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Abstract

A central goal in condensed matter and modern atomic physics is the exploration of quantum
phases of matter. Spinor Bose-Einstein condensates are quantum fluids that simultaneously realize
superfluidity and magnetism, both of which are associated with symmetry breaking. This was
explored by L.E. Sadler et al. [Nature, 2006] in 8’Rb spinor condensates, rapidly quenched across
a quantum phase transition to a ferromagnetic state. In this paper, we provide a mathematical
justification for this phenomenon by completely classifying the ground state of ferromagnetic spin-F
Bose-Einstein condensates in ring traps as well as analysing its asympototic behavior on the number
of atoms and total magnetization. In particular, our classification results shows the validity of single-
mode approximation (SMA) phenomenon firstly observed by C.K. Law, H. Pu and N.P. Bigelow in
Phys. Rev. Lett. (1998).
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1 Introduction

In the early experiments, magnetic traps were used and the spin degrees of the atoms were then
frozen. In 1998, by using an optical dipole trap, a spinor BEC was first produced with spin-1 2*Na
gases [10], where the internal spin degrees of freedom were activated. In the optical trap, particles with
different hyperfine states allow different angular momentum in space, resulting in a rich variety of spin
texture. Therefore, degenerate quantum spinor gases maintain both magnetism and superfluidity, and
are quite promising for many fields, such as topological quantum structure, fractional quantum Hall
effect [1,6]. For a spin-F Bose condensate, there are 2F+1 hyperfine states and the spinor condensate
can be described by a 2F+1 component vector wave function. For the theory of spinor BEC, we refer
to [?,6,7,18,31-33].
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In the mean field theory, a physical state of spin-3 BEC is described by 7 components of complex
order parameter

®(z,1) = (P3(x,t), Do(w, 1), ®1(x, 1), Do (1), Py (2, 1), D_o(x,t), P_3(2,1))(x € R, d = 1,2,3)
and the time evolution of the mean field dynamics is governed by [18,21]

ihow®(x,t) = (%E (1.1)
J

@7 denotes the conjugate transpose of ®;. Here Er - -, -,(®) is defined by
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with h is the Planck constant, m is the mass of atoms and 7y, 71, 7o, 73 characterize the spin-
independent interaction, spin-exchange interaction, spin-singlet interaction and spin-quintet interaction
respectively. F = (F, F, F.) is the spin vector given by

F, =& f,® F,=®f,® F,=®[.®,

fzs fy, f» are the Pauli spinor matrices
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and
f. = diag(3,2,1,0,—1,—-2,-3).
Therefore, the F = (F,, Fyy, F,) can be written explicitly as
F, = \f(@;@g F BEDy + DDy + DD _3) + \/QTO(@*;@Q FBEDy + DLy + P Dy)

+V3(D5D) + BDy + D* B + DED 1),
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Fy = 7(‘1’;@3 — q)g‘I)g + (I)*_3CI)_2 — Q’*_Qq)_g) -+ T(‘I’T@Q — q’;‘bl + (I)*_Qq)_l — Q’il@_g)
+V3(DhD; — DDy + D* Dy — DHD_),



and

j=-3
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and A; = (aijr)7x7(l = £1,£2), where a;;, is zero except for those j + k = 8 —[. For the
simplicity of notation, we denote q = (ar,1(7-1)> @ 2(6—1) " - ,al,(7_l)1)T e Rl for | = 1,24, =

T .
(a7 Qi -6, -+ a7a—p)) € R7H for I = —1, -2 with
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Then Agg = ST AP and Ay = BT A;P can be expressed as

Ago = \%(2@3@3 — 2030 5 + 20D — DY),
Asg = \/1271(5<1>3<1>3 — 30,0 + 283),
-Azilﬁﬁ)—-Vén(5®i3®¢2—-vq5@i2¢¢1+“V§®i1®0%
Ay io(®) = \/12—1(\/E(I):|:3(I):|:1 — V2001, + V6D1,).

Since V() is a real valued function representing the trap potential and by scaling we may assume that

12— 1. Associated with (1.2) are following two conserved quantities

/ (; |®;|?)da = N, /Rd z_: (j|®;]%)dx = M.



From (1.1)-(1.2), in the dimensionless form, the spin-3 BEC can be described by the following coupled
Gross-Pitaevskii system,

(

6
— Augsz + V(l’)uig, + ()\ + 3,u)ui3 + Tp2u:|:3 + 71 <{Fa;u:|:2 + SFZU:E3>
Ty 5T3 573 v 1073
4+ —=Ago(n)uzs + ——A + —=A 4+ — u)us; =0,
7 0,0(0)uxs Nori 2,0(w)uzs Noil 2,+1(0)uz2 Noil As o(u)usy
9 10 V6
— Augy + V(x)ute + (A £ 2p)uts + 7p ute + 71 ‘7;*F}Uil‘F‘E*P}Ui3jZQP;UiQ
T2 v 2073
— 2 Apo(Wurs — Y23 Ay Lo(u)up = 0,
7 0,0(W)uz2 Wil 2,+2(1)ug
6 v 10
— Augq + V(z)ugr + (N £+ p)us + TpQUj:l + 71 ({quo + TFrujﬁ +V3F,up + qu:t1>
T2 37’3 \/15’7’3
+ —Ago(ur; — ——=Aso(Wuxr; — ——A u)u
7 0,0(W)ug1 ol 2,0(W)uz1 ol 2,71(0)ux2
\ng \/673
A A wuy =0,
\/2» 2,+1(u)ug 2\/ﬁ 2,42(W)utq
2713
— Aug + V(z)ug + Aug + 7p%uo + V311 (Fyu_1 + Fyu — 2 Ago(u)u + —Aso(u)ug =0,
0 (x)uo 0+ Tp ug 1( 1 1)ﬁ0,0()0\/ﬁ2,0()0
(1.3)

along with the constraints

3

3
( u?)dr = N, (ju?)dx = M, (1.4)
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where p, A are real numbers,

Fr(u) = V6(uguz +u_su_s) + V10(uug + u_1u_o+) + 2v3(uous + u_1up),
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. 1
Fu)= > (jul), p*(u)= Y ul, Agg(u)= W(2U3u_3 — Qupu_y + 2uiu_y — ul),
j=-3 Jj==3
1 1
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1
Ay io(u) = ﬁ(\/muﬂum — V20uoug + V6ul,).

Solutions to system (1.3)-(1.4) can be found as critical points of E(u) constrained on M,

2
1 1
E(u): = 2/Rd Z Vu;|? 4 V(z) 2)dx+4/Rd(70p4+nF2+72A3,0+ > A3,
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where F = (F,, F,) are real vector-valued functions,
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Here the working space

3
A= {(U3,u2,u1,u0,u_1,u_2,u_3) € (Hl(]]{d))7‘ » V(z)( Z u?)dx < -i-oo} (1.5)
=3

is a Hilbert space equipped with the norm

[N
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Before introducing the main results, we recall a definition (see also [4]):
Definition. We say that (vs,va,v1, v, v_1,v_2,v_3) s a ground state of (1.3)-(1.4) if
E'| pm(vs,v9,v1,v0,v-1,v_2,v_3) =0
and

E(vs, v2,v1,v0,V-1,V-2,V-3)
= inf {E(U3,UQ,U1,U0,U_1,U_2,u_3) s.t. E/’M(u37u27u17u07u—17u—27U—3) =0

and (ug, ug, u1, g, U—1,U—2,u_3) € M}.

We emphasize that this definition is meaningful even if the energy E is unbounded from below on
M. In addition, variational problems with the energy restricted on the manifold M is particularly
appropriate for the study of the stability properties of the ground states.

Up to now, various spinor condensates including spin 1 or 2 8"Rb condensate [1], spin-1 ?*Na con-
densate [10] and spin-2 “Li condensate [6] have been achieved in experiments. In this growing research
direction, mathematical models and analysis as well as numerical simulation have been playing an
important role in understanding the theoretical part of spinor BEC and predicting and guiding the
experiments. However, there are few results regarding the mathematical theory of spinor Bose-Einstein
condensates.

Recently, in [25,27], we developed an exhaustive analysis on standing waves with prescribed mass of
physical states for spin-1 Bose-Einstein condensate in R? and we give a complete description on ground
states of spin-1 Bose-Einstein condensates with Ioffe-Pritchard magnetic field in R? and R3. In addition,
in [26], we gave a complete classification of ground state solutions and show the validity of single-
mode approximation (SMA) phenomenon in R?. We also presented the thresholds for the existence
and nonexistence of ground state, and analyzed the asymptotic behavior of the ground state at the
thresholds. For more results on ground states and excited states of spinor Bose-Einstein condensates,
we refer the reader to [3,8,9,19,22,23,27,34,35] and the reference therein.

To our best knowledge, mathematical theories about uniqueness, symmetry breaking for ground
states of spinor Bose-Einstein condensates and the SMA phenomenon in experimental observations [19]
and numerical simulations [35] has never been rigorous mathematical justifications. As a continuation
of our previous work [26,27], the main purpose of this paper is to provide a mathematical justification
for the symmetry breaking phenomenon explored by L.E. Sadler et al. [Nature, 2006] in " Rb spinor
condensates and show the validity of SMA phenomenon in experimental observations [19].



Firstly, we give a complete classification results for ground states of (1.3)-(1.4) in R%(d = 1,2, 3). To
state our main results, we consider the following minimization problem

) 1 T 911 T
f - 2 2 R R TS 1.
ulgN{Q/Rd(Wu + V(z)u* + <4 tt 28>u )dx}, (1.6)
where
N={ueH'®Y)| | =N} (1.7)
R4

Let Wx, -7 be a positive solution of (1.6) and define
T2
H1): < =<0 >0
( ) 1 > 63 = , T3 2 U,
(HQ): 7‘1§0, 7'220, 7'320.

Our main results in this aspect are the following

Theorem 1.1. Let |M| < 3N and one of (H1),(H2) hold. Then the ground state of (1.3)-(1.4) must
be the form

( (3N + M)? (3N — M)3
us = +— -_

216 N3

(ON2 — M?)?

