
Uniqueness and symmetry breaking for ground states of

spinor Bose-Einstein condensates

Tuoxin Li 1 Xiao Luo 2 Juncheng Wei 3 Maoding Zhen 4

1 Department of Mathematics, Chinese University of Hong Kong, Shatin, NT, Hong Kong
2 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China

3 Department of Mathematics, Chinese University of Hong Kong, Shatin, NT
4 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China

Abstract

A central goal in condensed matter and modern atomic physics is the exploration of quantum
phases of matter. Spinor Bose-Einstein condensates are quantum fluids that simultaneously realize
superfluidity and magnetism, both of which are associated with symmetry breaking. This was
explored by L.E. Sadler et al. [Nature, 2006] in 87Rb spinor condensates, rapidly quenched across
a quantum phase transition to a ferromagnetic state. In this paper, we provide a mathematical
justification for this phenomenon by completely classifying the ground state of ferromagnetic spin-F
Bose-Einstein condensates in ring traps as well as analysing its asympototic behavior on the number
of atoms and total magnetization. In particular, our classification results shows the validity of single-
mode approximation (SMA) phenomenon firstly observed by C.K. Law, H. Pu and N.P. Bigelow in
Phys. Rev. Lett. (1998).
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1 Introduction

In the early experiments, magnetic traps were used and the spin degrees of the atoms were then
frozen. In 1998, by using an optical dipole trap, a spinor BEC was first produced with spin-1 23Na
gases [10], where the internal spin degrees of freedom were activated. In the optical trap, particles with
different hyperfine states allow different angular momentum in space, resulting in a rich variety of spin
texture. Therefore, degenerate quantum spinor gases maintain both magnetism and superfluidity, and
are quite promising for many fields, such as topological quantum structure, fractional quantum Hall
effect [1, 6]. For a spin-F Bose condensate, there are 2F+1 hyperfine states and the spinor condensate
can be described by a 2F+1 component vector wave function. For the theory of spinor BEC, we refer
to [?, 6, 7, 18,31–33].
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In the mean field theory, a physical state of spin-3 BEC is described by 7 components of complex
order parameter

Φ(x, t) =
(
Φ3(x, t),Φ2(x, t),Φ1(x, t),Φ0(x, t),Φ−1(x, t),Φ−2(x, t),Φ−3(x, t)

)
(x ∈ Rd, d = 1, 2, 3)

and the time evolution of the mean field dynamics is governed by [18,21]

ih∂tΦj(x, t) =
δE

δΦ∗j
, (1.1)

Φ∗j denotes the conjugate transpose of Φj . Here Eτ0,τ1,τ2,τ3(Φ) is defined by

Eτ0,τ1,τ2,τ3(Φ) =

∫
Rd

(
h2

2m
|∇Φ|2 + V |Φ|2 +

τ0

2
ρ4 +

τ1

2
|F|2 +

τ2

2
|A00|2 +

τ3

2

2∑
l=−2

|A2l|2
)
dx, (1.2)

with h is the Planck constant, m is the mass of atoms and τ0, τ1, τ2, τ3 characterize the spin-
independent interaction, spin-exchange interaction, spin-singlet interaction and spin-quintet interaction
respectively. F = (Fx, Fy, Fz) is the spin vector given by

Fx = Φ∗fxΦ, Fy = Φ∗fyΦ, Fz = Φ∗fzΦ,

fx, fy, fz are the Pauli spinor matrices

fx =



0
√

3
2 0 0 0 0 0

√
3

2 0
√

5
2 0 0 0 0

0
√

5
2 0

√
3 0 0 0

0 0
√

3 0
√

3 0 0

0 0 0
√

3 0
√

5
2 0

0 0 0 0
√

5
2 0

√
3

2

0 0 0 0 0
√

3
2 0


, fy = i



0 −
√

3
2 0 0 0 0 0

√
3

2 0 −
√

5
2 0 0 0 0

0
√

5
2 0 −

√
3 0 0 0

0 0
√

3 0 −
√

3 0 0

0 0 0
√

3 0 −
√

5
2 0

0 0 0 0
√

5
2 0 −

√
3

2

0 0 0 0 0
√

3
2 0


,

and
fz = diag(3, 2, 1, 0,−1,−2,−3).

Therefore, the F = (Fx, Fy, Fz) can be written explicitly as

Fx =

√
6

2
(Φ∗2Φ3 + Φ∗3Φ2 + Φ∗−3Φ−2 + Φ∗−2Φ−3) +

√
10

2
(Φ∗1Φ2 + Φ∗2Φ1 + Φ∗−2Φ−1 + Φ∗−1Φ−2)

+
√

3(Φ∗0Φ1 + Φ∗1Φ0 + Φ∗−1Φ0 + Φ∗0Φ−1),

Fy =

√
6

2
(Φ∗2Φ3 − Φ∗3Φ2 + Φ∗−3Φ−2 − Φ∗−2Φ−3) +

√
10

2
(Φ∗1Φ2 − Φ∗2Φ1 + Φ∗−2Φ−1 − Φ∗−1Φ−2)

+
√

3(Φ∗0Φ1 − Φ∗1Φ0 + Φ∗−1Φ0 − Φ∗0Φ−1),
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and

Fz =
3∑

j=−3

(
j|Φj |2

)
.

Defining the matrices

A =
1√
7



0 0 0 0 0 0 1

0 0 0 0 0 −1 0

0 0 0 0 1 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0

0 −1 0 0 0 0 0

1 0 0 0 0 0 0


,A0 =

1√
7



0 0 0 0 0 0 5
2
√

3

0 0 0 0 0 0 0

0 0 0 0 −
√

3
2 0 0

0 0 0 2√
3

0 0 0

0 0 −
√

3
2 0 0 0 0

0 0 0 0 0 0 0

5
2
√

3
0 0 0 0 0 0


,

and Al = (al,jk)7×7(l = ±1,±2), where al,jk is zero except for those j + k = 8 − l. For the
simplicity of notation, we denote −→a l = (al,1(7−l), al,2(6−l), · · · , al,(7−l)1)T ∈ R7−l for l = 1, 2−→a l =(
al,(1−l)7, al,(2−l)6, · · · , al,7(1−l)

)T ∈ R7+l for l = −1,−2 with

−→a ±1 =
1√
7

(
5

2
√

3
,−
√

5

2
,
1

6
,
1

6
,−
√

5

2
,

5

2
√

3

)T
,

−→a ±2 =
1√
7

(√
5

6
,−
√

5

3
,
√

2,−
√

5

3
,−
√

5

2
,

√
5

6

)T
.

Then A0,0 = ΦTAΦ and A2l = ΦTAlΦ can be expressed as

A0,0 =
1√
7

(2Φ3Φ−3 − 2Φ2Φ−2 + 2Φ1Φ−1 − Φ2
0),

A2,0 =
1√
21

(5Φ3Φ−3 − 3Φ1Φ−1 + 2Φ2
0),

A2,±1(Φ) =
1√
21

(5Φ±3Φ∓2 −
√

15Φ±2Φ∓1 +
√

2Φ±1Φ0),

A2,±2(Φ) =
1√
21

(
√

10Φ±3Φ∓1 −
√

20Φ±2Φ0 +
√

6Φ2
±1).

Since V (x) is a real valued function representing the trap potential and by scaling we may assume that
h2

2m = 1. Associated with (1.2) are following two conserved quantities

∫
Rd

( 3∑
j=−3

|Φj |2
)
dx = N,

∫
Rd

3∑
j=−3

(
j|Φj |2

)
dx = M.
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From (1.1)-(1.2), in the dimensionless form, the spin-3 BEC can be described by the following coupled
Gross-Pitaevskii system,

−∆u±3 + V (x)u±3 + (λ± 3µ)u±3 + τρ2u±3 + τ1

(√
6

2
Fxu±2 ± 3Fzu±3

)

+
τ2√

7
A0,0(u)u∓3 +

5τ3

2
√

21
A2,0(u)u∓3 +

5τ3

2
√

21
A2,±1(u)u∓2 +

√
10τ3

2
√

21
A2,±2(u)u∓1 = 0,

−∆u±2 + V (x)u±2 + (λ± 2µ)u±2 + τρ2u±2 + τ1

(√
10

2
Fxu±1 +

√
6

2
Fxu±3 ± 2Fzu±2

)

− τ2√
7
A0,0(u)u∓2 −

√
20τ3

2
√

21
A2,±2(u)u0 = 0,

−∆u±1 + V (x)u±1 + (λ± µ)u±1 + τρ2u±1 + τ1

(√
6

2
Fxu0 +

√
10

2
Fxu±2 +

√
3Fxu0 ± Fzu±1

)

+
τ2√

7
A0,0(u)u∓1 −

3τ3

2
√

21
A2,0(u)u∓1 −

√
15τ3

2
√

21
A2,∓1(u)u∓2

+

√
2τ3√
21

A2,±1(u)u0 +

√
6τ3

2
√

21
A2,±2(u)u±1 = 0,

−∆u0 + V (x)u0 + λu0 + τρ2u0 +
√

3τ1 (Fxu−1 + Fxu1)− τ2√
7
A0,0(u)u0 +

2τ3√
21

A2,0(u)u0 = 0,

(1.3)
along with the constraints ∫

Rd

(
3∑

j=−3

u2
j )dx = N,

∫
Rd

3∑
j=−3

(ju2
j )dx = M, (1.4)

where µ, λ are real numbers,

Fx(u) =
√

6(u2u3 + u−3u−2) +
√

10(u1u2 + u−1u−2+) + 2
√

3(u0u1 + u−1u0),

Fz(u) =
3∑

j=−3

(ju2
j ), ρ2(u) =

3∑
j=−3

u2
j , A0,0(u) =

1√
7

(2u3u−3 − 2u2u−2 + 2u1u−1 − u2
0),

A2,0(u) =
1√
21

(5u3u−3 − 3u1u−1 + 2u2
0), A2,±1(u) =

1√
21

(5u±3u∓2 −
√

15u±2u∓1 +
√

2u±1u0),

A2,±2(u) =
1√
21

(
√

10u±3u∓1 −
√

20u±2u0 +
√

6u2
±1).

Solutions to system (1.3)-(1.4) can be found as critical points of E(u) constrained on M,

E(u) : =
1

2

∫
Rd

( 3∑
j=−3

|∇uj |2 + V (x)ρ2
)
dx+

1

4

∫
Rd

(τ0ρ
4 + τ1F

2 + τ2A
2
0,0 +

2∑
j=−2

τ3A
2
2,j),

where F = (Fx, Fz) are real vector-valued functions,

M :=

{
u ∈ Λ

∣∣ ∫
Rd

(
3∑

j=−3

u2
j )dx = N,

∫
Rd

3∑
j=−3

(ju2
j )dx = M

}
.
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Here the working space

Λ :=

{
(u3, u2, u1, u0, u−1, u−2, u−3) ∈ (H1(Rd))7

∣∣ ∫
Rd

V (x)
( 3∑
j=−3

u2
j

)
dx < +∞

}
(1.5)

is a Hilbert space equipped with the norm

‖(u3, u2, u1, u0, u−1, u−2, u−3)‖Λ :=

∫
Rd

( 3∑
j=−3

|∇uj |2
)
dx+

∫
Rd

(
1 + V (x)

)( 3∑
j=−3

u2
j

)
dx

 1
2

.

Before introducing the main results, we recall a definition (see also [4]):

Definition. We say that (v3, v2, v1, v0, v−1, v−2, v−3) is a ground state of (1.3)-(1.4) if

E′|M(v3, v2, v1, v0, v−1, v−2, v−3) = 0

and

E(v3, v2, v1, v0, v−1, v−2, v−3)

= inf
{
E(u3, u2, u1, u0, u−1, u−2, u−3) s.t. E′|M(u3, u2, u1, u0, u−1, u−2, u−3) = 0

and (u3, u2, u1, u0, u−1, u−2, u−3) ∈M
}
.

We emphasize that this definition is meaningful even if the energy E is unbounded from below on
M. In addition, variational problems with the energy restricted on the manifold M is particularly
appropriate for the study of the stability properties of the ground states.

Up to now, various spinor condensates including spin 1 or 2 87Rb condensate [1], spin-1 23Na con-
densate [10] and spin-2 7Li condensate [6] have been achieved in experiments. In this growing research
direction, mathematical models and analysis as well as numerical simulation have been playing an
important role in understanding the theoretical part of spinor BEC and predicting and guiding the
experiments. However, there are few results regarding the mathematical theory of spinor Bose-Einstein
condensates.

