ ∞

0
Φ0dy =

∫ ∞

0
U0Ψ̄0 + U0g0dy = 0, (4.16)

which implies ∫ ∞

0
U0Ψ̄0dy = −

∫ ∞

0
U0g0dy. (4.17)

It follows that ∫ ∞

0
U0|g0|

2dy =
∫ ∞

0
U0

∣∣∣∣∣g0 −

∫ ∞
0 U0g0dy∫ ∞

0 U0dy

∣∣∣∣∣2dy +

∣∣∣∣ ∫ ∞0 U0Ψ̄dy
∣∣∣∣2∫ ∞

0 U0dy
. (4.18)

We next substitute (4.18) into (4.15) to get

τ0

[
−

∫ ∞

0
|Ψ̄0y|

2dy +
∫ ∞

0
U0|Ψ̄0|

2dy
]
− τ0

∫ ∞

0
U0|g0|

2dy

=τ0

[
< LΨ̄0, Ψ̄0 > −

∫ ∞

0
U0

∣∣∣∣∣g0 −

∫ ∞
0 U0g0dy∫ ∞
0 U0 dy

∣∣∣∣∣2dy
]
. (4.19)

Combining (4.13) and (4.19), we obtain the following key identity:

|τ0|
2
∫ ∞

0
|Ψ̄0|

2dy +
∫ ∞

0
U0|g0y|

2dy

=τ0

[
< LΨ̄0, Ψ̄0 > −

∫ ∞

0
U0

∣∣∣∣∣g0 −

∫ ∞
0 U0g0dy∫ ∞

0 U0dy

∣∣∣∣∣2dy
]
. (4.20)

In light of (4.14), one has from (4.20) that τ0 is real. □

Proposition (4.2) implies τ0 is real and satisfies the important identity (4.20). We can see from
(4.20) that if ⟨LΨ̄, Ψ̄⟩ ≤ 0, τ0 ≤ 0. Thus, the critical step is to determine the sign of ⟨LΨ̄, Ψ̄⟩. In other
words, we need to analyze the following nonlocal eigenvalue problem (NLEP): Ψ̄0yy + U0Ψ̄0 − U0

(Ψ̄0,U0)
(U0,1) = µΨ̄0, y ∈ (0,∞),

Ψ̄0 ∈ H2
N,loc((0,∞)).

(4.21)

In fact, the eigenvalue problem (4.21) was well-studied in [39]. For completeness, we present the proof
of the following Lemma:
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Lemma 4.1 (Cf. Lemma 5). Assume (µ, Ψ̄0) is the solution to (4.21), then the largest eigenvalue of
(4.21) is 0, i. e. for Ψ̄0 ∈ H2

N,loc((0,∞)), we have ⟨LΨ̄0, Ψ̄0⟩ ≤ 0. Moreover,

∫ ∞

0
U0|Ψ̄0|

2dy −
∫ ∞

0
|Ψ̄0y|

2dy −

∣∣∣ ∫ ∞
0 Ψ̄0U0dy

∣∣∣2∫ ∞
0 U0dy

≤ 0. (4.22)

Proof. First of all, we consider the following eigenvalue problem of local operator L0:{
L0Ψ̄0 := Ψ̄0yy + U0Ψ̄0, y ∈ (0,∞),
Ψ̄0y(0) = 0,

where U0 =
a
2 sech2( √a

2 y
)

with a = 3ū + O(ϵ). It is convenient to let
√

ay = z, then we find L0[Ψ̄0(z)]
can be rewritten as

L0[Ψ̄0(z)] = a(Ψ̄0zz + Û0Ψ̄0), z ∈ (0,∞), (4.23)

where Û0 =
1
2 sech2( z

2
)
. The results for the spectrum of L̂0Ψ̄0 := Ψ̄0zz + Û0Ψ̄0 are well-known. Since

L̂0 is self-adjoint, we have the discrete spectrum of L̂0 is countable, which satisfies λ̂1 =
1
4 , λ̂2 < 0, · · ·

with respect to even eigenfunctions. Since (U0, 1) =
√

a, we rewrite (4.21) as

L0Ψ̄0 −
1
√

a
U0

∫ ∞

0
Ψ̄0U0dy = µΨ̄0, (4.24)

where Ψ̄0y(0) = 0. Similarly, we have in the z-variable, (4.24) becomes

aL̂0Ψ̄0 − aÛ0

∫ ∞

0
Ψ̄0Û0dz = µΨ̄0. (4.25)

Now, we investigate the following nonlocal operator:

L̄Ψ̄0 := L̂0Ψ̄0 − Û0

∫ ∞

0
Ψ̄0Û0dz,

which satisfies L̄Ψ̄0 = µ̄Ψ̄0 with µ = aµ̄. Then we transform this eigenvalue problem into the following
form:

(L̂0 − µ̄)Ψ̄0 = Û0,

∫ ∞

0
Ψ̄0Û0dz = 1.

To study the sign of µ̄, we only need to investigate the algebraic equation φ(µ̄) = 1, where

φ(µ̄) :=
∫ ∞

0
Û0(L̂0 − µ̄)−1Û0dz. (4.26)

Since L̄ is self-adjoint, we have µ̄ is real. Thus, it suffices to show h(µ̄) , 1 for all µ̄ > 0 so as to obtain
the desired conclusion.

Firstly, we have the fact that µ̄ = 0 is an eigenvalue of (4.21), and the corresponding eigenfunction
is Ψ̄0 = 1. Hence, φ(0) = 1. In addition, we differentiate φ to find

φ′(µ̄) =
∫ ∞

0
Û0(L̂0 − µ̄)−2Û0dz =

∫ ∞

0
[(L̂0 − µ̄)−1Û0]2dz > 0, (4.27)
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which implies φ is an increasing function. According to our above analysis, we find L̂0 only admits a
single positive eigenvalue λ̂0 =

1
4 , and others are negative. Thus, we obtain φ(µ̄) only has a single pole

at µ̄ = 1
4 for µ̄ > 0. In addition, when µ̄ is large, one has

φ(µ̄) ∼ −
1
µ̄

∫ ∞

0
Û2

0dy→ 0− as µ̄→ ∞. (4.28)

Now, we summarize our results to obtain φ(µ̄) has a vertical asymptote at µ̄ = 1
4 , φ(0) = 1, φ → 0−

as µ̄ → ∞ and φ is increasing for µ̄ , 1
4 . Therefore, we have µ̄ , 1 for all µ̄ > 0, which proves this

Lemma. □

Now, we apply Lemma 4.1 into identity (4.20), then find τ0 ≤ 0. Noting that τ0 is assumed to
satisfy τ0 , 0, one can further obtain τ0 < 0. By summarizing our argument, we establish the following
Proposition:

Proposition 4.3. Assume there exists a subsequence ϵn → 0 as n → ∞, {(τn, < gn, Ψ̄n >)}∞n=1 are the
solutions to (4.2) and τn → τ0 as n→ ∞, then we have τ0 < 0.

