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Abstract. In this paper, we study De Giorgi type Conjecture on the symme-

try properties of stable solutions to the Lane-Emden equation

∆u + |u|p−1u = 0 in Rn

with n ≥ 11, p ≥ pJL(n) in a suitable range and the Liouville equation

∆u + eu = 0 in Rn

with n = 10.
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1. Introduction

In this paper, we consider the Lane-Emden equation

∆u+ |u|p−1u = 0 in Rn, (1.1)

and the Liouville equation

∆u+ eu = 0 in Rn. (1.2)

The structures of the positive solutions of (1.1) and (1.2) have been studied inten-
sively in the last several years. When n = 3, (1.1) arises in the stellar structure in
astrophysics. When n = 4, (1.1) is relevant to the famous Yang-Mills equations.
When n = 2, (1.2) is an interesting problem in differential geometry and is known
as the “Prescribing Guassian Curvature” problem.

For the equation (1.1), the Sobolev exponent

ps(n) =

{
+∞ if 1 ≤ n ≤ 2,
n+2
n−2 if n ≥ 3

plays a central role in the solvability question. In the subcritical case 1 < p < ps(n),
it was established by Gidas and Spruck in their celebrated work [22] that (1.1) has
no positive solution. If p = (n+2)/(n−2), then (1.1) is a special case of the Yamabe
problem in conformal geometry. In [5], using the asymptotic symmetry technique,
Caffarelli, Gidas and Spruck was able to classify all the positive solutions of (1.1)
for n ≥ 3. They showed that any positive solutions of (1.1) can be written in the
form

ux0,λ(x) =

(
λ
√
n(n− 2)

λ2 + |x− x0|2

)n−2
2

,

where λ > 0 and x0 is some point in Rn. In [7], Chen-Li gave a new proof for (1.1)
by applying the moving plane method. In n = 2, the equation (1.2) is also classified
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in [7] under the additional assumption that∫
R2

eudx <∞. (1.3)

It is proved in [7] that if u is a solution of (1.2) such that (1.3) holds, then

u = ln
32λ2

(4 + λ2|x− x0|2)2

for some λ > 0 and some point x0 ∈ R2.
In the supercritical case p > ps(n), it is more difficult to classify the positive

solutions of (1.1). The first result in this direction was given by Zou in [33]. It
was proved in [33] that if ps(n) < p < ps(n − 1) and if u is a positive solution of
(1.1) with algebraic decay rate 2/(p − 1) at infinity, then u is radially symmetric
about some point x0 ∈ Rn. In [25], Guo generalized Zou’s result to p ≥ ps(n − 1)
by assuming that

lim
|x|→+∞

|x|
2
p−1u(x) ≡ [

2

p− 1
(n− 2− 2

p− 1
)]

1
p−1 . (1.4)

Moreover, it is shown in [25] that (1.4) is a necessary and sufficient condition for a
positive solution of (1.1) to be radially symmetric about some point. If we focus on
radial solutions, then the structure of positive solutions of (1.1) has been completely
classified in [24]. They showed that for any a > 0, (1.1) admits a unique positive
radial solution u = ua(r) with ua(0) = a. Moreover, no two positive radial solutions
of (1.1) can intersect each other when p > pJL(n), where pJL(n) is the exponent
given by

pJL(n) =

{
∞ if 3 ≤ n ≤ 10,
(n−2)2−4n+8

√
n−1

(n−2)(n−10) if n ≥ 11.

The analogous result for second order equation (1.2) is considered in [26]. It is
proved in [26] that if n ≥ 4 and if u ∈ C2(Rn) is an entire solution of (1.2), then u
is radially symmetric about some point x0 ∈ Rn if and only if

lim
|x|→∞

u(x) + 2 ln(|x|)− ln(16) = 0.

Another important topic is the classification of stable solutions. In general, a
solution of the semilinear equation

∆u+ f(u) = 0 in Rn

with f be a Lipschitz function is called stable if∫
Rn
|∇ψ|2dx−

∫
Rn
f ′(u)ψ2dx ≥ 0 ∀ψ ∈ C∞0 (Rn).

One of the most interesting questions concerning stable solutions is the following
De Giorgi’s conjecture.

Conjecture: Let u be a bounded solution of the equation

∆u+ u− u3 = 0 in Rn

such that ∂u
∂xn

> 0. Then the level sets of u are hyperplanes, at least if n ≤ 8.

De Giorgi’s conjecture was proved in dimension n = 2 by Ghoussoub and Gui
in [21]. For n = 3, this is proved by Ambrosio and Cabré in [1]. Savin proved
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in [28] that for 4 ≤ n ≤ 8, the above conjecture is true under the additional limit
condition that

u(x1, ..., xn)→ ±1 as xn → ±∞. (1.5)

For n > 9, a counterexample is constructed by del Pino, Kowalcyzk and the third
author in [12]. The conjecture is still open for dimensions 4 ≤ n ≤ 8 without the
additional assumption (1.5).

For the equation (1.1), there are also come results concerning stable solutions.
In [2], Liouville type results for solutions with finite Morse index was established.
By making a delicate use of the classical Morser iteration method, Farina was able to
classify finite Morse index solutions in his seminal paper [16]. It was proved in [16]
that if u ∈ C2(Rn) is a stable solution of (1.1) with 1 < p < pJL(n), then u ≡ 0.
Moreover, (1.1) admits a smooth positive, bounded, stable and radial solution for
n ≥ 11, p > pJL(n). Actually, it can be showed that the radial solutions considered
in [24] are stable when n ≥ 11, p > pJL(n). The results in [16] also have a lot of
generalizations, we refer to [8], [15], [18], [14], [10], [30]. As for the classification
of the stable solutions of (1.2), it is proved in [17] that for 1 ≤ n ≤ 9, there is no
stable solution u ∈ C2(Rn) of (1.2).

In view of these results, the structures of the stable solutions of (1.1) and (1.2) are
almost completely classified. However, there are some intriguing problems which
are still open. In [6], the authors proposed the following conjecture, which is a
natural extension of De Giorgi type conjecture:

Conjecture: Let n ≥ 11, pJL(n) < p < pJL(n − 1), then all stable solutions to
(1.1) must be radially symmetric around some point.

Remark 1.1. When p > pJL(n − 1), (1.1) has a positive stable solution which
is not radially symmetric. Indeed, let u be a positive radial stable solution of the
equation

∆u+ |u|p−1u = 0 in Rn−1

for p > pJL(n− 1) (see [16]), then u can also be viewed as a stable solution of the
equation

∆u+ |u|p−1u = 0 in Rn.
But it is obvious that this solution is not radially symmetric in Rn.

