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We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller—
Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis
of localized patterns for this two-component reaction-diffusion (RD) model is based, not on the usual limit
of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity
d, = €* < 1 of the chemoattractant concentration field. In the limit d, < 1, steady-state and quasi-equilibrium
1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-
spike patterns we analyze the spectral properties associated with both the “large” O(1) and the “small” o(1)
eigenvalues associated with the linearization of the Keller-Segel model. By analyzing a nonlocal eigenvalue
problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-
eigenvalue crossing leading to a competition instability if the cellular diffusion rate d; exceeds a threshold, or
from a Hopf bifurcation if a relaxation time constant 7 is too large. In addition, a matrix eigenvalue problem that
governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From
an analysis of this matrix problem, an explicit range of d; where the N-spike steady-state is stable to the small
eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an O(1) time-scale, we
derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes.
Unexpectedly, our analysis of the KS model with logistic growth in the singular limit d, < 1 is rather closely
related to the analysis of spike patterns for the Gierer-Meinhardt RD system.
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1 Introduction

The study of pattern formation phenomena for RD systems originates from the pioneering work of Alan M.
Turing [49]. In an attempt to understand the mechanism underlying biological morphogenesis, he discovered
that spatially homogeneous steady-states of reaction kinetics for multi-component systems that are linearly stable
can be destabilized in the presence of diffusion. This diffusion-induced instability, now commonly referred to
as a Turing instability, typically leads to the formation of stable spatial patterns that break the symmetry of the
spatially uniform state. Based on this insight, modern bifurcation-theoretic tools such as weakly nonlinear multi-
scale analysis and Lyapunov-Schmidt reductions have been used ubiquitously to characterize pattern formation
near onset for RD systems. However, to analyze localized patterns for RD systems away from the onset of where
a Turing instability occurs, new theoretical approaches are needed. Over the past two decades, there has been
a focus on developing such novel analytical tools to study the existence, stability, and dynamical behavior of
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“far-from-equilibrium” spatially localized patterns, such as stripes and spots, for two-component RD systems
that combine only diffusion and nonlinear reactions (see [59], [12], [8], [53] and references therein).

In contrast, the analytical study of localized pattern formation for RD systems that combine diffusion, non-
linear reactions, and advection poses many new theoretical challenges (cf. [2, 9, 48, 52]. The most common
such RD models are chemotaxis-type systems, such as the prototypical Keller—Segel (KS) system [27, 28], that
are widely used to model how cells or bacteria direct their movements in response to an environmental chemical
stimulus, such as observed in some foundational experiments (cf. [13], [1], [5]). Chemotactic effects have been
shown to play a key role in a wide variety of other biological processes such as, cell-cell interactions in the
immune system, the organization of tissues during embryogenesis, and the growth of tumor cells [4, 41, 45].

In 1971, Keller and Segel [27, 28] proposed the following coupled RD system to model chemotaxis:

cellular diffusion advection source

— —
Tu, =  diAu —xV-(Su,v)Vv)+ f(u) , xeQ, >0,

chemical signal diffusion  chemical production/consumption

— —
v, = dr)Av + g(u,v) , x€Q,t>0.

(K-S)

Here Q is either a bounded domain with smooth boundary dQ or the whole space RY with N > 1. In (K-S), u is
the cellular density, v is the chemotactic concentration, 7 is the reaction time constant, d; and d, are diffusivities
of u and v, respectively, while S (u,v) models the chemotactic or directed movement. The chemotactic drift
coefficient y measures the relative strength of this directed motion. In a bounded domain, no-flux boundary
conditions are usually imposed on (K-S) to ensure that the cellular aggregation is spontaneous.

One main research focus on the chemotaxis PDE system (K-S) is the study of self-aggregating pattern-
formation phenomena and the determination of whether finite-time singularities can occur. There are two well-
known approaches to study the possibility of such blow-up behavior. The first approach is to analyze the well-
posedness and global existence of solutions, which can rule out the trivial dynamics. The other approach is to
construct spatially inhomogeneous patterns and to study their local and long time behaviors. For a survey of
diverse applications and some mathematical results for (K-S) and its variants see [3, 17, 20-22, 43].

Our goal is to analyze certain pattern-formation properties for a KS model with logistic growth, given by

Tu, = diAu—xV - uVv) + uu(e —u), xeQ,t>0,

v = dryAv—v +u, x€Q,1>0, (1.1
Mx,)=2x,n=0, xX€NQ, t>0,

where u(x,0) = u°(x) and v(x,0) = v’(x) are non-negative initial data. Here S and g in (K-S) are taken to be
linear, i. e. S (u,v) = u and g(u,v) = u —v. In (1.1), f(u) = pu(it — u) describes the cellular population growth
dynamics, where u > 0 denotes the logistic growth rate and i > 0 represents the carrying capacity of the habitat
for cells. Before discussing some previous results for (1.1), we will highlight some results for the case f(u) = 0.

Without logistic growth, (1.1) in 2D admits blow-up phenomenon, which depends on the cellular mass
M = fQ u(x,0)dx. In particular, if M < M, := 4n/y for the bounded domain or M < M, := 8x/y for the whole
space R?, the solution to (1.1) will globally exist [38]; otherwise (1.1) admits finite time blow-up solutions
[10, 16, 39, 46, 50]. For the steady-state problem of (1.1) in 2D, the pioneering study of Lin, Ni and Takagi
[35, 40] constructed large amplitude stationary solutions analytically. Motivated by this seminal work, it has
been subsequently revealed that non-constant steady states with f(x) = 0 can exhibit a wide range of solution
behaviors [7, 11, 15]. In particular, Wei and Del Pino [ 1] constructed a multi-spike equilibrium to (1.1) in 2D
via the “localized energy method”. In contrast to the 2D case, the solution to (1.1) in 1D with f = 0 is uniformly
bounded in time [37, 42]. For the stationary counterpart, spatially non-uniform steady states were constructed in
[9, 18, 26, 52]. In particular, Wang and Xu [52] adopted an innovative bifurcation-theoretic approach to directly
treat the steady-state problem for (1.1) in 1D without relying significantly on the special structure of (1.1).
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With the logistic source term, i.e. when f(u) = uu(it —u), Winkler et al. [36, 60—64] showed that the solution
of (1.1) globally exists in any dimension when the effect of the logistic growth is strong enough. Some results
regarding the construction of spatially inhomogeneous equilibria for (1.1) are given in [25, 31, 33, 34, 51].
However, the dynamics of (1.1) can be highly intricate and are not nearly as well understood as for the case
where f(u) = 0. Hillen and Painter et al. [19, 44] studied (1.1) numerically and revealed the possibility of
periodic and chaotic dynamics consisting of repeated spike nucleation and amalgamation events.

From a formal asymptotic analysis together with numerical simulations, Kolokolnikov et al. [31] showed
that there exists three types of spiky steady states to (1.1) in 1D. In particular, they constructed a locally stable
single interior spike solution, which does not occur in the minimal KS model without the logistic source term.
To more fully understand how a logistic source term allows for spiky patterns, the focus in this paper is to study
the existence, stability, and dynamics of spiky solutions to the 1D version of (1.1), which is formulated as

TU = dithy, — x(Uvy), + pu( —u), x| <1, t>0; u,(x1,1)=0, (1.2a)
vi=dwe —v+u, |x<1,t>0; vi(x1,0) =0, (1.2b)

with u(x,0) = u°(x) and v(x,0) = 1°(x). Our main goal is to construct N-spike equilibria for (1.2) with equal
heights in the limit where the diffusivity d, is small, and to analyze the linear stability properties of these
localized steady-state patterns. Labeling d, = € < 1, the steady-state problem for (1.2) on |x| < 1 is

Aty — x(Uvy)y + pu(it —u) =0, Vv —v+u=0; u(£l) =v(x1)=0. (1.3)
We will also explicitly construct quasi-equilibrium patterns for (1.2) where the spike locations evolve dynami-
cally on some asymptotically long time scale as € — 0 towards their steady-state locations.