WTO,ThO’ ug = +v/20 216N3

WTQ,T1,07 U-_3 = + WTO,Tl,O?

216 N3

uz:i\/g(?’NJrM)g(?)N—M)% (3N + M)2 (3N — M)3

216N3 Wm0, a2 = +V6 216N3 Wm0
(3N + M)2(3N — M) (3N + M)(3N — M)?
up = +v15 216 N3 Wiy r,05 U—1 = i\/ﬁ 216 N3 Wm0 |-

In particularly, the ground state must be positive if 71 < 0,70 = 173 = 0.

Remark 1.1. To our best knowledge, this is the first systematically mathematical theories for ground
states and dynamics of spin-3 BEC as well as the first theoretical result dealing with the classification
of ground states for spin-3 BEC. These results not only show that spin-8 BEC has independent charac-
teristics on the sign of spin-independent interaction, spin-exchange interaction, spin-singlet interaction
and spin-quintet interaction, but also support the SMA phenomenon in experimental observations [19]
and numerical simulations [35], that is, each component of the ground state is a multiple of one single

density function. Rigorous mathematical justifications of these conclusions are exactly what is expected
in ([3], Section 5).

The proof of Theorem 1.1 is non-trivial and very skillful, which mainly relies on the technique of
mass-redistribution for the ground state. Precisely, for any u € M, we find a special mass-redistribution
v = b*p (see (3.1) for the definition of b*) of u, that remains in M, which has a lower total energy.

Next, we consider attractive spin-exchange interaction case(r; > 0) and obtain the following

Theorem 1.2. Assume that 71 > 0,70 =713 =0 and M = 0, then the ground state of (1.3)-(1.4) must
be the form

(—s, —t,r /1 — 252 — 262 — 22, —p, —t, s) Wiy 0.0,

where (s,t,r) € R® and s* + > + 1 < 3.



Remark 1.2. Theorem 1.1 and Theorem 1.2 show that spin-3 BEC has independent characteristics in
both attractive spin-exchange interaction case and attractive spin-exchange interaction cases, but also
support the so-called single-mode approximation (SMA) in experimental observations. The requirement
M =0 in Theorem 1.2 is necessary. The ground state is unique for attractive spin-exchange interaction
case, while are not unique for repulsive spin-exchange interaction case.

Next, we give some vanishing phenomenon for ground states of (1.3)-(1.4) in nonzero magnetization
case.

Theorem 1.3. Assume that 1 > 0, 70 = 73 = 0 and M # 0. Let (us,usg,uy,ug, u—1,u—_2,u_3) be a
ground state of (1.3)-(1.4), then

(i) ug = 0;

(ii) u; = 0, if M £ iN(i = £1,£2, +3);

(i1i) uyr = uy; =0, if M # +N and M # iN(i = £2,43);

(iv) uyo = ugs =0, if M # £2N and M # +3N.

Remark 1.3. Theorem 1.2 and Theorem 1.3 indicates that if M = iN(i = 3,2,1,—1,—2,-3), then u;
is minimizer of following minimization problem

1 2
g {3 L viont (2452 utr)

where
Rd

Remark 1.4. Theorem 1.2 shows that for the attractive spin-exchange interaction case 1 > 0, if
M = 0, any ground state of (1.3)-(1.4) is nontrivial. While when M # 0, Theorem 1.3 shows that
ground states of (1.3)-(1.4) must be semi-trivial. These results not only show that spin-3 BEC has
independent characteristics in both M # 0 and the degenerate case M = 0, but also justify the so-
called vanishing phenomenon in experimental observations. In this sense, the influence of the total
magnetization on system (1.3) is important.

For repulsive spin-singlet interaction(r, < 0), we have

Theorem 1.4. Assume that 11 =13 = 0,72 <0 and M = 0, then the ground state of (1.3)-(1.4) must
be the form

<_s7 _ty r, \/1 - 232 - 2t2 - 2T27 -, _t7 8) WT(MO?TQ'

Theorem 1.5. Assume that 11 = 13 = 0,72 < 0 and M # 0. Let (us3,u2,ui,up,u—1,u_9,u_3) be a
ground state of (1.3)-(1.4), then up = uy1 = uss = 0.

Remark 1.5. For repulsive spin-singlet interaction case(to < 0), Theorem 1.4 and Theorem 1.5 indi-
cate that ground states of (1.3)-(1.4) either have SMA phenomenon or exhibit vanishing phenomenon,
which depends on whether the total magnetization M is zero.

As an application of above classification results, we give the uniqueness and symmetry breaking for
ground states of spinor Bose-Finstein condensates.



Recall the following nonlinear equation in R¢(d = 1,2, 3):
—Au+u=u? ueH (R, (1.8)

from [20], there exists a unique positive solution Q(z) for (1.8). By the related Pohozaev identity, we

get
4—d 4—d

o ::/ 012dz = 220 [ vopdr = 22 [ 101da. (1.9)
]Rd d Rd 4 ]R‘i

Moreover, we obtain from [17] that Q(x) satisfies
Q). [VQ(@)] = O(jz|~"= e ), as |a] = oo,

In the following, we always denote

*
* a

T+ 97]
which is the critical number of atoms. It is natural to ask what would happen if V' (z) has infinitely
many minima. Hence, we are interested in studying the GP functional with a trapping potential V' (z)
with infinitely many minima and analyzing the detailed behavior of its minimizers as N ~ N*. For
this purpose, we focus on the following ring-shaped trapping potential

(1.10)

V(z) = (|z| — A)?, where A >0,z € R% (1.11)
and define the following constraint variational problem

m(N) := uiél/g( E(u). (1.12)

Our main results on uniqueness and symmetry breaking for ground states of (1.12) are the following.

Theorem 1.6. Let V(z) be given by (1.11), 70 > 0 and 73 > 0. Then there exist N, > 0 and Ny > 0
satisfying Ny < Ny < N* such that

(i) m(N) has a unique non-negative minimizer which is radially symmetric about the origin if N €
(0, N.o).

(ii) m(N) has a unique non-negative minimizer up to rotation around the origin, which are not
radially symmetric if N € [Ny, N*).

Remark 1.6. Noting that the trapping potential V(x) of (1.11) is radially symmetric, it then follows
from Theorem 1.6 that m(N) has a unique non-negative minimizer which is also radially symmetric
for small N > 0. On the other hand, Theorem 1.2 in [1}] shows that any non-negative minimizer of
(1.6) concentrates at a point on the ring {x € R? : || = A} as N / N* and thus it cannot be radially
symmetric. Based on the complete classification of ground states, we know that any mon-negative
minimizer of m(N) cannot be radially symmetric as N / N*. This implies that, as the strength of the
interaction N increases from 0 to N*, symmetry breaking occurs in the minimizers of m(N).

Remark 1.7. The authors in [30] explored spontaneous symmetry breaking in 8TRb spinor condensates,
rapidly quenched across a quantum phase transition to a ferromagnetic state. They observed the for-
mation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in
situ detection of spin vortices. The latter were topological defects resulting from the symmetry break-
ing, containing mon-zero spin current but no net mass current. We show that rigorous mathematical
Justifications of these symmetry breaking conclusions are exactly what is expected in [30] and show the
validity of SMA phenomenon in experimental observations [19].



Remark 1.8. The uniqueness result in Theorem 1.6 also holds for the one-dimensional (1D) case and
three-dimensional (3D) case. Indeed, for spin-F (F=1,2,3) Bose-Einstein condensate, we show that
each component of the ground state is a multiple of one single density function, which is independent of
the dimension of whole space. This indicates that the ground states of spin-1 BEC obtained in Theorem
1 [8], Theorem 1.1 [22] and Theorem 1 [27] are unique.

To prove the uniqueness of ground states for BEC, the authors in [15,16] studied carefully the limit
structure of a suitable difference function, for which they needed to make full use of the non-degeneracy
results for a corresponding limit system. In order to employed the non-degeneracy assumption to
derive Pohozaev identities, some delicate estimates and new ideas are also needed to handle with the
crossing terms in BEC systems. Although the authors in [15,16] developed an approach to establish the
uniqueness of ground states for BEC, it does not work for our spin-F(F=1,2,3) BEC. In fact, it is not
clear whether the solution for spin-F(F=1,2,3) BEC is non-degenerate. So, the method of Pohozaev
identities does not work for our case. We provide a new way to establish the uniqueness of ground
states based on the classification of ground states for spin-F(F=1,2,3) BEC, which mainly rely on a
principle, that the mass-redistribution for n-tuple of real-valued functions will decrease the kinetic
energy. Precisely, for any u € M, we find a special mass-redistribution v = b*p (see (3.1) for the
definition of b*) of u, that remains in M, which has a lower total energy.

Finally, under more general conditions on 79, 71, 72, 73 and V' (x) with

lim V(z) =400, V(z) >0 and V(rz) =PV (z),p > 0, (1.13)

|x| =400

g Ta , (1.14)
710 + 6371 + 7(13)~ + (12)~

we consider the existence and concentration of ground states.

Theorem 1.7. Let 1 < 0.