Our first objective in this paper is to give some partial results toward the above
conjecture. The first result is the following.

Theorem 1.2. Let pJL(n) ≤ p < pcs(n), where pcs(n) is the exponent determined
by (2.48). Let u be a positive stable solution of (1.1) which is also even symmetry
with respect to the planes {xi = 0}, i = 1, 2, · · ·n, then u is radially symmetric with
respect to the origin. If pJL(n) ≤ p < min{pcs(n), psi(n)}, then the above result
holds without the assumption that u is positive.

Remark 1.3. By using MATLAB, we can give some examples for pcs(n).

n pJL(n) pcs(n) pJL(n− 1)
n=12 3.926649916142160 4.122982411949268 6.922024586816338
n=13 2.930691300639456 3.077225865671428 3.926649916142160
n=14 2.434258545910665 2.555971473206198 2.930691300639456
n=15 2.137434755295254 2.244306493060017 2.434258545910665

For the equation (1.2), we have the following result.
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Theorem 1.4. Let u be a smooth stable solution of the equation (1.2) for n = 10,
then u is radially symmetric with respect to some point in Rn.

Remark 1.5. If n ≥ 11, then the equation (1.2) has a smooth stable solution which
is not radially symmetric. For more discussions, we refer to [11].

The rest of the paper will be organized as follows. In section 2, we consider
rigidity results on the unit sphere for some second order equations. Rigidity results
on compact manifolds have been considered by several authors, see for instance
[22], [4], [27], [19], [20], [13]. We point out that in the above papers, the proof of
the rigidity results depends heavily on the classical Bochner formula. In section 3,
we first use a monotonicity formula to study the qualitative properties of solutions.
Then, by combing the rigidity results and the qualitative properties of solutions,
we can verify the assumption of Theorem 1.1 in [25] and obtain the symmetry
properties of stable solutions. In section 4, we give the prove of Theorem 1.4.

Notation. In some situations, we will write a point x ∈ Rn as x = (r, θ), where
(r, θ) is the spherical coordinates and Sn−1 ⊂ Rn is the unit sphere. In the rest of
the paper, c will denote a positive constant which may vary from line to line.

2. A second order equation on the unit sphere

In this section, we consider the equation

∆Sn−1φ− βφ+ |φ|p−1φ = 0, (2.1)

where

β =
2

p− 1
(n− 2− 2

p− 1
)

and ∆Sn−1 is the Laplace-Beltrimi operator on the unit sphere. In the rest of this
section, we will always assume that n ≥ 11.

Lemma 2.1. Let φ ∈ H1(Sn−1) be a weak solution of (2.1) such that∫
Sn−1

|∇Sn−1ψ|2dθ +
(n− 2)2

4

∫
Sn−1

ψ2dθ ≥ p
∫
Sn−1

|φ|p−1ψ2dθ (2.2)

for every ψ ∈ H1(Sn−1), then φ ∈ C2(Sn−1).

Proof. We take ψ = |φ|
γ−1
2 φ into (2.2), where γ is a positive constant which will

be chosen later. Then

p

∫
Sn−1

|φ|p+γdθ ≤ (n− 2)2

4

∫
Sn−1

|φ|γ+1dθ +

∫
Sn−1

|∇Sn−1(|φ|
γ−1
2 φ)|2dθ. (2.3)

Multiplying the both sides of (2.1) by |φ|γ−1φ and integrating over Sn−1, we can
get that∫

Sn−1

∇Sn−1φ · ∇Sn−1(|φ|γ−1φ)dθ + β

∫
Sn−1

|φ|γ+1dθ =

∫
Sn−1

|φ|p+γdθ. (2.4)

(2.4) is equivalent to

4γ

(γ + 1)2

∫
Sn−1

|∇Sn−1(|φ|
γ−1
2 φ)|2dθ + β

∫
Sn−1

|φ|γ+1dθ =

∫
Sn−1

|φ|p+γdθ. (2.5)

By combining (2.3) and (2.5) together, we can obtain that

[p− (γ + 1)2

4γ
]

∫
Sn−1

|φ|p+γdθ ≤ [
(n− 2)2

4
− (γ + 1)2β

4γ
]

∫
Sn−1

|φ|γ+1dθ. (2.6)
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It is easy to check that

p− (γ + 1)2

4γ
> 0

when 1 ≤ γ < 2p+ 2
√
p(p− 1)− 1. By applying Hölder’s inequality, we have

[p− (γ + 1)2

4γ
]

∫
Sn−1

|φ|p+γdθ ≤ c(
∫
Sn−1

|φ|p+γdθ)
γ+1
p+γ . (2.7)

It follows from (2.7) that
∫
Sn−1 |φ|p+γdθ is finite. By formula (5.10) in [16], we know

that there exists a constant γ such that (p + γ)/(p − 1) > (n − 1)/2. Therefore,
|φ|p−1 ∈ Lq(Sn−1) for some q > (n− 1)/2. The standard regularity results in [23]
imply that φ ∈ C2(Sn−1). �

Lemma 2.2. Let pJL(n) ≤ p < pJL(n − 1) and let φ ∈ C2(Sn−1) be a positive
solution of (2.1) such that (2.2) holds, then

‖φ‖L∞(Sn−1) ≤ α(p, n), (2.8)

where α(p, n) is given by

α(p, n) = {
[ (n−2)2γ−(γ+1)2β

4pγ−(γ+1)2 ]
p+γ
p−1 (n− 1)πn−1

2n−2−(p+γ)
}

2
2(p+γ)−(p−1)(n−1) . (2.9)

Proof. Let θ0 ∈ Sn−1 be a point such that φ(θ0) = ‖φ‖L∞(Sn−1) = η. By taking
suitable orthogonal transformation, we may assume that θ0 is the south pole. Let
us introduce the following coordinates on Sn−1,

θ1 = sin ξ sin ξn−2 · · · sin ξ2 sin ξ1,

θ2 = sin ξ sin ξn−2 · · · sin ξ2 cos ξ1,

θ3 = sin ξ sin ξn−2 · · · cos ξ2,

· · · ,
θn−1 = cos ξ,

where ξ ∈ [0, π), ξ1 ∈ [0, 2π), ξk ∈ [0, π) for k = 2, 3, · · ·n−2. The coordinate of the
point θ0 is given by (0, 0, · · · , 0). By (2.1), we know that φ satisfies the equation

