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Abstract

We prove the existence of nontrivial global minimizers of the Allen-
Cahn equation in dimension 8 and above. More precisely, given any strict
area-minimizing Lawson’s cone, there is a family of global minimizers
whose nodal sets are asymptotic to this cone. As a consequence of Jerison-
Monneau’s program we then establish the existence of many new counter-
examples to the De Giorgi conjecture whose nodal sets are different from
the Bombieri-De Giorgi-Giusti minimal graph.

1 Introduction and main results

Bounded entire solutions of the Allen-Cahn equation

−∆u = u− u3 in Rn, |u| < 1, (1)

has attracted a lot of attention in recent years, partly due to its intricate
connection with minimal surfaces. For n = 1, (1) has a heteroclinic solution

H (x) = tanh
(

x√
2

)
. Up to a translation, this is the unique monotone increas-

ing solution in R. De Giorgi [8] conjectured that for n ≤ 8, if a solution to (1)
is monotone in one direction, then up to translation and rotation it equals H.
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De Giorgi conjecture is parallel to the Bernstein conjecture in minimal surface
theory, which states that if F : Rn → R is a solution to the minimal surface
equation

div
∇F√

1 + |∇F |2
= 0,

then F must be a linear function in its variables. The Bernstein conjecture
has been shown to be true for n ≤ 7. The famous Bombieri-De Giorgi-Giusti
minimal graph (see [4]) gives a counter-example for n = 8, which also disproves
the Bernstein conjecture for all n ≥ 8. As for the De Giorgi conjecture, it has
been proven to be true for n = 2 (Ghoussoub-Gui [17]), n = 3 (Ambrosio-Cabré
[3]), and for 4 ≤ n ≤ 8 (Savin [25]), under an additional limiting condition

lim
xn→±∞

u (x′, xn) = ±1. (2)

This condition together with the monotone property implies that u is a global
minimizer in the sense that, for any smooth bounded domain Ω ⊂ Rn,

J (u) ≤ J (u+ ϕ) , for all ϕ ∈ C∞
0 (Ω) ,

where

J (u) :=

∫
Ω

[
1

2
|∇u|2 +

(
u2 − 1

)2
4

]
,

see Alberti-Ambrosio-Cabré [1] and Savin [25]. In Farina-Valdinoci [15], these
De Giorgi type classification results have been obtained for more general quasi-
linear equations and under less restrictive condition as (2) . For example, it
is proven there that certain symmetry assumptions on the asymptotic profile
limxn→+∞ u (x′, xn) will be sufficient to guarantee the 1D symmetry for the
original solutions. We refer to [15] for details and more complete history on
this subject. Let us also mention that in a recent paper of Farina and Valdinoci
[16], by imposing energy bound and certain geometric information on the in-
terface, they prove 1D symmetry for monotone solutions without minimality
assumption.

On the other hand, it turns out that for n ≥ 9, there do exist monotone solu-
tions which are not one dimensional. These nontrivial examples have been con-
structed in [12] using the machinery of infinite dimensional Lyapunov-Schmidt
reduction. The nodal sets of these solutions are actually close to the Bombieri-
De Giorgi-Giusti minimal graphs. The construction has been successfully ex-
tended to other settings. For example, it is proved in [13] that for any nonde-
generate minimal surfaces with finite total curvature in R3, one could construct
family of solutions for the Allen-Cahn equation whose nodal sets “follow” these
minimal surfaces. These results indicate that the minimal surface theory is
deeply related to the Allen-Chan equation.

Regarding solutions which are not necessary monotone, Savin [25] also proved
that if u is a global minimizer and n ≤ 7, then u is one dimensional. While
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the monotone solutions of Del Pino-Kowalczyk-Wei provides examples of non-
trivial global minimizers in dimension n ≥ 9, it is still not known whether
there are nontrivial global minimizers for n = 8. A result in Farina-Valdinoci
[15](Theorem 1.7 there), which generalizes the previously mentioned result of
Savin, already tells us that monotone global minimizers in dimension 8 must
be 1D. However, due to the connection with minimal surface theory, one ex-
pects nontrivial global minimizers should exist in dimension 8 and higher. This
was pointed out in [19, Section 1.3] and posed as an open question in [7]. The
existence of global minimizers will be our main focus in this paper.

Let us now recall some preliminary facts from the minimal surface theory.
It is known that in R8, there is a minimal (meaning that the mean curvature is
equal to zero) cone with one singularity at the origin which minimizes the area,
called Simons cone. It is given explicitly by:{

x2
1 + ...+ x2

4 = x2
5 + ...+ x2

8

}
.

The minimality (area-minimizing property) of this cone is proved in [4]. More
generally, if we consider the so-called Lawson’s cone (2 ≤ i ≤ j)

Ci,j :=
{
(x, y) ∈ Ri ⊕ Rj : |x|2 =

i− 1

j − 1
|y|2
}
,

then it has mean curvature zero except at the origin and hence is a minimal
hypersurface with one singular point. For i+j ≤ 7, the cone is unstable (Simons
[28]). Indeed, it is now known that for i + j ≥ 8 with (i, j) ̸= (2, 6) , Ci,j are
area-minimizing, and C2,6 is not area-minimizing but it is one-sided minimizer.
(See [2], [9], [21], [23]...). Note that Ci,j has the O (i)×O (j) symmetry, that is,
it is invariant under the natural group actions of O (i) on the first i variables and
O (j) on the last j variables. We refer to [22] and references therein for more
complete history and details on related subjects. It is worth mentioning that the
class of cones Ci,j does not exhaust the list of minimal cones in Lawson’s original
paper [23]. But here we will only focus on Ci,j , although one expects that the
results in this paper could be extended to more general strict area-minimizing
cones. Note that in [27], Ci,j is also called quadratic cone. We refer to [27] for
more geometric properties of these cones.

It turns out there are analogous objects as Ci,i in the theory of Allen-Cahn
equation. They are the so-called saddle-shaped solutions, which are solutions
in R2i of (1) vanishes exactly on the cone Ci,i (Cabré-Terra [5, 6] and Cabré
[7]). We denote them by Di. It has been proved in [5] that these solutions are
unique in the class of symmetric functions. Furthermore in [5, 6] it is proved
that for 2 ≤ i ≤ 3, the saddle-shaped solution is unstable, while for i ≥ 7, they
are stable ([7]). It is also conjectured in [7] that for i ≥ 4, Di should be a global
minimizer. This turns out to be a difficult problem.

To state our results, we need to introduce some notations. Denote

r =
√

x2
1 + ...+ x2

i , s =
√
x2
i+1 + ...+ x2

i+j .
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Note that actually r, s depend on the indices i and j. Suppose that 2 ≤ i ≤ j
satisfy one of the following two conditions:
(C1) i+ j ≥ 9.
(C2) i+ j = 8, |i− j| < 4.

