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Abstract. We consider the minimization (or maximization) of quotients of two classical mod-

ular invariant functions. Let z ∈ H := {z ∈ C : Im(z) > 0} and θ(β, z) and ζ(s, z) be the Theta

and Epstein Zeta functions associated with a two-dimensional lattice:

ζ(s, z) =
∑

(m,n)∈Z2\{0}

Im(z)s

|mz + n|2s
, θ(α, z) =

∑
(m,n)∈Z2

e
−πα· |mz+n|

2

Im(z) .

We completely classify the optimal shape for

min(max)z∈H
θ(β, z)

θk(α, z)
, min
z∈H

ζ(s, z)

θk(α, z)
for α, β, k > 0, s > 1.

These results have direct applications to conformal and Liouville filed theory, and string

theory via the partition functions. Besides, these results yield extremum of differences of modular

invariant functions, which have applications to mathematics of crystallization and interacting
particle theory.

1. Introduction and main results

In this paper, we consider the minimum or maximum of quotients of modular invariant functions.
A function W is called modular invariant if

W(γ(z)) =W(z), ∀ γ ∈ SL(2,Z), (1.1)

where the modular group SL(2,Z) is finitely generated by z 7→ − 1
z and z 7→ z + 1.

In Subsection 1.1, we first introduce our main mathematical results. In Subsection 1.2, we
introduce the physical background of quotients of modular invariant functions, and then state
their applications in conformal field theory, string theory and physics. As one can see below,
in many cases the minima are hexagonal patterns, which shadows light on why hexagonal shape
prevails in nature.

1.1. Brief introduction to our main results. Let z ∈ H := {z ∈ C : Im(z) > 0} and Λ =√
1

Im(z)

(
Z ⊕ zZ

)
be the lattice in R2 with area of unit cell and parameter z. The Epstein Zeta

and Theta functions associated with the lattice Λ are defined as

ζ(s,Λ) : =
∑

P∈Λ\{0}

1

|P|2s
, θ(α,Λ) : =

∑
P∈Λ

e−πα|P|
2

.

Using the parametrization z of Λ, one has

ζ(s, z) := ζ(s,Λ) =
∑

(m,n)∈Z2\{0}

Im(z)s

|mz + n|2s
, θ(α, z) := θ(α,Λ) =

∑
(m,n)∈Z2

e−πα·
|mz+n|2

Im(z) . (1.2)

In 1950s, in a series of work in number theory, Rankin [42], Cassels [10], Ennola [17], Diamond
[16] established that

Theorem A (Rankin, Cassels, Ennola, Diamonda 1950-1960s). For s > 1, up to rotations and
translations,

Minimaz∈Hζ(s, z) = ei
π
3 .

1
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The higher dimensional Epstein Zeta becomes much more difficult. The first rigorous theorem
appeared in 2006 by Sarnak-Strömbergsson [37].

Motivated by Theorem A, Montgomery [29] further proved that

Theorem B (Montgomery 1988). For α > 0, up to rotations and translations

Minimaz∈Hθ(α, z) = ei
π
3 .

Note that by Mellin transform, Zeta functions can be expressed by Theta functions, i.e., ζ(s, z) =
πs

Γ(s)

∫∞
0

(
θ(α, z)−1

)
αs−1dα.Hence Theorem B implies Theorem A. Theorems A and B have become

classic results in number theory, and have deep applications in other fields.
Theorems A and B laid down the foundations to the optimality of triangular(hexagonal) vor-

tices in Ginzburg-Landau theory (Abrikosov [1], Sandier-Serfaty [36, 38]). Theorem B has direct
applications to crystallization among lattices (Bétermin [6]), Ohta-Kawasaki models in di-block
copolymers (Chen-Oshita [9], Goldman-Muratov-Serfaty [20]), Bose-Einstein condensates ([21]),
crystallization of particle interactions (Blanc-Lewin [8], Luo-Wei [23]), minimal frame operator
norms (Faulhuber [18]) and many others. Furthermore, Theta functions are deeply connected
to string theory (Alvarez-Gaumé-Moore-Vafa [2]), Gauss core model (Cohn and Courcy-Ireland
[11], Prestipino-Saija-Giaquinta [33]), sphere packings (Conway-Sloane [12], Viazovska [39]), the
reverse Minkowski inequality (Regev and Stephens-Davidowitz [34], Regev [35]), and communica-
tions (Barreal-Damir-Freij-Hollanti [4]).

In this paper, we consider quotients of special modular invariant functions. The Epstein Zeta
function and Theta function in Theorems A and B are two most important modular invariant
functions. As Mumford [30] commented ”The theory of theta functions is far from a finished
polished topic”), the Theta and Zeta functions have rich inner structures and deep applications.
Note that a power of modular invariant function is still modular invariant. Motivated by Theorems
A and B, it is natural to consider the following problem:

Problem 1.1. Assume that α, β, b, a > 0, s > 1. Find the optimal lattice for

Minima(Maxima)z∈H
θb(β, z)

θa(α, z)
and

ζb(s, z)

θa(α, z)
.

In this paper we give a complete answer to Problem 1.1 in Corollary 1.1 and Theorem 1.2. Our
first theorem concerns the quotient of Theta functions.

Theorem 1.1 (Quotient of Theta functions). Assume that α > 0, β > 0. Then, up to rotations
and translations

(a) if β > α, βα > 1 or β < α, βα < 1, then

Maximaz∈H
θ(β, z)

θ(α, z)
= ei

π
3 , (1.3)

and Minimaz∈H
θ(β,z)
θ(α,z) does not exist.

(b) if β < α, βα > 1 or β > α, βα < 1, then

Minimaz∈H
θ(β, z)

θ(α, z)
= ei

π
3 , (1.4)

and Maximaz∈H
θ(β,z)
θ(α,z) does not exist.

See the illustration of the regions in Figure 1.

Note that the four regions β > α, βα > 1 or β < α, βα < 1 or β < α, βα > 1 or β > α, βα < 1
are determined by a line β = α and a curve αβ = 1 in the first quadrant, see Picture 1.

Note that neither Theorem B implies Theorem 1.1 nor Theorem 1.1 implies Theorem B, while
Theorem 1.1 reveals the inner structure of Theorem B. In fact, through the simple deformation

θ(α, z) = θ(α,z)
θ(β,z) · θ(β, z) and Theorem 1.1, one infers that if Minimaz∈Hθ(β, z) = ei

π
3 for some
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Figure 1. (α, β) plane for extremes of θ(β,z)
θ(α,z) .

β > 1, then Minimaz∈Hθ(α, z) = ei
π
3 for any 1 ≤ α < β; roughly speaking, the minima of β > 1 in

θ(β, z) implies the same minima of smaller β.

Next we consider general quotients of two powers of Theta functions. Since θb(β,z)
θa(α,z) = ( θ(β,z)

θa/b(α,z)
)b,

it is enough to consider Minima(Maxima)z∈H
θ(β,z)
θk(α,z)

for k > 0. By Theorem 1.1 we have the

following two corollaries.

Corollary 1.1 (Quotient of Theta functions with different powers). Assume that β > α ≥ 1.
Then, up to rotations and translations

(1) for all k ∈ [1,∞), Maximaz∈H
θ(β,z)
θk(α,z)

= ei
π
3 ;

(2) for k ∈ (0, 1), Maximaz∈H
θ(β,z)
θk(α,z)

does not exists.

Corollary 1.1 provides a complete new perspective on quotient of Theta functions with different
powers. Corollary 1.1 shows that the form in Theorem 1.1 is critical.

Theorem 1.1 can be generalized to sums of Theta functions.

Corollary 1.2 (Quotient of sum of Theta functions). Let min1≤j≤K βj ≥ max1≤j≤K αj ≥ 1 and
any aj , bj ≥ 0, where i, j = 1 · · ·K and K ≥ 2 is arbitrary. Then, up to rotations and translations

Maximaz∈H

∑K
j=1 bjθ(βj , z)∑K
j=1 ajθ(αj , z)

= ei
π
3 .

Next, we shall consider the quotient of Zeta and Theta functions, namely,

ζ(s, z)

θ(α, z)
. (1.5)

In general, when we consider the quotient form (1.5) with a parameter k, i.e., ζ(s,z)
θk(α,z)

, we find that

there is a threshold k = 2s in the classification of the minimum. Precisely,

Theorem 1.2 (Quotient of Zeta and Theta functions). Assume that s > 1, α ≥ 3s. Then up to
rotations and translations

(a) if k ≤ 2s(independent of α), then

Minimaz∈H
ζ(s, z)

θk(α, z)
= ei

π
3 . (1.6)

(b) if k > 2s(independent of α), then Minimaz∈H
ζ(s,z)
θk(α,z)

does not exist.

With some extra lower bound of the minimum value of the quotient form, we could deduce that
the minimizer of the quotient form implies the minimum of difference form. Precisely, we have the
following
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Figure 2. Hexagonal and rhombic lattices.

Figure 3. Square and rectangular lattices.

Corollary 1.3 (Differences of Zeta and Theta functions with different powers). Assume that
s ∈ (1, 12], α ≥ 3s. Then up to rotations and translations

(a) if k ≤ 2s(independent of α), then

Minimaz∈H
(
ζ(s, z)− θk(α, z)

)
= ei

π
3 . (1.7)

(b) if k > 2s(independent of α), then Minimaz∈H
(
ζ(s, z)− θk(α, z)

)
does not exist.

The minimum of differences of Zeta and Theta functions with different powers given by Corollary
1.3 have many applications in the mathematics of crystallization and lattice minimization problems.
In particular, for k = 1, it yields that Minimaz∈H

(
ζ(s, z)− θ(α, z)

)
= ei

π
3 whenever s ∈ (1, 12] and

α ≥ 3s. This implies hexagonal crystallization under one-well potentials.

1.2. Quotients of modular invariant functions: background and applications. Let L be
a n−dimensional lattice spanned by the basis {v1,v2, · · · ,vn}. Denote that

∑
P∈L F(β · |P|2)

and
∑

P∈LH(β · |P|2) be the summations on the lattice L with respect to the background poten-
tials(functions) F and H respectively, here usually α, β > 0 are the free parameters representing
some physical quantity(like temperature or its variant). In this paper, we propose and consider
the min(max) problem of the quotient of summations on the lattice as follows

min
L

∑
P∈L F(β · |P|2)∑
P∈LH(α · |P|2)

and max
L

∑
P∈L F(β · |P|2)∑
P∈LH(α · |P|2)

. (1.8)

As we can see below problem (1.8) arises naturally in physical and number theoretical problems.
To the best of our knowledge, this paper is the first time to consider to the min(max) problem
of quotient of summations on the lattice(1.8). Denote that ρ = |L| := det{v1,v2, · · · ,vn} be the
density of the lattice L, it is straightforward to show that between different densities, one has the
following relation ∑

P∈L, |L|=ρ

F(β · |P|2) =
∑

P∈L, |L|=1

F(βρ2 · |P|2). (1.9)

Therefore, one usually normalizes the density of the lattice to be 1. The summation on the lattice
enjoys another important property: it is invariant under special linear group SL(n,Z) of degree n
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Figure 4. Fundamental domain and hexagonal point.

over a field Z which is the set of n× n matrices with determinant 1. It is ready to check that∑
P∈L, |L|=1

F(β · |P|2) =
∑

P∈AL, |L|=1

F(β · |P|2), where A ∈ SL(n,Z).

