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Abstract

One of the most important findings in the study of chemotactic process is self-organized cellular
aggregation, and a high volume of results are devoted to the analysis of a concentration of single
species. Whereas, the multi-species case is not understood as well as the single species one. In
this paper, we consider two-species chemotaxis systems with logistic source in a bounded domain
Q c R2. Under the large chemo-attractive coefficients and one certain type of chemical produc-
tion coefficient matrices, we employ the inner-outer gluing approach to construct multi-spots steady
states, in which the profiles of cellular densities have strong connections with the entire solutions
to Liouville systems and their locations are determined in terms of reduced-wave Green’s functions.
In particular, some numerical simulations and formal analysis are performed to support our rigorous
studies.

1 Introduction and Main Results

In this paper, we consider the following two-species chemotaxis system with logistic growth in 2D:

uy; = Auy — 1V (uVvy) + Lyuy (i — uy), xeQ,t>0,

Uy = Auy —)(QV (U Vo) + Lup(in — up), xeQ,t>0,

Vi = Avy — v + ajuy + apuy, xeQ,t>0, (1.1)
Vor = Avy — vy + axiuy + arnuy, xeQ, >0, ’
Onlt] = Oplty = Oyvy = Opva =0, x€eoQ,t>0,

u1(x,0) = uio(x), uz(x,0) = uo(x), vi(x,0) = vip(x), va(x,0) = voo(x), x€ L,

where Q is a bounded domain with the smooth boundary dQ in R?, n denotes the unit outer normal
vector, y; > 0 and y» > 0 are chemo-attractive coefficients, a;; > 0 with i, j = 1,2 are chemical
production coefficients, and initial data (u¢, 29, V19, V20) is assumed to be smooth enough, non-negative
and not identically equal to zero. Here u; and u, are cellular densities of two species; v; and v, are
chemical concentrations; A, and A, represent intrinsic cellular growth and #; and #, interpret the levels
of carrying capacities. Our goal in this paper is to construct multi-spots stationary solutions in (1.1)
rigorously under an asymptotical limit y1, y» — +oco with % =0().

1.1 Chemotaxis and Keller-Segel Models

Chemotaxis is a process in which uni-cellular or multi-cellular organisms direct their movements in re-
sponse to chemical stimulus gradients. This mechanism is ubiquitous in pathological and physiological
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processes such as morphogenesis, wound healing, tumor growth, cell differentiation, etc. To describe
the chemotactic phenomenon, E. Keller and L. Segel proposed a class of strongly coupled parabolic
PDEs and some typical form reads as

cellular diffusivity ~ chemotactic movement source

—_— —— —_—
u; = Au - XV-wVv) + fw), xeQ,t>0,
chemical diffusivity ~ chemical production/consumption ( 1 2)
— —
V= Av + g(u,v) , xe€Q,t>0,

where Q is assumed to be a bounded domain in RY, N > 1 or the whole space. Numerous studies are
devoted to the analysis of spatial-temporal dynamics in one-population model (1.2) and we refer the
readers to the survey papers [9, 10, 19, 24]. One of the most famous research results in the study of
classical chemotaxis models is the so-called “chemotactic collapse” [2,6,8,11,18,20,21]. In particular,
with regard to concentrated stationary solutions, it has been shown that cellular density u asymptotically
converges to the linear combination of several §-functions with some regular parts in 2D; meanwhile,
the chemical concentration v converges to the finite sum of Neumann Green’s functions, where the
coefficients are 87 or 4 depending on the locations of d-functions. We mention that Del pino and
Wei [6] utilized the entire solution of the Liouville equation to approximate the cellular density u
asymptotically.

Compared to the comprehensive study of spontaneous concentration in the single-species Keller-
Segel system, the localized patterns in the multi-species system are not well-understood and a few
results devoted to the pattern formation in the multi-species counterpart, see [23, 25, 26]. We point
out that Wang et al. in [23] performed the bifurcation analysis around the constant steady state in the
two-species competition Keller-Segel model and obtained the large chemotactic coefficient y triggers
Turing’s instability [22]. Motivated by their results, we shall consider the “far from” Turing’s regime
and assume chemotactic coefficients in (1.1) are large enough, then construct the multi-spots steady
states asymptotically under the singular limits of y; — +o0 and y, — +co via the gluing method.

To study the existence of non-constant steady states, we are concerned with the stationary problem
of (1.1), which is

0= Auy —)(1V'(M|VV])+/11M1(ITI1 —M]), x e,
0 =Aup — x2V - (u2Vv2) + baus(iiy — uz), x €€,

0 =Avi —vi +aju; +apus, xeQ, (13)
0=Avy, — vy +aziu + axis, x€Q,
Ont] = Oplty = Opvy = Opv2 =0, x €0Q,

Before stating our main result, we introduce some notations and assumptions. For convenience, we set
X1 =X, x2=vyyandd = ‘%yz. Here and in the sequel, we impose the following assumptions on matrix
A = (a;j)x2:

(H1). (aij)2x> is areal, irreducible and positive matrix;
H2). ayaxn — 6112(121’)/2 # 0;
(H3). (aij)2x2 is a positive definite matrix.

Under the assumption (H1) and (H2), as shown in [15], we have the existence of the entire solution
denote (T'y ,,, T2,y — €) with any ¢ € R? to the following Liouville system

(1.4)

AT +bje" +bpet? =0, yeR?,
Arz + bz]é’rl + bzzerz = 0, y € Rz,



where

B _ |4 any
(bij)axa (am s d) (1.5)
and one further defines

(U1, Up) = (', €212, (1.6)

To capture the global behavior of (v, v;). we introduce the Neumann Green’s function G(x; £), which
satisfies

{ AG -G =—=6x), xeQ, (1.7)

0,G =0, x €0Q.

In addition, we define the regular part of Neumann Green’s function G(x; &) as H(x; ¢), which solves

— 1 1
g e EE T (18)
o = on P > x € 0Q.

By employing the inner-outer gluing method, we extend the results shown in [14] and obtain the exis-
tence of multi-spots, which are

Theorem 1.1. Assume that k, o are non-negative integers with k + 0 > 1 and A;ii; < C;q, j = 1,2.
Then for sufficiently large x = x = glz with x» = yx1 and given positive constant vy, there exists a
solution (U1, Uz, V1, Vay) to (1.3) satisfying the following form:

m x_é':g
w9 = Y enUn( 5] + o1 (1.9)
k=1
2 N x_flf N £
Vi (x) =€ Z [ —mjloge + rj,ll/k(?) + e H(x, &) — pjr| + o(1), (1.10)
k=1

where m; = lezl byoy, H is defined as the regular part of Neumann Green’s function satisfying (1.8),
Uj and Tj,, are given by (1.6) and (1.4), respectively. Moreover, & € Q and ¢y = 2nm; for k < o;
& € 0Q and ¢y = mmj for o < k < m, where o := % fRN e dy and bj are defined in (1.5). In

addition, the m -tuple (£, -+ , &) converges to a critical point of I, as € — 0, where T, is defined by
T = D GH e x0) + Y E8G(x, X)), (1.11)
k=1 k+#l

Here ¢, = 2 fork < oand ¢, = 1 for o < k < m. In particular, the critical points of ,, are assumed
_ m

to be non-degenerate and Cjq := 3, ¢jxCq, where Cq is the positive lower bound of Green’s function
k=1

27r(r/» — 1 . .
—frm T uj+ O( \/)?) and . is determined by

G(x,y); cjx =
W = CH(ELE) + ) EiG(E, &),
I#k

Theorem 1.1 demonstrates that when the intrinsic growth rate is small, (1.3) admits infinitely many
interior and boundary multi-spots under the singular limits of large y; and y,. In Appendix A, we
develop the formal construction of single interior spot, which supports our rigorous analysis for the
proof of Theorem 1.1. Our main theoretical tool is the inner-outer gluing method, which has been
used to study singularity formations within energy critical heat equations [3], harmonic map flows [5],
Keller-Segel systems [4], etc. successfully.



2 The Choice of Ansatz and Error Computations

In this section, we shall discuss the choice of approximate solutions to (1.3). In light of the u;-equation
with j = 1,2, one regards logistic source terms as perturbations and obtains

ujojeX"V", (21)

where constant C; > 0 will be determined later on. Upon substituting (2.1) into the v;-equation in (1.3),
we define V; = y;v; and arrive at

0=Av =9 +a1;Cy1€™ + anCoyie, xeQ,
{ 1 1 1t 12L2X1 2.2)

0= A\_12 -V + (121C1 26‘91 + azzc 2692, x € Q.
X 2X

Moreover, define C1y; = Fm-2, Coxs = d&™ 2 with m,, my and d determined later on, then we have

5 da .
0=Av, -V + aném‘_zev‘ + Jémz—Zetz, x€Q,
Y (2.3)
0 = APy — ¥y + a2 y&™ 72" + apde™ e, x€Q,
where y := j—f Without loss of generality, we assume that there is only one center & € R?, then define

x—¢=E&yand v; = —m;log & + Vj(y) with m; determined later on to obtain from (2.3) that

0= Ayf/l - 52‘71 + a“evl + 6121’)/6‘72, y € Qg 2.4)
0= Ay“’/z - 5‘2‘72 + agler1 + azgde‘?z, y € Qg, .
where Q; := (Q — £)/&. By choosing d such that the coefficient matrix in (2.4) is symmetric, i.e.
Ly =y, (2.5)
ap
we let & — 0 to get the limiting problem is
0=AT +bye" +bpe, yeR?, 26
0=ATs +bye"" +bype',  yeR?, '
where (I';,T;) is the leading approximation of (V;, V,). Here
b1y := a1, by = and, by = by = axry. 2.7)

Noting that B = (b;j)2x2 is a real symmetric, irreducible, positive and invertible matrix, one utilizes the
results shown in [15] to obtain there exist a family of classical solutions (I' z,,23,) to (2.6) such that

Uip, ) =10, ) + (2.8)
where fi; are constants, /1 := min{m, my} > 2 and
L0 f2)) = —mjloglyl + O™ [yl > 1.
Denote o := % fRZ i dy, then we have m; and m, are determined by

my = o1byy + 02b1a, My = 01byy + 02y (2.9



Thus, for j = 1,2,
vy =—-mjlog&+V,(y), V;(v) =Tjz0)+o(l).