We emphasize that our analysis of localized pattern formation for (1.2) in the singular limit d, — 0 is in
distinct contrast to the previous analytical and numerical studies of pattern formation properties for (1.2) that
were undertaken in the more traditional large chemotactic drift limit y > 1 (cf. [34], [33], [25], and [51]). In
the singular limit d, < 1, our analysis and results for the existence, linear stability, and slow dynamics of 1D
spike patterns for (1.2) will be shown to be rather closely related to corresponding studies of 1D spike patterns
for the Gierer-Meinhardt (GM) RD model (cf. [24], [23], [55], [58]).

The outline of this paper is as follows. In §2, we construct N-spike quasi-equilibrium spike patterns for (1.2)
using the method of matched asymptotic expansions in the limit € < 1. Our analysis reveals a novel, analytically
tractable, sub-inner asymptotic structure that characterizes the spatial profile of a localized spike. With regards
to the linear stability analysis, in §3 and §4 we analyze the large and small eigenvalues in the discrete spectrum
of the linearization of (1.2) around an N-spike steady-state, respectively. The spectral properties for the large
eigenvalues are shown to be governed by a nonlocal eigenvalue problem (NLEP), which has a somewhat similar
form to the NLEP that arises in the study of spike stability in the GM model. For 7 = 0, our NLEP linear stability
analysis will provide a range of d; values for which the N-spike equilibrium is linearly stable. Moreover, for
7 > 0, we show that spike amplitude oscillations can occur via a Hopf bifurcation associated with the NLEP.
Hypergeometric functions are shown to be key for accurately calculating the stability thresholds from the NLEP.
For the small eigenvalues, in §4.2 we will determine analytically an explicit range of d; for which the steady-state
solution is linearly stable to translation instabilities.

A differential-algebraic (DAE) system characterizing slow spike dynamics for quasi-equilibrium patterns is
derived in §5. The slow dynamics obtained from this DAE system are favorably compared with corresponding
results computed from full PDE numerical simulations of (1.2). Moreover, in §5.1 we show that the explicit
expressions for the small eigenvalues that are obtained in §4 can also be derived from a linearization of the DAE
dynamics around the steady-state spike locations. In §6, we suggest a few open problems, and we compare and
contrast the analytical approach used and results previously obtained for spike patterns in the 1D GM model
with that obtained herein for the KS model (1.2).



2 Asymptotic Analysis of the N-Spike Quasi-equilibrium

In this section, we construct N-spike quasi-steady state solutions to (1.3) in the limit € < 1 by using the method
of matched asymptotic expansions. We define the centers of the spikes as x;, for j = 1,..., N, and assume that
they are well-separated in the sense that |x; — 1| = O(1), |x; + 1| = O(1), and |x; — x;| = O(1) for i # j.

2.1 Inner Solution

In the inner region near each x; where the cellular density u and the chemical concentration v are localized, we
introduce new local variables y = €' (x — x;), Uj(y) = u(x; + €y), and V;(y) = v(x; + €y), and we expand

U;y) = Ug;(y) + €U0 +..., Vi) =Vo,)+eVi+..., y=€'(x-xj). (2.1)

Here the subscripts 0 and 1 in (Uy;, Vj;) and (U, ;, V;;) are the orders of the expansion, while j refers to the jth

inner region. The leading order terms, found by substituting (2.1) into (1.3), yield on —co < y < oo that
(Up; —xUo;iVy) =0, Upy(0)=0; Vo, = Voj+ Up; =0, Vy,(0)=0. (2.2)

In this so-called core problem, we define y := x/d,. Below, for simplicity, we omit the subscript j for Uy; and

Vo;- Moreover, in the analysis below, terms such as i, and H’ denote differentiation in x and y, respectively.
Upon imposing Uy — 0 as |y| — oo, (2.2) yields Uy = C je)?VO, where the constant C; > 0 will be determined

below. Then, from (2.2), we conclude that the spike profile is characterized by a homoclinic solution V}, to

Vi +0(Vp) =0, —co<y<+o0; V;(0) =0; Vo—=s;, V), V) =0, as [yl = oo, (2.3)
where Q(Vy) := =V + C;e¥"0 and s, satisfies O(s;) = 0, so that C;e** = s;. The first integral of (2.3) is
1, 5 Vo 1 Ci, . -
SO +K(VeiC =0, K(Vo:C)) = ) ) dé = - (s3-v5)+ ;f (70— etv) . (2.4)
Imposing that Vj is even and monotone decreasing in y > 0, we obtain from (2.4) that
Vo =—4—2K(VVy;C;) for 0<y<oo. (2.5)
By separating variables in (2.5), we obtain an implicit equation for Vj, defined on y > 0, given by
Vinax j d¢
v 2KEC)

where v j := Vo(0) is the amplitude of Vj. By setting V((0) = 0 in (2.5) and using s; = C ;e it follows that
Vmax j Satisfies the nonlinear algebraic equation

y = (2.6)

1 1 Ci ., . 5;

—Evfmj + Esﬁ + ;je" max — ;’ =0. 2.7)
In the outer region, defined at O(1) distances from the centers of the spikes, we will construct a solution

where u and v are o(1) as € — 0. As a result, we anticipate from the matching condition that s; = o(1) as € — 0,

which allows us to approximate our implicit form of V|, given by (2.6). To this end, we suppose that s; = o(1)

and vr‘n;x i= o(1) when € < 1, so that (2.7) reduces to
Ci . 1
}femaw ~ Evfm I (2.8)



Next, we introduce new variables z and V,, which constitute a sub-layer within the inner region, defined by

Z=YVmax;» Vo()’) = Vmax;j T VO(Z) .

By using (2.8), and where primes now indicate derivatives in z, we can rewrite the Vj-equation in (2.3) as

2oV = O + V) + 502 =0, o<z < 40, (2.9)

Vinax j 2 max j

In this jth sub-inner region, we expand V,(z) as Vy = Vo(z) + o(1). From (2.9), and assuming that v, > 1,

we obtain an explicitly solvable leading order sub-inner equation
N 1_ 5 - 1 i _ _ _
V(;E) + 5)?e)(Voo =0, so that Voo = — log [SCCh2 (%(Z)] , U= Cje,\/Vo - Cje)((vmﬂxﬁvoo) ) (2.10)
X

We now summarize our results in the inner and sub-inner regions for the leading order profile of a quasi-

equilibrium spike when s; << 1 and Vi, j > 1. In the sub-inner region, where |x — x;| < O (V £ ) we have
max j
o Un~ Yo e Vo ~ v + Vool2) 2.11)
u 0 ZXVman ’ 1% 0 VmaXJ 00\<) » .

where Z = Vpax je‘l(x — x;) and Voo is given by (2.10). In the inner region, where |x — x;| < O(¢), we have
u~ C; "o v~ Vo(y), (2.12)

where y = € '(x — x ;) and Vj(y) is determined implicitly by (2.6). Here, the three constants C;, s; and Vpay
satisfy the two nonlinear algebraic equations C;e**/ = s; and (2.7). The required additional equation arises below
from matching the far-field of each inner solution to an outer solution. The far-field of the leading order inner
solution (2.12) gives only that u ~ v — s; as |[y| — oo, but has no gradient information.