Set n = i+j.We have mentioned that under condition (C1) or (C2), the cone
Ci,j is area-minimizing. Indeed, it is strict area-minimizing. (We refer to [18]
for the definition of strict area-minimizing property). Results of [18] (see also
[2]) then tell us that Rn is foliated by a family of minimal hypersurfaces which
are invariant under O (i) × O (j) . Each minimal hypersurface in this family is
asymptotic to Ci,j at the rate Crα as r tends to infinity, where

α =
− (n− 3) +

√
(n− 3)

2 − 4 (n− 2)

2
.

One could check that −2 ≤ α < −1, if n ≥ 8.

Theorem 1 Suppose 2 ≤ i ≤ j satisfy condition (C1) or (C2). There exists
a constant βi,j such that for each a ∈ R, there exists a global minimizer Ua of
the Allen-Cahn equation (1) which is invariant under O (i)×O (j) and has the
following property: If the nodal set of Ua is represented by s = FUa (r) , then

FUa (r) =

√
j − 1

i− 1
r + βi,jr

−1 + arα + o (rα) , as r → +∞.

Moreover, if i = j, βi,j = 0.

Remark 2 In the case of i = j ≥ 4, if one could show that this family of
solutions Ua depends continuously on a and is ordered: Uk1 < Uk2 for k1 < k2,
then the saddle-shaped solution Di will be a global minimizer. However, our
variational construction only yields the existence and gives no information on
the ordering and continuity in a.

As we will see later on, the existence of at least one global minimizer is an
easy consequence of the existence of certain family of ordered solutions con-
structed in [24]. (It should be known in the literature but we can not locate
exact reference.) Recall that a result of Jerison and Monneau [19] tells us that
the existence of a nontrivial global minimizer in R8 which is even in all of its
variables implies the existence of a family of counter-examples for the De Giorgi
conjecture in R9. Hence an immediate corollary of Theorem 1 is the following

Corollary 3 Suppose 2 ≤ i ≤ j satisfy condition (C1) or (C2). There is a
family of monotone solutions to the Allen-Cahn equation (1) in Ri+j+1, which
is not one-dimensional and having O (i) × O (j) symmetry in the first i + j
variables.

This corollary could be regarded as a parallel result to Simon’s existence
result on entire minimal graphs [26].

4



Now let us sketch the main idea of the proof of Theorem 1. We shall firstly
construct minimizers on bounded domains, with suitable boundary conditions.
As we enlarge the domain, we will see that a subsequence of solutions on these
bounded domains will converge to a global minimizer, as one expects. To ensure
that these solutions converge, we will use the family of solutions constructed by
Pacard-Wei [24] as barriers. The condition that the cone we start with is strict
area-minimizing is used to show that the solutions of Pacard-Wei are ordered. To
show the compactness and precise asymptotic behavior we use the convenient
tool of Fermi coordinate. The rest of the paper is devoted to the proof of
Theorem 1.

Acknowledgement. The research of J. Wei is partially supported by NSERC
of Canada. Part of the paper was finished while Y. Liu was visiting the Univer-
sity of British Columbia in 2016. He appreciates the institution for its hospitality
and financial support. K. Wang is supported by “the Fundamental Research
Funds for the Central Universities”. Y. Liu is partially supported by the Funda-
mental Research Funds for the Central Universities 2014zzd10 and 13MS39. We
thank the referees for carefully reading the manuscript and many constructive
suggestions.

2 Solutions on bounded domains and their asymp-
totic behavior

In this section, we deal with the case that the cone is the Simons cone in R8.
The starting point of our construction of global minimizers will be the solutions
of Pacard-Wei[24] which we shall describe below.

Let ν (·) be the unit normal of the Simons cone C4,4 pointing towards the
region {(r, s) : r < s} . Since we are interested in solutions with O (4) × O (4)
symmetry, let us introduce

r =
√
x2
1 + ...+ x2

4, s =
√
x2
5 + ...+ x2

8. (3)

There is a smooth minimal surface Γ+ lying on one side of the Simons cone,
which is asymptotic to this cone and has the following properties (see [18] or
[24]). Γ+ is invariant under the group of action of O (4) × O (4) . Outside of a
large ball, Γ+ is a graph over C4,4 and

Γ+ =

{
X +

[
1√
2r2

+ o
(
r−2
)]

ν (X) : X ∈ C4,4

}
, as r → +∞.

Similarly, there is a smooth minimal hypersurface Γ− on the other side of the
cone. For λ>0, let Γ±

λ = λΓ± be the family of homotheties of Γ±. Then it is
known that Γ±

λ together with C4,4 forms a foliation of R8. We also write Γ+
λ as

the graph of the function s = f (λ, r) .
We use Nu to denote the nodal set of a function u. The following existence

result for a family of ordered solutions is proved by Pacard-Wei in [24].
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Theorem 4 (Pacard-Wei) For all λ large enough(say λ > λ0), there exist
solutions U±

λ to the Allen-Cahn equation in R8 which are O (4)×O (4) invariant.
These solutions depend continuously on the parameter λ and are ordered. That
is,

U+
λ1

(X) < U+
λ2

(X) , λ1 < λ2.

U−
λ1

(X) < U−
λ2

(X) , λ1 > λ2,

U−
λ0

(X) < U+
λ0

(X) .

Suppose that in the (r, s) coordinate,

NU±
λ
=
{
(r, s) : s = F±

λ (r)
}
.

Then they have the following asymptotic behavior:

F±
λ (r) = r ± λ3r−2 + o

(
r−2
)
, as r → +∞.

Moreover, for |X| large,

U+
λ (X) = H (X1) + 3η (X1) l

−2 + o
(
l−2
)
. (4)

Here X1 is the signed distance from X to NU+
λ
, positive in the region {r > s} .

Let P (X) be the point on NU+
λ

which realizes this distance, then l is the r-

coordinate of P (X) . η is the function defined in (5) . Similar result holds for
U−
λ .

Remark 5 The order property of U±
λ (·) is proved in [24, Proposition 12.1],

which essentially follows from (4) . The asymptotic behavior (4) will also be
used later on. This will be discussed in the next section in terms of Fermi
coordinate. We also refer to Lemma 16 for the analysis of the solutions in the
case corresponding to general Lawson’s cones. It should be emphasized that the
construction in [24] only gives us these solutions when λ is sufficiently large.

Proposition 6 As λ → +∞, U±
λ → ±1 uniformly on any compact set of R8.

Proof. Set ε = λ−1 and w±
ε (X) := U±

λ (λX). Then w±
ε are solutions to the

singularly perturbed Allen-Cahn equation

−ε∆w±
ε =

1

ε

(
w±

ε − w±3
ε

)
.

