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Abstract. In this paper, we aim to investigate the following class of singularly perturbed elliptic
problem {

−ε2∆u+ |x|ηu = |x|ηf(u) in A,
u = 0 on ∂A,

where ε > 0, η ∈ R, A = {x ∈ R2N : 0 < a < |x| < b}, N ≥ 2 and f is a nonlinearity of C1 class
with supercritical growth. By a reduction argument, we show that there exists a nodal solution uε
with exactly two positive and two negative peaks, which concentrate on two different orthogonal
spheres of dimension N−1 as ε→ 0. In particular, we establish different concentration phenomena
of four peaks when the parameter η > 2, η = 2 and η < 2.
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1. Introduction

We study the following singularly perturbed elliptic equation with superlinear nonlinearity in
an annulus in R2N (N ≥ 2)

(1.1)
{
−ε2∆u+ |x|ηu = |x|ηf(u) in A,
u = 0 on ∂A,

where ε > 0, η ∈ R, f is of C1-class and supercritical at infinity, and A = {x ∈ R2N : 0 < a <
|x| < b}. There has been plenty of results with respect to solutions with point concentration in
bounded domains. Based on an energy expansion, Ni and Takagi [32] investigated the existence of
positive solutions to the following problem with homogeneous Neumann boundary conditions and
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subcritical nonlinearity

(1.2) − ε2∆u+ u = f(u) in Ω ⊂ RN ,

and showed that any least energy solution has at most one local maximum, which lies on the
boundary for sufficiently small ε. Ni and Wei [33] considered problem (1.2) with homogeneous
Dirichlet boundary conditions and demonstrated that any least energy solution has at most one
local maximal point, which concentrates around the point which stays with the maximal distance
from the boundary. Dancer and Yan [17] studied (1.2) for f(s) = |s|p−1s, p ∈

(
1, N+2

N−2

)
if N ≥ 3,

p > 1 if N = 2. By using the Lyapunov-Schmidt reduction, the authors proved the existence of
positive multi-peak solutions under the homogeneous Dirichlet boundary condition in a general
domain Ω with nontrivial topology. For the further related results, we refer to [6,14,19,21,23] and
the reference therein.

In [35], Noussair and Wei studied problem (1.2) with the homogeneous Dirichlet boundary
condition and f(s) = |s|p−1s, p ∈

(
1, N+2

N−2

)
if N ≥ 3, p > 1 if N = 2. They obtained the existence

of a least energy nodal solution and showed that the nodal solution has exactly one positive and
one negative peaks converging to two distinct points P 1, P 2 of Ω as ε→ 0, respectively. D’Aprile
and Pistoia [24] considered problem (1.2) with the homogeneous Dirichlet boundary condition and
established the existence of nodal solutions with multiple peaks concentrating at different points
Ω. We also see [1, 4, 5, 8, 18,42,43,45] and the reference therein.

Ambrosetti, Malchiodi and Ni [2, 3] considered another type of concentrating solutions which
concentrate on lower dimensional manifolds. They were concerned with the problem

(1.3)
{
−ε2∆u+ V (r)u = f(u) in B,
u = 0 on ∂B,

in an annulus B = {x ∈ RN : 0 < a < |x| < b}, where V is a smooth radial potential and
bounded below by a positive constant. By introducing a modified potential M(r) = rN−1V %, with
% = p+1

p−1 −
1
2 and M ′(b) < 0 (respectively M ′(a) > 0), they proved there exists a family of radial

positive solutions which concentrate on the sphere |x| = rε with rε → b (respectively rε → a) as
ε → 0. They also conjectured in [2] that for N ≥ 3, there also exist solutions concentrating to
some manifolds of dimension 1 ≤ k ≤ N − 2. Concentration of positive solutions on curves was
considered by del Pino, Kowalczyk and Wei [22]. It was mentioned in [34] that such solutions are of
particular interest for applications to models of activator-inhibitor systems in biology. For related
results about concentrating on higher dimensional manifolds, we can also refer to [10, 11, 27, 28]
and the references therein.

By virtue of a Hopf-fibration approach, Ruf and Srikanth [37] considered problem (1.1) with
η = 0, f(s) = |s|p−1s (pmaybe supercritical) in R4. They transformed the problem in an annulus in
R4 to a three-dimensional one, which can be allowed to get solutions with single point concentration
similarly to the well-known results by Ni-Wei [33] and del Pino-Felmer [21]. Inverting the Hopf
reduction, they obtained solutions concentrating on S1-orbits in R4 which tend to the inner
boundary of A as ε → 0+. Later, Pacella and Srikanth in [36] used a reduction approach to
consider (1.1) with η = 0, f(s) = |s|p−1s, 1 < p < N+3

N−1 and proved the existence of positive and
sign-changing solutions concentrating on one or two (m− 1) dimensional spheres. As pointed out
in [37], it seems impossible to extend the results in [37] to odd dimensional cases. Actually, only
even dimensional cases are considered in [36, 38, 39]. In [40], Santra and Wei first used the Hopf
fibration to study problem (1.2) with the homogeneous Dirichlet or Neumann boundary condition
in an annulus A for any N ≥ 2. Actually, they reduced the problem to one in R2, which yields that
the nonlinearity is allowed to be polynomial growth of arbitrary order. Moreover, the solutions
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concentrate on the inner boundary and outer boundary of A under the Dirichlet and Neumann
boundary conditions, respectively. Via a Hopf reduction, Manna and Srikanth [29] considered the
least energy solution of (1.1) with f(s) = |s|p−1s , 1 < p < N+3

N−1 and showed the existence of
positive solutions with two peaks concentrating along two spheres which are orthogonal to each
other. For related concentrating works, we can see [15,30,39,41,46] and the references therein.

Recently, Clapp and Manna [16] studied the problem

−ε2∆v + v = |v|p−2v in Ω, v = 0 on ∂Ω,

in domains of the form

Ω :=
{

(y1, y2) ∈ Rn−1 × Rm+1 : (y1, |y2|) ∈ Θ
}
,

where m ≥ 1, n ≥ 3 and Θ is a bounded smooth domain in Rn with Θ̄ ⊂ Rn−1 × (0,∞) and
p ∈

(
2, 2n

n−2

)
. For particular choices of Θ, the authors established the existence of single-layered

and double-layered sign-changing solutions, which concentrate on spheres that converge to a single
m-dimensional sphere contained in ∂Ω. As mentioned in [16], the existence of sign-changing
multi-peak solutions with more than two peaks is largely open. The aim of this paper is
to exhibit some new concentration phenomena for sign-changing solutions of problem (1.1).

We state the following conditions for f ∈ C1(R,R).

(f1) f(t) = o(t) as t→ 0, f(t) = o(tp−1) for p ∈
(
2, 2N+2

N−1

)
as t→∞, and f is odd.

(f2) There exists µ > 1 such that t2f ′(t) ≥ µf(t)t > 0 for t 6= 0.

Remark 1.1. By virtue of (f1) and (f2), we can conclude that

tf(t) ≥ (1 + µ)F (t) > 0, t 6= 0, F (t) =
∫ t

0
f(s)ds,

which is called as the well-known Ambresstti-Rabnowitz condition. Moreover, by (f2) we also
conclude that

t 7→ f(t)
t

is strictly increasing for t > 0,

which plays an essential role in proving the existence of ground state solutions by using Nehari
manifold arguments.

To state the next condition, we consider the following problem in the whole space

(1.4)
{
−∆u+ u = f(u) in RN+1,
u > 0, in RN+1,

whose energy functional J(u) : H1(RN+1) 7→ R is given by

J(u) = 1
2

∫
RN+1

|∇u|2 + 1
2

∫
RN+1

u2dx−
∫
RN+1

F (u)dx.

Now we state condition (f3) as follows.
(f3) Problem (1.4) admits a unique positive solution U(x) = U(|x|) (see [31]) such that

(1.5) |DαU(x)| ≤ C1 exp(−σ|x|), x ∈ RN+1, for someC1, σ > 0 and all |α| ≤ 2.

Let us consider A under the coordinate system

A = I1 × (I2 × SN−1 × SN−1),
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where I1 = (a, b), I2 = [0, π/2) and SN−1 has the standard polar coordinate expression. For any
x ∈ A, we write

x = x(r, θ, θ1
1, θ

1
2, · · ·, θ1

m−1, θ
2
1, θ

2
2, · · ·, θ2

m−1),
where r ∈ I1 and θ ∈ I2, θi1 ∈ [0, 2π) for i = 1, 2, θij ∈ [0, π) for i = 1, 2 and j = 2, ...,m − 1. We
now state our main results.

Theorem 1.2. Assume (f1)-(f3) hold, then problem (1.1) has a nonradial nodal solution uε with
exactly two positive and two negative peaks, which concentrate on two orthogonal spheres with
dimension of N − 1, placed by the angle θ = 0, θ = π

2 , belonging to the inner boundary |x| = a if
η > 2, and belonging to the outer boundary |x| = b if η < 2.

Theorem 1.3. Assume (f1)-(f3) hold, then problem (1.1) with η = 2 has a nonradial nodal
solution uε with exactly two positive and two negative peaks. More precisely, two positive peaks
concentrate on two orthogonal spheres with dimension N − 1, placed by the angle θ = 0, θ = π

2 ,
which are contained in the surface |x| = 1

2
√

3a2 + b2 ( or |x| = 1
2
√
a2 + 3b2), and two negative peaks

also concentrate on two orthogonal spheres with dimension N−1, placed by the angle θ = 0, θ = π
2 ,

which are contained in the surface |x| = 1
2
√
a2 + 3b2 ( or |x| = 1

2
√

3a2 + b2).

We emphasize that in [12], Bartsch, D’Aprile and Pistoia investigated an almost critical problem
with domain satisfying some certain symmetry and used a Lyapunov-Schmidt reduction scheme to
construct a four-bubble nodal solution with two positive and two negative bubbles. See also [13].
The authors in [20] also studied an almost critical problem in a ball and obtained the radial nodal
solutions with many bubbles concentrating at the center of the ball as ε→ 0+. Different from the
above works, in this paper we are concerned with the supercritical case. The proof is mainly based
on a Hopf-fibration reduction, energy estimates, blow-up argument, Morse index techniques and
the Nehari manifold approach. Moreover, the precise locations of concentration are also considered.

Hereafter, the letter C will be repeatedly used to denote various positive constants whose exact
values are irrelevant. This paper is organized as follows. Some notations and preliminary results
are given in Section 2. Section 3 is devoted to the energy estimates of nodal solutions. In Section
4, we prove Theorem 1.2 and investigate the inner and outer boundary concentration. Section 5
is devoted to the proof of Theorem 1.3 and the concentration on the interior of the annulus A is
studied.

2. Preliminary results

Consider R2N as the product of two copies of RN , that is, R2N = RN × RN , and so we can
denote a point x ∈ R2N by x = (y1, y2), yi ∈ RN , i = 1, 2. Let us take in RN spherical coordinates

(ρ1, θ
1
1, ..., θ

1
N−1), (ρ2, θ

2
1, ..., θ

2
N−1),

where ρ1 = |y1| and ρ2 = |y2| and θi1 ∈ [0, 2π], θij ∈ [0, π] for j = 2, ..., N − 1; i = 1, 2.

Remark 2.1. For z = (z1, ..., zN ) ∈ RN , we consider the spherical coordinate (ρ, θ1, ..., θN−1),
θi ∈ [0, π], i = 1, ..., N − 2, θN−1 ∈ [0, 2π], ρ = |z|, then

(2.1)


z1 = ρsinθ1...sinθN−1,
z2 = ρsinθ1...sinθN−2cosθN−1,
· · · · ··
zN−1 = ρsinθ1cosθ2,
zN = ρcosθ1.
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Furthermore, let us define

ρ1 = rcosθ, ρ2 = rsinθ, r = |x|, θ ∈ [0, π2 ],

then for each a point x ∈ A, we have the following expression of coordinate
x = (r, θ1

1, ..., θ
1
N−1, θ

2
1, ..., θ

2
N−1, θ).

Note that function u ∈ H1
0 (A) depends only on r and θ, that is, u = u(r, θ), and u is invariant

under rotations in y1, y2. Thus,
u ∈ X := {u ∈ H1

0 (A) : u(x) = u(|y1|, |y2|)}.
Actually, the expression of the Laplacian in these coordinates is given as

∆R2Nu = urr + 2N − 1
r

ur + N − 1
r2 uθ[

cosθ

sinθ
− sinθ

cosθ
] + uθθ

r2 .

Let us define the new variables
ρ = 1

2r
2 ϕ = 2θ

and the function v(ρ, ϕ) = u(r(ρ), θ(ϕ)) = u(
√

2ρ, ϕ2 ). Then we have

ur =
√

2ρvρ, urr = 2ρvρρ + vρ, uθ = 2vϕ, uθθ = 4vϕϕ.

By defining ε2 = 21− η2 ε2, we have v satisfies

−ε2
[
vss + N

s
vs + N − 1

s2 vϕ
cosϕ

sinϕ
+ vϕϕ

s2

]
+ v

s1− η2
= f(v)
s1− η2

, s ∈ (a
2

2 ,
b2

2 ), ϕ ∈ [0, π].

So we have the reduced equation for v as

(2.2)

 −ε2∆v + v

|x|α
= f(v)
|x|α

in Ω,

v = 0 on ∂Ω,

where α = 1 − η
2 , Ω = {x ∈ RN+1∣∣ a2

2 < |x| < b2

2 }. Obviously, v is axially symmetric. Define
H](Ω) ⊂ H1

0 (Ω) by
H](Ω) = {u ∈ H1

0 (Ω) : u(x′, xN+1) = u(|x′|, |xN+1|)}.
Observe that any nodal solution in H](Ω) is axially symmetric and shall have at leat two local
maximums or minimums. It is easy to see that H](Ω) is a closed subspace of H1

0 (Ω) and
H1

0,rad(Ω) ⊂ H](Ω). The energy functional Jε associated with (2.2) is defined as

Jε(u) := ε2

2

∫
Ω
|∇u|2 + 1

2

∫
Ω

u2

|x|α
dx−

∫
Ω

F (u)
|x|α

dx, ∀u ∈ H](Ω),

and is of class C1. The following remark implies that we can directly look for sign-changing critical
points of Jε at H](Ω).