As such, we must refine our inner analysis to one higher order so as to match with any spatial gradients of
the outer solution at the spike locations. To this end, we substitute (2.1) into (1.3) and obtain at next order that

Ut = 0(UoVi) = x(U,Vp)| = dﬁ(US —aly), -o<y<oo;  Uj(0)=0, (2.13a)
1
VI;—Vlj'l‘Ulj:O, —00<y<oo; V{](O):O (213b)
Upon integrating (2.13a) over (0, y), we obtain the flux-balancing condition

,
Uij—)?UuVé—)‘(UoV{,:g—]fo |U5@) - aUo(@)] de . (2.14)

By letting y — oo, and assuming that U;;V(j and U,V ; are negligible in this limit, we obtain from (2.14) that
U;jﬁdﬁf (U2—aUp)dy, as y— +oo. (2.15)
1 Jo

To explicitly determine Uj; as y — +oo, we must estimate the two integrals in (2.15) involving U, and UZ.
By using the sub-inner solution (2.11), we readily calculate that

00 (o6} 1
f Uopdy ~ Vimax ) » f Usdy ~ gfv;lax I (2.16)
0 0



In this way, by substituting (2.16) into (2.15), we obtain that U;j - y)}vfnaxj/ (3dy) as y — +oo. In a similar
way, we obtain from (2.13) that U}, — —,u;?vfmxj /(3d;) as y — —oo. Since the inner solution is expanded as
u~ Uy + €U, j» and Uy, 1s exponentially small as |y| — oo, we obtain for the outer solution that u, ~ €U’ ;as
x — x;and |y| — co. By using the expressions above for U7 as y — +co, we conclude by matching the far-field
behavaior of the inner solution to the outer solution that the outer solution must satisfy the limiting behavior
Uy ~ ieg—zvfm” as  x — xj. (2.17)

This matching condition shows that, in the outer region, u, must have a jump discontinuity across each x = x;.

Finally, we must confirm, through a self-consistency argument, that U,V and UOVI’]. for y — oo can be
neglected in (2.14). To do so, we observe that, although U,; grows linearly for [y| sufficiently large, the expo-
nential decay of V| ensures that U,;V{ can be neglected as y — co. Moreover, since u ~ v in the outer region
when € < 1, we obtain that Uy ~ Vy and U;; ~ V;; as y — +oo. Combining these estimates with Uy — s; as
[y] = 400, we obtain UOV{J. =~ sjUij < U{j in (2.14) since s; < 1. As a result, our assumptions that U;;V/ and
Uonj can be neglected in (2.14) as |y| — oo are self-consistent.

2.2 Outer Solution and Matching

Next, we construct the solution in the outer region. When € < 1, we expand # and v as u = u, + o(1) and
v =v, +o(1). From (1.3) for v we get v, = u,, so that (1.3) for u reduces to

N
Uoxs = W(tottys)s + Suty(@ =) =0, xe (=1L D\ ;. (2.18)
d, -

There are two ways to approximate the solution to (2.18). The first approach is to introduce the new variable

W= u, —%(uﬁ. (2.19)

In terms of w, we obtain from (2.18) that w satisfies

_ _ N
ulra 2 (2 u) — 2w]

wt -5+l -=)Vv1l-2 —1|=0, -1,1 . 2.20

w +d1[ + B W/\/-I-X xe( )\ij ( )

=2 =2
X X X j=1

We have /1 — 2yw ~ 1 — yw since u, is small in the outer region. With this approximation, and setting w ~ w,,
we obtain from (2.19) and (2.20) that w, ~ u, in the outer region, where w,, solves the leading order problem
up

N
Worx + =W, =0, xe(=1,D\[ ]x;. (2.21)
di pl !

Observe that (2.21) follows exactly from (2.20), with no approximation, for the special parameter set it = 2/j.
The second way to approximate (2.18) is to collect the leading order terms in (2.18) directly. In fact, since u,
is small, (u,u,,), and u?, are higher order terms in the outer region. By neglecting these terms in (2.18), we also
obtain (2.21) since u, ~ w,. Finally, for (2.21), we require from (2.17) that w, must satisfy the jump condition

w(,x(x;f) — wox(x]f) = %‘vi’na”e across each x;. In this way, we obtain the leading order outer problem
d W <
Low, = —lwoxx + uw, = _XEZ vfnaxké(x -x), —-l<x<l1; Wor(£1) = 0. (2.22)
H 3 k=1



To analyze the solvability of (2.22), we first observe that (2.22) admits the nontrivial homogeneous solution

m(x+ D
2

4uii
m2n?’

) , when d; =dir, = form=1,2,.... (2.23)

Won(x) 1= cos(
As shown in Appendix A, the interpretation of these critical, or resonant, values of d; are that they correspond
precisely to where there is a bifurcation from the spatially uniform solution v = u = 0 for (1.2) on |x| < 1.
This trivial solution for (1.2) on |x| < 1 is linearly stable only when d, > 4uii/n*>. When d; = d,r,,, there is a
solution (non-unique) to (2.22) only if a compatibility condition is satisfied. However, as shown in Appendix A

this condition is automatically satisfied for an N-spike steady-state solution.
To solve (2.22) when d; # d7,,, we introduce the Helmholtz Green’s function G(x; x;) satisfying

d
G+ G =8(x—x), -1<x<I; G.(£1;x)=0. (2.24)
u

For d| # d,r.,, the explicit solution to (2.24) is

cos(6(1+x)) , “1<x<x , —
G(x;x0) = | [tan(8(1 + x)) + tan(8(1 — x)] ™" { @l ¢ 0= JEL . (225
l/tdl cos@(I=xp)) ° xk<x<1, d1
In terms of (2.25), the solution to (2.22) when d; # dir,, 1S
oy &
Uy ~ W, = ?XEZ v?naka(x; Xp) . (2.26)
k=1

Our final step in the construction is to match the inner and outer solutions to obtain the third algebraic
equation needed to determine s;, C; and vy j. Since w, ~ u, in the outer region, we impose w,(x;) = s; to get

N

i= 36 maxk

k=1

G(xjix), j=1,...,N, (2.27)

when d; # dyr,,. Combining (2.27), (2.7), and C;e**/ = s;, we obtain the following coupled algebraic system:

1 1, C; s P
Cpe™ =55 =0, =V 357+ L= =0, = f €Y ViGlix).  (228)
k=1

Finally, we observe that the matching condition (2.17) between the inner and outer solutions holds only when
the spike locations x; are equally spaced, and are given by x; = x? where

2j-1
PO

0 e =L (2.29)

N
Moreover, in (B.9) of Appendix B we calculate )} G(x;; x;) explicitly to show that it is independent of j when
k=1

X;= x?, X = xg, and d; # dyr,,. As aresult, for equally-spaced spikes we have s; = 59, where s, is given by

2 0 _ al 1 [ (6
So = ?agvfnaxoe ~ €dy ‘[m U(Z, dy, with a, := kZ::‘ G(x?;xg) = 3 @ cot(N) (2.30)



When x; = x? and d| # d 1, our N-spike quasi-equilibrium is the approximation to a true steady-state solution
of (1.3). Setting s; = 5o for all j, we obtain from (2.28) that C; = Cy and viax j = Vmaxo for all j, satisfy

1, 1, G, S0 X _ 3

Co=s0e™™ . —SVio+ 5%+ ;Oewmaw -7 " 0. where sy = Z-€vy, ot (2.31)
with a, as given in (2.30). By combining (2.31), we obtain a single nonlinear equation for vy, given by
1 2 2 _ 2
_Evrznaxo 9)( vmax Oa262 + 3agvr3naxOee)(vmﬂxo_%ag)(zvgmm)E - §ag"r3nax06 =0. (2.32)
In terms of the solution vy, to (2.32), 59 and C are given by (2.31). Moreover, assuming vyaxo > 1, vmax 0€ <
1, and a, > 0, a dominant balance argument on (2.32) for € < 1 yields that
1 SO YV 2 YVma
TR T U @3)