We mention that by the blow-up analysis [15], m; > 2 for all j = 1,2. Moreover, for j = 1,2, the
leading order term of u; is

uj(x) = C;g™ie % (1 + o(1)).

Noting that C; = 5’:';2 and C, = d ~)(2272’ we have
1 d
uy = —e (1l +o(l) :=cren and u; = — e (1 +0(1)) := cre' . (2.10)
X1€ X2&

The leading part of ¢, j = 1,2 is determined by the global balancing condition fQ uj(in; — uj)dx = 0,
which implies

0 ‘g{z e i dy _ 2ro; @.11)
cito(l)= u; = : uj. .
' ﬁ%z ezr/'ﬂj dy ! j;{z ezrj"ﬁ/ dy !
In addition, thanks to Pohozaev identity shown in [15], we find
4(0'1+O’2)=b110’%+2b120‘10’2+b220’%. (2]2)

Combining (2.12) with (2.11), one gets (o, 0) solves

il f e dyory = ﬂ)ﬂf el dyors,

uy Jg2 azi X2 Jr2 (2.13)

2 2
4(0’1+0’2) b110'1+2b120'10'2+b220'2,

where b;j, i, j = 1,2 are given in (2.7). Noting that (a;;)»x> is a positive definite matrix by assumption
(H3), one has the second constraint in (2.13) is an ellipse passing through (0, 0). On the other hand, the
first equality in (2.13) can not be a closed curve since it cannot cross the coordinate axes by using the
fact that all points must lie in the first quadrant. Therefore, the system (2.13) admits at least a positive
solution (o1, 03), where the schematic diagram is shown in Figure 1.

We further define the correction term as Hf(x; &), j = 1,2, which satisfies

g & = x-¢
{AXHJ. - H = —mjlogé+Tjp (=2).  xeQ, o1
8an = —6,,1“”7/., x € 0Q.
In summary, we set the rough approximation of the single spot in (1.3) as
u; = U, [i;) = cie i,
_J JOL Ry ] J ) . (2.15)
vi=-mjlog&+T;(y,fij) + Hj(x;f),

\/61]7 < 1. Here c; is determined by (2.11), (071, 072) is the solution to (2.13)

and (I'y z,, 2 3,) solves Liouville system (2.6).
It remains to determine the parameter fi;, j = 1,2. In light of (1.7), similarly as shown in Lemma
2.1 of [6], we have for any @ € (0, 1),

where y = %‘f and & :=

Hj(x;6) = ¢H(x;€) — i + O(E"), (2.16)



Figure 1: Schematic Diagram of (2.13)

where ¢; = 2im; if £ € Q and ¢; = m; if € € 0Q. To guarantee the error is small, we choose

fj = ¢H(E ), (2.17)

where ¢; = 2m; if ¢ € Q and ¢; = m; if € € 0Q. We remark that & depends on ¢; and c; is determined
globally, which may cause the ambiguity for our subsequent analysis. To solve this issue, we define
€= Lx < 1 and rewrite (2.15) as

\/7
uj = Uj(y; ), 2.18)
vj=—mjloge +T(y,u)) + Hi(x;£),
where y := X%f uj=C¢;H(, &) and H;? solves
& & _ )C—é:
AXHJ- - Hj =-m; 10g8 + rj’”j(T), X € Q, (219)
8an- = —0uljy,» x € 0Q.

Proceeding with the similar argument shown above, we set the first approximation of multi-spots
with 0, 0 < 0 < m, interior bubbles to (1.3) as

m m

wj= D Uy =) i= ) cppe 00,
e =l (2.20)
Vj= Z ( —mjloge + T j(y — & pjn) + ka(x;fk)),
il
wherem > 1, € := \/L)?,y = ﬁ, & = i—k In particular, i, j = 1,2 are determined by
Wi = CH(EE) + ) 4G &), @21)

I#k
where G(x;£) is given by (1.7) and ¢ = 2m; if k < 0; & = am; if 0 < k < m. For the simplicity of
our notation, we define

Uj(y = &) = Up(y = & i) and Ty — &) = Ty = & ), - (2.22)



then rewrite the first approximation solution as

uj = Z Uiy = &),
=l

p, = ; (= mjloge +Tp(y - &) + H5(x: £0).

where Hj‘”fk solves (2.19) with £ replaced by &;.

(2.23)

Next, we compute the error generated by (2.23). Noting that (1.3) can be reduced as the following

two-coupled equations:

S1@u1,u2) = Auy + V- (Ay = D Narjug + anpuz)) + Ly (i — uy) = 0,
Sa(ur,uz) = Auz + V- (Ay = 1) Naaguy + anuz)) + Lus(iiy — up) = 0.

Then in the region |x — &| < d¢ with constant § > 0, we calculate to get

1 1
Viuj = VUl =€) + > YUy~ &) +o(D),

Ik

1 ~
Vi) = —VE(y - &) + VHG (x, &) + o(1),

where

A5, 80 = Hi(n60) + ) (Tl — &) + H (3 £0)-

I#k
Moreover, one has

1 , 1 ,
Aty = S AUy = &) + > AU = &) + o(D),
I#k

1 ) .
Ay = gAij(y — &) + AH(x, &) + o(1),
1 / / 1 Y Fre
Vi V9 =5 VU = 6) - VTl = ) + —VU0 — ) - VA (x. &)
1 ) 1 N
F SV =&)Y VU = &)+~ > YUy — &) - VA (x. &),
€ I#k € I+k
and
- 1 7 4 l ! /
AT = Uy = §) - ATx( = )+ — Z Uy — EDAT ju(y — &)
I#k

FURD = &) - A (x, £0 + Y Un(y = &) - A5 (x,&).
I#k

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



Then, one finds for j = 1,2,
1 / /
S j(w) ZE[AUjk(y —&) = VU= &) - VI p(y = &) = Up(y =€) - AT j(y — €)1

1 - -
~[2 2 VUMy =€) VG + 3 Unly =€) - ARG (. 60)

I#k I#k

1 ’ 7€ 1 ’ ,
~[SVURY =€) - VA (60 + 5Vl =€) ) YU =€)

I#k
1 -
) Z Un(y = EDAT 1y, (v — ) + Uy = £) - A (x, &) (2.30)
I#k
1
+ D SAU = &) + LU = E)(a = Un(y - £)
I#k
P Uiy =) - Un(y— €)= Y Uy - £)
I#k I#k
+ UG =€) D Unly = &) + (1),

I#k

where u = (u, up)”. Similarly as shown in [ 4], we observe from (2.30) that the main contribution term
in the error is

. 1 - -
Ij = EVUjk(y = &) VH(x, &) + Up(y — &) - AH(x, &), (2.31)

and I;; = O(é) Then it follows that the leading error of &5 j(u) is O(g). To further study I; given in
(2.31), we use a single interior spot as an example to illustrate our idea. In fact, we expand

VA (x;€) = &;VH(E €) + &V H(E E)(x = €) + O(eY), (2.32)

where (2.16) has been used. Since x — ¢ = gy, we have that £V - (U;VH(¢)) dominates. To balance this,
we adjust location & such that VH(&,) = 0, which implies the principal term &, of £ is a critical point
of J,, defined by (1.11) with m = 1. Similarly, for the multi-spots, we adjust (¢, - - - ,&,) such that the
leading term is governed by the critical point of (1.11).
To eliminate the error generated from the logistic growth, we define the second approximation of
(uj, \_/j) as
— ’ 2 ’
up= ) (Uny =&+ £y - &),
(2.33)

Vj=

M= TM=

( —mjloge + Ty — &) + H(x; fk)) + 82(ij()’ — &)+ Hi(x, fk)),

=~
1l

1

Wh.ere .(¢ ioWik), 7 = 1,2,k = 1,--- ,m are the next order term and 'Hj‘?k are correction terms of i j
satisfying

{Axﬂfk(xv gk) - wfk(x’ fk) = _l//jks X € Q’ (234)

OnHE, =~ 1. x € 6Q.

For simplicity of notation, we drop “k” and use i/}, ¢; and U; to replace ¢, ¢ and Uy (y — &). To



balance the error generated by logistic source, we choose (¢1, ¢, ¥1,¥>) as a solution to

V(U Vg + 4 U (i — Uy) =0,
V(U3 Vgr) + L Us(it, — Us) = 0,

_4
gl—Ul Vi gz—U2 U2, (2.35)

Ay +anxi1¢1 +apyxi¢2 =0,
Ay + ari 201 + axnya¢: = 0.

Next, we solve (2.35) and first define ij := —A;U;(ir; — U ). Then by applying the first integral method,
one gets

00 1 0
g = f _— hi(s)sdsdp, (2.36)
=) pU Jo
where we have used
f h;jdy = 0.
R2
Thus, one has for j = 1,2,
g ~(r*7Y, 2.37)
where §; > 0 is small enough. In light of g; := U,g; ~ (r)"™i~**%), we find from the variation-of-

parameters formula that there exists ({1, ¥») such that
¥ = O(loglyl), for [y| > 1. (2.38)

Invoking ¢; = U g; + U;y;, we further obtain that there exists ¢; ~ (r)y~mi=2+9)  where m ;> 2 and
6; > 0 is small enough.

By using (u;;,7;1) defined in (2.33) as the ansatz, we shall perform the error computation and
establish the inner and outer systems satisfied by the remainder term (¢;, w;). To this end, we write the
solution (u}, v;) to (1.3) as

=S e o)

k=1

" (2.39)
- X = é:k £ [ 2 X = é:k & X

V= ; [( —m; 10g8 + ij(T) + ij(x, é:k)) + & (lﬂ]k(T) + ij(x, fk))] + Wj(;),

where and in the sequel we rewrite £ as & for the simplicity of notations. Then, we compute the error
term to get

oyl 1
Vuj = ) [ VUG =€)+ 9650 = £)] + Vo0, (2.40)
k=1
rl 1
Vv, = Z [gvr k(v = &) + VH (e, &) + eV u(y — &) + 8 VHS (e, g,;)] + ;Vyw i), (2.41)
k=1
oyl 1
Buj= 3 [SAUY = 6)+ Ay = £)] + A0, (2.42)

k=1



and

m

AV, = Z[ SATRY = &) + M (ey.6) + My = £) + MM (ey.6) | + - L aw,o.