1

sinn−2 ξ

d

dξ
(sinn−2 ξ

dφ

dξ
(ξ)) +

1

sin2 ξ
∆Sn−2φ− βφ+ φp = 0, (2.10)

where Sn−2 is the unit sphere in Rn−1 and ∆Sn−2 is the Laplace -Beltrami operator
on Sn−2. We define

φ̂(ξ) =
1

ωn−2

∫
Sn−2

φ(ξ, θ′)dθ′,

where ωn−2 is the area of Sn−2. It follows from (2.10) that φ̂ satisfies

1

sinn−2 ξ

d

dξ
(sinn−2 ξ

dφ̂

dξ
(ξ))− βφ̂+

1

ωn−2

∫
Sn−2

φp(ξ, θ′)dθ′ = 0. (2.11)

By the Jensen’s inequality, we can get that

1

sinn−2 ξ

d

dξ
(sinn−2 ξ

dφ̂

dξ
(ξ))− βφ̂+ φ̂p ≤ 0, in (0, π). (2.12)

Let ξ1 be the first point such that φ̂(ξ1) = η
2 . It follows from (2.12) that φ̂ is strictly

decreasing in (0, ξ1). We will focus on the case ξ1 <
π
2 since the case ξ1 ≥ π

2 can
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be dealt with similarly. Let γ be the constant used in the proof of Lemma 2.1. By
(2.11), we can obtain that

φ̂(ξ1)− φ̂(0) =

∫ ξ1

0

1

sinn−2 ξ

∫ ξ

0

sinn−2 τ [βφ̂(τ)− 1

ωn−2

∫
Sn−2

φp(τ, θ′)dθ′]dτdξ

≥ −ηp
∫ ξ1

0

1

sinn−2 ξ

∫ ξ

0

sinn−2 τdτdξ

≥ −ξ
2
1

2
ηp.

This implies ξ1 ≥ η
1−p
2 . By the above analysis, we can get that∫

{ξ≤ξ1}
φp+γdθ =

∫ ξ1

0

∫
Sn−2

sinn−2 ξφp+γ(ξ, θ′)dθ′dξ

≥ ωn−2

∫ ξ1

0

sinn−2 ξφ̂p+γ(ξ)dξ

≥ ωn−2
2n−2−(p+γ)

(n− 1)πn−2
ηp+γ+

(1−p)(n−1)
2 .

(2.13)

By Lemma 2.1, we know that∫
Sn−1

φp+γdθ ≤ [

(n−2)2

4 − (γ+1)2

4γ β

p− (γ+1)2

4γ

]
p+γ
p−1 ωn−1. (2.14)

We get from (2.13) and (2.14) that

η ≤ {
[

(n−2)2

4 − (γ+1)2

4γ β

p− (γ+1)2

4γ

]
p+γ
p−1 ωn−1(n− 1)πn−2

ωn−22n−2−(p+γ)
}

1

p+γ+
(1−p)(n−1)

2

≤ {
[ (n−2)2γ−(γ+1)2β

4pγ−(γ+1)2 ]
p+γ
p−1 (n− 1)πn−1

2n−2−(p+γ)
}

2
2(p+γ)−(p−1)(n−1) .

(2.15)

Hence (2.8) holds. �

Corollary 2.3. Let n(φ) be the number of the connected components of {φ−β
1
p−1 6=

0} and let k be a positive integer such that k(k + n− 2) + β > p(α(p, n))p−1. If φ
is a positive solution of (2.1) such that (2.2) holds, then n(φ) ≤ k + 1.

Proof. The equation (2.1) can be written as

∆Sn−1φ− β(φ− β
1
p−1 ) + φp − β

p
p−1 = 0. (2.16)

Assume n(φ) > k + 1, then there is a connected component Ω0 of {φ− β
1
p−1 6= 0}

such that the area of Ω0 is less than 1
k+1ωn−1. let 1Ω0

be the function defined by

1Ω0 =

{
1 in Ω0,
0 on Sn−1\Ω0.

Multiplying the both sides of (2.16) by (φ − β
1
p−1 )1Ω0

and using integration by
part, we can get that

−
∫

Ω1

|∇Sn−1φ|2dθ−β
∫

Ω1

(φ−β
1
p−1 )2dθ+

∫
Ω1

(φp−β
p
p−1 )(φ−β

1
p−1 )dθ = 0. (2.17)
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Let λ1(Ω0) be the first eigenvalue of the eigenvalue problem{
∆Sn−1Φ + λΦ = 0 in Ω0,
Φ = 0 on ∂Ω0.

By (2.17) and the mean value theorem, we can get that

[−λ1(Ω0)− β + p(α(p, n))p−1]

∫
Ω1

(φ− β
1
p−1 )2dθ ≥ 0. (2.18)

It follows from (2.18) that

− λ1(Ω0)− β + p(α(p, n))p−1 ≥ 0. (2.19)

Since the area of Ω0 is less than 1
k+1ωn−1, where ωn−1 is the area of the unit sphere

in Rn. By using Schwartz symmetrization, we can get that

λ1(Ω0) ≥ k(k + n− 2). (2.20)

In view of (2.19) , (2.20) and our assumption, we obtain a contradiction. �

In general, it is difficult to refine the above estimate. However, the following
result shows that the main difficulty is that we can not estimate the number of the

connected components of {u− β
1
p−1 > 0}.

Lemma 2.4. Let φ be a positive solution of the equation (2.1), then {φ−β
1
p−1 < 0}

has at most two connected components.

Proof. Let Ω1 be a nodal domain of {φ − β
1
p−1 < 0} and let 1Ω1

be the function
defined by

1Ω1
=

{
1 in Ω1,
0 on Sn−1\Ω1.

Multiplying the both sides of (2.16) by (φ − β
1
p−1 )1Ω1

and using integration by
part, we can get that

−
∫

Ω1

|∇Sn−1φ|2dθ−β
∫

Ω1

(φ−β
1
p−1 )2dθ+

∫
Ω1

(φp−β
p
p−1 )(u−β

1
p−1 )dθ = 0. (2.21)

Let λ1(Ω1) be the first eigenvalue of the eigenvalue problem{
∆Sn−1Φ + λΦ = 0 in Ω1,
Φ = 0 on ∂Ω1.

By (2.21) and the mean value theorem, we can get that

[−λ1(Ω1)− β + pβ]

∫
Ω1

(φ− β
1
p−1 )2dθ ≥ 0. (2.22)

We know from (2.22) that

λ1(Ω1) ≤ (p− 1)β = 2(n− 2− 2

p− 1
) < 2n.

Let Sa be the Schwartz symmetrization of Ω1, then

λ1(Sa) ≤ λ1(Ω1) < 2n.