This shows that v, 0 = O(—log €) > 1, so that the consistency condition vfnaxoe < 1 is satisfied. We summarize

our results regarding the construction of the N-spike steady-state in the following formal proposition:

Proposition 2.1. Let € < 1, assume that di # di\r,, where di7,, is defined in (2.23). Label the set I :=
{1,2,...,N}. Then, the N-spike quasi-equilibrium to (1.3), defined by (uy,v,), has the following asymptotic
behavior in -1 < x < 1:

L2 sech?( it -y {x eR|lx—x < O(llogel) Tk € I},
w(r) ~1 Cret = xe{x e R|O(55) < v - xl < O(e), T e T,
2%6 ]ﬁl v GG X)), X € {x € R| O(e) < |x — xi|, Yk € I} ,
(2.34)
Vimaxk + = log [SCChZ(XM:xk))] , XE {x € R| |x — x| < O(|1oge|) dk € I},
n ~{ Vi), x e |x e B O( ).
X 2 Vi G000, xe{xeR|OE) < |x-xl. VkeI}.

Here y = x/d,, G(x; xi) is defined by (2.25) and V) is given implicitly by (2.6). Moreover, the constants Viax j,
sjand Cj are determined by (2.28). When x; = x(;, as given in (2.29), the spikes are equally spaced and (u,, v,)
becomes an approximation to the true N-spike equilibrium solution (u,,v,.) to (1.2), in which

Vmaxj = Vmax0> Sj = 50> Cj:CO, for j=1,...,N.
In terms of the solution vyaxo to (2.32), so and C are given by (2.31) where ay is defined in (2.30).

When d, = dir,, form = 1,...,N — 1, we show in Appendix A that for a steady-state solution where the
spike locations x; satisfy (2.29), the outer problem (2.22) has a non-unique solution that can be found using a
generalized Green’s function. Finally, to establish the range of d; where our steady-state analysis is valid we
must also ensure that the outer solution w, is positive on |x| < 1. This constraint, discussed in Appendix A,
motivates the following key remark that introduces the notion of an admissible set T, for d;.

Remark 2.1. For an N-spike steady-state solution, where the spikes are centered at (2.29), the range of d, where
(2.22) has a unique and positive solution w, is characterized by an admissible set T, which we define by

4uii
min?’

4uii

Z::{d1|d1>d1pN::W,

dy # diry = m=1,...,N—1}. (2.35)



For d, > d,,n, we have a, > 0 in (2.30), so that so > 0. As d\ — d,py from above, a, — 0% and vy — +00.
Moreover, when d; € T,, the outer solution w, on the interval of width 2/N between two adjacent spikes, which
is asymptotically close to the uniform state u = 0, is linearly stable. At the positivity threshold d, = d,,y, the
trivial solution u = 0 on a domain of length 2/N undergoes a Turing instability and this threshold appears to
trigger a nonlinear spike nucleation event for (1.2) between adjacent spikes (see Figure 7 in §4.2 below). In
contrast, for an N-spike quasi-equilibrium pattern, the outer solution w, between spikes is positive when

, Lyax = max{lx; + 15 xy = 105 |xj0 — x5, j=1,...,N}. (2.36)

2.3 Global Balancing and Comparison with Numerics

As an analytical confirmation of our asymptotic results, we show that they are consistent with a global balancing
condition. By integrating (1.3) for u over |x| < 1, we obtain that the global balance condition

1
f ulm—u)dx =0, (2.37)
-1
must hold. Defining f(u) := u(iz — u), we decompose the left-hand side of (2.37) into the two terms
I I

1 1 1
f u(li —u)dx = f [f(u) — f(so)] dx+f f(so)dx . (2.38)

-1 -1 -1

Since the inner and outer regions both contribute to /;, we decompose /; as I1;+1;,, where I, and [, represent the
N inner integrals and the outer integral, respectively. For I}, since u — sy asy — +co, we have f(u)— f(s9) = 0
as y — +oo. Therefore, by using (2.5) and since there are N identical inner regions, we identify that

o f(Coe®) — f (o)
V—2K(&; Co)

where K is given by (2.4). However, to estimate (2.39) we can more simply use the fact that Uy > 1 in each
sub-inner region. In this way, by using (2.16), we obtain that

I ~2N6f [f(Uo) = f(so)ldy = 2Nf (2.39)

. 2
I ~2N6j; Uy — US) dy ~ 2Niutvyax o€ — §N/\7Vr3naxof- (2.40)

Next, by using the outer solution (2.26), together with f G(x; xk) dx = 1/u, we estimate the outer integral as

1 1
< [ sopdr- [ g,
1 N 2 1
3Xuvmax062f G(x; X)) dx — ( V2 € [1[;G(x;x2)] dx—j; Sf(so)dx,

2

3NXVmaon f f(so)dx +O(EH (2.41)

We substitute (2.40) and (2.41) into (2.38) to find f_ 1] u(it — u) dx = O (évmaxo) < 1, and so the global balancing
condition is satisfied to this order as € — 0.



d» d, = X | U | Unax (num) Mmax(aSY) Vinax(nUM) Vmax(asy)
0.02 1 2| 3.8935 3.4633 2.6937 2.6318
0.004 1 2 5.2575 5.0329 3.1702 3.1727
0.002 1 2 5.9773 5.8239 3.3955 3.4129
0.02 10 2 3.8599 3.1702 2.6623 2.5180
0.004 10 2 5.0958 4.6664 3.1099 3.0550
0.002 10 2| 57514 5.4210 3.3218 3.2927
0.02 1 3 5.9159 4.4409 3.3970 2.9802
0.004 1 3 7.3629 6.2531 3.7971 3.5364
0.002 1 3 8.1535 7.1617 4.0023 3.7846

Table 1: The asymptotic results for uy,x and vpax, obtained from (2.34), for various d,, d; and & are compared with
FlexPDE7 numerical results.

dy |dy=x || upgy(um) | upgry(asy) | Vary(num) | vpary(asy)
0.02 1 2 0.4799 0.5195 0.5047 0.5195
0.004 1 2 0.3744 0.3923 0.3734 0.3923
0.002 1 2 0.3340 0.3412 0.3336 0.3412
0.02 10 2 0.4295 0.3824 0.4567 0.3824
0.004 10 2 0.3166 0.3047 0.3166 0.3047
0.002 10 2 0.2790 0.2695 0.2790 0.2695
0.02 1 3 0.3350 0.5538 0.3537 0.5538
0.004 1 3 0.2878 0.3883 0.2867 0.3883
0.002 1 3 0.2627 0.3305 0.2622 0.3305

Table 2: The asymptotic results for Updry and Vpary, obtained from (2.34), for various d,, dy and u are compared with
FlexPDE7 [14] numerical results.

