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Abstract

New developments of optical trapping techniques make it possible to confine atoms independently
of their spin orientation in experiments and thus result in spinor condensates. As a continuation of
our previous work [36], we investigate physical states as well as qualitative properties describing the
aggregation and extinction of atoms, of spin-1 Bose-Einstein condensate in Ioffe-Pritchard magnetic
field, through two conserved quantities, the number of atoms and the total magnetization. Unlike
the related free case which is well studied in [30, 36], the presence of the Ioffe-Pritchard magnetic
field, which competes dramatically with the harmonic trapping, requires new ideas to capture the
physical states and analyze their qualitative properties. Based on the ferromagnetic or antiferro-
magnetic characterization of spin-1 Bose-Einstein condensate, our results support some experimental
observations in [26,32] and some numerical analysis on ground states reported in [3–5].
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1 Introduction

Einstein predicted in 1925 that massive noninteracting bosons at low temperature could occupy the
same lowest energy single particle state and form the Bose-Einstein condensates (BEC). Until 1995,
this prediction was realized experimentally by laser cooling technique for several alkali atomic dilute
gases, such as 87Rb [1], 23Na [13], and 7Li [8]. In these earlier BEC experiments, atoms were confined
in a magnetic trap, where their spin degree of freedom was frozen. Later the developments of optical
trapping techniques enabled to confine atoms independently of their spin orientation and thus result in
so-called spinor condensates. Spinor BEC has been achieved experimentally and attracted considerable
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interest for providing a unique possibility of exploring fundamental concepts of quantum mechanics in
a remarkably controllable and tunable environment, see [25,41,42] for details.

Ioffe-Pritchard (IP) magnetic trap was introduced in [39] and then often used in spinor BEC exper-
iments. For example, in [33], Coreless vortices were created in F = 1 spinor condensates held in a
IP magnetic trap by adiabatically reducing the magnetic bias field along the trap axis to zero. Cross
disgyration texture of spin-1 BEC of alkali-metal atoms appears in an IP trap, see [27] for details. For
a more detailed account of backgrounds on IP magnetic trap, we refer the reader to [15,39].

For bosonic atoms, the total spin number F corresponding to the lowest energy has to be an integer
with 2F + 1 hyperfine states (mF = −F,−F + 1, ..., F − 1, F ). In the mean-field approximation, a
spin-F (F ∈ N) condensate can be described by coupled Gross-Pitaevskii equations consisting of 2F +1
equations, and each of them governs one of the 2F + 1 states. For the alkali atoms 87Rb, 23Na and 7Li,
F = 1. In this paper, we will focus our study on physical states of spin-1 BEC with IP magnetic field,
which is described by the following Gross-Pitaevskii system

−∆u1 + V (x)u1 = (µ+ λ)u1 + (c0 + c1)|u1|2u1 + (c0 − c1)u1|u2|2

+ (c0 + c1)|u0|2u1 + c1u2u
2
0 +Bu0,

−∆u2 + V (x)u2 = (µ− λ)u2 + (c0 + c1)|u2|2u2 + (c0 − c1)|u1|2u2

+ (c0 + c1)|u0|2u2 + c1u1u
2
0 +Bu0,

−∆u0 + V (x)u0 = µu0 + c0|u0|2u0 + (c0 + c1)(|u1|2 + |u2|2)u0

+ 2c1u1u2u0 +B(u1 + u2)

(1.1)

under the constraints∫
Rd

(
|u1|2 + |u2|2 + |u0|2

)
dx = N,

∫
Rd

(
|u1|2 − |u2|2

)
dx = M, (1.2)

where N is the number of atoms and M denotes the total magnetization. µ and λ are the Lagrange
multipliers arising from the constraint (1.2). ui denotes the complex conjugate of ui(i = 0, 1, 2). The
parameters c0 and c1 describe the mean-field interaction and spin-exchange interaction, respectively and
they are both tunable in experiments. The mean-field interaction is attractive if c0 > 0 and repulsive
if c0 < 0. The spin-1 BEC system is called ferromagnetic if c1 > 0 and antiferromagnetic if c1 < 0.
V (x) = |x|2 is a harmonic trapping in Rd, real function B(x) denotes the external IP magnetic field.

For spin-1 BEC without IP magnetic field (i.e. B(x) ≡ 0), according to the relations among c0, c1,
N and M , the existence, dynamics and numerical analysis of physical states of (1.1)-(1.2) have been
studied by many authors, see [10–12,30,35,36] and the references therein. For the one-dimensional (1D)
case, Cao, Chern and Wei in [10] proved the existence of ground states of (1.1)-(1.2) with V (x) ≡ 0, c0 >
0, c1 > 0, by minimizing the corresponding energy functional under (1.2). For the two-dimensional
(2D) case, motivated by the recent works [19,20] on two-component attractive BEC, Kong, Wang and
Zhao [30] gave the existence and detailed asymptotic behavior of ground states for (1.1)-(1.2) with
harmonic trapping potentials. Turning to the three-dimensional (3D) case, ground states for (1.1)-(1.2)
were investigated by Lin and Chern in [35], where V (x) is a harmonic potential with Zeeman effect
and c0 < 0, c1 < 0. Recently, in [36], we developed an exhaustive analysis on physical states for
(1.1)-(1.2) in R3 in both ferromagnetic and antiferromagnetic cases. All these results together show
that the characteristics of spin-1 BEC are different in 1D, 2D and 3D.
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When a negative constant IP magnetic field is involved, following [10], via approximation, Luo, Lü
and Liu in [37] proved the existence of ground states in the 1D case and showed that under some
conditions, searching for ground states of ferromagnetic spin-1 BEC with an external IP magnetic field
can be reduced to a one-component minimisation problem. Bao, Chern and Zhang in [3] proposed
efficient numerical methods for computing ground states of spin-1 BEC with/without the IP magnetic
field in both 1D and 2D cases. This is the first numerical study on ground states of spin-1 BEC with
B(x) 6= 0. In addition, the authors in [3] also showed that ground states are always symmetric with
respect to x = 0, which is the center of V , see Fig.1 there. Later, Hajaiej and Carles in [23] proved the
existence and stability of ground states for repulsive and antiferromagnetic (1.1)-(1.2) in Rd (d = 1, 2, 3),
where V (x) is a harmonic potential and c0 < 0, c1 < 0.

