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Abstract. Based on the works of Gursky (CMP, 1997), Vétois (Po-
tential Anal., 2023) and Case (Crelle’s journal, 2024), we make use of
an Obata type formula established in these works to obtain some Liou-
ville type theorems on conformally Einstein manifolds. In particular, we
solve Hang-Yang conjecture (IMRN, 2020) via an Obata-type argument
and obtain optimal perturbation.

1. Introduction

Given a Riemannian manifold (Mn, g) with n ≥ 3, it is well known that
Branson’s Q-curvature [2] is defined by

(1.1) Qg := − 1

2(n− 1)
∆gRg −

2

(n− 2)2
|Eg|2g +

n2 − 4

8n(n− 1)2
R2

g

where Rg is the scalar curvature and Eg is the trace-free Ricci tensor defined

by Eg := Ricg − Rg

n g. Now, we give some notations and a brief overview of
Q-curvature in conformal geometry. The Schoten tensor is given by

Ag =
1

n− 2

(
Ricg −

Rg

2(n− 1)
g

)
and σk(Ag) denote the k-th symmetric functions of the eigenvalues of Ag.
Then we can rewrite Q-curvature in (1.1) as follows

(1.2) Qg = −∆gσ1(Ag) + 4σ2(Ag) +
n− 4

2
σ21(Ag)

The remarkable Paneitz operator [17] is given by

(1.3) Pgϕ = ∆2
gϕ+ divg {(4Ag − (n− 2)σ1(Ag)g)(∇ϕ, ·)}+

n− 4

2
Qgϕ.
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For n ≥ 3 and n 6= 4, the Q-curvature Qg̃ of the conformal metric g̃ = ϕ
4

n−4 g
satisfies

(1.4) Pgϕ =
n− 4

2
Qg̃ϕ

n+4
n−4 .

For n = 4, the Q-curvature Qg̃ of the conformal metric g̃ = e2ϕg satisfies

(1.5) Pgϕ+Qg = Qg̃e
4ϕ.

Similar to the Yamabe problem, it is crucial to identify a conformal metric
such that the Q-curvature is constant, which is equivalent to solving the
fourth-order nonlinear equations (1.4) and (1.5) with Qg̃ ≡ C for some
constant C. For n = 4, significant advancements were made by Chang and
Yang [5] and Djadli and Malchiodi [6]. In dimensions n ≥ 5, Gursky and
Malchiodi [10] and Hang and Yang [12] established existence results under
suitable conditions related to scalar curvature. For n = 3, a similar result
was achieved by Hang and Yang [13].

The well known Obata theorem ([15], [16]) states that for an Einstein
manifold (Mn, g0) with n ≥ 3, if the scalar curvature of conformal metric
g = u2g0 is a constant, g must also be Einstein. Furthermore, if (M, g0) is
not conformally equivalent to round sphere, u must be a positive constant.

For the Einstein manifold (Mn, g0) with scalar curvature R0, the Paneitz
operator can be succinctly expressed as follows (See [8] for more details)

(1.6) Pg0ϕ = ∆2
g0ϕ−

n2 − 2n− 4

2n(n− 1)
R0∆g0ϕ+

n− 4

2
Q0ϕ

where the Q-curvature Q0 is given by

(1.7) Q0 =
n2 − 4

8n(n− 1)2
R2

0.

It is natural to ask whether similar Obata type theorem holds for Q-
curvature. Firstly, Vétois [18] made use of BochnerLichnerowiczWeitzen-
bock formula and a important Lemma 3.1 established by Gursky and Mal-
chiodi [10] to deal with the equations (1.4) and (1.5). Then he establishes
the following Obata type theorem.

Theorem 1.1. (Vétois’ theorem in [18]) Suppose that (Mn, g0) where n ≥ 3
is a compact Einstein manifold with non-negative scalar curvature R0. Con-
sider a conformal metric g = u2g0 where u > 0. Suppose that the Q-
curvature of conformal metric g is constant. Then g is Einstein. Further-
more, if (M, g0) is not conformally equivalent to round sphere, u must be a
positive constant.