Proposition (4.3) demonstrates that when there exist large eigenvalues τ in (4.2), the real part of τ
must be negative for ϵ small enough, which indicates (1.4) is stable with respect to these modes. In the
following, we shall focus on the small eigenvalue case. Since we plan to employ the Lyapunov-schmidt
reduction method to compute the asymptotics of (τϵ ,Φϵ) for ϵ small enough then determine the sign of
eigenvalues by using these asymptotics, we need to develop the exact order estimate of τ.

4.1 A Priori Estimates of Small Eigenvalues
In this subsection, we suppose τ0 = 0, which implies τ = o(1) for ϵ sufficiently small. However, it is not
enough for us to finish the subsequent analysis. Thus, we shall show |τ| = O(ϵ2) with the assumption
that Re(τ) ≥ 0 or Re(τ) ≥ −c0ϵ

2 for some c0 > 0. The approach what I shall employ is similar as that
in [22,50] with few necessary modifications. We define g = ΦU − Ψ̄, then transform the first equation of
(4.2) as

τ(Ug + UΨ̄) = (Ugy)y + ((ln U − V̄)y(Ug + UΨ̄))y + ϵ
2µ(ū − 2U)(Ug + UΨ̄), (4.29)

where Φ = Ug + UΨ̄. Recall the steady state U satisfies

Uyy − (UV̄y)y + ϵ
2µU(ū − U) = 0, y ∈ (0, L/ϵ), (4.30)

then we have

(ln U − V̄)y = −
ϵ2µ

U

∫ y

0
(ūU − U2)dx. (4.31)

Thanks to (1.4), we conclude

U−1
∫ y

0
(ūU − U2)dx = O(1) tanh

( √3ū
2

y
)
+ O(ϵ)e−σ1y. (4.32)

Upon substituting (4.31) into (4.29), we rewrite (4.2) as the following system of (τ, g, Ψ̄): τ(Ug + UΨ̄) = (Ugy)y − ϵ
2
[(
µ
∫ y

0 (ūU − U2)dx
)
(g + Ψ̄)

]
y
+ ϵ2µ(ū − 2U)(Ug + UΨ̄),

τΨ̄ = Ψ̄yy − ϵ
2Ψ̄ + (Ug + UΨ̄).

(4.33)
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We multiply the first equation of (4.33) by g∗ and integrate it over (0, L/ϵ) to get

τ

∫ L
ϵ

0
U |g|2dy + τ

∫ L
ϵ

0
UΨ̄g∗dy = −

∫ L
ϵ

0
U |gy|

2dy + ϵ2
∫ L

ϵ

0
µ(ū − 2U)U |g|2dy + ϵ2

∫ L
ϵ

0
µ(ū − 2U)UΨ̄g∗dy

−

∫ L
ϵ

0
(ln U − V̄)y(Ug + UΨ̄)g∗ydy. (4.34)

Similarly, we multiply the conjugate of the second equation of (4.33) by τΨ̄ and integrate it to obtain

|τ|2
∫ L

ϵ

0
|Ψ̄|2dy = −τ

∫ L
ϵ

0
|̄̄Ψy|

2dy − ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy + τ

∫ L
ϵ

0
UΨ̄g∗dy + τ

∫ L
ϵ

0
U |Ψ̄|2dy. (4.35)

We sum (4.34) and (4.35) to find

τ

∫ L
ϵ

0
U |g|2dy + |τ|2

∫ L
ϵ

0
|Ψ̄|2dy = −

∫ L
ϵ

0
U |gy|

2dy + ϵ2
∫ L

ϵ

0
µ(ū − 2U)U |g|2dy + ϵ2

∫ L
ϵ

0
µ(ū − 2U)UΨ̄g∗dy

−

∫ L
ϵ

0
(ln U − V̄)y(Ug + UΨ̄)g∗ydy

− τ

∫ L
ϵ

0
|Ψ̄y|

2dy − ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy + τ

∫ L
ϵ

0
U |Ψ̄|2dy. (4.36)

Upon substituting (4.31) into (4.36), we obtain

τ

∫ L
ϵ

0
U |g|2dy + |τ|2

∫ L
ϵ

0
|Ψ̄|2dy = −

∫ L
ϵ

0
U |gy|

2dy + ϵ2
∫ L

ϵ

0
µ(ū − 2U)U |g|2dy + ϵ2

∫ L
ϵ

0
µ(ū − 2U)UΨ̄g∗dy

+ ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
(g + Ψ̄)g∗ydy

− τ

∫ L
ϵ

0
|Ψ̄y|

2dy − ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy + τ

∫ L
ϵ

0
U |Ψ̄|2dy. (4.37)

We rearrange (4.37) and rewrite it as

τ

∫ L
ϵ

0
U |g|2dy + τ

∫ L
ϵ

0
|Ψ̄y|

2dy + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy − τ

∫ L
ϵ

0
U |Ψ̄|2dy + |τ|2

∫ L
ϵ

0
|Ψ̄|2dy

= −

∫ L
ϵ

0
U |gy|

2dy + ϵ2
∫ L

ϵ

0
µ(ū − 2U)U |g|2dy + ϵ2

∫ L
ϵ

0
µ(ū − 2U)UΨ̄g∗dy

+ ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
(g + Ψ̄)g∗ydy. (4.38)

To further simplify (4.38), we integrate the first equation of (4.2) and find from the fact Φ = Ug + UΨ̄
that

τ

∫ L
ϵ

0
Φdy = ϵ2µ

∫ L
ϵ

0
(ū − 2U)Φdy = τ

∫ L
ϵ

0
(Ug + UΨ̄)dy. (4.39)
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It follows that

τ

∫ L
ϵ

0
U |g|2dy =τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy + τ

∣∣∣∣ ∫ L
ϵ

0 Ugdy
∣∣∣∣2∫ L

ϵ

0 Udy

=τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫

Ugdy∫
Udy

∣∣∣∣∣2dy + τ

∣∣∣∣ ∫ L
ϵ

0 UΨ̄dy − ϵ2

τ
µ
∫ L

ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy

=τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy

+ τ

∣∣∣∣ ∫ L
ϵ

0 UΨ̄dy
∣∣∣∣2 − Re

[
2ϵ2µ
τ

( ∫ L
ϵ

0 (ū − 2U)Φdy
)( ∫ L

ϵ

0 UΨ̄∗dy
)]
+

ϵ4µ2

|τ|2

∣∣∣∣ ∫ L
ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy
.