Moreover, the construction of [24] implies that {w±
ε = 0} lies in an O(ε) neigh-

borhood of Γ±. Because the distance from the origin to Γ± is positive, by the
equation, we see w±

ε is close to ±1 in a fixed ball around the origin. Rescaling
back we finish the proof.
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2.1 Minimizing arguments and solutions with O (4)×O (4)
symmetry

For each a ∈ R, we would like to construct a solution whose nodal set in the r-s
coordinate is asymptotic to the curve

s = r + ar−2

at infinity. Without loss of generality, let us assume a ≥ 0.
Consider the first quadrant of the r-s plane. Let l designate a choice of a

local coordinate on Γ+
a . For each point on Γ+

a , l could just be defined to be its
r-coordinate. Now let (l, t) be the Fermi coordinate around the minimal surface
Γ+
a , More precisely, for each P, we denote by π (P ) to be the point on Γ+

a which
realizes the distance between P and π (P ) . Then the Fermi coordinate of P is
defined to be (l, t) , where t is the signed distance from P to Γ+

a , positive in
the region {(r, s) : r > s} , and l is understood to be the r-coordinate of π (P ) .
Keep in mind that the Fermi coordinate is not smoothly defined on the whole
space R8, because it is smooth at the r, s axes.

For each d large, let Ld be the line orthogonal to Γ+
a at the point (d, f (a, d)) .

Denote the domain enclosed by Ld and the r, s axes by Ωd. (This domain
actually should be considered as a domain in R8. We still denote it by Ωd for
notational simplicity.) We shall impose Neumann boundary condition on r, s
axes and suitable Dirichlet boundary condition on Ld, to get a minimizer for
the energy functional J .

Recall thatH is the one dimensional heteroclinic solution. Since
∫
R tH

′
(t)

2
dt =

0, there exists a unique bounded solution η of the problem{
−η′′ +

(
3H2 − 1

)
η = −tH ′,∫

R ηH ′dt = 0.
(5)

There is actually an explicit form for η, see [12], but we do not need this fact.

Let us now fix a number λ∗ > 2max
{
a

1
3 , λ0

}
. Let ε > 0 be a small constant.

Let ρ be a cut-off function defined outside the unit ball. We require that ρ
equals 1 in the region

{
εs < r < ε−1s

}
and equals 0 near the r, s axes. It is

worth pointing out that the Fermi coordinate is smoothly defined in the region{
εs < r < ε−1s

}
\BR (0) , for R sufficiently large. We seek a minimizer of the

functional J within the class of functions

Sd :=
{
ϕ ∈ H1,2 (Ωd) : ϕ = H∗

d + ρη (t)A2 on Ld

}
.

Here A2 =
∑

k2i is the squared norm of the second fundamental form of the
minimal surface Γ+

a , with ki being the principle curvatures of Γ+
a . Hence A2

decays like O
(
r−2
)
as r tends to infinity. Since the functions U±

λ have the
asymptotic behavior (4) , we could choose H∗

d such that it equals H (t) in the
support of ρ and satisfies

U−
λ∗ < H∗

d + ρη (t)A2 < U+
λ∗ in Ld. (6)
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Let u = ud be a minimizer of the functional J over Sd. The existence of u
follows immediately from standard arguments in Calculus of Variations. But
in principle, we may not have uniqueness. Intuitively speaking, the uniqueness
of minimizer should be an issue related to minimizing property of the saddle-
shaped solutions.

Proposition 7 ud is invariant under the natural action of O (4)×O (4) .

Proof. Let e ∈ O (4) × O (4). Then due to the invariance of the energy func-
tional and the boundary condition, u (e·) is still a minimizer. By elliptic regu-
larity, u is smooth.

Suppose the action of e is given by: (x1, x2, ..., x8) → (−x1, x2, ..., x8) . We
first show that u (x) = u (ex) for any x ∈ Ωd. Assume to the contrary that this
is not true. Let us consider the functions

w1 (x) := min {u (x) , u (ex)} ,
w2 (x) := max {u (x) , u (ex)} .

Since u (·) and u (e·) have the same boundary data, w1 and w2 are also minimiz-
ers of the functional J . Hence they are solutions of the Allen-Cahn equation.
Since w1 ≤ w2 and w1 (0, x2, ..., x8) = w2 (0, x2, ..., x8) , by the strong maximum
principle, w1 = w2. It follows that u (x) = u (ex) .

Let us use x to denote the first four coordinates (x1, ..., x4) and y denote
the last four coordinates (x5, ..., x8) . Let ē be any reflection across a three
dimensional hyperplane L in R4 which passes through origin. This gives us a
corresponding element in O (4)×O (4) , still denoted by ē,

ē (x, y) := (ē (x) , y) .

Similar arguments as above tell us that u (x) = u (ēx) for any x ∈ Ωd. This in
turn would imply that u is invariant under the group of action of O (4)×O (4) .

Lemma 8 For any d large, there holds

U−
λ∗ < ud < U+

λ∗ . (7)

Proof. By Proposition 6, for λ sufficiently large, ud < U+
λ on Ωd. Now let

us continuously decrease the value of λ. Since we have a continuous family of
solutions U+

λ , and for λ > λ∗, each of them is greater than ud on the boundary
of Ωd (recalling (6) and the ordering properties of U±

λ ), hence by the strong
maximum principle, ud < U+

λ∗ . Similarly, one could show that U−
λ∗ < ud. This

finishes the proof.

2.2 Asymptotic analysis of the solutions

The minimizers ud are invariant under O (4)×O (4) action. Using the uniform
estimate (7) , we could show that as d goes to infinity, up to a subsequence,
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ud converges in C2
loc

(
R8
)
to a nontrivial entire solution U of the Allen-Cahn

equation.
We then claim

Lemma 9 U is a global minimizer.

Proof. Let ϕ ∈ C∞
0 (Rn) be any fixed function. Then for d > 2R0, where

supp(ϕ) ⊂ BR0(0), we have

J (ud) ≤ J (ud + ϕ).

Letting d → +∞ we arrive at the conclusion.
By Lemma 8, the nodal set NU of U must lie between NU+

λ∗
and NU−

λ∗
. We

use s = F (r) to represent NU .
The main result of this section is the following proposition, which proves

Theorem 1 in the case of Simons cone.

Proposition 10 The nodal set of U has the following asymptotic behavior:

F (r) = r + ar−2 + o
(
r−2
)
, as r → +∞. (8)

The proof of this proposition relies on detailed analysis of the asymptotic
behavior of the sequence of solutions ud.

To begin with, let us define an approximate solution as

H̄ (l, t) = ρH (t− hd (l)) + (1− ρ)
H (t− hd (l))

|H (t− hd (l))|
,

where ρ is the cutoff function introduced in Section 2.1, and hd is a small function
defined on Γ+

a to be determined in the sequel. We shall write the solution ud as

ud = H̄ + ϕd, (9)

Introduce the notation H̄ ′ := ρH ′ (t− h) . The reason that we put ρ in this
definition is that the Fermi coordinate is not defined on the whole space. We
require the following orthogonality condition to be satisfied by ϕd :∫

R
ϕdH̄

′dt = 0. (10)

Since ud is close to H (t) , we could find a unique small function hd satisfying
(9) , using implicit function theorem in the same spirit as Lemma 5.1 of [20].