(i) m(N) has at least one minimizer for 0 < N < N**, while m(N) has no minimizer for N > N*;
(i1) If 7o > 0 and 13 > 0, then m(N) has at least one minimizer for 0 < N < N*, while m(N) has no
minimizer for N > N*;

(iii) For any minimizer u = (ug, ug, u1, ug, U—1,u—2,u—3) € M(N) of m(N), there holds

2
Hll — (I30%0, 1200, 1100, looWo, [ —10%0, [—20 Vo, l730‘1’0)HA =O(N), as N — 0%, (1.15)
where W is the unique normalized positive eigenvector of —A + V (z) and
li() = / ui\If()dl', fOT’ 1= 3, 2, 1, 0, —1, —2, —3;
R3

(iv) Let N,, ,/* N* as n — oo and
Up = (USna U2n, Uln, UOn, U—1n, u—2n7u—3n) € M(Nn)

be a minimizer of m(Ny). We have

m(Nn):W<1)P (;) (N Jr2 VE;?Q (x)dﬂ,')p+2(N*_Nn)p+27 asn 0o, (1.16)




In addition, uy, satisfies

lim anuign(anm + Zign) = \/TWQ(@,
hm 5nui2n(5na: + Z1on) \/7\f (BN" + M;Z(l](\if;f* — M)%jFl Q(x),
[ (1.17)
Jim Enltin(En® + Z41n) = i \/>(3N* M) 21653]3\[* — M) Q(),
nlLrlgosnuOn(enx + Zon) = \ﬁ( ( 21%(N*])\42)2 Q(x),
where Zi, (i =3,2,1,0,—1,—2,—3) is the unique mazximum point of u;, with
nlgﬂlo‘M‘ =0 (5,) =3,2,1,0,~1,-2,-3,i £ ), lim |5,] =0

7’L

and

3 2 2 )
5":19;2@) <zlo> <N Lot a* L )W(N*—Nmm- (1.18)
Remark 1.9. Theorem 1.7 shows that for attractive spin-singlet interaction and attractive spin-quintet
interaction case, any minimizer u of m(N) in the case of N /* N* is nontrivial. It gives a complete
classification of the existence and nonezistence of global minimizers and present the thresholds for the
existence and nonexistence of ground state. In addition, asymptotic behavior of the ground state at the
thresholds and atoms collapse behavior of the ground states are also analyzed.

Remark 1.10. For the general potential V(x), in order to get a consistent upper and lower bound
estimate of the energy more directly, we assume V(x) is homogeneous of degree p. Indeed, for the
ring-shaped trapping potential (1.11), we also can obtain the detailed behavior of the minimizers for
problem (1.12) as N / N*. A more delicate estimate on the GP functional is required. As far as we
know, it is usually not easy to derive directly the optimal energy estimates for the GP functional under
general trapping potentials. Although the authors in [14] developed an approach to establish this kind of
energy estimates for single equation with the trapping potentials, it does not work well for our problem.
In fact, the spin-8 BEC with trapping potentials is more complicated and difficult. To get a uniformly
energy estimate, by following the method in [14] we first get the following type of estimates

(NI

C1 (N* — N)i <m(N) < Oy (N* — N)2 as N 7 N*. (1.19)

Then we provide some new ways to estimate precisely the GP energy under the potential (1.11), which
may be used effectively to handle some general type potentials. Based on the estimates, we may improve
the power % at the left of (1.19) to be the same as that at the right, namely %

Notations. In the paper, we use the following notations. LP = LP(R?) with norm ||-|| rrrd) = |- [|lLes
H'(R?) is the usual Sobolev space and H'(R? R7) = (H'(R%))7 and LP(R? R7) = (LP(R%))7 are the
vector-valued functions spaces.

The paper is organized as follows. In Section 2, we introduce some preliminary results. In Section 3,
we prove Theorem 1.1. In section 4, we prove Theorem 1.2 and Theorem 1.3. In section 4, we Prove
Theorem 1.4 and Theorem 1.5. In section 6, we prove Theorem 1.6. Finally, Theorem 1.7 will be proved
in section 7.
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2 Preliminaries

In this section, we give some preliminaries which are useful for the rest of the paper. First, we give a
compact embedding result.

Lemma 2.1. (Pankov [29]) The embedding A — LP(R?,R7) is compact for any p € [2, %), where A
is defined in (1.5).

For any u € H'(RY)(d = 2,3), by Lemma 2.4 in [5], u satisfies the classical Gagliardo-Nirenberg

inequality
4 2 2 2
/ ud$<*/ |Vul dac-/ u“dx (2.1)
R2 a R2 R2

/RS u'ds < t\f(/ﬂ@ \VU|2da:>g : (/Rg u2d:c>§, (2.2)

where a* is defined in (1.9).
For any (ug,us,u1,uo, u_1,u_2,u_3) € H' (R R7), there also holds the similar inequality.

and

Lemma 2.2. For u € H'(R% R"), there holds

/ ( 23: @drs = [ i !VUjIQ)dw~/ ( 23: u?)dz (2.3)
R2 =3 a R2 =3 R2 =
and , \ 3 ; 1

/R3 (jzgu?)de < C*(/]RB (jzg ’Vuj‘Q)d:E>§ . (/R3 (jzgu?)d$>2, (2.4)

43

where Cy = 5%2. Moreover, up to translations and suitable scalings, the equality (2.3) holds only at

r
(‘T COS @1,

sin @1 cos a2,

(z) = Q(z)
(z) = Q(z)

ui(z) = Q(x) sin ¢ sin g cos 3,
(z) = Q)

ug(x
ug(x (x

uo(x (x) sin ¢1 sin g sin p3 cos ¢y, (2.5)
u_1(x) = Q(x) sin ¢y sin @9 sin 3 cos 4 cos Vs,

u_2(x) = Q(x) sin 1 sin @9 sin g3 cos 4 Cos Y5 Cos Vg,

u—3(z) = Q(z)

= Q(x) sin 1 sin ys sin @3 cos Y4 cos w5 sin wg,

3T
for p; €10,%) (j =6,5,4,3,2,1) and Q(x) is the unique positive solution to (1.8).

Proof. We only prove the 2D case, the proof of (2.4) are similar, we omit the details here. Consider
the minimization problem:

ko= K (u), (2.6)

inf
(0,0,0,0,0,0,0)#ue H! (R2,R7)
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where

K(u) = —32=2 - =

Jor (3 u2)?da

To obtain (2.4), it is sufficient to show k = % Let Q(x) be the unique positive solution to (1.8) and

set
(Ug,U2,U1,U0,U,1,U72,U,3) = (27 27Q,Q7Qa Qvg)a
VT VT NT VT NT VT VT
then by (1.9),
fR2 IVQ|*dz - fRQ Q?dx -
Jp2 Qda B

a
2
By direct calculation, for arbitrary (us,us,u1,uo, u_1,u_2,u_3) € H'(R?,R"), there holds

K(u) =

3
v Z ufl <) |Vl

j=-3 j=-3
therefore, by (2.2),

3

oll9)| 35 a2t foo (55 ad)ie

Jj=-3

K(u) > 3 ;
Jre (jzz—.?) “3) dx
3 3 9
ng (|V :Zigu?P)dx . flRQ ( Zg“?) dx

= >

[ 3 4
Jre ( J:Z_SUJQ) dx

Thus, k = %. Similar to [13], we conclude that to find the minimizer of (2.6) is equivalent to the

ground state of the following system:

a
5

3
—Au; +u; = uf’ + ( Z u?)ul, =3,2,1,0,—-1,-2,-3. (2.7)
j=—3

Moreover, we have

/ :i Va2 dx—/ﬂv(.:igu?)dx—;/ﬂgz(.:isug)zdx

Then similar to the arguments in [12] for three components system, the ground state of (2.7) is of the
form (2.5), hence equality (2.3) holds only for the ground state of (2.7). O
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Finally, we give the pure point spectrum and the associated eigenvectors for harmonic oscillator
—A + V(x), which is useful for us to study the qualitative properties of solutions for m(N).
Denote Ly := —A + V(z): Yy — L*(R%,R). We have the following spectral analysis for Ly :

Lemma 2.3. Let V satisfy (1.13). Then there hold:
(i) Each eigenvalue of Ly is real.
(1) If we repeat each eigenvalue Ay (k =0,1,2,---) according to its (finite) multiplicity, we have

0<Xyv <Ay Ay

and
Ay — 00 as k — oo.

(iii) Furthermore, there exists an orthonormal basis {152, of L*(R%,R), where vy € Sy is an
eigenfunction corresponding to iy :
Lvtry = vy,
fork=0,1,2,....
() Finally, the first eigenvalue Ny is simple.

We omit the proof since it is a standard argument like Section 6.5 in the classical book [11].

3 Proof of Theorem 1.1

The proofs of Theorem 1.1 mainly rely on a principle, that the mass-redistribution for n-tuple of real-
valued functions will decrease the kinetic energy. We now introduce the definition and properties for
the mass-redistribution.

Definition 3.1. [24] Let f = (f1, fo, - , fn) € HY(R?,R™) be an n-tuple of real-valued functions and
g = (91,92, - ,9m) be an m-tuple of nonnegative functions. We say g is a mass-redistribution of f,
if ng = blkf,? for each | = 1,2,..m, where by, > 0 are constants and Y ;" by, = 1 for each
k=1,2,....n.

Proposition 3.1. [2/] For any mass-redistribution g of f, we have
(1) lgl = |f];
(ii) |Vg| < |VE|. Moreover, |Vg| = |VE| if and only if f;V fi = fuVf; for each k # j with byby, # 0
for at least one .

Suppose b; > 0(j = 3,2,1,0,—1, -2, —3) and b = (b3, b2, b1, by, b_1,b_2,b_3), we consider the maxi-
mization problem

b
max Q(b)
where
5 2
2
Q(b) = [\/6(17253 +b_ob_3) + V10(byby + b_1b_5) + 2v/3(boby + bob—1)} + Z (jb?) ,
j=—3
and

3 3
M
B= {b€R7|bj > 0 and b satisfies Z b]zzl, Z(]b?) = N}'

j=-3 j=-3

13



Lemma 3.1. Assume |M| < 3N, then there exists a b* = (b3, b3, b}, by, b* 1, b* 5, b 5) € B, such that

max Q(b) = Q(b%) =9,

beB
where \ ; . -
by GNP e GNZMP g0 )T
by = UM HMIGN AL N+ MY ML (3.1
2 — — M2
bs{_m(sNH\i)m(V?);V M) b*l_m(:’)sz\;l)&z;f M)

Proof. By direct calculations, for any b € B, we have

3
90> (19))% — Q(b) = (3b§ — 4byb_1)* + (2b1b_1 — 5bab_3)* + (bb_3 — 6bsb_3)”
j=-3

+ (V5b3 — 2v/3b1b3)? + (VBb2 5 — 2v/3b_1b_3)?

+ (V8bF — V/15bgb2)? + (V8b2 | — V15bgb_3)?