Recently, in [25,27], we developed an exhaustive analysis on standing waves with prescribed mass of
physical states for spin-1 Bose-Einstein condensate in R3 and we give a complete description on ground
states of spin-1 Bose-Einstein condensates with Ioffe-Pritchard magnetic field in R2 and R3. In addition,
in [26], we gave a complete classification of ground state solutions and show the validity of single-
mode approximation (SMA) phenomenon in Rd. We also presented the thresholds for the existence
and nonexistence of ground state, and analyzed the asymptotic behavior of the ground state at the
thresholds. For more results on ground states and excited states of spinor Bose-Einstein condensates,
we refer the reader to [3, 8, 9, 19,22,23,27,34,35] and the reference therein.

To our best knowledge, mathematical theories about uniqueness, symmetry breaking for ground
states of spinor Bose-Einstein condensates and the SMA phenomenon in experimental observations [19]
and numerical simulations [35] has never been rigorous mathematical justifications. As a continuation
of our previous work [26,27], the main purpose of this paper is to provide a mathematical justification
for the symmetry breaking phenomenon explored by L.E. Sadler et al. [Nature, 2006] in 87 Rb spinor
condensates and show the validity of SMA phenomenon in experimental observations [19].
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Firstly, we give a complete classification results for ground states of (1.3)-(1.4) in Rd(d = 1, 2, 3). To
state our main results, we consider the following minimization problem

inf
u∈N

{
1

2

∫
Rd

(|∇u|2 + V (x)u2 +

(
τ0

4
+

9τ1

4
+
τ2

28

)
u4)dx

}
, (1.6)

where

N =
{
u ∈ H1(Rd)

∣∣ ∫
Rd

u2dx = N
}
. (1.7)

Let Wτ0,τ1,τ2 be a positive solution of (1.6) and define

(H1) : τ1 ≤
τ2

63
≤ 0, τ3 ≥ 0,

(H2) : τ1 ≤ 0, τ2 ≥ 0, τ3 ≥ 0.

Our main results in this aspect are the following

Theorem 1.1. Let |M | ≤ 3N and one of (H1), (H2) hold. Then the ground state of (1.3)-(1.4) must
be the form(

u3 = ±(3N +M)3

216N3
Wτ0,τ1,0, u−3 = ±(3N −M)3

216N3
Wτ0,τ1,0, u0 = ±

√
20

(9N2 −M2)
3
2

216N3
Wτ0,τ1,0,

u2 = ±
√

6
(3N +M)

5
2 (3N −M)

1
2

216N3
Wτ0,τ1,0, u−2 = ±

√
6

(3N +M)
1
2 (3N −M)

5
2

216N3
Wτ0,τ1,0,

u1 = ±
√

15
(3N +M)2(3N −M)

216N3
Wτ0,τ1,0, u−1 = ±

√
15

(3N +M)(3N −M)2

216N3
Wτ0,τ1,0

)
.

In particularly, the ground state must be positive if τ1 < 0, τ2 = τ3 = 0.

Remark 1.1. To our best knowledge, this is the first systematically mathematical theories for ground
states and dynamics of spin-3 BEC as well as the first theoretical result dealing with the classification
of ground states for spin-3 BEC. These results not only show that spin-3 BEC has independent charac-
teristics on the sign of spin-independent interaction, spin-exchange interaction, spin-singlet interaction
and spin-quintet interaction, but also support the SMA phenomenon in experimental observations [19]
and numerical simulations [35], that is, each component of the ground state is a multiple of one single
density function. Rigorous mathematical justifications of these conclusions are exactly what is expected
in ( [3], Section 5).

The proof of Theorem 1.1 is non-trivial and very skillful, which mainly relies on the technique of
mass-redistribution for the ground state. Precisely, for any u ∈M, we find a special mass-redistribution
v = b∗ρ (see (3.1) for the definition of b∗) of u, that remains in M, which has a lower total energy.

Next, we consider attractive spin-exchange interaction case(τ1 > 0) and obtain the following

Theorem 1.2. Assume that τ1 > 0, τ2 = τ3 = 0 and M = 0, then the ground state of (1.3)-(1.4) must
be the form (

−s,−t, r,
√

1− 2s2 − 2t2 − 2r2,−r,−t, s
)
Wτ0,0,0,

where (s, t, r) ∈ R3 and s2 + t2 + r2 ≤ 1
2 .
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Remark 1.2. Theorem 1.1 and Theorem 1.2 show that spin-3 BEC has independent characteristics in
both attractive spin-exchange interaction case and attractive spin-exchange interaction cases, but also
support the so-called single-mode approximation (SMA) in experimental observations. The requirement
M = 0 in Theorem 1.2 is necessary. The ground state is unique for attractive spin-exchange interaction
case, while are not unique for repulsive spin-exchange interaction case.

Next, we give some vanishing phenomenon for ground states of (1.3)-(1.4) in nonzero magnetization
case.

Theorem 1.3. Assume that τ1 > 0, τ2 = τ3 = 0 and M 6= 0. Let (u3, u2, u1, u0, u−1, u−2, u−3) be a
ground state of (1.3)-(1.4), then

(i) u0 ≡ 0;
(ii) ui ≡ 0, if M 6= iN(i = ±1,±2,±3);
(iii) u±1 = u±i ≡ 0, if M 6= ±N and M 6= iN(i = ±2,±3);
(iv) u±2 = u±3 ≡ 0, if M 6= ±2N and M 6= ±3N .

Remark 1.3. Theorem 1.2 and Theorem 1.3 indicates that if M = iN(i = 3, 2, 1,−1,−2,−3), then ui
is minimizer of following minimization problem

inf
u∈N

{
1

2

∫
Rd

(|∇ui|2 + V (x)u2
i +

(
τ0

4
+
i2τ1

4

)
u4
i )dx

}
,

where

N =
{
ui ∈ H1(Rd)

∣∣ ∫
Rd

u2
i dx = N

}
.

Remark 1.4. Theorem 1.2 shows that for the attractive spin-exchange interaction case τ1 > 0, if
M = 0, any ground state of (1.3)-(1.4) is nontrivial. While when M 6= 0, Theorem 1.3 shows that
ground states of (1.3)-(1.4) must be semi-trivial. These results not only show that spin-3 BEC has
independent characteristics in both M 6= 0 and the degenerate case M = 0, but also justify the so-
called vanishing phenomenon in experimental observations. In this sense, the influence of the total
magnetization on system (1.3) is important.

For repulsive spin-singlet interaction(τ2 < 0), we have

Theorem 1.4. Assume that τ1 = τ3 = 0, τ2 < 0 and M = 0, then the ground state of (1.3)-(1.4) must
be the form (

−s,−t, r,
√

1− 2s2 − 2t2 − 2r2,−r,−t, s
)
Wτ0,0,τ2 .

Theorem 1.5. Assume that τ1 = τ3 = 0, τ2 < 0 and M 6= 0. Let (u3, u2, u1, u0, u−1, u−2, u−3) be a
ground state of (1.3)-(1.4), then u0 ≡ u±1 ≡ u±2 ≡ 0.

Remark 1.5. For repulsive spin-singlet interaction case(τ2 < 0), Theorem 1.4 and Theorem 1.5 indi-
cate that ground states of (1.3)-(1.4) either have SMA phenomenon or exhibit vanishing phenomenon,
which depends on whether the total magnetization M is zero.

As an application of above classification results, we give the uniqueness and symmetry breaking for
ground states of spinor Bose-Einstein condensates.
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Recall the following nonlinear equation in Rd(d = 1, 2, 3):

−∆u+ u = u3, u ∈ H1(Rd), (1.8)

from [20], there exists a unique positive solution Q(x) for (1.8). By the related Pohozaev identity, we
get

a∗ :=

∫
Rd

|Q|2dx =
4− d
d

∫
Rd

|∇Q|2dx =
4− d

4

∫
Rd

|Q|4dx. (1.9)

Moreover, we obtain from [17] that Q(x) satisfies

Q(x), |∇Q(x)| = O
(
|x|−

d−1
2 e−|x|

)
, as |x| → ∞.

In the following, we always denote

N∗ = − a∗

τ0 + 9τ1
, (1.10)

which is the critical number of atoms. It is natural to ask what would happen if V (x) has infinitely
many minima. Hence, we are interested in studying the GP functional with a trapping potential V (x)
with infinitely many minima and analyzing the detailed behavior of its minimizers as N ↗ N∗. For
this purpose, we focus on the following ring-shaped trapping potential

V (x) = (|x| −A)2, where A > 0, x ∈ R2. (1.11)

and define the following constraint variational problem

m(N) := inf
u∈M

E(u). (1.12)

Our main results on uniqueness and symmetry breaking for ground states of (1.12) are the following.

Theorem 1.6. Let V (x) be given by (1.11), τ2 > 0 and τ3 > 0. Then there exist N∗ > 0 and N∗∗ > 0
satisfying N∗∗ ≤ N∗ < N∗ such that

(i) m(N) has a unique non-negative minimizer which is radially symmetric about the origin if N ∈
(0, N∗∗).

(ii) m(N) has a unique non-negative minimizer up to rotation around the origin, which are not
radially symmetric if N ∈ [N∗, N

∗).

Remark 1.6. Noting that the trapping potential V (x) of (1.11) is radially symmetric, it then follows
from Theorem 1.6 that m(N) has a unique non-negative minimizer which is also radially symmetric
for small N > 0. On the other hand, Theorem 1.2 in [14] shows that any non-negative minimizer of
(1.6) concentrates at a point on the ring {x ∈ R2 : |x| = A} as N ↗ N∗ and thus it cannot be radially
symmetric. Based on the complete classification of ground states, we know that any non-negative
minimizer of m(N) cannot be radially symmetric as N ↗ N∗. This implies that, as the strength of the
interaction N increases from 0 to N∗, symmetry breaking occurs in the minimizers of m(N).

Remark 1.7. The authors in [30] explored spontaneous symmetry breaking in 87Rb spinor condensates,
rapidly quenched across a quantum phase transition to a ferromagnetic state. They observed the for-
mation of spin textures, ferromagnetic domains and domain walls, and demonstrate phase-sensitive in
situ detection of spin vortices. The latter were topological defects resulting from the symmetry break-
ing, containing non-zero spin current but no net mass current. We show that rigorous mathematical
justifications of these symmetry breaking conclusions are exactly what is expected in [30] and show the
validity of SMA phenomenon in experimental observations [19].
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Remark 1.8. The uniqueness result in Theorem 1.6 also holds for the one-dimensional (1D) case and
three-dimensional (3D) case. Indeed, for spin-F (F=1,2,3) Bose-Einstein condensate, we show that
each component of the ground state is a multiple of one single density function, which is independent of
the dimension of whole space. This indicates that the ground states of spin-1 BEC obtained in Theorem
1 [8], Theorem 1.1 [22] and Theorem 1 [27] are unique.

To prove the uniqueness of ground states for BEC, the authors in [15,16] studied carefully the limit
structure of a suitable difference function, for which they needed to make full use of the non-degeneracy
results for a corresponding limit system. In order to employed the non-degeneracy assumption to
derive Pohozaev identities, some delicate estimates and new ideas are also needed to handle with the
crossing terms in BEC systems. Although the authors in [15,16] developed an approach to establish the
uniqueness of ground states for BEC, it does not work for our spin-F(F=1,2,3) BEC. In fact, it is not
clear whether the solution for spin-F(F=1,2,3) BEC is non-degenerate. So, the method of Pohozaev
identities does not work for our case. We provide a new way to establish the uniqueness of ground
states based on the classification of ground states for spin-F(F=1,2,3) BEC, which mainly rely on a
principle, that the mass-redistribution for n-tuple of real-valued functions will decrease the kinetic
energy. Precisely, for any u ∈ M, we find a special mass-redistribution v = b∗ρ (see (3.1) for the
definition of b∗) of u, that remains in M, which has a lower total energy.

Finally, under more general conditions on τ0, τ1, τ2, τ3 and V (x) with

lim
|x|→+∞

V (x) = +∞, V (x) > 0 and V (τx) = τpV (x), p > 0, (1.13)

N∗∗ = − 7a∗

7τ0 + 63τ1 + 7(τ3)− + (τ2)−
, (1.14)

we consider the existence and concentration of ground states.