(4.40)

We substitute (4.40) into (4.38) then find the left hand side of (4.38) becomes

τ

∫ L
ϵ

0
U |g|2dy + τ

∫ L
ϵ

0
|Ψ̄y|

2dy + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy − τ

∫ L
ϵ

0
U |Ψ̄|2dy + |τ|2

∫ L
ϵ

0
|Ψ̄|2dy

=τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy + τ
−Re

[
2ϵ2µ
τ

( ∫ L
ϵ

0 (ū − 2U)Φdy
)( ∫ L

ϵ

0 UΨ̄∗dy
)]
+

ϵ4µ2

|τ|2

∣∣∣∣( ∫ L
ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy

+ τ

∫ L
ϵ

0
|Ψ̄y|

2dy + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy − τ

∫ L
ϵ

0
U |Ψ̄|2dy + τ

∣∣∣∣ ∫ L
ϵ

0 UΨ̄dy
∣∣∣∣2∫ L

ϵ

0 Udy

+ |τ|2
∫ L

ϵ

0
|Ψ̄|2dy. (4.41)

Define L̄ such that

< L̄Ψ̄0, Ψ̄0 >:=
∫ ∞

0
U |Ψ̄0|

2dy −
∫ ∞

0
|Ψ̄0y|

2dy −
|
∫ ∞

0 Ψ̄0Udy|2∫ ∞
0 Udy

, (4.42)

then we use (4.41) to rewrite (4.38) as

τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy + τ
−Re

[
2ϵ2µ
τ

( ∫ L
ϵ

0 (ū − 2U)Φdy
)( ∫ L

ϵ

0 UΨ̄∗dy
)]
+

ϵ4µ2

|τ|2

∣∣∣∣( ∫ L
ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy

− τ⟨L̄Ψ̄, Ψ̄⟩ + |τ|2
∫ L

ϵ

0
|Ψ̄|2dy + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy

= −

∫ L
ϵ

0
U |gy|

2dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)U |g|2dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)UΨ̄g∗dy

+ ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
(g + Ψ̄)g∗ydy. (4.43)
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We rearrange (4.43) to get

τ

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy − τ⟨L̄Ψ̄, Ψ̄⟩ + |τ|2
∫ L

ϵ

0
|Ψ̄|2 + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy

= −

∫ L
ϵ

0
U |gy|

2dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)U |g|2dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)UΨ̄g∗dy

+ ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
(g + Ψ̄)g∗ydy

− τ
−Re

[
2ϵ2µ
τ

( ∫ L
ϵ

0 (ū − 2U)Φdy
)( ∫ L

ϵ

0 UΨ̄∗dy
)]
+

ϵ4µ2

|τ|2

∣∣∣∣( ∫ L
ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy
. (4.44)

Assume Re(τ) ≥ 0, then it follows from (4.44) and Φ = Ug + UΨ̄ that if 1 ≫ |τ| ≫ ϵ2,∣∣∣∣τ∫ L
ϵ

0
U

∣∣∣∣∣g −
∫

Ugdy∫
Udy

∣∣∣∣∣2dy − τ⟨L̄Ψ̄, Ψ̄⟩ + |τ|2
∫ L

ϵ

0
|Ψ̄|2dy + ϵ2τ

∫ L
ϵ

0
|Ψ̄|2dy +

∫ L
ϵ

0
U |gy|

2dy
∣∣∣∣

≤Cϵ2
∫ L

ϵ

0
U |g|2dy +Cϵ2

∫ L
ϵ

0
U |Ψ̄|2dy +Cϵ2

∫ L
ϵ

0
U |gy|

2dy

+Cϵ2
[( ∫ L

ϵ

0
U |g + Ψ̄|dy

)( ∫ L
ϵ

0
U |Ψ̄∗|dy

)]
+Cϵ2

( ∫ L
ϵ

0
U |g + Ψ̄|dy

)2

≤Cϵ2
∫ L

ϵ

0
U |g|2dy +Cϵ2

∫ L
ϵ

0
U |Ψ̄|2dy +Cϵ2

∫ L
ϵ

0
U |gy|

2dy. (4.45)

Otherwise if |τ| ≲ ϵ2, we obtain the desired conclusion. It is necessary to mention that the only dif-
ference between L and L̄ is U0 is replaced by U. However, we have the fact that U = U0 + o(1)e−σ1y

for some σ1 > 0. Noting that Lemma 4.1 implies ⟨LΨ̄, Ψ̄⟩ ≤ 0 and ⟨LΨ̄, Ψ̄⟩ ≤ −ν
∫
|Ψ̄|2 for some

ν > 0 independent of ϵ when Ψ̄ . C, where C is any nonzero constant, we have L̄ possesses the same
property as L. Thus, if Ψ̄ ≡ C, we obtain from the second equation of (4.2) that Φ = (τ + ϵ2)C, which
is a constant. Then we integrate the first equation of (4.2) over (0, L/ϵ) and use the Neumann boundary
condition to arrive at

τ
ΦL
ϵ
= ϵ2ΦL

ϵ
− 2ϵ2Φ

∫ L
ϵ

0
Udy.

This implies |τ| = O(ϵ2), which gives the desired conclusion.
Next, we consider the case that Ψ̄ . C. Assume Re(τ) ≥ 0, then we find from (4.45) that

|τ|

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy + ν|τ|
∫ L

ϵ

0
|Ψ̄|2 + |τ|2

∫ L
ϵ

0
|Ψ̄|2dy

≤Cϵ2
∫ L

ϵ

0
U |g|2dy +Cϵ2

∫ L
ϵ

0
U |Ψ̄|2dy

≤Cϵ2
∣∣∣∣ ∫ L

ϵ

0
Ugdy

∣∣∣∣2 +Cϵ2
∫ L

ϵ

0
U

∣∣∣∣∣g −
∫

Ugdy∫
Udy

∣∣∣∣∣2dy +Cϵ2
∫ L

ϵ

0
U |Ψ̄|2dy

≤Cϵ2
∫ L

ϵ

0
U |g|2dy +Cϵ2

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy +Cϵ2
∫ L

ϵ

0
U |Ψ̄|2dy, (4.46)
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where ν > 0 is a constant independent of ϵ. We claim when Re(τ) ≥ 0, there exists some constant C > 0
such that ∫ L

ϵ

0
U |g|2dy ≤ C

∫ L
ϵ

0
|Ψ̄|2dy. (4.47)

To prove this, one finds from (4.38) that

|τ|

∫ L
ϵ

0
U |g|2dy + |τ|

∫ L
ϵ

0
|Ψ̄y|

2dy +
∫ L

ϵ

0
U |gy|

2dy

≤ϵ2C
∫ L

ϵ

0
U |g|2dy + ϵ2C

∫ L
ϵ

0
U |Ψ̄|2dy + ϵ2C

∫ L
ϵ

0
U |gy|

2dy + |τ|C
∫ L

ϵ

0
U |Ψ̄|2dy

≤ϵ2C
∫ L

ϵ

0
U |g|2dy + ϵ2C

∫ L
ϵ

0
U |gy|

2dy + |τ|C
∫ L

ϵ

0
U |Ψ̄|2dy, (4.48)

which proves (4.47). We next apply (4.47) into (4.46) and obtain

|τ|

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy + |τ|
∫ L

ϵ

0
|Ψ̄|2dy

≤Cϵ2
∫ L

ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy +Cϵ2
∫ L

ϵ

0
U |Ψ̄|2dy. (4.49)

This implies |τ| = O(ϵ2) with Re(τ) ≥ 0.
Next, we would like to prove Im(τ) = O(ϵ2) when Re(τ) is assumed to satisfy Re(τ) = O(ϵ2) but

Re(τ) is negative. Define Re(τ) = τR and Im(τ) = τI , then we take the real part of (4.44) to obtain

τR

∫ L
ϵ

0
U

∣∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣∣2dy − τR⟨L̄Ψ̄, Ψ̄⟩ + |τ|
2
∫ L