Remark 1.2. In original version of Vétois’s theorem(Theorem 1.1 in [18]),
he didn’t cover the case R0 = 0. In fact, by integrating (1.4) and (1.5) using
the representation of (1.6), it is not hard to include this case.
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Recently, Case [4] consider a more general Obata-Vétois type theorem.
For a compact manifold (Mn, g), he introduced the following mixed curva-
ture

(1.8) Ia(g) = Qg + aσ2(Ag)

where Qg and Ag are the Q-curvature and Schouten tensor respectively given
before.

Theorem 1.3. (Case’s theorem in [4]) Suppose that (Mn, g0) is an Einstein
manifolds with the scalar curvature R0 ≥ 0 and n ≥ 3. Consider the confor-
mal metric g = u2g0 where u > 0 satisfying Rg ≥ 0 and Ia(g) is a constant.
If the constant a satisfies

(1.9)
(n− 2)(n− 4)− n

√
n2 + 4n

2(n− 1)
≤ a ≤ (n− 2)(n− 4) + n

√
n2 + 4n

2(n− 1)
,

then g is Einstein.

Remark 1.4. In original version of Case’s theorem, he considered the fol-
lowing interval

B1 := [
n2 − 7n+ 8−

√
n4 + 2n3 − 3n2

2(n− 1)
,
n2 − 7n+ 8 +

√
n4 + 2n3 − 3n2

2(n− 1)
].

It is easy to check that

B1 ⊂ [
(n− 2)(n− 4)− n

√
n2 + 4n

2(n− 1)
,
(n− 2)(n− 4) + n

√
n2 + 4n

2(n− 1)
].

In fact, with the help of the sharp inequality Lemma 2.3, we slightly extend
the range of the constant a. However, we still do not know how to get the
optimal range which is a very interesting question.

To prove Theorem 1.3, Case established a remarkable identity (See Lemma
3.2 in [4]) as follows

0 =
1

2

∫
M
u|∇Rg|2dvg +

n− (n− 1)(a+ 4)

n− 2

∫
M
Eg(∇Rg,∇u)dvg(1.10)

+
n(n− 1)2(a+ 4)

2(n− 2)2

∫
M
|Eg|2u−1|∇u|2dvg

+
(n− 1)(a+ 4) + 2n2 − 4n

2(n− 2)2

∫
M
u|Eg|2Rgdvg

+
(n− 1)(a+ 4)R0

2(n− 2)2

∫
M
|Eg|2u−1dvg

under the assumption that Ia(g) is a constant. Such formula is also obtained
by Gursky(See the equation (1.13) in [9]) on S4 and Vétois (See equation
(1.4) in [18]) for a = 0.
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In [18], Vétois established a more general Liouville-type theorem by con-
sidering the following equations

Pg0ϕ = ϕp, n 6= 4, p ≤ n+ 4

n− 4
,(1.11)

Pg0ϕ = epϕ, n = 4, p ≤ 4,(1.12)

on compact Einstein manifolds. He showed that the positive solutions to
(1.11) and smooth solutions to (1.12) must be constant if (Mn, g) is not
conformally equivalent to the round sphere.

Based on Case’s formula (1.10) and Gursky’s work [9], we observe that
we can add the term Ig(g) into the formula (1.10) without assuming Ia(g)
is a constant. Such formula will play an important role in the proof of
Liouville type theorems. On the whole, the Case-Gursky-Vétois formula
can be written as follows

2(n− 1)2
∫
M
〈∇Ia(g),∇u〉gdvg(1.13)

=
1

2

∫
M
u|∇Rg|2dvg +

n− (n− 1)(a+ 4)

n− 2

∫
M
Eg(∇Rg,∇u)dvg

+
n(n− 1)2(a+ 4)

2(n− 2)2

∫
M
|Eg|2u−1|∇u|2dvg

+
(n− 1)(a+ 4) + 2n2 − 4n

2(n− 2)2

∫
M
u|Eg|2Rgdvg

+
(n− 1)(a+ 4)R0

2(n− 2)2

∫
M
|Eg|2u−1dvg.