Our starting point for the asymptotic analysis is the following (non-optimal)
estimate:

Lemma 11 The function hd and ϕd satisfy

|hd|+ |ϕd|+ |h′
d|+ |h′′

d | ≤ Cl−2,

where C does not depend on d.
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Proof. We first prove |hd| ≤ Cl−2. By the orthogonal condition,∫
R

(
ud − H̄

)
H̄ ′dt = 0. (11)

Hence∫
R
[ud −H (t)] H̄ ′dt =

∫
R

[
H̄ −H (t)

]
H̄ ′dt = hd

∫
R
H̄ ′2dt+ o (hd) . (12)

Recall that
U−
λ∗ ≤ ud ≤ U+

λ∗ ,

and by the asymptotic behavior (4) ,∣∣U±
λ∗ −H (t)

∣∣ ≤ Cl−2.

From these two estimates and (12), we infer that

|hd| ≤ C

∣∣∫
R [ud −H (t)] H̄ ′dt

∣∣∫
R H̄ ′2dt

≤ Cl−2.

As an consequence,
|ϕd| =

∣∣ud − H̄
∣∣ ≤ Cl−2.

Next we show |h′
d| ≤ Cl−2. To see this, we differentiate equation (11) with

respect to l. This yields∫
R

(
∂lud − ∂lH̄

)
H̄ ′dt = −

∫
R

(
ud − H̄

)
∂lH̄

′dt.

As a consequence, ∣∣∣∣h′
d

∫
R
H̄ ′2dt

∣∣∣∣ ≤ C

∣∣∣∣∫
R
∂ludH̄

′dt

∣∣∣∣+ Cl−2. (13)

Observe that ud is a solution trapped between U+
λ∗ and U−

λ∗ . Hence elliptic
regularity tells us

∂lud = O
(
l−2
)
. (14)

Here we use O
(
l−2
)
to denote a term bounded by Cl−2, where C is a universal

constant independent of d. (14) together with (13) yields |h′
d| ≤ Cl−2. Similarly,

we can prove that |h′′
d | ≤ Cl−2.

Let ν be the unit normal of Γ+
a , pointing to the region {(r, s) : r > s} . The

Laplacian operator ∆ has the following expansion(see [14]) in the Fermi coor-
dinate (l, t):

∆ = ∆γt + ∂2
t −Mt∂t.

Here Mt is the mean curvature of the surface

γt :=
{
X + tν (X) , X ∈ Γ+

a

}
.
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∆γt is the Laplacian-Beltrami operator on γt. We use gt =
(
gti,j
)
to denote the

induced metric on the surface γt. Then

∆γtφ =
∂i

(
gi,j,t

√
|gt|∂jφ

)
√

|gt|
. (15)

Here we have used |gt| to denote the determinant of the matrix of the metric
tensor on γt. For t = 0, γ0 = Γ+

a . The metric tensor on Γ+
a has the form(

1 + f ′2) dr2 + (r2 + f2
)
dσ2,

where dσ2 is the metric tensor on S3
(

1√
2

)
× S3

(
1√
2

)
. In general, when t ̸= 0,

the metric on γt and γ0 in (l, t)-coordinate is related by (see [14, Section 2.1]):

gt = g0 (I − tA)
2
. (16)

Here A is the matrix represents the second fundamental form of Γ+
a . In partic-

ular,
gti,j = g0i,j +O

(
l−1
)
.

Lemma 12 For a function φ invariant under O (4)×O (4) action, the Laplacian-
Beltrami operator ∆γt has the form

∆γtφ = ∆γ0φ+ P1 (l, t)Dφ+ P2 (l, t)D
2φ,

where
|P1 (l, t)| ≤ Cl−2, |P2 (l, t)| ≤ Cl−1.

Proof. Let gt =
(
gi,j,t

)
be the inverse matrix of

(
gti,j
)
. Using (15) , we get

∆γtφ =
∂i

(
gi,j,t

√
|gt|∂jφ

)
√
|gt|

= ∂ig
i,j,t∂jφ+ gi,j,t∂ijφ+ gi,j,t∂jφ∂i ln

√
|gt|.

We compute

∆γtφ−∆γ0φ = ∂i
(
gi,j,t − gi,j,0

)
∂jφ+

(
gi,j,t − gi,j,0

)
∂ijφ

+ gi,j,t∂jφ∂i ln

√
|gt|√
|g0|

+
(
gi,j,t − gi,j,0

)
∂jφ∂i ln

√
|g0|. (17)

The estimate follows from this formula, identity (16) , and the asymptotic be-
havior of the principle curvatures of Γ+

a .
One main step of our analysis will be the estimate of the approximate solu-

tion. Recall that ki, i = 1, ..., 7, are the principle curvatures of Γ+
a .

11



Lemma 13 The error of the approximate solution H̄ has the following estimate:

∆H̄ + H̄ − H̄3 = −1

2

(
h′′
d +

6

l
h′
d

)
H̄ ′ +O

(
h′2
d

)
+O

(
l−2h′

d

)
+O

(
l−1h′′

d

)
−

(
tA2 + t3

7∑
i=1

k4i

)
H̄ ′ +O

(
l−5
)
.

Proof. Computing the Laplacian in the Fermi coordinate, we obtain, up to an
exponential decaying term introduced by the cutoff function ρ,

∆H̄ + H̄ − H̄3 = ∆γtH̄ + ∂2
t H̄ −Mt∂tH̄ + H̄ − H̄3

= ∆γtH̄ −Mt∂tH̄.

Since Γ+
a is a minimal surface,

Mt =
7∑

i=1

ki
1− tki

= tA2 + t2
7∑

i=1

k3i + t3
7∑

i=1

k4i +O
(
k5i
)
.

Observe that k3i decays like O
(
r−3
)
at infinity. However, we would like to show

that
7∑

i=1

k3i actually has a faster decay. Indeed, recall that(see [2]), in an arc

length parametrization of the curve Γ+
a ,

k1 =
−r′′s′ + r′s′′

(r′2 + s′2)
3
2

,

k2 = k3 = k4 =
s′

r
√
r′2 + s′2

,

k5 = k6 = k7 =
−r′

s
√
r′2 + s′2

.

In particular, using the fact that along Γ+
a , s = r+ ar−2+ o

(
r−2
)
, we estimate

k1 = O
(
r−4
)
, and |k2| = ... = |k7| =

1√
2r

+O
(
r−4
)
.

Therefore we obtain
7∑

i=1

k3i = O
(
r−5
)
.