In this paper, we are interested in dimension n = 2, since the two-dimensional theories capture
many essential features of higher dimensions, without sharing the complexities of higher dimensions
(Alvarez-Gaumé-Moore-Vafa [2]). In this case, the lattice L spanned by {v1,v2}(see Figures 2 and
3) can be determined by a complex variable z defined as follows

z =
v2

v1
, or v2 = zv1.

In this way, a lattice with density 1 can be parameterized by L =
√

1
Im(z)

(
Z⊕zZ

)
, where z belongs

to the upper half plane H := {z = x+ iy ∈ C : y > 0}. In this way, we define

SF (β, z) = SF (β, L) :=
∑

P∈L, |L|=1

F(β · |P|2).

Then as in (1.9) or check directly, SF (β, z) is modular invariant, i.e.,

SF (β, γ(z)) = SF (β, z), ∀γ ∈ SL(2,Z). (1.10)

The fundamental domain associated to the group SL(2,Z) is

D0 := {z ∈ H : |z| > 1, |Re(z)| < 1

2
}. (1.11)

We also note that SF (β, z) is symmetric about the y−axis, i.e.,

SF (β,−z) = SF (β, z). (1.12)

Then the fundamental domain associated to the symmetries of SF (β, z) in (1.10) and (1.12) is

DG := {z ∈ H : |z| > 1, 0 < Re(z) <
1

2
}, (1.13)

see an illustration in Figure 4.
When the background potential F takes the forms of Gaussian(exponential) and Riesz (inverse

power) respectively, one gets the Theta and Zeta functions (1.2) respectively.
The Theta, Zeta functions and their variants play a fundamental role in number theory and

statistical physics. They still provide many insights to many more abstract theories and have
many new applications to newly developed physical problems/theories(see detailed description in
the previous Subsection). In many references and textbooks (see e.g. Cohen [15]), Zeta functions
defined above are also called as real analytic Eisenstein series and denoted by E(s, τ). There is a
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third type of basic modular invariant functions (besides Theta and Zeta functions) that appeared
as √

Im(τ)|η(τ)|2. (1.14)

Here the Dedekind eta function η(τ) is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn), q = exp(2πiτ).

The modular invariant function (1.14) has applications to minimal frame operator norms and Ohta-
Kawasaki models in di-block copolymers(Chen-Oshita [9]), and Ginzburg-Landau theory (Sandier-

Serfaty [36]). In fact,
√

Im(τ)|η(τ)|2 is a variant of Zeta function (or real analytical Eisenstein
series). Indeed, their relation are included in Kronecker first limit formula, which states that

ζ(s, τ) =
π

s− 1
+ 2π(γ − log(2)− log(

√
Im(τ)|η(τ)|2)) +O(s− 1), s→ 1+, (1.15)

here γ is the Euler-Mascheroni constant. On the other hand, the Dedekind eta functions still can
be expressed by Theta functions, it can be found in the book by Nakayama [31](page 233). We
state it as follows

Proposition 1.1 (Dedekind η functions in terms of Theta functions: Nakayama [31]). For τ ∈ H,
it holds that √

Im(τ)|η(τ)|2 = −
√

6

4

(
θ(

3

2
, τ)− 2θ(6, τ)

)
.

On locating the extremals of determinants of Laplacians, in 1988, Osgood-Phillips-Sarnak found
that

Proposition 1.2 (Maximum of Dedekind eta function, Osgood-Phillips-Sarnak [32], page 206).

Maximaz∈H
√

Im(τ)|η(τ)|2 = ei
π
3 , (1.16)

Due the deep applications in various fields, Chen-Oshita [9]) and Sandier-Serfaty [36] encoun-
tered Dedekind eta function in their problems, provide completely different proofs of Proposition
1.2 in their papers. An alternatively proof can also be obtained by Proposition 1.1 and Theorem
1 in our paper (Luo-Wei [26]).

The min(max) problem of a single form of Theta, Zeta, eta functions and their variants are
well studied(Theorems A, B and Proposition 1.2). In this paper, we study the min(max) problem
of quotients of Theta, and Zeta functions and their variants. Namely, by studying them serving
as model cases, we get a better understanding of quotients of modular invariant functions or the
general problem (1.8). This looks like a purely mathematical problem, while it turns out that
quotients of Theta, Zeta functions, and their variants appear naturally in conformal field theory,
statistical field theory, and string theory, as we shall see below.

In the classical book of conformal field theory (Francesco-Mathieu-Sénéchal [40]), the free-boson
partition function(without zero-mode) is

Zbos(τ) =
1√

Im(τ)|η(τ)|2
, (1.17)

see Section 10.2 in [40].
When the free bosonic theory compactified in a circle with radius R, the corresponding partition

function on the torus is

Z(R, τ) =
R√
2
Zbos(τ)

∑
m,m′

exp(−πR
2|mτ −m′|2

2 Im(τ)
). (1.18)

See Section 10.4 in Francesco-Mathieu-Sénéchal [40], Bershadsky-Klebanov [7] and Alvarez-Gaum-
Moore-Vafa [2](page 28). By the definition of Theta function given by (1.2), the widely used
partition function (1.18) can be rewritten as
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Z(R, τ) =
R√
2

θ(R
2

2 , τ)√
Im(τ)|η(τ)|2

, (1.19)

which is quotient form of Theta and eta functions (up to a power and scaling). See (1.17) and
(1.19) also in the classical book of statistical field theory (Mussardo [41], chapter 12, pages 404-408)
for the free energy.

When R =
√

2p′

p , with p′ > p two coprime integers, the partition function for the O(n) model

of the Ap′−1, Ap−1 minimal theory is (Francesco-Mathieu-Sénéchal [40])

ZAp′−1,Ap−1
(τ) =

1

2

(
Z(
√

2pp′, τ)− Z(

√
2p′

p
, τ)
)
. (1.20)

In the ADE classification, one of the partition functions is

ZAp′−1,Dp/2+1
(τ) =

1

2

(
Z(

√
8p′

p
, τ)− Z(

√
2p′

p
, τ)− Z(

√
p′p

2
, τ) + Z(

√
2pp′, τ)

)
.

The others have the familiar forms and we omit them here. See more in pages 406-407 in [40].
They are still the quotient form of Theta, eta and their variants. For example, by (1.19), the
partition function in (1.20) can be deformed as

ZAp′−1,Ap−1
(τ) =

√
2p′/p

2

pθ(pp′, τ)− θ(p
′

p , τ)√
Im(τ)|η(τ)|2

.

Besides, the quotients of modular invariant functions play a key role in two-dimensional confor-
mal field theory. The holographic correspondence between topological gravity coupled to an average
of Narain’s family of massless free bosons in two dimensions, discovered by Maloney-Witten [28]
and by Afhkami-Jeddi et al. [22], involves the quotients of Epstein Zeta and eta functions.

The real analytic Eisenstein series E(s, τ) is defined as

E(s, τ) :=
∑

m,m′∈Z2\{0}

(Im(τ))s

| mτ +m′ |2s
.

The average of partition functions of c massless free bosons in two dimensions over Narain
moduli space and a U(1)c×U(1)c Chern-Simons gauge in three dimensions coupled to topological
gravity. The three quantities are the same (as summarized by Benjamin-Keller-Ooguri-Zadeh [5]):

1: The average partition function of c free bosons(Afhkami-Jeddi et al. [22]) or the average of
the genus 1 partition function over the Narain moduli space(Maloney-Witten [28]).

ZM(τ) =

∫
M dµZ(µ)∫
M dµ

=
E( c2 , τ)

(
√

Im(τ)|η(τ)|2)c
, M = O(c, c;Z) \O(c, c)/O(c)×O(c). (1.21)

2. The Poincaré sum of a U(1)c vacuum character.

ZT c(τ) =
∑

γ∈Γ∞\SL(2,Z)

| χvac(γτ) |2=
E( c2 , τ)

(
√

Im(τ)|η(τ)|2)c
, χvac(τ) =

1

η(τ)
c (1.22)

3: An exotic 3d gravity computation of a sum over geometries of a U(1)c×U(1)c abelian Chern-
Simons theory:

ZT c(τ) =
∑

3-manifold geometries

e−SCS =
E( c2 , τ)

(
√

Im(τ)|η(τ)|2)c
. (1.23)
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In the purely mathematical side, the explicit expression ZT c(τ) appeared items 1,2,3 above
is a reformulation of an argument originally by Siegel, and is known as the Siegel-Weil formula
(Benjamin-Keller-Ooguri-Zadeh [5]).

In the physical and applied side, the explicit expressions ZT c(τ) and Z(R, τ) (given by (1.18)
or (1.19)) and many others have appeared as partition functions in physical systems. Partition
function plays fundamental role in statistical physics: the total energy, free energy, entropy, and
pressure, can all be expressed in terms of the partition function or its derivatives. In particular,
the Helmholtz free energy(F ) and the partition function(Z) have the following relation

F = −kBT log(Z).

Here kB is Boltzmann’s constant and T is the temperature. Therefore, at a given temperature,
locating the min(max) of the partition functions is equivalent to finding the max(min) of the
Helmholtz free energy. In this line, since the partition function determines many basic physical
quantities, we are led to the following problem

Problem A (Torus geometry and max(min) partition functions). How does the geometry of the
torus affect the value of partition functions in various physical models? In particular, what kind of
geometry of torus such that the partition functions achieve the extreme values?

Regarding ZT c(τ)(given by (1.21),(1.22), or (1.23)) and Z(R, τ)(given by (1.18) or (1.19)), we
have the following corollary which follows from Theorems A, B and Proposition 1.2.

Corollary 1.4. Assume that c > 2, α > 0. Then

(a) Minimaτ∈HZT c(τ) = ei
π
3 ,

(b) Minimaτ∈HZ(R, τ) = ei
π
3 .