With help of such formula, we are able to streamline the proof of the
Liouville-type theorems of Vétois(See Theorem 2.1 and Theorem 2.2 in [18]).
Besides, we can generalize the Liouville-type results from [1], [3], and [7] re-
lated to second-order nonlinear equations to fourth-order cases by consider-
ing the perturbation of linear term of Paneitz operator. Since the situations
differ slightly for n ≥ 5, n = 4 and n = 3, we establish the results for each
case separately.

Theorem 1.5. Suppose that (Mn, g0) where n ≥ 5 is a compact Einstein
manifold with positive scalar curvature R0. Consider the positive solution ϕ
to the equation

(1.14) Pg0ϕ− εϕ = ϕp

where 0 ≤ ε < n−4
2 Q0 and p ≤ n+4

n−4 . If (Mn, g0) is conformally equivalent to

round sphere, we additionally assume that ε+ n+4
n−4 − p > 0. Then ϕ must be

a constant.

Remark 1.6. By integrating the equation (1.14) over (M, g0), it is easy to
see that the condition ε < n−4

2 Q0 is necessary for ϕ > 0.
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Theorem 1.7. Suppose that (M4, g0) is a compact Einstein manifold with
positive scalar curvature R0. Consider the solution ϕ to the equation

(1.15) Pg0ϕ+Q0 − ε = epϕ

where 0 ≤ ε < Q0 and p ≤ 4. If (M4, g0) is conformally equivalent to
round sphere, we additionally assume that ε+ 4− p > 0. Then ϕ must be a
constant.

Theorem 1.8. Suppose that (M3, g0) is a compact Einstein manifold with
positive scalar curvature R0. Consider the positive solution ϕ to the equation

(1.16) Pg0ϕ+ εϕ = −ϕp

where 0 ≤ ε < Q0

2 and p ≥ −7. If (M3, g0) is conformally equivalent to
round sphere, we additionally assume that ε+ 7 + p > 0. Then ϕ must be a
constant.

This result recovers Conjecture 1.1 of Hang and Yang [11], which addresses
the standard sphere S3 via an Obata-type proof. Firstly, Zhang [19] solved
this conjecture by transforming the equation on the sphere into Euclidean
space and applying the moving plane method. Later, Hyder and Ng [14]
generalized this theorem to higher order cases by using similar moving plane
method.

We should point out that their approaches can only handle small values
of ε since their proofs need a compactness theorem. When p = −7 and
(M3, g0) is the round sphere S3, Theorem 1.8 establishes this Liouville-type

theorem under the optimal range 0 < ε < Q0

2 via an Obata type argument.
In fact, with the help of the strong maximum principle established by

Gursky and Malchiodi (Theorem 2.2 in [10]) and Hang-Yang (Proposition
2.1 in [13]), we are able to establish a more general result as below.

Theorem 1.9. Suppose that (Mn, g0) where n ≥ 3 and n 6= 4 is a compact
Einstein manifold with positive scalar curvature R0. Consider the solution
ϕ ∈ C4(Mn, g0) to the following equation

Pg0ϕ =
n− 4

2
f(ϕ)

where f(t) ≥ 0 for all t ∈ R is a smooth function satisfying

(1.17)
n− 4

2
∂t

(
t−

n+4
n−4 f(t)

)
≤ 0, ∀ t > 0.

If (Mn, g0) is conformally equivalent to the round sphere, we additionally
assume that the inequality in (1.17) is strict. Then ϕ must be a constant.

For n = 4, a similar result holds.

Theorem 1.10. Suppose that (M4, g0) is a four-dimensional compact Ein-
stein manifold with positive scalar curvature R0. Consider the solution
ϕ ∈ C4(M4, g0) to the following equation

Pg0ϕ+Q0 = f(eϕ)
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where f(t) ≥ 0 for all t > 0 is a smooth function satisfying

(1.18) ∂t
(
t−4f(t)

)
≤ 0, ∀ t > 0.