1 Single Spike p Double Interior Spikes
T T T T T T T T
cellular density ug cellular depsity u
—— chemical concentration A —— chemical ¢oncentration v
10 5
8 4
3| 3|
6 3
4 i 2
i i
2r i 1 1r il il
il i \ i K
il i \ / \
i\ /) \3 /) \}
() L L L L = L Il L L L () L L L L L L L L L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 08 06 -04 -02 0 0.2 0.4 0.6 0.8 1
X X
(a) a one-spike steady-state (b) a two-spike steady-state

Figure 1: Numerically-computed one and two-spike steady-state solutions of (1.3) with dy = y = 1, u = 2, d, = 0.0005
using FlexPDE7 []4]. The solid red curves are the cellular density u, while the dotted blue curves are the chemical
concentration v. Observe that u and v increase in the outer region.
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For a one-spike steady-state, we now compare our asymptotic results with corresponding full numerical
results computed using FlexPDE7 [14]. For u = 0.25, in Table 1 we compare asymptotic and numerical results
for the maximum values of u and v for both # = 2 and for # = 3. A similar comparison, but for the boundary
values of u and v are shown in Table 2. We observe that the asymptotic results in (2.34) more closely approximate
the numerical result when # = 2 than when & = 3. This improved agreement when # = 2 is due to the fact that
the /1 — 2w, ¥ term in (2.20) vanishes only when ii = 2/¥, and so the error does not include any O(|log €|™")
correction term as it does for the case when it = 3. In Figure 1 we plot the numerically-computed one-spike and
two-spike steady-state solutions computed using FlexPDE7 [14]. We observe that the half-profiles of # and v are
not monotone decreasing and so their spatial behavior is rather different than for spike patterns of the classical
KS model [52] without the logistic growth term.

2.4 Formulation of the Linear Stability Problem

To formulate the linear stability problem for the steady-state solution, denoted by (u.,v,.), we introduce the
following time-dependent perturbation (i, v) to (1.2):

u(x, 1) = u(x) + e’ e(x), v(x, 1) = vo(x) + eMy(x), (2.42)

where ¢ < 1 and ¥ < 1. Upon substituting (2.42) into (1.2) and linearizing, we obtain the spectral problem

;_/1¢ = ¢xx _/\_/(uelpx)x _)_((Vexqb)x + dﬂ(ﬁ - 2u€)¢5 -1<x<l1 5 ¢x(i1) = O, (2433)
1 1
W=eeY,—y+d, —-1<x<l1; yxl)=0. (2.43b)

It is well known that linearized eigenvalue problems arising from the analysis of localized spike patterns of RD
systems have two classes of eigenvalues (cf. [24]). The first type is referred to as the large eigenvalues since they
are bounded away from zero as € — 0. The second type are the small eigenvalues of order o(1) as € — O.

In §3 and §4 we will analyze the large and small eigenvalues for (2.43), where the cellular diffusion rate d,
is the main bifurcation parameter. Recall that d; € 7, where the admissible set is defined in (2.35). Our main
goal is to determine critical thresholds for d; € 7, depending on N, that will provide the range of d; for which
all large and small eigenvalues satisfy Re(41) < 0. On this range, N-spike steady-states are linearly stable as
€ — 0. Oscillatory instabilities in the amplitude of a one-spike steady-state are also shown to be possible as 7 is
increased from a Hopf bifurcation of the large eigenvalues.

3 Analysis of the Large Eigenvalues

This section is devoted to the study of large eigenvalues for an N-spike steady-state. These eigenvalues are
bounded away from zero as € — 0. To begin, we introduce local variables defined in the jth inner region by

y=€l(x=x), Dj(y) :=p(xj+ey), V() :=vlx;+ey), 3.1

and we expand

D;(y) = Og;(y) + ezd)lj(y) +... W) =Yy + 62‘1’1/()1) +..., A~A. (3.2)

Since the spike profile (U, V;) for the steady-state is the same for each j, as similar to (2.1) we expand

Uiy) = Ugy) + €U ) +... V) =Vo() + Vi) +.... (3.3)

11



Upon substituting (3.1)—(3.3) into (2.43), we obtain the following leading order problem on —co <y < co:

0 = @p; — ¥(Uo¥y)) — ¥ (Vo®o))'; ®;;(0) =0, (3.4a)
Wo; =¥ — Vo + o;;  ¥;;(0)=0. (3.4b)

Recalling that Uj = y U,V from the core problem (2.2), it is convenient to define go; by

_ D

8oj = Uy —x Yo, - (3.5)

In terms of g, the two problems in (3.4) are transformed on —co <y < oo to
(Vo) =0. ,0)=0: AW, =Py, = Wo; + YUoWo; + Ungo;.  P);(0) =0. (3.6)

Imposing that g, is bounded as |y| — oo, we obtain from the first equation of (3.6) that go; = C;, where C; is to
be determined. Then, the second equation in (3.6) becomes

/iO\IJQj:lIJgj—‘POj +)_(UQ‘P0]‘+€]'U0, —00 <y<oo, \PE)](O):O (3.7)

Before formulating the outer problem, we must determine the far-field behavior of the inner solution. In the
outer region, we obtain from (2.43) that, for e < 1, ¢ ~ (4o + 1)iy. As aresult, we must have @y; ~ (1g + 1)¥y;
as y — *oo. By using this relation, together with go; = C’j and Uy ~ sy as |[y| — oo, (3.5) yields that

D,

(D()j = éjU() +)_(U()\P0j ~ éjS() +/\_/S0/10 1

as |y| — oo. Since sy < 1, this expression provides the leading order far-field behavior
(D()j ~ éij, as |y| — 00, (38)

Next, we construct the outer solution. Since u, = v, = O(sp) < 1 in the outer region, (2.43a) yields that

¢ ~ ¢,, where

A
0 where f=i--20, (3.9)
/ 7

From (3.8), one matching condition is ¢0(x3) = C;so, while the other is obtained by deriving the appropriate
jump condition for [@,.]; := ¢0x(x?+) — ¢ox(x?‘). To derive this jump condition we write (2.43a) as

d
_1¢0xx+a¢o:0, -1<x<1, x#x
u

d . _ _
b+ 1 = 2+ KU+ RO (3.10)
We integrate (3.10) over an intermediate scale x? —o<x< x(j). + 0 where € < 0 < 1 and we pass to the limit

o — 0, but with o-/e — oco. In terms of the inner coordinate y, where u, ~ Uy and ¢ ~ @, and upon using the
facts that u, = v, = O(s¢) < 1 at x = xY + o, we obtain that the jump condition for the outer solution is

T
d (o]
_1[¢ox]j ~ 2Ef UO(DOj dy
M oo

Then, by using @y; ~ UOC’J- + xUo¥y;, as derived from (3.5) with go; = C‘j, we conclude that

d ©
;1[¢(,x]j~2ef (USC; + xWo;U3) dy . (3.11)

12



In this way, we obtain the following multi-point boundary-value problem (BVP) for the outer solution ¢,:
d
—1¢()xx+ﬁ¢(,:0, -1<x<1, xix?, j=1,...,N; Gor(£1) =0, (3.12a)
u
d 0 ~ ~ .
E‘[qsox]j = 2€f (USC;+ 0¥o;U05) dy,  ¢o(x) =Cjso. j=1.....N. (3.12b)

To solve (3.12), we introduce an eigenvalue-dependent Green’s function G,(x; x;) defined by

d
—IG/lxx+LAtG,1 =o0(x—xp), -l<x<l1; Gi(xl;x) =0, (3.13)
u

which exists provided that d, # 4uii/ (m*n?) form = 1,2, .... When these constraints are satisfied, the solution

to (3.12) is represented as the superposition
N oo
G, =26 f (PUSPor + CiUg) dy Ga(x: x) . (3.14)
k=1 Yo

By imposing ¢0(x‘]).) = 5,C ;» and recalling from (2.30) that sy = ea, f_ 0:0 Ug dy, we obtain from (3.14) that
o) N 00 o) N
Ci=———— f YUY dy)G a0+ =) GG (2% 22), (3.15)
=T wa ot )o. ) Sy e )

where a, was defined in (2.30). Then, by letting I be the N X N identity matrix, and introducing