It follows that,

Mt = tA2 + t3
7∑

i=1

k4i +O
(
r−5
)
.
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Next we compute ∆γtH̄. By Lemma 12, in the Fermi coordinate,

∆γtH̄ =
∂i

(
gi,j,t

√
|gt|∂j [H (t− hd (l))]

)
√

|gt|
= ∆γ0H̄ +O

(
l−2
)
h′
d +O

(
l−1
)
h′′
d .

= −1

2

(
h′′
d +

6

l
h′
d

)
H̄ ′ +O

(
h′2
d

)
+O

(
l−2
)
h′
d +O

(
l−1
)
h′′
d +O

(
l−5
)
.

Here in the last identity, we have used the asymptotic expansion

g01,1 = 2 +O
(
l−3
)
.

Note that the fact −1
2 appears before h′′

d + 6
l h

′
d because l represents the r-

coordinate of the projected point. We now obtain

∆H̄ + H̄ − H̄3 = −1

2

(
h′′
d +

6

l
h′
d

)
H̄ ′ +O

(
h′2
d

)
+O

(
l−2
)
h′
d +O

(
l−1
)
h′′
d

−

(
tA2 + t3

7∑
i=1

k4i

)
H̄ ′ +O

(
l−5
)
.

Let us set

J (hd) =
1

2

[
h′′
d +

6

l
h′
d +

6

l2
hd

]
.

Note that this is essentially the Jacobi operator of the Simons cone, in the
r-coordinate. With all these understood, we are ready to prove the following

Proposition 14 The function hd satisfies

|J (hd)| ≤ Cl−5,

where C is a constant independent of d.

Proof. Frequently, we drop the subscript d for notational simplicity if there is
no confusion.

Since ϕ+ H̄ solves the Allen-Cahn equation, ϕ satisfies

−∆ϕ+
(
3H̄2 − 1

)
ϕ = ∆H̄ + H̄ − H̄3 − 3H̄ϕ2 − ϕ3.

By Lemma 13,

−∆ϕ+
(
3H̄2 − 1

)
ϕ

= −J (h) H̄ ′ + (t− h) H̄ ′A2 + (t− h)
3
H̄ ′

7∑
i=1

k4i

+O
(
h′2)+O

(
l−2h′)+O

(
l−1h′′)

− 3ϕ2H̄ − ϕ3 +O
(
l−5
)
.
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The function (t− h)A2H̄
′ is essentially orthogonal to H̄ ′ and decays likeO

(
l−2
)
.

This is a slow decaying term. Recall that we defined a function η satisfying

−η′′ +
(
3H2 − 1

)
η = −tH ′ (t) .

We introduce η̄ = η (t− h) . Straightforward computation yields

−∆(η̄A2) +
(
3H̄2 − 1

)
η̄A2

= −∆γt (η̄A2)− ∂2
t (η̄A2) +Mt∂t (η̄A2) +

(
3H̄2 − 1

)
η̄A2

= −∆γt (η̄A2) +Mt∂t (η̄A2)− (t− h) H̄ ′A2

= −η̄∆γ0A2 + (t− h) ∂tη̄A
2
2 − (t− h) H̄ ′A2 + ∂tη̄∆γ0hA2 +O

(
l−5
)
.

Although −η̄∆γ0A2 + (t− h) ∂tη̄A
2
2 decays only like O

(
l−4
)
, due to the fact

that η is odd, it is orthogonal to H̄ ′.
Let ϕ = ρη̄ |A|2 + ϕ̄. Then the new function ϕ̄ satisfies

−∆ϕ̄+
(
3H̄2 − 1

)
ϕ̄ = −J (h) H̄ ′ + (t− h)

3
H ′

7∑
i=1

k4i (18)

+ η̄∆γ0A2 − (t− h) ∂tη̄A
2
2 + ∂tη̄∆γ0hA2

+O
(
h′2)+O

(
l−2
)
h′ +O

(
l−1
)
h′′

+ 3
(
η̄A2 + ϕ̄

)2
H̄ +

(
η̄A2 + ϕ̄

)3
+O

(
l−5
)
.

Denote the right hand side by E. We would like to estimate
∫
R EH̄ ′dt, which is

the projection of E onto H̄ ′.
Multiplying both sides with H̄ ′ and integrating in t, using Lemma 12, we

get ∫
R
EH̄ ′dt =

∫
R

[
−∆ϕ̄+

(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt

=

∫
R

[
−∆γt ϕ̄− ∂2

t ϕ̄+Mt∂tϕ̄+
(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt

=

∫
R

[
−∆γ0 ϕ̄− ∂2

t ϕ̄+
(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt+ l−1O

(
ϕ̄
)
. (19)

Here O
(
ϕ̄
)
denotes a term satisfying∣∣O (ϕ̄)∣∣ ≤ C

(∣∣ϕ̄∣∣+ ∣∣Dϕ̄
∣∣+ ∣∣D2ϕ̄

∣∣) , as l → +∞.

Since
∫
R ϕH̄ ′dt = 0 and η is orthogonal to H ′, we have∫

R
ϕ̄H̄ ′dt = −

∫
R
ρη̄ |A|2 H̄ ′dt = O

(
e−l
)
. (20)

We then deduce from integrating by parts that∫
R

[
−∂2

t ϕ̄+
(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt = l−1O

(
ϕ̄
)
+O

(
e−l
)
. (21)
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We also calculate∣∣∣∣∫
R
∆γ0 ϕ̄H̄ ′dt

∣∣∣∣ ≤ C

∣∣∣∣∣d2
(∫

R ϕ̄H̄ ′dt
)

dl2

∣∣∣∣∣+ C

∣∣∣∣∣d
(∫

R ϕ̄H̄ ′dt
)

dl

∣∣∣∣∣
+ C

∫
R

∣∣∣∣ϕdH̄ ′

dl

∣∣∣∣ dt+ C

∫
R

∣∣∣∣ϕd2H̄ ′

dl2

∣∣∣∣ dt.
It then follows from the estimate of h′ and h′′ that,∣∣∣∣∫

R
∆γ0 ϕ̄H̄ ′dt

∣∣∣∣ ≤ Ce−l + Cl−2

∫
R
|ϕ| dt. (22)

Inserting (21) and (22) into (19) , we find that∫
R

[
−∆ϕ̄+

(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt =

∫
R
EH̄ ′dt = l−1O

(
ϕ̄
)
+O

(
e−l
)
. (23)

As a consequence of this fact, we get

−∆ϕ̄+
(
3H̄2 − 1

)
ϕ̄ = E −

∫
R EH̄ ′dt∫
R H̄ ′2dt

H̄ ′ +

∫
R EH̄ ′dt∫
R H̄ ′2dt

H̄ ′

= E −
∫
R EH̄ ′dt∫
R H̄ ′2dt

H̄ ′ + l−1O
(
ϕ̄
)
+O

(
e−l
)
. (24)

Note that

E −
∫
R EH̄ ′dt∫
R H̄ ′2dt

H̄ ′ = (t− h)
3
H̄ ′

7∑
i=1

k4i

+ η̄∆Γ+
a
A2 − (t− h) ∂tη̄A

2
2

+O
(
h′2)+O

(
l−2
)
h′ +O

(
l−1
)
h′′

+ 3η̄2A2
2H̄ + o

(
ϕ̄
)
+O

(
l−5
)
.