If (M4, g0) is conformally equivalent to the round sphere, we additionally
assume that the inequality in (1.18) is strict. Then ϕ must be a constant.

This paper is organized as follows. In Section 2, we prove the Case-
Gursky-Vétois formula by following the argument of Gursky [9] and Case [4].
With the help of such identity, we establish two Case-Gursky-Vétois rigidity
inequalities. Finally, in Section 3, with the help of rigidity inequalities, we
give the proofs of Theorem 1.5, Theorem 1.7, Theorem 1.8, Theorem 1.9
and Theorem 1.10.

2. Case-Gursky-Vétois identity on conformal Einstein
manifolds

Before doing so, we introduce some notations for later use. Notice that

σ2(Ag) = −
|Eg|2g

2(n− 2)2
+

1

8(n− 1)n
R2

g.

Then, with help of (1.1) and (1.8), one has

(2.1) 2(n− 1)Ia(g) = −∆gRg − α1|Eg|2g + α2R
2
g

where there constants α1 and α2 are defined as follows

(2.2) α1 =
(n− 1)(4 + a)

(n− 2)2
, α2 =

(n− 1)a+ n2 − 4

4(n− 1)n
.

Now, we are going to give give the proof of Case-Gursky-Vétois identity
(1.13). In the proof of this formula, we basically follow Case [4], using idea
of Gursky [9]. The key observation during Gursky’s proof (1997, CMP, Page
660) is that integrating u〈Eg,∇2Rg〉g over (M, g), then insert the represen-
tations of ∆gu and ∆gRg. Here, we needt assume that Ia(g) is a constant.
Then we obtain an integral identity (Theorem 2.1). We should point out
that this identity can also be obtained by inserting the tensor T defined in
Page 4 of [4] into the equation (1.6) without assuming Ia(g) is a constant.

Theorem 2.1. (Case-Gursky-Vétois identity) Suppose that (Mn, g0) is an
Einstein manifold with constant scalar curvature R0 and n ≥ 3. Consider a
conformal metric g = u2g0 where u > 0. Then there holds

2(n− 1)2
∫
M
〈∇Ia(g),∇u〉gdvg

=
1

2

∫
M
u|∇Rg|2dvg +

n− (n− 1)(a+ 4)

n− 2

∫
M
Eg(∇Rg,∇u)dvg

+
n(n− 1)2(a+ 4)

2(n− 2)2

∫
M
|Eg|2u−1|∇u|2dvg
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+
(n− 1)(a+ 4) + 2n2 − 4n

2(n− 2)2

∫
M
u|Eg|2Rgdvg

+
(n− 1)(a+ 4)R0

2(n− 2)2

∫
M
|Eg|2u−1dvg.

Proof. Since g0 is an Einstein metric, a direct computation yields that

(2.3) u(Eg)ij = −(n− 2)

(
∇2

iju−
∆gu

n
gij

)
and

(2.4) ∆gu =
n

2
u−1|∇gu|2 −

Rgu

2(n− 1)
+

u−1R0

2(n− 1)
.

Multiplying ∇2
ijRg on both sides of the equations (2.3) and integrating it

over (M, g), then there holds
(2.5)∫
M
u〈Eg,∇2Rg〉gdvg = −(n−2)

∫
M
〈∇2u,∇2Rg〉gdvg+

n− 2

n

∫
M

∆gu·∆gRgdvg

We are going to deal with these three terms one by one.
Firstly, with the help of second Bianchi identity ∇iEij = n−2

2n ∇jR and
integration by parts, one has
(2.6)∫

M
u〈Eg,∇2Rg〉gdvg = −n− 2

2n

∫
M
u|∇Rg|2gdvg −

∫
M
Eg(∇u,∇Rg)dvg.

Secondly, integrating by parts, one has∫
M
〈∇2u,∇2Rg〉gdvg

=−
∫
M
〈∇Rg,∇∆gu〉gdvg −

∫
M
Ricg(∇u,∇Rg)dvg

=

∫
M

∆gRg ·∆gudvg −
∫
M
Eg(∇u,∇Rg)dvg −

1

n

∫
M
Rg〈∇Rg,∇u〉gdvg.