Note that Z(R, τ) denotes the partition function of free bosonic theory compactified in a circle
with radius R. Considering the effect of the value of the circle radius to partition functions, one
would ask the following question

Problem 1.2. Assume that R1, R2 > 0. Classify

min(max)τ∈H
Z(R2, τ)

Z(R1, τ)
.

By (1.18) or (1.19), one has

Z(R2, τ)

Z(R1, τ)
=
θ(
R2

2

2 , τ)

θ(
R2

1

2 , τ)
.

As a result, Problem 1.2 is completely solved in Theorem 1.1. A similar problem to Problem 1.2
is the following

Problem 1.3. Assume that R > 0, c > 2. Classify

min
τ∈H

ZT c(τ)

(Z(R, τ))c
.

By (1.22) or (1.23) and (1.18) or (1.19), one has

ZT c(τ)

(Z(R, τ))c
= (

√
2

R
)c

ζ( c2 , τ)

θc(R
2

2 , τ)

Problem 1.3 is solved by Theorem 1.2.

The paper is organized as follows: In Section 2, we give the proof of Theorem 1.1 and Corollaries
1.1 and 1.2. In Section 3, we establish a minimum principle for modular invariant functions and
collect some summation formulas for Zeta functions. Finally, we give the proof of Theorem 1.2
and Corollary 1.3 in Section 4.
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2. Proof of Theorem 1.1 and its corollaries

Recall that the fundamental domain associated to the group G is given by

DG := {z ∈ H : |z| > 1, 0 < Re(z) <
1

2
}.

For convenience, we define

Γ := {z ∈ H : Re(z) =
1

2
, Im(z) ≥

√
3

2
}. (2.1)

First we show that by deformation Theorem 1.1 follows from the following

Theorem 2.1. Assume that β > α ≥ 1. Then

(1) Maximaz∈H
θ(β,z)
θ(α,z) = ei

π
3 .

(2) Minimaz∈H
θ(β,z)
θ(α,z) does not exist.

In fact, in the case (a) of Theorem 1.1: β > α, βα > 1, we consider two subcases, (a1): β > α ≥ 1
and (a2): β > 1

α ≥ 1. The subcases (a1) are exactly proved in Theorem 2.1. For subcases (a2), we

use the deformation θ(β,z)
θ(α,z) = α θ(β,z)

θ( 1
α ,z)

, then it reduces to Theorem 2.1. The case (b): β < α, βα < 1

in Theorem 1.1 contains two subcases, (b1): 1
β > 1

α ≥ 1 and (b2): 1
β > α ≥ 1. In subcases (b1)

and (b2), one uses the deformations θ(β,z)
θ(α,z) = α

β

θ( 1
β ,z)

θ( 1
α ,z)

and θ(β,z)
θ(α,z) = 1

β

θ( 1
β ,z)

θ(α,z) respectively, then they

are reduced to Theorem 2.1. The case (c): β < α, βα > 1 in Theorem 1.1 contains two subcases,
(c1): α > β ≥ 1 and (c2): α > 1

β ≥ 1. In subcases (c1) and (c2), one uses the deformations
θ(β,z)
θ(α,z) = 1

θ(α,z)
θ(β,z)

and θ(β,z)
θ(α,z) = 1

β
1

θ(α,z)

θ( 1
β
,z)

respectively, then they are reduced to Theorem 2.1. Similar

analysis applied to case (d): β > α, βα < 1 in Theorem 1.1, we omit the details here.
We now prove Theorem 2.1. The proof consists of two main steps.
In Step One we show that the maximizer can be reduced to the vertical line Γ. We shall prove

that

max
z∈H

θ(β, z)

θ(α, z)
= max
z∈DG

θ(β, z)

θ(α, z)
= max

z∈Γ

θ(β, z)

θ(α, z)
for β > α ≥ 1. (2.2)

This is a consequence of Proposition 2.1. Proposition 2.1 also implies that assuming the existence
of the minimizers, one has

min
z∈H

θ(β, z)

θ(α, z)
= min
z∈DG

θ(β, z)

θ(α, z)
= min
z=iy,y≥1

θ(β, z)

θ(α, z)
for β > α ≥ 1. (2.3)

In Step Two, we show that the maximizer is located on z = 1
2 + i

√
3

2 = ei
π
3 . We shall prove that

max
z∈Γ

θ(β, z)

θ(α, z)
is achieved at

1

2
+ i

√
3

2
for β > α ≥ 1. (2.4)

This follows from Proposition 2.2. By Proposition 2.3 we have

min
z=iy,y≥1

θ(β, z)

θ(α, z)
does not exist for β > α ≥ 1. (2.5)

Combining Step One and Two we complete the proof of Theorem 2.1.
In the remaining part we prove these Propositions.

2.1. Transversal monotonicity. In this subsection, we aim to prove a transversal monotonicity
on quotient of theta functions. It is stated as follows

Proposition 2.1. Assume that β > α ≥ 1. Then

∂

∂x

θ(β, z)

θ(α, z)
≥ 0 for z ∈ DG .
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The proof of Proposition 2.1 will be given at the end of this subsection. Before that we shall
prove some preliminary lemma first.

In terms of one dimensional Theta function, one has an alternative expression of Theta functions.

Lemma 2.1. Assume that z ∈ H and α > 0. Then∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx) =

√
α

y
· θ(α, z). (2.6)

Here the classical one-dimensional theta function is given by

ϑ(X;Y ) :=
∑
n∈Z

e−πn
2Xe2nπiY , X > 0, Y ∈ R. (2.7)

Recall that

Lemma 2.2 (Montgomery’s first Lemma [29]). Assume that α ≥ 1. Then

∂

∂x
θ(α, z) ≤ 0 for z ∈ DG .

Or equivalently,
∂

∂x

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx) ≤ 0 for z ∈ DG .

In our previous work [24], we have established that

Lemma 2.3 (Corollary of Theorem 3.4 in [24]). Assume that s ≥ 1. Then

∂

∂x

∂

∂s
(
√
sθ(s, z)) ≥ 0 for z ∈ DG .

Using Lemma 2.3 and fundamental theorem of calculus, one has√
βθ(β, z)−

√
αθ(α, z) =

∫ β

α

∂

∂s
(
√
sθ(s, z))ds.

Then
∂

∂x

(√
βθ(β, z)−

√
αθ(α, z)

)
=

∫ β

α

∂

∂x

∂

∂s
(
√
sθ(s, z))ds. (2.8)

Therefore, by Lemma 2.3 and (2.8), it holds that

Lemma 2.4. Assume that β > α ≥ 1. Then

∂

∂x

(√
βθ(β, z)−

√
αθ(α, z)

)
≥ 0 for z ∈ DG . (2.9)

Or equivalently,

∂

∂x

(∑
n∈Z

e−πβyn
2

ϑ(
y

β
;nx)−

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx)

)
≥ 0 for z ∈ DG . (2.10)

We shall also prove that

Lemma 2.5. Assume that β > α ≥ 1. Then√
βθ(β, z) ≥

√
αθ(α, z) for z ∈ DG .

Or equivalently, ∑
n∈Z

e−πβyn
2

ϑ(
y

β
;nx) ≥

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx) for z ∈ DG . (2.11)

By Lemma 2.4, to prove Lemma 2.5, it suffices to prove that
√
βθ(β, z) ≥

√
αθ(α, z) on the left

boundary of half fundamental domain DG . These are done in Lemmas 2.6 and 2.7.
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Lemma 2.6. Assume that β > α ≥ 1. Then√
βθ(β, z) |Re(z)=0≥

√
αθ(α, z) |Re(z)=0 for Im(z) ≥ 1.

Lemma 2.7. Assume that β > α ≥ 1. Then√
βθ(β, z) ||z|=1,0≤Re(z)≤ 1

2
≥
√
αθ(α, z) ||z|=1,0≤Re(z)≤ 1

2
.

By Lemma 2.1, ∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx) |x=0= ϑ3(αy)ϑ3(

y

α
).

Then we have

Lemma 2.8 (Evaluation of theta function on x−axis).

θ(α, iy) =

√
y

α
ϑ3(αy)ϑ3(

y

α
) for

y

α
has a positive lower bound,

= ϑ3(αy)ϑ3(
α

y
) for

α

y
has a positive lower bound.

Here ϑ3 is the Jacobi theta function of third type and defined as

ϑ3(x) :=
∑
n∈Z

e−πn
2x.

By Lemma 2.8, Lemma 2.6 is equivalent to

Lemma 2.9 (=Lemma 2.6). Assume that β > α ≥ 1. Then

ϑ3(βy)ϑ3(
y

β
) ≥ ϑ3(αy)ϑ3(

y

α
) for y ≥ 1.

To prove Lemma 2.9, it suffices to prove that

Lemma 2.10. Assume that α ≥ 1. Then

∂

∂α

(
ϑ3(αy)ϑ3(

y

α
)
)
≥ 0 for y ≥ 1.

By symmetry, Lemma 2.10 is equivalent to

Lemma 2.11. Assume that α ≥ 1. Then

∂

∂y

(
ϑ3(αy)ϑ3(

α

y
)
)
≥ 0 for y ≥ 1.

By Lemma 2.8, Lemma 2.11 is equivalent to following Montegomery’s Lemma [29].

Lemma 2.12 (Montegomery’s second Lemma [29]). Assume that α ≥ 1. Then

∂

∂y
θ(α, z) ≥ 0 for z ∈ DG .

Therefore, Lemma 2.6 is proved. It remains to prove Lemma 2.7. By the group invariance(z 7→
1

1−z ), one has

Lemma 2.13 (From arc to 1
2−vertical line). Assume that α, β > 0, it holds that√

βθ(β, z)−
√
αθ(α, z) ||z|=1,Re(z)∈[0, 12 ]=

√
βθ(β,

1

2
+ iy′)−

√
αθ(α,

1

2
+ iy′), y′ ∈ [

1

2
,

√
3

2
],

explicitly, y′ = 1
2

√
1+Re(z)
1−Re(z) . In particular,√
βθ(β, i)−

√
αθ(α, i) =

√
βθ(β,

1

2
+ i

1

2
)−
√
αθ(α,

1

2
+ i

1

2
). (2.12)

In fact, one has
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Lemma 2.14. Assume that α, β > 0, it holds that

∂

∂y

(√
βθ(β,

1

2
+ iy)−

√
αθ(α,

1

2
+ iy)

)
≥ 0 for y ∈ [

1

2
,

√
3

2
].