ϵ

0
|Ψ̄|2dy + ϵ2τR

∫ L
ϵ

0
|Ψ̄|2dy

= −

∫ L
ϵ

0
U |gy|

2dy + ϵ2µ

∫ L
ϵ

0
(ū − 2U)U |g|2dy

+ µϵ2
∫ L

ϵ

0
(ū − 2U)URe(Ψ̄g∗)dy + ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
Re[(g + Ψ̄)g∗y]dy

− τR

( ∫ L
ϵ

0
Udy

)−1[
− Re

[2ϵ2µ

τ

( ∫ L
ϵ

0
(ū − 2U)Φdy

)( ∫ L
ϵ

0
UΨ̄∗dy

)]
+
ϵ4µ2

|τ|2

∣∣∣∣ ∫ (ū − 2U)Φdy
∣∣∣∣2],
(4.50)

which implies that∫ L
ϵ

0
U |gy|

2dy ≤ ϵ2C
( ∫ L

ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy − ⟨L̄Ψ̄, Ψ̄⟩ +
∫ L

ϵ

0
U |g|2dy +

∫ L
ϵ

0
U |Ψ|2dy

)
. (4.51)

On the other hand, by taking the imaginary part of (4.44), we have

τI

( ∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy − ⟨L̄Ψ̄, Ψ̄⟩ + ϵ2
∫ L

ϵ

0
|Ψ̄|2dy

)

=ϵ2µ

∫ L
ϵ

0
(ū − 2U)UIm(Ψ̄g∗)dy + ϵ2µ

∫ L
ϵ

0

( ∫ y

0
(ūU − U2)dx

)
Im[(g + Ψ̄)g∗y]dy,

(4.52)
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which concludes that

|τI |

( ∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy − ⟨L̄Ψ̄, Ψ̄⟩ + ϵ2
∫ L

ϵ

0
|Ψ̄|2dy

)

≤Cϵ2
∫ L

ϵ

0
U |g|2dy +Cϵ2

∫ L
ϵ

0
U |Ψ̄|2dy +Cϵ2

∫ L
ϵ

0
U |gy|

2dy.

(4.53)

Assume |τI | ≫ ϵ2, then we combine (4.51) and (4.53) to obtain

|τI |

( ∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy − ⟨L̄Ψ̄, Ψ̄⟩ + ϵ2
∫ L

ϵ

0
|Ψ̄|2dy

)

≤Cϵ2
( ∫ L

ϵ

0
U |g|2dy +

∫ L
ϵ

0
U |Ψ̄|2dy

)
.

We claim that ∫ L
ϵ

0
U |g|2dy ≤ C

∫ L
ϵ

0
U |Ψ̄|2dy

for some constant C > 0 independent of ϵ. Then we have for Ψ̄ . C,

ν|τI |

∫ L
ϵ

0
|Ψ̄|2dy ≤ Cϵ2

( ∫ L
ϵ

0
U |g|2dy +

∫ L
ϵ

0
U |Ψ̄|2dy

)
≤ Cϵ2

∫ L
ϵ

0
|Ψ̄|2dy (4.54)

for constant ν > 0 independent of ϵ. Thus, |τI | = O(ϵ2).
To show our claim, we recall

∫ L
ϵ

0
U |g|2dy =

∫ L
ϵ

0
U

∣∣∣∣∣g −
∫ L

ϵ

0 Ugdy∫ L
ϵ

0 Udy

∣∣∣∣∣2dy

+

∣∣∣∣ ∫ L
ϵ

0 UΨ̄dy
∣∣∣∣2 − Re

[
2ϵ2µ
τ

( ∫ L
ϵ

0 (ū − 2U)Φdy
)( ∫ L

ϵ

0 UΨ̄∗dy
)]
+

ϵ4µ2

|τ|2

∣∣∣∣ ∫ L
ϵ

0 (ū − 2U)Φdy
∣∣∣∣2∫ L

ϵ

0 Udy
.

Then if |τI | ≫ ϵ2, one has∫ L
ϵ

0
U |g|2dy ≤ C

∣∣∣∣ ∫ L
ϵ

0
UΨ̄dy

∣∣∣∣2 + o(1)
( ∫ L

ϵ

0
U |g|2dy +

∫ L
ϵ

0
U |Ψ̄|2dy

)
, (4.55)

which implies our claim. Otherwise if there exists C > 0 such that |τI | ≤ Cϵ2, we obtain |τI | ≲ ϵ2,
which is our desired conclusion. we summarize our discussion shown as above to obtain the following
Proposition:

Proposition 4.4. Assume (τ, < Φ, Ψ̄ >) is the solution to (4.2), then we have |τ| = O(ϵ2) when Re(τ) ≥
−c0ϵ

2 for some c0 > 0 independent of ϵ.

Proposition 4.4 indicates that when Re(τ) is positive or sufficiently small, |τ| can be regarded as the
perturbation. Now, we have the sufficient context to construct the asymptotics of small eigen-pairs.
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4.2 Eigenvalue Asymptotics
This subsection is devoted to the case of |τ| = o(1) for ϵ ≪ 1. According to Proposition 4.4, we further
have |τ| = O(ϵ2). Since we linearize (1.2) around (u−, v−), we need to recall the property of this steady
state. It is convenient to consider u and v in the y-variable. Moreover, thanks to Theorem 1.1, one can
find

u(x) = U(y), U(y) := U0(y) + Ũ1(y; ϵ),

and
v(x) = V(y), V(y) := V0(y) + Ṽ1(y; ϵ),

where (U0,V0) and (Ũ1, Ṽ1) have the following properties:

U0(y) =
a
2

sech2
( √a

2
y
)
, |Ũ1(y; ϵ)| ≤ Mϵe−σ1y, a = 3ū + O(ϵ), (4.56)

and

V0 = ϵ
2
∫ L

ϵ

0
G(y; z)U0(z)dz := T (U0), |Ṽ1(y; ϵ)| ≤ Mϵ3.

Here G(y; z) is given by (3.19) and constants M > 0, σ1 > 0 are independent of ϵ and y. Recall we
define the stretched variable y = x

ϵ
, eigenfunctions Φ(y) = ϕ(x), Ψ(y) = ψ(y), eigenvalues τ = ϵ2λ, then

transform (4.1) into the following rescaled problem:
τΦ = Φyy −

1
ϵ2 (UΨy + ΦVy)y + ϵ

2µ(ū − 2U)Φ, y ∈
(
0, L

ϵ

)
,

τΨ = Ψyy − ϵ
2Ψ + ϵ2Φ, y ∈

(
0, L

ϵ

)
,

Φy(0) = Ψy(0) = Φy
( L
ϵ

)
= Ψy

( L
ϵ

)
= 0.