Theorem 1.7. Let τ1 < 0.
(i) m(N) has at least one minimizer for 0 < N < N∗∗, while m(N) has no minimizer for N > N∗;
(ii) If τ2 > 0 and τ3 > 0, then m(N) has at least one minimizer for 0 < N < N∗, while m(N) has no
minimizer for N ≥ N∗;
(iii) For any minimizer u = (u3, u2, u1, u0, u−1, u−2, u−3) ∈M(N) of m(N), there holds∥∥∥u− (l30Ψ0, l20Ψ0, l10Ψ0, l00Ψ0, l−10Ψ0, l−20Ψ0, l−30Ψ0)

∥∥∥2

Λ
= O(N), as N → 0+, (1.15)

where Ψ0 is the unique normalized positive eigenvector of −∆ + V (x) and

li0 =

∫
R3

uiΨ0dx, for i = 3, 2, 1, 0,−1,−2,−3;

(iv) Let Nn ↗ N∗ as n→∞ and

un = (u3n, u2n, u1n, u0n, u−1n, u−2n, u−3n) ∈M(Nn)

be a minimizer of m(Nn). We have

m(Nn) =
p+ 2

2

(
1

2

) 2
p+2
(

1

p

) p
p+2 (N∗ ∫R2 V (x)Q2(x)dx

a∗

) 2
p+2

(N∗ −Nn)
2

p+2 , as n→∞. (1.16)
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In addition, un satisfies

lim
n→∞

εnu±3n(εnx+ z̃±3n) =

√
N∗

a∗
(3N∗ ±M)3

216(N∗)3
Q(x),

lim
n→∞

εnu±2n(εnx+ z̃±2n) =

√
N∗

a∗

√
6

(3N∗ +M)
3
2
±1(3N∗ −M)

3
2
∓1

216(N∗)3
Q(x),

lim
n→∞

εnu±1n(εnx+ z̃±1n) =

√
N∗

a∗

√
15

(3N∗ +M)
3
2
± 1

2 (3N∗ −M)
3
2
∓ 1

2

216N3
Q(x),

lim
n→∞

εnu0n(εnx+ z̃0n) =

√
N∗

a∗

√
20

(9(N∗)2 −M2)
3
2

216(N∗)3
Q(x),

(1.17)

where z̃in (i = 3, 2, 1, 0,−1,−2,−3) is the unique maximum point of uin with

lim
n→∞

∣∣ z̃in − z̃jn
εn

∣∣ = 0 (i, j = 3, 2, 1, 0,−1,−2,−3, i 6= j), lim
n→∞

|z̃in| = 0

and

εn =
p+ 2

2

(
1

2

) 2
p+2
(

1

p

) p
p+2 (N∗ ∫R2 V (x)Q2(x)dx

a∗

) 2
p+2

(N∗ −Nn)
2

p+2 . (1.18)

Remark 1.9. Theorem 1.7 shows that for attractive spin-singlet interaction and attractive spin-quintet
interaction case, any minimizer u of m(N) in the case of N ↗ N∗ is nontrivial. It gives a complete
classification of the existence and nonexistence of global minimizers and present the thresholds for the
existence and nonexistence of ground state. In addition, asymptotic behavior of the ground state at the
thresholds and atoms collapse behavior of the ground states are also analyzed.

Remark 1.10. For the general potential V (x), in order to get a consistent upper and lower bound
estimate of the energy more directly, we assume V (x) is homogeneous of degree p. Indeed, for the
ring-shaped trapping potential (1.11), we also can obtain the detailed behavior of the minimizers for
problem (1.12) as N ↗ N∗. A more delicate estimate on the GP functional is required. As far as we
know, it is usually not easy to derive directly the optimal energy estimates for the GP functional under
general trapping potentials. Although the authors in [14] developed an approach to establish this kind of
energy estimates for single equation with the trapping potentials, it does not work well for our problem.
In fact, the spin-3 BEC with trapping potentials is more complicated and difficult. To get a uniformly
energy estimate, by following the method in [14] we first get the following type of estimates

C1 (N∗ −N)
2
3 ≤ m(N) ≤ C2 (N∗ −N)

1
2 as N ↗ N∗. (1.19)

Then we provide some new ways to estimate precisely the GP energy under the potential (1.11), which
may be used effectively to handle some general type potentials. Based on the estimates, we may improve
the power 2

3 at the left of (1.19) to be the same as that at the right, namely 1
2 .

Notations. In the paper, we use the following notations. Lp = Lp(Rd) with norm ‖·‖Lp(Rd) = ‖·‖Lp ,

H1(Rd) is the usual Sobolev space and H1(Rd,R7) = (H1(Rd))7 and Lp(Rd,R7) = (Lp(Rd))7 are the
vector-valued functions spaces.

The paper is organized as follows. In Section 2, we introduce some preliminary results. In Section 3,
we prove Theorem 1.1. In section 4, we prove Theorem 1.2 and Theorem 1.3. In section 4, we Prove
Theorem 1.4 and Theorem 1.5. In section 6, we prove Theorem 1.6. Finally, Theorem 1.7 will be proved
in section 7.
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2 Preliminaries

In this section, we give some preliminaries which are useful for the rest of the paper. First, we give a
compact embedding result.

Lemma 2.1. (Pankov [29]) The embedding Λ ↪→ Lp(Rd,R7) is compact for any p ∈ [2, 2d
d−2), where Λ

is defined in (1.5).

For any u ∈ H1(Rd)(d = 2, 3), by Lemma 2.4 in [5], u satisfies the classical Gagliardo-Nirenberg
inequality ∫

R2

u4dx ≤ 2

a∗

∫
R2

|∇u|2dx ·
∫
R2

u2dx (2.1)

and ∫
R3

u4dx ≤ 4
√

3

9a∗

(∫
R3

|∇u|2dx
) 3

2 ·
(∫

R3

u2dx
) 1

2
, (2.2)

where a∗ is defined in (1.9).

For any (u3, u2, u1, u0, u−1, u−2, u−3) ∈ H1(Rd,R7), there also holds the similar inequality.

Lemma 2.2. For u ∈ H1(Rd,R7), there holds∫
R2

( 3∑
j=−3

u2
j

)2
dx ≤ 2

a∗

∫
R2

( 3∑
j=−3

|∇uj |2
)
dx ·

∫
R2

( 3∑
j=−3

u2
j

)
dx (2.3)

and ∫
R3

( 3∑
j=−3

u2
j

)2
dx ≤ C∗

(∫
R3

( 3∑
j=−3

|∇uj |2
)
dx
) 3

2 ·
(∫

R3

( 3∑
j=−3

u2
j

)
dx
) 1

2
, (2.4)

where C∗ = 4
√

3
9a∗ . Moreover, up to translations and suitable scalings, the equality (2.3) holds only at

u3(x) = Q(x) cosϕ1,

u2(x) = Q(x) sinϕ1 cosϕ2,

u1(x) = Q(x) sinϕ1 sinϕ2 cosϕ3,

u0(x) = Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4,

u−1(x) = Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5,

u−2(x) = Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 cosϕ6,

u−3(x) = Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 sinϕ6,

(2.5)

for ϕj ∈ [0, π2 ) (j = 6, 5, 4, 3, 2, 1) and Q(x) is the unique positive solution to (1.8).

Proof. We only prove the 2D case, the proof of (2.4) are similar, we omit the details here. Consider
the minimization problem:

k := inf
(0,0,0,0,0,0,0) 6=u∈H1(R2,R7)

K(u), (2.6)
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where

K(u) =

∫
R2

( 3∑
j=−3

|∇uj |2
)
dx ·

∫
R2

( 3∑
j=−3

u2
j

)
dx

∫
R2

( 3∑
j=−3

u2
j

)2
dx

.

To obtain (2.4), it is sufficient to show k = a∗

2 . Let Q(x) be the unique positive solution to (1.8) and
set

(u3, u2, u1, u0, u−1, u−2, u−3) =
( Q√

7
,
Q√

7
,
Q√

7
,
Q√

7
,
Q√

7
,
Q√

7
,
Q√

7

)
,

then by (1.9),

K(u) =

∫
R2 |∇Q|2dx ·

∫
R2 Q

2dx∫
R2 Q4dx

=
a∗

2
.

By direct calculation, for arbitrary (u3, u2, u1, u0, u−1, u−2, u−3) ∈ H1(R2,R7), there holds∣∣∣∣∣∣∇
√√√√ 3∑

j=−3

u2
j

∣∣∣∣∣∣
2

≤
3∑

j=−3

|∇uj |2,

therefore, by (2.2),

K(u) ≥

∫
R2(|∇

√
3∑

j=−3
u2
j |2)dx ·

∫
R2

( 3∑
j=−3

u2
j

)
dx

∫
R2

( 3∑
j=−3

u2
j

)2
dx

=

∫
R2

(
|∇
√

3∑
j=−3

u2
j |2
)
dx ·

∫
R2

(√ 3∑
j=−3

u2
j

)2
dx

∫
R2

(√ 3∑
j=−3

u2
j

)4
dx

≥ a∗

2
.

Thus, k = a∗

2 . Similar to [13], we conclude that to find the minimizer of (2.6) is equivalent to the
ground state of the following system:

−∆ui + ui = u3
i +

( 3∑
j=−3

u2
j

)
ui, i = 3, 2, 1, 0,−1,−2,−3. (2.7)

Moreover, we have ∫
R2

( 3∑
j=−3

|∇uj |2
)
dx =

∫
R2

( 3∑
j=−3

u2
j

)
dx =

1

2

∫
R2

( 3∑
j=−3

u2
j

)2
dx.

Then similar to the arguments in [12] for three components system, the ground state of (2.7) is of the
form (2.5), hence equality (2.3) holds only for the ground state of (2.7).
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Finally, we give the pure point spectrum and the associated eigenvectors for harmonic oscillator
−∆ + V (x), which is useful for us to study the qualitative properties of solutions for m(N).

Denote LV := −∆ + V (x) : Σ̂V → L2(Rd,R). We have the following spectral analysis for LV :

Lemma 2.3. Let V satisfy (1.13). Then there hold:
(i) Each eigenvalue of LV is real.
(ii) If we repeat each eigenvalue λk,V (k = 0, 1, 2, · · · ) according to its (finite) multiplicity, we have

0 < λ0,V ≤ λ1,V ≤ λ2,V ≤ · · ·

and
λk,V →∞ as k →∞.

(iii) Furthermore, there exists an orthonormal basis {ψk,V }∞k=0 of L2(Rd,R), where ψk,V ∈ ΣV is an
eigenfunction corresponding to λk,V :

LV ψk,V = ψk,V λk,V ,

for k = 0, 1, 2, . . . .
(iv) Finally, the first eigenvalue λ0,V is simple.

We omit the proof since it is a standard argument like Section 6.5 in the classical book [11].

3 Proof of Theorem 1.1

The proofs of Theorem 1.1 mainly rely on a principle, that the mass-redistribution for n-tuple of real-
valued functions will decrease the kinetic energy. We now introduce the definition and properties for
the mass-redistribution.

Definition 3.1. [24] Let f = (f1, f2, · · · , fn) ∈ H1(Rd,Rn) be an n-tuple of real-valued functions and
g = (g1, g2, · · · , gm) be an m-tuple of nonnegative functions. We say g is a mass-redistribution of f ,
if g2

l =
∑n

k=1 blkf
2
k for each l = 1, 2, ...m, where blk ≥ 0 are constants and

∑m
l=1 blk = 1 for each

k = 1, 2, ..., n.

Proposition 3.1. [24] For any mass-redistribution g of f , we have
(i) |g| = |f |;
(ii) |∇g| ≤ |∇f |. Moreover, |∇g| = |∇f | if and only if fj∇fk = fk∇fj for each k 6= j with bljblk 6= 0
for at least one l.

Suppose bj ≥ 0(j = 3, 2, 1, 0,−1,−2,−3) and b = (b3, b2, b1, b0, b−1, b−2, b−3), we consider the maxi-
mization problem

max
b∈B

Q(b)

where

Q(b) =
[√

6(b2b3 + b−2b−3) +
√

10(b1b2 + b−1b−2) + 2
√

3(b0b1 + b0b−1)
]2

+

 3∑
j=−3

(jb2j )

2

,

and

B =

{
b ∈ R7|bj ≥ 0 and b satisfies

3∑
j=−3

b2j = 1,

3∑
j=−3

(jb2j ) =
M

N

}
.
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Lemma 3.1. Assume |M | ≤ 3N, then there exists a b∗ = (b∗3, b
∗
2, b
∗
1, b
∗
0, b
∗
−1, b

∗
−2, b

∗
−3) ∈ B, such that

max
b∈B

Q(b) = Q(b∗) = 9,

where

b∗3 =
(3N +M)3

216N3
, b∗−3 =

(3N −M)3

216N3
, b∗0 =

√
20

(9N2 −M2)
3
2

216N3
,

b∗2 =
√

6
(3N +M)

5
2 (3N −M)

1
2

216N3
, b∗−2 =

√
6

(3N +M)
1
2 (3N −M)

5
2

216N3
,

b∗1 =
√

15
(3N +M)2(3N −M)

216N3
, b∗−1 =

√
15

(3N +M)(3N −M)2

216N3
.