In the 2D or 3D case, there is no study on attractive spin-1 BEC with IP magnetic field in the
literatures. In this case, the problem becomes more challenging. One reason is that, the energy
functional is sign-indefinite when c0 > 0, while it is positive definite and coercive on related physical
mainifold, when c0 < 0, c1 < 0. The existence of physical states is related to the range of c0, c1 and the
initial data, which determines the number of atoms N and the total magnetization M . Secondly, the
presence of the IP magnetic field, which competes dramatically with the harmonic trapping, requires
new ideas to study the physical states.

Another motivation of this paper comes from recent experimental and computational results. The
so-called single-mode approximation (SMA) phenomenon on spin-1 BEC with/without the IP magnetic
field has been known for many years from numerical simulations in [3–5] and was also observed exper-
imentally in [26,32]. The first rigorous mathematical justification of SMA was given by Lin and Chern
in [35] for repulsive spin-1 BEC, that is the case of c0 < 0. The corresponding attractive case remains
open and challenging.

In this present paper, we investigate ground states and their qualitative properties for attractive
spin-1 BEC with IP magnetic field. Firstly, we introduce the working space and some notations. Let
H := H1(Rd,C3) and we define

Λ :=
{
u = (u1, u2, u0) ∈ H

∣∣∣ ∫
Rd

|x|2|u|2dx =

∫
Rd

|x|2(|u1|2 + |u2|2 + |u0|2)dx <∞
}
, (1.3)

then Λ is a Hilbert space equipped with the norm

‖u‖Λ :=
( ∫

Rd

(|∇u|2 + |u|2 + |x|2|u|2)dx
) 1

2 for ∀u ∈ Λ.

Denote

M(N) :=
{
u = (u1, u2, u0) ∈ Λ

∣∣ ∫
Rd

(
|u1|2 + |u2|2 + |u0|2

)
dx = N,

∫
Rd

(
|u1|2 − |u2|2

)
dx = M

}
, (1.4)

then solutions to (1.1)-(1.2) can be found as critical points of the functional I(u) on the manifold
M(N), where

I(u) =
1

2
A(u) +

1

2

∫
Rd

|x|2|u|2dx− 1

4
E(u)− F (u),
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with 

A(u) :=

∫
Rd

(
|∇u1|2 + |∇u2|2 + |∇u0|2

)
dx,

B(u) :=

∫
Rd

((
c0 + c1

)(
|u1|4 + |u2|4

)
+ c0|u0|4

)
dx,

C(u) :=

∫
Rd

((
c0 − c1

)
|u1|2|u2|2 +

(
c0 + c1

)
(|u1|2 + |u2|2)|u0|2

)
dx,

D(u) := c1Re

∫
Rd

u1u2u
2
0dx, F (u) := Re

∫
Rd

B(x)(u1u0 + u0u2)dx,

E(u) := B(u) + 2C(u) + 4D(u).

Before introducing the main results, we recall some definitions ( [7, 36]).

Definition. We say that (v1, v2, v0) is a ground state of (1.1)-(1.2) if I ′|M(N)(v1, v2, v0) = 0 with

I(v1, v2, v0) = inf
{
I(u1, u2, u0)

∣∣ I ′|M(N)(u1, u2, u0) = 0 and (u1, u2, u0) ∈M(N)
}

;

and (w1, w2, w0) is an excited state of (1.1)-(1.2) if I ′|M(N)(w1, w2, w0) = 0 with

I(w1, w2, w0) > inf
{
I(u1, u2, u0)

∣∣ I ′|M(N)(u1, u2, u0) = 0 and (u1, u2, u0) ∈M(N)
}
.

Recall the following nonlinear equation in Rd (d = 2, 3):

−∆u+ u = u3, u ∈ H1(Rd), (1.5)

from [31], there exists a unique positive solution Q(x) for (1.5). By the related Pohozaev identity, we
get

a∗ :=

∫
Rd

|Q|2dx =
4− d
d

∫
Rd

|∇Q|2dx =
4− d

4

∫
Rd

|Q|4dx. (1.6)

Moreover, we obtain from [21] that Q(x) satisfies

Q(x), |∇Q(x)| = O
(
|x|−

1
2 e−|x|

)
, as |x| → ∞.

Based on the fact that the characteristics of spin-1 BEC are different in 2D and 3D, we deal with
them respectively. Firstly, we consider ground states of spin-1 BEC in 2D by the following minimization
problem

m(N) := inf
u∈M

I(u),

whereM =M(N) is defined in (1.4) with d = 2. Suppose B(x) ∈ Cαloc(R2) is a function satisfying the
conditions

B(x) ∈ L∞, or
B(x)

x
∈ L∞, (1.7)

or ∥∥∥B(x)

x2

∥∥∥
L∞

<
1

2
, (1.8)

and
B(τx) = τpB(x), for τ > 0, p ∈ R+. (1.9)
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Set

N∗ := min
{ a∗

c0 + c1
,
a∗

c0

}
,

we have the following

Theorem 1. Suppose c0 > 0, c0 + c1 > 0, B(x) satisfies (1.7) or (1.8), then
(i) m(N) has at least one minimizer if 0 < N < N∗;
(ii) m(N) has no minimizer under one of the following three conditions

#1


c1 ≥ 0,

B(x) satisfies (1.8),

N ≥ N∗,

#2


c1 < 0,

B(x) satisfies (1.8),

M = 0, N ≥ N∗,

#3

{
c1 < 0,

M 6= 0, c0N
2 − a∗N + c1M

2 > 0;

(iii) for any minimizer u = (u1, u2, u0) ∈M(N) of m(N),∥∥∥u− (l1e−x2

2 , l2e
−x2

2 , l0e
−x2

2
)∥∥∥2

Λ
= O(N), as N → 0+, (1.10)

where

li =
1

π

∫
R2

uie
−x2

2 dx, for i = 1, 2, 0.