Lemma 2.14 is proved by fundamental theorem of calculus√
βθ(β,

1

2
+ iy)−

√
αθ(α,

1

2
+ iy) =

∫ β

α

∂

∂s

(√
sθ(s,

1

2
+ iy)

)
ds

and Lemma 2.15 as follows

Lemma 2.15 ((2) of Lemma 2.17). For s ≥ 1,

∂

∂y

∂

∂s

(√
sθ(s,

1

2
+ iy)

)
≥ 0 for y ∈ [

1

2
,

√
3

2
].

On the other hand, by Lemma 2.6,√
βθ(β, i)−

√
αθ(α, i) ≥ 0 for β > α ≥ 1. (2.13)

This and (2.12) in Lemma 2.13 implies that√
βθ(β,

1

2
+ i

1

2
)−
√
αθ(α,

1

2
+ i

1

2
) ≥ 0 for β > α ≥ 1. (2.14)

Therefore, (2.14) and Lemmas 2.13, 2.14 yield Lemma 2.7.
We are in a position to prove the main result(Proposition 2.1) in this subsection.

Proof. Proof of Proposition 2.1. The key is to use a new but equivalent quotient form,
√
βθ(β, z)√
αθ(α, z)

.

It suffices to prove that

∂

∂x

√
βθ(β, z)√
αθ(α, z)

≥ 0 for z ∈ DG .

A direct calculation shows that

∂

∂x

√
βθ(β, z)√
αθ(α, z)

=
∂
∂x (
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x (
√
αθ(α, z))

√
βθ(β, z)

αθ2(α, z)
.

Then it is also equivalent to proving that

∂

∂x
(
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x
(
√
αθ(α, z))

√
βθ(β, z) ≥ 0 for z ∈ DG . (2.15)

Regrouping the terms, we get that

∂

∂x
(
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x
(
√
αθ(α, z))

√
βθ(β, z)

=
∂

∂x
(
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x
(
√
βθ(β, z))

√
βθ(β, z)

+
∂

∂x
(
√
βθ(β, z))

√
βθ(β, z)− ∂

∂x
(
√
αθ(α, z))

√
βθ(β, z)

Then it holds

∂

∂x
(
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x
(
√
αθ(α, z))

√
βθ(β, z)

=
√
β
∂

∂x
(θ(β, z))

(√
αθ(α, z)−

√
βθ(β, z)

)
+
√
βθ(β, z)

∂

∂x

(√
αθ(α, z)−

√
βθ(β, z)

)
.
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To simplify the expression, let

Ba(α, β, z) : =
√
β
∂

∂x
(θ(β, z))

(√
αθ(α, z)−

√
βθ(β, z)

)
Bb(α, β, z) : =

√
βθ(β, z)

∂

∂x

(√
αθ(α, z)−

√
βθ(β, z)

)
.

Then

∂

∂x
(
√
βθ(β, z))

√
αθ(α, z)− ∂

∂x
(
√
αθ(α, z))

√
βθ(β, z) = Ba(α, β, z) + Bb(α, β, z). (2.16)

On the other hand, by Lemmas 2.2 and 2.5

Ba(α, β, z) ≥ 0. (2.17)

And similarly by Lemma 2.4

Bb(α, β, z) ≥ 0. (2.18)

(2.16), (2.17) and (2.18) yield (2.15). These complete the proof.
�

2.2. Monotonicity on the 1
2−Vertical line. In this subsection, we aim to prove that

Proposition 2.2. Assume that β > α ≥ 1. Then

∂

∂y

θ(β, z)

θ(α, z)
|Re(z)= 1

2
≤ 0 for Im(z) ≥

√
3

2
.

To prove Proposition 2.2, we establish one more auxiliary lemma except those in previous
subsection.

Lemma 2.16. Assume that β > α ≥ 1. Then

∂

∂y

(√
βθ(β, z)−

√
αθ(α, z)

)
|Re(z)= 1

2
≤ 0 for Im(z) ≥

√
3

2
.

Via the deformation,

∂

∂y

(√
βθ(β, z)−

√
αθ(α, z)

)
=

∂

∂y

∫ β

α

∂

∂s
(
√
sθ(s, z))ds

=

∫ β

α

∂2

∂y∂s
(
√
sθ(s, z))ds,

Lemma 2.16 is deduced by item (1) in Lemma 2.17, which is proved by our previous paper [24].
In fact, item (1) in Lemma 2.17 is followed by Proposition 4.1 in [24], the proof of items (2), (3)
is similar, hence we omit the detail here.

Lemma 2.17 ([24]). Assume that s ≥ 1. Then

(1) ∂2

∂y∂s

(√
sθ(s, z)

)
|Re(z)= 1

2
≤ 0 for Im(z) ≥

√
3

2 .

(2) ∂2

∂y∂s

(√
sθ(s, z)

)
|Re(z)= 1

2
≥ 0 for Im(z) ∈ [ 1

2 ,
√

3
2 ].

(3) ∂2

∂y∂s

(√
sθ(s, z)

)
|Re(z)=0≤ 0 for Im(z) ≥ 1.

Proof. Proof of Proposition 2.2. Using the deformation,√
β

α
· ∂
∂y

θ(β, z)

θ(α, z)
=

∂

∂y

√
βθ(β, z)√
αθ(α, z)
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A direct calculation and deformation show that

(
√
αθ(α, z))2 · ∂

∂y

√
βθ(β, z)√
αθ(α, z)

=
∂

∂y
(
√
βθ(β, z)) · (

√
αθ(α, z))− ∂

∂y
(
√
αθ(α, z)) · (

√
βθ(β, z))

=
( ∂
∂y

(
√
βθ(β, z)) · (

√
αθ(α, z))− ∂

∂y
(
√
αθ(α, z)) · (

√
αθ(α, z))

)
+
( ∂
∂y

(
√
αθ(α, z)) · (

√
αθ(α, z))− ∂

∂y
(
√
αθ(α, z)) · (

√
βθ(β, z))

)
=
√
αθ(α, z) · ∂

∂y

(√
βθ(β, z)−

√
αθ(α, z)

)
+

∂

∂y
(
√
αθ(α, z)) ·

(√
αθ(α, z)−

√
βθ(β, z)

)
.

For convenience, we denote that

Ha(α, β, z) : =
√
αθ(α, z) · ∂

∂y

(√
βθ(β, z)−

√
αθ(α, z)

)
,

Hb(α, β, z) : =
∂

∂y
(
√
αθ(α, z)) ·

(√
αθ(α, z)−

√
βθ(β, z)

)
.

Then

(
√
αθ(α, z))2 · ∂

∂y

√
βθ(β, z)√
αθ(α, z)

= Ha(α, β, z) +Hb(α, β, z).

By Lemma item (1) of Lemma 2.17, if β > α ≥ 1, then

Ha(α, β, z) |Re(z)= 1
2
≤ 0 for Im(z) ≥

√
3

2
.

By Lemmas 2.5 and 2.12, if β > α ≥ 1, then

Hb(α, β, z) |Re(z)= 1
2
≤ 0 for Im(z) ≥

√
3

2
.

�

Similar to the proof of Proposition 2.2, using Lemmas 2.5, 2.12 and 2.17(item (3)), we have

Proposition 2.3. Assume that β > α ≥ 1. Then

∂

∂y

θ(β, z)

θ(α, z)
|z=iy, y≥1≤ 0.

2.3. Proof of Corollaries 1.1 and 1.2. Proof of Corollary 1.1. For k ≥ 1, we use the deformation
as follows

θ(β, z)

θk(α, z)
=
θ(β, z)

θ(α, z)
· 1

θk−1(α, z)
.

Here k − 1 ≥ 0, the desired result follows from Theorem 1.1 and Montgomery’s Theorem A.
For k < 1, by Lemmas 2.1 and 2.8, we have the asymptotic

θ(β, z)

θk(α, z)
→

√
y
β

(
√

y
α )k

=
(
√
α)k√
β

(
√
y)1−k → +∞, as y → +∞.

This proves the nonexistence of the maximum.
For Corollary 1.2, we follow the steps of proof of Theorem 1.1. Namely, Corollary 1.2 yielded

by Propositions 2.4 and 2.5 in the following.

Proposition 2.4. If min1≤j≤K βj ≥ max1≤j≤K αj ≥ 1 and any aj , bj ≥ 0, where i, j = 1 · · ·K
and K ≥ 2 is arbitrary. Then

∂

∂x

∑K
j=1 bjθ(βj , z)∑K
j=1 ajθ(αj , z)

≥ 0 for z ∈ DG .
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Proof. It is shown that the derivative of quotient of sum of Theta functions can be decomposed
into sum of derivative of quotient of Theta functions. In fact, a direct calculation shows that

∂x

∑
j bjθ(βj , z)∑
i aiθ(αi, z)

=
∑
i,j

aibj
θx(βj , z)θ(αi, z)− θ(βj , z)θx(αi, z)

(
∑
k akθ(αk, z))

2

=
∑
i,j

aibj
θ2(αi, z)

(
∑
k akθ(αk, z))

2
· ∂x

θ(βj , z)

θ(αi, z)
.

That is, there exists non-negative functions cij such that

∂x

∑
j bjθ(βj , z)∑
i aiθ(αi, z)

=
∑
i,j

cij · ∂x
θ(βj , z)

θ(αi, z)
. (2.19)

(2.19) and Proposition 2.1 yield the result.
�

Proposition 2.5. If min1≤j≤K βj ≥ max1≤j≤K αj ≥ 1 and any aj , bj ≥ 0, where i, j = 1 · · ·K
and K ≥ 2 is arbitrary. Then

∂

∂y

∑K
j=1 bjθ(βj , z)∑K
j=1 ajθ(αj , z)

|Re(z)= 1
2
≤ 0 for Im(z) ≥

√
3

2
.

Proof. The idea of the proof is similar to that of Proposition 2.4. We compute that

∂y

∑
j bjθ(βj , z)∑
i aiθ(αi, z)

=
∑
i,j

aibj
θy(βj , z)θ(αi, z)− θ(βj , z)θy(αi, z)

(
∑
k akθ(αk, z))

2

=
∑
i,j

aibj
θ2(αi, z)

(
∑
k akθ(αk, z))

2
· ∂y

θ(βj , z)

θ(αi, z)
.

Then there exists non-negative functions cij such that it holds the following kind of linear relation

∂y

∑
j bjθ(βj , z)∑
i aiθ(αi, z)

=
∑
i,j

cij · ∂y
θ(βj , z)

θ(αi, z)
.

One then restricts the relation on the 1
2−vertical line,

∂y

∑
j bjθ(βj , z)∑
i aiθ(αi, z)

|Re(z)= 1
2
=
∑
i,j

cij · ∂y
θ(βj , z)

θ(αi, z)
|Re(z)= 1

2
. (2.20)

The sign of ∂y
θ(βj ,z)
θ(αi,z)

|Re(z)= 1
2

is non-positive by Proposition 2.2. Then the result follows by (2.20).