(3.1)

Proof. By direct calculations, for any b ∈ B, we have

9(
3∑

j=−3

(b2j ))
2 −Q(b) = (3b20 − 4b1b−1)2 + (2b1b−1 − 5b2b−2)2 + (b2b−2 − 6b3b−3)2

+ (
√

5b22 − 2
√

3b1b3)2 + (
√

5b2−2 − 2
√

3b−1b−3)2

+ (
√

8b21 −
√

15b0b2)2 + (
√

8b2−1 −
√

15b0b−2)2

+ 3(b0b2 − 2
√

2b3b−1)2 + 3(b0b−2 − 2
√

2b−3b1)2

+ (2b1b2 − 3
√

2b0b3)2 + (2b−1b−2 − 3
√

2b0b−3)2

+ (
√

6b0b1 − 2
√

5b−1b2)2 + (
√

6b0b−1 − 2
√

5b1b−2)2

+ 2(b1b−2 −
√

15b2b−3)2 + 2(b−1b2 −
√

15b−2b3)2 ≥ 0.

(3.2)

So, when (b3, b2, b1, b0, b−1, b−2, b−3) satisfies following algebra system

3b20 − 4b1b−1 = 0,

2b1b−1 − 5b2b−2 = 0,

b2b−2 − 6b3b−3 = 0,
√

5b22 − 2
√

3b1b3 = 0,
√

5b2−2 − 2
√

3b−1b−3 = 0,
√

8b21 −
√

15b0b2 = 0,
√

8b2−1 −
√

15b0b−2 = 0,

b0b2 − 2
√

2b3b−1 = 0,

b0b−2 − 2
√

2b−3b1 = 0,

2b1b2 − 3
√

2b0b3 = 0,

2b−1b−2 − 3
√

2b0b−3 = 0,
√

6b0b1 − 2
√

5b−1b2 = 0,
√

6b0b−1 − 2
√

5b1b−2 = 0,

b1b−2 −
√

15b2b−3 = 0,

b−1b2 −
√

15b−2b3 = 0,

(3.3)
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then

Q(b) = 9(
3∑

j=−3

(b2j ))
2 = 9.

By solving above algebraic system directly and using
∑3

j=−3 b
2
j = 1,

∑3
j=−3(jb2j ) = M

N , we have

max
b∈B

Q(b) = Q(b∗) = 9,

where

b∗3 =
(3N +M)3

216N3
, b∗−3 =

(3N −M)3

216N3
, b∗0 =

√
20

(9N2 −M2)
3
2

216N3
,

b∗2 =
√

6
(3N +M)

5
2 (3N −M)

1
2

216N3
, b∗−2 =

√
6

(3N +M)
1
2 (3N −M)

5
2

216N3
,

b∗1 =
√

15
(3N +M)2(3N −M)

216N3
, b∗−1 =

√
15

(3N +M)(3N −M)2

216N3
.

Proof of Theorem 1.1. Let u ∈M be a minimizer of (1.12). We claim that b∗ρ is also a minimizer.
Indeed, by direct calculations, we have

A2
0,0(b∗ρ) = 0, A2

2,0(b∗ρ) = 0, A2
2,1(b∗ρ) = 0, A2

2,−1(b∗ρ) = 0,

A2
2,2(b∗ρ) = 0, A2

2,−2(b∗ρ) = 0.

By (3.2), we have

F2(b∗ρ)− F2(u) = 9(
3∑

j=−3

(u2
j ))

2 − F2(u)

= (3u2
0 − 4u1u−1)2 + (2u1u−1 − 5u2u−2)2 + (u2u−2 − 6u3u−3)2

+ (
√

5u2
2 − 2

√
3u1u3)2 + (

√
5u2
−2 − 2

√
3u−1u−3)2

+ (
√

8u2
1 −
√

15u0u2)2 + (
√

8u2
−1 −

√
15u0u−2)2

+ 3(u0u2 − 2
√

2u3u−1)2 + 3(u0u−2 − 2
√

2u−3u1)2

+ (2u1u2 − 3
√

2u0u3)2 + (2u−1u−2 − 3
√

2u0u−3)2

+ (
√

6u0u1 − 2
√

5u−1u2)2 + (
√

6u0u−1 − 2
√

5u1u−2)2

+ 2(u1u−2 −
√

15u2u−3)2 + 2(u−1u2 −
√

15u−2u3)2

≥ (3u2
0 − 4u1u−1)2 + (2u1u−1 − 5u2u−2)2 + (u2u−2 − 6u3u−3)2

+ 2(
√

5u2
2 − 2

√
3u1u3)(

√
5u2
−2 − 2

√
3u−1u−3) + 2(

√
8u2

1 −
√

15u0u2)(
√

8u2
−1 −

√
15u0u−2)

+ 6(u0u2 − 2
√

2u3u−1)(u0u−2 − 2
√

2u−3u1)− 2(2u1u2 − 3
√

2u0u3)(2u−1u−2 − 3
√

2u0u−3)

− 2(
√

6u0u1 − 2
√

5u−1u2)(
√

6u0u−1 − 2
√

5u1u−2)− 4(u1u−2 −
√

15u2u−3)(u−1u2 −
√

15u−2u3)

= 63A2
0,0(u).

(3.4)
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Thus, for τ1 ≤ τ2
63 ≤ 0, τ3 ≥ 0, we obtain

τ1

4
(F2(b∗ρ)− F2(u)) +

τ2

4
(A2

0,0(b∗ρ)−A2
0,0(u)) +

τ3

4

 2∑
j=−2

A2
2,j(b

∗ρ)−
2∑

j=−2

A2
2,j(u)

 (3.5)

≤ 1

4
(63τ1 − τ2)A2

0,0(u) ≤ 0.

For τ1 ≤ 0, τ2 ≥ 0, τ3 ≥ 0, we have

τ1

4
(F2(b∗ρ)− F2(u)) +

τ2

4
(A2

0,0(b∗ρ)−A2
0,0(u)) +

τ3

4
(

2∑
j=−2

A2
2,j(b

∗ρ)−
2∑

j=−2

A2
2,j(u)) ≤ 0. (3.6)

Therefore E(b∗ρ) ≤ E(u).Thus b∗ρ is also a minimizer. Consequently,

( 3∑
j=−3

|∇uj |2
)
−
( 3∑
j=−3

|∇bjρ|2
)

= 0,

τ1

4
(F2(a∗ρ)− F2(u)) +

τ2

4
(A2

0,0(b∗ρ)−A2
0,0(u)) +

τ3

4
(

2∑
j=−2

A2
2,j(a

∗ρ)−
2∑

j=−2

A2
2,j(u)) = 0.

By (3.5), (3.6), A2
0,0(b∗ρ) = 0, and

∑2
j=−2 A2

2,j(b
∗ρ) = 0, we get that

A2
0,0(u) = 0,

2∑
j=−2

A2
2,j(u) = 0, F2(b∗ρ) = F2(u).

Therefore u = ±b∗ρ.
Next, we prove that the ground state must be positive if τ1 < 0, τ2 = τ3 = 0. Define

A =

{
u ∈M| uj ≥ 0, j = 3, 2, 1, 0,−1,−2,−3

}
and

G =

{
u ∈ A| E(u) = inf

v∈A
E(v) = inf

v∈M
E(v)

}
.

If u ∈M, then b∗ρ ∈M is a mass-redistribution of u. By Proposition 3.1, we obtain

E(u) ≤ 1

4

∫
Rd

(|∇ρ|2 + V (x)ρ2 +
1

4
(τ0 + 9τ1)ρ4)dx = E(b∗ρ) ≤ E(u). (3.7)

Thus if ρ is a solution of (1.6) and (1.7), then u is a ground state solution of (1.3) and (1.4).
On the one hand, if u is a ground state of (1.3) and (1.4), then |u| ∈ G. We claim |u| = b∗ρ. Indeed,

E(u)− E(b∗ρ) =
1

2

∫
Rd

( 3∑
j=−3

|∇uj |2
)
−
( 3∑
j=−3

|∇b∗jρ|2
) dx− τ1

4

∫
Rd

(9ρ4 − F 2
x − F 2

z )dx ≥ 0.
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Since u ∈ G, we obtain that

( 3∑
j=−3

|∇uj |2
)
−
( 3∑
j=−3

|∇bjρ|2
)

= 0, 9ρ4 − F 2
x − F 2

z = 0. (3.8)

When |M | 6= 3N , by Proposition 3.1 and the first equality of (3.8), we get uj∇uk = uk∇uj for j 6= k.
Since E(|u|) ≤ E(u), we may assume that uj ≥ 0(j = 3, 2, 1, 0,−1,−2,−3). Since

∫
Rd

∑3
j=−3 u

2
j = N ,

at least one uj 6≡ 0(j = 3, 2, 1, 0,−1,−2,−3). Without loss of generality, we may assume u0 > 0, so we
have

∇(
u3

u0
) = ∇(

u2

u0
) = ∇(

u1

u0
) = ∇(

u−1

u0
) = ∇(

u−2

u0
) = ∇(

u−3

u0
) = 0.

Then there are some cj ≥ 0 such that uj = cju0 for j = 3, 2, 1,−1,−2,−3. Together with the second
equality of (3.8), we get u = b∗ρ. When |M | = 3N , the conclusion is obvious. So

min
u∈M

E(u) ≤ E(u) ≤ 1

2

∫
Rd

(|∇ρ|2 + V (x)ρ2 +
1

4
(τ0 + 9τ1)ρ4)dx = E(b∗ρ) = E(|u|) ≤ E(u) = min

u∈M
E(u).

Thus, it is easy to see that ρ is a solution to (1.6) and (1.7). Therefore, we complete the proof.

4 Proof of Theorem 1.2 and Theorem 1.3

Lemma 4.1. Assume that τ1 > 0, τ2 = τ3 = 0 and M = 0, then (1.12) has infinitely many solutions
if following minimizing problem

inf
u∈N

{
1

2

∫
Rd

(|∇u|2 + V (x)u2 +
τ0

4

∫
Rd

u4dx

}
, (4.1)

where

N =
{
u ∈ H1(Rd)

∣∣ ∫
Rd

u2dx = N
}
, (4.2)

has a solution.

Proof. For any (s, t, r) ∈ R3 satisfying s2 + t2 + r2 ≤ 1
2 , let

γ =
(
−s,−t, r,

√
1− 2s2 − 2t2 − 2r2,−r,−t, s

)
,

it is easy to see that when M = 0, for any u ∈ M, v = γρ ∈ M is a mass-redistribution of u. By
Proposition 3.1, we have

E(u) ≥ E(v) =
1

2

∫
Rd

(|∇ρ|2)dx+
1

2

∫
Rd

V (x)ρ2dx+
τ0

4

∫
Rd

ρ4dx.

Thus, (1.12) has infinitely many solutions if (4.1)-(4.2) has a solution.

Proof of Theorem 1.2. Theorem 1.2 can be derived easily from Lemma 4.1.
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Next, we prove Theorem 1.3. Define a subset of M∗ of M by

M∗ = {u ∈M : u2 = u1 = u0 = u−1 = u−2 = 0}.

For any u ∈ M, we consider the following mass-redistribution v∗ = (v∗3, v
∗
2, v
∗
1, v
∗
0, v
∗
−1, v

∗
−2, v

∗
−3) of u

with

v∗ =

(√
u2

3 +
5

6
u2

2 +
2

3
u2

1 +
1

2
u2

0 +
1

3
u2
−1 +

1

6
u2
−2, 0, 0, 0, 0, 0,

√
u2
−3 +

5

6
u2
−2 +

2

3
u2
−1 +

1

2
u2

0 +
1

3
u2

1 +
1

6
u2

2

)
,

(4.3)

then we have

Lemma 4.2. Assume that τ1 > 0 and τ2 = τ3 = 0, then a solution to the following minimizing problem

min
u∈M∗

E(u)

is a solution to (1.12).

Proof. For any u ∈ M, by (4.3), we have that v∗ ∈ M∗, by Proposition 3.1 and the assumptions
τ1 > 0, τ2 = τ3 = 0, we have

E(v∗)− E(u) =
1

2

∫
Rd

(
|∇v∗3|2 + |∇v∗−3|2

)
dx+

1

2

∫
Rd

(
V (x)((v∗3)2 + (v∗−3)2)

)
dx+

τ0

4

∫
Rd

(
(v∗3)2 + (v∗−3)2

)2
+
τ1

4

∫
Rd

(
3(v∗3)2 − 3(v∗−3)2

)2
dx

− 1

2

∫
Rd

( 3∑
j=−3

|∇uj |2
)
dx− 1

2

∫
Rd

V (x)
3∑

j=−3

u2
j

 dx− τ0

4

∫
Rd

 3∑
j=−3

u2
j

2

− τ1

4

∫
Rd

(
√

6(u2u3 + u−2u−3) +
√

10(u1u2 + u−1u−2) + 2
√

3(u1u0 + u−1u0))2dx

− τ1

4

∫
Rd

 3∑
j=−3

(ju2
j )

2

dx

≤ −τ1

4

∫
Rd

(
√

6(u2u3 + u−2u−3) +
√

10(u1u2 + u−1u−2) + 2
√

3(u1u0 + u−1u0))2dx ≤ 0,

therefore a minimizer of min
u∈M∗

E(u) is a minimizer of min
u∈M

E(u).