+ 3(boby — 2v/2b3b_1)% + 3(bob_2 — 2v/2b_3b;)?

+ (2b1by — 3v/2bgbs)? + (2b_1b_5 — 3v/2bgb_3)?

+ (V6bob1 — 2v/5b_1b2)? + (V6bob_1 — 2v/5b1b_2)?

+ 2(byb_o — V/15bab_3) + 2(b_1by — V/15b_2b3)? > 0.

(3.2)

So, when (bs, ba, by, bo, b_1,b_2,b_3) satisfies following algebra system

302 — 4b1b_ = 0,
2b1b_1 — bbab_o = 0,
bob_o — 6bgb_3 = 0,
\/gb% — 2/3b1b3 = 0,
V5%, —2v/3b_1b_3 =0,
V8bE — V/15bgbs = 0,
V8%, — V15bgb_o = 0,
boby — 2v/2b3b_1 = 0, (3.3)
bob_o — 2v/2b_3b; = 0,
2b1by — 3v/2bgbs = 0,
2b_1b_y — 3v/2bgb_5 = 0,
V6boby — 2v/5b_1by = 0,
V6bob_1 — 2v/5b1b_s = 0,
bib_o — V15bab_3 = 0,
b_1by — V15b_2b3 = 0,

\
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then
3

Q(b) =9( ) (b))*=09.

=3

By solving above algebraic system directly and using E?:—s b? =1, 232_3 ( jb?) = %, we have

max Q(b) = Q(b%) =9,

beB
where .
. (BN+M? | (BN —M)® (ON? — M?)2
R e ik A S S S A Q) Rt S
3 216N3 = 73 216N3 0 V20 216N3
b*_\/6(3N+M)%(3N—M)% . _\/6(3N+M)%(3N—M)g
2 216N3 o2 216N3 ’
. (BN +M)*3N—-M) ,, (3N + M)(3N — M)?
b =15 216N3 ;L = VIS 216N3

O

Proof of Theorem 1.1. Let u € M be a minimizer of (1.12). We claim that b*p is also a minimizer.

Indeed, by direct calculations, we have
Afo(b*p) =0, A3(b*p) =0, A3,(b*p) =0, A3 _;(b*p) =0,
A34(bp) =0, A_,(b*p) =0.
By (3.2), we have

3

F2(b*p) —F*(u) = 9( ) _ (u}))* ~ F(u)

i=-3

311,3 — 4u1u_1)2 + (2u1u_1 — 5U2U_2)2 + (Ugu_g — GU3u_3)2

N~

+ (V5u3 — 2v/3uquz)? + (VHu? 4 — 2vV/3u_qu_3)?

+ (V8u? — V15ugug)? + (V8u2, — V15ugu_s)*

+ 3(uoug — 2\/§U3u_1)2 + 3(upu—_g — 2\6u_3u1)2

+ (2uqug — 3v2uous)? + (2u_1u_s — 3vV2ugu_3)?

+ (\/éuom - 2\/5u_1u2)2 + (\/éuou_l — 2\/5uw_2)2

+ 2(uju—_g — \/BUQU_?,)z + 2(u_qug — \/ﬁu_gug)Q

> (3u(2) — 4u1u_1)2 + (2uiu_y — 5uQu_2)2 + (ugu_g — 6u;5u_3)2

+ 2(V5u3 — 2v/3uuz) (VBu 5 — 2vV3u_ju_3) + 2(V8ui — V15ugus)(V8u? | — V15ugu_z)
+ 6(ugug — 2\@U3’U,_1>(UOU_2 — 2\/§u_3u1) — 2(2uqug — 3\f2u0u;>,)(2u_1u_2 — 3V 2ugu_3)

— 2(\/61101“ — 2\/5U_1UQ)(\/6UOU_1 — 2\/5u1u_2) — 4(’LL1’U,_2 -V 15UQU_3)(U_1UQ -V 15’11,_QU3)

= 63A7 (u).

15
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Thus, for 7 < 22 < 0,73 > 0, we obtain

2
ZHE*(b"p) — F(w)) + (A3 o(b"p) — AF p(w) + = S AL - Y ALw| @)

j=—2 j=—2

(637‘1 - TQ)AO 0( ) < 0.

NH

For 1 <0, >0, 73 > 0, we have

S FA%0) — F2() + (AGy (%) — Afo(w) + (37 A3(b%) = 3 A3 () <0 (36)

3
( Z ’vuj‘ Z IVbJPP
j=-3 7=—3
2
sl . T . 7'3
Z(F2(a p) — F*(u)) + Z<Ag,0(b p) — Ago Z A23 a*p) Z A%,j(u)) =0.

By (3.5), (3.6), Aj(b*p) =0, and $2 A%J(b*p) =0, we get that

j=—2

2
w =0, 3 A3;(u) =0, F2(b*p) = F(u).
j=—2

Therefore u = +b*p.
Next, we prove that the ground state must be positive if 71 < 0,79 = 73 = 0. Define

A= {’U, S M‘ Uj > 0,7 :372a1a0a_1?_27_3}

and

G = {u € Al B(w) = inf B(v) = inf E(v)}.

veA veM

If u € M, then b*p € M is a mass-redistribution of u. By Proposition 3.1, we obtain

B(w) < § [ (Vo' + V@) + {(m+ 9)p')dz = E(p) < E(w). (3.7)
Rd

Thus if p is a solution of (1.6) and (1.7), then u is a ground state solution of (1.3) and (1.4).
On the one hand, if u is a ground state of (1.3) and (1.4), then |u| € G. We claim |u| = b*p. Indeed,

3
* N\ _ 2 * 12 71 4 2 2
B(w) — ') =5 [ Ejrw (X (90 | de =T [ (00"~ 2 = FE)ae >0

j=—3
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Since u € G, we obtain that
3 3
(D V) = (D IVhipl*) =0, 9p* — F2 - F2 =0. (3.8)
j=-3 Jj==3

When |M| # 3N, by Proposition 3.1 and the first equality of (3.8), we get u;Vuy = uyVu; for j # k.

Since E(|u]) < E(u), we may assume that u; > 0(j = 3,2,1,0,—1,—-2,—-3). Since [q 2?273 u? =N,

at least one u; # 0(j = 3,2,1,0, -1, -2, —3). Without loss of generality, we may assume ug > 0, so we
have

Then there are some ¢; > 0 such that u; = cjug for j = 3,2,1, -1, -2, =3. Together with the second
equality of (3.8), we get u = b*p. When |M| = 3N, the conclusion is obvious. So

mip B(w) < B(w) < 5 [ (Vo + V(e + {(m+ 9m)p')de = Bb"p) = B(Jul) < B(w) = mig E(w).

Thus, it is easy to see that p is a solution to (1.6) and (1.7). Therefore, we complete the proof. O

4 Proof of Theorem 1.2 and Theorem 1.3

Lemma 4.1. Assume that 1 > 0, 7o = 173 = 0 and M = 0, then (1.12) has infinitely many solutions
if following minimizing problem

) 1 70
f <= 2 2 / 4d 4.1
;gN{2Ad<|Vu| +V@p?+ 7 [ atdal, (4.1)
where

N = {u € H'(RY)| 9 wlds = N}, (4.2)

has a solution.

Proof. For any (s,t,r) € R? satisfying s? + t2 4+ 12 < %, let

v = (—s, —t, 7, V1—2s2 - 22 2r2, —r, —t, s) ,

it is easy to see that when M = 0, for any u € M, v = yp € M is a mass-redistribution of u. By
Proposition 3.1, we have

1 1 i
E(u) > E(v) = 2/Rd(|Vp|2)dx +3 /Rd V(z)p*dr + ‘f/ﬁad plda.

Thus, (1.12) has infinitely many solutions if (4.1)-(4.2) has a solution. O

Proof of Theorem 1.2. Theorem 1.2 can be derived easily from Lemma 4.1.
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Next, we prove Theorem 1.3. Define a subset of M* of M by
M*:{UEMZUQZU1:U0:U71:U72:O}-

For any u € M, we consider the following mass-redistribution v* = (v3, v3, v}, v5, v5,v*,, v ) of u
with

6 3 2 3 6 3 2 3 6
(4.3)

) 2 1 1 1 ) 2 1 1 1
v = (\/U% + —ud 4+ Zud + cud + Zu? + EUQ_Q,O,O, 0,0,0, \/u2_3 + —uty 4+ Su? )+ ud + cud + u%) :

then we have

Lemma 4.2. Assume that 71 > 0 and 7o = 73 = 0, then a solution to the following minimizing problem

min F(u)
ueM*

is a solution to (1.12).

Proof. For any u € M, by (4.3), we have that v* € M*, by Proposition 3.1 and the assumptions
1 >0, 9 =713 =0, we have

Bv) - B =5 [ (VP + 190 a5 [ (V@@ @) D [ (o)
R4 Rd Rd
T * * 2
—+jf Rd(3@@)2—4xv_3ﬁ) da
1 3 1 3 o 3 2
— = Vu-2>dx—/ Viz u? dx—/ u?
2/Rd<§_3' =g [ (v@ 308 a3
_ % d(\/é(u2u;3 +u_ou_3) + \/E(u1u2 +u_qu_9)+ 2\/§(u1u0 + u,luo))de
R
3 2
T1 . 92
"7 o Z (juj) | dx

j=—3

< —% (V6(ugus + u_su_3) + V10(urus + u_1u_s) + 2v3(urug + u_1ug))?dz < 0,
R4

therefore a minimizer of min F(u) is a minimizer of min E(u). O
ueM* uemM

Lemma 4.3. Assume that 71 >0, 7o =173 =0 and M # 0. If u is a minimizer of (1.12), then ug = 0.

Proof. When 71 > 0, 5 = 13 = 0, if u is a minimizer of (1.12), then v* in (4.3) is also a minimizer. By
lemma 4.2, we have that

thus u satisfies that
— Augsz + V(z)uss + (A £ 3p)uss + mp*uss + 31 Fousg = 0,
— Augs + V(z)uss + (A £ 2p)uss + 7puss + 27 Fougs = 0,
— Augy + V(z)usr + (A% p)usy + 7p°ugs + 11 Fougy = 0,
— Aug + V(x)ug + Mg + 7p°up = 0.