By the estimate of h, h′, h′′, we get the following (non-optimal) estimate:

E −
∫
R EH̄ ′dt∫
R H̄ ′2dt

H ′ = O
(
l−3
)
+ o

(
ϕ̄
)
.

Now by (24) , ϕ̄ satisfies an equation of the form

−∆ϕ̄+
(
3H̄2 − 1

)
ϕ̄ = O

(
l−3
)
+ o

(
ϕ̄
)
.

We claim that ϕ̄ satisfies ∣∣ϕ̄∣∣+ ∣∣Dϕ̄
∣∣+ ∣∣D2ϕ̄

∣∣ ≤ Cl−3, (25)

with C independent of d.
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To prove the claim, we shall use the linear theory of the operator −∆ +
3H2 − 1, in the same spirit as that of Proposition 8.1 in [24]. Here we sketch
the proof. Assume to the contrary that (25) is not true. Then we could find a
sequence dn → +∞, a sequence of functions

{
ϕ̄dn

}
, and a sequence of points

{ln, tn} with ln → +∞, such that

An :=
∣∣ϕ̄dn (ln, tn)

∣∣ l3n = max
(l,t)

∣∣ϕ̄ (l, t) l3
∣∣→ +∞.

Note that ϕ̄ is only defined for l ≤ d. Define a sequence of new functions

Φn (l, t) :=
ϕ̄n (l + ln, t+ tn) (l + ln)

3

An
.

Then Φn satisfies an equation of the form

−∂2
l Φn − ∂2

tΦn +
(
3H2 − 1

)
Φn = o (1) + o (Φn) , as n → +∞.

Φn also satisfies Φn (0, 0) = 1 and |Φn| ≤ 1. We consider four cases.
Case 1. dn − ln → +∞ and |tn| ≤ C.
In this case, Φn converges in C2

loc(R2) to a bounded entire solution Φ of the
equation

−∂2
l Φ− ∂2

tΦ+
(
3H2 − 1

)
Φ = 0, in R2.

This implies that Φ = cH ′, with c ̸= 0. This contradicts with the fact that∫
R ΦH ′dt = 0.

Case 2. dn − ln → +∞ and |tn| → +∞.
In this case, Φn converges in C2

loc(R2) to a bounded entire solution Φ of the
equation

−∂2
l Φ− ∂2

tΦ+ 2Φ = 0, in R2.

This is not possible, since Φ (0, 0) = 1 and |Φ| ≤ 1.
Case 3. dn − ln → C0 < +∞ and |tn| ≤ C.
Note that ϕ̄n = O

(
e−d
)
on the boundary Ld. Hence Φn converges to a

bounded solution Φ of the equation

−∂2
l Φ− ∂2

tΦ+
(
3H2 − 1

)
Φ = 0, in (−∞, C0]× R,

with Φ (C0, t) = 0. Reflecting Φ across the line l = C0, we again obtain an
entire solution on R2 satisfies the orthogonality condition

∫
R ΦH ′dt = 0. This is

a contradiction.
Case 4. dn − ln → C0 < +∞ and |tn| → +∞.
Then Φn converges to a bounded solution Φ of the equation

−∂2
l Φ− ∂2

tΦ+ 2Φ = 0, in (−∞, C0]× R.

Reflecting across the line l = C0, we also get a contradiction. The proof of the
claim is completed.

16



Now multiplying both sides of (18) by H̄ ′ again and integrating in t, using
the estimate (25) of ϕ̄, we get

J (h)+O
(
h′2)+O

(
l−2
)
h′+O

(
l−1h′′) = ∫

R

[
−∆ϕ̄+

(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt+O

(
l−5
)
.

(26)
On the other hand, by (23) and (25) ,∫

R

[
−∆ϕ̄+

(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt = O

(
l−4
)
.

This together with (26) implies

J (h) +O
(
h′2)+O

(
l−2
)
h′ +O

(
l−1
)
h′′ = O

(
l−4
)
. (27)

Using the fact that |h′| , |h′′| ≤ Cl−2, we deduce from (27) that

|h′| ≤ Cl−3, |h′′| ≤ Cl−4. (28)

Inserting this estimate back into (24) , we get an improved estimate for ϕ̄ :∣∣ϕ̄∣∣ ≤ Cl−4. (29)

Then by (23) again,∫
R

[
−∆ϕ̄+

(
3H̄2 − 1

)
ϕ̄
]
H̄ ′dt = O

(
l−5
)
.

This combined with with (26) and (28) leads to

J (h) = O
(
l−5
)
. (30)

This is the desired estimate.
Proof of Proposition 10. We shall use (30) to get uniform estimates for hd.
Let r0 > 0 be a fixed large constant. We now know{

J (hd) = O
(
l−5
)
, in (r0, d) ,

hd (d) = 0.

Variation of parameters formula tells us that there are constants c1,d, c2,d and
function ζd, such that

hd (l) = c1,dl
−2 + c2,dl

−3 + ζd. (31)

Here ζd (d) = 0 and

|ζd| ≤ Cl−
5
2 . (32)

From the boundary condition hd (d) = 0, we infer

c1,d + c2,dd
−1 = 0. (33)
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On the other hand, (31) and the estimate |hd (l)| ≤ Cl−2 yield∣∣c1,d + c2,dl
−1
∣∣ ≤ C. (34)

Equations (33) and (34) lead to

|c1,d| ≤ Cd−1, |c2,d| ≤ C. (35)

Proposition 10 then follows from the uniform estimate (32) of ζd, uniform esti-

mate (29) for ϕd = ρη̄ |A|2+ ϕ̄ and the bound (35) . We point out that the main

order term of ϕd is ρη̄ |A|2 which decays like Cl−2, but η̄ satisfies η̄ (0) = 0.

3 Global minimizers from Lawson’s area-minimizing
cones

We have obtained global minimizers from the minimal surfaces asymptotic to
the Simons cone. Now we consider the area-minimizing cone Ci,j . We assume
throughout this section that j ≥ i ≥ 2, and either

i+ j ≥ 9,

or
i+ j = 8, |i− j| < 4.

Let

r =
√

x2
1 + ...+ x2

i , s =
√
x2
i+1 + ...+ x2

i+j .

Put i + j = n. The Jacobi operator of Ci,j , acting on function h (r) defined on
Ci,j which depends only on r, has the form

J (h) =
i− 1

n− 2

[
h′′ +

n− 2

r
h′ +

n− 2

r2
h

]
.

Solutions of the equation J (h) = 0 are given by

c1r
α+

+ c2r
α−

,

where

α± =
− (n− 3)±

√
(n− 3)

2 − 4 (n− 2)

2
.