Lemma 4.3. Assume that τ1 > 0, τ2 = τ3 = 0 and M 6= 0. If u is a minimizer of (1.12), then u0 ≡ 0.

Proof. When τ1 > 0, τ2 = τ3 = 0, if u is a minimizer of (1.12), then v∗ in (4.3) is also a minimizer. By
lemma 4.2, we have that

Fx(u) = Fx(v∗) = 0,

thus u satisfies that
−∆u±3 + V (x)u±3 + (λ± 3µ)u±3 + τρ2u±3 ± 3τ1Fzu±3 = 0,

−∆u±2 + V (x)u±2 + (λ± 2µ)u±2 + τρ2u±2 ± 2τ1Fzu±2 = 0,

−∆u±1 + V (x)u±1 + (λ± µ)u±1 + τρ2u±1 ± τ1Fzu±1 = 0,

−∆u0 + V (x)u0 + λu0 + τρ2u0 = 0.

(4.4)
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By regularity theorem, it is clear that u ∈ (C∞(Rn))7. Suppose there exists a point x0 ∈ Rn with
u0(x0) 6= 0, then there exists an open connected set I ⊂ Rn, such that u0(x) 6= 0 in I and u0(x) = 0 in
∂I. By lemma 4.2 and Proposition 3.1, we obtain

∇uju0 = ∇u0uj , ∀x ∈ I, j = 3, 2, 1,−1,−2,−3,

which implies that there exists bj ∈ R, such that

uj = aju0, ∀x ∈ I, j = 3, 2, 1,−1,−2,−3,

and
√

6(a2a3 + a−2a−3) +
√

10(a1a2 + a−1a−2) + 2
√

3(a1 + a−1) = 0. (4.5)

Denote
Rn = (∪iIi+) ∪ I0 ∪ (∪iIi−),

where i, j are some index sets and

Ii+ are connected subsets in I+ = {x ∈ Rn|u0(x) > 0},
Ij− are connected subsets in I− = {x ∈ Rn|u0(x) < 0},

and
I0 = {x ∈ Rn|u0(x) = 0}.

We define v by

v = a|u0| =


(ai3, a

i
2, a

i
1, 1, a

i
−1, a

i
−2, a

i
−3)u0, x ∈ Ii+,

(ai3, a
i
2, a

i
1, 1, a

i
−1, a

i
−2, a

i
−3)|u0|, x ∈ Ii−,

u, x ∈ I0.

It is easy to see that v ∈ M. By (4.5), we have that Fx(v) ≡ 0, therefore E(v) ≤ E(u). Hence v is
also a minimizer which satisfies system (4.4) and v0 ≥ 0. By maximum principle, we get that v0 > 0 in
Rn. Thus, we may assume that u0 > 0 in Rn. Since u satisfies (4.4), we get that

a±3

(
−∆u0 + V (x)u0 + (λ± 3µ)u0 + (τa2 ± 3τ1M0)u3

0

)
= 0,

a±2

(
−∆u0 + V (x)u0 + (λ± 2µ)u0 + (τa2 ± 2τ1M0)u3

0

)
= 0,

a±1

(
−∆u0 + V (x)u0 + (λ± µ)u0 + (τa2 ± τ1M0)u3

0

)
= 0,

−∆u0 + V (x)u0 + λu0 + τa2u3
0 = 0,

(4.6)

where M0 =
∑3

j=−3(ja2
j ) satisfies that

M0

∫
Rn

u2
0dx = M 6= 0. (4.7)

If one of aj is nonzero for j = 3, 2, 1,−1,−2,−3, by (4.6), we obtain that

τ1M0u
3
0 + µu0 = 0, ∀ x ∈ Rn,

which contradict to M 6= 0, τ1 > 0 and 0 6≡ u0 ∈ H1
0 (Rn). If aj = 0, for j = 3, 2, 1,−1,−2,−3, then

M = 0, which contracts to (4.7). Therefore, u0 ≡ 0.
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Lemma 4.4. Assume that τ1 > 0, τ2 = τ3 = 0 and M 6= 0, M 6= ±N. If u is a minimizer of (1.12),
then u±1 ≡ 0.

Proof. By Lemma 4.3, we have u0 ≡ 0. We may assume there exists a point x0 ∈ Rn with u1(x0) 6= 0,
then there exists an open connected set I ⊂ Rn, such that u1(x) 6= 0 in I and u1(x) = 0 in ∂I. Similar
to the proof of Lemma 4.3, we have

uj = bju1, ∀x ∈ I, j = 3, 2, 0,−1,−2,−3,

with
b0 = 0 and

√
6(b2b3 + b−2b−3) +

√
10(b2 + b−1b−2) = 0.

Moreover, we may assume that u1 > 0 and u = (b3, b2, 1, 0, b−1, b−2, b−3)u1. Since u satisfies (4.4), we
get that 

b±3

(
−∆u1 + V (x)u1 + (λ± 3µ)u1 + (τb2 ± 3τ1M1)u3

1

)
= 0,

b±2

(
−∆u1 + V (x)u1 + (λ± 2µ)u1 + (τb2 ± 2τ1M1)u3

1

)
= 0,

b−1

(
−∆u1 + V (x)u1 + (λ− µ)u−1 + (τb2 − τ1M1)u3

1

)
= 0,

−∆u1 + V (x)u1 + (λ+ µ)u1 + (τb2 + τ1M1)u3
1 = 0,

(4.8)

where M1 =
∑3

j=−3(jb2j ) satisfies that

M1

∫
Rn

u2
1dx = M 6= 0 and M1

∫
Rn

u2
1dx = M 6= ±N. (4.9)

If one of bj is nonzero for j = 3, 2,−1,−2,−3, by (4.10), we obtain that

τ1M1u
3
1 + µu1 = 0, ∀ x ∈ Rn,

which contradict to M 6= 0, τ1 > 0 and 0 6≡ u1 ∈ H1
0 (Rn). If bj = 0, for j = 3, 2,−1,−2,−3, then we

have M = N , which contracts to M 6= N . Therefore, u1 ≡ 0. Similarly, we can deduce that u−1 = 0.

Lemma 4.5. Assume that τ1 > 0, τ2 = τ3 = 0 and M 6= 0, M 6= ±2N. If u is a minimizer of (1.12),
then u±2 ≡ 0.

Proof. By Lemma 4.3, we have u0 ≡ 0. We may assume there exists a point x0 ∈ Rn with u2(x0) 6= 0,
then there exists an open connected set I ⊂ Rn, such that u2(x) 6= 0 in I and u2(x) = 0 in ∂I. Similar
to the proof of Lemma 4.3, we have

uj = cju2, ∀x ∈ I, j = 3, 1, 0,−1,−2,−3,

with
c0 = 0 and

√
6(c3 + c−2c−3) +

√
10(c1 + c−1c−2) = 0.

Moreover, we may assume that u2 > 0 and u = (c3, 1, c1, 0, c−1, c−2, c−3)u2. Since u satisfies (4.4), we
get that 

c±3

(
−∆u2 + V (x)u2 + (λ± 3µ)u2 + (τc2 ± 3τ1M2)u3

2

)
= 0,

c±1

(
−∆u2 + V (x)u2 + (λ± µ)u2 + (τc2 ± τ1M2)u3

2

)
= 0,

c−2

(
−∆u2 + V (x)u2 + (λ− 2µ)u2 + (τc2 − 2τ1M2)u3

2

)
= 0,

−∆u2 + V (x)u2 + (λ+ 2µ)u2 + (τc2 + 2τ1M2)u3
2 = 0,

(4.10)
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where M2 =
∑3

j=−3(jc2
j ) satisfies that

M2

∫
Rn

u2
2dx = M 6= 0 and M2

∫
Rn

u2
2dx = M 6= ±2N. (4.11)

If one of cj is nonzero for j = 3, 1,−1,−2,−3, by (4.10), we obtain that

τ1M2u
3
2 + µu2 = 0,∀ x ∈ Rn,

which contradict to M 6= 0, τ1 > 0 and 0 6≡ u2 ∈ H1
0 (Rn). If cj = 0, for j = 3, 1,−1,−2,−3, then

we have M = 2N , which contracts to M 6= 2N . Therefore, u2 ≡ 0. Similarly, we can deduce that
u−2 = 0.

Lemma 4.6. Assume that τ1 > 0, τ2 = τ3 = 0 and M 6= 0, M 6= ±3N. If u is a minimizer of (1.12),
then u±3 ≡ 0.

Proof. By Lemma 4.3, we have u0 ≡ 0. We may assume there exists a point x0 ∈ Rn with u3(x0) 6= 0,
then there exists an open connected set I ⊂ Rn, such that u3(x) 6= 0 in I and u3(x) = 0 in ∂I. Similar
to the proof of Lemma 4.3, we have

uj = dju3, ∀x ∈ I, j = 2, 1, 0,−1,−2,−3,

with
d0 = 0 and

√
6(d2 + d−2d−3) +

√
10(d1d2 + d−1d−2) = 0.

Moreover, we may assume that u3 > 0 and u = (1, d2, d1, 0, d−1, d−2, d−3)u3. Since u satisfies (4.4), we
get that 

d±2

(
−∆u3 + V (x)u3 + (λ± 2µ)u3 + (τd2 ± 2τ1M3)u3

3

)
= 0,

d±1

(
−∆u0 + V (x)u3 + (λ± µ)u3 + (τd2 ± τ1M3)u3

3

)
= 0,

d−3

(
−∆u0 + V (x)u3 + (λ− 3µ)u3 + (τd2 − 3τ1M3)u3

3

)
= 0,

−∆u3 + V (x)u3 + (λ+ 3µ)u3 + (τd2 + 3τ1M3)u3
3 = 0,

(4.12)

where M3 =
∑3

j=−3(jd2
j ) satisfies that

M3

∫
Rn

u2
3dx = M 6= 0 and M3

∫
Rn

u2
3dx = M 6= ±3N. (4.13)

If one of dj is nonzero for j = 2, 1,−1,−2,−3, by (4.12), we obtain that

τ1M3u
3
3 + µu3 = 0,∀ x ∈ Rn,

which contradict to M 6= 0, τ1 > 0 and 0 6≡ u3 ∈ H1
0 (Rn). If dj = 0, for j = 2, 1,−1,−2,−3, then

we have M = 3N , which contracts to M 6= 3N . Therefore, u3 ≡ 0. Similarly, we can deduce that
u−3 = 0.

Proof of Theorem 1.3. Theorem 1.3 can be obtained from Lemma 4.3-Lemma 4.6.
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5 Proof of Theorem 1.4 and Theorem 1.5

Lemma 5.1. Assume that τ1 = 0, τ3 = 0 and τ2 < 0, for any u ∈M, let v∗ be defined by (4.3), then

E(v∗) ≤ E(u).

Proof. Since

E(u) =
1

2

∫
Rd

( 3∑
j=−3

|∇uj |2
)
dx+

1

2

∫
Rd

V (x)
3∑

j=−3

u2
j

 dx+
τ0

4

∫
Rd

 3∑
j=−3

u2
j

2

+
τ2

4

∫
Rd

A0,0(u)2dx.

For all u ∈M. By direct calculation, we get that

7(A0,0(v∗))2 − 7(A0,0(u))2 = 4(v∗3)2(v∗−3)2 − (2u3u−3 − 2u2u−2 + 2u1u−1 − u2
0)2 (5.1)

= 4

(
u2

3 +
5

6
u2

2 +
2

3
u2

1 +
1

2
u2

0 +
1

3
u2
−1 +

1

6
u2
−2

)(
u2
−3 +

5

6
u2
−2 +

2

3
u2
−1 +

1

2
u2

0 +
1

3
u2

1 +
1

6
u2

2

)
−
[
(2u3u−3 − 2u2u−2)2 + 8(u3u−3 − u2u−2)(u1u−1 − u2

0) + (2u1u−1 − u2
0)
]

=
5

9
(u2

2 − u2
−2)2 +

8

9
(u2

1 − u2
−1)2 +

2

3
(u2u3 + u−2u−3)2 +

10

3
(u2u−3 + u−2u3)2

+
4

3
(u1u3 − u−1u−3)2 +

8

3
(u3u−1 − u1u−3)2 +

14

9
(u2u1 + u−1u−2)2 +

22

9
(u2u−1 + u−2u1)2

+ 2u2
0(u3 + u−3)2 + 2u2

0(u2 − u−2)2 + 2u2
0(u1 + u−1)2 ≥ 0.

Thus,
(A0,0(v∗))2 ≥ (A0,0(u))2.