Remark 1.1. Theorem 1 gives the existence and nonexistence of ground states along with qualitative
properties describing extinction of atoms, of planar spin-1 BEC in IP magnetic field. Particularly, for
the antiferromagnetic case c1 < 0, if the total magnetization M 6= 0 with

c0N
2 − a∗N + c1M

2 > 0, i.e. N >
a∗ +

√
(a∗)2 − 4c0c1M2

2c0
,

then m(N) has no minimizer. Note that

a∗ +
√

(a∗)2 − 4c0c1M2

2c0
>
a∗

c0
= N∗,

it remains open that whether there exists a minimizer for m(N) when

N∗ ≤ N ≤
a∗ +

√
(a∗)2 − 4c0c1M2

2c0
.

Precisely, on one hand, we don’t know that in this case whether m(N) is well defined, and on the other
hand, it seems difficult to find a suitable test function to prove that m(N) = −∞ due to the competition
of the mean-field interaction and antiferromagnetic terms. We believe it is interesting to fulfill this gap.
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In the following, C and C ′ are indiscriminately used to denote various absolutely positive constants.
a ∼ b means that Cb ≤ a ≤ C ′b. Next, qualitative properties of ground states in 2D are analysed.

Theorem 2. Let c0 > 0, c1 > 0, Nn ↗ N∗ as n → ∞ and un = (u1n, u2n, u0n) ∈ M(Nn) be a
minimizer of m(Nn). We have
(i) if B(x) ≥ 0 satisfies (1.8), then as n→∞,

m(Nn) ∼ (N∗ −Nn)
1
2 . (1.11)

(ii) if B(x) < 0 satisfies (1.8) and (1.9), then as n→∞,

m(Nn) ∼ (N∗ −Nn)
p

p+2 , for 0 < p < 2, (1.12)

and
m(Nn) ∼ (N∗ −Nn)

1
2 , for p ≥ 2. (1.13)

In addition, un satisfies

lim
n→∞

εnu1n(εnx+ z̃1n) =
N∗ +M

2N∗
√
c0 + c1

Q(x),

lim
n→∞

εnu2n(εnx+ z̃2n) =
N∗ −M

2N∗
√
c0 + c1

Q(x), strongly in H1(R2),

lim
n→∞

εnu0n(εnx+ z̃0n) =
1

N∗

√
(N∗)2 −M2

2(c0 + c1)
Q(x),

(1.14)

where z̃in (i = 0, 1, 2) is the unique maximum point of uin with

lim
n→∞

∣∣ z̃in − z̃jn
εn

∣∣ = 0 (i, j = 0, 1, 2, i 6= j), lim
n→∞

|z̃in| = 0

and

εn =


C
(
N∗ −Nn

) 1
4 , if B(x) ≥ 0,

C
(
N∗ −Nn

) 1
p+2 , if B(x) < 0 and 0 < p < 2,

C
(
N∗ −Nn

) 1
4 , if B(x) < 0 and p ≥ 2.

(1.15)

Remark 1.2. The ground state energy is estimated accurately in Theorem 2 as atoms gather to a explicit
threshold value, and then a related qualitative property of ground states for planar ferromagnetic spin-1
BEC in IP magnetic field follows. Indeed, we could get estimate (1.11) by assuming∫

R2

B(x)Q2(x)dx ≥ 0 instead of B(x) ≥ 0,

while (1.12)-(1.13) yield when replace

B(x) < 0 by

∫
R2

B(x)Q2(x)dx < 0
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with an additional condition∫
R2

B(x+ x2)Q2(x)dx < 0, for some point x2 ∈ R2,

see (3.29) for the definition of x2. This extra condition guarantees a fine control of the linearly coupled
term involving the IP magnetic field in the corresponding energy functional, then consistent upper and
lower bound estimates (1.12)-(1.13) follows. Unfortunately, it seems difficult to determine the location
of x2, due to the presence of the abstract IP magnetic field. In particular, if x2 is the origin, then
qualitative analysis (1.14) of ground states for ferromagnetic spin-1 BEC would hold for sign-changing
IP magnetic fields.

Next, we give the asymptotic behavior of ground states for the antiferromagnetic (c1 < 0) case.

Theorem 3. Let c0 + c1 > 0, c1 < 0 and M = 0. If Nn ↗ N∗ as n→∞ and un = (u1n, u2n, u0n) ∈
M(Nn) is a minimizer of m(Nn), then items (i)-(ii) of Theorem 2 hold. Moreover, un satisfies one of
the following cases:
(i) u0n ≡ 0 in R2 for n large enough, u1n, u2n > 0, and

lim
n→∞

εnu1n(εnx+ z̃1n) =

√
1

2c0
Q(x),

strongly in H1(R2),

lim
n→∞

εnu2n(εnx+ z̃2n) =

√
1

2c0
Q(x),

where z̃in (i = 1, 2) is the unique maximum point of uin with

lim
n→∞

∣∣ z̃1n − z̃2n

εn

∣∣ = 0 (i, j = 1, 2, i 6= j), lim
n→∞

|z̃in| = 0

and εn satisfies (1.15).
(ii) u1n ≡ 0, u2n ≡ 0 in R2 for n large enough, u0n > 0, and

lim
n→∞

εnu0n(εnx+ z̃0n) =

√
1

c0
Q(x), strongly in H1(R2),

where z̃0n is the unique maximum point of u0n with lim
n→∞

|z̃0n| = 0 and εn satisfies (1.15).