(4.57)

We relabel L̄1 given by (2.41) as L̄ϵ . Noting that Ψ := T (Φ) in terms of the Neumann Green’s function,
we rewrite L̄ϵ as

L̄ϵ(Φ; U0) = Φyy −
1
ϵ2 (U0[T (Φ)]y)y −

1
ϵ2 (Φ[T (U0)]y)y (4.58)

and find L̄ϵ is defined by:
L̄ϵ : K⊥ϵ → C

⊥
ϵ ,

where K⊥ϵ and C⊥ϵ are introduced as

K⊥ϵ :=
{

u ∈ H2
N((0, L/ϵ)) :

∫ L
ϵ

0
udy = 0

}
⊂ H2

N((0, L/ϵ)), (4.59)

and

C⊥ϵ :=
{

u ∈ H2
N((0, L/ϵ)) :

∫ L
ϵ

0
udy = 0

}
⊂ L2((0, L/ϵ)). (4.60)

Proposition 3.1 implies L̄ϵ is uniformly invertible for ϵ small enough, which can be summarized as

Proposition 4.5. There exist positive numbers ϵ0, C such that for all ϵ ∈ (0, ϵ0), we have

∥L̄ϵΦ∥σ ≥ C∥Φ∥σ1 for all Φ ∈ K⊥ϵ , (4.61)

where ∥ · ∥σ is given by (3.3). Furthermore, operator L̄ϵ is surjective.

Similarly, Proposition 3.2 can be restated as
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Proposition 4.6. There exist constants ϵ0 > 0, C > 0 such that for all ϵ ∈ (0, ϵ0), we have the unique
solution Φϵ ∈ K⊥ϵ ⊗ H2

N((0, L/ϵ)) such that S ϵ(U0 + ϵU1 + ϵ
2U2 + Φϵ) = 0. Moreover, Φϵ satisfies

∥Φϵ∥σ1 ≤ Cϵ2, (4.62)

for some constant σ1 > 0.

Now, we have rewritten the results in Section 3 obtained via the Lyapunov-schimdt reduction
method as Proposition 4.5 and Proposition 4.6. Next, we will establish the asymptotics of eigen-pairs
(τ, < Φ,Ψ >) and our results are summarized as follows:

Proposition 4.7. Let (τ, < Φ,Ψ >) be the solutions to (4.57) and suppose τ = o(1) for ϵ ≪ 1, then we
have there exists ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0),

τϵ = −2µūϵ2 + O(ϵ3), (4.63)

and
Φϵ =

[
e0 + o(1)

]
Φ0 + o(1),

where e0 is any nonzero constant and Φ0 is defined as

Φ0 =

(
1 −
√

a
2

y tanh
( √

a
2

y
))

sech2
( √

a
2

y
)
, a = 3ū + O(ϵ). (4.64)

As a consequence, λϵ satisfies

λϵ = −2µū + O(ϵ). (4.65)

Proof. Before using Proposition 4.5 and Proposition 4.6, it is necessary to set the ansatz of (Φϵ ,Ψϵ) to
system (4.57). To this end, we similarly take subsequences ϵn, τn, Un, V̄n, Φn and Ψ̄n such that ϵn → 0,
Un → U0, V̄n → V̄00, Φn → Φ0 and Ψ̄n → Ψ̄00 over any compact subset. Then we consider τ0 = 0 and
obtain the following limiting problem satisfied by (Φ0, Ψ̄0):

0 = Φ0yy − (U0Ψ̄00y + Φ0V̄00y)y, y ∈ (0,∞),
0 = Ψ̄00yy + Φ0, y ∈ (0,∞),
Φ0y(0) = Ψ̄00y(0) = 0, Φ0(∞) = 0.

(4.66)

We have (4.66) can be rewritten as the following divergence form:{
(U0g0y)y = 0,
g0 =

Φ0
U0
− Ψ̄00, Ψ̄00yy + Φ0 = 0. (4.67)

In light of the first equation in (4.67), we choose g0 ≡ C for some constant C, then we substitute g0 ≡ C
into the second equation to obtain{

Ψ̄00yy +
a
2 sech2( √a

2 y
)
Ψ̄00 +C1sech2( √a

2 y
)
= 0, y ∈ (0,∞),

Ψ̄00y(0) = 0,
(4.68)

where C1 is a different constant. By noting the scaling invariance and nondegeneracy properties, we
have from Ψ̄00yy + U0Ψ̄00 = 0 that the solution to (4.68) is

Ψ̄00 =
1
√

a
y tanh

( √a
2

y
)
. (4.69)
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It follows that Φ0 satisfies

Φ0 =CU0 + Ψ̄00U0

=

(
1 −
√

a
2

y tanh
( √

a
2

y
))

sech2
( √

a
2

y
)
. (4.70)

Now, we regard Φ0 as the basic ansatz of Φ. Similarly, define Ψ0 as the basic approximation of Ψ, then
we have

Ψ0 = ϵ
2
∫ L

ϵ

0
G(z; y)Φ0(z)dz := T (Φ0), (4.71)

where G(z; y) is given by (3.19). Define Φ = e0Φ0 + Φ
⊥ and Ψ = e0Ψ0 + Ψ

⊥. It is natural to analyze
the error generated by Φ0 and Ψ0, which is

S (Φ⊥) = −
e0

ϵ2

(
U0

(
Ψ01 + Ψ02

)
y
)
y −

e0

ϵ2 (Ũ1Ψ0y)y −
1
ϵ2 (Ũ1Ψ

⊥
y )y −

e0

ϵ2 (Φ0Ṽ1y)y −
1
ϵ2 (Φ⊥Ṽ1y)y

+ Φ⊥yy −
1
ϵ2 (U0Ψ

⊥
y )y −

1
ϵ2 (Φ⊥V0y)y

− τ(e0Φ0 + Φ
⊥) + ϵ2µ[ū − 2(U0 + Ũ1)](e0Φ0 + Φ

⊥). (4.72)

Noting that L̄ϵ is given by (4.58), we have

S (Φ⊥) = −
e0

ϵ2

(
U0

(
Ψ01 + Ψ02

)
y
)
y −

e0

ϵ2 (Ũ1Ψ0y)y −
1
ϵ2 (Ũ1Ψ

⊥
y )y −

e0

ϵ2 (Φ0Ṽ1y)y −
1
ϵ2 (Φ⊥Ṽ1y)y

+ L̄ϵ[Φ⊥] − τ(e0Φ0 + Φ
⊥) + ϵ2µ[ū − 2(U0 + Ũ1)](e0Φ0 + Φ

⊥) − ϵ2µūΦ⊥. (4.73)

It is similar to find that V01 + V02 ≲ ϵ3y2, Ψ01 + Ψ02 ≲ ϵ3y2 and Ṽ10 ≲ ϵ3y, hence the leading order
error in (4.73) is from the combination of

(
U0

(
Ψ01 + Ψ02

)
y
)
y,

(
U0

(
Ψ01 + Ψ02

)
y
)
y and (Φ0(V01 + V02)y)y,

where the order is O(ϵ). To eliminate this error, we add the correction term Φ1, then similarly solve
the quadratic form to obtain Φ1 ≲ y2e−

√
ay. Then, we also express Ψ1 as Ψ1 = T (Φ1) in terms of the

Neumann Green’s function. In summary, we decompose Φ and Ψ as

Φ = e0Φ0 + ϵΦ1 + Φ
⊥
ϵ , Ψ = e0Ψ0 + ϵΨ1 + Ψ

⊥
ϵ , (4.74)

where e0 is any nonzero constant, Φ⊥ϵ ∈ K
⊥
ϵ , where K⊥ϵ is given by (4.59) and Ψ⊥ϵ = T (Φ⊥ϵ ). We

substitute (4.74) into S (u) = 0, then obtain

S (Φ⊥ϵ ) =

II1︷                                              ︸︸                                              ︷
−ϵ−2e0