Since 2n is the third eigenvalue of the operator ∆Sn−1 , we conclude that the area
of Ω1 is bigger than 1

3ωn−1, where ωn−1 is the area of the unit sphere in Rn. By

the above analysis, we can get that {φ − β
1
p−1 < 0} has at most two connected

components. �
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Corollary 2.5. Let φ be a positive solution of (2.1) such that φ depends only on

the variable ξ, then {φ− β
1
p−1 6= 0} has at most five connected components.

Corollary 2.6. Assume φ is a nonconstant positive solution of (2.1) such that φ
depends only on the variable ξ. If we further assume that

φ(ξ) = φ(π − ξ) for ξ ∈ (0,
π

2
),

then the number of connected components of {φ− β
1
p−1 6= 0} equals either 3 or 5.

Remark 2.7. By some numerical computations, we can check that if φ is solution
of (2.1) such that (2.2) and the conditions in Corollary 2.6 hold, then φ should be
a constant solution of (2.1). We will come back to this problem later.

Remark 2.8. We can prove that if φ is a solution of (2.1) depends only on the
variable ξ, then φ does not change sign. The proof of this fact will be given in the
appendix.

Lemma 2.9. Let φ be a positive solution of (2.1) such that∫
Sn−1

φΦidθ = 0 for i = 1, 2, · · · , n, (2.23)

where Φi, i = 1, 2, · · · , n are the linear independent eigenfunctions of the operator
−∆Sn−1 corresponding to the eigenvalue n− 1, then

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 . (2.24)

Proof. We define

φ̃ = φ− φ,
where φ is given by

φ =
1

ωn−1

∫
Sn−1

φdθ.

Then φ̃ satisfies the equation

∆Sn−1 φ̃− βφ+ φp = 0. (2.25)

Multiplying the both sides of (2.25) by φ̃ and using integration by part, we can get
that ∫

Sn−1

|∇Sn−1 φ̃|2dθ + β

∫
Sn−1

φ̃2dθ −
∫
Sn−1

(φp − φp)(φ− φ)dθ = 0. (2.26)

By (2.23) and the definition of φ̃, we know that∫
Sn−1

φ̃dθ = 0,∫
Sn−1

φ̃Φidθ = 0, i = 1, 2 · · · , n.

By (2.26) and the Poincaré’s inequality, we have

2n

∫
Sn−1

φ̃2dθ + β

∫
Sn−1

φ̃2dθ − p‖φ‖p−1
L∞(Sn−1)

∫
Sn−1

φ̃2dθ ≤ 0. (2.27)

If φ̃ 6= 0, then

2n+ β − p‖φ‖p−1
L∞(Sn−1) ≤ 0.
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It follows that

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 , (2.28)

Hence (2.24) holds. �

Lemma 2.10. If φ is a positive solution of (2.1) such that {φ− β
1
p−1 6= 0} has at

least three connected components, then

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 = β(p, n). (2.29)

Proof. The proof is essentially the same as the proof of Corollary 2.3. �

Remark 2.11. We notice that

(p− 1)β = 2(n− 2− 2

p− 1
) < 2n,

then

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 > β

1
p−1 .

Lemma 2.12. Let p be a constant such that pJL(n) < p < pJL(n−1). There exists
a positive constant c such that if φ ∈ C2(Sn−1) is a nonconstant solution of (2.1)
for pJL(n) ≤ p < p, then∫

Sn−1

φ2dθ ≤ c
∫
Sn−1

|∇Sn−1φ|2dθ. (2.30)

Proof. Suppose (2.30) does not hold, then there exists a sequence {φm} such that
φm satisfies

∆Sn−1φm −
2

pm − 1
(n− 2− 2

pm − 1
)φm + |φ|pm−1φm = 0 (2.31)

and ∫
Sn−1

φ2
mdθ ≥ m

∫
Sn−1

|∇Sn−1φm|2dθ. (2.32)

Since −φm is also a solution of (2.31), without loss of generality, we can assume
that

φm(θm) = max
θ∈Sn−1

φm(θ) > 0. (2.33)

It follows from the proof of Lemma 2.1 that
∫
Sn−1 φ

2
mdθ remains bounded. So (2.32)

implies

lim
m→+∞

∫
Sn−1

|∇Sn−1φm|2dθ = 0. (2.34)

By (2.8) and (2.34), we can get that there exist two constants p0 and c0 such that

lim
m→+∞

pm = p0, lim
m→+∞

φm = c0.

Moreover, c0 is a constant solution of (2.1) for p = p0. Therefore,

c0 = 0 or c0 = [
1

p0 − 1
(n− 2− 2

p0 − 1
)]

1
p0−1 .

We get from (2.33) that

∆φm(θm) = (βm − φpm−1
m (θm))φm(θm) ≤ 0. (2.35)
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Therefore,

φm(θm) ≥ (βm)
1

pm−1 . (2.36)

It follows from (2.36) that c0 is not zero. Let

φm = β
1

pm−1
m + ψm,

then limm→+∞ ψm = 0 and ψm satisfies the equation

∆Sn−1ψm + (pm − 1)βmψm + (ψm + β
1

pm−1
m )pm − β

pm
pm−1
m − pmβmψm = 0. (2.37)

It is easy to verify that

(ψm + β
1

pm−1
m )pm − β

pm
pm−1
m − pmβmψm ≤ c‖ψm‖2L∞(Sn−1)

for some positive constant c independent of m. We define

vm =
ψm

‖ψm‖L∞(Sn−1)
,

then vm satisfies

∆Sn−1vm + (pm − 1)βmvm +
(ψm + β

1
pm−1
m )pm − β

pm
pm−1
m − pmβmψm

‖ψm‖L∞(Sn−1)
= 0. (2.38)

Since

‖vm‖L∞(Sn−1) = 1

and

lim
m→+∞

‖ (ψm + β
1

pm−1
m )pm − β

pm
pm−1
m − pmβmψm

‖ψm‖L∞(Sn−1)
‖L∞(Sn−1) = 0.

By standard elliptic estimates, we know that there exists a nontrivial function v∞
such that vm → v∞ in H1(Sn−1). Moreover, v∞ satisfies the equation

∆Sn−1v∞ + (p0 − 1)β0v∞ = 0. (2.39)

Then we deduce that v∞ is a nontrivial eigenfunction of −∆Sn−1 corresponding to
the eigenvalue (p0 − 1)β0. On the other hand, it is easy to see that

(p0 − 1)β0 = 2(n− 2− 2

p0 − 1
) < 2n

and pJL(n) > (n + 1)/(n − 3) when n ≥ 11. Therefore, (p0 − 1)β0 can not be
an eigenvalue of −∆Sn−1 . By combining these two facts together, we obtain a
contradiction. �

Next, we can give some estimates about the constant c in Lemma 2.12.