Combing these estimates, we can rewrite (2.5) as follows

0 =− 1

2n

∫
M
u|∇Rg|2dvg −

n− 1

n− 2

∫
M
Eg(∇u,∇Rg)dvg(2.7)

+
n− 1

n

∫
M

∆gRg ·∆gudvg −
1

n

∫
M
Rg〈∇Rg,∇u〉gdvg

With the help of the identities (2.1) and (2.4), one has∫
M

∆gRg ·∆gudvg

=

∫
M

(
−2(n− 1)Ia − α1|Eg|2 + α2R

2
g

)
·∆gudvg

=2(n− 1)

∫
M
〈∇Ia,∇u〉gdvg − α1

∫
M
|Eg|2

(
n

2
u−1|∇u|2 − Rgu

2(n− 1)
+

R0u
−1

2(n− 1)

)
dvg
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− 2α2

∫
M
Rg〈∇Rg,∇u〉gdvg.

Inserting the above formula into (2.7), we obtain that

2(n− 1)2
∫
M
〈∇Ia,∇u〉gdvg

=
1

2

∫
M
u|∇Rg|2dvg +

n(n− 1)

n− 2

∫
M
Eg(∇Rg,∇u)dvg

+
n(n− 1)α1

2

∫
M
|Eg|2u−1|∇u|2dvg −

α1

2

∫
M
|Eg|2Rgudvg

+
α1R0

2

∫
M
|Eg|2u−1dvg

+ (2(n− 1)α2 + 1)

∫
M
Rg〈∇Rg,∇u〉gdvg

Multiplying RgEij on both sides of (2.3) and integrating by parts, we
obtain that∫

M
uRg|Eg|2dvg

=− (n− 2)

∫
M
Rg〈Eg,∇2u〉gdvg

=
(n− 2)2

2n

∫
M
Rg〈∇Rg,∇u〉gdvg + (n− 2)

∫
M
Eg(∇Rg,∇u)dvg

which is equivalent to
(2.8)∫
M
Rg〈∇Rg,∇u〉gdvg =

2n

(n− 2)2

∫
M
uRg|Eg|2dvg−

2n

n− 2

∫
M
Eg(∇Rg,∇u)dvg

Inserting the identity (2.8) and the notations (2.2) into (2.7), there holds

2(n− 1)2
∫
M
〈∇Ia,∇u〉gdvg

=
1

2

∫
M
u|∇Rg|2dvg +

n− (n− 1)(a+ 4)

n− 2

∫
M
Eg(∇Rg,∇u)dvg

+
n(n− 1)2(a+ 4)

2(n− 2)2

∫
M
|Eg|2u−1|∇u|2dvg

+
(n− 1)(a+ 4) + 2n2 − 4n

2(n− 2)2

∫
M
u|Eg|2Rgdvg

+
(n− 1)(a+ 4)R0

2(n− 2)2

∫
M
|Eg|2u−1dvg.

Thus we finish our proof.
�
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With the help of above identity, we are able to establish the following
Case-Gursky-Vétois inequalities.

Corollary 2.2. Suppose that (Mn, g0) where n ≥ 3 is a compact Einstein
manifold with constant scalar curvature R0. Consider a conformal metric
g = u2g0 where u > 0. Then there holds

(n−2)2(n−1)

∫
M
〈∇Qg,∇u〉gdvg ≥

n2 − 2

2(n− 1)

∫
M
u|Eg|2gRgdvg+R0

∫
M
|Eg|2gu−1dvg

with the equality holds if and only if g is Einstein.

Proof. Choosing a = 0 in Theorem 2.1, one has

2(n− 1)2
∫
M
〈∇Qg,∇u〉gdvg(2.9)

=
1

2

∫
M
u|∇Rg|2dvg +

4− 3n

n− 2

∫
M
Eg(∇Rg,∇u)dvg

+
2n(n− 1)2

(n− 2)2

∫
M
|Eg|2u−1|∇u|2dvg

+
n2 − 2

(n− 2)2

∫
M
u|Eg|2Rgdvg +

2(n− 1)R0

(n− 2)2

∫
M
|Eg|2u−1dvg.