(4.4)
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By regularity theorem, it is clear that u € (C°°(R™))”. Suppose there exists a point zg € R” with
up(xo) # 0, then there exists an open connected set I C R", such that ug(x) # 0 in I and ug(z) =0 in
dI. By lemma 4.2 and Proposition 3.1, we obtain

Vujug = Vuou,, Ve € I,j =3,2,1,—-1,-2, -3,
which implies that there exists b; € R, such that
u; = ajug, Vv € I,j=3,2,1,-1,-2, -3,
and
\fﬁ(awg +a_sa_3)+ \/rO(alaz +a_ja_2)+ 2\/§(a1 +a_1)=0. (4.5)

Denote ‘ ‘
R" = (Uil U Tg U (UiIL),

where ¢, j are some index sets and

I' are connected subsets in I = {x € R"|up(z) > 0},
I? are connected subsets in I~ = {z € R™|ug(x) < 0},
and
Iy = {z € R"|up(z) = 0}.
We define v by - ‘ ' ' '
(a3, a5,ai,1,a" 1,a" 5,a’ 5)ug, z €I,
v:a]u0| = (agﬁaéaaila1aai—17ai—27ai—3)|u0|a ZL‘EIi,
u, x € .
It is easy to see that v € M. By (4.5), we have that F,(v) = 0, therefore E(v) < E(u). Hence v is
also a minimizer which satisfies system (4.4) and vy > 0. By maximum principle, we get that vy > 0 in
R™. Thus, we may assume that up > 0 in R". Since u satisfies (4.4), we get that
a+s (—Aug + V(2)ug + (A + 3p)ug + (ra? + 371M0)u(3)) =0,
G492 (—Auo + V(z)up 4+ (A £ 2u)ug + (ta® £ 271M0)u8) =0,

) . (4.6)
a1 (—Auo + V(x)up + (A £+ p)ug + (ra* + TlMo)uo) =0,
— Aug + V(z)ug + Aug + Tang =0,
where My = 2?2_3(]@?) satisfies that
MO/ uidr = M # 0. (4.7)

If one of a; is nonzero for j = 3,2,1,—1, -2, -3, by (4.6), we obtain that

TlMoug + pug =0,V z € R”,
which contradict to M # 0, 71 > 0 and 0 # ug € Hj(R"). If a; = 0, for j = 3,2,1,—1,—2,—3, then
M = 0, which contracts to (4.7). Therefore, up = 0. O
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Lemma 4.4. Assume that 1 >0, o =13 =0 and M # 0, M # £N. If u is a minimizer of (1.12),
then u+1 = 0.

Proof. By Lemma 4.3, we have ug = 0. We may assume there exists a point xg € R™ with ui(zg) # 0,
then there exists an open connected set I C R", such that u;(x) # 0 in [ and ui(z) = 0 in 0. Similar
to the proof of Lemma 4.3, we have

Uj = bjul, Veel j=3,2,0,—1,—-2,-3,

with
bo = 0 and V/6(babs + b_ob_3) 4+ V10(by +b_1b_2) =0
Moreover, we may assume that u; > 0 and u = (b3, b2, 1,0,b_1,b_2,b_3)uj. Since u satisfies (4.4), we

get that
bis (—Au1 +V :c)ul + (A E£3p)ur +

( Tb i37’1M1)u:f)
bio (—Au1 + V(z)ur + (A £ 2u)ug +
(

b?% + 27’1M1)u%)

(
(

(4.8)
b_1 (—Au1 +V(x)ug + (AN — pu_g + (Tb — 7 M)u )
= Auy + V(2)ug + (A + p)ur + (Tb2 + T1M1)u£{' =0,
where M; = 2?273( jbjz) satisfies that
Ml/ uldz = M # 0 and Ml/ uldx = M # £N. (4.9)

If one of b; is nonzero for j = 3,2, -1, -2, -3, by (4.10), we obtain that
TlMlu:{’ + pup =0,V z € R”,

which contradict to M # 0, 71 > 0 and 0 # u; € H}(R"). If bj =0, for j = 3,2, -1, -2, -3, then we
have M = N, which contracts to M # N. Therefore, u1 = 0. Similarly, we can deduce that u_; = 0. [

Lemma 4.5. Assume that 71 >0, 7o =713 =0 and M # 0, M # +£2N. If u is a minimizer of (1.12),
then u4+o = 0.

Proof. By Lemma 4.3, we have ug = 0. We may assume there exists a point xg € R™ with us(xg) # 0,
then there exists an open connected set I C R", such that ua(x) # 0 in I and us(z) = 0 in 0I. Similar
to the proof of Lemma 4.3, we have

U; = cjuz, Veel,j=3,1,0,—1,—-2,-3,
with
co = 0 and \/6(03 +c_9c¢_3) +V10(c1 + c_1c_2) = 0.

Moreover, we may assume that ug > 0 and u = (cs3,1,¢1,0,¢_1,c—2,c_3)us. Since u satisfies (4.4), we
get that
ct3 (—Aup + V(2)ug + (A £ 3p)ug + (1¢? £ 31 Ma)u3) =0,

)
cit (—Aus + V(@)ug + (A % p)ug + (r¢® + 7 My)ul) = 0,
2 (—Au2 + V(z)ug + (A — 2u)ug + (7¢* — ZTle)ug) =0,
— Dup + V(@)uz + (A + 2u)us + (re? + 21 Ma)ui = 0,

(4.10)
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where My = 2?273( jc?) satisfies that

Mg/ uidz = M # 0 and MQ/ uidr = M # +2N. (4.11)

n

If one of ¢; is nonzero for j = 3,1, -1, -2, -3, by (4.10), we obtain that
71M2u§ + pug =0,V z € R”,

which contradict to M # 0, 71 > 0 and 0 # ug € H}(R™). If ¢; = 0, for j = 3,1,—1,—2, -3, then
we have M = 2N, which contracts to M # 2N. Therefore, us = 0. Similarly, we can deduce that
U_9 = 0. O

Lemma 4.6. Assume that 1 >0, 7o =13 =0 and M # 0, M # £3N. If u is a minimizer of (1.12),
then uts = 0.

Proof. By Lemma 4.3, we have ug = 0. We may assume there exists a point xg € R™ with us(zg) # 0,
then there exists an open connected set I C R", such that uz(x) # 0 in [ and us(z) = 0 in 0. Similar
to the proof of Lemma 4.3, we have

Uj = deg, Veel j=2,1,0,—1,—-2,-3,
with
do = 0 and V6(dz + d_ad_3) + V10(d1d2 + d_1d_2) = 0.

Moreover, we may assume that ug > 0 and u = (1,ds,d1,0,d_1,d_2,d_3)us. Since u satisfies (4.4), we
get that
d49 (—AU3 + V(z)us + (N £ 2u)us + (7'd2 + 27'1M3)u§) =0,

(z)
d+41 (—AUO + V(x)U3 + ()\ + u)u;g + (Td2 + T1M3)u§) =0,
(z)

) 5 (4.12)
d_s (—AUO + V(x)us + ()\ - 3M)U3 + (Td - 3’7’1M3)U3) =0,
— Aug + V(2)uz + (A + 3p)uz + (rd? + 37 M3)u3 = 0,
where M3 = 2?273( jd?) satisfies that
Mg/ uide = M # 0 and Mg/ uidr = M # +£3N. (4.13)

If one of d; is nonzero for j = 2,1, -1, -2, -3, by (4.12), we obtain that

71M3u§ + puz =0,V z € R”,
which contradict to M # 0, 71 > 0 and 0 # ug € HJ(R"). If d; = 0, for j = 2,1,—1,—2, -3, then
we have M = 3N, which contracts to M # 3N. Therefore, uz = 0. Similarly, we can deduce that
U—_3 = 0. O

Proof of Theorem 1.3. Theorem 1.3 can be obtained from Lemma 4.3-Lemma 4.6. OJ
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5 Proof of Theorem 1.4 and Theorem 1.5

Lemma 5.1. Assume that 11 = 0,73 =0 and 15 < 0, for any u € M, let v* be defined by (4.3), then
E(v") < E(u).

Proof. Since

3 3 3
_! 1?2 1 2 T 2
mm_2A;<2:wm>m+L@ w@§2%1m+44d2;%

j=-3 Jj=-3
-
+ 2/ Aoyo(u)2d$.
4 Rd
For all u € M. By direct calculation, we get that

7(A070(V*))2 — 7(A0,0(u))2 = 4(0;)2(Ui3)2 - (2u;3u_3 - 2U2U_2 + 2uiu—_1 — u%)2 (51)
5 2 1 1 1 5 2 1 1 1
=4 <u§ + éu% + gu% + §u% + §u2_1 + 6u2_2> <u2_3 + 6“2_2 + §u2_1 + iu% + gu% + 6u%>

- [(ngu,g — 2u2u,2)2 + 8(uzu—_z — ugu_o)(ugu—_q — u%) + (2uiu—_q1 — u%)]

5 8 2 10
= §(u§ —u?,)? + §(u% —u?)? + g(Uzug +u_qu_3)* + g(u2u_3 + u_ousz)>
8 14 2
+ g(ului’) - u—1U—3)2 + g(u3u—1 - U1U—3)2 + §(u2u1 + u—1u—2)2 + §(u2u—1 + u—2u1)2

4 2ud(u3 + u_3)? + 2ud(us — u_2)* + 2ud(uy +u_1)* > 0.

Thus,
(Ag0(v¥))?* > (Ago(u))>.