Proposition 2.13. Let φ be a positive solution of (2.1) such that

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 = β(p, n),

then the constant c in Lemma 2.12 can be estimated by

cs(p, n) =
ωn−1(

(n−2)2

4 −β
p−1 )

2
p−1

ωn−2

4 ( 2
π )n−2(β(p, n)− β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2

. (2.40)
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Proof. Multiplying the both sides of (2.1) by φ and integrating over Sn−1, we can
get that ∫

Sn−1

|∇Sn−1φ|2dθ + β

∫
Sn−1

φ2dθ =

∫
Sn−1

|φ|p+1dθ. (2.41)

We take ψ = φ into (2.2), then∫
Sn−1

|∇Sn−1φ|2dθ +
(n− 2)2

4

∫
Sn−1

φ2dθ ≥ p
∫
Sn−1

|φ|p+1dθ. (2.42)

By (2.41) and (2.42), we can get that∫
Sn−1

φp+1dθ ≤
(n−2)2

4 − β
p− 1

∫
Sn−1

φ2dθ. (2.43)

By the Poincaré’s inequality, we know that∫
Sn−1

φ2dθ ≤ ω
p−1
p+1

n−1(

∫
Sn−1

φp+1dθ)
2
p+1 (2.44)

It follows from (2.43) and (2.44) that∫
Sn−1

φ2dθ ≤ ωn−1(
(n−2)2

4 − β
p− 1

)
2
p−1 . (2.45)

In order to estimate the constant c in Lemma 2.12, we need to give a lower bound
for
∫
Sn−1 |∇Sn−1φ|2dθ. Since we have assumed that

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 = β(p, n),

then there exists a point θ0 such that φ(θ0) = β(p, n). By taking suitable orthogonal
transformation, we may assume that θ0 is the south pole. We use the coordinates
used in the proof of Lemma 2.1. By (2.1), we know that φ satisfies the equation
(2.10). We define

φ̂(ξ) =
1

ωn−2

∫
Sn−2

φ(ξ, θ′)dθ′,

then φ̂ satisfies (2.11) and (2.12). Let ξ1 be the first point such that

φ̂(ξ1) =
β(p, n) + β

1
p−1

2
.

We know from (2.12) that

φ̂(ξ) >
β(p, n) + β

1
p−1

2
in (0, ξ1).

We will assume that ξ1 <
π
2 since the case ξ1 <

π
2 can be dealt with similarly. By

(2.11), we can get that

φ̂(ξ1)− φ̂(0) =

∫ ξ1

0

1

sinn−2 ξ

∫ ξ

0

sinn−2 τ [βφ̂(τ)− 1

ωn−2

∫
Sn−2

φp(τ, θ′)dθ′]dτdξ

≥ −(α(p, n))p
∫ ξ1

0

1

sinn−2 ξ

∫ ξ

0

sinn−2 τdτdξ

≥ −ξ
2
1

2
(α(p, n))p.

We deduce that
ξ1 > (β(p, n)− β

1
p−1 )

1
2 (α(p, n))−

p
2 . (2.46)
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Let

φ =
1

ωn−1

∫
Sn−1

φdθ.

By (2.1) and the Jensen’s inequality, we can get that φ ≤ β
1
p−1 . Therefore,∫

Sn−1

(φ− φ)2dθ

=

∫ π

0

∫
Sn−2

sinn−2 ξ(φ− φ)2dθ′dξ

≥ ωn−2

∫ ξ1

0

sinn−2 ξ(φ̂− φ)2dξ

≥ ωn−2

4(n− 1)
(

2

π
)n−2(β(p, n)− β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2 .

(2.47)

It follows from the Poincaré’s inequality that∫
Sn−1

|∇Sn−1φ|2dθ ≥ ωn−2

4
(

2

π
)n−2(β(p, n)− β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2 .

Therefore,∫
Sn−1 |∇Sn−1φ|2dθ∫

Sn−1 φ2dθ
≥

ωn−1(
(n−2)2

4 −β
p−1 )

2
p−1

ωn−2

4 ( 2
π )n−2(β(p, n)− β

1
p−1 )

n+3
2 (α(p, n))−

p(n−1)
2

.

Hence (2.40) holds. �

Theorem 2.14. Let φ be a positive solution of (2.1) such that (2.2) holds. If φ is
a positive solution of (2.1) such that

‖φ‖L∞(Sn−1) ≥ (
2n+ β

p
)

1
p−1 = β(p, n),

then φ is a constant when pJL(n) ≤ p ≤ pcs(n), where pcs(n) > pJL(n) is the first
number such that

p− 1 = (
(n− 2)2

4
− 2p

p− 1
(n− 2− 2

p− 1
))cs(p, n). (2.48)

Proof. By (2.41) and (2.42), we have

(p− 1)

∫
Sn−1

|∇Sn−1φ|2dθ ≤
∫
Sn−1

(
(n− 2)2

4
− pβ)φ2dθ. (2.49)

Let φ be a nonconstant solution of (2.1) satisfying (2.2), we know from Lemma 2.12
that φ satisfies (2.30). By combining (2.30) and (2.49) together, we can get that

(p− 1)

∫
Sn−1

|∇Sn−1φ|2dθ ≤ (
(n− 2)2

4
− pβ)cs(p, n)

∫
Sn−1

|∇Sn−1φ|2dθ. (2.50)

It follows from (2.50) that ∫
Sn−1

|∇Sn−1φ|2dθ = 0

when pJL(n) ≤ p < pcs(n). Since we have assumed that φ is a nonconstant solution
of (2.1), this is a contradiction. �
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Corollary 2.15. Let φ be a positive solution of (2.1) such that (2.2) holds. If we
further assume that ∫

Sn−1

φΦidθ = 0, i = 1, 2 · · · , n

or {φ− β
1
p−1 } has at least three connected components, then φ is a constant when

pJL(n) ≤ p ≤ pcs(n).

Remark 2.16. It is proved in [9] that if n ≥ 4 and (n+1)/(n−3) < p < pJL(n−1),
then (2.1) has a nonconstant positive solution.

Remark 2.17. By Lemma 1 in [32], we have the following Hardy type inequality,∫
Sn−1

|∇Sn−1φ|2dθ +
(n− 2)2

4

∫
Sn−1

φ2dθ ≥ (n− 3)2

4

∫
Sn−1

φ2

sin2 ξ
dθ. (2.51)

The equation (2.1) has a singular solution which is given by

φ∗(ξ) = [
2

p− 1
(n− 3− 2

p− 1
)]

1
p−1 (sin ξ)−

2
p−1 = β∗(sin ξ)

− 2
p−1 .