Remark 2.2. Let us define group G := O(N) × Z2 and the action of a topological group G on a
normed space H1

0 (Ω) by a continuous map
G×H1

0 (Ω)→ H1
0 (Ω) : g · u→ gu, ∀g ∈ G

such that
1 · u = u (gh)u = g(hu), ∀g, h ∈ G

and
u 7→ gu is linear, ‖gu‖H1

0 (Ω) = ‖u‖H1
0 (Ω), ∀g ∈ G, andu ∈ H1

0 (Ω).
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Then we define space of invariant points as follows
Fix(G) := {u ∈ H1

0 (Ω) : gu = u, ∀g ∈ G}.
It is easy to check from the definition of H](Ω) that Fix(G) = H](Ω). Hence, by the well-known
principle of symmetric criticality developed by Palais (see [44]), we have if u is a critical point of
Jε restricted to Fix(G) then u is a critical point of Jε at H1

0 (Ω).

For d ∈ (a2

2 ,
b2

2 ), let W (x) = U( x
dα/2

) with U ∈ H1(RN+1) defined in (f3), it follows from (1.4)
that W will satisfy

(2.3)

 −∆u+ u

dα
= f(u)

dα
in RN+1,

u > 0, lim
|x|→∞

u(x) = 0 in RN+1.

Define the Nehari set in H](Ω) corresponding to Jε as follows
Nε := {u ∈ H](Ω) : u± 6≡ 0, J ′ε(u±)u± = 0},

where u± denote the positive and negative part of u, respectively. We will prove the existence of
the least energy nodal solutions to equation (2.2) by using deformation technique for Jε restricted
at Nehari set Nε. We can see [9, 35] for the similar results.

Theorem 2.3. The following conclusions hold:
(i) For any u, v ≥ 0 belonging to H](Ω) \ {0} and uv ≡ 0, there exist exactly two constants

t > 0 and s > 0 such that tu− sv ∈ Nε.
(ii) For fixed ε > 0, equation (2.2) has a sign-changing solution uε ∈ H](Ω) such that

cε := Jε(uε) = infu∈Nε Jε(u).

Proof For any nonnegative functions u, v ∈ H](Ω) \ {0}, by (f1) and (f2), there exist exactly
two constants t, s > 0 such that J ′ε(tu)tu = 0 and J ′ε(sv)sv = 0, respectively. If the supports of u
and v are disjoint, then tu− sv ∈ Nε.
It remains to prove (ii). It is easy to see from (f2) that Jε is coercive and bounded from below on
Nε. Thus, there exists a minimizing sequence {un} ⊂ Nε such that Jε(un) → cε as n → ∞. It is
easy to obtain from (f2) that {un} is bounded in H](Ω). Up to subsequence, we may assume that

un ⇀ uε weakly in H](Ω),

un → uε strongly in Lp(Ω) for p ∈ (2, 2N + 2
N − 1 ).

From (f1)-(f3) we deduce that
∫
Ω |u±n |pdx ≥ C for some C > 0, and so

∫
Ω |u±ε |pdx ≥ C. Since

J ′ε(u+
n )u+

n = 0, by the weak lower semi-continuity, there exists a unique t ∈ (0, 1] such that
J ′ε(tu+

ε )tu+
ε = 0. Similarly, there also exists a unique s ∈ (0, 1] such that J ′ε(su−ε )su−ε = 0. Hence,

tu+
ε + su−ε ∈ Nε. Based on the definition of cε, by (f2) we have

cε ≤ Jε(tu+
ε + su−ε ) = Jε(tu+

ε ) + Jε(su−ε )

= µ− 2
2µ

[
t2
∫

Ω
(|∇u+

ε |2 + |u+
ε |2)dx+ s2

∫
Ω

(|∇u−ε |2 + |u−ε |2)dx
]

≤ µ− 2
2µ

[ ∫
Ω

(|∇u+
ε |2 + |u+

ε |2)dx+
∫

Ω
(|∇u−ε |2 + |u−ε |2)dx

]
≤ µ− 2

2µ lim inf
n→∞

[ ∫
Ω

(|∇un|2 + |un|2)dx
]

= cε,
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which implies that t = s = 1. That is to say, uε ∈ Nε and Jε(uε) = cε. It suffices to prove
J ′ε(uε)ϕ = 0 for any ϕ ∈ C∞0 (Ω). Assume by contradiction that J ′ε(uε) 6= 0, then by the continuity
of J ′ε, there exists δ > 0 and c > 0 such that ‖J ′ε(v)‖ ≥ c if ‖v−uε‖ ≤ 3δ. DefineD := (1

2 ,
3
2)×(1

2 ,
3
2)

and l(s, t) = su+
ε + tu−ε for (s, t) ∈ D. Note that, by (f2), we have for (t, s) 6= (1, 1)

(2.4) Jε(su+
ε + tu−ε ) = Jε(su+

ε ) + Jε(tu−ε ) < Jε(u+
ε ) + Jε(u−ε ) = cε,

which yields that
c̄ := max

(t,s)∈∂D
Jε ◦ l(s, t) < cε.

Let us set ν := min{ cε−c̄2 , cδ8 } and denote B(uε, δ) by the ball in H](Ω) of radius δ centered at uε.
Arguing as Lemma 2.3 in [44], we obtain a deformation γ satisfying

(a) γ(1, u) = u if u 6∈ J−1
ε ([cε − 2ν, cε + 2ν]),

(b) γ(1, Jcε+νε ∩B(uε, δ)) ⊂ Jcε−νε ,
(c) Jε(γ(1, u)) ≤ Jε(u) for all u ∈ H](Ω).

Based on the above facts, we have immediately
(2.5) max

(t,s)∈D̄
Jε(γ(1, l(t, s))) < cε.

Let us define g(s, t) := γ(1, l(s, t)) and

G0(s, t) :=
(
J ′ε(tu+

ε )u+
ε , J

′
ε(su−ε )u−ε

)
,

G1(s, t) :=
(1
t
J ′ε(g+(s, t))g+(s, t), 1

s
J ′ε(g−(s, t))g−(s, t)

)
.

Since uε ∈ Nε, by (f1) and (f2), we have deg(G0, D,0) = 1. By virtue of the definition of
c̄ and conclusion (a), we have g ≡ l on ∂D. And so, we immediately obtain deg(G1, D,0) =
deg(G0, D,0) = 1, It yields G1(s, t) = 0 for some (s, t) ∈ D. So, g(s, t) := γ(1, l(s, t)) ∈ Nε which
yields a contradiction by combining (2.5) and the definition of cε. The proof is complete. �

In order to prove that sign-changing solution uε ∈ H](Ω) of equation (2.2) in Theorem 2.3
is a nonradial symmetric solution, we need to estimate the Morse index with respect to energy
functional Jε which is defined at H](Ω). Consider the Hilbert space H := H](Ω)∩H2(Ω), which is
endowed with the scalar product from H2(Ω). Denote by ‖·‖H the induced norm. Define functions

Υ± : H → R, Υ±(u) :=
∫

Ω
|∇u±|2dx =

∫
Ω
∇u · ∇u±dx,

Ψ± : H → R, Ψ±(u) :=
∫

Ω

1
|x|α

(−u+ f(u))u±dx.

We recall some results in [7] where some properties of the above functionals were obtained at space
H1

0 (Ω) ∩H2(Ω). The same proof is valid for the following Lemma.

Lemma 2.4. The following conclusions hold:
(i) Υ± ∈ C1(H) with derivative Υ′±(u) ∈ H−1

] (Ω) given by

Υ′±(u)v :=
∫
±u>0

((−∆u)v +∇u∇v)dx.

(ii) Ψ± ∈ C1(H) with derivative given by

Ψ′±(u)v :=
∫

Ω

1
|x|α

[(−1 + f ′(u±))u±v + (−u± + f(u±))v]dx.
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(iii) The set Nε ∩H is a C1-manifold of codimension 2 in H.
(iv) m(uε)=2, where uε is a sign changing solution obtained in Theorem 2.3 and m(u) denotes

the Morse index of critical point u of Jε at H](Ω).

Lemma 2.5. Nodal solution uε ∈ H](Ω) of equation (2.2) is nonradial.

Proof Let u ∈ H0,rad(Ω) be a radial nodal solution of (2.2). Then by the elliptic regularity
estimates, we have u ∈ H. Using conclusions (i) and (ii) of Lemma 2.4 and (f2), a direct
computation yields

(2.6)
J ′′ε (u)(u±, u±) =

∫
Ω
ε2|∇u±|2dx+

∫
Ω

(u±)2 − f ′(u±)(u±)2

|x|2
dx

≤ −(µ− 1)
∫

Ω

f(u±)u±

|x|2
dx < 0.

On the other hand, it follows form Lemma 2.2 in [29] that we can construct a v ∈ H](Ω) by
taking v(r, ϕ) = u(r)(c+ cos(2ϕ)) for ϕ ∈ [0, π], where the co-ordinate system of Ω is taken as the
standard polar co-ordinate system and c is chosen so that u and v are orthogonal in L2(Ω). That
is to say, ∫ b2/2

a2/2

∫ π

0
u2(r)(c+ cos(2ϕ))rNsinN−1ϕdrdϕ = 0.

4v takes in the standard polar coordinate system the form

∆v = vrr + N

r
vr + 1

r2 vϕϕ + N − 1
r2

cosϕ

sinϕ
vϕ,

and then

−ε2∆v + 1
|x|α

(1− f ′(u))v

= 1
|x|α

(f(u)− f ′(u)u)(c+ cos2ϕ) + 4ε2

r2 u cos2ϕ+ 4(N − 1)ε2

r2 u cos2ϕ.

By making the change of variables and integrating by parts, we have

(2.7)

J ′′ε (u)(v, v) =
∫

Ω

1
rα

[f(u)u− f ′(u)u2](c+ cos2ϕ)2dx+
∫

Ω

4ε2

r2 u
2cos2ϕ(c+ cos2ϕ)dx

+
∫

Ω

4(N − 1)ε2

r2 u2cos2ϕ(c+ cos2ϕ)dx

=C1

∫ b2/2

a2/2
[f(u)u− f ′(u)u2]rN−αdr + 4ε2C2

∫ b2/2

a2/2
rN−2u2dr

+ 4(N − 1)ε2C3

∫ b2/2

a2/2
rN−2u2dr
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for some C1, C2, C3 > 0 independently of ε. Take C4 = (a2/2)α−2 if α < 2; C4 = 1 if α = 2 and
C4 = (b2/2)α−2 if α > 2. Then by (2.7) and (f2), we have

J ′′ε (u)(v, v) ≤ C1

∫ b2/2

a2/2
[f(u)u− f ′(u)u2]rN−αdr + 4ε2[C2 + (N − 1)C3]C4

∫ b2/2

a2/2
rN−αu2dr

≤ C1

∫ b2/2

a2/2
(1− µ)f(u)urN−αdr + 4ε2[C2 + (N − 1)C3]C4

∫ b2/2

a2/2
rN−αu2dr

≤ C1(µ− 1)
∫ b2/2

a2/2
[u2 − f(u)u]rN−αdr

= −C(µ− 1)ε2
∫

Ω
|∇u|2dx < 0

for C > 0 independently of ε, where the third inequality we choose ε small enough so that
4ε2[C2 + (N − 1)C3]C4 < C1(µ− 1).

We now prove that {u+, u−, v} ⊂ H](Ω) are linearly independent vectors. If v and u+ are linearly
dependent, then v = ku+ for k ∈ R. Clearly, k 6= 0. According to u and v being orthogonal, we
have ∫

Ω
uvdx =

∫
Ω
kuu+dx = k

∫
Ω
|u+|2dx > 0.

It is a contradiction. Similarly, we can obtain v, u− are linearly independent. Hence, we see that
the Morse index of any radial nodal solution u is greater or equal to 3. Recalling Lemma 2.4 (iv),
we deduce that uε ∈ H](Ω) is nonradial. The proof is complete. �

3. The energy estimates

We now state an upper estimate for energy cε defined in Theorem 2.3.

Lemma 3.1. For small ε > 0, there exist d1, d2 > 0 such that

cε ≤ 2εN+1[(d(N−1)α2
1 + d

(N−1)α2
2 )J(U) +O(ε)],

where U ∈ H1(RN+1) is the unique positive solution of equation (1.4).

Proof Define
Aε(x) = φ(x− P

d
α/2
1

)W1(x− P
ε

) + φ(x+ P

d
α/2
1

)W1(x+ P

ε
),

Bε(x) = φ(x−Q
d
α/2
2

)W2(x−Q
ε

) + φ(x+Q

d
α/2
2

)W2(x+Q

ε
),

where P = (0, d1) and Q = (0, d2) for some d1, d2 > 0 and d1 6= d2, and φ is a non-negative smooth
radial function supported in B2γ(0) with |∇φ| ≤ 2

γ and

φ(r) =
{

1 for r ∈ [0, γ],
0, for r ∈ [2γ,+∞),

where γ is chosen so that

max
{

2γd
α
2
1 , 2γd

α
2
2

}
< min{dist(P, ∂Ω), dist(Q, ∂Ω)), |d1 − d2|

2 }.