Upon substituting (2.39)—(2.43) into (2.24), one finds
0= Auj - Vl/lj . V\_/’j —Uuj- A\_)j + /ljuj(ﬁj - uj) = Lj[(pl,(pz] + Zlﬂ,
=1

where
P;= Z Up(y—&) and Q; = erk(y_fli)
k=1 k=1

and Ij;, 1 =1,---,7 are defined as
1 S ! !
=== > D Uiy — EDAT (v - &),

€ k=1 Il#k

1 m
I =~ ;Z VU j(y - fk) V Jl(y fl) +8ij(8y §"))
k=1 I#k
1 m m m
= D VUG =) VH (e 60 + ) ) Uy = §) - AHj(ey. 0,
~ =1 =1
Is=- Z VUjk(y _ é:]’c) . V'ﬁjl(y — gl') + V¢jk(y - f;c) : Vl—‘jl(y - fl/)

k=1 Il#k

+ Uy =€) - My = &) + ¢y = £) - ATy = &),

m

s ==Y > (eVUG = &) - VH(ey, &) + 8V (v - £) - VHS ey, £)

k=1 I=1

+ Uy - &) - AHG ey, &) + £y — £) - AHE(£3,£)),

5= (Ve — £ - (Tl - &) + eVH: ey, £)

k=1 I=1

+ E¢u(y — &) - (M (y — &) + 2 AH ey, £)),

10

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

2.51)



m

Ijg =~ —V% Z VHS (7. 60 - ¢; Z AHE ey, &)
=1
- —w, (6D Vuily - &) + &V H ey, £0))
k=1

a Z Ay = &) + 2 AHG (ey.£0) (2.52)

m

—VW/ ZVq)jk(y fk)—AW] Z¢]k(y é:k

- E(VQDJ . VWJ' +(ijWj)

and

i =2 Yo+ o= 35 [ua(5E)  20x( 55| )

k=1

m m (2.53)
x =&k X—fk) (_ (X—fz))
-1, _U. )
DS I s IO RN C=S W DR C
=1 I#k
We summarize the computation above to obtain ¢ := (g1, ¢2) solves
7
Lilgl =& ) Lie,P), inQ,,
=1
0=Awi +anxier +annxiez, in€, (2.54)
0= Aw, + azix21 + anxagz, In €,
Ow; 0wy g1 Opy
H. T LA T Lo T 6965
ov ov ov ov on
where j = 1,2 and
P= (C117 s Cms €215 C2m9§19 e ’é:m) (255)

The subsequent sections are devoted to the solvability of (2.54) and the existence of solution
(¢1,92,w1,wp). To this end, we decompose the domain Q as inner and outer regions. Correspond-
ingly, the solution (¢, ;) is decomposed as the combination of inner and outer solutions. Firstly, we
establish the linear theory in the inner region, which is shown in Section 3.

3 Inner Linear Theory

In this section, we consider the inner region |x — &| < ¢ with constant § > 0, where &, denotes the
location of the k-th spot. Noting that & is small enough, one has the inner region {y € R? : |y| < g}

approximates the whole space R?. Then, we define the stretched variable y = X_jk and the k-th inner
operator L™ [¢1, 2] := (LY} [¢1], Ly [@2])" as

Lgj] := =Ayp; + V- (U;Vyw)) + V - ¢,V log Uy, y € R?, 3.1

where w; = (—Ay)’l(b 191 +bjpgy) and j = 1,2. Here and in the subsequent analysis, we drop “k” and
cjx in U given by (2.20) since in each inner region, the form of U j is the same and cj is a constant.

11



We remark that cjp; here is equal to the original one, where cj; is incorporated in (3.1). Similarly
as shown in [14], when the location of the spot is in the interior of domain €, the inner problem is

formulated as _
L[]+ hj=0 in R?, (3.2)

where h := (hy, h,)" denotes the error. We introduce the intermediate variables g, and g» to simplify
the inner problem (3.2) as

Vy-(UiVg) =hi, g =—21 - wi, y€R?,
1
V, - (UVg) =hy, g = £ _ w2, yeR?,
) U, 3.3)

Aywl +b11U1W1 +b11U1g1 +b12U2W2 +b12U2g2 = 0, Y€ RZ
AyWQ + by Uywy +b21U1g1 + by Uywy +b22U2g2 =0, Yy € Rz,

where b;;, i = 1,2, j = 1,2 are given in (2.7). System (3.3) can be regarded as the coupling of
divergence form equations and the linearized Liouville systems. We first consider the non-degeneracy
of operator V, - (U;Vg;) to U; and obtain

Lemma 3.1. The bounded solution space to the following problem

&j 2
V- (U;V(=))=0, yeR,
(¥z) (3.4)
gj € Hy(®?), 81 =01 +r) 7
is one-dimensional and spanned by the nontrivial kernel U, where §; = U;g;, j=1,2and o > Oisa
small constant.
Proof. Thanks to the definition of g; shown in (3.3), we have g; satisfies
V.- (UVg)=0, yeR> (3.5)

Denote g, and 7 as

gj’ g] > 07 13 yE€ BR(O)v
8j+ = and n= 2
0, g;<0, 0, yeR\Byx(0),

where R > 0 is a constant. Upon multiplying (3.5) by gﬁn2 with N being determined later on, we
integrate it over R? to get

0= fR RRUA fR (WU;Vg) - V(.
which implies
0= f UVg; - V(g ordy + f U,Vg)) - g%V 0P)dy.
R2 R2
Noting that the support of 7 is B,g(0), one further has

f UjVg; - V(giondy = - f (U;Vg;) - g2V )dy.
B1r(0) ’ R? |

12



Then we utilize the integration by parts to get

4N Niloo 1 N
—_— Uilve.Z | dy = VIV (U V)dy.
(N +1)? jz;zR(m Jl Ejr | 4 N+1j1;2,e(o)g’+ UV dy
Therefore,

Nl
f Uj|Vg; 7 ['dy<C f lgjs M-IV - (U;V)dy, (3.6)
Bar(0) B)z(0)

where C > 0 is some large constant. Since g; satisfies |g;| < C; —J(l + )72 for small o > 0 and some
J
constant C; > 0, one has from (3.6) that

Ntl
j+

+ 1
f UlengZI |2dy < C2(2R)2(
Bor(0)

1
W||y|:2R)(1 + 2R)(N+Do+2N+2” (3.7
J

where C, > 0 is a constant. Then we obtain for some positive constant C3,

RZ(ULﬂyl—zR) < C3(1 + 2R)"N+2,

By choosing N = m, one uses (3.7) to get
% 2 miN+2 1
Uj|Vy(g,2 )Pdy < C2Cs(1 +2R)"
B1r(0) ’

(1 + 2R)(N+1)0'+2N+2 il 0 as R — 0,
where o can be chosen small enough. Thus, we obtain g;, = Cy for y,

€ R%, where C4y > O is
a constant. Proceeding with the similar argument for glly_ n’, we obtain g;_ =
Cs > 0. This completes the proof of the lemma. '

C5 for some constant

O
Next, we analyze the non-degeneracy of the linearized operators of Liouville systems. Define

T
L[Wl,WQ] = (Aw1 + Z bljUjo,Awl + Z szUjo)
j=12 j=12

We have its adjoint operator is

Jj=1.2 Jj=1.2
For convenience, we denote the following transform

T
.E*[Wl,Wz] = (AW] + U1 Z b]jo,AW] + U2 Z szWj)

(log U',log U?) = ( Z b log Uj, Z b* log Uj>, (3.8)
j=1.2 j=12
lemma.

where (b'/),y, is the inverse matrix of (b; i)2x2. For the kernel of L(w;,w,), we have the following

Lemma 3.2. Assume that (Wi, w»)T satisfies

{L[wl,wz]zo in R,

w3 < C( + "), forsometel[0,1)with j=1,2,
then we have

(3.9)

(wi,wo)" € Spa”{(al log Uy, 01 log Ua)", (92 log Uy, 8, log Uy)', (05 log Uy, 85 log Uz)T}, (3.10)
where 0, logU; = 0y, log U}, d,logU; = 8y, log Uj and d3log U; = r(log U;)' (r) + 2 for j = 1,2.

13



Proof. See the proof of Theorem 2.1 in [16] and Lemma 3.1 in [

In addition, for the kernel of adjoint operator L*, we have the following result.

Lemma 3.3. Assume (wy, w»)" is a solution to

{L*[wl,WZ]:O in R?,

Wil < CA+1z), with j=1,2,

for some 1 € [0, 1), then we have

(w1, w)" € span{(d1log U", 81 log U, (8, 1og U, 8, log U , (83 log U, 83 log U },

where U' and U? are defined in (3.8).
Proof. See the proof of Corollary 5.2 in [12].

With the aid of Lemma 3.1 and Lemma 3.3, one finds
Lemma 3.4. Suppose that h; satisfy

f hi(y)dy =0, f hiydy =0 for j=1,2,1=1,2,
R? R?