Remark 1.3. Theorem 2 shows that for the ferromagnetic case c1 > 0, if |M | ∈ [0, N), any minimizer
u of m(N) in the case of N ↗ N∗ is nontrivial. While for the antiferromagnetic case c1 < 0, Theorem
3 shows that when M = 0, the minimizers u of m(N) must be semi-trivial as N ↗ N∗, and it is
independent of c1. These results not only show that spin-1 BEC has independent characteristics in both
ferromagnetic and antiferromagnetic cases, but also support the so-called single-mode approximation
(SMA) in experimental observations [26, 32] and numerical simulations [3–5], that is, each component
of the ground state is a multiple of one single density function. For a related mathematical study on
SMA, we refer the reader to [35]. Together with Proposition 4.2, Theorems 2-3 also show that the
mF = ±1 components in the ground states tend to have the same density functions when M = 0 in both
ferromagnetic and antiferromagnetic cases. In the ferromagnetic cases, the ground state can be always
described exactly by the SMA. While in the antiferromagnetic systems, the situations can be classified
into two types, single-mode or two-component systems. Rigorous mathematical justifications of these
conclusions are exactly what is expected in ( [3], Section 5).
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Remark 1.4. The challenging point in analysing qualitative properties of ground states in the antifer-
romagnetic case, is to confirm that any minimizer of m(N) is semi-trivial as N ↗ N∗. When M is
non-zero, we fails to get a concentrated result like the case of M = 0 in Theorem 3 only depending upon
N , mainly because it seems difficult to get a consistent upper and lower bound on the energy m(N),
which is the key in getting semi-trivial property of ground states by using corresponding linearization
operators as in [30]. If we furthermore consider c1 as a parameter and make it infinitesimal of the
same order as N∗ − N , after calculations similar to those in [30], we obtain some precise estimates
of the energy and the vanishing property of ground states, see Appendix for details. When B(x) ≡ 0,
the related results established in Proposition 4.2 also show that different from that in ferromagnetic
cases, the ground state energy in an antiferromagnetic system depends on the constants c0, c1 and the
magnetization M . For fixed c0 and c1, the ground state energy increases when the magnitude of M , i.e.
|M |, increases, and the energy reaches its minimizer at M = 0. These have been observed numerically
in ( [3], Fig.10). Therefore, All these elements reflect that the introduction of IP magnetic field term
brings difficulties to confirm that any ground states of antiferromagnetic spin-1 BEC is semi-trivial as
atoms gather to a threshold value.

Global minimizers obtained in Theorem 1 are obvious ground states for (1.1)-(1.2) in R2. However, the
functional I(u) is no longer bounded from below onM(N) in 3D case. Hence, the global minimization
method does not work. Instead, we consider a local minimization problem. Let

‖u‖2
Λ̇

:= A(u) +

∫
R3

|x|2|u|2dx.

For any r > 0 and N ≤ r
3 , we define

B(r) :=
{
u = (u1, u2, u0) ∈ Λ

∣∣‖u‖2
Λ̇
≤ r
}

and m(r,N) := inf
u∈M(N)∩B(r)

I(u).

Our main results in this aspect are the following:

Theorem 4. Suppose c0 > 0, c0 + c1 > 0, B(x) satisfies the conditions 〈∇B(x), x〉 ∈ L∞ and one of
(1.7) and ∥∥∥B(x)

x2

∥∥∥
L∞

<
1

8
, (1.16)

then
(i) for any r > 0 and 0 < N ≤ r

3 , m(r,N) has at least one minimizer;
(ii) for any r > 0, there exists a positive constant N∗∗ = N∗∗(r), such that when 0 < N < N∗∗, each
minimizer of m(r,N) is a solution to (1.1)-(1.2). In particular, the solution is a ground state if N is
sufficiently small;
(iii) suppose u = (u1, u2, u0) ∈M(N) ∩ B(r) is a minimizer of m(r,N), then∥∥∥u− (k1e

−x2

2 , k2e
−x2

2 , k0e
−x2

2
)∥∥∥2

Λ
= O(N), as N → 0+,

where

ki =
1

π
3
2

∫
R3

uie
−x2

2 dx, for i = 1, 2, 0.
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Remark 1.5. It is worth mentioning that our results in Theorem 4 are not perturbative, indeed for
any r > 0, the constant N∗∗ is determined by

N∗∗ =



min

{(√
C2

0r
3+4‖B(x)‖L∞r−C0r

3
2

8‖B(x)‖L∞

)2

, r
16‖B(x)‖L∞

, r12

}
, if B(x) ∈ L∞,

min

{(√
C2

0r
3+16‖B(x)

x
‖2L∞r−C0r

3
2

64‖B(x)
x
‖2L∞

)2

, 3r

512‖B(x)
x
‖2L∞

, r12

}
, if B(x)

x ∈ L∞,

min
{(

1−8‖B(x)

x2
‖L∞

4C0r
1
2

)2
, r12

}
, if B(x) satisfies (1.16),

where C0 := max{c0, 3c0 + 4c1}C∗ and C∗ = 4
√

3
9a∗ is the optimal constant of the Gagliardo-Nirenberg

type inequality (2.1) for d = 3.

Next, we give the symmetric property for the minimizers obtained in Theorems 1 and 4.

Theorem 5. Suppose c1 ≥ 0 and B(x) ≥ 0, then every minimizer for m(N) (m(r,N)), denoted as
w = (w1, w2, w0)(which is in principle complex valued), is of the form

wj(x) = eiθjρj(x), j = 1, 2, 0,

where θj ∈ R, θ1 + θ2 − 2θ0 = 2kπ (k ∈ Z) and (ρ1, ρ2, ρ0) is a positive real valued minimizer.
Furthermore, if B(x) is symmetric-decreasing, then ρj(x) is radial symmetric.

Remark 1.6. Theorem 5 supports some numerical results established in [3], that is the density functions
of ground states for ferromagnetic spin-1 BEC with nonnegative IP magnetic field are always symmetric
with respect to x = 0, which is the center of V (x) = |x|2, see Fig.1 there. In particular, if B(x) ≡ B
is a non-negative constant function, then the minimizers obtained in Theorems 1 and 4 are radial.
This indicates that the ground states of spin-1 BEC without IP magnetic field obtained in (Theorem
1.1, [30]) and (Theorem 1, [36]) are radial. As a special case, taking c1 = 0 and B = 0, Theorem 5 also
shows that the ground states for three coupled Schrödinger system considering in [29, 44] are radially
symmetric, some slight modifications may be needed. However, for the antiferromagnetic case c1 < 0,
the method of Schwartz symmetrization fails, symmetric property of ground states for spin-1 BEC is
not clear in theory. In terms of numerical calculation, Bao, Chern and Zhang in [3] show that radial
ground states of spin-1 BEC with IP magnetic field exist in both ferromagnetic and antiferromagnetic
cases.

After finding ground states in the 3D case, we further search for an excited state, that is

Theorem 6. Under the conditions of Theorem 4, for any r > 0 and 0 < N < N∗∗(r), there exists an
excited state û = (û1, û2, û0) ∈M(N) to (1.1)-(1.2).