Note that W1 and W2 are least energy positive solutions of equation (2.3) with d = d1 and
d = d2, respectively. Clearly, Aε,Bε ∈ H](Ω). Observe that the supports of φ(x−P

d
α/2
1

)W1(x−Pε ),
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φ(x−P
d
α/2
1

)W1(x+P
ε ), φ(x−Q

d
α/2
2

)W2(x−Qε ) and φ(x+Q
d
α/2
2

)W2(x+Q
ε ) are disjoint each other for small ε. Based

on the definition of Nε, there exist exactly two constants tε, sε > 0 such that

(3.1) Cε := tεAε − sεBε ∈ Nε,

whose energy is given as follows

Jε(Cε) = ε2

2

∫
Ω
|∇Cε|2dx+ 1

2

∫
Ω

|Cε|2

|x|α
dx−

∫
Ω

F (Cε)
|x|α

dx.

According to (3.1), one has
(3.2)

ε1−N

2

∫
Ω
|∇Cε|2dx

=ε1−N t2ε
2

∫
Ω
|∇Aε|2dx+ ε1−Ns2

ε

2

∫
Ω
|∇Bε|2dx

=ε1−N t2ε
2

∫
Ω

∣∣∣∣∇(φ(x− P
d
α/2
1

)W1(x− P
ε

)
)∣∣∣∣2dx+ ε1−N t2ε

2

∫
Ω

∣∣∣∣∇(φ(x+ P

d
α/2
1

)W1(x+ P

ε
)
)∣∣∣∣2dx

+ ε1−Ns2
ε

2

∫
Ω

∣∣∣∣∇(φ(x−Q
d
α/2
2

)W2(x−Q
ε

)
)∣∣∣∣2dx+ ε1−Ns2

ε

2

∫
Ω

∣∣∣∣∇(φ(x+Q

d
α/2
2

)W2(x+Q

ε
)
)∣∣∣∣2dx

= : I1 + I2 + I3 + I4.

A direct computation yields

I1 = I2 = 1
2d

(N−1)α2
1 t2ε

∫
B2γ/ε(0)

∣∣∣∣∇(φ(εy)U(y)
)∣∣∣∣2dy

= 1
2d

(N−1)α2
1 t2ε

[ ∫
RN+1

|∇U |2dy +O(ε)
]
,

and

I3 = I4 = 1
2d

(N−1)α2
1 s2

ε

∫
B2γ/ε(0)

∣∣∣∣∇(φ(εy)U(y)
)∣∣∣∣2dy

= 1
2d

(N−1)α2
2 s2

ε

[∫
RN+1

|∇U |2dy +O(ε)
]
,
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where we use the fact thatW1(·) = U( ·
d
α/2
1

) andW2(·) = U( ·
d
α/2
2

). Using the dominate convergence
theorem, the following estimates hold true

(3.3)

ε−(1+N)
∫

Ω

C2
ε

2|x|αdx

=ε−(1+N)t2ε

∫
Ω

|Aε|2

2|x|α dx+ ε−(1+N)s2
ε

∫
Ω

|Bε|2

2|x|αdx

=ε−(1+N)t2ε

∫
Ω

|φ(x−P
d
α/2
1

)W1(x−Pε )|2

2|x|α dx+ ε−(1+N)t2ε

∫
Ω

|φ(x+P
d
α/2
1

)W1(x+P
ε )|2

2|x|α dx

+ ε−(1+N)s2
ε

∫
Ω

|φ(x−Q
d
α/2
2

)W2(x−Qε )|2

2|x|α dx+ ε−(1+N)s2
ε

∫
Ω

|φ(x+Q
d
α/2
2

)W2(x+Q
ε )|2

2|x|α dx

=d(N−1)α2
1 t2ε

[ ∫
B2γ/ε(0)

|φ(εy)U(y)|2

2|P + εd
α/2
1 y|α

dy +
∫
B2γ/ε(0)

|φ(εy)W1(x+P
ε )|2

2|εdα/21 y − P |α
dy

]

+ d
(N−1)α2
2 s2

ε

[ ∫
B2γ/ε(0)

|φ(εy)U(y)|2

2|Q+ εd
α/2
2 y|α

dy +
∫
B2γ/ε(0)

|φ(εy)U(y)|2

2|εdα/22 y −Q|α
dy

]

=d(N−1)α2
1

t2ε
2

[ ∫
RN+1

U2dx+O(ε)
]

+ d
(N−1)α2
2

s2
ε

2

[ ∫
RN+1

U2dx+O(ε)
]
.

Moreover, we have

(3.4)

ε−(1+N)
∫

Ω

F (Cε)
|x|α

dx

=ε−(1+N)
∫

Ω

F (Aε)
|x|α

dx+ ε−(1+N)
∫

Ω

F (Bε)
|x|α

dx

=ε−(1+N)
∫

Ω

F (tεφ(x−P
d
α/2
1

)W1(x−Pε ))

|x|α
dx+ ε−(1+N)

∫
Ω

F (tεφ(x+P
d
α/2
1

)W1(x+P
ε ))

|x|α
dx

+ ε−(1+N)
∫

Ω

F (sεφ(x−Q
d
α/2
2

)W2(x−Qε ))

|x|α
dx+ ε−(1+N)

∫
Ω

F (sεφ(x+Q
d
α/2
2

)W2(x+Q
ε ))

|x|α
dx.

By Fatou’s lemma and (f2), if tε →∞ as ε→ 0, one has

ε−(1+N)

t2ε

∫
Ω

F (tεφ(x−P
d
α/2
1

)W1(x−Pε ))

|x|α
dx = d

(N−1)α2
1

∫
B2γ/ε(0)

F (tεφ(εy)U(y))
t2ε|P + εd

α
2
1 y|α

dy →∞,

and if sε →∞ as ε→ 0,

ε−(1+N)

s2
ε

∫
Ω

F (sεφ(x−Q
d
α/2
2

)W2(x−Qε ))

|x|α
dx = d

(N−1)α2
2

∫
B2γ/ε(0)

F (sεφ(εy)U(y))
s2
ε|Q+ εd

α
2
2 y|α

dy →∞.

Then it follows from (3.2) that tε, sε are bounded uniformly for ε. Assume that

(3.5) tε → t0 ≥ 0, sε → s0 ≥ 0,
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as ε→ 0+. By the dominate convergence theorem,

ε−(1+N)
∫

Ω

F (tεφ(x−P
d
α/2
1

)W1(x−Pε ))

|x|α
dx = d

(N−1)α2
1

∫
B2γ/ε(0)

F (tεφ(εy)U(y))
|P + εd

α
2
1 y|α

dy

= d
(N−1)α2
1

[ ∫
RN+1

F (t0U(y))dy +O(ε)
]
.

Similarly, we also have

(3.6)

ε−(1+N)
∫

Ω

F (tεφ(x+P
d
α/2
1

)W1(x+P
ε ))

|x|α
dx = d

(N−1)α2
1

[ ∫
RN+1

F (t0U(y))dy +O(ε)
]
,

ε−(1+N)
∫

Ω

F (sεφ(x−Q
d
α/2
2

)W2(x−Qε ))

|x|α
dx = d

(N−1)α2
2

[ ∫
RN+1

F (s0U(y))dy +O(ε)
]
,

ε−(1+N)
∫

Ω

F (sεφ(x+Q
d
α/2
2

)W2(x+Q
ε ))

|x|α
dx = d

(N−1)α2
2

[ ∫
RN+1

F (s0U(y))dy +O(ε)
]
.

In view of the above facts, we immediately have

(3.7)
ε−(N+1)Jε(Cε) = 2d(N−1)α2

1

[
t20
2

∫
RN+1

|∇U |2dx+ t20
2

∫
RN+1

U2dx−
∫
RN+1

F (t0U)dx+O(ε)
]

+ 2d(N−1)α2
2

[
s2

0
2

∫
RN+1

|∇U |2dx+ s2
0
2

∫
RN+1

U2dx−
∫
RN+1

F (s0U)dx+O(ε)
]
.

Based on the definition of cε and recalling Theorem 2.3, we have

(3.8)

ε−(N+1)cε

=2d(N−1)α2
1 max

t∈(0,+∞)

[
t2

2

∫
RN+1

|∇U |2dx+ t2

2

∫
RN+1

U2dx−
∫
RN+1

F (tU)dx+O(ε)
]

+ 2d(N−1)α2
2 max

s∈(0,+∞)

[
s2

2

∫
RN+1

|∇U |2dx+ s2

2

∫
RN+1

U2dx−
∫
RN+1

F (sU)dx+O(ε)
]

≤2[d(N−1)α2
1 + d

(N−1)α2
2 ]J(U) +O(ε).

The proof is complete. �

Since uε ∈ Nε and u±ε 6≡ 0, by Sobolev’s inequality and (f1), we have for any ε > 0, there exists
Cε > 0 such that

C‖u±ε ‖
2
p
p ≤

∫
Ω
|∇u±ε |2 + |u

±
ε |2

|x|α
dx ≤

∫
Ω

F (u±ε )
|x|α

dx

≤ 2
aα

∫
Ω

(ε|u±ε |2 + Cε|u±ε |p)dx,

from which we deduce that there exists C > 0 independent of ε such that∫
Ω
|u±ε |pdx ≥ C > 0.

By Sobolev’s embedding, Moser’s iteration, we can show uε ∈ L∞(Ω), and then by the elliptic
estimates, uε ∈ C1(Ω̄). Indeed, it follows from (3.8) that there exists C > 0 independent of ε(small
enough) such that maxx∈Ω |uε(x)| ≤ C. Let uε(Pε) = maxx∈Ω uε(x) and uε(Qε) = minx∈Ω uε(x)
for some Pε, Qε ∈ Ω.
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Define

(3.9)
Ω1 := {x = (x, xN+1) ∈ Ω : xN+1 > 0}
Ω2 := {x = (x, xN+1) ∈ Ω : xN+1 < 0}
Ωo := {x = (x, xN+1) ∈ Ω : xN+1 = 0},

then Ω = Ω1 ∪ Ω2 ∪ Ωo. Assume that

(3.10) lim
ε→0+

Pε = P̄ , lim
ε→0+

Qε = Q̄

for P̄ , Q̄ ⊂ Ω̄.

Lemma 3.2. As ε→ 0+, we have
(i) min{dist(±Pε,∂Ω),dist(±Qε,∂Ω)}

ε →∞, and
(ii) min{dist(±Pε,Ωo),dist(±Qε,Ωo)}

ε →∞.

Proof We firstly prove the first conclusion of Lemma 3.2. We use similar arguments as Theorem
2.2 in [33] to show conclusion (i), see also [37]. We firstly prove dist{Pε, ∂Ω}/ε → ∞ as ε → 0.
Since ε2∆uε = 1

|x|α (uε − f(uε)) and ε2∆uε(Pε) ≤ 0, we have uε(Pε) ≤ f(uε(Pε)) which implies
by conditions (f1) that there exists c1 > 0 such that uε(Pε) ≥ c1. Assume on the contrary that
there exists c > 0 such that limε→0 dist{Pε, ∂Ω}/ε < c. Thus, we may assume that Pε → P̄ ∈ ∂Ω,
that is, |P̄ | = a2/2 or |P̄ | = b2/2. Using a “boundary straightening" around the point P̄ , we
may assume that P̄ is the origin and the inner normal to ∂Ω at P̄ is the direction of the positive
xN+1-axis. Define wε(x) = uε(G(qε + εx)) where G is a “straightening map” defined by

G : B̄κ/ε(0) ∩ {xN+1 ≥ −αε} ⊂ RN+1 → Ω

and G(qε) = Pε. Here, κ > 0 and αε > 0 is bounded and αε → α ≥ 0. By elliptic regularity
theory, wε → w0 in C2

loc(R
N+1
α,+ ) (see [33]), where RN+1

α,+ = {x(x, xN+1) ∈ RN+1|xN+1 > −α}, and
w0 satisfies  −∆w + w

|P̄ |α
= f(w)
|P̄ |α

, w > 0, in RN+1
α,+ ,

w(x) = 0, on ∂RN+1
α,+ .

Form Theorem 1.1 in [25], we deduce that w0 ≡ 0. It contradicts with w0(0) = limε→0wε(0) =
limε→0 uε(Pε) ≥ c1. The other cases can be proved similarly.

It remains to prove the second conclusion of Lemma 3.2. We first claim Pε, Qε 6∈ Ωo for ε small
enough. Here we only prove that Pε 6∈ Ωo for ε small enough, and similar arguments to Qε hold
true. Assume by contradiction that there exists {εn} satisfying εn → 0+ such that

(3.11) Pεn = (xεn , 0) ∈ Ωo

with |xεn | = dεn , and such that dεn → d for some d ≥ a2

2 , as n→ +∞. Clearly, uεn(Pεn) ≥ c1 and
|xεn | > d

2 for large n. Thus, for fixed n, we can always find k points

P iεn = (xiεn , 0) ∈ Ω with |xiεn | = |xεn |, i = 1, ..., k

such that
|P iεn − P

j
εn | ≥ c0, i 6= j, i, j = 1, ..., k
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for some c0 > 0. Clearly, |P iεn | = |Pεn |. The definition of H](Ω) implies that uεn(Pεn) = uεn(P iεn),
and so uεn(P iεn) ≥ c1 for i = 1, ..., k. Recalling Theorem 2.3, we have for any given R > 0

(3.12)

cεn =
∫

Ω

1
|x|α

(1
2f(uεn)uεn − F (uεn))dx

≥
k∑
i=1

∫
BεnR(P iεn )

1
|x|α

(1
2f(uεn)uεn − F (uεn))dx.