�

3. Minimum principles and summation formulas

There are some nice structures in θ(β,z)
θ(α,z) , as shown in the proof of Theorem 1.1. While to prove

Theorem 1.2, we need some minimum principles. In the latter part of this section, we collect some
summation formulas and lower, upper-bounds estimates of one-dimensional Theta functions.

3.1. Minimum princples. The first minimum principle(inspired by Rankin [42]) is a baby version
of the general ones. It concludes that for any symmetric modular invariant functions satisfying
two monotonicity conditions admit the minimum at hexagonal point(ei

π
3 ).

Proposition 3.1 (A minimum principle). Assume that W is modular invariant, i.e.,

W(
az + b

cz + d
) =W(z), for all

(
a b
c d

)
∈ SL2(Z), (3.1)
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and

W(−z) =W(z).

If

∂

∂y
W(z) > 0, z ∈ DG ∩ {y ≥ a} for some a >

√
3

2

∂

∂x
W(z) < 0, z ∈ DG ∩ {y ≥ b} for some b <

√
3

2

(3.2)

and
a

1
4 + a2

≥ b. (3.3)

Here DG is the fundamental domain corresponding to modular group SL2(Z), explicitly, DG =
{z ∈ H : |z| > 1, 0 < x < 1

2}. Then

min
z∈H
W(z) = min

z∈DG
W(z) is attained at ei

π
3 (hexagonal point).

Proof. By the first part of (3.2), we have

min
z∈DG

W(z) = min
z∈DG∩{y≤a}

W(z)

We then assume minz∈DG∩{y≤a}W(z) is attained at z1 := (x1, y1). Then y1 ≤ a. Since b < a, by

the second part of (3.2), we have

x1 =
1

2
. (3.4)

Taking

(
0 1
−1 1

)
∈ SL2(Z), we define z2 :=

(
0 1
−1 1

)
z1, it follows that

z2 =
1

1− z1
=

1
2

1
4 + y2

1

+ i
y1

1
4 + y2

1

and

W(z2) =W(z1).

This implies that z2 still attains the minimum of minz∈DGW(z). Now we need an elementary
inequality, namely,

u2
1
4 + u2

2

≥ u1
1
4 + u2

1

if
1

2
≤ u2 ≤ u1.

From this equality, one has Im(z2) ≥ b. In fact,

Im(z2) =
y1

1
4 + y2

1

≥ a
1
4 + a2

if
1

2
≤ y1 ≤ a.

By (3.3), we have z2 ∈ DG ∩ {y ≥ b}. Still by the second part of (3.2) and z2 is the minimum

point, there must has Re(z2) = 1
2 , i.e.,

1
2

1
4 +y21

= 1
2 . It yields that y1 =

√
3

2 . This and (3.4) yield the

result. These complete the proof.
�

In many cases, the monotonicity estimates in (3.2) may not hold for such a large domain
(cylinder, y ≥ or y ≥ b). In fact, we can replace such a large domain (an infinite cylinder) to a
finite rectangle domain. While we should add a comparison inequality as

W(z) >W(z0) for some z0 ∈ DG ∩ {y < c}, and any z ∈ DG ∩ {y ≥ c}.

In practice, such a point z0 can be choose to very special and easily calculated points like i or ei
π
3 .

We state it precisely for application as follows.
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Proposition 3.2 (A refined minimum principle). Assume that W is modular invariant, i.e.,

W(
az + b

cz + d
) =W(z), for all

(
a b
c d

)
∈ SL2(Z),

and

W(−z) =W(z).

If

(1) ∂
∂yW(z) > 0, z ∈ DG ∩ {c ≥ y ≥ a} for some a >

√
3

2 ;

(2) ∂
∂xW(z) < 0, z ∈ DG ∩ {c ≥ y ≥ b} for some b <

√
3

2 ;
(3) W(z) >W(z0) for some z0 ∈ DG ∩ {y < c}, and any z ∈ DG ∩ {y ≥ c} where c > a.

Here
a

1
4 + a2

≥ b

and DG is the fundamental domain corresponding to modular group SL2(Z), explicitly, DG = {z ∈
H : |z| > 1, 0 < x < 1

2}. Then

min
z∈H
W(z) = min

z∈DG
W(z) is attained at ei

π
3 (hexagonal point).

Proof. Item (3) implies that

min
z∈DG

W(z) = min
z∈DG∩{y≤c}

W(z).

The rest of the proof is similar to the proof of Proposition 3.1, hence we omit the details here.
�

We shall use Proposition 3.2 to prove Theorem 1.2. To Proposition 3.2, we shall select suitably

of the pair (a, b) satisfying a
1
4 +a2

≥ b and a >
√

3
2 . It is crucial to select the pair (a, b). In the

following, we choose (a, b) = ( 4
3 ,

48
73 ) and c = 2. The corresponding estimates of (1), (2) and (3)

are established in Lemmas 3.1-3.3 respectively.
We have the following computation at some particular point.

Lemma 3.1. Assume that s > 1, α ≥ 2s. Then

ζ(s, z)

θk(α, z)
|Im(z)≥2

/ ζ(s, z)

θk(α, z)
|
z=ei

π
3
> 1.

This implies that for α ≥ s+ 10, s ≥ 2, it holds that

min
z∈H

ζ(s, z)

θk(α, z)
= min
z∈DG

ζ(s, z)

θk(α, z)
= min
z∈DG∩{y≤2}

ζ(s, z)

θk(α, z)
.

Lemma 3.2. Assume that s > 1, α ≥ 2s. Then

∂

∂x

ζ(s, z)

θk(α, z)
< 0 for z ∈ DG ∩ {2 ≥ y ≥

48

73
}.

Lemma 3.3. Assume that s > 1, α ≥ 2s. Then

∂

∂y

ζ(s, z)

θk(α, z)
> 0 for z ∈ DG ∩ {2 ≥ y ≥

4

3
}.
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3.2. Summation formulas. To prove Lemmas 3.1-3.3, we need some preliminary and auxiliary
tools.

We first recall some basic estimates. By skilfully using of the Euler-Maclaurin summation
formula, Rankin deduced that in his paper implicitly

Lemma 3.4 (A summation formula, Rankin 1953 [42]). Assume that z ∈ H and s > 1. Then∑
n∈Z

1

|mz + n|2s
=

Γ( 1
2 )Γ(s− 1

2 )

Γ(s)
y1−2s 1

m2s−1
+ σ · s

2

(2s+ 1)s+
1
2

(2s+ 2)s+1
y−(2s+1) 1

m2s+1
, σ ∈ [−1, 1].

Here z = x+ iy is an complex number in the upper half plane.

It looks that there is no exact and explicit summation formula for
∑
n∈Z

1
|mz+n|2s , hence Lemma

3.4 is the best available one to use. In Lemma 3.4, one can see that∑
n∈Z

1

|mz + n|2s
= approximate part + error part.

At least for large y, we get

approximate part :=
Γ( 1

2 )Γ(s− 1
2 )

Γ(s)
y1−2s 1

m2s−1

error part := σ · s
2

(2s+ 1)s+
1
2

(2s+ 2)s+1
y−(2s+1) 1

m2s+1
.

By Lemma 3.4, one has

Lemma 3.5. Assume that z ∈ H and s > 1. Then
∞∑
m=1

∑
n∈Z

1

|mz + n|2s
= ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s)
y1−2s + σ · ξ(2s+ 1)

s

2

(2s+ 1)s+
1
2

(2s+ 2)s+1
y−(2s+1), σ ∈ [−1, 1].

Finally, one obtains the approximate and error part of Zeta functions ζ(s, z).

Lemma 3.6. Assume that z ∈ H and s > 1. Then

ζ(s, z) =
∑

(m,n)∈Z2\{0}

ys

|mz + n|2s

= 2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s)
y1−s + σ · ξ(2s+ 1)s

(2s+ 1)s+
1
2

(2s+ 2)s+1
y−(s+1), σ ∈ [−1, 1].

Proof. Recall that

ζ(s, z) =
∑

(m,n)∈Z2\{0}

ys

|mz + n|2s
. (3.5)

We split the summation in terms of m into m = 0, m > 0, m < 0. Note that when m = 0, the
double summation in (3.5) becomes∑

n∈Z\{0}

ys

|n|2s
= 2ys

∞∑
n=1

1

n2s
= 2ξ(2s)ys.

Then it holds that

ζ(s, z) =
∑

(m,n)∈Z2\{0}

ys

|mz + n|2s
=2ξ(2s)ys +

∞∑
m=1

∑
n∈Z

ys

|mz + n|2s
+

−1∑
m=−∞

∑
n∈Z

ys

|mz + n|2s

=2ξ(2s)ys + 2

∞∑
m=1

∑
n∈Z

ys

|mz + n|2s
.

(3.6)
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Therefore, by Lemma 3.5, we have

ζ(s, z) = 2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s)
y1−s + σ · ξ(2s+ 1)s

(2s+ 1)s+
1
2

(2s+ 2)s+1
y−(s+1), σ ∈ [−1, 1].

�

There is another useful tool. Rankin deduced that in his paper implicitly

Lemma 3.7 (A summation formula, Rankin 1953 [42]). Assume that z ∈ H and s > 1. Then

ζy(s, z) =2s
[
ξ(2s)ys−1 − s− 1

s
ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s)
y−s

+ ξ(2s+ 1)
(
σ1 ·

1

2
s

(2s+ 1)s+
1
2

(2s+ 2)s+1
+ σ2 · (s+ 1)

(2s+ 3)s+
3
2

(2s+ 4)s+2

)
y−(s+2)

]
, σ1, σ2 ∈ [−1, 1].

Proof. Recall that

ζ(s, z) =
∑

(m,n)∈Z2\{0}

ys

|mz + n|2s
.

A direct calculation yields that

ζy(s, z) =
∑

(m,n)∈Z2\{0}

sys−1

|mz + n|2s
− 2sys+1m2

|mz + n|2(s+1)
.

Splitting the summation in terms of m into m = 0, m > 0, m < 0, and by symmetry, we get that

ζy(s, z) = 2sξ(2s)ys−1 + 2sys−1
∞∑
m=1

∑
n∈Z

1

|mz + n|2s
− 4sys+1

∞∑
m=1

m2
∑
n∈Z

1

|mz + n|2(s+1)
.