Suppose φ∗ satisfies (2.2), then∫
Sn−1

|∇Sn−1φ|2dθ +
(n− 2)2

4

∫
Sn−1

φ2dθ ≥ pβp−1
∗

∫
Sn−1

φ2

sin2 ξ
dθ. (2.52)

If p = pJL(n− 1), then

2p

p− 1
(n− 3− 2

p− 1
) =

(n− 3)2

4
.

Let us define

g(p) =
2p

p− 1
(n− 3− 2

p− 1
),

then

g′(p) =
−2

(p− 1)2
(n− 5− 4

p− 1
).

If p > (n− 1)/(n− 5), then g′(p) < 0. Therefore, the singular solution φ∗ satisfies
(2.2) if p ≥ pJL(n− 1).

3. Qualitative properties of stable solutions

In this section, we consider the qualitative properties of the stable solutions to
the equation (1.1) for n ≥ 11.

Lemma 3.1. Let psi(n) be the exponent determined by

(n− 1)(p− 1) =
(n− 2)2

4
− 2p

p− 1
(n− 2− 2

p− 1
).

Let pJL(n) ≤ p < psi(n) and let φ be a nontrivial solution of (2.1) such that (2.2)
holds, then φ does not change sign.

Proof. We assume that φ change sign. Without loss of generality, we can assume
that there exists a connected component Ω1 of {φ > 0} such that λ1(Ω1) ≥ n− 1,
where λ1(Ω1) is the first eigenvalue of the eigenvalue problem{

∆Sn−1Φ + λΦ = 0 in Ω1,
Φ = 0 on ∂Ω1.
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Multiplying the both sides of (2.1) by φ and integrating over Ω1, we can get that∫
Ω1

|∇Sn−1φ|2dθ + β

∫
Ω1

φ2dθ =

∫
Ω1

|φ|p+1dθ. (3.1)

We take ψ = u1Ω1 into (2.2), where 1Ω1 is the function defined by

1Ω1
=

{
1 in Ω1

0 on Sn−1\Ω1.

Then ∫
Ω1

|∇Sn−1φ|2dθ +
(n− 2)2

4

∫
Ω1

φ2dθ ≥ p
∫

Ω1

|φ|p+1dθ. (3.2)

By (3.1) and (3.2), we know that

(p− 1)

∫
Ω1

|∇Sn−1φ|2dθ ≤ 1

λ1(Ω1)

∫
Ω1

(
(n− 2)2

4
− pβ)|∇Sn−1φ|2dθ. (3.3)

It follows that if pJL(n) ≤ p < psi(n), then φ vanishes identically on Ω1. Since we
have assumed that φ > 0 on Ω1, this is a contradiction. �

Proposition 3.2. Let pJL(n) ≤ p < psi(n) and let u be a stable solution of the
equation (1.1), then u does not change sign.

Proof. We consider the transform

u(r, θ) = r−
2
p−1w(t, θ), t = ln r.

Since u satisfies (1.1), then w(t, θ) is a bounded solution of the equation

∂ttw+(n−2− 4

p− 1
)∂tw+∆Sn−1w− 2

p− 1
(n−2− 2

p− 1
)w+ |w|p−1w = 0. (3.4)

We set

A = n− 2− 4

p− 1
,

B = − 2

p− 1
(n− 2− 2

p− 1
),

E(w) =

∫
Sn−1

1

2
|∇Sn−1w|2 − B

2
w2 − 1

p+ 1
|w|p+1dθ.

(3.5)

By (3.4), we get that

A

∫
Sn−1

(∂tw)2dθ =
d

dt
[E(w)(t)− 1

2

∫
Sn−1

(∂tw)2dθ]. (3.6)

By the estimates in [30], we can get that ∂tw, ∂ttw, |∇Sn−1 | are uniformly bounded.
Integrating (3.6) from −s to s, we find

A

∫ s

−s

∫
Sn−1

(∂tw)2dθdt < c (3.7)

for some constant c independent of s. Let s tend to +∞ in (3.7), then

A

∫ +∞

−∞

∫
Sn−1

(∂tw)2dθdt = 0.

Similar to the proof of Theorem 1.4 in [22], we can obtain that

lim
t→+∞

∫
Sn−1

(∂tw)2dθ = 0. (3.8)
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For any sequence {tk} such that tk →∞ as k →∞, we consider the translation of
w defined by wk(t, θ) = w(t+ tk, θ). Then there exist a subsequence {wlk(t, θ)} and
a function w∞(t, θ) such that wlk(t, θ)→ w∞(t, θ) in C2([−1, 1]× Sn−1). By (3.8)
and the dominated convergence theorem, we know that there exists a function φ(θ)
such that w∞(t, θ) = φ(θ). Moreover, φ is a solution of (2.1) such that (2.2) holds.
If φ = 0, then limt→+∞E(w)(t) = 0. But we also have limt→−∞E(w)(t) = 0 since
u is regular at the origin. It follows easily that w ≡ 0. Since we have assumed that
u is a nontrivial solution, this is a contradiction. Therefore φ is not zero. If φ 6= 0,
we know from remark 2.8 that φ does not change sign. Suppose there exist two
sequences {tk} and {t̃k} such that

lim
k→∞

w(tk, θ) < 0

and
lim
k→∞

w(t̃k, θ) > 0,

then {u 6= 0} has a bounded connected component. Without loss of generality, we
can assume there exists a bounded connected component Ω− such that u < 0 on
Ω−. Then u satisfies the equation{

∆u+ |u|p−1u = 0 in Ω−,
u = 0 on ∂Ω−.

(3.9)

Since u is a stable solution of (1.1), then L = ∆ + p|u|p−1 satisfies the refined
maximum principle (see [3]). Since{

Lu = (p− 1)|u|p−1u ≤ 0 in Ω−,
u = 0 on ∂Ω−,

(3.10)

we get from the refined maximum principle that u ≥ 0 on Ω−. In view of the
definition of Ω−, we get a contradiction. By the above arguments, we know that
there exits a positive constant R0 such that u doesn’t change sign on Rn\BR0

. By
applying the refined maximum principle again, we know that u does not change
sign. �

Similarly, we can prove the following result.