Remark 1.7. Compared with ground states, the results on excited states of spin-1 BEC are much
less in the literature. In the previous work [36], we prove the existence of a strongly unstable excited
state of attractive spin-1 BEC without IP magnetic field in both ferromagnetic and antiferromagnetic
cases. Numerical results on excited states and the corresponding energy of repulsive/attractive spin-1
BEC without IP magnetic field in both ferromagnetic and antiferromagnetic cases are presented in [11].
Furthermore, the authors in [11] reveal that the component separation and population transfer between
the different hyperfine states can only occur in excited states due to the spin exchange interactions.
We believe that theoretically proving similar qualitative and quantitative properties of excited states are
interesting and challenging problems. In the following work, we will focus on these issues.

9



Remark 1.8. As an example, we can take

B(x) =

±
x2

4 , d = 2,
1

1+|x|
3
2
, d = 3,

which satisfies the conditions in the above theorems. In addition, our results are also valid for a
remarkable logarithmic function model in physics B(x) = 1

4 ln(1 + x2), which is commonly used in
charged particles transport and particularly in semiconductor physics, and with interesting mathematical
properties. For more information about constraint minimization problem with logarithmic type potential
functions, we refer the readers to some recent works [14, 18].

The paper is organized as follows. In section 2, some preliminary results are introduced. In section
3, we consider the 2D case and prove Theorems 1-3. Finally, Theorems 4-6 will be proved in section 4.

2 Preliminaries

In this section, we introduce some preliminary results.

Lemma 2.1. ( [45] Compact embedding) Let Λ be the space defined in (1.3), then Λ ↪→↪→ Lt(Rd) ×
Lt(Rd)× Lt(Rd) for any t ∈ [2, 2∗).

Next, we give a Gagliardo-Nirenberg type inequality and the estimates of E(u) without details, the
proofs can be found in [30] and [36].

Lemma 2.2. For d = 2, 3 and u = (u1, u2, u0) ∈ H, there holds∫
Rd

(
|u1|2 + |u2|2 + |u0|2

)2
dx ≤ C∗(d)

(
A(u)

) d
2 ·
(∫

Rd

(
|u1|2 + |u2|2 + |u0|2

)
dx
) 4−d

2
, (2.1)

where C∗(d) is the best constant.

In this paper, we just denote C∗(d) as C∗ for simplicity. Particularly, for d = 2, we see from [30] that
C∗ = 2

a∗ is the best constant. Further, up to translations and suitable scalings, the equality holds only
at (

Q sinϕ1 cosϕ2, Q sinϕ1 sinϕ2, Q cosϕ1

)
, for ϕ1, ϕ2 ∈

[
0,
π

2

)
,

where Q(x) is the unique positive solution for (1.5).

Lemma 2.3. ( [36]) For d = 2, 3, suppose c0 > 0, c0 + c1 > 0, then for any u = (u1, u2, u0) ∈ M,
there holds

0 ≤ E(u) ≤ max
{
c0, 3c0 + 4c1

}
C∗

(
A(u)

) d
2
N

4−d
2 . (2.2)

Finally, we give the pure point spectrum and the associated eigenvectors for harmonic oscillator
−∆ + |x|2, which is useful for us to study the qualitative properties of solutions.

Lemma 2.4. ( [2]) The pure point spectrum of the harmonic oscillator −∆ + |x|2 is

σ(−∆ + |x|2) =
{
ξk = d+ 2k, k ∈ N

}
,
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and the corresponding eigenvectors are given by Hermite functions (denoted by Ψk, associated to ξk),

which form an orthogonal basis of L2(Rd). Particularly, the first eigenvector is Ψ0 = 1

π
d
4
e−

x2

2 and

further Ψ0 satisfies the Pohozaev identity:

(d− 2)

∫
Rd

|∇Ψ0|2dx+ (d+ 2)

∫
Rd

|x|2Ψ2
0dx = d2

∫
Rd

Ψ2
0dx,

which follows that ∫
Rd

|∇Ψ0|2dx =

∫
Rd

|x|2Ψ2
0dx =

d

2
. (2.3)

3 The 2D case

In this section, we are going to prove Theorems 1 to 3, where the 2D case is studied. Suppose c0 >
0, c0 + c1 > 0, |M | < N , we consider the following minimization problem

m(N) := inf
u∈M

I(u),

where

M =M(N) :=
{
u = (u1, u2, u0) ∈ Λ

∣∣ ∫
R2

(
|u1|2 + |u2|2 + |u0|2

)
dx = N,

∫
R2

(
|u1|2 − |u2|2

)
dx = M

}
.

Let a∗ be the constant defined in (1.6) and set

N∗ := min
{ a∗

c0 + c1
,
a∗

c0

}
.

3.1 Proof of Theorem 1

Lemma 3.1. Suppose c0 > 0, c0 + c1 > 0 and B(x) satisfies (1.7) or (1.8), then m(N) has at least
one minimizer if 0 < N < N∗.

Proof. We first suppose c1 ≥ 0. For any u = (u1, u2, u0) ∈ M, we get from (2.1) that if B(x) ∈ L∞,
then

I(u) ≥ 1

2
A(u) +

1

2

∫
R2

|x|2|u|2dx− c0 + c1

4

∫
R2

(|u1|2 + |u2|2 + |u0|2)2dx

+
c1

4

∫
R2

(|u0|2 − 2|u1||u2|)2dx− |F (u)|

≥ 1

2
A(u) +

1

2

∫
R2

|x|2|u|2dx− a∗

4N∗

∫
R2

(|u1|2 + |u2|2 + |u0|2)2dx

+
c1

4

∫
R2

(|u0|2 − 2|u1||u2|)2dx− ‖B(x)‖L∞N (3.1)

≥ 1

2
A(u)− a∗

4N∗

∫
R2

(|u1|2 + |u2|2 + |u0|2)2dx+
1

2

∫
R2

|x|2|u|2dx− ‖B(x)‖L∞N

≥ 1

2
A(u)− a∗

4N∗
· 2N

a∗
A(u) +

1

2

∫
R2

|x|2|u|2dx− ‖B(x)‖L∞N

=
1

2N∗
(N∗ −N)A(u) +

1

2

∫
R2

|x|2|u|2dx− ‖B(x)‖L∞N.
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If B(x)
x ∈ L∞, by Young’s inequality, we have for any ε > 0,

|F (u)| ≤
∫
R2

|B(x)||(u1u0 + u0u2)|dx ≤
∥∥∥B(x)

x

∥∥∥
L∞

∫
R2

|x|
(
|u1|+ |u2|

)
|u0|dx

≤
∥∥∥B(x)

x

∥∥∥
L∞
ε

∫
R2

|x|2
(
|u1|+ |u2|

)2
dx+

1

4ε

∥∥∥B(x)

x

∥∥∥
L∞

∫
R2

|u0|2dx

≤ 2
∥∥∥B(x)

x

∥∥∥
L∞
ε

∫
R2

|x|2|u|2dx+
1

4ε

∥∥∥B(x)

x

∥∥∥
L∞
N.