(
U0

(
Ψ01 + Ψ02

)
y
)
y + 2e0ϵ

(
U0y

)
y

II2︷                                            ︸︸                                            ︷
−ϵ−2e0(Φ0(V01 + V02)y)y + 2ϵe0(Φ0y)y

− ϵ−1(U0(Ψ11 + Ψ12)y)y −
e0

ϵ2 (Φ0(Ṽ11 + Ṽ12)y)y

−
1
ϵ2 (Ũ1(e0Ψ0 + ϵΨ1 + Ψ

⊥
ϵ )y)y −

1
ϵ2 (Φ⊥ϵ Ṽ1y)y

− ϵ−1(Φ1(V01 + V02)y)y − ϵ
−1(Φ1Ṽ1y)y

+ L̄ϵ[Φ⊥ϵ ] − τ(e0Φ0 + ϵΦ1 + Φ
⊥
ϵ )

+ ϵ2µ[ū − 2(U0 + Ũ1)](e0Φ0 + ϵΦ1 + Φ
⊥
ϵ ) − ϵ2µūΦ⊥ϵ , (4.75)
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where |II1| and |II2| are the leading terms with the order being O(ϵ2) since we add the correction term
Φ1 to eliminate the O(ϵ) error.

Since S (Φ⊥ϵ ) = 0, we collect from (4.75) that Φ⊥ϵ satisfies{
L̄ϵ[Φ⊥ϵ ] = Φ⊥ϵyy −

1
ϵ2 (U0Ψ

⊥
ϵy)y −

1
ϵ2 (Φ⊥ϵ V0y)y + F1(Φ⊥ϵ ,Ψ

⊥
ϵ ; ϵ) = 0, y ∈

(
0, L

ϵ

)
,

Φ⊥ϵy(0) = Φ⊥ϵy
( L
ϵ

)
= 0, (4.76)

where F1(Φ⊥ϵ ,Ψ
⊥
ϵ ; ϵ) is defined as

F1(Φ⊥ϵ ,Ψ
⊥
ϵ ; ϵ) = − ϵ−2e0

(
U0

(
Ψ01 + Ψ02

)
y
)
y + 2e0ϵ

(
U0y

)
y

− ϵ−2e0(Φ0(V01 + V02)y)y + 2ϵe0(Φ0y)y

− ϵ−1(U0(Ψ11 + Ψ12)y)y −
e0

ϵ2 (Φ0(Ṽ11 + Ṽ12)y)y

−
1
ϵ2 (Ũ1(e0Ψ0 + ϵΨ1 + Ψ

⊥
ϵ )y)y −

1
ϵ2 (Φ⊥ϵ Ṽ1y)y

− ϵ−1(Φ1(V01 + V02)y)y − ϵ
−1(Φ1Ṽ1y)y

− τ(e0Φ0 + ϵΦ1 + Φ
⊥
ϵ )

+ ϵ2µ[ū − 2(U0 + Ũ1)](e0Φ0 + ϵΦ1 + Φ
⊥
ϵ ) − ϵ2µūΦ⊥ϵ . (4.77)

If F1(Φ⊥ϵ ,Ψ
⊥
ϵ ; ϵ) satisfies the orthogonality condition

∫ L
ϵ

0 F1dy = 0, Proposition 4.5 tells us L̄ϵ is uni-
formly invertible for ϵ small enough. Moreover, Φ⊥ϵ satisfies

∥Φ⊥ϵ ∥σ1 ≤ C∥F1∥σ (4.78)

for constant C > 0 independent of ϵ. Thus, we rewrite Φ⊥ϵ as Φ⊥ = −A(F1). It is similar to decompose
F1 as the linear and nonlinear error, which is F1 = E1 + N1(Φ⊥ϵ ), where

E1 := − ϵ−2e0
(
U0

(
Ψ01 + Ψ02

)
y
)
y + 2e0ϵ

(
U0y

)
y

− ϵ−2e0(Φ0(V01 + V02)y)y + 2ϵe0(Φ0y)y

− ϵ−1(U0(Ψ11 + Ψ12)y)y −
e0

ϵ2 (Φ0(Ṽ11 + Ṽ12)y)y

−
1
ϵ2 (Ũ1(e0Ψ0 + ϵΨ1)y)y − ϵ

−1(Φ1(V01 + V02)y)y − ϵ
−1(Φ1Ṽ1y)y

− τ(e0Φ0 + ϵΦ1) + ϵ2µ[ū − 2(U0 + Ũ1)](e0Φ0 + ϵΦ1), (4.79)

and

N1(Φ⊥) = −
1
ϵ2 (Ũ1Ψ

⊥
ϵy)y −

1
ϵ2 (Φ⊥ϵ Ṽ1y)y − τΦ

⊥
ϵ

− 2ϵ2µ(U0 + Ũ1)Φ⊥ϵ . (4.80)

Next, we estimate E1 and N1(Φ⊥). Focusing on the linear error E1, we find the worse term in (4.79)
is O(ϵ2) since we set Φ1 to eliminate the O(ϵ) error. Hence,

∥E1∥σ = O(ϵ2).

For the nonlinear error N1(Φ⊥ϵ ), by noting that U0 and Ũ1 have the fast decay property, we have the
worse term is τΦ⊥. It is necessary to mention that (Φ⊥ϵ Ṽ10y)y is also the leading term in (4.80).However,
we can add it into the operator L̄ϵ and the new operator have the same property with the old one. The
reason is Ṽ1 is O(ϵ4) in the outer region, then we can still use the Maximum Principle to give the
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good estimate for Φ⊥. Now, we invoke Proposition 4.4 to get |τ| = O(ϵ2). Hence, we can regard it
as the perturbation. Recall σ and σ1 are chosen such that Cσ2 + ϵ| ln ϵ| < (σ − σ1)L < 2ϵ| ln ϵ| and
ϵ| ln ϵ| ≲ σ ≲

√
ϵ | ln ϵ|, then we have ∥τΦ⊥∥σ = o(1)∥Φ⊥∥σ1 . In summary, the nonlinear error N1(Φ⊥ϵ )

satisfies

∥N1(Φ⊥ϵ )∥σ = o(1)∥Φ⊥ϵ ∥σ1 . (4.81)

Proposition 4.6 implies there exists Φ⊥ϵ satisfying ∥Φ⊥ϵ ∥σ1 = O(ϵ2|e0|). Moreover,

Φϵ = e0Φ0 + Φ1 + Φ
⊥
ϵ . (4.82)

Furthermore, we can normalize Φϵ such that ∥Φϵ∥L2 = 1, which implies |e0| = O(1).
Now, we have obtained the asymptotics of the eigenfunction Φϵ given by (4.82). We shall use it

to derive the asymptotical form of τϵ . In fact, τϵ can be established by considering the orthogonality
condition.