(3.11)

(3.12)

(3.13)

then we have for any ||hj|ls+o < 00 with o € (0, 1), there exist a solution ¢ := (¢y, )T = Tinlhy, ho] to

(3.3) such that

llgillro < Cillhjllases

(3.14)

where Tiu[h1, hy) is a continuous linear operator from the Banach space C*XC* of all functions (h1, hy)"
in L® X L™ for which ||l |l4+o + |M2)lare < +00 into L™ X L™,

Proof. Similarly as shown in [

follows ) 5
d’gi  1dgu Kk dgik .
+——— = =8 +UoglUy),— +U = hy,
2 YT Al (log Uy) o 181k = hik
gy dgn K dgok
-—= - 538 1 = 8ok = ho,
2 Y abutlogln)—= + Undo = ha
d*w 1 dw K? - ~
drzlk = drlk - Wit by Uiwik + b1k + biaUswo + 1282k = 0,
d*w 1 dw K? - ~
22k -2 — Wk + biiUrwak + 118k + bioUswor + b12go = 0,
dr r dr r
where we define U;g; = g; and

gi= 2 g™, b= hine, w;= > wine, j=1.2.
k=0 k=0 k=0

First of all, we consider the 0-th mode in (3.15), which is

_ pm
+———+(log Ul)rﬂ + U810 = hio,
r dr

d*s 1dg dg
820 | _280 (log Uz)r% + U820 = hao,

dar? r dr

d*w 1 dw
210 + = — + by Uwig + b Uswao = fio.
dr r dr

d*w 1 dw
220 + ===+ by Upwig + by Uswao = foo.
dr rodr

14

], we perform Fourier projection and obtain the k-th mode of (3.3) as

(3.15)

(3.16)

(3.17)



where

Sfio = =bj1810 —bppgr, j=1,2. (3.13)
We choose the solution to the g -equation in (3.17) as
. (T
%= Usgior g0 = f T fo hyo(s)s ds dp. (3.19)

By using the mass condition in (3.13), one further has
2 o ) 00
0= f hjdy = f f D hjerdrdo = 27rf hio(ryrdr.
R? o Jo 1= o

gjo ~ ("7, g0 ~ (r)"277, for o > 0 small enough. (3.20)

Then it follows

Next, we shall solve (w;g, wyo) in (3.17) via the variation-of-parameter method. To begin with, we focus
on the following homogeneous problem

d’ 1d
wio , Ldwio

+b11Uiwig + bioUswyo = 0,

dr? r o dr (3.21)
d2W20 1 dW20 .
+ —-— + b11U1W10 + b12U2W20 =0.
dr? rodr

By using Lemma 2.1 of [15], we have there exist two linearly independent solution pairs Z; = (Z;;,Z jz)T
with j = 1,2 of (3.21), which satisfy

Zjy = O(log(1 + ),  Zj = O(log(1 + r)). (3.22)

We further rewrite the equation (3.21) as

Lo[Wol = fo, (3.23)
where Wo = (wio, w20)”, fo = (fio, f0)7,
Lo = diag(A, A) + A, L, = diag(A,. A) + AT, (3.24)
and
b U bpU;
A= . 3.25
( bnUy bl ) (3:25)

Next, we are concerned with the following homogeneous adjoint problem
LilZ;] =0, (3.26)

where L7 is defined in (3.24). We claim that (3.26) admits two linear independent solution pairs Z’; =
(Z;TI,Z;Z) with j = 1,2 and they satisfy

Z;Tl = O(log(1 + r)) and Z; = O(log(1 + r)). (3.27)

To show this, we rewrite (3.26) as

d2W] 1dw1
—— 4 ——— + b Uywy + by Uywy =0,
dr2 r dr nviwi 21U 1W2

Pw,  1dw,
—— + ———= + b Usw; + bpUsw; = 0.
dr? - dr 1202w 22U2W2

(3.28)

15



By using the transform w;(r) = w;(e") with j = 1,2, one finds
d*w i

dr?

+ ( Z akjwk)Uj(e')ezr =0. (3.29)

k=12

Noting that U(r) ~ (r)™™ with m; > 2, we follow the similar argument shown in Lemma 2.1 of [15]
and obtain that there exists a solution (wy, w,) satisfying

w;=0(og(1+r)), j=1,2,

which proves our claim. Now, we are ready to solve the inhomogeneous problem (3.23). In fact, by
applying the integration by parts, one gets

Lo(Wo)-Z dx - Ly(Z}) - Wodx
B,(0) B.(0)
Wo f 9Z; .
- Z'dS - WodS, j=1,2, (3.30)
faB,-(o) oy 9B,(0) OV 0 /

where Zj*. = (Z;fl s Z;fz)T are given in (3.27). It follows that W satisfies the following first order ODEs
Wy = HOWy + fo, (3.31)
where

U (TR e e -l . ’
H::(Z11 le) [d_;1 d_rlzJ, foz 1 (le le) [fgy(flozll+f20212)dx).

¢ * daz, dz, * *
Zy 2y - 2 Zy Zy fB,(f 1025, + f20Z3,) dx

In light of (3.20), one finds
f (f1oZ}y + foZ}p) dx ~ ()7, (3.32)
B, (0)

where o > 0 is small enough. Thus, we have

Therefore, we choose a solution to (3.31) as
Wo =12y + 1z,

where t; = O(log(1 + 1)), Z1 = (Z11,Z1n)" and Zy = (Z»1,Z)" given by (3.22) are the fundamental
solutions of (3.31). Moreover, we have the mode 0 of the ¢ ;—component in (3.3) exists and satisfies

wjo=Uwjo+gjo ~ (27, j=1,2,

where o > 0 is small enough.
We next focus on the mode k > 1 in (3.15). For the g;-equation in (3.15), we define

27 ldz K dz
ilz] = —— — ==+ =z—-(logU;),— - Ujz, 3.33
Lilzl dr?  rdr r2Z (log U)) dr 7% ( )
and construct the barrier function
2k = Cillhjllaso (1 + 17277, (3.34)
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where o is small enough. Then, we compute to get

Cillhjllare
(1 + e

—Ujo(1 +r)* = (log Uj),(1 + 12 + o) | + .

1 k?
Lilzjl + hj = —(2+a-)(3+a-)+¥(2+o-)+r—z(l+r)2

Since
mj
(logUj)y ~——, forr>1, m; > 2, (3.35)
r
we choose positive constant R large enough such that
Lilzpl+ e >0 for r>R.

In addition, with the fixed R > 0, we set a large constant Cj; > 0 to obtain

Cillhjllare N
(1 + R)*+o B ygéi%) & >0, (3.36)

where g j is bounded in Br(0). Then, we apply the maximum principle to get

5 < Cillhjllaso

i . 3.37
8= 5 e (3.37)
Similarly, we have
ij[—ij] + ]’ljk <0 for r >R,
which implies
~ Cirllrjllaso
—8jk < m, (3.38)
where the maximum principle was used.
One collects (3.37) and (3.38) to get
. Cillhjllaso .
12 el ey < m in R (3.39)

On the other hand, the existence of g follows from Fredholm alternative theorem since Lemma 3.1
implies mode k > 1 of g j-equation in (3.15) does not admit any nontrivial kernel.
For the wj-equation with k > 1 in (3.15), we first consider mode 1 and focus on the following
equation
d2W11 1 dWU 1

+-—— - Swn+bnU +bU = fi,
dr2 - dr 2w+ buUiwi + b Uawa S 540)
dwa  Ldwn 1 U + bl £ '
- - —w w war = Fot.
e S~ 2t baUwn + bplawa = o
where
fit ==bjgu —bpgu, j=1,2. (3.41)

With the aid of Lemma 3.3, we find (3.40) only admits one bounded kernel (9, log Uy, 8, log U,)T.
Next, we shall show the existence of (wy;, ws) to (3.40). To this end, we follow the argument shown in
the proof of Lemma 2.3 in [1] and define

X, = {u e Ly (RY) x Ly (R?)| f (1 +r)uf dx < +oo}, (3.42)
Rz

17



jul®

Yy = {u € WiZ(R) x W2 (R?) f (1+ )| Auf® + (1+"—z+) dx < +oo} (3.43)
R2 reta

loc loc

for some @ > 0. Moreover, we denote

l) +A, (3.44)

1
- di (A,— A -
—El 1ag r2 }"2
with A defined by (3.25) and consider
Ll : Y(z il er- (345)

As shown in [1], one finds £; is a bounded linear operator and has a closed range in X, for @ € (0, %).
It follows that X, can be decomposed as

X, =ImL; ® (ImL))*. (3.46)
As a consequence, let ¢ € (ImL;)*, then we have (£;[W],@)x, = 0, YW € Y,, or equivalently,
(LilVW], )o@ = 0, (3.47)

where ¢ = (1 + r***)W. Thus, L;¢ = 0 in R? with

2
f de < +00,
R

2 1+ [x2e

Then we apply Green’s formula to get
lp(z)] = O(1 + log z)).

With this, by using Lemma 3.3, we have ¢ € span{(0, log U', 9, log U*)"}. Thus,

(ImL))* C span{(d, log U,,d, log U)"}.
In addition, we use the integration by parts and the fact that d, log U; — 0 as r — +oo to get

span{(d, log U", 8, log U™} € (ImL;)*.
Therefore, we obtain

(ImL;) = span{(d, log U', 8, 1og U*)T}*. (3.48)
Next, we claim that

Lz(fl -Z%dy =0, (3.49)

where Z* := (0,1og U',0,log U»)T given in (3.8) and f, := (fi1, f>1)7 defined in (3.41). Indeed, by
testing y;, i = 1,2 against the g;-equation in (3.3), one has

f V. (Ungj)y,dy = fz hjyldy =0. (350)
R2 R
Moreover, the left hand side of (3.50) can be written as

f V. (U]Vg])yldy = _fz Ungj . eidy = fz ngjVIOg Uj . eidy, (351)
R? R R

18



where e; = (1,0) and e; = (0, 1). For i = 1, we further calculate to get

27 o0
f g;UVlogU;-eidy = f f Z gk (Ne*U;(r)(@,log U;)(r)r cos 6drdé
“ S (3.52)

= ﬂfo g1 (NU(r) (0, log U;)(r)rdr.

Collecting (3.50), (3.51) and (3.52), one obtains

f gi1(NU(r)(0,log Ujrdr = 0.
0

Then we invoking the definition of Z* in Lemma 3.3 and (3.41) to finish the proof of our claim. Thanks
to (3.49), we apply Fredholm alternative theorem to get that there exists a solution W; € Y, to problem
(3.40).