(3.2)

Taking ε small, such that for some positive constant C, there holds

|F (u)| ≤ 1

4

∫
R2

|x|2|u|2dx+ CN.

Then similar to (3.1), we conclude

I(u) ≥ 1

2N∗
(N∗ −N)A(u) +

1

4

∫
R2

|x|2|u|2dx− CN. (3.3)

Since

|F (u)| ≤
∥∥∥B(x)

x2

∥∥∥
L∞
·
∫
R2

|x|2|u|2dx,

if
∥∥B(x)

x2

∥∥
L∞

< 1
2 , we get

I(u) ≥ 1

2N∗
(N∗ −N)A(u) +

(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)
·
∫
R2

|x|2|u|2dx. (3.4)

Let {un} ⊂ M be the minimizing sequence of m(N), then by (3.1), (3.3) and (3.4), {un} is bounded
in Λ if B(x) satisfies (1.7) or (1.8). Applying Lemma 2.1, there exists w = (w1, w2, w0) ∈ H, such that
up to a subsequence, as n→ +∞,

un ⇀ w, in H.

un → w, in Lt(R2)× Lt(R2)× Lt(R2), ∀t ∈ [2,+∞).

un → w, a.e. in R2.

Then w ∈M. Further, by the lower semi-continuity of the norm in H, there holds

m(N) ≤ I(w) ≤ lim
n→∞

I(un) = m(N).

It yields I(w) = m(N), that is, w ∈M is a minimizer of m(N) for any N ∈ (0, N∗).
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Next, suppose c1 < 0. For any u = (u1, u2, u0) ∈M, we conclude if B(x) ∈ L∞, then

I(u) ≥ 1

2
A(u) +

1

2

∫
R2

|x|2|u|2dx− a∗

4N∗

∫
R2

(|u1|2 + |u2|2 + |u0|2)2dx− c1

4

∫
R2

(|u1|2 − |u2|2)2dx

− c1

2

∫
R2

(|u1|2 + |u2|2)|u0|2dx− c1Re

∫
Rd

u1u2u
2
0dx− ‖B(x)‖L∞N

≥ 1

2
A(u)− a∗

4N∗

∫
R2

(|u1|2 + |u2|2 + |u0|2)2dx+
1

2

∫
R2

|x|2|u|2dx (3.5)

− c1

2

∫
R2

(|u1|2 + |u2|2)|u0|2dx+ c1

∫
R2

|u1||u2||u0|2dx− ‖B(x)‖L∞N

≥ 1

2
A(u)− a∗

4N∗
· 2N

a∗
A(u) +

1

2

∫
R2

|x|2|u|2dx− ‖B(x)‖L∞N

=
1

2N∗
(N∗ −N)A(u) +

1

2

∫
R2

|x|2|u|2dx− ‖B(x)‖L∞N.

Let {un} ⊂ M be the minimizing sequence of m(N), then {un} is bounded in Λ. Similarly, if B(x)
x ∈ L∞

or
∥∥B(x)

x2

∥∥
L∞

< 1
2 , the boundedness of {un} can be obtained as well. Then some procedures as the case

of c1 > 0 allow that there exists at least one minimizer for m(N) if N ∈ (0, N∗), we omit the details
here.

In the following, we introduce a property of m(N) as N ↗ N∗ and further give the nonexistence
results of minimizers for m(N).

Lemma 3.2. Suppose c1 ≥ 0 and B(x) satisfies (1.8), then

lim
N↗N∗

m(N) = 0. (3.6)

Moreover, there has no minimizer for m(N) if N ≥ N∗.

Proof. We first prove (3.6) by choosing some proper test functions. If
∫
R2 B(x)Q2(x)dx ≥ 0, for τ > 0

and θ ∈ [M,N ], we define Φ = (Φ1,Φ2,Φ0) ∈M as

Φ1(x) :=

√
θ +M

2a∗
τQ(τx), Φ2(x) :=

√
θ −M

2a∗
τQ(τx), Φ0(x) :=

√
N − θ
a∗

τQ(τx), (3.7)

where Q(x) is the unique positive solution of equation (1.5). By direct calculations, we get

1

2
A(Φ)− a∗

4N

∫
R2

(Φ2
1 + Φ2

2 + Φ2
0)2dx =

1

2
·Nτ2 − a∗

4N
· 2N2τ2

a∗
= 0,

∫
R2

|x|2Φ2dx =
N

a∗

∫
R2

|x|2τ2Q2(τx)dx =
Nτ−2

a∗

∫
R2

|x|2Q2(x)dx

and ( a∗
4N
− c0 + c1

4

)∫
R2

(Φ2
1 + Φ2

2 + Φ2
0)2dx+

c1

4

∫
R2

(Φ2
0 − 2Φ1Φ2)2dx

=
( a∗

4N
− c0 + c1

4

)
· 2N2τ2

a∗
+
c1τ

2

2a∗

(
(N − θ)−

√
θ2 −M2

)2

= τ2 ·
(
N

2
− (c0 + c1)N2

2a∗
+

c1

2a∗

(
(N − θ)−

√
θ2 −M2

)2
)
.
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Moreover, F (Φ) ≥ 0 as
∫
R2 B(x)Q2(x)dx ≥ 0. Denote

K :=
N

2
− (c0 + c1)N2

2a∗
+

c1

2a∗

(
(N − θ)−

√
θ2 −M2

)2
,

then it follows that

I(Φ) =
1

2
A(Φ)− a∗

4N

∫
R2

(Φ2
1 + Φ2

2 + Φ2
0)2dx+

c1

4

∫
R2

(Φ2
0 − 2Φ1Φ2)2dx− F (Φ)

+
1

2

∫
R2

|x|2Φ2dx+
( a∗

4N
− c0 + c1

4

)∫
R2

(Φ2
1 + Φ2

2 + Φ2
0)2dx

≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+Kτ2.