Proposition 3.3. Let pJL(n) < p < pJL(n − 1) and let u be a axially symmetric
stable solution of (1.1), then u does not change sign.

proof of Theorem 1.2. If n ≥ 11 and p ≥ pJL(n), then p > n/(n− 4). By Corollary
2.15, Proposition 3.2, the estimates in [30] and Theorem 4.4 in [25], we can get that

u(x) = r−
2
p−1 ((−B)

1
p−1 + ξ(r) +

ν(r, θ)

r
), (3.11)

where
ξ(r) = r

2
p−1u(r)− (−B)

1
p−1 (3.12)

and

u(r) =
1

ωn−1

∫
Sn−1

u(r, θ)dθ.

Moreover, for any integer τ ≥ 0, we have ν(r, θ) satisfies

ν(r, θ)→ V (θ) as r → 0 (3.13)

uniformly in Cτ (Sn−1), where V equals either zero or a first eigenfunctions of the
operator −∆Sn−1 . Since we have obtained the asymptotic expansion (3.11) which
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is good enough to apply the moving plane method, then the rest of the proof is
essentially the same as the proof of Theorem 1.1 in [33]. �

4. The proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4, the proof is mainly based on
the following observation.

Proposition 4.1. Let n = 10 and let u be a smooth stable solution of the equation
(1.2), then

lim
|x|→∞

u(x) + 2 ln(|x|)− ln(16) = 0. (4.1)

In order to prove Proposition 4.1, we first recall a monotonicity formula.

Lemma 4.2. If u is a solution of the equation (1.2), then

dE

dρ
= ρ2−n

∫
∂Bρ

(
∂u

∂ρ
+

2

ρ
)2dθ, (4.2)

where

E(ρ, u) = ρ2−n
∫
Bρ

(
1

2
|∇u|2 − eu)dx− 2ρ1−n

∫
∂Bρ

(u+ 2 ln(ρ))dθ.

Moreover, if u is a smooth stable solution of (1.1), then

lim
ρ→+∞

E(ρ, u) < +∞. (4.3)

Proof. The proof of (4.2) follows from a scaling argument which is similar to the
proof Proposition 5.1 in [31]. The proof of (4.3) follows easily from the capacity
estimates in [29]. �

With the help of Lemma 4.2, we can give the proof of Proposition 4.1.

proof of Proposition 4.1. The proof of Proposition 4.1 will consist of the following
four steps.

Step 1: Let {λk} be a sequence such that limk→+∞ λk = +∞. For any λk, we
define uλk(x) = u(λkx) + 2 ln(λk). It is easy to check that uλk(x) is also a stable
solution of (1.1). By the capacity estimates (see for instance [29]), we know that
uλk → u∞ for some function u∞ ∈ H1

loc(Rn). Moreover, u∞ is a stable solution of
(1.1).

Step 2: For any 0 < R1 < R2 < +∞, by Lemma 4.2,

lim
k→+∞

E(λkR2; 0, u)− E(λkR1; 0, u) = 0. (4.4)

By the scaling invariance of E, we have

lim
k→+∞

E(R2; 0, uλk)− E(R1; 0, uλk) = 0. (4.5)

We use Lemma 4.2 again, then

0 = lim
k→+∞

E(R2; 0, uλk)− E(R1; 0, uλk)

= lim
k→+∞

∫
BR2
\BR1

|x|2−n(
∂uλk

∂r
+

2

|x|
)2dx

≥
∫
BR2
\BR1

|x|2−n(
∂uλ∞

∂r
+

2

|x|
)2dx.

(4.6)
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Therefore,
2

r
+
∂u∞

∂r
= 0 a.e. in RN . (4.7)

It follows that there exists a function φ ∈ H1(Sn−1) such that u∞ = φ − 2 ln(r).
Moreover, φ satisfies the equation

∆Sn−1φ− 2(n− 2) + eφ = 0. (4.8)

Step 3: For every δ > 0, we choose a function ηδ ∈ C∞0 (( δ2 ,
2
δ )) such that ηδ ≡ 1 in

(δ, 1
δ ), and r|η′δ(r)| ≤ 4. For every ψ ∈ H1(Sn−1), we define ψδ = r−

n−2
2 ψ(θ)ηδ(r).

For every ψ ∈ H1(Sn−1), we define ψδ = r−
n−2
2 ψ(θ)ηδ(r). Since u∞ is stable, we

have ∫
Sn−1

eφψ2dθ

∫ +∞

0

r−1η2
δdr

≤
∫
Sn−1

ψ2dθ

∫ ∞
0

rn−1(η′δr
−n−2

2 − n− 2

2
r−

n
2 ηδ)

2dr

+

∫
Sn−1

|∇Sn−1ψ|2dθ
∫ ∞

0

rn−1(ηδr
−n2 )2dr

Therefore, φ satisfies∫
Sn−1

|∇Sn−1ψ|2dθ +
(n− 2)2

4

∫
Sn−1

ψ2dθ ≥
∫
Sn−1

eφψ2dθ (4.9)

for every ψ ∈ H1(Sn−1).

Step 4: We take ψ = e
φ
2 into (4.9), then

1

4

∫
Sn−1

eφ|∇Sn−1φ|2dθ +
(n− 2)2

4

∫
Sn−1

eφdθ ≥
∫
Sn−1

e2φdθ. (4.10)

Multiplying the both sides of (4.8) by eφ and using integration by part, we have

1

2

∫
Sn−1

eφ|∇Sn−1φ|2dθ + 2(n− 2)

∫
Sn−1

eφdθ =

∫
Sn−1

e2φdθ. (4.11)

If n = 10, then (n− 2)2/4 = 2(n− 2). By (4.10) and (4.11), we can get that∫
Sn−1

eφ|∇Sn−1φ|2dθ ≤ 0. (4.12)

It follows from (4.12) that φ = ln(16) is a constant. Since {λk} can be arbitrary,
we can obtain that proposition 4.1 holds. �

proof of Theorem 1.4. It follows from proposition 4.1 and Theorem 1.3 in [26]. �

Appendix 1: A Liouville type result

In this appendix, we prove the claim in remark 2.8. The proof is based on the
the following result.