Ga(x);x]) - Ga(as xy) o Woi
G = : - . ., C=| 2 |, Woi=| ot ], (3.16)
Ga(x%: %) o Ga(x%:aR) Cw Yon
we can write the linear algebraic system (3.15) for C j»with j=1,..., N, in matrix form as
2 ~ 2 Y 0
(—gﬂ - I)C e e G (3.17)
ag ag Loo UO dy -

By combining (3.7) with (3.17), we obtain a vector nonlocal eigenvalue problem (NLEP) given by

[ U2BY, dy

Yo — Yo+ xUo¥o — xUp—=
' [ Usdy

= /lOlI’() , (318)

where, to leading order, we have ¥y — 0 as |y| — oco. Here 8B is the N X N matrix defined by

2 (2 !
BZ:—(—QA—I) Qﬂ. (319)
ag

ag

Next, we diagonalize the vector NLEP (3.18) by introducing the orthogonal eigenspace of B as
qu:a/jqj, j=1,...,N. (3.20)
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Denoting Q as the matrix of eigenvectors q; (as columns), we obtain 8 = Qdiag(ey,...,ay)Q . By defining
¥, = Q" 'W¥,, we obtain that (3.18) reduces to the following N-scalar NLEPs, where « is any eigenvalue of 8:

[ Us¥dy

YW pUGY — apUg
' " [T Utdy

= AV, Y —0as |y — . (3.21)

Since Uy > O(1) in the sub-inner region, we will transform (3.21) to the z-variable. Recall that in the jth

sub-inner region, we have from Proposition 2.1 that

1 _
= vy, y=Elmx), g~ gprh et (X)) (3.22)

By introducing the re-scaled coordinate 7 := yz/2, and defining
Uy := 2sech®(?), (3.23)

we readily derive from (3.21) that we must analyze, on —co < 7 < +0o, the approximating NLEP given by

i} _ [ 0vaz 4
Y + Ug¥Y — aUp—— === (Ao + DY, Y bounded as |z] — 0. (3.24)
j;oo U(% dZ X vmaxO

3.1 Competition Instabilities: 7 = 0

From the NLEP (3.24), we now determine the conditions on d; € 7, u, it and N such that the N-spike equilibrium
is linearly stable with respect to the large eigenvalues when 7 = 0. To do so, we must first determine explicit
formulae for the eigenvalues of the matrix 8 in (3.19). Then, by analyzing the NLEP, we must calculate the
critical threshold a,. > 0 such that in the restricted subset for which Ay # 0, we can guarantee that when a < a,
the principal eigenvalue of (3.24) has a positive real part, and that when @ > @, it has a negative real part.

One can immediately conclude that when the minimum eigenvalue of matrix 8, labeled by a,;,, satisfies
Apin > @, the NLEP (3.24) with 7 = 0 has no eigenvalue with a positive real part in the subset for which 4y # 0.
We will calculate the explicit range of parameter values d; € 7, u, it and N to ensure that the condition «,,;, > @,
holds, which guarantees that the N-spike equilibrium is linearly stable with respect to the large eigenvalues when
7 = 0. Our results will be expressed in terms of a threshold value in the diffusivity d;.

In Appendix B we show that when d; € 7, the eigenvalues «; of 8 when T = 0 are related to the eigenvalues

o ; of the Green’s matrix G by
20 ]
o= ———, for j=1,...,N, (3.25)
200, — 0
where o ; is defined in (B.8) upon setting 7 = 0. The minimum such eigenvalue is @, = ay.

Next, we focus on the computation of the critical threshold «.. In fact, if we entirely follow the method in
[56] to study (3.24), we readily obtain that a. ~ 1. However, the next order term in «. is O(|log e|™!) since it
involves vi.xo. This term is key for obtaining accurate predictions of the stability threshold when 7 = 0. To
obtain this refined asymptotic formula of a., in Appendix C we transform the NLEP into an ODE that can be
solved with the use of hypergeometric functions. We summarize our rigorous results in the following theorem:

Theorem 3.1. Consider the following nonlocal eigenvalue problem (NLEP):

- - f_o; U?Y dz _ 4
{ Y+ Uo¥ = nloFms = g —(o+ DY, —o0 <z < +o0, (3.26)

Y boundedas |z] > .

Here vy > 0 and Uy is given in (3.23). Let Ay # 0 be the eigenvalue of (3.26) with the largest real part. Then for

Vimaxo > 1, we have Re(1y) > 0 when yy <y, :=1— 53 3 Alternatively, we have Re(1y) < 0 when Yo > Ve

2¢Vmax0 "
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Proof. The proof of Theorem 3.1 is given in Appendix C. |

We observe from Theorem 3.1 that when vy,,x is sufficiently large, we have y. ~ 1, However, the correction
term is needed to obtain an improved result. Since the minimum eigenvalue of 8 in (3.25) occurs when j = N,
we use Theorem 3.1 to conclude for 7 = 0 and d; € 7, that Re(1y) = 0 when

2
_ON - 3 , (3.27)
2O-N — 0] 2/\/Vmaxo
where 0 and oy are given in (B.8) when 7 = 0. This yields that
ﬂ _ e/(2f)+ 1 1_/\_/VmaX0 (3 28)

o1 e/2f)—cos(x/N) 2 3 °
where e/(2f) = —cos (20/N) with 6 = \/% can be calculated from (B.6). By isolating cos (20/N), we get

where a = XVmax0 - l
’ ' 3 2

(29) 1 —acos (/N)
cos|—|=
a+1

Upon solving this expression for d;, we can obtain a critical threshold in terms of y, i, y and N. In this way,
owing to Theorem 3.1, we summarize our results for the case 7 = 0 as follows:

Proposition 3.1. Assume that dy € T, and T = 0. Let Ay # 0 be the eigenvalue of (3.24) with the largest real
part when T = 0. Then, for N = 1,2, ..., Re(dy) < 0 when

4uii
N2 (arccos(ny))* ’

1_ N Y max 1
where ny = M , a:= XVmaxo —. (3.29)

di <diey = a+1 3 2

Here vy is determined by (2.32). Alternatively, when d, > d,.n, we have Re(dy) > 0. Since d.; = oo when

N =1, we conclude that a single interior spike is always linearly stable with respect to the large eigenvalues for
any d, = O(1) when v = 0.

Proposition 3.1 provides the stability criterion for an N-spike equilibrium with respect to the large eigenval-
ues when 7 = 0. To relate d;.y to the thresholds d;,y and d,r,, of the admissible set 7, as defined in (2.35),
we observe from (3.29) that since vy.xo > 1, we have ny > 0 for N = 2, and ny < 0 for N > 3. Therefore,
0 < arccos(n,) < /2, while /2 < arccos(ny) < m for any N > 3. As a result, for e — 0, we conclude that

d]pz < lel < d]cz 5 for N = 2, dle < dlcN < lema for N >3 and m < N/2 (330)

However, since vy.xo depends weakly on d;, the threshold d.y in (3.29) is a weakly nonlinear implicit
expression that must be solved numerically. To illustrate our results, we chose d» = 0.0004 = €2, i1 = 2, u = 1
and y = 1, and we calculate the thresholds d.y for N = 2,3,4 as

dix = 2.36 (N =2); di3 = 0.74 (N = 3); diea 039 (N=4). (3.31)

When N > 1, d;.y has the limiting behavior d,.y ~ 4uiiN=2/ [arccos(nm)]2 where 1., := (1 —a)/(1 + a). This
limiting result is valid only for N < 1/, owing to the fact that steady-state analysis in §2 requires that d, /€? > 1.