With help of Cauchy inequality and Young’s inequality, one has

4− 3n

n− 2
Eg(∇Rg,∇u) ≥ −2n(n− 1)2

(n− 2)2
|Eg|2u−1|∇u|2 −

(3n− 4)2

8n(n− 1)2
u|∇Rg|2.

Inserting it into the above identity (2.9), one has

2(n− 1)2
∫
M
〈∇Qg,∇u〉gdvg(2.10)

≥4(n− 4)(n− 1)2 + 7n2 − 8n

8n(n− 1)2

∫
M
u|∇Rg|2dvg

+
n2 − 2

(n− 2)2

∫
M
u|Eg|2Rgdvg +

2(n− 1)R0

(n− 2)2

∫
M
|Eg|2u−1dvg.

Immediately, one has
(2.11)

(n−2)2(n−1)

∫
M
〈∇Qg,∇u〉gdvg ≥

n2 − 2

2(n− 1)

∫
M
u|Eg|2gRgdvg+R0

∫
M
|Eg|2gu−1dvg.

On one hand, if the equality holds in (2.11), with the help of the inequality
(2.10), one must have |∇Rg| = 0 which means that the scalar curvature Rg

is a constant. Then Obata theorem shows that g is Einstein. On the other
hand, if g is Einstein, it is not hard to check that the equality is achieved
by (1.7).

Thus we finish our proof.
�
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To slightly extend Case’s Theorem 1.3, we need the following well known
lemma. For reader’s convenience, we sketch the proof here.

Lemma 2.3. Let A be a n × n symmetric matrix satisfying trace(A) = 0.
Let x and y be two n× 1 vector. There holds

|xTAy| ≤
√
n− 1

n
|A| · |x| · |y|.

Proof. With the help of orthogonality, one may assume that A is a diagonal
matrix and let λi be the diagonal elements where 1 ≤ i ≤ n and |λi| ≤ |λ1|
for all 1 ≤ i ≤ n. Notice that

(2.12) |A|2 =
n∑
i

λi ≥ λ21 +
1

n− 1

(
n∑

i=2

λi

)2

=
n

n− 1
λ21.

With the help of (2.12) and Cauchy inequality, one has

|xTAy| = |
∑
i

λixiyi| ≤ |λ1| · |x| · |y| ≤
√
n− 1

n
|A| · |x| · |y|.

�

Corollary 2.4. Suppose that (Mn, g0) where n ≥ 3 is a compact Einstein
manifolds with constant scalar curvature R0 and n ≥ 3. Consider the con-
formal metric g = u2g0 where u > 0. If the constant a satisfies

(2.13)
(n− 2)(n− 4)− n

√
n2 + 4n

2(n− 1)
≤ a ≤ (n− 2)(n− 4) + n

√
n2 + 4n

2(n− 1)
,

then there holds∫
M
〈∇Ia(g),∇u〉gdvg ≥ a1

∫
M
u|Eg|2Rgdvg + a2R0

∫
M
|Eg|2u−1dvg.

where a1(n) = (n−1)(a+4)+2n2−4n
4(n−2)2(n−1)2 and a2 = a+4

4(n−2)2(n−1) .

Proof. With the help of Lemma 2.3 and Cauchy-Schwarz inequality as well
as Young’s inequality, there holds

n− (n− 1)(a+ 4)

n− 2

∫
M
Eg(∇Rg,∇u)dvg

≥− |n− (n− 1)(a+ 4)

n− 2
|
√
n− 1

n

∫
M
|Eg| · |∇Rg| · |∇u|dvg

≥− 1

2

∫
M
u|∇Rg|2dvg −

(n− (n− 1)(a+ 4))2 (n− 1)

2(n− 2)2n

∫
M
|Eg|2u−1|∇u|2.