Next, we derive the estimate of W;. Define

zjt = Cillhjllasc(1 + )7 +6r, j=1,2,

and
_ d? 1d 1
Lilzl = — 7% i ﬁZ—bllUIZ_bLZUZWZIa (3.53)
_ d? 1d 1
= by Ui - bnUsz, 3.54
Lo[z] dr2Z rer+r2Z 21Urwir — b Usz (3.54)

where C;; > 0 are some large constants and 6 > 0 is a small constant. Then we compute to get

- _ 1 1
Lilzj + fit =Citlhjllase(1 + P 2ol =) = —o(1 + 1)+ 5+ 1) =bjU;(1 + 1)
r r?
—Zbij,i;&jU,‘Wil +fj1 — b1 10U, r. (3.55)

Noting that (w1, w21)" € X, and U; ~ —mTj for r large and m; > 2, we choose C‘jl > 0and R; > 0 large
enough to obtain

Lilzpl+ fj >0, forr > R;.
With the fixed R; > 0, we further set a large constant C 1> 0to get

Cvjlllhj”4+0'(1 + R){T — max wj > 0, (3.56)
yEBR(0)

where w;; is bounded in Bg(0). By using the maximum principle on annulus BR]_(O)\BR/.(O), we have
wit < Cillhjllare(1 +1)7, (3.57)

where we let R; — +oo then § — 0. Similarly, we apply the maximum principle into —w/; and compute
to get
wiil < Cjillhjllase (1 +1)7, (3.58)

where (3.57) was used.

It remains to analyze mode k > 2 of the linearization of the wj-equations with j = 1,2 shown in
(3.3). As stated in Lemma 3.3, there is not any nontrivial kernel to the mode-k equations with k > 2,
which satisfies w; < C(1 + |z|7) for some 7 € [0, 1). Similarly as above, we consider

-£k : Yry i Xa, (359)
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where

K K2

L= diag(A, -8, - ﬁ) +A (3.60)

with A defined by (3.25). It can be shown that £ is a bounded linear operator and has a closed range
in X, for a € (0, %). Thus, X, can be decomposed as

X, = ImL; & ImLy)*. (3.61)

Similarly, we prove that Im£;)* = 0 by using Lemma 3.3. Then we apply the Fredholm alternative
theorem to obtain there exists a solution Wy := (Wi, wor)” satisfying

dzwlk ldwlk k2
5+ ——— — Wi+ buUiwi + biaUswar = fir,
dr rdr r

) 5 (3.62)
d Wok 1 dWZk k
o+ ——— — W + ba Uiwie + b Uswor = foy.
dr r dr r
We next establish the estimate of W, € Y,,. To this end, we define
- &’ 1d K .
Lilz] = —ﬁz T ar + r—zz = bjiUjz = bizjUiwy, j=1,2, (3.63)
and
Zjk := Cirllhjllase (1 + 1) + Sir, (3.64)

where constant o > 0, 6 > 0 are small and Cj > 0 is large. By the direct computation, we use the
maximum principle, choose Cj > 0 large enough and take 6; — 0 such that

Wil < Cillljllase (1 + 1), (3.65)

where o > 0 is sufficiently small. The existence of (Wi, wa)T to (3.62) directly follows from the
invertibility of L.
Recall that for j = 1,2 and k € N,

G = &k + U ji. (3.66)
Thus, we have there exist ¢ j satisfying
il < Cip———, 3.67
0 < Cit (3.67)
where o € (0, 1) small. This completes the proof of our lemma. O

In Lemma 3.4, we establish the existence and a-priori estimate of (¢1, ;) to inner problem (3.3),
which corresponds to the linearization around the interior spots to (1.3). Whereas, if the center is at the
boundary 69, we must solve the inner problem (3.3) in the half space R? = {(y;,y,) € R? : y, > 0}
rather than R2. To this end, we define norm || - ||,z as

WAl == sup |AI(L +yD)", v >0,

2
yeRy

and develop the following solvability results.
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Lemma 3.5. Given any function hj, j = 1,2 and 3;(x) satisfying

fhjdy—f B;dSy =0, fhjyldy—f BiyidS, =0, (3.68)
R2 OR2 R2 IR

and ||hj|ls40,z < 00 with o € (0, 1), we have the problem

Limp1, 2] = (h1,ha)”  in R2,
{Uj% =B(x) on 9R2, j=1,2 (369
admits a solution (1, ;) satisfying the following estimate:
llgjllzroa < Cjllhjllasem, (3.70)

where C; > 0 is a constant and g; = % — wj. Moreover, ¢ satisfies (QD],QDQ)T = ‘fp[h],hz], where
7A',,[h1 ,hy] is defined by a linear operator.

Proof. For any given (81, ;) defined on dR2 x 9R2, we have there exists a function pair ($;, W;) such
that

% w; 2
E—Ujg Zﬂj on 6R+,
[2

where @210z < Cllhjllasom, j = 1,2. Then, we define ; := 7// —w; and find ¥; satisfies

f UV, - erdy = 0, 3.71)
RZ

T

where e; = (1,0). Now, the problem (3.69) is transformed into the following form

V(UJVgJ)ZhJ—V(U]VﬂJ) in Ri
g; (3.72)

UL = on dR?, j=1,2,

where g; := g; — ;. Define the solution of (3.72) as (¢y, ¥9) and

g .- g](yl’yz) fOI yz > 0‘
g](yl’ yz) fOI‘ y2 < 0

then we have the equation in (3.72) is evenly extended into the whole space, which is
V-(UjVg)=h; in R?, j=1,2,

where

hjy1,y2) = V- (U;VI)(y1,y2) for y; >0,

hi(y1,=y2) = V- (U;V3)(y1,—y2) for y, <O0.

It is easy to check that 172 illa+e < oo due to ||ijlls+o,z < +oo. The key step is the verification of the
orthogonality condition. To finish it , we first obtain from the property of even function that

hj(y1,y2) = {

fz hin,—y2) = V- (U;VI )1, —y2)dy = f hi(y1,y2) = V- (U;Vi )1, y2)dy,
R2 R2
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and

Lz (A1, =y2) = V - (U;VI))(x1, —x2) |[y1dy = f [2j(31,y2) = V- (U;VI )1, y2)]yidy.

R}

Then, by using condition (3.68), we have from the divergence Theorem that

fizjdy=2f hj—v-(U_,-Vﬁj)dyzzf h‘,ﬂdy—2f (U;V9,) - vdS,
R2 R2 R2 oR2

09;
=2f hjdy—2f Uj—’dsyzzf hjdy—2f B;ds, =0,
R2 or2 OV R2 oR2

which implies the mass condition in (3.13) holds. For the first moment condition, we utilize the inte-
gration by parts and (3.71) to get

fRz hiyidy = 2fR2[hj—V‘(UjV17j)])’1dy
= 2\!};2 hjyldy—zﬁRz lej()Vﬁj 'VdSy +2\fﬂ;2 UjV’l?j -eldy (3.73)

-

Since % j 1s even with respect to y;, we can easily obtain from (3.73) that ‘ﬁv h yidy = 0, which com-
pletes the verification of orthogonality condition (3.13). Therefore, we can utilize the results shown in
Lemma 3.4 to find there exists the solution (@1, @, ¥, ¥») to the following system:

ijldy—Zf BiydSy =0.
oR2

£

-AJy = Uy + Uy gy, in R?,

Ay = Uslhy + Usga,  in R?,

Ay = andy +apg,  in R?,

A = andy +ang,  in R
In particular, 43 j» ] = 1,2 satisfies the following estimate

jlla+o 1

bl < C, —
|¢J| = C/(l + r)2+0'

(3.74)

Since ¢ ; is even, it can be defined as the even extension of ¢;. By using (3.74), we further show that
(41, ¢2) is the solution of (3.69) and satisfies

B llororrr = 16 + Sjollosorr < IBjlloror + 1 jollosorr < Cilljllare s
which completes the proof of (3.70) and this Lemma. O

In the next section, we focus on the outer problem and establish the outer linear theory.

4 Outer Linear Theory

Similarly as shown in Subsection 3.2 of [14], we first formulate the outer operator. Concerning the
¢j-equations of (1.3), we define

Liler, 21 = =Ap; + V- (P;Vw) + V- (¢;V0)), 4.1)
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where

m

Pi(y) = Z Up(y - &) and 0;() = ) (—m;loge +Tj(y — &) + & H5(,0).

k=1

Here cj; given in (2.20) is included in U . Then, we substitute AQ; = 2Q; — aj1 P1 — a; P, into (4.1)
and expand it to obtain

Lilg1. 2] =Ag; —Vo; - VO; - & Qjp;
- VPj . VWj — PjAWj + (aijl +Clj2P2)¢j = 131 + 132.

Due to the decay property of P;, we have I3, is negligible in the outer region and /3; dominates. On the
other hand, the leading term in the logistic source is &£°A;ii j¢;. Combining this term with I3;, we define
the outer operator as

Lilg1,¢2] = —Ap; + Vo; - VO, - £ (Ait; — 0))¢; in Q,, (4.2)
where gy = x and sf’i = &;. Moreover, the outer norm || - [|,,,, v > 0 is defined as

|7l
Al = sup —

vl Z(1+Iy &D™

We next derive a-priori estimate of outer solution (¢;,¢,) then prove its existence. Our results are
summarized as

_ _ m
Lemma 4.1. Assume that ||hjllp12, < +00 and Ajit; < C;, where C; := 3, ¢xCq and Cq is the positive
k=1

lower bound of Green’s function, then the problem

L;’.[(pl,(pz] + hj =0 in Qs,

do: 4.3
Fi_y on 09, 3
v
admits the solution (¢1,©2)T = T,lhi, hy] satisfying
lleilloo < Cllajllp+2,0, 4.4

where b > 0 is a constant, C > 0 is a constant and T ,[hy, h;] is a continuous linear mapping.

Proof. To show that a-priori estimates (4.4) satisfied by ¢; and ¢, hold, we can follow the argument
shown in the proof of Lemma 3.3 in [14] with some slight modification and the details are omitted. The
existence of (¢, ¢,) immediately follows from Fredholm alternative theorem. O

Remark 4.1. As shown in [4, 14], the principal parts of outer operators in single species Keller-
Segel models can be formally regarded as 6-dimensional Laplacians. Whereas, the principal term in
L;?[<p1 021, j = 1,2 defined by (4.2) is approximated by the m; + 2-dimensional Laplacian with m; > 2
since the algebraic decay rate of cellular density u is m;.