In summary, our analysis has shown that a sufficiently large cellular diffusion rate d; will trigger a com-
petition instability for an N-spike steady-state solution when 7 = 0, To partially confirm our theory, in Figure
2 we show full numerical results computed from (1.2) showing a competition instability for a two-spike quasi
steady-state solution as d; slowly increases in time. This initial instability is found to lead to a nonlinear process
that annihilates one of the two spikes. This observation suggests that competition instabilities for the KS model
(1.2) are in fact subcritical, as is well-known for the 1D Gierer-Meinhardt RD model [29].
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Figure 2: Full PDE simulations of (1.2) using FlexPDE7 [14] illustrating a competition instability of a two-spike steady-
state when d is increased slowly in time t. Left and Middle: snapshots of (u,v) at three times, showing the collapse of a
spike, withd, = y = 1, 1 = 2, d = 0.0004 and u = 1; Right: the cellular diffusion d, versus time. In subfigure (c), the
dotted line d,., represents the stability threshold of large eigenvalues computed numerically and the solid line is the slow
increasing ramp for d; versus ¢. Observe that di» ~ 2.5 agrees rather well with the analytical results in (3.31) and (3.40).

3.1.1 Invertibility of the Jacobian Matrix for s;

We now provide an alternative approach to estimate the competition instability threshold when 7 = 0. We will
show that this threshold closely approximates a bifurcation point associated with the linearization of the coupled
nonlinear algebraic system (2.27) that was derived in our analysis of quasi steady-state patterns.

We begin by writing (2.27) in the vector form F(sy,. .., sy) = 0 with F = (Fy,..., Fy)!. By differentiating
F; with respect to s; we obtain, in terms of the Kronecker symbol ¢;;, that

OF; ,

a—sf(sl, ce s SN) = O = 260V Vinax ;G (X0 X)) 5 (3.32)
J

where from (D.4) of Appendix D we have that

dmax' max j 2 -
N i 4 8 gmax,-:=(1— ) _ (3.33)

max j * — —
de XS X Vmax j

We now evaluate the Jacobian matrix J = (g—f)N N at the equilibrium solution where x; = x‘;, s; = S0,
oJ X

Vmax j = Vmax0> ANd {maxj = §o = (1 = 2/(/\7vma,(o))_l for j=1,...,N with x? and s, defined by (2.29) and (2.30).
We seek to determine the largest value of d; in the admissible set 7, of (2.35) where the Jacobian matrix is
not invertible. Upon substituting (3.33) into (3.32), and evaluating the resulting expression at the equilibrium
solution, where we use sy = 26)2agv3 o/3 from (2.30), we obtain that

max

OF; 3 G(x}; x9)
—(s15. -+, ~ 0 — — . 3.34
g Ot~ (2 _vaaxo) " (3.34)
In this way, the Jacobian matrix J at the equilibrium solution is given for € — 0O by
3
J~1- (_—) & . (3.35)
2 — XVmax0/ dg
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Here G is the Green’s matrix (G(x?; x(}))NxN for T = 0, which is evaluated at the equilibrium spike locations.

Whend, € 7., it follows from (3.35) that the eigenvalues A 7 ; of the Jacobian J are related to the eigenvalues
o ; of the Green’s matrix G, obtained by setting 7 = 0 in (B.8) of Appendix B, by

3 (Tj

Adg;i =1 - —nn——
I 2 = XVmax0) 01

(3.36)

where we used o = a,. The Jacobian matrix is singular when A4 ; = 0 in (3.36), which yields the condition

O-j 2 )_( Vmax 0
(O] 3 3

) (3.37)

The largest value of d; where the Jacobian is singular is obtained by setting j = N. By using (3.28) this yields

oN cos (26/N) -1 2 XVmaxo (3.38)
o1 cos(20/N) + cos (r/N) 3 3 7 '
where 6 = +/uii/d,. Upon solving this expression for d;, we obtain the following critical threshold for d;:
4uii X Vinax 2
e, = H , N=12,..., where q =m0 = (3.39)
Nz[ (Lot 2 3 3
arccos T)]

We remark that the leading order term for a; given in (3.39) is jyvmaxo/3, Which agrees precisely with the
leading term of a defined in (3.29), as derived by analyzing the zero-eigenvalue crossing condition of the NLEP.
This observation partially confirms our asymptotic results given in Proposition 3.1. For the parameter values
d, =0.0004, 5 =2, =1and y = 1, we use (3.39) to calculate d},, = co and

dr, ~291 (N=2);  d,~097 (N=3); di,~054 (N=4). (3.40)

3.2 Hopf Bifurcations: 7 # 0

In this subsection we focus on the possibility of an oscillatory instability in the amplitude of a single steady-state
spike for (1.2) on the range d; € 7, where 7 # 0. In particular, for the linearization of a one-spike steady-
state solution we will show that there can be a Hopf bifurcation leading to an oscillatory instability in the spike
amplitude. More specifically, by analyzing (3.24) we will compute the threshold T = 7. > 0 such that the
principal eigenvalue of (3.24) has the form Ay = idy where i :== V-1 and Ay > 0 is real.

As shown in (C.7) of Appendix C, if we define w = /U, we can transform (3.24) to

" W dz 4-A Ao + 1
N (Coy, BN Sl

Pos: + WP — & .
— ’ =2.2 :
Loo W4 dZ 2 T X vmax()

(3.41)

By using the results in Appendix B for @, we obtain that the NLEP multiplier « is

-1
TA
A 7, B0 (9 B u_;) i
k=41-=||3-,[1-2 , where 0= /=5,
4 it tan 6 d;
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and where we have taken the principal branch of /1 — L—Au" Next, we transform (3.41) to an algebraic equation
in terms of hypergeometric functions. By using (C.34) of Appendix C, we choose §; = VA/2 to get

4 1 5
- =(1-61) "4 F5(1, > 2,2;2-61,2+61,531)

K 2
A (3)”5' r'(l+6)r(3)

+ p—
3 I'G+6)

3F2(1+61,51—1,14‘51;2514‘1,%4‘61;1), (342)
2 2 2
where VA is taken as the principal branch. In terms of T = 7, and Ay = idy, (3.42) is a single complex algebraic
equation that can be separated into real and imaginary parts to obtain a coupled algebraic system for 7. and Ay.
The results obtained by solving this system numerically are shown in Figure 3, where we setu = 1, it = 2,
X = 1, and d, = 0.0004. Figure 3a shows that the spike will develop amplitude oscillations when 7 increases
passes through 7.. The threshold 7. is seen to be a decreasing function of the cellular diffusivity ;. Figure 3b
shows numerically that the transversality condition of the Hopf bifurcation is satisfied, as unstable eigenvalues
enter Re(4y) > 0 when 7 increases above 7.

Hopf Threshold Complex Eigenvalues
T T T T T T T

20 -

Im()\o)
(=)

10 -

I I I I I I | R I I I I I I I I
1.4 1.6 1.8 2 22 2.4 2.6 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

d Re(A)
(a) Hopf threshold (z., A1) (b) Complex Eigenvalues for (3.41)

Figure 3: The Hopf bifurcation threshold (1., Ay) (left panel) and the path of the complex spectra of (3.41) as T is
increased above 7. for the linearization of a single steady-state spike, as obtained by solving (3.42) numerically. In (a),
the solid blue line represents the Hopf threshold 7.(d) and the dotted red line denotes the critical eigenvalues idy. The left
panel (a) shows that the Hopf threshold 7. decreases as the cellular diffusivity d; increases. The right panel (b) shows the
path of the complex spectra for d; = 2 as 7 increases. We observe that for 7 > 7. unstable eigenvalues enter Re(4y) > 0.