Note that the summation
∑
n∈Z

1
|mz+n|2s is studied in Lemma 3.4. The rest of the proof followed

by Lemmas 3.4 and 3.5.
�

At the end of this section, we recall some estimates on one-dimensional Theta functions. Recall
that in (2.7)

ϑ(X;Y ) :=
∑
n∈Z

e−πn
2Xe2nπiY ,

where X > 0 and Y ∈ R.
The following Lemmas 3.8 and 3.9 are proved in [25].

Lemma 3.8. [25]. Assume X > 1
5 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

Here

ϑ(X) := 4πe−πX(1− µ(X)), ϑ(X) := 4πe−πX(1 + µ(X)),

and

µ(X) :=

∞∑
n=2

n2e−π(n2−1)X . (3.7)
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Lemma 3.9. [25]. Assume X < min{ π
π+2 ,

π
4 log π} = π

π+2 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) ≤ ∂

∂Y
ϑ(X;Y ) ≤ −ϑ(X) sin(2πY ).

Here

ϑ(X) := πe−
π

4XX−
3
2 ; ϑ(X) := X−

3
2 .

4. Proof of Theorem 1.2 and its corollary

In this section, we give the proof of Theorem 1.2. By the minimum principle given by Proposition
3.2, it suffices to prove Lemmas 3.1-3.3. We prove Lemmas 3.2, 3.3, and 3.1 in Subsections 4.1, 4.2
and 4.3 respectively. In Subsection 4.4, we give the proof of Corollary 1.3.

4.1. ∂x estimates. By a direct computation and deformation, we have

∂x
ζ(s, z)

θk(α, z)
=

ζ(s, z)

θk(α, z)
·
(ζx(s, z)

ζ(s, z)
− k θx(α, z)

θ(α, z)

)
= − ζ(s, z)

θk(α, z)
sin(2πx) ·

( −ζx(s, z)

sin(2πx)ζ(s, z)
− k −θx(α, z)

sin(2πx)θ(α, z)

)
.

Lemma 3.2 is equivalent to

Lemma 4.1. Assume that α ≥ 2s, s > 1. Then

−ζx(s, z)

sin(2πx)ζ(s, z)
− 2s

−θx(α, z)

sin(2πx)θ(α, z)
> 0 for z ∈ DG ∩ {2 ≥ y ≥

48

73
}.

In the rest of this subsection, we prove Lemma 4.1. To prove it, we estimate −ζx(s,z)
sin(2πx)ζ(s,z) and

−θx(s,z)
sin(2πx)θ(s,z) separately. For −θx(s,z)

sin(2πx)θ(s,z) , we use lower and upper bounds given by Lemmas 3.8

and 3.9. While for −ζx(s,z)
sin(2πx)ζ(s,z) , getting a lower bound of it directly becomes complicated. To

overcome it, we use a relation between ζ(s, z) and θ(α, z). Namely, we use the identity

ζ(s, z) =
πs

Γ(s)

∫ ∞
0

(
θ(α, z)− 1

)
αs−1dα.

Then by taking derivative with respect to x, we get an identity of ζx(s, z) in terms of θx(α, z)

ζx(s, z) =
πs

Γ(s)

∫ ∞
0

θx(α, z)αs−1dα. (4.1)

Using (4.1), we can get the bounds of ζx(s, z) by bounds of θx(α, z). Together with summation

formula (3.6), we can bound −ζx(s,z)
sin(2πx)ζ(s,z) .

We now start the detailed proof. With the expression of theta function in Lemma 2.1, namely,

θ(α, z) =

√
y

α
·
∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx). (4.2)

Using bounds of 1-d Theta functions(ϑ(X;Y )) given by Lemmas 3.8 and 3.9, one has

Lemma 4.2 (An upper bound of −θx(α,z)
sin(2πx) ). Depending on the value of y

α , it holds that

• for y
α ≥

1
5 ,

−θx(α, z)

sin(2πx)
≤ 8π(1 + µ(

y

α
))

√
y

α

∞∑
n=1

ne−πy(n2α+ 1
α );
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• for y
α ≤

π
π+2 ,

−θx(α, z)

sin(2πx)
≤ 2(

y

α
)−1

∞∑
n=1

ne−παyn
2

.

Here we denote

µ(X) :=

∞∑
n=2

n2e−π(n2−1)X .

With Lemma 4.2, to bound −θx(s,z)
sin(2πx)θ(s,z) , we need a lower bound of θ(α, z). By (4.2), we have

Lemma 4.3 (Lower bounds of θ(α, z)). Assume that α, y > 0. It holds that

• for y
α ≥ 1, then θ(α, z) ≥

√
y
α .

• for y
α ≤ 1, then θ(α, z) ≥ 1.

Proof. The first part is trivial. The second part based on a duality formula of Jacobi theta function

of third type. Recall that ϑ3(x) =
∑
n∈Z e

−πn2x. Then θ(α, z) ≥
√

y
αϑ( yα ; 0) =

√
y
αϑ3( yα ) =

ϑ3(αy ) ≥ 1.

�

Combining Lemma 4.2 with Lemma 4.3, we get an upper bound of −θx(α,z)
sin(2πx)θ(α,z) .

Lemma 4.4 (An upper bound of −θx(α,z)
sin(2πx)θ(α,z) ). Depending on the value of y

α , it holds that

• for y
α ≥

1
5 ,

−θx(α, z)

sin(2πx)θ(α, z)
≤ 8π(1 + µ(

y

α
))

∞∑
n=1

ne−πy(n2α+ 1
α );

• for y
α ≤

π
π+2 ,

−θx(α, z)

sin(2πx)θ(α, z)
≤ 2(

y

α
)−

3
2

∞∑
n=1

ne−παyn
2

.

Here

µ(X) :=

∞∑
n=2

n2e−π(n2−1)X .

We proceed to get the lower bound of −ζx(α,z)
sin(2πx)ζ(α,z) . Using (4.1), we first estimate the lower

bound of θx(α, z). By (4.2) and bounds of 1-d Theta functions(ϑ(X;Y )) given by Lemmas 3.8 and
3.9, we have

Lemma 4.5 (A lower bound of −θx(α,z)
sin(2πx) ). Depending on the value of y

α , it holds that

• for y
α ≥

1
5 ,

−θx(α, z)

sin(2πx)
≥ 8π(1− µ(

y

α
))

√
y

α

∞∑
n=1

ne−πy(n2α+ 1
α );

• for y
α ≤

π
π+2 ,

−θx(α, z)

sin(2πx)
≥ 2π(

y

α
)−1

∞∑
n=1

ne−π(n2y+ 1
4y )α.

Here

µ(X) :=

∞∑
n=2

n2e−π(n2−1)X .



22 SENPING LUO AND JUNCHENG WEI

Proceeding by (4.1),

−ζx(s, z)

sin(2πx)
=

πs

Γ(s)

∫ ∞
0

−θx(α, z)

sin(2πx)
αs−1dα

=
πs

Γ(s)

(∫ y

0

−θx(α, z)

sin(2πx)
αs−1dα+

∫ ∞
y

−θx(α, z)

sin(2πx)
αs−1dα

)
≥ πs

Γ(s)

∫ ∞
y

−θx(α, z)

sin(2πx)
αs−1dα.

(4.3)

Using the incomplete gamma function Γ(s, x), which is defined as

Γ(s, x) =

∫ ∞
x

ts−1e−tdt,

together with Lemma 4.5 and (4.3), we have

Lemma 4.6 (A lower bound of −ζx(s,z)
sin(2πx) ). For s > 1, y > 0, it holds that

−ζx(s, z)

sin(2πx)
≥ πs

Γ(s)

2π

y

∞∑
n=1

n ·
Γ(s+ 1, π(n2y2 + 1

4 ))

(π(n2y + 1
4y ))s+1

.

Now we need a lower bound of the incomplete gamma function Γ(s, x).
Integrating by parts, one has the recursion in s, i.e.,

Γ(s, x) = xs−1e−x + (s− 1)Γ(s− 1, x) for s ≥ 2. (4.4)

We need a lower bound for incomplete gamma function Γ(s, x). By using the recursion formula
given by (4.4) and some monotonicity properties, Pinelis [27] deduced that

Lemma 4.7 (Lower-bound functions of incomplete gamma function Γ(s, x)). The incomplete
gamma function Γ(s, x) has the following

Γ(s, x)



>
(

(x+2)s−xs−2s

2s + Γ(s)
)
e−x for s > 3;

= (x2 + 2x+ 2)e−x for s = 3;

>
(

(x+2)s−1+xs−1−2s−1

2 + Γ(s)
)
e−x for s ∈ (2, 3);

= (x+ 1)e−x for s = 2;

>
(

(x+2)s−xs−2s

2s + Γ(s)
)
e−x for s ∈ (1, 2);

= e−x for s = 1.

Using Lemmas 4.7 and 4.6, we have

Lemma 4.8 (A lower bound of −ζx(s,z)
sin(2πx) ). For s > 1, x ∈ [0, 1

2 ] and y > 0, it holds that

−ζx(s, z)

sin(2πx)
≥ 2s

y

(
y +

1

4y

)−(s+1)
e−π(y2+ 1

4 ).

Now we are ready to obtain an effective lower bound of −ζx(s,z)
sin(2πx)ζ(s,z) . By Lemma 4.8 and the

upper bound of ζ(s, z) given by the summation formula in Lemma 3.5, we obtain that

Lemma 4.9 (A lower bound of −ζx(s,z)
sin(2πx)ζ(s,z) ). For s > 1, x ∈ [0, 1

2 ] and y > 0, it holds that

−ζx(s, z)

sin(2πx)ζ(s, z)
≥

2s
y

(
y + 1

4y

)−(s+1)
e−π(y2+ 1

4 )

2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s) y1−s + ξ(2s+ 1)s (2s+1)s+
1
2

(2s+2)s+1 y−(s+1)

.

Lemma 4.9 is quite useful when the parameter s is large, while when s is small, we have a more
precise bound(Lemma 4.11). By Lemmas 4.2 and 4.9, to prove the main Lemma 4.1 for the cases
s ≥ 4, it suffices to prove that



QUOTIENT OF MODULAR INVARIANT FUNCTIONS 23

Lemma 4.10 (An elementary inequality). Assume that s ≥ 4, α ≥ 3s. Then for y ∈ [ 48
73 , 2], it

holds that
2s
y

(
y + 1

4y

)−(s+1)
e−π(y2+ 1

4 )

2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s) y1−s + ξ(2s+ 1)s (2s+1)s+
1
2

(2s+2)s+1 y−(s+1)

≥

{
3( yα )−

3
2 e−παy for y

α ≤ 1,

9πe−πy(α+ 1
α ) for y

α ≥ 1.