Lemma 4.1 demonstrates that the outer problem (4.3) admits the decay solution if source (hy, ;)
decays fast. Next, we shall first employ Lemma 3.4 and Lemma to construct the multi-interior spots to
(1.3) via the inner-outer gluing scheme. The existence of multi-boundary spots can also be shown by
invoking Lemma 3.5 and the detailed discussions are exhibited in Section 5.
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5 Inner-outer Gluing Procedures

This section is devoted to the construction of multiple interior spots and boundary spots. Noting that
when the locations of spots are at the boundary dQ, the inner problem near each spot has to be solved
in the half space R and it is necessary to use the straighten transformation, which may cause some
difficulty. Thus, we divide our following discussions into two cases: construction of multi-interior
spots and construction of multi-boundary spots.

5.1 Construction of Interior Spots

To begin with, we give some preliminary notation and definitions. Recall that the inner and outer norms
Il llvk and || - [l are given by

1y |
Al 2= sup [h(V)I(1 + |y = &I)" and |[lAll,, := sup (5.1

yeR? xeQ Z?:](l + |x - f;’{D_V

In addition, we denote ¢’ = inf 4 [§; — &/ and the cut-off functions as n7; := n(|ly — &) > 0, where

5.
n(r) = {1’ e (5.2)

20
0, V>?

and ¢ is a fixed number.
With the aid of (5.1) and (5.2), we now decompose (¢1, ¢,) and (wy, w») into the following form

m

¢ = ; £ @i + €795 Wi = (=8 (b1 + bpgx) 53

wo = (=A+8) ang] +apg?), Wy =(A+&) " (buewn + bpeun),

where y; > 0 and y, > 0 will determined later on. In light of (2.45) and (2.54), we find for j = 1,2,
m 5
Lilpp =" Y Lilpumd + " Lilg1 = & ) [x(P) + &' ls(p, P) + £’ (p, P).
k=1 k=1
Invoking the definitions of Lij‘,‘(rl and L? given by (3.1) and (4.2), respectively, we have

& > LMo + £ L¢3

M=

o~
1l

1
=&’hj(p,P) — £V - (P;VWW)) + £ AQ ¢ — &7 At

m

N 0w 1 - (5.4)
NV, @V e g0) + o (0 - ( ) VH . 0)
e = =
- Z Z[V (UpVwi) + V- (@i VT ] — g Z @iV - VL,
k=1 I#k k=1 I#k
where 1j(@,P) = 3] Li(@i1, > Pims @215+ »Pams ¢°, P) and wiy) = wiey), wi(0) = wirey).
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Define

Fi(¢.P) :=c’hj(¢,P) — £V - (P,V9) + " P — £ A, ;6

PRES Z Vy - (@Y H (83, E))
k=1

m

— & Z Z[V “(UpVp) + V- (@i VT jmel.

k=1 I#k
Moreover, a simple computation shows that
L] =m0 = 2V - Vi — @i + @ - VT iy = £V
+V- (Ujka}k) =V (Ui Vwiny.
Combining (5.5) with (5.6), one denotes
Fi(p,P) := Fi(p, P — "'V - (U VW) + €V - (U g YW i

Moreover, we define J; as

Ji(@,P) =F (0, P)(1 — Zm: )+ s””( i ()Djkvnk) : ( i VHS (£, §k))
k=1 k=1 j=1

m

+é& Z [2Veji - Vi + ol = @jic - VI (v = §) V]
k=1

—&” Z Z @iV - VL ji.

k=1 I#k
Collecting (5.4), (5.7) and (5.8), we formulate the system satisfied by ¢ j and (,0;’. as

Lo gul = €7 Fu(@.P),  in B2 k=1, .m,
L?[go‘f,(pg] =& "Jj(p,P), in Q., j=1,2.

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

In order to use the solvability results stated in Lemma 3.4, we must impose the orthogonality conditions.

To this end, we let compactly supported functions Wy, be radial with respect to &; and satisfy

f Worly — €)dy = 1,
R2

and compactly supported radial functions Wy, [ = 1,2 satisfy

fR Wiy = ED0 — £y = 1.

With these test functions, we modify (5.9) as the following problem

L pw oul = €7 Fulp, P) - Z mjule™ Fjx(p, P)IWy for k=1,---,m,

=0,1,2
L?[QOT,QDZ] =& "Jie,P), j=1,2,
where

mjorlh;] =f hidy and mjylh;] =f hi()( = &€idy.
RZ Rz
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Thanks to Lemma 3.4 and 4.1, we find if right hand sides in (5.10) are given, then there exists a

solution of
(90113 s Plms 90(1), @215 5 Poms Sag)

to (5.10) provided with
mle ™ Fu(p,P)] =0 for [=0,1,2; k=1,2,--- ,m; j=1,2.
Moreover,

Ok = Ajp@i1, -+ 5 @ums @7, 0215+ Pams 95, Po + P),
SO? = ﬂ?(‘ﬁll, e ,<P1m,90(1],9021,' o 9‘p2m’¢g9P0 +P1)9
P= ﬂp(‘pllv e 9‘701ma§0(]),‘7021’ e 9‘702ms‘1059P0 + P1)7

where Aji, A7 and A, are linear operators and
P =Py + Py with Py =(cr10,- -+, €m0, €210, * 5 Com05 §10** * 5 Emo)-

Then we use (5.13) and (5.14) to rewrite the solutions and the operators in the form of

G=(@11, »Qim> P71, 021, P2y 05, Po + Py)

and
AB) = (AN@D. . An(@. AY@). At D).+ . o D). AS@). Ap(D)).
We further define
Xi = {p € L°R?) Vg € L R): llgllasoni < o0,
f ¢dy =0 and f e —Edy =0,1=1, 2},
R2 R2
o o Op
X, ={p € L7(Q) : Vg € L7(Q). ligllp, < +o0, = = 0 0n 00,

and

Xy = {(Cll,"' L ClmsC21 "+ Comy €150+ 4 Em) € RT X R™ X (R

IIPll, = sup le1il + sup lexl + sup él}.
k k k

We collect them to define X as

m
X = (]_[Xk ><X(,)2 x X,
k=1

equipped with the following norm

m

1B = > (D Iesidbrcni + 16%01s0) + 1Pl

=12 k=1

~.

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

With (5.17) and (5.18), we shall show the existence of solution @ given by (5.15) to problem (5.10) in

X via the fixed point theorem. First of all, we claim that for ||@||x < 1,

A@llx < 1,
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where A is defined by (5.16). For the inner operator, by using Lemma 3.4, we find it is sufficient to
prove
lle™" CF ji(@, P)llasox < 1, (5.20)

which concludes ||e™' CF (@, P)llarox < 1, where C := max{C;, C;} given in (3.14). To this end, we
expand £ F (¢, P) as

5
£ Fule,P) = 3" I
=1

" [82_7111‘7 _ g2trn ﬂjﬁj(ﬁ; gy, (PjVW?) + g QD?AQJ‘]

m
" [SZW' Lis + &7 Y V- (@Y Hiyey, )
k=1

= D DV WV + V- (VT ]

k=1 I#k
— V- (Ualy = E)VO — W)
=1L+ 1L + 113 — 1y,

For 11, , we show that
4ok = o(1), (5.2D

and only discuss V, U - V,I" since the others can be treat in the same way. For y € Bs/2.(£;), we have for
r large,

eN(L+]y—ENTTVU Ny - €) - VT p(y — &)l
1 1
(L+ =gt 1+ly-&]

< e (5.22)

<eVC|(1+ly - g7

where C > 0 is a large constant. Taking o~ > 0 and y; > 0 small enough such thatm; -2 —y; —o >0
for j = 1,2, we then obtain from (5.22) that

IVUu(y = &) - VI (y = Ellasok = o(1).

The leading terms in /I, are generated by the outer solution. We only analyze &>~ @}AQ; as an
example and proceed with the same argument on the others. Notice that

m m
1
AQjI<C Y (bje™ +bpe™) < C . ,
| le ;( j1€ 2€ ) ; (] + |y_€_-]/(|)mm[m|,mz}

where C > 0 is a constant. Therefore,
- 1

V2P AO | <C21|° Z .
& |()DJAQJ| <Ce ”‘Pj”b,u Z a1+ |y_§]/€|)min{m1,mz] 4

(I+ly-&h, (5.23)
=1

where C > 0 is a constant. Since min{m,m,} > 2 + o, we take b > 2 and obtain m; + b > 4 + o for
Jj =1,2. Assume that y, > y;, we then obtain from (5.23) that

le” ™ @} AQ llaserk = 0(1). (5.24)
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Thus, we have

L2llg+0k = o(1). (5.25)
For 114, since
1 1
Wi=C+ O(ﬂ)’ and W), = O(s7) + C + O(H) as |y — oo,
y y
we immediately get that
1 14llaron = o(1), (5.26)

where the algebraic decay properties of Uy, j = 1,2 were used. For /13, we focus on the worse term
P\ Vl:ljk(ay, )|, where H is defined by (2.26). The other terms in /13 can be treated similarly as

shown above. We find
Cs

(1 + |y _ §/|)4+u—’
where C > 0 is a constant. Taking ¢ small enough, we then obtain that

eV - VH (83, &)| <

. , 1
leVji - VHf-k(sy, EMlasori < 1

Thus, by taking § < C; with C| is a constant, then we have I )la4ek < % Combining this with (5.21),
(5.25) and (5.26), one gets

A Dlbrok < € IICF jk(@, Plasos < 1, (5.27)

which completes the proof of (5.20).
We next prove that the outer operator satisfies

A @llbo < 1, j=1,2, (5.28)
provided with ||@d|[x < 1. Invoking Lemma 4.1, we have

A Pllbo < Clle™? T (@, P)llp+2,0, (5.29)

where C > 0 given in (4.4). Thus, it suffices to show that Cl|le™2J(¢}, P)llp+2, < 1. Next, we are only
concerned with the error terms generated by the inner solutions (¢4, ¢2¢) since they are leading order
ones. In fact, we have for j = 1,2,

1

(L+1ly=&h+
P 1

ol _72|V‘ij . Vnk| < CSVI_VZ

GXr=) (1 + |y — g}'{|)4+tf+27172>/z ’
By choosing § > C> Ve, 2y — 2y, = =% and b = 2 + §, one gets
"IV - Viillp+2,0 < 07,

where o is a small constant and constant C, = O(1) is chosen to guarantee the smallness of o*.
Proceeding with the other error terms generated by the inner solutions in a similar way, we can indeed
show that Clle™2J (¢, P)llp+2,, < 1, which implies (5.28) holds.