By the definition of E(u), it is easy to see that

E(v∗) ≤ E(u).

Lemma 5.2. Assume that τ1 = τ3 = 0, τ2 < 0 and M = 0. Then (1.12) has infinitely many solutions
if following minimizing problem

inf
u∈N

{
1

2

∫
Rd

(|∇u|2 + V (x)u2 +
(τ0

4
+
τ2

28

)∫
Rd

u4dx

}
, (5.2)

where

N =
{
u ∈ H1(Rd)

∣∣ ∫
Rd

u2dx = N
}
, (5.3)

has a solution.

22



Proof. For any (s, t, r) ∈ R3 satisfying s2 + t2 + r2 ≤ 1
2 , let

γ =
(
−s,−t, r,

√
1− 2s2 − 2t2 − 2r2,−r,−t, s

)
,

it is easy to see that when M = 0, for any u ∈ M, v = γρ ∈ M is a mass-redistribution of u. By
Proposition 3.1, we have

E(u) ≥ E(v) =
1

2

∫
Rd

(|∇ρ|2)dx+
1

2

∫
Rd

V (x)ρ2dx+
(τ0

4
+
τ2

28

)∫
Rd

ρ4dx.

Thus, (1.12) has infinitely many solutions if (5.2)-(5.3) has a solution.

Lemma 5.3. Assume that τ1 = τ3 = 0, τ2 < 0 and M 6= 0. If u is a minimizer of (1.12), then u0 ≡ 0
and u±2 ≡ 0.

Proof. When τ1 = 0, τ3 = 0, τ2 < 0 and u is a minimizer of (1.12), by direct calculations, we have

E(|u3|, |u2|, |u1|, |u0|,−|u−1|, |u−2|,−|u−3|) ≤ E(u3, u2, u1, u0, u−1, u−2, u−3).

Since u satisfies Let v∗ be defined by (4.3), by Lemma 5.1 and the fact that u is a minimizer of (1.12),
we get E(v∗) = E(u). If u0 6≡ 0, then by (5.1), we get

u3 = −u−3, u2 = u−2 and u1 = −u−1,

which contracts to M 6= 0. Hence u0 ≡ 0. Next, we prove that u±2 = 0. If u2 6≡ 0 in Rd, since u is a
minimizer of (1.12), we get E(v∗) = E(u). By (5.1), we get

u3 = −u−3, u2 = u−2 and u1 = −u−1,

which contracts to M 6= 0. Hence u2 ≡ 0. Similarly, we can prove that u−2 ≡ 0 and u±1 ≡ 0.

Proof of Theorem 1.4 and Theorem 1.5. Theorem 1.4 and Theorem 1.5 can be obtained by Lem-
ma 5.2 and Lemma 5.3.

6 Proof of Theorem 1.6

Proof of Theorem 1.6 . From Theorem 1.1 in [14] and Theorem 1.1 in [28], we know that (1.6)-(1.7)
has a unique non-negative minimizer in H when N ∈ (0, N∗) suitable small and (1.6)-(1.7) has a unique
non-negative minimizer in H up to rotation around the origin when N ↗ N∗. By Theorem 1.1, when
τ2 > 0, τ3 > 0 and N ∈ (0, N∗) suitable small or N ↗ N∗ up to rotation around the origin, we obtain
that (1.3)-(1.4) has a unique non-negative minimizer.

Noting that the trapping potential V (x) of (1.11) is radially symmetric, it then follows from (ii)
of Theorem 1.1 in [14] that (1.6)-(1.7) has a unique non-negative minimizer which is also radially
symmetric for small N > 0. On the other hand, Theorem 1.2 in [14] shows that any non-negative
minimizer of (1.6)-(1.7) concentrates at a point on the ring {x ∈ R2 : |x| = A} as N ↗ N∗ and thus it
cannot be radially symmetric. This implies that, as the strength of the interaction N increases from 0
to N∗, symmetry breaking occurs in the minimizers of (1.6)-(1.7). Thus, we complete the proof of (i)
and (ii) of Theorem 1.6.
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7 Proof of Theorem 1.7

For any u ∈M, by the definition of N∗∗, we obtain that

E(u) ≥ 1

2

∫
R2

(

3∑
j=−3

|∇uj |2)dx+
1

2

∫
R2

V (x)(

3∑
j=−3

u2
j )dx+

(
τ0 + 9τ1 + τ3

4
+
τ2

28

)∫
R2

(

3∑
j=−3

u2
j )

2dx

(7.1)

≥ 1

2

∫
R2

(
3∑

j=−3

|∇uj |2)dx− a∗

4N∗∗

∫
R2

(
3∑

j=−3

u2
j )

2dx

≥ 1

2

∫
R2

(
3∑

j=−3

|∇uj |2)dx− a∗

4N∗∗
· 2N

a∗

∫
R2

(
3∑

j=−3

|∇uj |2)dx

=
1

2N∗∗
(N∗∗ −N)

∫
R2

(

3∑
j=−3

|∇uj |2)dx.

When τ0 < 0, τ1 < 0, τ2 > 0, τ3 > 0, for any u ∈ M, by the definition of N∗ := − a∗

τ0+9τ1
, we obtain

that

E(u) ≥ 1

2

∫
R2

(

3∑
j=−3

|∇uj |2)dx+
1

2

∫
R2

V (x)(

3∑
j=−3

u2
j )dx+

(
τ0 + 9τ1

4

)∫
R2

(

2∑
j=−2

u2
j )

2dx (7.2)

≥ 1

2

∫
R2

(
3∑

j=−3

|∇uj |2)dx− a∗

4N∗

∫
R2

(
3∑

j=−3

u2
j )

2dx

≥ 1

2

∫
R2

(

3∑
j=−3

|∇uj |2)dx− a∗

4N∗
· 2N

a∗

∫
R2

(

3∑
j=−3

|∇uj |2)dx

=
1

2N∗
(N∗ −N)

∫
R2

(
3∑

j=−3

|∇uj |2)dx.

Proof of Theorem 1.7. (i) When τ0 < 0, τ1 ≤ 0, τ2 < 0, τ3 < 0. Let {un} ⊂ M be a minimizing
sequence of m(N), then by (7.1), {un} is bounded in Λ if 0 < N < N∗∗. Applying Lemma 2.1, there
exists w = (w3, w2, w1, w0, w−1, w−2, w−3) ∈ Λ, such that up to a subsequence, as n→ +∞,

un ⇀ w, in Λ.

un → w, in Lt(R2,R7), ∀t ∈ [2,+∞).

un → w, a.e. in R2.

Then w ∈M. Further, by the lower semi-continuity of the norm, there holds

m(N) ≤ I(w) ≤ lim
n→∞

I(un) = m(N).

It yields I(w) = m(N), that is, w ∈M is a minimizer of m(N) for any N ∈ (0, N∗∗).
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(ii) When τ0 < 0, τ1 < 0, τ2 > 0, τ3 > 0. Let {un} ⊂ M be a minimizing sequence of
m(N), then by (7.2), {un} is bounded in Λ if 0 < N < N∗. Applying Lemma 2.1, there exists
w = (w3, w2, w1, w0, w−1, w−2, w−3) ∈ Λ, such that up to a subsequence, as n→ +∞,

un ⇀ w, in Λ.

un → w, in Lt(R2,R7), ∀t ∈ [2,+∞).

un → w, a.e. in R2.

Then w ∈M. Further, by the lower semi-continuity of the norm, there holds

m(N) ≤ I(w) ≤ lim
n→∞

I(un) = m(N).

It yields I(w) = m(N), that is, w ∈M is a minimizer of m(N) for any N ∈ (0, N∗).

Next, we show that there has no minimizer for m(N) when N > N∗ by carefully and skilfully choosing
some proper test functions. For σ > 0, we define Φ = (Φ3,Φ2,Φ1,Φ0,Φ−1,Φ−2,Φ−3) ∈M as

Φ3(x) =
(3N +M)3

216N
5
2

√
a∗
σQ(σx), Φ−3(x) =

(3N −M)3

216N
5
2

√
a∗
σQ(σx), Φ0(x) =

√
20

(9N2 −M2)
3
2

216N
5
2

√
a∗

,

Φ2(x) =
√

6
(3N +M)

5
2 (3N −M)

1
2

216N
5
2

√
a∗

σQ(σx), Φ−2(x) =
√

6
(3N +M)

1
2 (3N −M)

5
2

216N
5
2

√
a∗

σQ(σx),

Φ1(x) =
√

15
(3N +M)2(3N −M)

216N
5
2

√
a∗

σQ(σx), Φ−1(x) =
√

15
(3N +M)(3N −M)2

216N
5
2

√
a∗

σQ(σx),

(7.3)

where Q(x) is the unique positive solution of equation (1.8) . By direct calculations, we get

1

2

∫
R2

(
3∑

j=−3

|∇Φj |2)dx− a∗

4N

∫
R2

(
3∑

j=−3

Φ2
j )

2dx =
1

2
·Nσ2 − a∗

4N
· 2N2σ2

a∗
= 0,

∫
R2

V (x)(

3∑
j=−3

|Φj |2)dx =
N

a∗

∫
R2

V (x)σ2Q2(σx)dx =
Nσ−p

a∗

∫
R2

V (x)Q2(x)dx,

( a∗
4N

+
τ0 + 9τ1

4

)∫
R2

(
3∑

j=−3

Φ2
j )

2dx =
( a∗

4N
+
τ0 + 9τ1

4

)
· 2N2σ2

a∗

= σ2 ·
( a∗

4N
+
τ0 + 9τ1

4

)2N2

a∗
,

τ1

4

∫
R2

(
√

6(Φ2Φ3 + Φ−2Φ−3) +
√

10(Φ1Φ2 + Φ−1Φ−2) + 2
√

3(Φ1Φ0 + Φ−1Φ0))2dx

+
τ1

4

∫
R2

 3∑
j=−3

(jΦ2
j )

2

dx =
9τ1

4

∫
R2

 3∑
j=−3

Φ2
j

2

,

τ2

28

∫
R2

A2
00dx =

τ2

28

∫
R2

(2Φ3Φ−3 − 2Φ2Φ−2 + 2Φ1Φ−1 − Φ2
0)2dx = 0,
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and

τ3

4

∫
R2

(
2∑

j=−2

A2
2j)dx = 0.

Denote

K :=
( a∗

4N
+
τ0 + 9τ1

4

)2N2

a∗
,

then it follows that

E(Φ) : =
1

2

∫
R2

( 3∑
j=−3

|∇Φj |2
)
dx− a∗

4N

∫
R2

(
3∑

j=−3

Φ2
j )

2dx− 9τ1

4

∫
R2

 3∑
j=−3

Φ2
j

2

+
1

2

∫
R2

V (x)
3∑

j=−3

Φ2
j

 dx+
( a∗

4N
+
τ0 + 9τ1

4

)∫
R2

 3∑
j=−3

Φ2
j

2

+
τ1

4

∫
R2

(
√

6(Φ2Φ3 + Φ−2Φ−3) +
√

10(Φ1Φ2 + Φ−1Φ−2) + 2
√

3(Φ1Φ0 + Φ−1Φ0))2dx

+
τ1

4

∫
R2

 3∑
j=−3

(jΦ2
j )

2

dx+
τ2

28

∫
R2

(2Φ3Φ−3 − 2Φ2Φ−2 + 2Φ1Φ−1 − Φ2
0)2dx

+
τ3

4

∫
R2

(
2∑

j=−2

A2
2j)dx =

Nσ−p

2a∗

∫
R2

V (x)Q2(x)dx+Kσ2.

(7.4)

We conclude that for any σ > 0,

m(N) =
Nσ−p

2a∗

∫
R2

V (x)Q2(x)dx+
(N

2
+

(
τ0 + 9τ1

4

)
2N2

a∗

)
σ2

=
Nσ−p

2a∗

∫
R2

V (x)Q2(x)dx+
N

2N∗
(N∗ −N)σ2.

(7.5)

If N > N∗, let σ →∞ in (7.5), then m(N)→ −∞. Thus, there has no minimizer for m(N).

When τ2 > 0 and τ3 > 0 , we take σ =
(
p
2

N∗ ∫
R2 V (x)Q2(x)dx

a∗(N∗−N)

) 1
p+2

, we get

m(N) ≤ p+ 2

2p

N

N∗

(p
2

N∗
∫
R2 V (x)Q2(x)dx

a∗

) 2
p+2

(N∗ −N)
p

p+2 → 0, as N ↗ N∗, (7.6)

that is, lim
N↗N∗

m(N) ≤ 0. On the other hand, when N ∈ (0, N∗), we obtain from (7.2) that E(u) ≥ 0

for any u = (u3, u2, u1, u0, u−1, u−2, u−3) ∈M, which implies lim
N↗N∗

m(N) ≥ 0. Thus

lim
N↗N∗

m(N) = 0.