We integrate the Φ-equation in (4.57) over
(
0, L

ϵ

)
and use the Neumann boundary condition to get

τϵ

∫ L
ϵ

0
Φdy = ϵ2µ

∫ L
ϵ

0
(ū − 2U)Φdy. (4.83)

We have from (4.82) that

τ

∫ L
ϵ

0
Φdy =τϵe0

∫ L
ϵ

0
Φ0dy + τϵ

∫ L
ϵ

0
Φ1dy + τ

∫ L
ϵ

0
Φ⊥dy := I51 + I52 + I53. (4.84)

Define z :=
√

a
2 y, then by straightforward computation, one can show that

I51 = τe0

∫ L
ϵ

0
Φ0dy =τe0

∫ ∞

0
Φ0dy + O(|τ||e0|ϵ)

=
2τe0
√

a

∫ ∞

0
(z tanh z − 1)sech2zdz + O(|τ||e0|ϵ)

= −
τe0
√

a
+ O(|τ||e0|ϵ). (4.85)

It is similar to obtain that |I52| = O(|τϵ |ϵ) and |I53| = O(|τϵ |ϵ2) since |Φ1| ≲ e−(
√

3ū−δ)y for some δ
sufficiently small. On the other hand, we similarly find from (4.56) that∫ L

ϵ

0
(U0 + Ũ1)(e0Φ0 + ϵΦ1 + Φ

⊥)dy

=

∫ L
ϵ

0
U0(e0Φ0 + ϵΦ1 + Φ

⊥)dy +
∫ L

ϵ

0
Ũ1(e0Φ0 + ϵΦ1 + Φ

⊥)dy

=

∫ L
ϵ

0
U0(e0Φ0 + ϵΦ1 + Φ

⊥)dy + O(|e0|ϵ), (4.86)

where

e0

∫ L
ϵ

0
U0Φ0dy =e0

∫ ∞

0
U0Φ0dy + O(ϵ|e0|)

=
√

ae0

∫ ∞

0
(z tanh z − 1)sech4zdz + O(ϵ|e0|)

= −
1
2
√

ae0 + O(ϵ|e0|). (4.87)
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The other terms such as U0Φ1 in (4.86) are both O(ϵ). Hence, we combine (4.86) and (4.87) to get∫ L
ϵ

0
(U0 + Ũ1)(e0Φ0 + ϵΦ1 + Φ

⊥)dy = −
1
2
√

ae0 + O(|e0|ϵ). (4.88)

Since we normalize Φϵ , we have |e0| = O(1). Moreover, with the help of Proposition 4.4, we can
see |τϵ | = O(ϵ2) if we assume Re(τϵ) ≥ −c0ϵ

2 for some constant c0 independent of ϵ. Therefore, by
collecting (4.83), (4.85) and (4.88), one has from a = 3ū + O(ϵ) that

τϵ = − ϵ
2µa + ϵ2µū + O(ϵ3)

= − 2µūϵ2 + O(ϵ3), (4.89)

which proves (4.65), then this Proposition.
□

Combining Proposition 4.3, Proposition 4.4 and Proposition 4.7, we have the steady state (1.4) is
locally linear stable for ϵ ≪ 1, which proves Theorem 1.2.

5 Conclusion and Open Problems
In this paper, we have investigated the Keller–Segel models with logistic growth and large advection.
Our main contributions are the existence and stability analysis of spiky steady states to (1.2). Motivated
by the formal computation in [38], we have established the rigorous proof of the construction and sta-
bility results via Lyapunov-schmidt reduction. In particular, we perform a priori estimates of linearized
eigenvalues to rigorously rule out the large eigenvalue case.

The behavior of system (1.2) differs significantly from the minimal Keller–Segel models (1.1). It is
well-known that one-dimensional minimal models admit monotone decreasing spiky steady states with
the height of cellular density u being O(1/χ) [4,19]. Whereas, the logistic source prevents the height of
u from being O(1/χ), and thereby it becomes O(1). The stability property of monotone spiky solution
is similar as its counterpart in minimal models. To be more precisely, it is locally linear stable with
respect to even perturbations.

There are also some intriguing questions arising from the pattern formation within system (1.2)
that deserve future explorations. Our numerical experiment indicates that the double boundary spike is
linearly stable with respect to translation modes, which is a distinct phenomenon we have not met in
the minimal models. Thus, it is worthy utilizing either formal or rigorous method to verify this phe-
nomenon. The other interesting direction for future explorations is to study the existence and stability
properties of non-constant steady states in the regime d2 ≪ 1. Noting the numerical results shown
in [23], we conjecture that system in 1D admits the stable interior spike when d2 ≪ 1. But it is open to
study or prove it via matched asymptotic analysis or Lyapunov-schmidt reduction.
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Appendix A Formal Expansion of Single Boundary Spikes
In Appendix A, we shall employ the matched asymptotic analysis to reconstruct the non-constant steady
state (1.4), which can support our rigorous argument.

We firstly multiply the both hand side of the u-equation by 1
χ

in (1.3) to obtain{
0 = 1

χ
uxx − (uvx)x +

µ
χ

u(ū − u), x ∈ (0, L),
0 = vxx − v + u, x ∈ (0, L).

(1.1)

Our aim is to look for a localized pattern with the centre being 0. Recall ϵ :=
√

1/χ, then in the inner
region, we introduce

U(y) := u(x), V(y) := v(x) with y :=
x
ϵ
. (1.2)

Upon substituting (1.2) into (1.1), one has{
0 = Uyy − ϵ

−2(UVy)y + ϵ
2µU(ū − U), y ∈ (0, L

ϵ
),

0 = ϵ−2Vyy − V + U, y ∈ (0, L
ϵ
). (1.3)

We expand

U(y) = U0 + ϵ
2U1 + · · · , V(y) = V0 + ϵ

2V1 · · · (1.4)
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and substitute it into (1.3). To the leading order, we see that V0yy = 0. Since we would like to find
the uniformly bounded solution in (0,∞), one takes V0 = V00, where V00 is an undetermined constant.
Moreover, we collect the following hierarchy from (1.3) and (1.4):{

U0yy − (U0V1y)y = 0, y ∈ (0,∞),
V1yy − V00 + U0 = 0, y ∈ (0,∞), (1.5)

and {
U1yy − (U1V1y)y − (U0V2y)y = −µU0(ū − U0), y ∈ (0,∞),
V2yy = V1 − U1, y ∈ (0,∞). (1.6)

Noting U ≪ 1 in the outer region, one has U0 → 0 as |y| → 0. Thus, we infer from the first equation
of (1.5) that U0(y) = U00eV1(y), where U00 is an unknown constant. Now in the outer region, we can
replace U in sense of distribution by

U → ϵU00

∫ ∞

0
eV1 dρδ0(x). (1.7)

As such we find the outer problem for v is{
vyy − v = −ϵU00Cδ0(x), x ∈ (0, L),
vy(0) = vy(L) = 0, (1.8)

where C :=
∫ ∞

0 eV1 dρ and we impose that C is a finite integral. To express v in the outer region, we
introduce the following one-dimensional Neumann Green’s function G(x; ξ):{

Gxx −G = −δ(x − ξ), x ∈ (0, L),
Gx(0; ξ) = Gx(L; ξ) = 0,

where G has the following explicit form:

G(x; ξ) =
{ cosh(L−ξ)

sinh L cosh x, x ∈ (0, ξ),
cosh ξ
sinh L cosh(L − x), x ∈ (ξ, L).