Proposition 4.3. Let p ≥ n+1
n−3 and (p − 1)µ ≥ n − 1. If φ is a solution of the

equation{
( 1+|x|2

2 )n−1div(( 2
1+|x|2 )n−3∇φ)− µφ+ |φ|p−1φ = 0 in Br,

φ = 0 on ∂Br,
(4.13)

where Br ⊂ Rn−1 is a ball and 0 < r < 1, then φ = 0.
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Proof. Multiplying the both sides of (4.13) by ( 2
1+|x|2 )n−1φ and using integration

by part, we can get that∫
Br

|∇φ|2(
2

1 + |x|2
)n−3+µ

∫
Br

φ2(
2

1 + |x|2
)n−1 =

∫
Br

|φ|p+1(
2

1 + |x|2
)n−1. (4.14)

Multiplying the both sides of (4.13) by ( 2
1+|x|2 )n−1(x · ∇φ) and using integration

by part, we can get that

h(r)

∫
∂Br

|∇φ|2 =

∫
Br

(
2

1 + |x|2
)n−3∇φ∇(x · ∇φ) + µ

∫
Br

(
2

1 + |x|2
)n−1φ(x · ∇φ)

−
∫
Br

(
2

1 + |x|2
)n−1|φ|p−1φ(x · ∇φ)

=
h(r)

2

∫
∂Br

|∇φ|2 +
3− n

2

∫
Br

(
2

1 + |x|2
)n−3|∇φ|2

− (n− 1)µ

2

∫
Br

(
2

1 + |x|2
)n−1φ2 +

n− 1

p+ 1

∫
Br

(
2

1 + |x|2
)n−1|φ|p+1

− 1

2

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇φ|2 − µ

2

∫
Br

x · ∇(
2

1 + |x|2
)n−1φ2

+
1

p+ 1

∫
Br

x · ∇(
2

1 + |x|2
)n−1|φ|p+1,

where

h(r) = r(
2

1 + r2
)n−3.

It follows that

3− n
2

∫
Br

(
2

1 + |x|2
)n−3|∇φ|2 − (n− 1)µ

2

∫
Br

(
2

1 + |x|2
)n−1φ2

+
n− 1

p+ 1

∫
Br

(
2

1 + |x|2
)n−1|φ|p+1 − 1

2

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇φ|2

− µ

2

∫
Br

x · ∇(
2

1 + |x|2
)n−1φ2 +

1

p+ 1

∫
Br

x · ∇(
2

1 + |x|2
)n−1|φ|p+1

=
h(r)

2

∫
∂Br

|∇φ|2.

(4.15)

Multiplying the both sides of (4.13) by x · ∇( 2
1+|x|2 )n−1φ and using integration by

part, we can get that

0 = −(n− 1)

∫
Br

(
1 + |x|2

2
)n−1div((

2

1 + |x|2
)n−3∇φ)(|x|2(

2

1 + |x|2
)n)

− µ
∫
Br

x · ∇(
2

1 + |x|2
)n−1φ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|φ|p+1

= −(n− 1)

∫
Br

2|x|2

1 + |x|2
φdiv((

2

1 + |x|2
)n−3∇φ)

− µ
∫
Br

x · ∇(
2

1 + |x|2
)n−1φ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|φ|p+1.

(4.16)
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By some computations, we can get that

− (n− 1)

∫
Br

2|x|2

1 + |x|2
φdiv((

2

1 + |x|2
)n−3∇φ)

= (n− 1)

∫
Br

(
2

1 + |x|2
)n−3(∇(

2|x|2

1 + |x|2
φ))∇φ

= −n− 1

n− 3

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇φ|2 +

n− 1

2(n− 2)

∫
Br

∆(
2

1 + |x|2
)n−2φ2,

(4.17)

By (4.16) and (4.17), we have

0 = −n− 1

2

∫
Br

[x · ∇(
2

1 + |x|2
)n−1 + (n− 1)(

2

1 + |x|2
)n−1]φ2

− µ
∫
Br

x · ∇(
2

1 + |x|2
)n−1φ2 +

∫
Br

x · ∇(
2

1 + |x|2
)n−1|φ|p+1

− n− 1

n− 3

∫
Br

x · ∇(
2

1 + |x|2
)n−3|∇φ|2.

(4.18)

We combine (4.14), (4.15) and (4.18) in the following way:

(4.14)× n− 1

p+ 1
+ (4.15)− 1

p+ 1
× (4.18),

then

h(r)

2

∫
∂Br

|∇φ|2 = (
n− 1

p+ 1
− n− 3

2
)

∫
Br

(
2

1 + |x|2
)n−3 1− |x|2

1 + |x|2
|∇φ|2

+
n− 1

2(p+ 1)
(n− 1− (p− 1)µ)

∫
Br

(
2

1 + |x|2
)n−1 1− |x|2

1 + |x|2
φ2.

If p ≥ n+1
n−3 and (p− 1)µ ≥ (n− 1), then the left hand side of the last identity will

become non-positive, therefore, the equation (4.13) has only trivial solution. �

Corollary 4.4. If p ≥ n+1
n−3 and if φ is a nontrivial solution of the equation (2.1)

depends only on the variable ξ, here we use the coordinates in the proof of Lemma
2.2, then φ does not change sign.

Proof. If φ change sign, then there exists 0 < r < 1 such that (4.13) has nontrivial
solution, this is a contradiction. �
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[27] Jean René Licois and Laurent Véron, A class of nonlinear conservative elliptic equations in
cylinders, Ann. Sc. Norm. Super. Pisa Cl Sci., 26 (1998) 249-283.

[28] Ovidiu Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009)
41-78.

[29] Kelei Wang, Partial regularity of stable solutions to the Emden equation, Calc. Var. Partial

Differential Equations, 44 (2012) 601-610.

[30] Kelei Wang, Partial regularity of stable solutions to the supercritical equations and its appli-
cations, Nonlinear Anal., 75 (2012) 5238-5260.



QUALITATIVE PROPERTIES OF STABLE SOLUTIONS 21

[31] Kelei Wang, Stable and finite Morse index solutions of Toda system, J. Differential Equations,

268 (2019) 60-79.

[32] Yingxiong Xiao, Some Hardy inequalities on the sphere, J. Math. Inequal., 10 (2016) 793-805.
[33] Henghui Zou, Symmetry of positive solutions of ∆u+up = 0 in Rn, J. Differential Equations,

120 (1995) 46-88.

Department of Mathematics, University of Science and Technology of China, Hefei,

Anhui Province, P.R. China, 230026
E-mail address: yliumath@ustc.edu.cn

School of Mathematics and Statistics, Wuhan University, Wuhan, P.R. China, 430072
E-mail address: wangkelei@whu.edu.cn

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada,
V6T 1Z2

E-mail address: jcwei@math.ubc.ca

School of Mathematics and Statistics, Xian Jiaotong University, Xian, Shanxi Province,
P.R. China, 710049

E-mail address: wuke@stu.xjtu.edu.cn


	1. Introduction
	2. A second order equation on the unit sphere
	3. Qualitative properties of stable solutions
	4. The proof of Theorem 1.4
	Appendix 1: A Liouville type result
	Acknowledgements
	References