Using the condition (2.13) and Theorem 2.1, we obtain our desired result.
�
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For reader’s convenience, we repeat the proof of Vétois’ Theorem 1.1 and
Case’s Theorem 1.3 via the Case-Gursky-Vétois identity.

Proof of Theorem 1.1:
When the scalar curvature R0 = 0, then Q-curvature of g0 also vanishes

by (1.7). For n ≥ 3 and n 6= 4, if the Q-curvature of conformal metric of

g = ϕ
4

n−4 g0 is constant, the equation (1.6) yields that

(2.14) ∆2
g0ϕ = Cϕ

n+4
n−4

where C is a constant. By integrating (2.14) over (M, g0), it is easy to say
that the constant C must be zero. Immediately, ∆g0ϕ must be a constant
and such constant must be zero by integrating it over (M, g0) again. Then ϕ
must be a constant. For n = 4, consider g = e2ϕg0 and the same argument
yields that ϕ must be a constant.

When R0 > 0, with the help of (1.1), one has

Qg0 =
n2 − 4

8n(n− 1)2
R2

0 > 0.

If the Q-curvature Qg of the conformal metric g = u2g0 is constant. By
integrating the equations (1.4) and (1.5) over (M, g0), it is easy to see that
the constant Qg > 0. Apply Lemma 3.1, the scalar curvature Rg is positive.
Making use of Corollary 2.2, one has

0 ≥ n2 − 2

2(n− 1)

∫
M
u|Eg|2gRgdvg +R0

∫
M
|Eg|2gu−1dvg.

Since u,Rg, R0 are all positive, one must have Eg ≡ 0 which means that g is
Einstein. If Furthermore, if (M, g0) is not conformally equivalent to round
sphere, Obata theorem yields that u must be a positive constant.

Proof of Theorem 1.3:
If R0 = 0, one has −4(n−1)

n−2 ∆0u
n−2
2 = Rgu

n+2
2 ≥ 0. Integrating it over

(Mn, g0), the left side vanishes and then we must have Rg ≡ 0. Immediately,
u must be a constant. Otherwise, R0 > 0, Corollary 2.4 yields that Eg = 0
which means that g is Einstein.

3. Applications

With the help of a continuity method and the maximum principle, Gursky
and Malchiodi [10] establish an important theorem related to the positivity
of Q-curvature and scalar curvature in conformal classes of the metrics.

Lemma 3.1. (See Theorem 2.2 in [10], Proposition 2.1 in [13],Theorem 2.3
in [18]) Given a compact manifold (Mn, g) with n ≥ 3 with positive scalar
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curvature and non-negative Q-curvature. Consider the conformal metric
g̃ = u2g. If the Q-curvature Qg̃ ≥ 0, then the scalar curvature Rg̃ is positive.

Proof of Theorem 1.5:
For n ≥ 5, consider the conformal metric g = ϕ

4
n−4 g0 and then

Qg =
2

n− 4

(
εϕ−

8
n−4 + ϕp−n+4

n−4

)
> 0.

Lemma 3.1 yields that Rg > 0.

Choosing u = ϕ
2

n−4 in Corollary 2.2, one has

〈∇Qg,∇u〉g =− 32ε

(n− 4)3
ϕ−

6
n−4
−2|∇ϕ|2g −

4

(n− 4)2
(
n+ 4

n− 4
− p)ϕp−n+2

n−4
−2|∇ϕ|2g

=C(ϕ, ε, p, n)|∇ϕ|2g
where

C(ϕ, ε, p, n) = − 32ε

(n− 4)3
ϕ−

6
n−4
−2 − 4

(n− 4)2
(
n+ 4

n− 4
− p)ϕp−n+2

n−4
−2.

By using Corollary 2.2 and the facts the scalar curvatures Rg and R0 are
both positive, we know that

(3.1)

∫
M
C(ϕ, ε, p, n)|∇ϕ|2gdvg ≥ 0.