Here, we have used the fact that the supports of BεnR(P iεn), i = 1, ..., k are disjoint for any given
R > 0. By making the changes of variables viεn(y) = uεn(εny+P iεn), using elliptic regularity theory
and the boundedness of {uεn} in H](Ω), we obtain viεn → vi in C2

loc(RN+1) as εn → 0+. Moreover,
the elliptic Lq-estimate with q > 1 yields vi ∈ C2

loc(RN+1) ∩W 2,q(RN+1). Obviously, vi 6≡ 0 due
to uε(0) ≥ c1 > 0. Then using the similar argument as in Lemma 3.1, vi solves equation (2.3)
with d = |P̄ |. By applying the well-known Moser iteration, we can show that |vi| ∈ L∞(RN ).
Furthermore, by comparison principle, we obtain

(3.13) |vi(x)| ≤ C1e
− σk

|P̄ |α/2
|x|

for x ∈ RN+1, i = 1, ..., k

for some σk > 0. For any given large constant R in (3.12), we put κR := C̄1e
−σkR2 for some C̄1 > 0.

Then for n large enough, we have

(3.14) ‖viεn − v
i‖
C2(B2R(0)) ≤ κR.

From (3.12), we deduce that
(3.15)

cεn ≥
k∑
i=1

εn
N+1

∫
BR(0)

1
|εnx+ P iεn |α

(1
2f(viεn)viεn − F (viεn))dx

=
k∑
i=1

εn
N+1

[ ∫
BR(0)

1
|P̄ |α

(1
2f(vi)vi − F (vi))dx+Ai)

]

=
k∑
i=1

εn
N+1|P̄ |

α
2 (N−1)

[ ∫
B
R|P̄ |−α/2 (0)

(1
2f(Ū i)Ū i − F (Ū i))dx+Ai)

]

=
k∑
i=1

εn
N+1|P̄ |

α
2 (N−1)

[ ∫
RN+1

(1
2f(Ū i)Ū i − F (Ū i))dx−

∫
D

(1
2f(Ū i)Ū i − F (Ū i))dx+Ai)

]
,

where D := RN+1 \ BRP̄−α/2(0), and Ū i(·) = vi(|P̄ |
α
2 ·) is a nontrivial solution of equation (1.4),

and

Ai =
∫
BR(0)

1
|εnx+ P iεn |α

(1
2f(viεn)viεn − F (viεn))dx−

∫
BR(0)

1
|P̄ |α

(1
2f(vi)vi − F (vi))dx,



A NEW TYPE OF NODAL SOLUTIONS 15

which can be rewritten as

Ai =
∫
BR(0)

( 1
|εnx+ P iεn |α

− 1
|P iεn |α

)
(1
2f(viεn)viεn − F (viεn))dx

+
∫
BR(0)

( 1
|P iεn |α

− 1
|P̄ |α

)
(1
2f(viεn)viεn − F (viεn))dx

+
∫
BR(0)

1
|P̄ |α

(1
2f(viεn)viεn − F (viεn)− 1

2f(vi)vi + F (vi)
)
dx

:=Ai1(εn) +Ai2(εn) +Ai3(εn).

Since vεn is uniformly bounded and f is of class C1, by the mean-value theorem, one has

(3.16) |Ai1(εn)| ≤ C
∫
BR(0)

∣∣∣∣ 1
|εnx+ P iεn |α

− 1
|P iεn |α

∣∣∣∣dx ≤ CRεn.
By the dominate convergence theorem, we also have

(3.17) |Ai2(εn)| ≤ C
∫
BR(0)

∣∣∣∣ 1
|P iεn |α

− 1
|P̄ |α

∣∣∣∣dx→ 0, n→∞.

From (3.14) and the fact that vεn is uniformly bounded and f is of class C1, we deduce that for n
large enough,

(3.18) |Ai3(εn)| ≤ C|BR(0)|κR = C|BR(0)|C̄1e
−σkR2 .

It follows from (3.13) that there exists C2 > 0 such that

(3.19)
∫
D

(1
2f(Ū i)Ū i − F (Ū i))dx ≤ C2e

−µkR

for some µk > 0 and C2 > 0. Combining (3.15)-(3.19) we obtain

(3.20)

lim inf
n→∞

εn
−(N+1)cεn

≥ lim inf
n→∞

k|P̄ |
α
2 (N−1)

[
J(Ū)− CRεn − |Ai3(εn)| − C|BR(0)|C̄1e

−σkR2 − C2e
−µkR

]
=k|P̄ |

α
2 (N−1)

[
J(Ū)− C|BR(0)|C̄1e

−σkR2 − C2e
−µkR

]
.

Since C, C̄1, C2 > 0 in (3.20) are independent of R and εn for n large enough, and U is the least
energy positive solution, from (3.20) we have

(3.21) εn
−(N+1)cεn ≥ k|P̄ |

α
2 (N−1)

[
J(U)− C|BR(0)|C̄1e

−σkR2 − C2e
−µkR

]
Choose

k >
|P̄ |

α
2 (N−1)

2[d(N−1)α2
1 + d

(N−1)α2
2 ]

+ 1,

then letting R→∞, (3.21) implies a contradiction with Lemma 3.1. Therefore, Pε 6∈ Ωo. Similarly,
Qε 6∈ Ωo. We now show P̄ 6∈ Ωo. Assume on the contrary that there exists {εn} satisfying εn → 0+

such that

(3.22) Pεn = (xεn , xεn,N+1) ∈ Ω1 → P̄ ∈ Ωo
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with |xεn | = dεn and such that dεn → d for some d ≥ a2

2 , as n → +∞. We can use the almost
same arguments as above to get a contradiction. Therefore, P̄ ∈ Ω1 and Q̄ ∈ Ω1, which imply by
the symmetric of uε ∈ H](Ω) that

min{dist(±Pε,Ωo), dist(±Qε,Ωo)}
ε

→∞,

as ε→∞. The proof is complete. �

Define function space

H+ := {u ∈ H](Ω) ∩H1(Ω1) : ∂u

∂xN+1

∣∣∣∣
Ωo

= 0},

H− := {u ∈ H](Ω) ∩H1(Ω2) : ∂u

∂xN+1

∣∣∣∣
Ωo

= 0},

which will be used in the following lemma.
Without loss of generality, we assume Pε, Qε ∈ Ω1, then we have the following results.

Lemma 3.3. As ε→ 0, we have |Pε−Qε|ε →∞ as ε→ 0.

Proof Assume on the contrary that |Pε−Qε|ε → κ < ∞. Let us show first that κ > 0. Since
ε2∆uε = 1

|x|α (uε − f(uε)) and ε2∆uε(Pε) ≤ 0, we have uε(Pε) ≤ f(uε(Pε)) which implies by
condition (f1) that there exists c1 > 0 such that uε(Pε) ≥ c1. Similarly, we also have uε(Qε) ≤ −c2
for some c2 > 0. Thus, we have uε(Pε)−uε(Qε) ≥ c1+c2. If there exists one point Rε ∈ PεQε∩∂Ω1,
then by recalling Lemma 3.2, one has

min{|Rε − Pε|, |Rε −Qε|}/ε→∞, as ε→ 0+,

which implies the conclusion of Lemma 3.3 holds true. Thus, segment PεQε ⊂ Ω1. From the
boundedness of {uε} in L∞(Ω) and Schauder’s estimates, we deduce that ε|∇uε| ≤ C for some
C > 0 independently of ε. Thus,

c1 + c2 ≤ |uε(Pε)− uε(Qε)| ≤ ε|∇uε(ξ)|
|Pε −Qε|

ε

for some ξ ∈ Ω. Therefore, κ > 0 and O := limε→0
Qε−Pε

ε 6∈ RN+1 \ {0}.
Let us define uε = ūε + ũε by

uε =
{
ūε x ∈ Ω1,
ũε, x ∈ Ω2,

then since uε ∈ H](Ω), ūε satisfies the following equation

(3.23)


−ε2∆u+ u

|x|α
= f(u)
|x|α

x ∈ Ω1,

∂u
∂n = 0, x ∈ Ωo,
u = 0, x ∈ ∂Ω1 \ Ωo,

whose energy functional Jε,Ω1 : H+ :→ R defined by

Jε,Ω1(u) = ε2

2

∫
Ω1
|∇u|2dx+ 1

2

∫
Ω1

u2

|x|α
dx−

∫
Ω1

F (u)
|x|α

dx.



A NEW TYPE OF NODAL SOLUTIONS 17

We have similarly that ũε satisfies

(3.24)


−ε2∆u+ u

|x|α
= f(u)
|x|α

x ∈ Ω2,

∂u
∂n = 0, x ∈ Ωo,
u = 0, x ∈ ∂Ω2 \ Ωo,

whose energy functional Jε,Ω2 : H− :→ R defined by

Jε,Ω2(u) = ε2

2

∫
Ω2
|∇u|2dx+ 1

2

∫
Ω2

u2

|x|α
dx−

∫
Ω2

F (u)
|x|α

dx.

By the definition of H](Ω) and the fact that functional Jε(u) is even at u, we immediately get
Jε,Ω1(ūε) = Jε,Ω2(ũε) and Jε(uε) = Jε,Ω1(ūε) + Jε,Ω2(ũε). It follows from (3.8) that

(3.25) Jε(ūε) ≤ ε(N+1)(d(N−1)α2
1 + d

(N−1)α2
2 )[J(U) +O(ε)].

Set wε(y) = ūε(εy+Pε), then by the elliptic regularity theory, we can easily show that wε(y)→ w
in C2

loc(RN+1) and w satisfies

(3.26)

 −∆w + w

|P̄ |α
= f(w)
|P̄ |α

in RN+1,

w(0) ≥ c1, w(O) ≤ −c2,

which implies w is a nodal solution of equation (3.26) whose energy functional is

JP̄ (w) = 1
2

∫
RN+1

|∇w|2 + 1
2

∫
RN+1

w2

|P̄ |α
dx−

∫
RN+1

F (w)
|P̄ |α

dx.

Thus, we have ∫
RN+1

|∇w±|2 +
∫
RN+1

|w±|2

|P̄ |α
dx =

∫
RN+1

f(w±)w±

|P̄ |α
dx.

From the above facts, we deduce that

(3.27)
JP̄ (w±) =

∫
RN+1

1
|P̄ |α

[12f(w±)w± − F (w±)]dx

≥
∫
RN+1

1
|P̄ |α

[12f(W )W − F (W )]dx = JP̄ (W ),

where W is the unique positive solution of (2.3) with d = |P̄ |. Without loss of generality, assume
|Q̄| ≤ |P̄ |, then by (3.25) we have

Jε,Ω1(ūε) ≤ 2εN+1|P̄ |(N−1)α2 [J(U) +O(ε)],

which implies by Fatou’s lemma that

(3.28)

JP̄ (w) =
∫
RN+1

1
|P̄ |α

[12f(w)w − F (w)]dx

≤ lim inf
ε→0

ε−(N+1)[Jε,Ω1(ūε)−
1
2J
′
ε,Ω1(ūε)ūε]

≤ 2
∫
RN+1

1
|P̄ |α

[12f(W )W − F (W )]dx

= 2JP̄ (W ).
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Combining (3.27) with (3.28), we have JP̄ (W ) = JP̄ (w±). Since W is the unique positive solution
of (2.3) with d = |P̄ |, W minimizes the functional JP̄ on the following Nehari manifold

NP̄ = {u ∈ H1
0 (Ω) : u 6≡ 0, J ′

P̄
(u)u = 0}.

Clearly, w± ∈ NP̄ and minimizes JP̄ on NP̄ . Hence, it is easy to show that w± is also positive
solution of (2.3) with d = |P̄ |. By the uniqueness of positive solution, we obtain w+(x) = W (x−x̄1)
and w−(x) = −W (x− x̄2) for some x̄1, x̄2 ∈ RN+1. Therefore, w−(x) < 0 for any x ∈ RN+1, which
is a contradiction. The proof is complete. �

In Lemma 3.1, we replace P and Q by Pε and Qε, respectively. Similar arguments as Lemma
3.1 yield

(3.29) cε ≤ 2εN+1(|P̄ |(N−1)α2 + |Q̄|(N−1)α2 )[J(U) +O(ε)].

Assume uε ∈ H](Ω) is the nodal solution obtained in Theorem 2.3. We now show

Lemma 3.4. lim
ε→0+

ε−(N+1)Jε(uε) = 2(P̄ (N−1)α2 + Q̄(N−1)α2 )J(U).

Proof Let us define

rε = min
{
dist(Pε, ∂Ω), dist(Qε, ∂Ω)), |Pε −Qε|2

}
,

Then by recalling Lemma 3.3 and the definition of H](Ω), we can deduce that rε/ε → +∞ as
ε→ 0+, and

Brε(Pε), Brε(−Pε), Brε(Qε), Brε(−Qε) ⊂ Ω,

which are disjoint each other. Set

D := Brε(Pε) ∪Brε(−Pε) ∪Brε(Qε) ∪Brε(−Qε).

Since uε ∈ H](Ω) is a sign-changing solution of equation (2.2), by (f2) we have
(3.30)
ε−(N+1)Jε(uε)

≥ ε−(N+1)
∫
D

1
|x|α

(1
2f(uε)uε − F (uε))dx

= ε−(N+1)
∫
Brε (Pε)

1
|x|α

(1
2f(uε)uε − F (uε))dx+ ε−(N+1)

∫
Brε (−Pε)

1
|x|α

(1
2f(uεn)uε − F (uε))dx

+ ε−(N+1)
∫
Brε (Qε)

1
|x|α

(1
2f(uε)uε − F (uε))dx+ ε−(N+1)

∫
Brε (−Qε)

1
|x|α

(1
2f(uεn)uε − F (uε))dx

= B1 + B2 + B3 + B4.