Hence, we find v satisfies v ∼ ϵU00CG(x; 0). It follows that as x→ 0 and ϵ → 0+, v→ 0. Recall in the
inner expansion, V = V00 + ϵ

2V1 + · · · , then we conclude from the matching that V00 = 0.
We next solve (1.5) to find the inner solution. Upon substituting U0 = U00eV1 and V00 = 0 into the

second equation, we establish the following core problem:{
V1yy + U00eV1 = 0, y ∈ (0,∞),
V1y(0) = 0. (1.9)

Solving equation (1.9) gives rise to

V1(y) = log
(

a

2U00 cosh2(
√

a
2 y)

)
,

where a is a free parameter. Since V1y = −
√

a tanh
( √a

2 y
)
, one has from the relationship between V1

and U0 that

U0 =
a
2

sech2
( √a

2
y
)
. (1.10)
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To determine the constants, we next apply the integral constraint
∫ L

0 u(ū − u)dx = 0 thanks to the
Neumann boundary condition. Noting U ∼ U0, we can arrive at∫ ∞

0
U0(ū − U0)dy = 0.

By using U0(y) = U00eV1 , one has
∫ ∞

0 (eV1 − U00e2V1 )dy = 0, which then yields that∫ ∞

0

(
ūsech2

( √
a

2
y
)
−

a
2

sech4
( √

a
2

y
))

dy = 0. (1.11)

Let z =
√

a
2 y, then we solve (1.11) to get a ∼ 3ū. Therefore, we have from (1.10) that for y ∈ (0,∞),

U0 =
a
2

sech2
( √a

2
y
)

with a ∼ 3ū. Now, we have obtained the inner solution.
Focusing on the outer region, one has u ∼ 0 and vxx − v ∼ 0 with v0y(L) = 0. By solving it, we get

v ∼ Cv cosh(x − L), x ∈ (0, L),

where Cv is an unknown constant to be determined. We next use the matching condition to determine
constant Cv. From the inner solution, one finds

dV
dy
= −ϵ2 √a tanh

( √
a

2
y
)
, (1.12)

which yields

dV
dy
→ −ϵ2 √a as y→ +∞. (1.13)

On the other hand, from the outer solution, we conclude for 0 < x < L,

dv
dy
=

dv
dx
ϵ ∼ ϵCv sinh(x − L).

It follows that
dv
dy
→ −Cvϵ sinh L as x→ 0. (1.14)

After matching (1.13) and (1.14), one can get Cν = ϵ
√

a/ sinh L.
In summary, the single boundary spike (u−, v−) can be asymptotically written as

u− ∼
a
2

sech2
( √a

2
·

x
ϵ

)
, for x ∈ (0, L),

and

v− ∼ ϵ
√

a
sinh L

cosh(x − L), for x ∈ (0, L),

where a ∼ 3ū. Next, we use the Van Dyke’s matching principle vunif = vinner + vouter − voverlap to find the
composite expansion of v, which is

v− ∼ ϵ2 log
(1
4

sech2
( √a

2
x
ϵ

))
+ ϵ

√
a

sinh L
cosh(x − L) +

√
aϵx.

These results agree with those stated in Theorem 1.1.
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Appendix B Formal Analysis of the Eigenvalue Problem
This section is devoted to the study of linearized eigenvalue problem (4.1) via the matched asymptotic
analysis. Similarly, in the inner Region, we introduce the following rescaled functions:

Φ(y) := ϕ(x), Ψ(y) := ψ(x) with y =
x
ϵ
.

By using it together with (1.2), one can rewrite (4.1) as
ϵ2λΦ = Φyy − ϵ

−2(UΨy + ΦVy)y + ϵ
2µ(ū − 2U)Φ, y ∈ (0, L

ϵ
),

λΨ = ϵ−2Ψyy − Ψ + Φ, y ∈ (0, L
ϵ
),

Φy(0) = Ψy(0) = Φy( L
ϵ
) = Ψy( L

ϵ
) = 0.

(2.1)

Similarly as above, we expand

λ = λ0 + · · · , Φ(y) = Φ0(y) + ϵ2Φ1(y) + · · · and Ψ = Ψ0(y) + ϵ2Ψ1(y) + · · · (2.2)

and substitute them together with (1.4) into (2.1). Then one can find Ψ0y = 0, and thereby Ψ0(y) := Ψ00
with Ψ00 being a constant. Moreover, with the help of matching condition between the inner and the
outer solution, we obtain Ψ00 = 0.

We further collect the following leading order system:
0 = Φ0yy − (U0Ψ1y + Φ0V1y)y, y ∈ (0,∞),
0 = Ψ1yy + Φ0, y ∈ (0,∞),
Φ0y(0) = Ψ1y(0) = 0, Φ0(∞) = 0.

(2.3)

The first equation in (2.3) implies that
(
Φ0
U0

)
y
= Ψ1y, hence Φ0 = U0Ψ1 + CU0 thanks to the boundary

conditions, where C is some constant to be determined later on. Therefore, (2.3) yields that{
Ψ1yy + U0Ψ1 +CU0 = 0, y ∈ (0,∞),
Ψ1y(0) = 0. (2.4)

Since U0 =
a
2 sech2

( √
a

2 y
)

and a ∼ 3ū, we further solve (2.4) to get the eigenfunctions are unique up to
a constant multiplier of the following

Ψ1(y) =
1
√

a
y tanh

( √a
2

y
)
,Φ0(y) =

(
1 −
√

a
2

y tanh
( √

a
2

y
))

sech2
( √

a
2

y
)
, a ∼ 3ū. (2.5)

Next, we proceed to show the corresponding leading eigenvalue λ0 < 0, which tells us that steady
state (1.4) is linearly stable.

Proof. We integrate the ϕ-equation in (4.1) over (0, L) to get

λ

∫ L

0
ϕ(x)dx = µ

∫ L

0
(ū − 2u)ϕ(x)dx. (2.6)

Upon substituting (2.5) into (2.6), one has the left hand side and right hand side satisfy

λ

∫ L

0
ϕ(x)dx ∼ ϵλ0

∫ ∞

0
Φ0(y)dy (2.7)

and ∫ L

0
µ(ū − 2u)ϕ(x)dx ∼ ϵ

∫ ∞

0
µ(ū − 2U0)Φ0(y)dy, (2.8)
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respectively. By straightforward calculation, we obtain∫ ∞

0
Φ0dy = −

1
√

a
, (2.9)

and ∫ ∞

0
U0Φ0dy = −

1
2
√

a. (2.10)

Combining (2.9) and (2.10), we have from (2.6), (2.7) and (2.8) that λ0 ∼ −2µū. This gives us (1.4) is
linearly stable with respect to the even eigenfunction (2.5), then formally verifies Theorem 1.2. □
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