(3.8)

Taking θ = M2+N2

2N , then N − θ −
√
θ2 −M2 = 0, we conclude for any τ > 0,

m(N) ≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
(N

2
− (c0 + c1)N2

2a∗

)
τ2

=
Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
N

2N∗
(N∗ −N)τ2.

(3.9)

Taking τ =
(
N∗

∫
R2 |x|

2Q2(x)dx

a∗(N∗−N)

) 1
4
, we get

m(N) ≤ N ·
(∫

R2 |x|2Q2(x)dx · (N∗ −N)

a∗N∗

) 1
2 → 0, as N ↗ N∗, (3.10)

that is, lim
N↗N∗

m(N) ≤ 0. On the other hand, when N ∈ (0, N∗), we obtain from (3.4) that I(u) ≥ 0 for

any u = (u1, u2, u0) ∈M, which implies lim
N↗N∗

m(N) ≥ 0. Hence, (3.6) holds if
∫
R2 B(x)Q2(x)dx ≥ 0.

If
∫
R2 B(x)Q2(x)dx < 0, the proof in this instant is similar to that of (B1), we just sketch the

differences. Let Φ = (Φ1,Φ2,−Φ0) ∈M be the test function, where Φi (i = 1, 2, 0) has been defined in
(3.7), then F (Φ) ≥ 0. It follows that there holds

m(N) ≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
N

2N∗
(N∗ −N)τ2. (3.11)

Then

m(N) ≤ N ·
((N∗ −N)

∫
R2 |x|2Q2(x)dx

a∗N∗

) 1
2
. (3.12)

Hence, together with (3.4), we obtain (3.6) if
∫
R2 B(x)Q2(x)dx < 0.

Next, we show that there has no minimizer for m(N) if N ≥ N∗. If N > N∗, let τ →∞ in (3.9) and
(3.11) respectively, then m(N)→ −∞. Thus, there has no minimizer for m(N).

If N = N∗, we argue by contradiction to show that there has no minimizer for m(N∗). Suppose
u∗ = (u∗1, u

∗
2, u
∗
0) is a minimizer of m(N∗). From the proof of (3.4), we have

I(u∗) ≥ 1

2
A(u∗)− a∗

4N∗

∫
R2

(
|u∗1|2 + |u∗2|2 + |u∗0|2

)2
dx

+
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|u∗|2dx ≥ 0.
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Together with (3.10) or (3.12), we get m(N∗) = 0. As a consequence,

1

2
A(u∗) =

a∗

4N∗

∫
R2

(
|u∗1|2 + |u∗2|2 + |u∗0|2

)2
dx (3.13)

and ∫
R2

|x|2|u∗|2dx = 0. (3.14)

From (3.13), u∗ is an optimal function of the Gagliardo-Nirenberg inequality (2.1) for d = 2. By Lemma
2.2, u∗ can be formed as a scaling of Q(x). However, this contradicts to (3.14). Therefore, there has
no minimizer for m(N∗) and we complete the proof.

Lemma 3.3. Suppose c1 < 0 and B(x) satisfies (1.8), then
(i) if M = 0, there holds lim

N↗N∗
m(N) = 0. Moreover, there has no minimizer for m(N) if N ≥ N∗;

(ii) if M 6= 0, then there has no minimizer for m(N), when c0N
2 − a∗N + c1M

2 > 0.

Proof. (i) if M = 0 and
∫
R2 B(x)Q2(x)dx ≥ 0, we choose θ = 0 in (3.7), then

Φ1(x) = Φ2(x) = 0 and Φ0(x) :=

√
N

a∗
τQ(τx).

If M = 0 and
∫
R2 B(x)Q2(x)dx < 0, let

Φ1(x) = Φ2(x) = 0 and Φ0(x) := −
√
N

a∗
τQ(τx).

Noting that N∗ = a∗

c0
for c1 < 0, similar to Lemma 3.2, we can show lim

N↗N∗
m(N) = 0 and further if

N ≥ N∗, there has no minimizer for m(N).
(ii) We first suppose

∫
R2 B(x)Q2(x)dx ≥ 0, let Φ = (Φ1,Φ2,Φ0) ∈M be the test function defined in

(3.7), then choose θ = N in (3.8), we get

I(Φ) ≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
(N

2
− c0N

2

2a∗
− c1M

2

2a∗

)
τ2. (3.15)

Now, we suppose
∫
R2 B(x)Q2(x)dx < 0 and let Φ = (Φ1,Φ2,−Φ0) ∈ M be the test function, where

Φi (i = 1, 2, 0) has been defined in (3.7). Then (3.15) holds as well.
Hence, if c0N

2 − a∗N + c1M
2 > 0, then m(N) → −∞ when we take τ → ∞, which implies that

there has no minimizer for m(N). Therefore, we complete the proof.

Proof of Theorem 1 (i)-(ii). The conclusions follow immediately from Lemmas 3.1-3.3.

Let u = (u1, u2, u0) ∈ M(N) be a minimizer for m(N) obtained above. Suppose 0 < N < N∗, we
then prove (iii) in Theorem 1. That is, we are going to show that

‖u− (l1Ψ0, l2Ψ0, l0Ψ0)‖2Λ = O(N), as N → 0+,

where Ψ0 = 1√
π
e−

x2

2 is the first eigenvector of the harmonic oscillator −∆ + |x|2 (see Lemma 2.4) and

li = li0 =
∫
R2 uiΨ0dx, for i = 1, 2, 0. Before that, we give an estimate for the least energy m(N).
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Lemma 3.4. Suppose c0 > 0 and c0 + c1 > 0, then there holds m(N) < N, for N ∈ (0, N∗).