One could check that for n ≥ 8, we always have

−2 ≤ α+ < −1.

Note that when n = 8, α+ = −2 and α− = −3.
In this section, we prove the following proposition, from which Theorem 1

easily follows.
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Proposition 15 There exists a constant βi,j , with βi,i = 0, such that for each
a ∈ R, we could construct a solution Ua to the Allen-Cahn equation. Use s =
FUk

(r) to denote the nodal set of Ua. Then FUk
has the asymptotic behavior:

FUk
(r) =

√
j − 1

i− 1
r + βi,jr

−1 + arα
+

+ o
(
rα

+
)
.

For notational convenience, let us simply consider the cone C3,5 over the

product of spheres S2
(√

2
6

)
×S4

(√
4
6

)
. The proof for other cases are similar.

Under a choice of the unit normal, the principle curvatures of C3,5 are given by

k1 = 0, k2 = k3 =

√
6

3r
, k4 = k5 = k6 = k7 = −

√
6

6r
.

It is well known that C3,5 is an area-minimizing cone. Actually, it is strict area-
minimizing (see [21]). Then it follows from results of [18] that there is a foliation
of R8 by minimal hypersurfaces. Each minimal hypersurface is asymptotic to
C3,5 at the slower rate Cr−2 predicted by the Jacobi operator. By slightly
abusing the notation, we still use Γ±

λ to denote this foliation. For λ sufficiently
large (say λ ≥ λ0), the construction of Pacard-Wei again gives us a family of
solutions U±

λ whose nodal set is close to Γ±
λ . We want to show that this family

of solutions is ordered. This is the content of the following

Lemma 16 The family of solutions U±
λ is ordered. That is,

U+
λ1

(X) < U+
λ2

(X) , λ1 < λ2.

U−
λ1

(X) < U−
λ2

(X) , λ1 > λ2,

U−
λ0

(X) < U+
λ0

(X) .

Proof. Since this has not been proven in the paper [24](see Proposition 12.1
there), we give a sketch of the proof.

We only consider the family of solutions U+
λ . The case of U−

λ is similar. U+
λ

is obtained from Lyapunov-Schmidt reduction. Adopting the notations of the
previous sections, let (l, t) be the Fermi coordinate with respect to Γ+

λ . Let ν be
the unit normal of Γ+

λ pointing to {(r, s) : r > s} . Let us still set

γt :=
{
X + tν (X) : X ∈ Γ+

λ

}
.

Then in the Fermi coordinate, U+
λ has the form

U+
λ = H (t− h (l)) + ϕ := H̄ + ϕ.

where h is chosen such that ϕ is orthogonal to H̄ ′ in the sense of (10) .
As before, ϕ satisfies

−∆ϕ+
(
3H̄2 − 1

)
ϕ = ∆γtH̄ −MtH̄

′ + o (ϕ) . (36)
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To simplify the notation, we set t̄ = t − h (l) . Let us assume for this moment
that |h| ≤ Cl−1(which actually is true). Let ki,λ be the principle curvatures of
Γ+
λ . We set

Am :=
∑
i

kmi,λ.

Although we do not write this explicitly, keep in mind that Am actually depends
on λ. Recall that

MtH̄
′ =

(
tA2 + t2A3 + t3A4

)
H̄ ′ +O

(
l−5
)

=
(
t̄A2 + t̄2A3 + t̄3A4

)
H̄ ′ + hA2H̄

′ + 2t̄hA3H̄
′ +O

(
l−5
)
.

Inspecting the projection of these terms onto H̄ ′, we find that the main order
term of the projection should be

t̄2A3H̄
′ + hA2H̄

′.

Inspecting each term in (17) carefully and using (16), we get

∆γtH̄ = −Jλ (h) H̄
′ +O

(
h′2)H ′′ (t̄) +

[
O
(
h′′l−1

)
+O

(
h′l−2

)]
t̄H̄ ′.

Let Jλ be the Jacobi operator on Γ+
λ :

Jλ (h) = ∆Γ+
λ
h+A2h.

Inserting the expansion of MtH̄
′ into (36) , we then find that the function ϕ

should satisfy

−∆ϕ+
(
3H̄2 − 1

)
ϕ = ∆γtH̄ −MtH̄

′ + o (ϕ)

= −Jλ (h) H̄
′ +O

(
h′2)H ′′ (t̄) +

[
O
(
h′′l−1

)
+O

(
h′l−2

)]
t̄H̄ ′

−
(
t̄A2 + t̄2A3 + t̄3A4

)
H̄ ′ − 2t̄hA3H̄

′ +O
(
l−5
)
+ o (ϕ) .

Concerning the projection onto H̄ ′, the main order term at the right hand side
should be

−Jλ (h) H̄
′ − t̄2A3H̄

′.

Hence we find that the main order term h0 of h should satisfy the equation

Jλ (h0) = c∗A3,

where

c∗ = −
∫
R t2H ′2dt∫
R H ′2dt

.

Let h̄0 (l) = h0 (λl) . We find that h̄0 should satisfy

J1
(
h̄0

)
= c∗λ2A3 (λl) .

Recall that J1 is the Jacobi operator on the rescaled minimal surface Γ+
1 . Since

the family of minimal foliation is asymptotic to the cone at the slower rate Cl−2,
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we find that J1 has a kernel decays like Cl−2. Then using the invertibility theory
of the Jacobi operator J1(see Lemma 10.1 of [24]), we could find a solution ξ of

J1 (ξ) = c∗λ2A3 (λl) , (37)

satisfying

ξ (l) = c0l
−1 + o

(
l−2
)
and ξ′ (l) = −c0l

−2 + o
(
l−3
)
. (38)

Here c0 is a constant independent of λ. Then the main order of U+
λ will be

H

(
t− 1

λ
ξ

(
l

λ

))
.

We want to prove
∂λU

+
λ > 0, (39)

provided that λ is large enough. To emphasize the dependence on λ, we shall
use (lλ, tλ) to denote the Fermi coordinate with respect to Γ+

λ .
We will first of all prove (39) in a radius K tubular neighbourhood Ξ of Γλ

where K is large enough but fixed. Recall that we use s = f (λ, r) to represent
the minimal surface Γ+

λ . Note that

f (λ, r) = λf
(
1,

r

λ

)
.

Consider the system  lλ + tλ
f ′√
1+f ′2

= r∗,

f − tλ
1√

1+f ′2
= s∗.

where (r∗, s∗) is the (r, s)-coordinate of P, and f ′ = ∂rf (λ, lλ) . Differentiate
this system with respect to λ, we find that

∂λlλ = − tλ∂λf
′ + f ′∂λf

√
1 + f ′2

(1 + f ′2)
3
2 + tλf ′′

, (40)

and

∂λtλ =
∂λf√
1 + f ′2

.