By the definition of E(u), it is easy to see that

O

Lemma 5.2. Assume that 1 = 13 = 0,70 < 0 and M = 0. Then (1.12) has infinitely many solutions
if following minimizing problem

: 1 2 2 o, T2 4
522{2/RNVU| + V(z)u® + <4 + 28) /Rdu d:c}, (5.2)

where

N:{ueHmWM/

Wﬁw:N} (5.3)

has a solution.
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Proof. For any (s,t,r) € R? satisfying s? + 2 + 12 < %, let

v = (—s, —t,r /1 — 282 — 22 — 242 —p ¢, s) ,

it is easy to see that when M = 0, for any u € M, v = yp € M is a mass-redistribution of u. By
Proposition 3.1, we have

1 1
E(u) > E(v) = / (IVp|?)da + / V(@)pde + (2 + 2) / pldz.
2 Rd 2 Rd 4 28 Rd
Thus, (1.12) has infinitely many solutions if (5.2)-(5.3) has a solution. O

Lemma 5.3. Assume that 7y = 173 = 0,70 < 0 and M # 0. If u is a minimizer of (1.12), then ug =0
and uyo = 0.

Proof. When 71 = 0,73 = 0,72 < 0 and u is a minimizer of (1.12), by direct calculations, we have
E(lus|, [ual, [u1l, luol, —|u—1], |u—2|, —|u_3|) < E(us,ug,u1,uo, u—1,u—2,u_3).

Since u satisfies Let v* be defined by (4.3), by Lemma 5.1 and the fact that u is a minimizer of (1.12),
we get E(v*) = E(u). If up # 0, then by (5.1), we get

u3 = —u_3,us = u_o and uy; = —u_q,

which contracts to M # 0. Hence ug = 0. Next, we prove that uto = 0. If ug # 0 in RY, since u is a
minimizer of (1.12), we get E(v*) = E(u). By (5.1), we get

U3 = —uU_3,uUs = u_o and w3 = —u_q,
which contracts to M # 0. Hence us = 0. Similarly, we can prove that u_s =0 and uy; = 0. O

Proof of Theorem 1.4 and Theorem 1.5. Theorem 1.4 and Theorem 1.5 can be obtained by Lem-
ma 5.2 and Lemma 5.3.
O

6 Proof of Theorem 1.6

Proof of Theorem 1.6 . From Theorem 1.1 in [14] and Theorem 1.1 in [28], we know that (1.6)-(1.7)
has a unique non-negative minimizer in H when N € (0, N*) suitable small and (1.6)-(1.7) has a unique
non-negative minimizer in H up to rotation around the origin when N " N*. By Theorem 1.1, when
79 >0, 73 >0 and N € (0, N*) suitable small or N ' N* up to rotation around the origin, we obtain
that (1.3)-(1.4) has a unique non-negative minimizer.

Noting that the trapping potential V(z) of (1.11) is radially symmetric, it then follows from (ii)
of Theorem 1.1 in [14] that (1.6)-(1.7) has a unique non-negative minimizer which is also radially
symmetric for small N > 0. On the other hand, Theorem 1.2 in [14] shows that any non-negative
minimizer of (1.6)-(1.7) concentrates at a point on the ring {x € R?: |z| = A} as N N* and thus it
cannot be radially symmetric. This implies that, as the strength of the interaction N increases from 0
to N*, symmetry breaking occurs in the minimizers of (1.6)-(1.7). Thus, we complete the proof of (i)
and (ii) of Theorem 1.6. O

23



7 Proof of Theorem 1.7

For any u € M, by the definition of N**, we obtain that

1 3 1 3 T0+9T1+T3 3
> Z 12 z 2 LTI
> Q/RQSZZ_;;WUH Jdx + 2/R2 V(;r)(jzz_3uj)d:v+ ( 1 >/R2 ; u§

(7.1)
1 * ’
242
> = /IRQ Z ]Vuj\ )dx — N**/(Z uj) dx
7=—3 j=-3
a* 2N
1 3
_ *ok 12
= sV ‘N%JZ Ve )
7=—3
When 79 < 0, 74 <0, 75 >0, 73 > 0, for any u € M, by the definition of N* := ——%— we obtain

To+971

that

E(u) > ;/RQ(':i_gWqu)dx + ;/IW V(m)(igu?)dx + <TO T 9Tl> / i u dx (7.2)
3

1 2 a 212
Q/RZ(Z V) der — /RQ(Z u?)?dz
j=-3 j=-3
1 3 a* 2N 3
2 2
5 (3 IVl — 5 [ (3 19y
j=-3 j=-3
1 3
= N*—N 1),
v >/Rz<jz_grwj )

Proof of Theorem 1.7. (i) When 79 < 0, 71 <0, 72 <0, 73 < 0. Let {up} C M be a minimizing
sequence of m(N), then by (7.1), {un} is bounded in A if 0 < N < N**. Applying Lemma 2.1, there
exists w = (ws, we, Wy, wo, w—1,w_2,w—_3) € A, such that up to a subsequence, as n — 400,

Y

v

u, —~w, inA.
u, — w, in LY(R2,R7), Vt € [2, +c0).
u, — w, a.e. in R?
Then w € M. Further, by the lower semi-continuity of the norm, there holds
m(N) < I(w) < lim I(uy) = m(N).
n—oo

It yields I(w) = m(N), that is, w € M is a minimizer of m(N) for any N € (0, N**).
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(ii)) When 79 < 0, 74 < 0, 72 > 0, 73 > 0. Let {un} C M be a minimizing sequence of
m(N), then by (7.2), {un} is bounded in A if 0 < N < N*. Applying Lemma 2.1, there exists
w = (w3, wa, w1, wo, w_1,w—_2,w_3) € A, such that up to a subsequence, as n — +o0,

u, ~w, inA.
u, — w, in LY(R2,R"), Vt € [2, +oc0).
un = w, a.e.in R2.

Then w € M. Further, by the lower semi-continuity of the norm, there holds

m(N) < I(w) < lim I(uy) = m(N).

n—oo

It yields I(w) = m(NN), that is, w € M is a minimizer of m(N) for any N € (0, N*).
Next, we show that there has no minimizer for m(N) when N > N* by carefully and skilfully choosing
some proper test functions. For o > 0, we define ® = (P3, Dy, 1, D, P_1,P_o, P_3) € M as

(3N + M)? (3N — M)? —(IN? — M2):
@ = - = ) (I)* = 5 ? q> = 20 5 ’
(@) 216N 2 \/a* oR(0w), P-ale 216Nz /a* 7R(02), Tola) 216Nz +/a*
(3N + M)3(3N — M)2 (3N + M)z(3N — M)3

T) = = ocllox _alx) = ol(ox 7.3
Do) = VB Qlow), Boale) = VBT Qox), (7:3)
_ (3N + M)?*(3N — M) o o) — (3N+M)(3N—M)20_ o
1 (x) = V15 e O S ) =V15 evie Gl

where Q(x) is the unique positive solution of equation (1.8) . By direct calculations, we get

3 3
1 a* 1 a* 2N?0?
- &%) de — dH2dr =~ - No? — — - =0
2/]1@2(23 VeiP)dr - 15 (JZS Jdr=5 NN e !

No™P
/ Z |,]2)d / )02 Q2 (o) da = — V(2)Q2(x)dx
P— a R2
a* T0 + 91y a* 0+ 911\ 2N2%0?
a P2) ( ) .
(i >/j_z T
_ 2 (a* 70—1—971)2]\72
N 4N 4 a*’
o V(@295 + 5@ 5) + VIO @102+ B1B_o) +2V3(@1%g + -1 20)) de
R
3 2 3 2
- d2 do = 2= b2
MDA N DOL I
j=—3 j=-3
% Adydz = 28/ (203D 3 — 203D 5 4+ 28,P_; — ®Z)%dx = 0,
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and

ZA )dz = 0.

Denote
*

_<a T0+9T1>2N2
4N 4

a* ’
then it follows that

3 3 3
1 a* 97’1
E(®): == o .|? &2)2dy — — o2
@®:=3 [ (jzzgw )i [ w2

R2

2

1 3 a* 0 + 97 3
- 1% o2 |a (7 0 1) / o2
! 2 /RQ ) j—z_:3 ! o AN ' 4 R? j;?; ’

N % (\/é(CI)Q(I)g F DDy + \/ﬁ(q)lq)Q + DD 5)+ 2\/5('1)1@)0 + @_1@0))2dx (7.4)
RQ
3 2
+ LY G0Y)| drt e [ (2050 5 — 2020 + 2010y — BF)2da
4 R2 =3 28 R2

2
No=P
=1 ( Z Agj)dx =7 / V(2)Q*(x)dx + Ko?.
R? ;77
We conclude that for any o > 0,

m(N) = No™P V(@) 0 (x)di + <E n (70-1-971) 2]\]2)02

2a* 2 4 *
N(Lﬁp R2 N a (75)
o
= V(2)Q*(x)d N*—N)o?.
20 oo (€)@ (z)dz + 7 ( Jo
If N > N*, let 0 — oo in (7.5), then m(N) — —oo. Thus, there has no minimizer for m(N).
* 2
When 7 > 0 and 73 > 0, we take o = %N R2 Vie —qu\/)( z)de >p+2, we get
2 N /pN* »_
m() < P25 (5 Jga Vi) a)de ) (N* = N)#2 0, asN /N*,  (7.6)
D a

that is, Nh/rr]{] m(N) < 0. On the other hand, when N € (0, N*), we obtain from (7.2) that E(u) > 0

for any w = (us,u2,u1, ug, u—1,u_2,u_3) € M, which implies Nli/r]ja\]* m(N) > 0. Thus

lim m(N)=0.
N /N~

Next, we show that there has no minimizer for m(N) if N = N*. We argue by contradiction to show
that there has no minimizer for m(N*). Suppose w* = (u3, u3, u}, us, u* |, u* 4, u* 3) is a minimizer of
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m(N*). From the proof of (7.4), we have

3 3
* 1 *|2 a* *\ 2
> ) _ .
E(u™) 2/}RQ( g |Vui|®)dx 1 RQ(jzg_Su]) dz

=3
1 3
* |2
5 /. V(x)(j:Z3 )z > 0.