By making the change of variable vε(x) = uε(εx + Pε) for x ∈ Brε(Pε), using elliptic regularity
theory and the boundedness of {uε} in H](Ω), we obtain vε → v in C2

loc(RN+1) as ε → 0+.
Moreover, the elliptic Lq-estimate with q > 1 yields v ∈ C2

loc(RN+1)∩W 2,q(RN+1). We note that v
is a nontrivial solution of equation (2.3) with d = |P̄ |, and Ū(·) = v(|P̄ |α/2·) is a nontrivial solution
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of equation (1.4). Based on the above facts, by the Fatou’s lemma, we get

(3.31)

lim inf
ε→0+

B1 = lim inf
ε→0+

∫
B rε
ε

(Pε)

1
|εx+ Pε|α

(1
2f(vε)vε − F (vε))dx

≥
∫
RN+1

1
|P̄ |α

(1
2f(v)v − F (v))dx

≥ |P̄ |
α
2 (N−1)J(Ū)

≥ |P̄ |
α
2 (N−1)J(U),

where we use the fact that J(Ū) ≥ J(U) since U ∈ H1(RN+1) is the unique positive solution of
(1.4). Arguing similarly as above, we also have

(3.32)

lim inf
ε→0+

B2 ≥ |P̄ |
α
2 (N−1)J(U)

lim inf
ε→0+

B3 ≥ |Q̄|
α
2 (N−1)J(U)

lim inf
ε→0+

B4 ≥ |Q̄|
α
2 (N−1)J(U).

Since functional J is even, by combining (3.30)-(3.32), we get immediately

(3.33) lim inf
ε→0+

ε−(N+1)Jε(uε) ≥ 2(P̄ (N−1)α2 + Q̄(N−1)α2 )J(U).

Therefore, the conclusion follows immediately from (3.29) and (3.33). The proof is complete. �

Recall that ūε(x) has been defined in Lemma 3.3, ūε(x) = uε(x) for x ∈ Ω1 and satisfies equation
(3.23). Note that Jε,Ω1(ūε) = 1

2cε, where cε has been defined in Theorem 2.3. Let us define the
least sign changing energy level of Jε,Ω1 as follows

c+
ε := inf

u∈N+
ε

Jε,Ω1(u), N+
ε := {u ∈ H+ \ {0} : J ′ε,Ω1(u+)u+ = J ′ε,Ω1(u−)u− = 0}.

Lemma 3.5. c+
ε = 1

2cε.

Proof Using the similar arguments as in Theorem 2.3, we can prove that there exists a least
energy sign changing solution u ∈ H+ of equation (3.23) with Jε,Ω1(u) = c+

ε . Since ūε is a nodal
solution of equation (3.23), then cε

2 ≥ c+
ε . Define v = u(x,−xN+1) for x ∈ Ω2, then v is a

sign-changing solution of equation (3.24), and then by symmetry, Jε,Ω2(v) = c+
ε . Define

u(x) :=
{
u(x) x ∈ Ω1,
v(x), x ∈ Ω2,

then u ∈ H](Ω) and

J ′ε(u) = 0, and Jε(u) = Jε,Ω2(v) + Jε,Ω1(u) = 2c+
ε .

Based on the definition of cε, we have c+
ε ≥ cε

2 . The proof is complete. �

Let us define

Ω1
Pε := {y ∈ RN+1| εy + Pε ∈ Ω1

ε,+}, Ω1
Qε := {y ∈ RN+1| εy +Qε ∈ Ω1

ε,−},

where Ω1
ε,± are the support sets of ū±ε , respectively.

Lemma 3.6. As ε→ 0, we have Ω1
Pε
→ RN+1 and Ω1

Qε
→ RN+1.
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Proof We first show that Ω1
ε,± are both connected domains. Assume on the contrary that the

number of nodal domains of ūε is bigger than 2. Let us denote nodal domain by {Ω1
i }, i = 1, 2, ..., k

with k ≥ 3. Let us define ūε = ūε,1 + ūε,2 + ūε,3 with
ūε,i 6= 0, ūε,1 ≥ 0, ūε,2 ≤ 0 and suppt(ūε,i) ∩ suppt(ūε,j) = ∅, for i 6= j, i, j = 1, 2, 3.

Then it is easy to see that
J ′ε,Ω1(ūε,i)ūε,i = 0, for i = 1, 2, 3.

By (f2), we have Jε,Ω1(ūε,i) > 0 for all i = 1, 2, 3. In virtue of Lemma 3.5 and the definition of
N+
ε , we have

1
2cε ≤ Jε,Ω1(ūε,1 + ūε,2) <

3∑
i=1

Jε,Ω1(ūε,i) = Jε,Ω1(
3∑
i=1

ūε,i) = 1
2cε.

It is a contradiction. It is easy to see from the classical elliptic regularity theory that ūε ∈ C2(Ω1),
which implies that Ω1

ε,± are both connected domains.
Without loss of generality, we assume Ω1

Pε
→ Ω1

P̄
and Ω1

Qε
→ Ω1

Q̄
as ε→ 0+. Now we only need

to prove Ω1
P̄

= Ω1
Q̄

= RN+1. Let us define the part boundary of nodal domain Ω1
ε,+ as follows

Θ := {x ∈ ∂Ω1
ε,+, x 6∈ Ωo and x 6∈ ∂Ω}.

Since Ω1
ε,± are both connected domains, Θ is also the part boundary of nodal domain Ω1

ε,−.
Obviously, ū+

ε |Θ = ū−ε |Θ = 0. We first show

(3.34) min{dist(Pε,Θ), dist(Qε,Θ)}
ε

→∞.

as ε→ 0+. We only prove that dist(Pε,Θ)/ε→∞, the remaining part can be obtained similarly.
Assume on the contrary that there exists κ1 ≥ 0 such that limε→0 dist(Pε,Θ)/ε = κ1. Thus, we
may assume that Pε → P̄ ∈ Θ and there exists P̄ε ∈ Θ such that

dist(Pε,Θ) = |Pε − P̄ε|, and P̄ε → P̄ as ε→ 0+.

Then we have |Pε−P̄ε|ε → κ1 < ∞. Since it is easy to obtain from the Maximum principle that
there exists c1 > 0 such that uε(Pε) ≥ c1. Then by uε(P̄ε) = 0, we have uε(Pε) − uε(P̄ε) ≥ c1.
Arguing similarly as in Lemma 3.3, we have κ1 > 0. Set Ō := limε→0

P̄ε−Pε
ε ∈ RN+1 \ {0}. Set

wε(y) = ūε(εy+Pε), then by Lemma 3.2 and the elliptic regularity theory, we can easily show that
wε(y)→ w in C2

loc(RN+1) as ε→ 0, and w satisfies

(3.35)

 −∆w + w

|P̄ |α
= f(w)
|P̄ |α

in RN+1,

w(0) ≥ c1, w(Ō) = 0.

By the well-known strong Maximum principle, we deduce that w is a nodal solution of equation
(3.35). Hence, using the similar arguments as Lemma 3.3, we have JP̄ (WP̄ ) = JP̄ (w±), where WP̄

is the unique positive solution of (2.3) with d = |P̄ |. It implies a contradiction. Then, (3.34) holds
true. Using the fact that Ω1

ε,± are both connected domains, combining (3.34) and Lemma 3.2, we
get immediately

min{dist(Pε, ∂Ω1
ε,+), dist(Qε, ∂Ω1

ε,−)}
ε

→∞, as ε→ 0+,

from which we deduce immediately the conclusions of lemma. The proof is complete. �
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Lemma 3.7. Assume uε ∈ H](Ω) is the solution obtained in Theorem 2.3. Then uε has only two
positive local maximums and only two negative local minimums.

Proof Since uε ∈ H](Ω) and Pε is a local maximum point, the antipodal point −Pε is also a
maximum point of uε. Correspondingly, Qε and −Qε are minimum points of uε. Assume ūε solves
equation (3.23) which has been defined in Lemma 3.3. Let us define v̄+

ε (y) := ū+
ε (εy + Pε) and

v̄−ε (y) := ū−ε (εy +Qε), then by Remark 1.1, we have

(3.36)

ε−(N+1)Jε,Ω1(ūε)

=ε−(N+1)Jε,Ω1(ū+
ε ) + ε−(N+1)Jε,Ω1(ū−ε )

=ε−(N+1) µ− 1
2µ+ 2

[ ∫
Ω1
ε,+

(|∇ū+
ε |2 + |ū

+
ε |2

|x|α
)dx+

∫
Ω1
ε,+

(|∇ū−ε |2 + |ū
−
ε |2

|x|α
)dx

]

= µ− 1
2µ+ 2

[ ∫
Ω1
Pε

(|∇v̄+
ε |2 + |v̄+

ε |2

|εx+ Pε|α
)dx+

∫
Ω1
Qε

(|∇v̄−ε |2 + |v̄−ε |2

|εx+Qε|α
)dx

]
=Jε,Ω1

Pε
(v̄+
ε ) + Jε,Ω1

Qε
(v̄−ε ).

Here, Jε,Ω1
Pε

and Jε,Ω1
Qε
, denote functional Jε whose integral region are Ω1

Pε
and Ω1

Qε
, respectively.

It is easy to see from Lemma 3.4 and (3.36) that ‖v̄+
ε ‖H1(Ω1

Pε
) and ‖v̄−ε ‖H1(Ω1

Pε
) are bounded

uniformly for ε. Using the elliptic regularity theory and Lemma 3.6, we deduce that

(3.37) v̄+
ε → v̄+ in C2

loc(RN+1) and v̄−ε → v̄− in C2
loc(RN+1)

as ε → 0+. Obviously, v̄+ and v̄− are nontrivial solutions of equation (2.3) with d = |P̄ | and
d = |Q̄|, respectively. In virtue of Lemma 3.4, 3.5 and 3.6, from (3.36), Fatou’s lemma and (f2),
we deduce that

(3.38)

(P̄ (N−1)α2 + Q̄(N−1)α2 )J(U)

= lim inf
ε→0

[
ε−(N+1)Jε,Ω1(ū+

ε ) + ε−(N+1)Jε,Ω1(ū−ε )
]

= lim inf
ε→0

µ− 1
2µ+ 2

[ ∫
Ω1
Pε

(|∇v̄+
ε |2 + |v̄+

ε |2

|εx+ Pε|α
)dx+

∫
Ω1
Qε

(|∇v̄−ε |2 + |v̄−ε |2

|εx+Qε|α
)dx

]

≥ µ− 1
2µ+ 2

[ ∫
RN+1

(|∇v̄+|2 + |v̄
+|2

|P̄ |α
)dx+

∫
RN+1

(|∇v̄−|2 + |v̄
−|2

|Q̄|α
)dx

]
= JP̄ (v̄+) + JQ̄(v̄−)
≥ JP̄ (WP̄ ) + JQ̄(WQ̄)

= (P̄ (N−1)α2 + Q̄(N−1)α2 )J(U).

Here JP̄ and JQ̄ are the energy functional of equation (2.3) with d = |P̄ | and d = |Q̄|, respectively.
So, WP̄ ∈ H1(RN+1) and WQ̄ ∈ H1(RN+1) are the least energy solutions of equation (2.3) with
d = |P̄ | and d = |Q̄|, respectively. By (3.38) we have immediately

(3.39) v̄+
ε → v̄+ in H1(RN+1) and v̄−ε → v̄− in H1(RN+1)

as ε→ 0+.
We now prove that ūε has at most one local maximum point. Assume on the contrary that ūε

has two local maxima at Pε and P ′ε. Then there are three cases to be considered as follows:
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Case 1: Suppose limε→0 |Pε − P ′ε|/ε = 0. Observe by two local maximum points that

(3.40) ∇v̄+
ε (0) = ∇v̄+

ε ((P ′ε − Pε)/ε) = 0.

Since v̄+ is a positive solution of equation (2.3) with d = |P̄ |, v̄+(0) = maxRN+1 v̄+ and
v̄+(|x|) = v̄+(r) is strictly decreasing at r, it is easy to obtain that ∆v̄+(0) < 0. Therefore,
by (3.37), we also have ∆v̄+

ε (0) < 0 for small ε and then

(3.41) ∆v̄+
ε (x) < 0 for |x| ≤ %

with % small enough. In virtue of (3.40) and (3.41), it is easy to deduce that P ′ε = Pε.
Case 2: Suppose limε→0 |Pε − P ′ε|/ε = β > 0. Assume Õ := limε→0

P ′ε−Pε
ε ∈ RN+1 \ {0}, then

v̄+ > 0 satisfies

(3.42)

 −∆v̄+ + v̄+

|P̄ |α
= f(v̄+)
|P̄ |α

in RN+1,

∇v̄+(0) = 0, ∇v̄+(Õ) = 0,

which contradicts with the fact that v̄+(r) is strictly decreasing at r.
Case 3: Suppose |Pε − P ′ε|/ε→∞ as ε→∞. Assume limε→0 P

′
ε = P̄ ′. Recalling Lemma 3.3 and

Lemma 3.4, we can get respectively |Qε − P ′ε|/ε→∞ and

dist(P ′ε, ∂Ω1
ε,+)

ε
→∞, as ε→ 0+.

Let us define

rε = min
{
dist(Pε, ∂Ω1

ε,+), dist(P ′ε, ∂Ω1
ε,+)), dist(Qε, ∂Ω1

ε,−)), |Pε − P
′
ε|

2

}
,

then by Lemma 3.4, we have rε/ε→∞ as ε→ 0+. Set

v̄ε,1(y) := ūε(εy + Pε), v̄ε,2(y) := ūε(εy + P ′ε), v̄ε,3(y) := ūε(εy +Qε), y ∈ Brε(0).