Since α ≥ 2s ≥ 8, the proof of Lemma 4.10 is trivial, hence we omit the details here.
It remains to prove the main Lemma 4.1 for the cases s ∈ (1, 4]. When s is small, we could

deduce a precise lower bound for −ζx(s,z)
ζ(s,z) sin(2πx) . We first have

Lemma 4.11 (A lower bound of −ζx(s,z)
sin(2πx) : s ≤ 4). Assume that s ∈ (1, 4], x ∈ [0, 1

2 ]. Then for

y ≥ 48
73 , it holds that

−ζx(s, z)

sin(2πx)
≥ 16

3

√
y
πs+1

Γ(s)
Ks− 1

2
(2πy).

Here Ks(z) is the modified Bessel function of the second kind and is defined as

Ks(y) =
1

2

∫ ∞
0

t−(s+1)e−
1
2y(t+ 1

t )dt,

or

Ks(y) =

∫ ∞
0

e−y cosh(t) cosh(st)dt. (4.5)

See more details for Ks(y) in Watson [43]. To keep the structure clear, we postpone the proof
of Lemma 4.11 to the end of this subsection.

By Lemma 4.11 and the upper bound of ζ(s, z) given by the summation formula in Lemma 3.5,
we obtain that

Lemma 4.12 (A lower bound of −ζx(s,z)
ζ(s,z) sin(2πx) : s ≤ 4). Assume that s ∈ (1, 4], x ∈ [0, 1

2 ]. Then

for y ≥ 48
73 , it holds that

−ζx(s, z)

ζ(s, z) sin(2πx)
≥

16
3

√
y π

s+1

Γ(s) Ks− 1
2
(2πy)

2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s) y1−s + ξ(2s+ 1)s (2s+1)s+
1
2

(2s+2)s+1 y−(s+1)

.

By Lemmas 4.2 and 4.11, to prove the main Lemma 4.1 for the cases s ∈ (1, 4], it suffices to
prove that

Lemma 4.13 (An elementary inequality: (b)). Assume that s ∈ (1, 4], α ≥ 3s. Then for y ∈ [ 48
73 , 2],

it holds that

16
3

√
y π

s+1

Γ(s) Ks− 1
2
(2πy)

2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s) y1−s + ξ(2s+ 1)s (2s+1)s+
1
2

(2s+2)s+1 y−(s+1)

≥ 3(
y

α
)−

3
2 e−παy.

Note that K 1
2
(2πy) = 2√

y e
−2πy and Ks(2πy) is increasing with respect to s by the expression

given by (4.5). The proof of Lemma 4.13 is straightforward and elementary, we then omit the
details here.

We now give the proof of Lemma 4.11. We use the Chowla-Selberg formula [14, 13].

Lemma 4.14 (Chowla-Selberg formula). For s > 1, y > 0, it holds that

ζ(s, z) = a0(s, y) + 2

∞∑
n=1

an(s, y) cos(2πnx),
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where

a0(s, y) : = 2ξ(2s)ys + 2ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s)
y1−s,

an(s, y) : =
4πs
√
y

Γ(s)
ns−

1
2σ1−2s(n)Ks− 1

2
(2πny).

(4.6)

Here σ1−2s(n) =
∑
d|n d

1−2s, and Ks(y) is the modified Bessel function.

By Chowla-Selberg formula(Lemma 4.14), using | sin(2πnx)
sin(2πx) | ≤ n for n ∈ Z+ and x ∈ R, one has

−ζx(s, z)

4πa1(s, y) sin(2πx)
= 1 +

∞∑
n=2

n
an(s, y)

a1(s, y)

sin(2πnx)

sin(2πx)

≥ 1−
∞∑
n=2

n2 an(s, y)

a1(s, y)
.

(4.7)

To prove Lemma 4.11, by (4.7), it suffices to prove that

∞∑
n=2

n2 an(s, y)

a1(s, y)
≤ 2

3
for s ∈ (1, 4], y ≥ 48

73
. (4.8)

By (4.6), (4.8) is equivalent to

∞∑
n=2

ns+
3
2σ1−2s(n)

Ks− 1
2
(2πny)

Ks− 1
2
(2πy)

≤ 2

3
for s ∈ (1, 4], y ≥ 48

73
. (4.9)

Now we need an estimate on quotient of modified Bessel function Ks(y). This is done by the
following

Lemma 4.15 (Baricz [3]). If ν > 1
2 . Then for y > x > 0, it holds that

Kν(y)

Kν(x)
< e−(y−x)(

y

x
)−

1
2 .

By Lemma 4.15, to prove (4.9), it suffices to prove that

∞∑
n=2

ns+1σ1−2s(n)e−2π(n−1)y ≤ 2

3
for s ∈ (1, 4], y ≥ 48

73
. (4.10)

The proof of (4.10) is elementary, hence we omit the detail here. The proof is complete.

4.2. ∂y estimates. By a direct calculation

∂y
ζ(s, z)

θk(α, z)
=

ζ(s, z)

θk(α, z)
·
(ζy(s, z)

ζ(s, z)
− k θy(α, z)

θ(α, z)

)
.

Lemma 3.3 is equivalent to

Lemma 4.16. Assume that s > 1, α ≥ 3s. Then

ζy(s, z)

ζ(s, z)
− 2s

θy(α, z)

θ(α, z)
> 0 for z ∈ DG ∩ {2 ≥ y ≥

4

3
}.

To prove Lemma 4.16, we estimate
ζy(s,z)
ζ(s,z) and

θy(α,z)
θ(α,z) respectively. For

ζy(s,z)
ζ(s,z) , we use the

summation formulas in Lemmas 3.6 and 3.7. For
θy(α,z)
θ(α,z) , we deduce by a careful study of properties

of θ(α, z).
By Lemmas 3.6 and 3.7, we have
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Lemma 4.17 (A lower bound of
ζy(s,z)
ζ(s,z) ). Assume that s > 1. Then

ζy(s, z)

ζ(s, z)
≥ s

y

(
1−As(y)

)
.

Here As(y) is small and explicitly,

As(y) :=

2s−1
s ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s) y1−s + ξ(2s+ 1)
(

3
2s

(2s+1)s+
1
2

(2s+2)s+1 + (s+ 1) (2s+3)s+
3
2

(2s+4)s+2

)
y−(s+1)

ξ(2s)ys + ξ(2s− 1)
Γ( 1

2 )Γ(s− 1
2 )

Γ(s) y1−s + 1
2ξ(2s+ 1)s (2s+1)s+

1
2

(2s+2)s+1 y−(s+1)

.

(4.11)

Table 1. Evaluation of As( 4
3 )[Taking six digital numbers].

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8
0.886729 0.772190 0.517878 0.324054 0.194742 0.114367 0.066316 0.038192

For the function As(y) appeared in the lower bound of
ζy(s,z)
ζ(s,z) , we have the following basic

properties, whose proof is elementary hence we omit the details here.

Lemma 4.18. • For s ≥ 1, As(y) is decreasing for y ≥ 1.
• For y ≥ 1, As(y) is decreasing for s ≥ 1.
• maxy≥aAs(y) = As(a) for a ≥ 1.

For the upper bound of
θy(α,z)
θ(α,z) , we have

Lemma 4.19 (An upper bound of
θy(α,z)
θ(α,z) ). Assume that α ≥ 1. Then

(1) For y
α ≥ 1,

θy(α, z)

θ(α, z)
≤ 1

2y
.

(2) For y
α ≤ 1,

θy(α, z)

θ(α, z)
≤ 2πα

y2
e−π

α
y .

We postpone the proof of Lemma 4.19 to the end of this subsection and give the proof of Lemma
4.16. By Lemmas 4.17 and 4.19, to prove Lemma 4.16, it suffices to the following

Lemma 4.20. Assume that s ≥ 1. Then

1−As(
4

3
) ≥ 4πse−πs.

Here As(y) is defined in (4.11).

Now the proof of Lemma 4.20 is elementary hence we omit the details here.
It remains to prove Lemma 4.19.

Proof. Recall that θ(α, z) =
√

y
α ·
∑
n∈Z e

−παyn2

ϑ( yα ;nx). By a direct calculation

θy(α, z) =
1

2
√
αy

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx)− π√αy

∑
n∈Z

n2e−παyn
2

ϑ(
y

α
;nx)

+
1

α

√
y

α

∑
n∈Z

e−παyn
2

ϑX(
y

α
;nx).

(4.12)

In the expression of θy(α, z) given by (4.12), we have
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∑
n∈Z

n2e−παyn
2

ϑ(
y

α
;nx) ≥ 0 (4.13)

and ∑
n∈Z

e−παyn
2

ϑX(
y

α
;nx) ≤ 0. (4.14)

Note that ϑ(X;Y ) = 1 + 2
∑∞
n=1 e

−πn2X cos(2nπY ). By the Poisson summation formula, one has

ϑ(X;Y ) = X−
1
2

∑
n∈Z

e−
π(n−Y )2

X . (4.15)

It follows by (4.15) that

ϑ(X;Y ) ≥ 0 for X > 0, Y ∈ R. (4.16)

This proves (4.13). To prove (4.14), we first notice that |ϑX(X;Y )| ≤ 2π
∑∞
n=1 n

2e−πn
2X =

−ϑX(X; 0). Splitting the summation to n = 0 and n 6= 0, one gets that

−
∑
n∈Z

e−παyn
2

ϑX(
y

α
;nx) = −ϑX(

y

α
; 0)− 2

∞∑
n=1

e−παyn
2

ϑX(
y

α
;nx)

≥ −ϑX(
y

α
; 0)− 2

∞∑
n=1

e−παyn
2(
− ϑX(

y

α
; 0)
)

= −ϑX(
y

α
; 0)
(

1− 2

∞∑
n=1

e−παyn
2
)

> 0.

Combining (4.12) with (4.13) and with (4.14), one gets

θy(α, z) ≤ 1

2
√
αy

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx)

=
1

2y

√
y

α

∑
n∈Z

e−παyn
2

ϑ(
y

α
;nx)

=
1

2y
θ(α, z).

This proves item (1) of Lemma 4.19.
It remains to prove item (2) of Lemma 4.19. Splitting the summation by n = 0 and n 6= 0, one

has

θ(α, y) = ϑ3(
α

y
) + 2

√
y

α

∞∑
n=1

e−παyn
2

ϑ(
y

α
;nx).

Using (4.16), one has

θ(α, y) ≥ ϑ3(
α

y
) ≥ 1 + 2e−π

α
y . (4.17)

While for θy(α, y), we have

θy(α, y) = ∂y(ϑ3(
α

y
)) + 2∂y

(√ y

α

∞∑
n=1

e−παyn
2

ϑ(
y

α
;nx)

)
. (4.18)
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To deal with the second term in θy(α, y), a direct calculation and regrouping the terms, one gets

∂y

(√ y

α

∞∑
n=1

e−παyn
2

ϑ(
y

α
;nx)

)
=− 1

2
√
αy

∞∑
n=1

(2παy − 1)e−παyn
2

ϑ(
y

α
;nx)

+
1

α

√
y

α

∞∑
n=1

e−παyn
2

ϑX(
y

α
;nx).