Next, we show that there has no minimizer for m(N) if N = N∗. We argue by contradiction to show
that there has no minimizer for m(N∗). Suppose u∗ = (u∗3, u

∗
2, u
∗
1, u
∗
0, u
∗
−1, u

∗
−2, u

∗
−3) is a minimizer of

26



m(N∗). From the proof of (7.4), we have

E(u∗) ≥ 1

2

∫
R2

(
3∑

j=−3

|∇u∗j |2)dx− a∗

4N

∫
R2

(
3∑

j=−3

u∗j )
2dx

+
1

2

∫
R2

V (x)(
3∑

j=−3

|u∗j |2)dx ≥ 0.

Together with (7.6), we get m(N∗) = 0. As a consequence,

1

2

∫
R2

(
3∑

j=−3

|∇u∗j |2)dx =
a∗

4N

∫
R2

(
3∑

j=−3

u∗j )
2dx (7.7)

and ∫
R2

V (x)(

3∑
j=−3

|u∗j |2)dx = 0. (7.8)

From (7.7), u∗ is an optimal function of the Gagliardo-Nirenberg inequality for d = 2. By Lemma
u∗ can be formed as a scaling of Q(x). However, this contradicts to (7.8). Therefore, there has no
minimizer for m(N∗) and we complete the proof.

Next, we prove (iii) of Theorem 1.7. Before that, we give an estimate for the least energy m(N).

Lemma 7.1. Suppose τ0 < 0, τ1 ≤ 0, τ2 < 0 and τ3 < 0 (resp. τ2 ≥ and τ3 ≥ 0), then there holds

m(N) <
λ0,V N

2 , for N ∈ (0, N∗∗) (resp. N ∈ (0, N∗)).

Proof. If τ2 < 0,τ3 < 0, since
(

0, 0,
√

N+M
2 Ψ0, 0,

√
N−M

2 Ψ0, 0, 0
)
∈M, we get from Lemma (2.3),

m(N) = inf
u∈M

E(u) ≤ E
(

0, 0,

√
N +M

2
Ψ0, 0,

√
N −M

2
Ψ0, 0, 0

)
<
N

2

∫
R2

(
|∇Ψ0|2 + V (x)Ψ0

2
)
dx =

λ0,VN

2
.

If τ2 ≥ 0, τ3 ≥ 0, let

Φ̃3(x) =
(3N +M)3

216N
5
2

Ψ0, Φ̃−3(x) =
(3N −M)3

216N
5
2

Ψ0, Φ̃0(x) =
√

20
(9N2 −M2)

3
2

216N
5
2

Ψ0,

Φ̃2(x) =
√

6
(3N +M)

5
2 (3N −M)

1
2

216N
5
2

Ψ0, Φ̃−2(x) =
√

6
(3N +M)

1
2 (3N −M)

5
2

216N
5
2

Ψ0,

Φ̃1(x) =
√

15
(3N +M)2(3N −M)

216N
5
2

Ψ0, Φ̃−1(x) =
√

15
(3N +M)(3N −M)2

216N
5
2

Ψ0,

then
(

Φ̃3(x), Φ̃2(x), Φ̃1(x), Φ̃0(x), Φ̃−1(x), Φ̃−2(x), Φ̃−3(x)
)
∈ M. Further, we get from Lemma (2.3)

that
m(N) = inf

u∈M
E(u) ≤ E

(
Φ̃3(x), Φ̃2(x), Φ̃1(x), Φ̃0(x), Φ̃−1(x), Φ̃−2(x), Φ̃−3(x)

)
<
N

2

∫
R2

(
|∇Ψ0|2 + V (x)Ψ0

2
)
dx =

λ0,VN

2
.
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Proof of Theorem 1.7. (iii) Set lik =
∫
R2 uiΨkdx for i = 3, 2, 1, 0,−1,−2,−3, then

u =

( ∞∑
k=0

l3kΨk,
∞∑
k=0

l2kΨk,
∞∑
k=0

l1kΨk,
∞∑
k=0

l0kΨk,
∞∑
k=0

l−1kΨk,
∞∑
k=0

l−2kΨk,
∞∑
k=0

l−3kΨk

)
.

Moreover, we conclude

N = ‖(u3, u2, u1, u0, u−1, u−2, u−3)‖2L2 =
∞∑
k=0

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)‖Ψk‖2L2

=
∞∑
k=0

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

(7.9)

and

‖u‖2Λ =
∞∑
k=0

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)‖Ψk‖2Λ

=
∞∑
k=0

λk,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k).

Denote M0 := 1
2N∗ (N∗ −N) ∈

(
0, 1

2

)
, then we get

m(N) = E(u) ≥M0

∫
R2

(

3∑
j=−3

|∇uj |2)dx+
1

2

∫
R2

V (x)(

3∑
j=−3

|uj |2)dx ≥M0‖u‖2Λ

= M0 ·
∞∑
k=0

λk,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

= M0 ·
∞∑
k=0

(λk,V − λ0,V )(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

+M0 ·
∞∑
k=0

λ0,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k).

By Lemma 7.1 and (7.9), we have

(λ1,V − λ0,V )
∞∑
k=1

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

≤
∞∑
k=1

(λk,V − λ0,V )(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

≤ m(N)

M0
−
∞∑
k=0

λ0,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k) ≤
(λ0,V

M0
− λ0,V

)
N,

then
∞∑
k=1

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k) ≤
(λ0,V

M0
− λ0,V

)
· N

ξ1 − ξ0
.
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Thus

∞∑
k=1

λk,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

=
∞∑
k=1

(λk,V − λ0,V )(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

+ λ0,V

∞∑
k=1

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k)

≤
(λ0,V

M0
− λ0,V

)
N + λ0,V

(λ0,V

M0
− λ0,V

)
· N

λl,V − λ0,V
=

λl,V
λl,V − λ0,V

·
(λ0,V

M0
− λ0,V

)
N.

For N → 0+, we can see that

‖u− (l3Ψ0, l2Ψ0, l1Ψ0, l0Ψ0, l−1Ψ0, l−2Ψ0, l−3Ψ0)‖2
Λ̇

=

∥∥∥∥( ∞∑
k=1

l3kΨk,

∞∑
k=1

l2kΨk,

∞∑
k=1

l1kΨk,

∞∑
k=1

l0kΨk,

∞∑
k=1

l−1kΨk,

∞∑
k=1

l−2kΨk,

∞∑
k=1

l−3kΨk

)∥∥∥∥2

Λ̇

=

∞∑
k=1

λk,V (l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k) = O(N)

and

‖u− (l3Ψ0, l2Ψ0, l1Ψ0, l0Ψ0, l−1Ψ0, l−2Ψ0, l−3Ψ0)‖2L2

=

∥∥∥∥( ∞∑
k=1

l3kΨk,

∞∑
k=1

l2kΨk,

∞∑
k=1

l1kΨk,

∞∑
k=1

l0kΨk,

∞∑
k=1

l−1kΨk,

∞∑
k=1

l−2kΨk,

∞∑
k=1

l−3kΨk

)∥∥∥∥2

L2

=

∞∑
k=1

(l23k + l22k + l21k + l20k + l2−1k + l2−2k + l2−3k) = O(N).

Therefore, it is obvious the conclusion holds and we complete the proof.

Assume τ < 0, τ1 < 0,τ2 > 0, τ3 > 0 and Nn ↗ N∗ as n→∞, let

un = (u3n, u2n, u1n, u0n, u−1n, u−2n, u−3n) ∈M(Nn)

be a minimizer for m(Nn). Then un satisfies system (1.3) where λn and µn are the corresponding
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Lagrange multipliers. By (7.2), we have

E(un) : =
1

2

∫
R2

( 3∑
j=−3

|∇ujn|2
)
dx− a∗

4N∗

∫
R2

(
3∑

j=−3

u2
jn)2dx− 9τ1

4

∫
R2

 3∑
j=−3

u2
jn

2

+
1

2

∫
R2

V (x)

3∑
j=−3

u2
jn

 dx+
( a∗

4N∗
+
τ0 + 9τ1

4

)∫
R2

 3∑
j=−3

u2
jn

2

+
τ1

4

∫
R2

(
√

6(u2nu3n + u−2nu−3n) +
√

10(u1nu2n + u−1nu−2n) + 2
√

3(u1nu0n + u−1nu0n))2dx

+
τ1

4

∫
R2

 3∑
j=−3

(ju2
jn)

2

dx+
τ2

28

∫
R2

(2u3nu−3n − 2u2nu−2n + 2u1nu−1n − u2
0n)2dx

+
τ3

4

∫
R2

(
2∑

j=−2

A2
2j)dx

≥ 1

2N∗
(N∗ −Nn)

∫
R2

( 3∑
j=−3

|∇ujn|2
)
dx+

1

2

∫
R2

V (x)
( 3∑
j=−3

u2
jn

)
dx ≥ 0.

(7.10)
Combining with the fact that lim

N↗N∗
m(N) = 0, we can see that

lim
n→∞

τ2

28

∫
R2

(2u3nu−3n − 2u2nu−2n + 2u1nu−1n − u2
0n)2dx = 0, (7.11)

lim
n→∞

τ1

4

∫
R2

(
√

6(u2nu3n + u−2nu−3n) +
√

10(u1nu2n + u−1nu−2n) + 2
√

3(u1nu0n + u−1nu0n))2dx

+ lim
n→∞

τ1

4

∫
R2

( 3∑
j=−3

(ju2
jn)
)2
dx− lim

n→∞

9τ1

4

∫
R2

( 3∑
j=−3

u2
jn

)2
dx = 0 (7.12)

and

lim
n→∞

∫
R2(

3∑
j=−3

|∇ujn|2)dx

∫
R2(

3∑
j=−3

u2
jn)2dx

=
a∗

2N∗
. (7.13)

We claim that

lim
n→∞

∫
R2

(
3∑

j=−3

|∇ujn|2)dx = +∞.

We argue by contradiction. Suppose there exists a positive constant C, such that
∫
R2(
∑3

j=−3 |∇ujn|2)dx ≤
C for large n. Then {un} is a bounded sequence in Λ, which implies that there exist a subsequence
(still denoted by {un}) and u∗ := (u∗3, u

∗
2, u
∗
1, u
∗
0, u
∗
−1, u

∗
−2, u

∗
−3), such that as n→∞,

un → u∗ in Lt(R2,R7), ∀t ∈ [2,+∞).
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Hence, by the weak lower semi-continuity of the norm, we get

0 = lim
n→∞

E(un) ≥ E(u∗) ≥ m(N∗) = 0.

It shows u∗ is a minimizer of m(N∗), which contradicts to Theorem 1.7. Thus, we obtain the claim.
Now, defining

εn :=
√
N∗
(∫

R2

(
3∑

j=−3

|∇ujn|2)dx
)− 1

2
, (7.14)

then it is easy to see that εn → 0 as n→∞.

Proof (iv) of Theorem 1.7. On the one hand, by (7.5), we get for any σ > 0,

m(Nn) ≤ Nσ−p

2a∗

∫
R2

V (x)Q2(x)dx+
Nn

2N∗
(N∗ −Nn)σ2.

By (7.6), it follows that

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≤ p+ 2

2

(
1

2

) 2
p+2
(

1

p

) p
p+2 (N∗ ∫R2 V (x)Q2(x)dx

a∗

) 2
p+2

. (7.15)

On the other hand, let w̃n := (w̃3n, w̃2n, w̃1n, w̃0n, w̃−1n, w̃−2n, w̃−3n) with w̃jn(x) := εnujn(εnx) (j =
3, 2, 1, 0,−1,−2,−3), then∫

R2

(
3∑

j=−3

|∇w̃jn|2)dx = ε2
n

∫
R2

(
3∑

j=−3

|∇ujn|2)dx = N∗.