Using the elliptic regularity theory, we have

v̄ε,1 → v̄1 in C2
loc(RN+1), v̄ε,2 → v̄2 in C2

loc(RN+1), v̄ε,3 → v̄3 in C2
loc(RN+1),
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as ε → 0+. v̄1, v̄2, and v̄3 are the positive solutions of equation (2.3) with d = |P̄ |, d = |P̄ ′|, and
d = |Q̄|, respectively. Using change of variables and Fatou’s lemma, we can obtain

(3.43)

lim inf
ε→0

ε−(N+1)Jε(ūε)

= lim inf
ε→0

ε−(N+1)
∫

Ω1

1
|x|α

(1
2f(ūε)ūε − F (ūε))dx

≥ lim inf
ε→0

ε−(N+1)
∫
Brε (Pε)∪Brε (P ′ε)∪Brε (Qε)

1
|x|α

(1
2f(ūε)ūε − F (ūε))dx

= lim inf
ε→0

[ ∫
Brε/ε(Pε)

1
|εx+ Pε|α

(1
2f(v̄ε,1)v̄ε,1 − F (v̄ε,1))dx

]
+ lim inf

ε→0

[ ∫
Brε/ε(P ′ε)

1
|εx+ P ′ε|α

(1
2f(v̄ε,2)v̄ε,2 − F (v̄ε,2))dx

]
+ lim inf

ε→0

[ ∫
Brε/ε(Qε)

1
|εx+Qε|α

(1
2f(v̄ε,3)v̄ε,3 − F (v̄ε,3))dx

]
≥
[ ∫

RN+1

1
|P̄ |α

(1
2f(v̄1)v̄1 − F (v̄1))dx

]
+
[ ∫

RN+1

1
|P̄ ′|α

(1
2f(v̄2)v̄2 − F (v̄2))dx

]
+
[ ∫

RN+1

1
|Q̄|α

(1
2f(v̄3)v̄3 − F (v̄3))dx

]
≥
(
|P̄ |

α
2 (N−1) + |Q̄|

α
2 (N−1) + |P̄ ′|

α
2 (N−1)

)
J(U),

where U is the unique positive solution of equation (1.4). Lemma 3.4 implies a contradiction with
(3.43). Similarly, we can also show that ūε has only one local minimum. �

Remark 3.8. Since uε has only two positive local maximums and only two negative local
minimums, points ±Pε,±Qε must belong to the xN+1-axis for sufficiently small ε, that is,

{Pε, Qε} ⊂ L := {x ∈ Ω : x = (0, ξ), ξ ∈ R}.

In the following, we will prove the exponential decay of uε.

Lemma 3.9. For any δ ∈ (0, 1), there exists C, c > 0 independent of ε such that for any x ∈ Ω,
|uε(x)|+ ε|∇uε(x)| ≤ Ce−c(1−δ) min{|x−Pε|,|x−Qε|}/ε.

Proof Assume that v̄+
ε (y) := ū+

ε (εy+Pε) and v̄−ε (y) := ū−ε (εy+Qε), Then recalling Lemma 3.6,
for any R > 0 there exists constants ε0 > 0 such that for all ε ∈ (0, ε0), we have

BRε(Pε) ⊂ Ω1
Pε BRε(Qε) ⊂ Ω1

Qε .

By the elliptic regularity theory and the boundedness of {uε} in H](Ω), we obtain v̄±ε → v̄±

in C2
loc(RN+1) as ε → 0+. Moreover, the standard elliptic Lq-estimate with q > 1 yields

v̄± ∈ C2
loc(RN+1)∩W 2,q(RN+1). Arguing similarly as in Lemma 3.7, we get v̄±ε → v̄± in H1(RN+1)

as ε → 0+. By the standard elliptic estimates, there exists C > 0 (independent ε) such that for
any B2(y) ∈ Ω1

Pε
∩ Ω1

Qε
,

sup
B1(y)

|v̄±ε | ≤ C‖v̄±ε ‖L2(B2(y)).

It then follows that
lim

|x|→+∞
|v̄±ε (x)| = 0 uniformly for ε > 0 small enough.
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Thus, for any η > 0, take R large sufficiently, we have |v̄±ε (x)| ≤ η for |x| ≥ R. From (f1), we can
choose η such that for any δ > 0, f(t)/t ≤ δ for |t| ≤ η. Then v±ε satisfies

(3.44)

 −∆|v̄±ε |+ (1− δ) |v̄±ε |
|εx+ P iε |α

≤ 0 |x| ≥ R, i = 1, 2,

|v̄±ε | ≤ η, |x| = R,

where P 1
ε = Pε and P 2

ε = Qε. By the maximum principle in a standard way, we show that

|v̄±ε (y)| ≤ Ce−c(1−δ)|y|, y ∈ RN+1

for δ > 0 small enough and some positive constant C, c independently of ε. By a scaling technique,
we have

|ū±ε (x)| ≤ Ce
−c(1−δ)|x−Piε|

ε , x ∈ RN+1, i = 1, 2.

By the Harnack inequality, we also have

ū±ε (x) + ε|∇ū±ε (x)| ≤ Ce
−c(1−δ)|x−Piε|

ε , x ∈ RN+1.

The conclusion of lemma follows from uε ∈ H](Ω). The proof is complete. �

4. Proof of Theorem 1.2

In this section, we will divide two cases to complete the proof of Theorem 1.2.

4.1. Case η < 2. Note that η < 2, then α > 0. Since uε is a least energy sign-changing solution
of equation (2.3), it is natural to expect that the points {±Pε}, {±Qε} should converge to points
±P̄ ,±Q̄ in the annulus which have the smallest distance from the origin. They are indeed the
points on the inner boundary.
Proof We proceed the proof by contradiction. In virtue of Lemma 3.2, without loss of generality,
we assume that {Pε}, {Qε} ⊂ Ω1, and that Pε = (0, a2

2 + νε) and Pε converge to point P̄ with
|P̄ | = a2

2 + ν for some ν > 0. That is to say, νε → ν as ε→ 0. Without loss of generality, we also
assume

Qε =
(
0, a

2

2 + ν̄ε
)

and ν̄ε < νε.

Now we divide two cases to state our proof.
Case 1: ν̄ε → 0, that is, |Q̄| = a2

2 and |P̄ − Q̄| = ν. Consider the ball B ν
4
(P̂ ) with center at

P̂ = (0, a2+ν
2 ). Set a cut off function ϕ ∈ C∞0 (RN+1) with ϕ(x) ≡ 1 for x ∈ B ν

8
(0) and ϕ(x) ≡ 0

for x ∈ RN+1 \B ν
4
(0). Define the function

h+
ε (x) = ϕ(x− P̂ )w(x− P̂

ε
) + ϕ(x+ P̂ )w(x+ P̂

ε
) =: Aε + Bε,

where w is the unique positive solution of equation (2.3) with d = |P̂ |. It is easy to see that there
exists a unique tε > 0 such that J ′ε(tεh+

ε )tεh+
ε = 0. We now show tε → 1 as ε→ 0+. Indeed, based
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on the definition of h+
ε (x), the supports of Aε and Bε are disjoint each other. So we have

(4.1)

J ′ε(tεAε)tεAε

=ε2t2ε

∫
Ω
|∇Aε|2dx+ t2ε

∫
Ω

Aε
2

|x|α
dx−

∫
Ω

f(tεAε)tεAε

|x|α
dx

=εN+1t2ε

[ ∫
B ν

4ε
(P̂ )
|∇(ϕ(εx)w)|2dx+

∫
B ν

4ε
(P̂ )

|ϕ(εx)w|2

|εx+ P̂ |α
dx

−
∫
B ν

4ε
(P̂ )

f(tεϕ(εx)w)ϕ(εx)w
tε|εx+ P̂ |α

dx

]
= 0,

which implies by the fact that |w(x)| ≤ C exp(− δ
|P̂ |α |x|) for some δ > 0 that

(4.2)

∫
RN+1

|∇w|2dx+
∫
RN+1

|w|2

|P̂ |α
dx+O(ε)

=
∫
B ν

4ε
(P̂ )
|∇(ϕ(εx)w)|2dx+

∫
B ν

4ε
(P̂ )

|ϕ(εx)w|2

|εx+ P̂ |α
dx

≥
∫
B ν

8ε
(P̂ )

f(tεw)w2

tεw|εx+ P̂ |α
dx.

By (f2), we deduce that {tε} is bounded in R. Without loss of generality, we assume tε → t0 ≥ 0
as ε→ 0. Moreover, from (4.1) we deduce that

(4.3)
∫
B ν

8ε
(P̂ )
|∇w|2dx+

∫
B ν

8ε
(P̂ )

|w|2

|εx+ P̂ |α
dx <

∫
B ν

4ε
(P̂ )

f(tεw)w
tε|εx+ P̂ |α

dx.

It then follows that t0 6= 0. In virtue of (4.1), passing the limit as ε→ 0+, we get

(4.4)
∫
RN+1

|∇w|2dx+
∫
RN+1

|w|2

|P̂ |α
dx−

∫
RN+1

f(t0w)w2

t0w|P̂ |α
dx = 0.

Recalling that w is the unique positive solution of equation (2.3) with d = |P̂ |, Remark 1.1 yields
t0 = 1. Thus, using (1.5) and the dominate convergence theorem

(4.5)

ε−(N+1)Jε(tεh+
ε )

= t2εε
(1−N)

2

∫
Ω
|∇h+

ε |2dx+ t2εε
−(N+1)

2

∫
Ω

|h+
ε |2

|x|α
dx− ε−(N+1)

∫
Ω

F (tεh+
ε )

|x|α
dx

=t2ε
[1

2

∫
B ν

4ε
(P̂ )
|∇(ϕ(εx)w)|2dx+ 1

2

∫
B ν

4ε
(P̂ )

|ϕ(εx)w|2

|εx+ P̂ |α
dx−

∫
B ν

4ε
(P̂ )

F (tεϕ(εx)w)
|εx+ P̂ |α

dx

]

+ t2ε

[1
2

∫
B ν

4ε
(−P̂ )

|∇(ϕ(εx)w)|2dx+ 1
2

∫
B ν

4ε
(−P̂ )

|ϕ(εx)w|2

|εx− P̂ |α
dx−

∫
B ν

4ε
(−P̂ )

F (tεϕ(εx)w)
|εx− P̂ |α

dx

]

=2
[1

2

∫
RN+1

|∇w|2dx+ 1
2

∫
RN+1

w2

|P̂ |α
dx−

∫
RN+1

F (w)
|P̂ |α

dx+O(ε)
]
.

Thus, by equation (2.3) and α = 1− η
2 > 0, we have that

(4.6) lim
ε→0

ε−(N+1)Jε(tεh+
ε ) = 2|P̂ |

(N−1)α
2 J(U) < 2|P̄ |

(N−1)α
2 J(U).
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Define
h−ε (x) := ψ(x−Qε)uε(

x−Qε
ε

) + ψ(x+Qε)uε(
x+Qε
ε

),

where ψ is a non-negative smooth radial function supported in B2rε(0) with |∇φ| ≤ 2
rε

and

φ(r) =
{

1 for r ∈ [0, rε],
0, for r ∈ [2rε,+∞),

where rε is chosen so that 4rε = min{dist(Qε, ∂Ω1), dist(Qε,Θ)}. Note that there exists a unique
sε > 0 such that J ′ε(sεh−ε )sεh−ε = 0. In virtue of Lemma 3.9, using the similar argument as above,
we can also obtain sε → 1 and furthermore

(4.7) lim
ε→0

ε−(N+1)Jε(sεh−ε ) = 2|Q̄|
(N−1)α

2 J(U).

Note that h+
ε and h−ε have disjoint supports for ε small. Let us define

hε = tεh
+
ε + sεh

−
ε .

Then hε ∈ Nε and by (4.6) and (4.7), we have
lim
ε→0

ε−(N+1)cε ≤ lim
ε→0

ε−(N+1)Jε(hε)

= lim
ε→0

[
ε−(N+1)Jε(tεh+

ε ) + ε−(N+1)Jε(sεh−ε )
]

< 2(|P̄ |
(N−1)α

2 + |Q̄|
(N−1)α

2 )J(U),
which contradicts with Lemma 3.4.
Case 2: ν̄ε → ν̄ > 0, that is, |Q̄| = a2

2 + ν̄ and |P̄ − Q̄| = ν − ν̄ ≥ 0. Consider the ball B ν̄
4
(Q̂)

with center at Q̂ = (0, a2+ν̄
2 ). Set one radial cutoff function ϕ ∈ C∞0 (RN+1) with ϕ(x) ≡ 1 for

x ∈ B ν̄
8
(0) and ϕ(x) ≡ 0 for x ∈ RN+1 \B ν̄

4
(0). Define the function

g−ε (x) = −ϕ(x− Q̂)w(x− Q̂
ε

)− ϕ(x+ Q̂)w(x+ Q̂

ε
),

where w is the unique positive solution of equation (2.3) with d = |Q̂|. There also exists t̄ε > 0
such that J ′ε(t̄εg−ε )t̄εg−ε = 0. Arguing as in Case 1, we can obtain the similar estimate as (4.6)

(4.8) lim
ε→0

ε−(N+1)Jε(t̄εg−ε ) = 2|Q̂|
(N−1)α

2 J(U) < 2|Q̄|
(N−1)α

2 J(U),

where t̄ε → 1 as ε→ 0+ and α > 0. Define

g+
ε (x) := ψ(x− Pε)uε(

x− Pε
ε

) + ψ(x+ Pε)uε(
x+ Pε
ε

),

where ψ is a radial smooth cut off function supported in B2rε(0) with |∇φ| ≤ 2
rε

and

φ(r) =
{

1 for r ∈ [0, rε],
0, for r ∈ [2rε,+∞),

where 4rε = min{dist(Pε, ∂Ω1), dist(Pε,Θ)}. It follows from Lemma 3.3 that rε/ε → +∞. Using
the similar argument as Case 1, we have J ′ε(s̄εg+

ε )s̄εg+
ε = 0 for some s̄ε > 0, and

(4.9) lim
ε→0

Jε(sεh−ε ) = 2εN+1|P̄ |
(N−1)α

2 J(U),

where s̄ε → 1 as ε→ 0+. Hence,
gε(x) = s̄εg

+
ε + t̄εg

−
ε ∈ Nε.
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Combining (4.8) and (4.9), we have

lim
ε→0

ε−(N+1)cε ≤ lim
ε→0

ε−(N+1)Jε(gε)

= lim
ε→0

[
ε−(N+1)Jε(s̄εg+

ε ) + ε−(N+1)Jε(t̄εg−ε )
]

<2(|Q̄|
(N−1)α

2 + |P̄ |
(N−1)α

2 )J(U),

which contradicts with Lemma 3.4. As a consequence, |P̄ | = |Q̄| = a2

2 . Recalling Lemma 2.4,
Theorem 2.3 and Lemma 3.9, equation (2.2) has a nonradial nodal solution concentrating at four
points ±P̄ ,±Q̄ in Ω. More precisely,

±P̄ = (0,±a
2

2 ) ± Q̄ = (0,±a
2

2 ).