By (4.16), we have

∂y

(√ y

α

∞∑
n=1

e−παyn
2

ϑ(
y

α
;nx)

)
≤ 1

α

√
y

α

∞∑
n=1

e−παyn
2

ϑX(
y

α
;nx). (4.19)

On the other hand, using the Jacobi Theta function, we get

| 1
α

√
y

α

∞∑
n=1

e−παyn
2

ϑX(
y

α
;nx)| ≤ | 1

α

√
y

α

∞∑
n=1

e−παyn
2

ϑX(
y

α
; 0)| = −

√
y

α

∞∑
n=1

e−παyn
2

∂y(ϑ3(
y

α
)).

(4.20)
By the transformation formula,

√
y
αϑ3( yα ) = ϑ3(αy ). By taking derivative with respect to y, one

has

−
√
y

α
∂y(ϑ3(

y

α
)) =

1

2y
ϑ3(

α

y
)− ∂y(ϑ3(

α

y
)). (4.21)

Since ∂y(ϑ3(αy )) = πα
y2

∑
n∈Z n

2e−πn
2 α
y ≥ 0, then we have

−
√
y

α
∂y(ϑ3(

y

α
)) ≤ 1

2y
ϑ3(

α

y
). (4.22)

Combining (4.18) with (4.19)-(4.22), we have

θy(α, y) ≤ ∂y(ϑ3(
α

y
)) +

1

αy
ϑ3(

α

y
)

∞∑
n=1

e−παn
2y. (4.23)

By (4.17) and (4.23), one gets

θy(α, z)

θ(α, z)
≤
∂y(ϑ3(αy )) + 1

αyϑ3(αy )
∑∞
n=1 e

−παn2y

1 + 2e−π
α
y

:=
A1 +A2

B1 +B2
, (4.24)

where

A1 : =
2πα

y2
e−

πα
y , A2 :=

∞∑
n=2

n2πα

y2
e−πn

2 α
y +

∞∑
n=1

1

αy
ϑ3(

α

y
)e−πn

2αy

B1 : = 1, B2 := 2e−π
α
y .

By direct computation, one has

A2

B2
<
A1

B1
. (4.25)

Then by an elementary inequality, it follows by (4.25) that

A1 +A2

B1 +B2
<
A1

B1
. (4.26)

Noting that A1

B1
= 2πα

y2 e
−παy , (4.23) and (4.26) yield the desired result. �
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4.3. Proof of Lemma 3.1. Since

ζ(s, z)

θk(α, z)

/ ζ(s, z)

θk(α, z)
|
z=ei

π
3

=
ζ(s, z)

ζ(s, ei
π
3 )
·
(θ(α, eiπ3 )

θ(α, z)

)k
,

we shall estimate ζ(s,z)

ζ(s,ei
π
3 )

and θ(α,ei
π
3 )

θ(α,z) respectively.

To estimate θ(α,ei
π
3 )

θ(α,z) , we already have lower bounds of θ(α, z) in Lemma 4.3. Using the Jacobi

Theta function of the third type, we have an upper bound of θ(α, z), i.e.,

Lemma 4.21. For any α > 0, y > 0, it holds that θ(α, z) ≤ θ(α, iy) = ϑ3(αy )ϑ3(αy).

Proof. By (4.2), θ(α, z) =
√

y
α ·
∑
n∈Z e

−παyn2

ϑ( yα ;nx) ≤
√

y
α ·
∑
n∈Z e

−παyn2

ϑ( yα ; 0) =
√

y
αϑ3( yα ) ·∑

n∈Z e
−παyn2

= ϑ3(αy )ϑ3(αy). �

By Lemmas 4.3 and 4.28, one has

Lemma 4.22. Assume that α, y > 0. It holds that θ(α,ei
π
3 )

θ(α,z) ≥
1

θ(α,iy) = 1
ϑ3(αy )ϑ3(αy) .

For ζ(s,z)

ζ(s,ei
π
3 )

. Due to its difficulty, we divide it into two cases, i.e., (1): s ∈ (1, 4] and (2): s > 4.

For case (1), we use Chowla-Selberg formula given by Lemma 4.14, while for case (2), we use
summation formula for ζ(s, z) given by Lemma 3.6.

We first have

Lemma 4.23. For s ∈ (1, 4] and y ≥ 2, it holds that ζ(s,z)

ζ(s,ei
π
3 )
≥ a0(s,y)−2a1(s,y)

a0(s,
√

3
2 )

. Or equivalently,

ζ(s, z)

ζ(s, ei
π
3 )
≥ Ba(s, y),

where

Ba(s, y) :=
2ξ(2s)ys + 2ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s) y1−s − 8πs
√
y

Γ(s) Ks− 1
2
(2πy)

2ξ(2s)(
√

3
2 )s + 2ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s) (
√

3
2 )1−s

.

Proof. We first use Rankin’s Lemma(or Montegomery’s Lemma [29, 42]), i.e., ∂
∂xζ(s, z) < 0 for

{Im(z) ≥
√

3
2 }∩z ∈ D and s > 1. Then ζ(s, z) ≥ ζ(s, 1

2 + iy). We then use Chowla-Selberg formula
given by Lemma 4.14. Indeed,

ζ(s,
1

2
+ iy) = a0(s, y) + 2

∞∑
n=1

(−1)nan(s, y). (4.27)

See a0, an in Lemma 4.14. Using Lemma 4.15, one has

an+1(y)

an(y)
= (1 +

1

n
)s−

1
2
σ1−2s(n+ 1)

σ1−2s(n)

Ks− 1
2
(2π(n+ 1)y)

Ks− 1
2
(2πny)

≤ (1 +
1

n
)s−1σ1−2s(n+ 1)

σ1−2s(n)
e−2πy.

In the range s ∈ (1, 4] and y ≥
√

3
2 , then an+1(y)

an(y) < 1 for all n ≥ 1. Hence
∑∞
n=1(−1)nan(s,

√
3

2 ) is

an alternating series. Then ζ(s, z) ≥ a0(s, y) − 2a1(s, y). For ζ(s, ei
π
3 ), still using (4.27) and the

series is alternating, then ζ(s, ei
π
3 ) ≤ a0(s, y). These yield the result.

�

The lower bound function Ba(s, y) is monotone on s and y directions. It follows that

Lemma 4.24. It holds that mins∈[1,4],y≥2 Ba(s, y) = Ba(1, 2). Here Ba(1, 2) = 1.133290376 · · · .

Now we are ready to prove the case s ∈ (1, 4] of Lemma 3.1. Namely,
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Lemma 4.25. For s ∈ (1, 4],y ≥ 2, α ≥ 3s and k ≤ 2s, it holds that

ζ(s, z)

ζ(s, ei
π
3 )
·
(θ(α, eiπ3 )

θ(α, z)

)k
> 1.

Proof. By Lemmas 4.22, 4.23 and 4.24,

ζ(s, z)

ζ(s, ei
π
3 )
·
(θ(α, eiπ3 )

θ(α, z)

)k
≥Ba(s, y)

(θ(α, eiπ3 )

θ(α, z)

)2s

≥ Ba(s, y)
( 1

θ(3s, iy)

)2s

≥Ba(1, 2)
( 1

θ(3, 2i)

)2

= 1.093639371 · · · > 1.

�

For large s, the Chowla-Selberg formula given by Lemma 4.14 does not work well due to the
property of Ks(y). Instead, we use summation formula by Lemma 3.6. A direct consequence of
Lemma 3.6 gives that

Lemma 4.26. For s ≥ 4 and y ≥ 2, it holds that

ζ(s, z)

ζ(s, ei
π
3 )
≥ Bb(s, y).

Here

Bb(s, y) :=
2ξ(2s)ys + 2ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s) y1−s − ξ(2s+ 1)s (2s+1)s+
1
2

(2s+2)s+1 y
−(s+1)

2ξ(2s)(
√

3
2 )s + 2ξ(2s− 1)

Γ( 1
2 )Γ(s− 1

2 )

Γ(s) (
√

3
2 )1−s + ξ(2s+ 1)s (2s+1)s+

1
2

(2s+2)s+1 (
√

3
2 )−(s+1)

.

Now we are ready to prove the case s > 4 of Lemma 3.1. Namely,

Lemma 4.27. For s > 4,y ≥ 2, α ≥ 3s and k ≤ 2s, it holds that

ζ(s, z)

ζ(s, ei
π
3 )
·
(θ(α, eiπ3 )

θ(α, z)

)k
> 1.

Proof. For s > 4 and y ≥ 2, one trivially has Bb(s, y) > ys

s(
√

3
2 )s+1

. By Lemmas 4.22 and 4.26,

ζ(s, z)

ζ(s, ei
π
3 )
·
(θ(α, eiπ3 )

θ(α, z)

)k
≥ Bb(s, y)

( 1

θ(3s, iy)

)2s

≥ ys

s(
√

3
2 )s+1

( 1

θ(3, 2i)

)8

>
√

3.

�

By Lemmas 4.25 and 4.27, we complete the proof of Lemma 3.1.

4.4. Proof of Corollary 1.3. By a deformation

ζ(s, z)− θk(α, z) = θk(α, z) ·
( ζ(s, z)

θk(α, z)
− 1
)
,

Theorem 1.2 and Montgomery’s Theorem B([29]), to prove the first part of Corollary 1.3, it suffices
to prove that

Lemma 4.28. Assume that s ∈ (1, 12], α ≥ 3s. Then for k ∈ (0, 2s], it holds that ζ(s,ei
π
3 )

θk(α,ei
π
3 )
≥ 1.

Since θ(α, z) ≥ 1 by Lemma 4.3, to prove Lemma 4.28, it suffices to prove that

Lemma 4.29. Assume that s ∈ (1, 12]. Then we have ζ(s,ei
π
3 )

((ϑ3(2
√

3s)ϑ( 3
√

3
2 s)))2s

≥ 1.
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Note that (ϑ3(2
√

3s)ϑ( 3
√

3
2 s)) is very close to 1, and (ϑ3(2

√
3)ϑ( 3

√
3

2 )) = 1.000112671 · · · for
s > 1. To prove Lemma 4.29, we use Chowla-Selberg formula given by Lemma 4.14. The proof is
similar to that in Lemma 4.23, we omit the details here.
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