In summary, we take o € (0, 1) small enough, § € (vVeC>,C1),b=2+Z,v, = W and
Y2 =1 + 7 to get(5.19) and (5.28) hold.
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For the contraction properties of inner and outer operators, we perform the same arguments shown
above to derive that there exist constants a, a; € (0, 1) such that

A @11 = Anl@alloror < a1ll@ — Ballx;
{H 1] il @2]lrox < aill@gy — Gallx (530)

IAT[Z1] = Al @a]lbrok < @2ll@r — Gallx

for any @1, &, € X with ||&|lx, [|&2]lx < 1, where j = 1,2 and k = 1,--- ,m and the details are omitted.
It remains to study the position operator A,. As discussed in Section 2, we have Py is defined as

P =Py +P with Py =(c]},- .}, 3, 63,80+, €0, (5.31)

where (£9,- -+, &%) is the critical point of ,,. Next, we adjust P; to guarantee the orthogonality con-
ditions shown in (5.12) hold, i.e., mx[h] = 0 with [ = 1,2,3. We shall show that P; is o(1), which
immediately implies that [|A,||, is a contraction mapping and satisfies [|Al|, < 1.

We first consider the multi-interior spots case. Focusing on the mass condition and the k-th inner
region, we find that the leading one in the right hand side of (5.10) is fg fW mdy for j = 1,2 with
fi(u) = u(ii; — u). Then we calculate to find ’

f fWUjomdy = f c et i (ﬁ j— cel )nkdy + 0D
Q. Q,
= f (& + el = (e + e |dy + 0(e)
Bos/e(€,
= L i c(}kerf~“fk (@; - c?kerf~“fk )dy

0 (N T 0 13, Lig, 0 Tina(r _ 0 Tiuy
+j; (E,)(Cjk +cj)e [Mj = (c teje ””*]dy— fRZ ce (i = cie i )dy
26/e(Sy
+0(e)
= fz c(}kerf’“fk (@; - C(}ker/l#jk )dy + 0(1)c}k +0(&?),
o .

where c‘}k is chosen such that

Ui, /= ri,.
f e ity = et i)y = 0.
R

Now, we take c?k = 0() to guarantee that the mass condition holds.
m m
Next, we verify the first-moment orthogonality condition. In fact, the leading term is , >, V, -

n=1k=1
UV T, + ng.n)) =V, - (U VT j). We expand it and obtain for¢ = 1,2,

Z ng y" Jk(y EIVH (e, &, ))(y &) me(y)dy

n=1 k=1 Q.

+ fg Yy Uy — ENVy Ty = £) + HE = EDaedy

n=1 k#n
RN . 5.32
=2 ) |, v, ey 'S J, 0w ) - ey 432
n=1 k=1 n=1 k#n

> N fQ UjVHS, - (3 - §k>LVnk<y>dy+ZZ f UpV(Tjn + HS,) - (0 = €DV )dy

n=1 k#n
=111, + I11.
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We estimate 1114 and I11p term by term given in (5.32). For I11p, we have from the decay property of
U and VI, that |[IT1g| = O(g™) with m; > 2. For I11, similarly as shown in (2.32), we expand

Vijn(sy, &) e, = &0y H(E, &) + séj,,(ﬁiH)(fk,fk) Sy =&)+0@EM), 1=1,2.
where a € (0, 1). Similarly, we have
V(T + HS,)(ey, &) - €. = Cjn0y, G(éx, &) + &8 1107 G(&, O — €) + O(Y),

where G satisfies (1.7). Upon substituting the two expansions into IT1, in (5.32), we further obtain that

1, = en’o’c ,Oa_n( D BHEE) + ) 5k5,G(§k,§,)) + 0@
= ] (5.33)

= sﬂzoicjoaxljm +0(e™,

where 7, is defined by (1.11), o; and cjy are given in (2.9) and (2.11), respectively. Noting that
(&, , &%) is a m-tuple critical point of 7,, and .,, has a non-degenerate property, we further expand

O H(E, &) = 0, H(E.L &) + 05 HELEDE, + O(éu ),
and
0.,G(é, &) = 05, G(E), &) + 05 G(EL EDE, + O P).

CcO d ’ 1 1 (‘ - )’ II:I) the faCt that (é s T m) i ritical pO‘In Of j to
llC]ll c ] é 1S a
;‘:]L(] _O(SQ)’ L= 1,2,](_— ]’...’m’

where we have used that |[ITIg| = 0(™) 0 < @ < 1 and & ~ 1. Since & is the critical point of H; and
Jom has the non-degenerate property, 111, can be written as

1115 = £&,,0% Hi(éro. €x0) + O + Ol ) for ¢ =1,2.

We remark that it is straightforward to verify the other terms, e.g. > >, V.- (¢ V(L'jy + H,)) =V, -
n=1k=1
(¢ % VT j), in the divergence form operator are negligible. Now, we complete the proof of our claim that

when ||¢||x < 1, [[A(@)|lx < 1 and ﬂ,,(q?) is a contraction mapping.
Define B as
B={peX:lgllx <1}

Thanks to (5.30), we have
- - 2 - -
A(B) € B, and [[A(g1) — Al@)llx < g”‘ﬁl - &llx, Yo, € 8.

It follows that there exists a solution such that ¢ = Ag. Now, we constructed the multi-interior spots
rigorously and next focus on the multi-boundary spots.

5.2 Construction of Boundary Spots

In this subsection, we are concerned with the existence of multi-boundary spots. Firstly, we introduce
the transformation to straighten the boundary. Define the graph p(x;) as (x;,x2) = (x1,0(x1)) with
p(0) = p’(x), then for k = 1,--- , m, we transform (y;, y,) into

74 4 l 4
2k =1 —& k=260~ gp(s(y =& (5.34)
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where y; = x;/g and y, = x;/e. Moreover, we denote operator PP’fL such that for any function w(yy, y2),

Ppgw(y1,y2) = (k1 2k2)- (5.35)

Under the transformation shown above, we have the Laplacian operator and Neumann boundary oper-
ator become

Aw = A gw + (p'(£210))° 02, w — 207 (621 )0z, .20 0 — €0” (621 1)y, ,

(5.36)
V1+ (P'(821,k))2(;—c: = 0/ (6210)0;,,0 — [1 + (0' (6214))*102,, @

Without confusing the reader, we replace (zx, 1, 2x2) by (21, z2) for the simplicity of notations, then obtain

Ayw = Aw + (07 (0))€° 730y — 20" (06210, w — 0" (0)d,w + O(&%) (5.37)
and
dw 0
Vw1 - Vyws =Vow; - Ve + oot - Z2 (07 (0))26%
0 02
ow; Ow ow; Ow (5.38)
1 2 1 2\ 2
(= ==L .= 0 0%,
(6‘11 02 " 0z 0z )p Oz + Of")

where we have used the following expansions of p and p’

plez)) = %p"(O)s%% +0(£%) and p'(ez)) = p”(0)ez; + O(ED). (5.39)

Due to the presence of extra terms in (5.37) and (5.38), we expect that there exist many new terms
in the error generated by the ansatz of boundary spots compared to interior ones. Whereas, we shall
show they are all higher order terms and enjoy good decay estimates while performing the fixed point
argument.

Before formulating the inner problem in the half space R2, we introduce the following cut-off
function ny

Nui(@) = 1 for z € R} N By/e(&) and nyp =0 for z € R* N BS;, (£)). (5.40)

Invoking (5.40), (5.37) and (5.38), we define the new error function as

N = [ ) (T D Do
+ —a(WIEQI;UH’k) : aaLZ;k % “(en, jkTIH,k))]
- | L) (I Do SO Do) SRy, 4
B (3(9013 jZkIUH,k) ' C';szzk N % ' 5(‘#12 jZklUH,k)) B 65;1;,21; (QOH,jkT]H,k)]
- ep"(SZl)[—a(‘pHa’jZkan’k) - Ujp 6Zij - (SOH,ijH,k)(ZLZ;k ,

where Wy jx = (-A+e)(a 1981k a 202N H]. Define P, and P, as the first and second coordinates
of &, then we set the parameter vector Py as

Py = (¢, Py, Py,) = (¢, P, P, — p(P))). (5.42)
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With the aid of (5.41) and (5.42), we find the inner equation given in (5.9) becomes
L (@1 p2] = (ka +& " Fj(Ppg (), PH))UH,k = F jk(Ppg (@), Pu)npk, (5.43)

where (z1,22) € Ri and F (e, P) is given by (5.7).
Before estimating Fp,j in (5.43), we define &, = (& 1, &1, — ép(sf,’{’l)) and the inner norm in the
half space as
1ally gk = sup |AI(1 + |z])”. (5.44)

2
Z€RY

Moreover, we denote space Xy, X,z and X, i the same as Xi, X, and X, except that R? and || - [l2sok
are replaced by R? and || ||21-#4. In addition, we define the norm and inner solution for boundary spots
as || - |lx and @i

Next, we discuss the new error ka, where the straighten operator Pp,f;( is involved. As shown in
(5.41), the worse term is

5 0% jxnuk)

(. jxnmr) . O(QH, jkMH k)
> — —gp(eg)) ————
075

021022 02,
232(90H,jk77H,k) o (92(90H,jk77H,k) o

O(QH, kM k)
0 - v 0 -
(91% P (O)ez 021022 (0 02

(0’ (e21)) - (' (e21))

(5.45)
= (0" (0))*(ez1) +0().

Since |z| < ¢ for some constant § > 0, we can chose § > 0 small enough such that

lig (¢m, Jjk NHk) , g (¢m, jleH,k) , a(SDH, Jk NHk)
——5—— —p(&n) —ep’(ez))—F——

/ 2
H(p (ez1) 62% 021022 023

<o, (5.46)

4+0,H k
where 0| > 0 is a small constant. For the other terms in Nf , we analyze in a similar way and show that

INnaillaso e < 02, (5.47)

where 0 > 0 is a small constant.