Moreover, from (7.13), we have

lim
n→∞

∫
R2(

3∑
j=−3

|∇w̃jn|2)dx

∫
R2(

3∑
j=−3

w̃2
jn)2dx

= lim
n→∞

∫
R2(

3∑
j=−3

|∇ujn|2)dx

∫
R2(

3∑
j=−3

u2
jn)2dx

=
a∗

2N∗
, (7.16)

which yields that

lim
n→∞

∫
R2

(
3∑

j=−3

w̃2
jn)2dx =

2(N∗)2

a∗
. (7.17)

We claim that there exist {yn} ⊂ R2 and R0, η > 0, such that at least one j ∈ {3, 2, 1, 0,−1,−2,−3}
satisfies lim inf

n→∞

∫
BR0

(yn) w̃
2
jndx ≥ η > 0. Otherwise, suppose for any R > 0, there has a subsequence

{w̃jnk
} (j = 3, 2, 1, 0,−1,−2,−3), such that lim

k→∞
sup
x∈R2

∫
BR(y) w̃

2
jnk
dx = 0. Then by Lion’s vanishing Lem-

ma, we conclude that w̃jnk
→ 0 (j = 3, 2, 1, 0,−1,−2,−3) in Lt(R2) for t ∈ (2,∞), which contradicts to

(7.17). Hence, we obtain the claim. Now we define wn := (w3n, w2n, w1n, w0n, w−1n, w−2n, w−3n) with

wjn(x) := w̃jn(x+ yn) = εnujn(εnx+ εnyn), j = 3, 2, 1, 0,−1,−2,−3 (7.18)
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then

lim
n→∞

∫
R2

(
3∑

j=−3

|∇wjn|2)dx = lim
n→∞

∫
R2

(
3∑

j=−3

w2
jn)dx = N∗

and

lim
n→∞

∫
R2

(

3∑
j=−3

w2
jn)2dx =

2(N∗)2

a∗
.

Moreover, there exists some j ∈ {3, 2, 1, 0,−1,−2,−3}, such that

lim inf
n→∞

∫
BR0

(0)
|wjn|2dx ≥ η > 0. (7.19)

It follows that

lim
n→∞

∫
R2(

3∑
j=−3

|∇wjn|2)dx
∫
R2(

3∑
j=−3

w2
jn)dx

∫
R2(

3∑
j=−3

w2
jn)2dx

=
a∗

2
. (7.20)

By Lemma 2.2, {wn} is a minimizing sequence for the following minimization problem:

k := inf
(0,0,0,0,0,0,0)6=u∈H

K(u),

where

K(u) :=

∫
R2(

3∑
j=−3

|∇ujn|2)dx
∫
R2(

3∑
j=−3

u2
jn)dx

∫
R2(

3∑
j=−3

u2
jn)2dx

.

From Lemma 2.2, the minimizer w = (w3, w2, w1, w0, w−1, w−2, w−3) must be in form

w3(x) =

√
N∗

a∗
Q(x) cosϕ1,

w2(x) =

√
N∗

a∗
Q(x) sinϕ1 cosϕ2,

w1(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2 cosϕ3,

w0(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4,

w−1(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5,

w−2(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 cosϕ6

w−3(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 sinϕ6,

32



for ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 ∈ [0, π2 ). Since
∫
R2(
∑3

j=−3w
2
j )dx = N∗, we get wn → w in L2(R2,R7). Further,

using the interpolation inequality, there holds wn → w in L4(R2,R7). From (7.20), we obtain

a∗

2

∫
R2

(
3∑

j=−3

w2
j )

2dx = N∗
∫
R2

(
3∑

j=−3

|∇wj |2)dx ≤ lim
n→∞

Nn

∫
R2

(
3∑

j=−3

|∇wjn|2)dx

=
a∗

2
lim
n→∞

∫
R2

(
3∑

j=−3

w2
jn)2dx =

a∗

2

∫
R2

(

3∑
j=−3

w2
j )

2dx,

which gives that lim
n→∞

∫
R2(
∑3

j=−3 |∇wjn|2)dx =
∫
R2(
∑3

j=−3 |∇wj |2)dx, that is, wn → w in H1(R2,R7)

as n→∞. Therefore, there exists some x1 ∈ R2, such that

lim
n→∞

w3n(x) =

√
N∗

a∗
Q(x− x1) cosϕ1,

lim
n→∞

w2n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 cosϕ2,

lim
n→∞

w1n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2 cosϕ3,

lim
n→∞

w0n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2 sinϕ3 cosϕ4,

lim
n→∞

w−1n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5,

lim
n→∞

w−2n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 cosϕ6,

lim
n→∞

w−3n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2 sinϕ3 cosϕ4 cosϕ5 sinϕ6,

(7.21)

for ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 ∈ [0, π2 ).
By direct calculations, we obtain from (7.18) that∫

R2

V (x)un
2dx =

3∑
i=−3

∫
R2

V (x) · 1

ε2
n

(
win

(x− εnyn
εn

))2
dx

=

3∑
i=−3

∫
R2

V (εnx+ εnyn)w2
in(x)dx =

3∑
i=−3

εpn

∫
R2

V (x+ yn + x1)w2
in(x+ x1)dx.

(7.22)

We now claim lim
n→∞

|yn| ≤ C for some positive constant C. Otherwise, suppose that lim
n→∞

∣∣yn+x1

∣∣ = +∞,
then it follows from (7.22) that for arbitrary C1 > 0, there holds

∫
R2 V (x)|un|2dx ≥ C1ε

P
n , as n→∞.
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By (7.16) and (7.17), we have

E(un) ≥ 1

2

∫
R2

(

3∑
j=−3

|∇ujn|2)dx− a∗

4Nn

∫
R2

(

3∑
j=−3

u2
jn)2dx+

1

2

∫
R2

V (x)(

3∑
j=−3

u2
jn)dx

+
a∗

4Nn

∫
R2

(
3∑

j=−3

u2
jn)2dx+

(τ0 + 9τ1

4

)∫
R2

(
3∑

j=−3

u2
jn)2dx

≥ 1

2

∫
R2

V (x)(

3∑
j=−3

u2
jn)dx+

( a∗

4Nn
+
τ0 + 9τ1

4

)∫
R2

(

3∑
j=−3

u2
jn)2dx

≥ 1

2
C1ε

p
n +

( a∗

2Nn
+
τ0 + 9τ1

2

)
· (N∗∗)2ε−2

n

a∗
+ on(1)

=
1

2
C1ε

p
n +

N∗

2Nn
(N∗ −Nn)ε−2

n + on(1),

where on(1)→ 0 as n→∞. Taking the infimum with respect to εn > 0, then we conclude

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≥ C
2

p+2

1 .

However, it contradicts to (7.15). Thus, there exists x2 ∈ R2, such that

lim
n→∞

(
yn + x1

)
= x2, (7.23)

which yields lim
n→∞

|yn| ≤ C. Therefore, by (7.16), (7.22) and Fatou’s Lemma, we have

E(un) ≥ 1

2

∫
R2

V (x)(
3∑

j=−3

u2
jn)dx+

( a∗

4Nn
+
τ0 + 9τ1

4

)∫
R2

(
3∑

j=−3

u2
jn)2dx (7.24)

≥ 1

2

N∗εpn
a∗
·
∫
R2

V (x)Q2(x)dx+
N∗

2Nn
(N∗ −Nn)ε−2

n + on(1).

Then taking

εn =

(
2a∗(N∗ −Nn)

pNn

∫
R2 V (x)Q2(x)dx

) 1
p+2

,

we get

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≥ p+ 2

2

(
1

2

) 2
p+2
(

1

p

) p
p+2 (N∗ ∫R2 V (x)Q2(x)dx

a∗

) 2
p+2

.

Combining with (7.15), we conclude

m(Nn) =
p+ 2

2

(
1

2

) 2
p+2
(

1

p

) p
p+2 (N∗ ∫R2 V (x)Q2(x)dx

a∗

) 2
p+2

N∗ −Nn)
2

p+2 , as n→∞.

Now, we are ready to prove the limit behavior of {un} as n→∞. By (7.10)-(7.13) and the fact that

lim
N↗N∗

m(N) = 0,
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we get

1

ε2
n

{
lim
n→∞

τ1

4

∫
Rd

(
√

6(u2nu3n + u−2nu−3n) +
√

10(u1nu2n + u−1nu−2n) + 2
√

3(u1nu0n + u−1nu0n))2dx

+ lim
n→∞

τ1

4

∫
R2

( 3∑
j=−3

(ju2
jn)
)2
dx− lim

n→∞

9τ1

4

∫
R2

( 3∑
j=−3

u2
jn

)2
dx

}
= 0.

Since εn → 0 as n→∞, we deduce

τ1

4

∫
Rd

(
√

6(w2w3 + w−2w−3) +
√

10(w1w2 + w−1w−2) + 2
√

3(w1w0 + w−1w0))2dx

+
τ1

4

∫
R2

( 3∑
j=−3

(jw2
j )
)2
dx− 9τ1

4

∫
R2

( 3∑
j=−3

w2
j

)2
dx = 0.

(7.25)

Denoting
wj(x) := cjQ(x− x1), j = 3, 2, 1, 0,−1,−2,−3,

we get from (7.21) that
3∑

j=−3

c2
j =

N∗

a∗
,

3∑
j=−3

(jc2
j ) =

M

a∗
.

Thus bj :=
√

a∗

N∗ cj ∈ B. By (7.25) and Lemma 3.1, we obtain bj = b∗j with N = N∗ in (3.1) for

j = 3, 2, 1, 0,−1,−2,−3. Hence, we conclude

b∗3 =
(3N +M)3

216N3
, b∗−3 =

(3N −M)3

216N3
, b∗0 =

√
20

(9N2 −M2)
3
2

216N3
,

b∗2 =
√

6
(3N +M)

5
2 (3N −M)

1
2

216N3
, b∗−2 =

√
6

(3N +M)
1
2 (3N −M)

5
2

216N3
,

b∗1 =
√

15
(3N +M)2(3N −M)

216N3
, b∗−1 =

√
15

(3N +M)(3N −M)2

216N3
.

(7.26)



lim
n→∞

w3n(x) =

√
N∗

a∗
(3N∗ +M)3

216(N∗)3
Q(x− x1),

lim
n→∞

w2n(x) =

√
N∗

a∗

√
6

(3N∗ +M)
5
2 (3N∗ −M)

1
2

216(N∗)3
Q(x− x1),

lim
n→∞

w1n(x) =

√
N∗

a∗

√
15

(3N∗ +M)2(3N∗ −M)

216N3
Q(x− x1),

lim
n→∞

w0n(x) =

√
N∗

a∗

√
20

(9(N∗)2 −M2)
3
2

216(N∗)3
Q(x− x1),

lim
n→∞

w−1n(x) =

√
N∗

a∗

√
15

(3N∗ +M)(3N∗ −M)2

216(N∗)3
Q(x− x1),

lim
n→∞

w−2n(x) =

√
N∗

a∗

√
6

(3N∗ +M)
1
2 (3N∗ −M)

5
2

216(N∗)3
Q(x− x1),

lim
n→∞

w−3n(x) =

√
N∗

a∗
(3N∗ −M)3

216(N∗)3
Q(x− x1).

(7.27)
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Noting that un satisfies the Euler-Lagrange system (1.3), then

− (λnNn + µnM) = 4E(un)−
∫
R2

( 3∑
j=−3

|∇ujn|2
)
dx−

∫
R2

V (x)(
3∑

j=−3

u2
jn)dx.

By (1.3) and (7.18), wn satisfies the following system

−∆w±3n + εpnV (x+ yn)w±3n + ε2
n(λ± 3µ)w±3n + τρ2w±3n + τ1

(√
6

2
Fxw±2n ± 3Fzw±3n

)

+
τ2√

7
A0,0(wn)w∓3n +

5τ3

2
√

21
A2,0(wn)w∓3n +

5τ3

2
√

21
A2,±1(wn)w∓2n +

√
10τ3

2
√

21
A2,±2(wn)w∓1n = 0,

−∆w±2n + εpnV (x+ yn)w±2n + ε2
n(λ± 2µ)w±2n + τρ2w±2n + τ1

(√
10

2
Fxw±1n +

√
6

2
Fxw±3n ± 2Fzw±2n

)

− τ2√
7
A0,0(wn)w∓2n −

√
20τ3

2
√

21
A2,±2(wn)w0n = 0,

−∆w±1n + εpnV (x+ yn)w±1n + ε2
n(λ± µ)w±1n + τρ2w±1n

+ τ1

(√
6

2
Fxw0n +

√
10

2
Fxw±2n +

√
3Fxw0n ± Fzw±1n

)

+
τ2√

7
A0,0(wn)w∓1n −

3τ3

2
√

21
A2,0(wn)w∓1n −

√
15τ3

2
√

21
A2,∓1(wn)w∓2n

+

√
2τ3√
21

A2,±1(wn)w0n +

√
6τ3

2
√

21
A2,±2(wn)w±1n = 0,

−∆w0n + εpnV (x+ yn)w0n + ε2
nλw0n + τρ2w0n +

√
3τ1 (Fxw−1n + Fxw1n)

− τ2√
7
A0,0(wn)w0n +

2τ3√
21

A2,0(wn)w0n = 0,

(7.28)
If we let limn→∞ ε

2
nλnNn = N1, limn→∞ ε

2
nµnM = N2, using (7.27) and taking limit on both sides of

the first equation and the seventh equation in (7.28), we can deduce that lim
n→∞

µnε
2
n = 0. Therefore

lim
n→∞

λnε
2
n = 1.

The following proof details are similar to the proof of Theorem 2 in [27], we omit it here.
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