That is, P̄ = Q̄. Then the corresponding solution of equation (1.1), still denoted by uε, concentrates
exactly at two orthogonal (N − 1)-dimensional spheres in surface |x| = a, placed the angle θ = 0
and θ = π

2 . �

4.2. Case η > 2. Contrary to Case η < 2, we expect that the points {±Pε}, {±Qε} should
converge to points ±P̄ ,±Q̄ in the annulus which have the largest distance from the origin, since
α = 1− η

2 < 0. There are indeed the points on the outer boundary.
Proof We begin to prove by contradiction. According to Lemma 3.2, without loss of generality,
we assume that {Pε}, {Qε} ⊂ Ω1, and that Pε = (0, b22 − νε) and Pε converge to point P̄ with
|P̄ | = b2

2 − ν for some ν > 0. That is to say, νε → ν. Without loss of generality, we also assume

Qε =
(
0, b

2

2 − ν̄ε
)

and ν̄ε < νε.

If ν̄ε → 0, that is, |Q̄| = b2

2 , similarly to Case η < 2, we have

lim
ε→0

ε−(N+1)cε ≤ 2(|P̂ |
(N−1)α

2 + |Q̄|
(N−1)α

2 )J(U)

< 2(|P̄ |
(N−1)α

2 + |Q̄|
(N−1)α

2 )J(U),

where P̂ = (0, b2−ν2 ) and α = 1 − η
2 < 0 is used. This is a contradiction. If ν̄ε → ν̄ > 0, that is,

|Q̄| = b2

2 − ν̄, similarly to Case η < 2, we have

lim
ε→0

ε−(N+1)cε ≤ 2(|P̄ |
(N−1)α

2 + |Q̂|
(N−1)α

2 )J(U)

< 2(|P̄ |
(N−1)α

2 + |Q̄|
(N−1)α

2 )J(U),

where Q̂ = (0, b2−ν̄2 ) and α = 1− η
2 < 0 is used. This is a contradiction again. Thus, we get that

|P̄ | = |Q̄| = b2

2 . Therefore, equation (2.2) has a nonradial nodal solution concentrating at four
points ±P̄ ,±Q̄ in Ω. More precisely,

±P̄ = (0,±b
2

2 ) ± Q̄ = (0,±b
2

2 ).

That is, P̄ = Q̄. The corresponding solution of equation (1.1), still denoted by uε, concentrates
exactly at two orthogonal (N − 1)-dimensional spheres in surface |x| = b, placed the angle θ = 0
and θ = π

2 . �
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5. Proof of Theorem 1.3

In this section, we consider the case η = 2, that is, α = 0. Our aim is to investigate the location
of the spikes of concentrating solution as ε→ 0+. Define the function

Ea1,a2(P1, P2) := min
{

a1
a1 + a2

|P1 − P2|,
a2

a1 + a2
|P1 − P2|, dist(P1, ∂Ω)}, dist(P2, ∂Ω)}

}
,

where P1, P2 ∈ L1 := L ∩ Ω1 and a1, a2 > 0. Here, L has been defined in Remark 3.8. Let

Fa1,a2 = max
(P1,P2)∈L1×L1

Ea1,a2(P1, P2).

We now state the following upper-bound of cε defined in Theorem 2.3.

Lemma 5.1. For δ > 0 small enough, we have

cε ≤ 4εN+1(J(U) + Ce−
2(1−δ)Fa1,a2

ε )

Proof Let us define

Θa1,a2(P1, P2) = {x ∈ Ω| a1|x− P1| = a2|x− P2|}

for every (P1, P2) ∈ L1 × L1, and set

Ri = min
{
dist(Pi, ∂Ω), dist(Pi,Θa1,a2(P1, P2))

}
respectively for i = 1, 2. It is easy to see from the definition of Θa1,a2(P1, P2) that BR1(P1) ∩
BR2(P2) = ∅ and BRi(Pi) ⊂ Ω for i = 1, 2. Moreover,

dist(P1,Θa1,a2(P1, P2)) = a2
a1 + a2

|P1 − P2|,

dist(P2,Θa1,a2(P1, P2)) = a1
a1 + a2

|P1 − P2|,

which implies that Ri ≥ Ea1,a2(P1, P2) for i = 1, 2. Let ψiε be smooth radial symmetric and
decreasing functions so that 0 ≤ ψiε ≤ 1 and ψiε(x) ≡ 1 for |x| ≤ Ri

ε − 1 and ψiε(x) ≡ 0 for |x| ≥ Ri
ε .

Then it follows that

U iε(x) := U(x− Pi
ε

)ψiε(
x− Pi
ε

) + U(x+ Pi
ε

)ψiε(
x+ Pi
ε

), i = 1, 2,

where U is the unique positive solution of equation (1.4). Obviously, U iε ∈ H](Ω). By (f1)-(f3)
and Theorem 2.3, it is easy to see that there exist tiε > 0, i = 1, 2 such that t1εU1

ε − t2εU2
ε ∈ Nε.

Using the similar arguments as in Theorem 1.2, we can obtain that {tiε} is bounded uniformly for
ε small. Recalling (1.5), we have

(5.1) U(x) + |∇U(x)| ≤ Ce−(1−δ)|x|
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for δ > 0 small. Since the supports of U(x−Piε )ψiε(x−Piε ) and U(x+Pi
ε )ψiε(x+Pi

ε ) are disjoint, it
follows from (5.1) and the boundedness of {tiε} for small ε that
(5.2)

Jε(t1εU1
ε )

=Jε(t1εU(x− P1
ε

)ψ1
ε(
x− P1
ε

)) + Jε(t1εU(x− P1
ε

)ψ1
ε(
x− Pi
ε

))

=(t1ε)2ε2

2

∫
BR1 (P1)

|∇(U(x− P1
ε

)ψ1
ε(
x− P1
ε

))|2dx+ (t1ε)2

2

∫
BR1 (P1)

|U(x
ε
− P1)ψ1

ε(
x− P1
ε

)|2dx

−
∫
BR1 (P1)

F (t1εU(x− P1
ε

)ψ1
ε(
x− P1
ε

)dx+ (t1ε)2ε2

2

∫
BR1 (−P1)

|∇(U(x+ P1
ε

)ψ1
ε(
x+ P1
ε

))|2dx

+ (t1ε)2

2

∫
BR1 (−P1)

|U(x+ P1
ε

)ψ1
ε(
x+ P1
ε

)|2dx−
∫
BR1 (−P1)

F (t1εU(x+ P1
ε

)ψ1
ε(
x+ P1
ε

))dx

=2εN+1
[(t1ε)2

2

∫
BR1

ε

(0)

(
|∇(U(x)ψ1

ε(x))|2 + |U(x)ψ1
ε(x)|2

)
dx−

∫
BR1

ε

(0)
F (t1εU(x)ψ1

ε(x))dx
]

≤2εN+1
[

max
t∈(0,∞)

J(tU) + Ce−2(1−δ)(R1
ε
−1)
]

≤2εN+1
[
J(U) + Ce−2(1−δ)R1

ε

]
.

Using the almost same argument as in (5.2), we have

(5.3) Jε(t2εU2
ε ) ≤ 2εN+1

[
J(U) + Ce−2(1−δ)R2

ε

]
.

Combining (5.2) and (5.3), using the fact that the supports of U1
ε and U2

ε are disjoint, we have

(5.4)

cε = Jε(uε) ≤ Jε(t1εU1
ε − t2εU2

ε )
= Jε(t1εU1

ε ) + Jε(t2εU2
ε )

≤ 4εN+1
[
J(U) + Ce−2(1−δ) min{R1,R2}

ε

]
≤ 4εN+1

[
J(U) + Ce−2(1−δ)Ea1,a2 (P1,P2)

ε

]
.

The conclusion follows from the arbitrariness of P1, P2. The proof is complete. �

Recall that uε ∈ H](Ω) is a nodal solution of equation (2.3). Let us define

Rε,+ := max{R > 0|BR(Pε) ⊂ Ω1
ε,+}, Rε,− := max{R > 0|BR(Qε) ⊂ Ω1

ε,−},

where Ω1
ε,± are the support sets of ū±ε . In virtue of Lemma 3.6, we have Rε,±

ε → ∞ as ε → 0+.
Obviously,

BRε,+(Pε) ∩BRε,−(Qε) = ∅, and BRε,+(Pε), BRε,−(Qε) ⊂ Ω1 ⊂ Ω.
Set

v+
ε (y) = v+

1,ε(y) + v+
2,ε(y) := ū+

ε (εy + Pε)ψ( |y|
Rε,+

) + ũ+
ε (εy − Pε)ψ( |y|

Rε,+
),

v−ε (y) = v−1,ε(y) + v−2,ε(y) := ū−ε (εy +Qε)ψ( |y|
Rε,−

) + ũ−ε (εy −Qε)ψ( |y|
Rε,−

),
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where ψ is the following smooth radial and decreasing cut-off function

(5.5) ψ(r) =
{

1 for r ∈ [0, 1
ε − δ

′],
0, for r ∈ [1

ε ,+∞),

with |ψ′(r)| ≤ C and δ′ > 0 small constant. It is easy to see that v±ε (y) ∈ H1
0 (BRε,±

ε

). Here, ūε, ũε
have been defined in Lemma 3.3. Recalling Theorem 2.3 and Lemma 3.9, we have for any t, s ∈ R

(5.6)

Jε(uε) ≥Jε(tu+
ε ) + Jε(su−ε )

=Jε,Ω1(tū+
ε ) + Jε,Ω2(tũ+

ε ) + Jε,Ω1(sū−ε ) + Jε,Ω2(sũ−ε )

=ε(N+1)
[
JΩ1

Pε,+
(tū+

ε (εy + Pε)) + JΩ2
Pε,−

(tũ+
ε (εy − Pε))

+ JΩ1
Qε,+

(sū−ε (εy +Qε)) + JΩ2
Qε,−

(sũ−ε (εy −Qε))
]

≥εN+1
[
JBRε,+

ε

(0)(tv+
1,ε) + JBRε,+

ε

(0)(tv+
2,ε) + JBRε,−

ε

(0)(sv−1,ε) + JBRε,−
ε

(0)(sv−2,ε)
]

− C(t)e−2(1−δ)Rε,+( 1
ε
−δ′) − C(s)e−2(1−δ)Rε,−( 1

ε
−δ′).

Here, Jε,Ωi , denote functional Jε whose integral region are Ωi, i = 1, 2. JΩ1
Pε,+

, JΩ2
Pε,−

, JΩ1
Qε,+

,
JΩ2

Qε,−
and JBRε,±

ε

(0) denote functional J whose integral region are Ω1
Pε,+, Ω2

Pε,−, Ω1
Qε,+, Ω2

Qε,−

and BRε,±
ε

(0), respectively. Moreover, C(t) and C(s) are bounded from above since we can always
choose t, s are bounded above.

It is easy to prove that for ε > 0 small enough,

(5.7)

 −∆u+ u = f(u), x ∈ BRε,±
ε

(0),
u = 0, x ∈ ∂BRε,±

ε

(0)

have positive ground state solutions vε,+ and vε,− in H1
0 (BRε,+

ε

(0)) and H1
0 (BRε,−

ε

(0)), respectively.
Using the well-known Gidas-Ni-Nirenberg’s theorem [26], we see that vε,+ and vε,− are both radial
symmetrical, and that vε,+, vε,− are nonincreasing with respect to r. It is easy to see from (f2)
that {vε,+} and {vε,−} are bounded uniformly for ε. Hence, since vε,+, vε,− are nonincreasing, we
have

(5.8) lim
|x|→∞

vε,±(x) = 0 uniformly for ε > 0 small enough.

Then, by the comparison principle, we see that for ε > 0 small enough, there exists a constant
c, C > 0 satisfying

(5.9) ce−(1+δ)Rε,±( 1
ε
−δ′) ≤ vε,±(Rε,±(1

ε
− δ′)) ≤ Ce−(1−δ)Rε,±( 1

ε
−δ′)

with any δ ∈ (0, 1) independent of ε. As in the proof of Theorem 4.1 in [14], we can extend vε,±
to the whole space RN+1 and denote it by

wε,± ≡
{
vε,±, for |x| ≤ Rε,±(1

ε − δ
′),

Vε,±, for |x| ≥ Rε,±(1
ε − δ

′),
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where Vε,± is a radial symmetric positive solution of the following equation −∆u+ u = f(u) for |x| > Rε,±(1
ε − δ

′),
u(Rε,±(1

ε − δ
′)) = vε,±(Rε,±(1

ε − δ
′)), and lim

|x|→∞
u(x) = 0.