For the contraction property of Ay (gz), we follow the argument shown in Section 5 of [14] and
obtain the desired conclusion. Now, we shall check the orthogonality condition exhibited in Lemma
3.5, which is equivalent to study ﬂp,H(Jﬁ}H). It remains to check orthogonality conditions shown in
(3.68). Noting that the leading term in Fy j is ng f(U)nuidz, we perform the similar argument shown

in Subsection 5.1 to get
& f FWUMrdz = O e + O(eY), (5.48)
R}

where c j;; is the error of ¢ = c?k + cjr1 with c(;k given by (2.11).

For the first-moment orthogonality given in (3.68), we follow the same procedure shown in Section
5 of [14] to derive &x jx = O(&%) with @ < 1 but close to 1, where the details are omitted. we point out
that £x x> = 0 since the centre of boundary spot is located at the boundary. Since Py = o(1), we have
.?I,,((Z) is a contraction mapping. Then by following the same argument shown in the end of Subsection
5.1, we find the existence of the remainder term (¢ #, ¢2 ) to boundary spots. This completes the
proof of Theorem 1.1.
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6 Numerical Studies and Discussion

This section is devoted to the numerical simulation for the emergence of spot patterns in system (1.1).
The error threshold is set as € = 0.01 and the maximal time is # = 2000.

Figure 2 presents the numerical profile of single boundary spot solution we constructed in Theorem
1.1, which is a snapshot with ¢ ~ 2000 in the spatial-temporal dynamics of (1.1). Here the chemotactic
coefficients y; = y» are large enough. As shown in the figures, (u;, u,), located at a corner of the rectan-
gle Q, enjoys the fast decay property in the “far-from” corner region; while (v, v») follows the shape of
(u1, up) mildly but has a global structure, also is positively bounded from below. These characteristics
well match our theoretical analysis shown above. We remark that the profiles of u; and u, are distinct
due to the variation of matrix coeflicients given in A = (a;;); j=1,2. In addition, the locations of u; and
u, are the same since all coefficients in A are positive.

Figure 2: The numerical profile of a single boundary spot steady state obtained by using FLEXPDE?7 [7]
to (1.1) with Q = (0,2) x (0,2), where the rest parameters are set as y; = y» = 8.5, 4; = 4, = 0.5,
i =2, =1,a;; =2,a12 =1, ay; = 2 and ay, = 3. Here the initial data are chosen as ug = uy =
6e~ 100" 1.0.1 and vi = va = 2¢~ 19" 1£0.1. The numerical solution is captured by approximating
the time-dependent system (1.1) with # = 2000.

Figure 3 illustrates that the general form of (1.1) may admit the stable single interior spots in other

regimes, which are different from the large chemotactic movement. In addition, the half profiles of
solutions shown in Figure 3 are non-monotone with respect to radius r.
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v1(x,t)
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Figure 3: The numerical profile of a single interior spot to (1.3) with Q = (0, 2) X (0, 2), where the rest
parameters are the same except y; = x» = 1 and d,; = d,» = 0.05. Here we incorporate chemical self-
diffusion rates d,; and d,, in the v;-equation and v,-equation of (1.3). In particular, the initial data are
chosen as ujg = trg = 6~ OL=D*0-D"1 4 0.1 and vg = vyg = 2¢10L=D+0-D1 4 (1. The numerical
results suggest that the single interior spot in (1.3) is locally stable.

Figure 4 demonstrates that when the coefficient matrix A in (1.3) is not positive, (1.3) admits the
spot steady states for sufficient large y; and y», in which cellular densities u; and u, are located at
different points in Q. Also, the facts a;; # az; and a2 # @y in matrix A trigger the formation of spots,
where u; and u, do not share the same localized structure.

6.1 Discussion

In this paper, we study the localized pattern formation in (1.1) under the asymptotical limits of 1,
X2 — +oo. Our main goal is to extend the results shown in [14] to the multi-species Keller-Segel model
counterpart by employing the inner-outer gluing method. Imposing some assumptions on the coefficient
matrix A such that A is positive and irreducible, i.e. the interactions are both attractive, we show (1.3)
admits the multi-spots given by (1.9) and (1.10). Compared to the core problem given in [14], the
core equation governing the profile of solution to (1.3) is still strongly coupled, which may cause the
difficulty while establishing the linear theories especially in the inner region. To overcome this, we
borrow the ideas shown in [15—17] and develop the inner linear theories stated in Section 3, where the
extensive analysis of bounded kernels to the linearized Liouville system is crucial. The main restriction
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Figure 4: The profiles of two double boundary spots to (1.3) with Q = (0,2) X (0, 2). Here the rest
parameters are the same as those stated in Figure 2 except that a;, = —1 and a,; = —2. These numerical
findings suggest that the locations of concentrated cellular densities u#; and u, are different when the
interaction coeflicients are negative.

in their results is the assumption that the coefficient matrix is positive. As stated in Theorem 1.1, the
profiles of cellular densities #; and u, are determined by the entire solutions "' and e solving (1.4).
Unlike the governing profile shown in [14], we do not have the explicit forms of I'; and I', defined by
(1.4). Whereas, we can still establish linear theories and perform the fixed point argument since the
relations between algebraic decay rates of e'", ¢! and their total mass are well understood.

We would like to point out some intriguing research directions that deserve exploration in the future.
As discussed above, we only consider that the coefficient matrix is positive. As shown in Figure 4, when
this assumption is not satisfied, system (1.3) admit new types of concentrated patterns when y and y»
are large enough, where the locations of are u; and u; are at alternative corners. The theoretical analysis
for the existence of these stationary solutions is challenging but worthwhile. Figure 3 reveals that the
logistic multi-species Keller-Segel model under the small chemical diffusivity regime admits stable
interior spots, which can not be detected under the large chemotactic movement regime. Investigating
the relevant pattern formation is open and presents an intriguing direction for future research. It seems
some ideas shown in [13] devoted to the single-species Keller-Segel model with logistic growth are
beneficial.
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Appendix A Formal Construction of Spots

In Appendix A, we shall employ the matched asymptotic analysis to reconstruct the multi-spots (1.9)
and (1.10), which are complementary of our rigorous analysis. Without loss of generality, we only
consider the single interior spot case.

First of all, let v; = yv; and ¥, = y»v> in (1.3), we have

0= Au] —V'(M1V\_/])+/l|u1(ljt] —Ll]), XEQ,
0=Auz—V'(MQV\_/Q)+/12M2(122—M2), XGQ,

0 =Av; = V1 +anyiu + apyius, x€Q, (1.1)
0 = Ay — ¥y + az xour + anxaus, x€Q,
Onlt] = Oplty = Opvy = Opv2 =0, x € 0Q.

Let y; = siZ > 1 with y» = yx; and in the inner region, we introduce
x—=¢& _ - _ .
y= T’ Ul(y) = I/t,'(x), Vl(y) = V,‘()C), i=1,2,
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where & denotes the center.
Then, we expand

Uiy) = U+ &Un + -+, Vi(y) = Vig + Vi + -+,
and obtain from (1.1) that the leading order equation is

0=AUp-V-(UVVio), y € R?,
0 =AUy — V- (UxVVa), y € R?,
0 = AVig +ay Uy + ainUs, y € R?,
0= AVy + aziyUio + anyUs, y€R%

Then we let v := —lo#, further expand fori = 1,2,
ge

_ 1._ _
Up=Upo+vUp1+---, V= " 00+ Viog +--- .

(1.2)

Upon substituting the expansion into (1.2), one has Vio,o = D,y with constant D,;, determined later on

and

0=AUp-V- (Ulo,ov‘:/m,l), y €R?,
0= AUy~ V- (UxoVVu1), yeR’,
0=AVio1 +ai Ui+ anUs, y €R?,
0 = AVa1 +anyUio + axnyUs, y€R2

Then, we find Uy = Cige”* withi = 1,2 and

0= AV[QJ + a”C],oeV”_“ + (112C2,0€V20"_, y € Rz,
0 = AVao + azyCrpe"™ + anyCrpe"™!, y e R

Let§ = /Cj 0y, then (1.4) becomes

- 7 Cao ¥ -
{ 0= AV](),] + a]1€V]0" + aléTz‘oevzo*‘, ye€ Rz,

_ AV v "G W 5 2
0= AVZO’] + azyye’! +(122’}/m€ 0y e R-.

Assume that

a12C = a21yCo,

(1.3)

(1.4)

(1.5)

(1.6)

then as shown in [15], we have (1.5) admits a family of solution pair (V}o,1,V20,1) depending on (u,u5).

It follows that
Uino(y) = Cige"™ @ i=1,2.
Moreover, the integral constraints imply for i = 1,2,
i kz eVordy
Cio = W.

Of concern (1.6), we find the following condition is assume to hold

\&2 evm’l dyﬁl _anxi \&2 62‘7]0"] d}~)

[LeTodsi  anxa [, e dy
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In addition, we have by Pohozaev identity that
4(0‘1 + 0'2) = bllo'% + 2b120‘10’2 + bgzO’%,

where b;;, i, j = 1,2 are given by (2.7) and

1 -
o = —fevfmdy, i=1,2.
2r

In the outer region, we approximate u; and u, as Dirac-delta functions to obtain fori = 1,2,

Avyp =y ~ —(au f Uioody + alzf Uzo,ody)5(x—§),

R? R?

and
Aby =y ~ —(0121)"1‘2 Uio0dy + any fz Uzo,odf’)(s(x -9,

R R
where U)o and Uy are defined by (1.7). Hence,

v = 2nmiG(x; £), (1.8)
where m; are given in (2.9) and G is the Neumann reduced-wave Green’s function satisfying

{ AG -G =-6(x—-¢), xeQ, (19)

oG =0, x € 0Q.

Finally, we match the inner and outer solutions to determine parameters D;, y; with i = 1,2. Recall
that as y — +oo, the inner solution satisfies

1

Vio ~ —Dio + f1; + m;log|yl.
v

On the other hand, the far-field behavior of the outer solution is

1
Vi ~ 2mm;| — 5 loglx = & + H(E, &) + VH(E,§) - (x = §) |.

Y = X% we match the inner and outer solutions implies

VCio e

Since

Dio = mj, p; =2mm;H(E, &), VH(E, &) =0,

where y; 1= fi; —m;log /C) .
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