Hence, using the fact that

f (1, r) =
√
2r + r−2 + o

(
r−2
)
,

we get

∂λtλ ≥ C

[
f

(
1,

lλ
λ

)
− lλ

λ
f ′
(
1,

lλ
λ

)]
≥ Cλ2

l2λ
. (41)

Here we have also used the fact that f (1, r)− rf ′ (1, r) ≥ cδ > 0 in [0, δ] , which
follows from the area-minimizing property of Γ+.
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Next we compute

∂λ

(
1

λ
ξ

(
lλ
λ

))
= − 1

λ2
ξ

(
lλ
λ

)
− lλ

λ3
ξ′
(
lλ
λ

)
+

1

λ2
ξ′
(
lλ
λ

)
∂λlλ.

By formula (40) , we have the estimate

|∂λlλ| ≤ C.

Taking into account of the estimate (38), we then obtain∣∣∣∣∂λ( 1

λ
ξ

(
lλ
λ

))∣∣∣∣ ≤ C

l2λ
. (42)

Combining (41) and (42) , we find that

∂λ

{
H

[
tλ − 1

λ
ξ

(
lλ
λ

)]}
≥ Cλ2

l2λ
, (43)

provided λ is large enough.
On the other hand, estimating the error U+

λ −H
[
tλ − 1

λξ
(
lλ
λ

)]
similarly as

the last section of [24], one could show∣∣∣∣∂λ{U+
λ −H

[
tλ − 1

λ
ξ

(
lλ
λ

)]}∣∣∣∣ ≤ Cλ

l2λ
.

This together with (43) clearly yields ∂λU
+
λ > 0 in Ξ. Then we could use the

maximum principle to conclude that ∂λU
+
λ > 0 in the whole space.

Finally, we need to compare U+
λ with U−

λ . Observe that for the main order
term H

(
t− 1

λξ
(
l
λ

))
of U+

λ and U−
λ , the order l−1 terms in ξ are actually same,

which essentially follows from (38) . On the other hand, the lower order terms
in U±

λ could be well controlled. Hence U−
λ < U+

λ . Here we emphasize that the
Fermi coordinate (t, l) are with respect to different minimal hypersurfaces for
U+
λ and U−

λ .
We would like to remark that for a general area-minimizing cone (but not

strict area-minimizing), although the family of Pacard-Wei solutions still exists,
we do not know if it is ordered, because the arguments of Lemma 16 do not
apply in this case.

By Lemma 16, the family of solutions U±
λ forms a foliation. We could use

them as sub and super solutions to obtain solutions between them and we have
similar results as in the Simons cone case. However, in the current situation,
we will show that the nodal set of each solution will be asymptotic to the curve
s =

√
2r +

βi,j

r . Here the constant βi,j = −
√
3c0, where c0 is the constant in

(38).
Now we are ready to prove Proposition 15. We still focus on the case (i, j) =

(3, 5) . Since the main steps are the same as the case of Simons cone, we shall
only sketch the proof and point out the main difference.
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Proof of Proposition 15. Let a > 0 be a fixed real number, the case of a ≤ 0
being similar. Let (l, t) be the Fermi coordinate with respect to the minimal
hypersurface asymptotic to the cone C3,5 with the asymptotic behavior:

s = f (a, r) =
√
2r + ar−2 + o

(
r−2
)
.

We could construct minimizers on a sequence of bounded domains Ωd. Let
Ld be the line orthogonal to the minimal surface at (d, f (a, d)) . On Ld we
impose the Dirichlet boundary condition that

ud = H

(
t− 1

a
ξ

(
l

a

))
+ η (t)A2 on Ld.

in the region where the Fermi coordinate is well defined. Recall that we have
ordered solutions U±

λ of Pacard-Wei. We could assume that the boundary func-
tion is trapped between two solutions U+

λ∗ and U−
λ∗ for some fixed λ∗. Then the

minimizer ud on Ωd will be between U+
λ∗ and U−

λ∗ . We could take the limit for a
subsequence of solutions {ud} obtained in this way, as d → +∞.

We need to get uniform bounds on {ud} .
Define the approximate solution H̄ (t− h) as before and write ud = H̄ + ϕ.

Then we get

−∆ϕ+
(
3H̄2 − 1

)
ϕ = ∆γtH̄ −MtH̄

′ + o (ϕ)

= −J (h) H̄ ′ +H ′′ (t̄)O
(
h′2)+ [O (h′′l−1

)
+O

(
h′l−2

)]
t̄H̄ ′

−
(
t̄A2 + t̄2A3 + t̄3A4

)
H̄ ′ − 2t̄H̄ ′hA3 +O

(
l−5
)
+ o (ϕ) .

Write h (l) as h∗ (l) + 1
aξ
(
l
a

)
, where ξ is the function appearing in (37) . Then

E := ∆H̄ + H̄ − H̄3

= −J (h) H̄ ′ +H ′′ (t̄)O
(
h′2)+ [O (h′′l−1

)
+O

(
h′l−2

)]
t̄H̄ ′

−
(
t̄A2 + t̄2A3 + t̄3A4

)
H̄ ′ − 2t̄H̄ ′hA3 +O

(
l−5
)
.

Inspecting each term in this error, it turns out that the main order terms con-
tributing to the projection of E onto H̄ ′ should be

−J (h∗) H̄ ′ +O
(
l−5
)
.

On the other hand, since u = H̄ + ϕ and ϕ satisfies

−∆ϕ+
(
3H̄2 − 1

)
ϕ = E −

∫
R EH̄ ′dt∫
R H̄ ′2dt

H̄ ′ + o (ϕ) ,

arguing in the same spirit as Proposition 14, we find that

ϕ = η (t̄)A2 + ϕ∗,

with
|ϕ∗| ≤ Cl−3.
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Note that in the proof of Proposition 14, we have shown that the function ϕ̄
there is bounded by Cl−4. But here ϕ∗ only decays like Cl−3. A refined analysis
shows that actually the O

(
r−3
)
term in ϕ∗ could be written as η2 (t̄)A3, where

η2 satisfies

−η′′2 (t) +
(
3H2 − 1

)
η2 (t) = −t2H ′ +

∫
R t2H ′2dt∫
R H ′2dt

H ′.

Then the term
∫
R ∆γtϕ∗H̄ ′dt could be bounded by Cl−5. Now multiplying the

equation
−∆ϕ+

(
3H̄2 − 1

)
ϕ = ∆H̄ + H̄ − H̄3 − 3H̄ϕ2 − ϕ3

by H̄ ′ and integrating in t, one could show that

J (h∗) = O
(
l−5
)
. (44)

With (44) at hand, we could proceed similarly as in Section 2.2 and conclude
the proof. We remark that the constant βi,j comes from the function ξ, which
decays like Cr−1. We know that the appearance of ξ is related to the fact that
when i ̸= j, the term A3 decays like Cr−3. In the case that i = j, A3 is of the
order O

(
r−5
)
, hence βi,i = 0.
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