If ε + n+4
n−4 − p > 0, it is easy to check that C(ϕ, ε, p, n) < 0 based on our

assumptions. Immediately, by using (3.1), one has |∇ϕ|g = 0 which means
that ϕ must be a constant. If ε = 0 and p = n+4

n−4 , due to our assumption,

(Mn, g0) is not conformally equivalent to a round sphere. In this case, one
has

C(ϕ, ε, p, n) = 0,

Corollary 2.2 yields that

0 ≥
∫
M
u|Eg|2gRgdvg +R0

∫
M
|Eg|2gu−1dvg.

Noticing that Rg > 0 and R0 > 0, one has Eg ≡ 0 which yields that g has
constant scalar curvature. Immediately, Obata theorem deuces that ϕ must
be a constant.

Proof of Theorem 1.7: For n = 4, consider the conformal metric g =
e2ϕg0 and Q-curvature satisfies

Qg = εe−4ϕ + e(p−4)ϕ > 0.

Then Lemma 3.1 yields that Rg > 0. Then choosing u = eϕ, one may easily
check that

〈∇Qg,∇u〉g = −4εe−3ϕ|∇ϕ|2g − (4− p)e(p−3)ϕ|∇ϕ|2g ≤ 0.
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Similarly as the proof of Theorem 1.5, ϕ must be a constant.

Proof of Theorem 1.8:
For n = 3, consider the conformal metric g = ϕ−7g0 and Q-curvature

satisfies
Qg = 2εϕ8 + 2ϕp+7 > 0

which yields that Rg > 0 by Lemma 3.1. Choose u = ϕ−2 and then a direct
computation yields that

〈∇Qg,∇u〉g = −32εϕ4|∇ϕ|2g − 4(p+ 7)ϕp+3|∇ϕ|2g ≤ 0.

Similarly as the proof of Theorem 1.5, ϕ must be a constant.

Proof of Theorem 1.9:
For n ≥ 5, our assumption f(t) ≥ 0 yields that

Pg0ϕ ≥ 0.

Then the strong maximum principle of Theorem 2.2 in [10] shows that ϕ ≡ 0
or ϕ > 0. Thus we only need to deal with ϕ > 0. In this situation, consider

the conformal metric g = ϕ
4

n−4 g0. Then the Q-curvature satisfies

Qg = ϕ−
n+4
n−4 f(ϕ) ≥ 0.

Making use of this fact, Lemma 3.1 shows that Rg > 0. Then choosing

u = ϕ
2

n−4 , one has

(3.2) 〈∇Qg,∇u〉g =
4

n− 4
ϕ

4
n−4
−1F ′(ϕ)|∇ϕ|2g ≤ 0

where F (t) = t−
n+4
n−4 f(t). Corollary 2.2 and the inequality yield that

0 ≥ n2 − 2

2(n− 1)

∫
M
u|Eg|2gRgdvg +R0

∫
M
|Eg|2gu−1dvg.

Since Rg > 0 and R0 > 0, one must have Eg = 0 which means that Rg

is a constant. On one hand, if(Mn, g0) is not conformally equivalent to
the round sphere, Obata theorem implies that ϕ must be a constant. On
the other hand, if(Mn, g0) is conformally equivalent to the round sphere,
Corollary 2.2 and the (3.2) show that

4

n− 4

∫
M
ϕ

4
n−4
−1F ′(ϕ)|∇ϕ|2gdvg ≥ 0.

Since F ′(t) < 0 for all t > 0, one must have |∇ϕ|g ≡ 0 which means that ϕ
is a constant.

For n = 3, one has
Pg0ϕ ≤ 0.

Proposition 2.1 in [13] shows that ϕ ≡ 0 or ϕ > 0. Since the left of the proof
is the same as before, we omit the details.
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Thus we finish our proof.

Proof of Theorem 1.10:
Firstly, consider the conformal metric g = e2ϕg0 and then

Qg = e−4ϕf(eϕ) ≥ 0.

Immediately, Lemma 3.1 yields that Rg > 0. The remain is the same as the
proof of Theorem 1.9 and we omit it.
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