Using the comparison principle and the above facts, we have that for any δ ∈ (0, 1), there exists a
constant C > 0 such that

(5.10) Vε,±(r) + |V ′ε,±(r)| ≤ Ce−(1−δ)r for |x| ≥ Rε,±(1
ε
− δ′).

Thus, there exist exactly tε,± > 0 such that

(5.11) J ′(tε,±wε,±)tε,±wε,± = 0.

Obviously, J(tε,±wε,±) ≥ J(U), where U is the unique positive solution of equation (1.4).
Moreover, we state the following estimates.

Lemma 5.2.

(5.12) JBRε,±
ε

(0)(tε,±vε,±) ≥ J(tε,±wε,±) + Ce−2(1+δ)Rε,±( 1
ε
−δ′),

where C, δ > 0 is independent of ε and δ′ has been given in (5.5).

Proof Note that by the standard elliptic estimates, wε,± → U in H1(RN+1) ∩ C2
loc(RN+1) as

ε → 0+, where U is the unique positive solution of equation (1.4). Thus, it is easy to see from
(5.11) that tε,± → 1 as ε→ 0+. And then,

J(tε,±wε,±)→ J(U), J(wε,±)→ J(U), as ε→ 0+.

Let us define gε,±(t) := J(twε,±), then by (f2) we have as ε→ 0+

g′′ε,±(tε,±) =
∫
RN+1

(|∇wε,±|2 + |wε,±|2)dx− 1
t2ε,±

∫
RN+1

f ′(tε,±wε,±)|tε,±wε,±|2dx

≤
∫
RN+1

(|∇wε,±|2 + |wε,±|2)dx− 1
t2ε,±

∫
RN+1

µf(tε,±wε,±)tε,±wε,±dx

→
∫
RN+1

(|∇U |2 + U2)dx−
∫
RN+1

µf(U)Udx

= (1− µ)
∫
RN+1

f(U)Udx,

which implies that there exist C > 0, t± ∈ (0, 1) and ε0 > 0 such that

(5.13) g′′ε,±(t) < −C for ε ≤ ε0 and t ∈ (1− t±, 1 + t±).

By (5.11), we have g′ε,±(tε,±) = J ′(tε,±wε,±)wε,± = 0, and then the following holds for ε small
enough,

J(wε,±) = J(tε,±wε,±) + 1
2g
′′
ε,±(ξε,±)(tε,± − 1)2
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for ξε,± ∈ (1 − t±, 1 + t±), which implies by (5.13), (5.9), (5.10) and the fact that vε,± ∈
H1

0 (BRε,±
ε

(0)) are the positive critical points of JBRε,±
ε

(0), that for ε small enough,

(5.14)

1
2C|tε,± − 1|2

≤J(tε,±wε,±)− J(wε,±)

= |tε,±|
2 − 1
2

∫
|x|≤

Rε,±
ε

(|∇vε,±|2 + |vε,±|2)dx−
∫
|x|≤

Rε,±
ε

(F (tε,±vε,±)− F (vε,±))dx

− |tε,±|
2 − 1
2

∫
D1

(|∇vε,±|2 + |vε,±|2)dx+
∫
D1

(F (vε,±)− F (tε,±vε,±))dx

+ |tε,±|
2 − 1
2

∫
D2

(|∇Vε,±|2 + |Vε,±|2)dx−
∫
D2

(F (Vε,±)− F (tε,±Vε,±))dx

≤Ce−2(1−δ)Rε,±( 1
ε
−δ′),

where
D1 :=

{
x ∈ RN+1|Rε,±(1

ε
− δ′) ≤ |x| ≤ Rε,±

ε

}
,

D2 :=
{
x ∈ RN+1||x| ≥ Rε,±(1

ε
− δ′)

}
.

It follows from (5.14) that

(5.15) |tε,± − 1| ≤ Ce−(1−δ)Rε,±( 1
ε
−δ′).

Let us note that
(5.16) JBRε,±

ε

(0)(tε,±vε,±) = J(tε,±wε,±) + JD1(tε,±vε,±)− JD2(tε,±Vε,±),

where JD1 , JD2 denote functional J whose integral region are Di, i = 1, 2, respectively. Combining
(5.9) and (5.10), there exists C > 0 such that for t ∈ (1

2 ,
3
2)

|J ′D1(tvε,±)vε,± − J ′D2(tVε,±)Vε,±| ≤ Ce−2(1−δ)Rε,±( 1
ε
−δ′),

which implies by (5.15) that for ε small enough

(5.17) |JD1(tε,±vε,±)− JD2(tε,±Vε,±)− JD1(vε,±) + JD2(Vε,±)| ≤ Ce−3(1−δ)Rε,±( 1
ε
−δ′).

Using integration by parts, by (f1), (f2) and (5.8) we have for any σ ∈ (0, 1)

JD2(Vε,±) =2− σ
2 J ′D2(Vε,±)Vε,± −

1− σ
2

∫
D2

(|∇Vε,±|2 + |Vε,±|2)dx

+
∫
D2

(2− σ
2 f(Vε,±)Vε,± − F (Vε,±))dx

≤− 2− σ
2 ωN [Rε,±(1

ε
− δ′)]NVε,±(Rε,±(1

ε
− δ′))

dVε,±(Rε,±(1
ε − δ

′))
dr

,

where we also use the fact that∫
D2

[−Vε,±∆Vε,± + |Vε,±|2 − f(Vε,±)Vε,±]dx = 0.

Using the similar argument, we also deduce that for any σ ∈ (0, 1),

JD1(vε,±) ≥ −σ2 ωN [Rε,±(1
ε
− δ′)]Nvε,±(Rε,±(1

ε
− δ′))

dvε,±(Rε,±(1
ε − δ

′))
dr

.
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According to the above facts, we have

(5.18)

JD1(vε,±)− JD2(Vε,±)

≥ωN [Rε,±(1
ε
− δ′)]Nvε,±(Rε,±(1

ε
− δ′))×(2− σ

2
d[Vε,±(Rε,±(1

ε − δ
′))]

dr
− σ

2
d[vε,±(Rε,±(1

ε − δ
′))]

dr

)
.

An easy computation yields

−d
2Ṽε,±
dr2 + N

r +Rε,±(1
ε − δ′)

dṼε,±
dr

+ Ṽε,± =
f(Vε,±(Rε,±(1

ε − δ
′))Ṽε,±)

Vε,±(Rε,±(1
ε − δ′))

, r > 0

and −
d2ṽε,±
dr2 + N

r +Rε,±(1
ε − δ′)

dṽε,±
dr

+ ṽε,± =
f(vε,±(Rε,±(1

ε − δ
′))ṽε,±)

vε,±(Rε,±(1
ε − δ′))

, r ∈ (0, Rε,±δ′),

ṽε,±(Rε,±δ′) = 0,
when

Ṽε,±(x) = Vε,±(|x|+Rε,±(1
ε
− δ′))/Vε,±(Rε,±(1

ε
− δ′))

and
ṽε,±(x) = vε,±(|x|+Rε,±(1

ε
− δ′))/vε,±(Rε,±(1

ε
− δ′)),

respectively. Using (f1) and (5.8), and the standard elliptic estimates, we have that Ṽε,± → Ṽ± in
C2
loc[0,∞) as ε→ 0+, and Ṽ± satisfies

d2Ṽ±
dr2 − Ṽ± = 0, r ∈ (0,∞), Ṽ±(0) = 1, Ṽ±(r) ≤ 1,

and then Ṽ±(r) = e−r. Similarly, ṽε,± → ṽ± in C2
loc[0, 1) as ε→ 0+, and ṽ± satisfies

d2ṽ±
dr2 − ṽ± = 0, r ∈ (0, 1), ṽ±(0) = 1, ṽ±(1) = 0.

It is easy to see from the above facts that
d(Ṽ±(r)− ṽ±(r))

dr

∣∣∣∣
r=0

> 0,

which implies by the uniform convergence of Ṽε,± and ṽε,± in C2
loc[0, 1) that for ε > 0 small enough

d(Vε,±(r)− vε,±(r))
dr

∣∣∣∣
r=Rε,±( 1

ε
−δ′)
≥ Cvε,±(Rε,±(1

ε
− δ′))).

Let σ close sufficiently to 1 in (5.18), then by (5.9) we have

(5.19)

JD1(vε,±)− JD2(Vε,±)

≥ c(π)[Rε,±(1
ε
− δ′)]N · [vε,±(Rε,±(1

ε
− δ′))]2

≥ Ce−2(1+δ)Rε,±( 1
ε
−δ′)

for some C > 0. It then follows from (5.17) that there exists C > 0 such that

(5.20)
JD1(tε,±vε,±)− JD2(tε,±Vε,±) ≥ JD1(vε,±)− JD2(Vε,±)− Ce−3(1−δ)Rε,±( 1

ε
−δ′)

≥ Ce−2(1+δ)Rε,±( 1
ε
−δ′),
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which, together with (5.16), implies that the conclusion of Lemma 5.2. The proof is complete. �

Lemma 5.3. For ε > 0 small enough, we have

cε ≥ εN+1
(

4J(U) + Ce−2(1+δ)Rε,+( 1
ε
−δ′) + Ce−2(1+δ)Rε,−( 1

ε
−δ′)

)
with δ > 0 small enough and independently of ε and δ′ has been given in (5.5).

Proof Since vε,± are positive ground state solutions of equation (5.7), it is easy to see that
JBRε,±

ε

(0)(tε,±vε,±) ≤ JBRε,±
ε

(0)(vε,±).

Thus, it follows from (5.12) that

(5.21)
JBRε,±

ε

(0)(vε,±) ≥ J(tε,±wε,±) + Ce−2(1+δ)Rε,±( 1
ε
−δ′)

≥ J(U) + Ce−2(1+δ)Rε,±( 1
ε
−δ′).

On the other hand, we take tε,i, sε,i > 0, i = 1, 2 in (5.6) such that
J ′ε,BRε,+

ε

(0)(tε,iv
+
i,ε)v

+
i,ε = 0, J ′ε,BRε,−

ε

(0)(sε,iv
−
i,ε)v

−
i,ε = 0.

Therefore, by the fact that vε,± are positive radial ground state solutions of equation (5.7), and
combining (5.6) and (5.21), we have the conclusion of Lemma 5.3. �

The proof of Theorem 1.3. Let

ψ(P,Q) := min{1
2 |P −Q|, dist(P, ∂Ω), dist(Q, ∂Ω)},

and
F0 = max

(P,Q)∈L1×L1
ψ(P,Q).

It follows from Lemma 5.1 and Lemma 5.3 that
(1− δ)Fa1,a2 ≤ (1 + δ) lim

ε→0+
min{Rε,+, Rε,+}(1− εδ′).

Since δ can be taken small arbitrarily and a1, a2 are arbitrary, we can obtain that
(5.22) 0 < F0 ≤ lim

ε→0+
min{Rε,+, Rε,−}.

On the other hand, since maximum and minimum points Pε, Qε belong to the xN+1-axis for
sufficiently small ε, there exist point Rε ∈ PεQε such that Rε ∈ ∂Ω1

ε,±. Moreover, for some
bε,± > 0,

|Pε −Rε| =
bε,+

bε,+ + bε,−
|Pε −Qε|, |Qε −Rε| =

bε,−
bε,+ + bε,−

|Pε −Qε|.

Thus, based on the definition of Rε,±, we have immediately

Rε,± ≤ min
{

bε,+
bε,+ + bε,−

|Pε −Qε|,
bε,−

bε,+ + bε,−
|Pε −Qε|, dist(Pε, ∂Ω), dist(Qε, ∂Ω)

}
By (5.22) and the definition of F0, we obtain

bε,±
bε,+ + bε,−

→ 1
2

as ε→ 0+. That is to say, ψ(Pε, Qε)→ F0 as ε→ 0+, and by (3.10), one has ψ(P̄ , Q̄) = F0. Since
nodal solution uε of equation (2.2) belonges to H](Ω), we also have ψ(−Pε,−Qε)→ F0 as ε→ 0+,
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and ψ(−P̄ ,−Q̄) = F0. Since maximum and minimum points of uε belong to the xN+1-axis for
sufficiently small ε, by using the similar arguments as Lemma 5.1 in [35], we can obtain

dist(P̄ , ∂Ω1) = dist(Q̄, ∂Ω1) = 1
2 |P̄ − Q̄|,

dist(−P̄ , ∂Ω2) = dist(−Q̄, ∂Ω2) = 1
2 |P̄ − Q̄|,

where Ω1,Ω2 have been defined in (3.9). It is easy to conclude from the above identity that the
locations of four concentration points are as follows

P̄ = (0, 3a2 + b2

8 ), Q̄ = (0, a
2 + 3b2

8 ), −P̄ = (0,−3a2 + b2

8 ), −Q̄ = (0,−a
2 + 3b2

8 ),
or,

P̄ = (0, a
2 + 3b2

8 ), Q̄ = (0, 3a2 + b2

8 ), −P̄ = (0,−a
2 + 3b2

8 ), −Q̄ = (0,−3a2 + b2

8 ).

Recalling Lemma 2.4 and Theorem 2.3, we have proved that there exists a nonradial nodal solution
uε of equation (2.2) whose maximum and minimum points concentrate at four points in the
xN+1-axis contained in Ω. The corresponding solution of equation (1.1), still denoted by uε,
concentrates exactly at four N − 1-dimensional spheres in A, two of them (corresponding to P̄ , Q̄)
are characterized by the angle θ = 0, and by the radial coordinate

r = 1
2
√

3a2 + b2, and r = 1
2
√
a2 + 3b2

the others (corresponding to −P̄ , −Q̄) paced the angle θ = π and the radial coordinate

r = 1
2
√
a2 + 3b2, and r = 1

2
√

3a2 + b2.

The proof is complete. �
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