4 Analysis of the Small Eigenvalues
In §3 we analyzed the linear stability of an N-spike steady-state solution with respect to the large eigenvalues of
the linearization. In this section, for d; € 7,, we will formulate a matrix problem for the small eigenvalues of

order O(e’v? ) in the linearization, and we will calculate an explicit asymptotic formula for them.
To begin the analysis, we differentiate (1.3) for v to obtain

LeVe, = —llyy where Loy := €y — . 4.1)
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Our first goal is to obtain an approximate expression for (4.1) in terms of the inner coordinate near a spike.

ith spike, we find from Proposition 2.1 that the composite expansion of the quasi-equilibrium

ith

Focusing on the

solution u, can be written near the ;- spike as

uy ~ 5;(x)XV00 -y = e l(x—x;), j=1,...,N.

Here V 0()’) iS the inner SOlutiOIl near the ]t Spike and
S (.x) = _Xf NE V3 (.x) G(.x Xk) _] - 1 N (4 )
J . 3 - max k ’ ’ DI . 2

Since s¢ = o(1), we find e ¥ ~ 1, so that
Uy ~ sj(x)e)?v"(y), y= e_l(x—xj), j=1,...,N.

th gpike that

We differentiate u, with respect to x to get for the j
Uge ~ S (x)eX"0 + e_])zsj()c)e’?v0 Vi, 4.3)

and by differentiating (4.2) we obtain that

w|'\?

N N
$76(0) = 20€ ) V(0 [0vmai(0)] GO X0 + 2€ D v (0 Gl 1) (4.4)

k=1 k=1

Noting from (D.5) of Appendix D that we can approximate

éumaxk 2 -
axvmaxk(x) ~ T 8xsk(x) s (maxk =(1- - s k= 1, ...,N,
X Sk X Vmax k

we obtain that (4.4) becomes

N — N
$j2(X) ~ —2€ ; Vet (Dl S G + %e ; V(G55 31)
At the steady-state, for which x; = x?, for j=1,...,N, we have vy (x) =0 (%), sp(x) = s°(x), and &o = Cmaxk-
Therefore, for the jth spike evaluated at the steady-state we have
I I
0 259(x)
LDmg ~ =g el (0] Z G(x% x0) + —e (0> ()] Z G (x% x?) (4.5)

Next, since y = € '(x— xo) we find from S°(y) := so(x(]). +ey)and VO (v) := vmax(x +€y), where S (resp. V°_)

max

is 5% (resp. v2,,), that in terms of the y-variable
I L
20,5°(y) S
0,5 0,y ~ e e (VEW P01 D Gley + 2% a) + (V0001 D Gulley + 40:40).
W= ~ =555, eldo y;(y,) y;(y,)
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where for G we have G.(x; x}) = G(ey + x ;x9). Then, at x = xo for j=1,...,N, we have 1°
and so(xg) = so. In this way, (4.5) becomes

max (X ) Vmax 0

11 1

20 0
sg(x?):— o )

Egovmax() Z G(x]’ xk) + _Evmaxo Z Gx(x]’ xk)

where we identify that I, = uox(xg) with u,(x) being the outer solution constructed previously. In the y-variable,
we find as [y| — oo, that

I L

. 20,8°
0,8" — —

N
€§0Vmax0 Z G(xl ? ;\/Ezv?naxo Z Gx(-x(,)a Xg) . (4.6)
k=1

th

According to (4.3), we set x; = x) to conclude for the /™ spike region x € (x — €, x9 + €) that , satisfies

Uer ~ $2(x)eX"0 + € s’ (x)e! 0V}
where V} = 0,V,. Finally, we use y = €' (x — x‘}) and transform u,, to the y-variable to get
3,U ~ 0,5°(y)et"" + xS (y)e*"a,Vy,
where U;(y) = ue(x(; + €y). It follows from (4.1) that for x near x;
LV, ~ -0,8°(»)e™" - ¢S (n)e""o,Vy . 4.7)

th

Next, we investigate the linearized eigenvalue problem (2.43). To obtain the j*" inner solution, we expand

(D/(y) = C‘/'(D()j + EZCj(D]j +..., le(y) = CjVj,- + 626",'\111]' +..., (48)
where y = € !(x — x;). Similarly as in §3, we substitute (4.8) into (2.43) to get
CD()]' = )_(UJVJ/ . (49)

Moreover, by using the fact that 4 = o(1), we conclude from (4.7) and (4.9) that the yU jVJ’. term in the -
equation (2.43b) is cancelled but the term -9, O(y)et"* remains. To eliminate this term, we need to formulate
the matching condition between the inner and outer solutions.

Defining the outer solution by ¢,, we now derive the appropriate jump conditions across the jth spike for ¢y.
To begin with, we observe that 9,5 (y)e* Voo 0,S (y) for |y| large. Moreover, since /1, defined in (4.6) is expressed
in terms of the Green’s function G, we have that ¢, satisfies the following jump condition across x;:

§0 max 0

[%%L = a0 g = 1L.LLN, (4.10)

where (f); and [f]; are defined as (f); := [f(x}r) + f(xj)]/2 and [f]; := f(x7) — f(x}), respectively. The
coeflicient in (4.10) can be simplified by eliminating s, by using (2.31). In addltlon we ﬁnd as € — 0 that

2)(123

Vimax j

2UpcjDqj ~ & (x—xj). 4.11)
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Upon defining ¢, := €°¢,, and dropping the overbar notation, we combine (4.10) and (4.11) to obtain the
following leading order outer problem for ¢, with jump conditions across the jth spike:

d, 2, X 3% <
_¢oxx + I/t¢0 ~ % Vmax0 Z Cj(s,(x - xj) - - Z<¢o>j6(x - xj) . (412)
M 3 = AgVmax 0 =1
Our next aim is to establish the solvability condition that provides the matrix eigenvalue problem for the
small eigenvalues. To do so, we substitute (4.8) into (2.43b) and multiply it by V7. Upon integrating the resulting
expression over —1 < x < 1, we drop some asymptotically negligible terms to get

N N N

N N
(ciLeVi Vi) + € > (ciL®ii, Vi) + ) (cioi, V) + € (80, Vi) + € > (e, Vi) ~ A Y (aiV/, V),
i=1 i=1 i=1 i=1 i=1

(4.13)

for each j = 1,..., N. Here the inner product (f, g) is defined as (f, g) := f_ ]1 fgdx. Since V; decays exponen-
tially as |y| — oo, we collect the dominant terms to simplify (4.13) as

¢j (Vi LV + @) + €¢; (Vi L1 + @) + € (60, Vi) ~ Ac; (Vi V) . j=1.....N. (4.14)

J>

Noting that L. is self-adjoint, we integrate by parts on the second term of (4.14). Expressing the integrals in
terms of y = €' (x — x;) we getin terms of u, = u,(x; + €y) and ¢, = ¢,(x; + €y) that

(o] (o] (o] 2
—ezcjf V}u(,xdy+e3f ¢(,V1’.dy~/lcjef (VJ’) dy, j=1,...,N. (4.15)

Next, we analyze the left-hand side of (4.15) by expanding u, and ¢, in one-sided Taylor series. In this way,
the left-hand side of (4.15) becomes

—EZij V}”ox dy + 63f ¢0V; dy = 64<¢0x>jf y V; dy - 63<uoxx>cjf yvj/ dy . (416)

By using (uoy);j = —Z—‘l‘(%)j, we further simplify (4.16) as

—ezcjf V}uoxdy+e3f ¢0V;dy:€4<¢0x>jf yV]’.dy+e30d—j'uf yidy. (4.17)

1

After rewriting the outer problem (4.12) in terms of jump conditions, we combine (4.15) and (4.17) to obtain the
following characterization for the small eigenvalues:

Proposition 4.1. For d, € T, the eigenvalues A of (2.43) of order O(€V2,_ ) satisfy

® o2 socip) .
acjf (V) dy~é€ 