Together with (7.6), we get m(N*) = 0. As a consequence,

1 & *|2 _ a* & *\2
5 L. (3 195Pyie = / (3 s )
and ,
/ V()Y [uf*)da =0. (7.8)
R2 =3

From (7.7), u* is an optimal function of the Gagliardo-Nirenberg inequality for d = 2. By Lemma
u* can be formed as a scaling of Q(x). However, this contradicts to (7.8). Therefore, there has no
minimizer for m(N*) and we complete the proof. O

Next, we prove (iii) of Theorem 1.7. Before that, we give an estimate for the least energy m(N).

Lemma 7.1. Suppose 19 < 0, 71 < 0, 79 < 0 and 13 < 0 (resp. 70 > and 13 > 0), then there holds

m(N) < AO’;N, for N € (0, N**) (resp. N € (0, N*)).

Proof. If 79 < 0,73 < 0, since (0, 0, NJQM\IIO, 0,4/ NEM\IIO, 0, 0) € M, we get from Lemma (2.3),

. IN + M IN — M
m(N) = ulél_/f\‘/l E(u) S E(0,0, T\DO’O’ 2‘110,0,())

< Q/IR? (|Vx110| +V(2)T >d:c =2
If >0, 73 >0, let
~ 3N+ M3~ 3N — M)3 ONZ — M?2)3
Bya) = PN M g Gy = BV Mg Gy = van Dy
216N 3 216NN 3 216N 2

~ (3N + M)3(3N — M)2 ~ (3N + M)2(3N — M)3

@2(1’) - \/6 5 \:[107 @_2(1') = \/6 5 \1107
216N 3 216N 3

~ 3N + M)2(3N — M ~ 3N + M)(3N — M)?

@1(1)) — \/ﬁ( ) ( - )\1107 (I’_l(ilf) :\/ﬁ( )( - ) \I/(),
216N 2 216N 3

then (‘53(1’),%2(1‘),‘51(%),&)0(%),&)_1(1}),&;_2({[}),&;_3(.%)) € M. Further, we get from Lemma (2.3)
that

m(N) = inf E(u) < E(ég(:p), Bo(z), By (), Bo(z), D1 (), P_o(z), 213,3(@)

N _ doyN

— W2 W2
<3/, (IV20f? + V(2)0o?) dz = =2
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Proof of Theorem 1.7. (iii) Set lj, = [po u;¥idx for i = 3,2,1,0,—1, -2, -3, then

u= <Z ET8 79 N Y8 TS AT 79 NN V8 S N AETR 75 Ny RSV 79 ) l3k‘1’k>-
k=0 k=0 k=0 k=0 k=0 k=0 k=0

Moreover, we conclude

o0
N = |[(us, ug, w1, uo, u—1,u—2,u—3) |72 = Y (5 + 3y + 1 + lop + Zop + Zop + Z3) [ W] 72
F=0 (7.9)

:lek+l2k+lk+10k+121k+l o + 231
k=0

and

o0

[ulli = Z(l3k D+ B+ G + P + P + ) [ W[R
k=0

v + B+ By + 15+ 1P+ P + 2 3p).

\MS

Denote My := 53~ (N* — N) € (0,3), then we get
3 1 3
m(N) = B(w) = My | L3 9o+ LV @S tusPyde = Molul

= Mo - Z)\kv By, + B+ B+ 13 + Py + Py + 21
k=0

:MO‘Z(/\k,V Mo ) B + By + 1 + 1y, + 20 + oy + 12g.)
k=0

+ My - Z)\OV B, + U+ B + 13 + 2y + oy + 12g,).
k=0

By Lemma 7.1 and (7.9), we have

Ay = Xov) Y (B + 13, + G + 8 + 1P + P +1P31)
=1

Mg

ey = o) (B + 135 + Bg + 10 + 1P + Pop + 251

??‘

=1
m(N

A
My Z)\OV B+ 1+ B + 1o + 2y + 2o +125;) < (%—M,v)f\/,

then

Z(lgk 15+ By + 1o+ g + o +1P) < ( M,
k=1
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Thus

ZAICV l3k‘+12k‘+lk+l0k+l 1k:+l 2k+l 3](:)
k=1

(Ak,v — Mo ) (B + B+ e+ g + P+ Pop + Poap)

oo

+ Xo,v Z 4 3+ 2+ 2+ 12+ P+ 125
k=
1%

< (32 20 )Ny (B —doy) s = 2 (B )
For N — 0T, we can see that
lw — (IsWo, laWo, 11 o, loWo, -1 W0, 12 W0, 1_3W0)||%
H(lek‘l’k,zl%q’k,lek\l’k,ZZOk‘I’k,Zl 1k‘1/k,zl 2k‘11k7zl 3k\1’k>

o)

= ey (B + By + By + 1 + Pop + o +1%31) = O(N)
k=1

and
|u — (ls\I’o,lz‘I’oJﬂI’o,lo‘I’o,l 1Wo,1-2W, - 3‘1’0)!\%2
= H <Zl3k‘1’k, Zl%‘l’kvzllk\l’kyzl()kq/ka Zl 16 Yk, Zl 2k W, Zl 3k‘1’k>
k=1 k=1
= (B 4 By + By + 105 + 12 1p + Py + % 31) = O(N).
k=1
Therefore, it is obvious the conclusion holds and we complete the proof. O

Assume 7 <0, 71 < 0,72 >0, 73 >0 and N, /' N* as n — 00, let
Up = (USna U2n, Uln, UOn, U—1n, U—2n, U—Sn) € M(Nn)

be a minimizer for m(N,). Then uy satisfies system (1.3) where A, and p, are the corresponding
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Lagrange multipliers. By (7.2), we have

3 3 3
1 2 a” 212 971 2
E(up): = 2/]R2 ( Z |V >dx— v /]1@(42 ujy, ) dr — T e Z Uy
j=-3 7j=-3 j=-3
2
1 > 9 a* 70 + 971 5 9
+2/2 V(m)‘Zujn da:+(4N*+ 1 )/2 ‘Zujn
R j=-3 R Jj=-3
.
+ Zl 2(\/6(u2nu3n + u—2nu—3n) + v 1O(u1nu2n + U—lnu—Zn) + 2\/§(U1nU0n + U—ln“On))2dﬂj
R
5 2
T . T
+ Zl Z (]U?n) da + — / (2unti_3pn — 2UnU_2n + 2u1nU_1n — ug, ) dz
2 \ S 28 JR2

2
73
el —

3 3
1 * 2 1 2
> (N —Nn)/]Rz ( > Vgl )dx+2/RQ V(:E)( > ujn)dﬂs > 0.
j==3 7j=-3
(7.10)
Combining with the fact that Nh/njlV m(N) = 0, we can see that
lim 2 / (2usgpu—_3n — 2u2pU_2p + 2UpU_1p — ugn)Zd:c =0, (7.11)
n—oo 28 R2
lim % / (V6(untsn + u—2nt—3n) + V10(uinuzn + u—1nt—2,) + 2V3(uintion + u—1,u0n))*dz
n—o00 R2
i T1 > .9 2d 1i 971y > 2 2d .
+ Jim T ]Z_SU%)) o= Jlim S (30 k) de=0 (7.12)
and 5
ool 3 [VuuPhiz
. Jj=— -
nh_)ngo 5. = oN+ (7.13)
Jre( 20 u3,)%dx
j=-3
We claim that 5

lim [ () |Vujn|?)dz = +oo.

n—oo 2
R2 774

We argue by contradiction. Suppose there exists a positive constant C, such that [p. (2?2,3 |Vujn|?)de <
C for large n. Then {uy} is a bounded sequence in A, which implies that there exist a subsequence
(still denoted by {un}) and u* := (uf, u3, uf, uf, u*{,u* 5, u* 5), such that as n — oo,

u, — u* in LY(R?%, R7), Vt € [2,+0).
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Hence, by the weak lower semi-continuity of the norm, we get

0= lim F(uy) > E(u*) >m(N*)=0.

n—oo
It shows u* is a minimizer of m(N*), which contradicts to Theorem 1.7. Thus, we obtain the claim.
Now, defining
3 1

(Y Vuftdz) (7.14)

j=—3

- :_m(/

R

then it is easy to see that €, — 0 as n — oc.

Proof (iv) of Theorem 1.7. On the one hand, by (7.5), we get for any o > 0,

No™P Ny

m(Ny,) < 5o /R2 V(2)Q*(z)dx + SN+ (N* — N,)o?.

y (7.6), it follows that

m(N,) <p+2(1>pi2(1>p+2(NfR2 (£)Q (@) st

2 P a*

lim — <
n=o (N* — N, )i+2 2

(7.15)

On the other hand, let Wy, := (Wsp, Won, Win, Won, W—1n, W—2n, W—3,) With @jn(x) = epujn(enz) (j =
3,2,1,0,—1,—2,—3), then

3
/RQ(Z Vi, |*)de = e / Z \Vujn|?)dz = N*.
=3

Moreover, from (7.13), we have

3 3
Jea( 3 Vjal?)d fer( X [Vupl)de
. j=- T j=-— _
PR e R B (719
Jra( Z w dz Jr2( 2 us,)2dx

j==3

which yields that

: 20 = 2(N*)?
lim_ /R ] Z do = =~ (7.17)
j=-3
We claim that there exist {y,} C R? and Ry, n > 0, such that at least one j € {3,2,1,0, -1, -2, -3}
satisfies liminf | Br )117]2. dx > n > 0. Otherwise, suppose for any R > 0, there has a subsequence

n—0o0

{Wjn, } (7 =3,2,1, 0, 1,—2,-3), such that lim sup fB wjznkda: = 0. Then by Lion’s vanishing Lem-

kgxnx R2
ma, we conclude that @;,,, — 0 (j = 3,2,1,0,—1, -2, —3) in L{(R?) for ¢ € (2, 00), which contradicts to
(7.17). Hence, we obtain the claim. Now we define wy, := (W3, Won, Win, Won, W_1pn, W_2p, W_3y,) With

Win(x) = Wjn(T + Yn) = ntjn(en® + nyn), J=3,2,1,0,—1,-2,-3 (7.18)
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then

and

3 3
lim [ (Y |Vwjn’)de = lim [ (> w},)dz = N*
j=-3

n—00 2 n—00 2
R R j=—3

3 *\2
lim Zw de— 2(V7)

n—00 a*

Moreover, there exists some j € {3,2,1,0, —1, —2,—3}, such that

It follows that

By Lemma 2.2, {wy} is a minimizing sequence for the following minimization problem:

where

From Lemma 2.2, the minimizer w = (w3, wa, w1, wo, W_1, w_2,w_3) must be in form

n—oo

liminf/ lwjn|?dz > n > 0.
BRQ(O)

3 3
R2 Jn R2 jn
o S [Vgol2)d fea( 3 wi)da
lim =3 = ==

fR2 2 )2dx

k.= inf K(u),
(0,0,0,0,0,0,0)£ue H

ool 32 Vit ool 52 )

K(u) := 3
Jra( 32w )?de

i=—3

N*
—Q(z) cos 1,

a
wa(@) =/ —Q(x) sin p1 cos 2,

N*
wi(z) =4/ Q() sin p1 sin 2 cos 3,
wo(x) e Q(x) sin 1 sin g sin @3 cos @y,
w_1(x) e Q(x) sin 1 sin g sin @3 cos Y4 COS Y5,
w_g(x) pe Q(x) sin 1 sin pg sin @3 cos Y4 Cos Y5 €O Yg
w_z(x) e Q(x) sin 1 sin pg sin @3 cos Y4 cos s sin g,

32

(7.19)

(7.20)



for 1, 2, 3, ¢4, 05,06 € [0, 5). Since fRQ(Z;)?:fS wjz)dx = N*, we get w, — win L2(R?,R"). Further,

using the interpolation inequality, there holds wy,, — w in L*(R2 R7). From (7.20), we obtain

. 3 3 3
% ( S w?)2de = N*/Q( > VP da < nli_)noloNn/Q( > [ Vwjn|*)da
R* j——3 R* j=—3 B j=—s3
a* 3 a* 3
= — i 2920, — 2 2)2
2 nl—)ngo R2 (]22—3 w]n) dx 2 /Rz (]22—3 wj) d:E’

which gives that lim_ Jre (5 IVwin[?)de = [ra (37— _5|Vw;[?)dz, that is, wy — w in H'(R?,RT)

as n — oo. Therefore, there exists some z; € R?, such that

. N~

nh_)rrolo wsp () = - Q(x — x1) cos p1,
N*

lim woy(x) = —Q(x — 1) sin 1 cos o,
n—00 a

. N~ . .

lim wyy,(x) = —Q(x — 1) sin 1 sin @2 cos 3,
n—00 a

N*

lim wop(x) = 1/ —Q(x — 1) sin ¢ sin g sin @3 cos ¢y, (7.21)
n—00 a*

. N* . . .

lim w_y,(x) = —Q(x — 1) sin 1 sin @2 sin 3 cos @4 cos s,
n—00 a

. N* . . .

lim w_g,(x) = Q(x — x1) sin 1 sin g sin @3 cos Y4 COS Y5 COS Yg,
n—00 a*

. N* . . . .

lim w_g,(x) = —Q(x — 1) sin 1 sin @2 sin 3 cos @4 cos s sin g,
n—o00 a

for P1, P2, L3, P4, P5,P6 € [07 %)
By direct calculations, we obtain from (7.18) that

- V(z)up’de = 2-223_33 ” V(z) - El%(wm(x_;nyn)fdaz

(7.22)

3 3
= Z / V(enx 4 enyn)w?, (2)dx = Z sﬁ/ V(x4 yp + x1)w2, (z + x1)dz.
i=—3/R? = JR?

We now claim lim |y,| < C for some positive constant C'. Otherwise, suppose that lim |yn—|—x1| = +400,
n—oo n—oo

then it follows from (7.22) that for arbitrary C; > 0, there holds [po V(z)[un|?dz > Ciel, as n — oo.
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By (7.16) and (7.17), we have

3 3 3
1 * 2 \2 1 2
Blun) > 5 [ (3 WuPhe = 5 [ (3 Pt [ V(Y e
j=-3 j=-3 J==3
a* 3 70+ 97 3
2 \2 2 \2
2 V2 ( ) / V2
+ AN, Rz(jzz3ujn) T + 1 RQ(j:Z3ujn) T
1 3 a* 70+ 97 3
2 2 \2
> 2/sz<:c><z e+ (- + )/W(Z u2,)da
j=-3 j=-3
1 a* To + 9y (N**)2€72
> p ( ) . n n
z 50+ (9N 2 o ton(l)
1 *
- 5015271 + IN. (N* - Nn)f‘:;Q + On(l)a

where 0,(1) = 0 as n — oco. Taking the infimum with respect to €, > 0, then we conclude

_2_
lim L’l)p > C’f“.

However, it contradicts to (7.15). Thus, there exists xo € R?, such that

lim (yn + xl) = T2,

n—oo

which yields h_)m lyn| < C. Therefore, by (7.16), (7.22) and Fatou’s Lemma, we have

3 o 3
E(up) z Z da:+( + TO+971)/ Z  )2d
> = . N* - N, n(1).
> 25 /R V(@)@ (@) + 5 ( e + on(1)
Then taking
1
. ( 2a* (N* Ny) )wz
" PNy fRZ QQ( ) ’
we get
2 *
oy () L p? <1>p+2 (1)p+z (N Je2V *Qz( x)dz )ﬁz'
N—00 (N* _ Nn)m 2 2 P a

Combining with (7.15), we conclude

2
_p+ 2 /1\r2 /1 7 N* fRZ QQ( )dx pig N 2
m(Ny,) = 5 <2> <p> ( - ) N* — N,)r+2, asn — oo.

(7.23)

(7.24)

Now, we are ready to prove the limit behavior of {un} as n — co. By (7.10)-(7.13) and the fact that

lim m(N) =0,
N AN+
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we get

1 . T
{ lim — /d(\/é(u2nu3n + U_2nt-35) + V10(utntian + U_15U_2,) + 2V3(UrnUon + U_1nu0n)) da
R

2
gz | n—oo 4

. = 9 Sk
# i 3 [ (S ) et 5 [ (30 ) e} o

Since g, — 0 as n — oo, we deduce

% (VB(waws + w_sw_3) + VI0(wiws + w_1w_s) + 2V3(wiwo + w_1wp))*dz
Rd
3 \ (7.25)
T o)) gy 9T 2% gy —
+ - (j;g(]wj)) dr — = - (j;gw]) dx = 0.

Denoting
wj(x) = CjQ(x_xl)a .7 = 37271a0a_17_27_37

we get from (7.21) that
3 3

, M
C? a*’ Z(‘]C?)Zi

a*
j=—3 j=—3

Thus b; := y/f=c; € B. By (7.25) and Lemma 3.1, we obtain b; = b; with N = N* in (3.1) for
7=3,2,1,0,—1,—2,—3. Hence, we conclude

3
2

(BN +M)?* .  (BN-M?* ., (ON?% — M?)
b= v20 216N3

216N3 7 737 216N3
b*_\/é(3N+M)%(3N—M)% . _\/6(3N+M)%(3N7M)g (7.26)
2 216 N3 o2 216N3 ’
. (BN +M)*3N-M) ,, (BN + M)(3N — M)?
b =15 216N3 L = VIS 216N3
, N* (3N* + M)?
] n(@) =1/ =2 T o — ),
A () =\ g Ol T )

_ _ [N* _(3N*+ M)3(3N* — M)2
Jim wan(@) = 1/ -V/6 216(N*)3 Ql =),

/ BN+ MP(BN* - M)
i win (2 ” 2163 Qe =),
N*

r< (V) — M)

by =

Jim won(2) = ST Qe = o). (7.21)
tim (o) = ViR O g ),

Tim w_o () = N*\f(?’N*“Q‘QU(V?’fY* 2 (e - .

M, w3 (@) = ]XWW - o)
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Noting that uy, satisfies the Euler-Lagrange system (1.3), then

—@Wﬁwﬂ@—wun—/<§]WWUM—/ @xiﬂ%m.

i==3

By (1.3) and (7.18), wy satisfies the following system

V6
— Awys, + 62‘/( + yn)wign + € ()\ + 3,u)wi3n + Tp W43 + T1 <2szi2n + 3F, w43,

T 5T 5T \/ET
+ \%Ao,o(wn)wzpsn + V;TAZ,O(Wn)w:F?m + T%Alj:l(wn)wqﬁn + 27\/2>13A2,12(Wn)w:|11n =0,

— Awio, + EJZV( + yn)wﬂn +e ()\ + 2,u)wi2n + Tp W42y + T1 ( 5

T v 20T
— %A070(Wn)w¥2n — 27\/—3A2,:|:2(Wn)w0n =0,

10 V6
——Frwi1, + 7wai3n + 2szi2n>

— Awgip + 8V (x + yn)wiin + € ()\ + p)wirn + TP Wi1n
6 V10
+ 7 <\/>me0n —+ 7me:t2n + \/gmeOn + sz:tln>

2 2
) V1573
+ —Ago(wWp)wx1, — ——A Wripy — ——A Wi, ) WTop
7 0,0(Wn) w1 2\ﬁ 2,0(Wp) w1 ol 2,71(Wn)we2

\ng \fTS
A. Wn wn Wn w n:O7
\/ﬁ 2,4+1(Wn )wo 2\/» A 2 (Wn)ws

— Awop, + 2V (2 + yn)won + €2 \won, + Tp>won + V31 (Frw_1p, + Frwiy)

T 3
— —=A0,0(Wn)wo, + Ay o(Wp)wo, =0,

2T
VT V21
(7.28)
If we let lim, o0 €2\ Ny, = N1, limy, so0 €21, M = No, using (7.27) and taking limit on both sides of
the first equation and the seventh equation in (7.28), we can deduce that lim pu,e2 = 0. Therefore
n—oo
g&Mﬁ:L

The following proof details are similar to the proof of Theorem 2 in [27], we omit it here. O
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