Proof. Since
(√

N+M
2 Ψ0,

√
N−M

2 Ψ0, 0
)
∈M, we get

m(N) = inf
u∈M

I(u) ≤ I
(√N +M

2
Ψ0,

√
N −M

2
Ψ0, 0

)
<
N

2

∫
R2

(
|∇Ψ0|2 + |x|2Ψ0

2
)
dx =

N

2
‖(Ψ0, 0, 0)‖2

Λ̇
= N.

Proof of Theorem 1 (iii). Set lik =
∫
R2 uiΨkdx, for i = 1, 2, 0, then

u =

( ∞∑
k=0

l1kΨk,

∞∑
k=0

l2kΨk,

∞∑
k=0

l0kΨk

)
.

Moreover, we conclude

N = ‖(u1, u2, u0)‖2L2 =

∞∑
k=0

(l21k + l22k + l20k)‖Ψk‖2L2 =
∞∑
k=0

(l21k + l22k + l20k) (3.16)

and

‖u‖2
Λ̇

=
∞∑
k=0

(l21k + l22k + l20k)‖Ψk‖2Λ̇ =
∞∑
k=0

ξk(l
2
1k + l22k + l20k).

If B(x) ∈ L∞, denote M0 := 1
2N∗ (N

∗ −N) ∈
(
0, 1

2

)
, then by (3.1), we get

m(N) = I(u) ≥M0A(u) +
1

2

∫
R2

|x|2u2dx− ‖B(x)‖L∞N

≥M0‖u‖2Λ̇ − ‖B(x)‖L∞N = M0 ·
∞∑
k=0

ξk(l
2
1k + l22k + l20k)− ‖B(x)‖L∞N

= M0 ·
∞∑
k=0

(ξk − ξ0)(l21k + l22k + l20k) +M0 ·
∞∑
k=0

ξ0(l21k + l22k + l20k)− ‖B(x)‖L∞N.

By Lemma 3.4 and (3.16), we have

(ξ1 − ξ0)

∞∑
k=1

(l21k + l22k + l20k) ≤
∞∑
k=1

(ξk − ξ0)(l21k + l22k + l20k)

≤ m(N) + ‖B(x)‖L∞N
M0

−
∞∑
k=0

ξ0(l21k + l22k + l20k) ≤
(1 + ‖B(x)‖L∞

M0
− 2
)
N,

then
∞∑
k=1

(l21k + l22k + l20k) ≤
(1 + ‖B(x)‖L∞

M0
− 2
)
· N

ξ1 − ξ0
.
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Thus

∞∑
k=1

ξk(l
2
1k + l22k + l20k) =

∞∑
k=1

(ξk − ξ0)(l21k + l22k + l20k) + ξ0

∞∑
k=1

(l21k + l22k + l20k)

≤
(1 + ‖B(x)‖L∞

M0
− 2
)
N + ξ0

(1 + ‖B(x)‖L∞
M0

− 2
)
· N

ξ1 − ξ0

=
ξ1

ξ1 − ξ0
·
(1 + ‖B(x)‖L∞

M0
− 2
)
N.

For N → 0+, we can see that

‖u− (l1Ψ0, l2Ψ0, l0Ψ0)‖2
Λ̇

=

∥∥∥∥( ∞∑
k=1

l1kΨk,
∞∑
k=1

l2kΨk,
∞∑
k=1

l0kΨk

)∥∥∥∥2

Λ̇

=
∞∑
k=1

ξk(l
2
1k + l22k + l20k) = O(N)

and

‖u− (l1Ψ0, l2Ψ0, l0Ψ0)‖2L2 =

∥∥∥∥( ∞∑
k=1

l1kΨk,

∞∑
k=1

l2kΨk,

∞∑
k=1

l0kΨk

)∥∥∥∥2

L2

=

∞∑
k=1

(l21k + l22k + l20k) = O(N).

Therefore, it is obvious that (1.10) is valid.

When B(x)
x ∈ L∞ or

∥∥B(x)
x2

∥∥
L∞

< 1
2 , the conclusion holds as well if we set

M0 = min
{ 1

2N∗
(N∗ −N),

1

4

}
∈
(

0,
1

4

)
or

M0 = min
{ 1

2N∗
(N∗ −N),

1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

}
∈
(

0,
1

2

)
.

Hence, we complete the proof of (iii) in Theorem 1.

3.2 Proof of Theorem 2

Next, we give the proof of Theorem 2. Assume c0 > 0, c1 > 0 and Nn ↗ N∗ as n → ∞, let
un = (u1n, u2n, u0n) ∈ M(Nn) be a minimizer for m(Nn). Then un satisfies the following Euler-
Lagrange system

−∆u1n + |x|2u1n =(µn + λn)u1n + (c0 + c1)|u1n|2u1n + (c0 − c1)u1n|u2n|2

+ (c0 + c1)|u0n|2u1n + c1u2nu
2
0n +B(x)u0n,

−∆u2n + |x|2u2n =(µn − λn)u2n + (c0 + c1)|u2n|2u2n + (c0 − c1)|u1n|2u2n

+ (c0 + c1)|u0n|2u2n + c1u1nu
2
0n +B(x)u0n,

−∆u0n + |x|2u0n =µnu0n + c0|u0n|2u0n + (c0 + c1)(|u1n|2 + |u2n|2)u0n

+ 2c1u1nu2nu0n +B(x)(u1n + u2n),

(3.17)

17



where µn and λn are the corresponding Lagrange multipliers. Similar to (3.4), we have

I(un) ≥ 1

2
A(un)− a∗

4N∗

∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
1

2

∫
R2

|x|2|un|2dx

+
c1

4

∫
R2

(|u0n|2 − 2|u1n||u2n|)2dx− F (un) ≥ 0.

(3.18)

Combining with the fact that lim
N↗N∗

m(N) = 0, we can see that

lim
n→∞

(1

2

∫
R2

|x|2|un|2dx− F (un)
)

= 0 (3.19)

and

lim
n→∞

A(un)∫
R2(|u1n|2 + |u2n|2 + |u0n|2)2dx

=
a∗

2N∗
. (3.20)

We claim

lim
n→∞

A(un) = lim
n→∞

∫
R2

(
|∇u1n|2 + |∇u2n|2 + |∇u0n|2

)
dx = +∞.

Otherwise, suppose that there exists a positive constant C, such that A(un) ≤ C for large n. Then
{un} is a bounded sequence in Λ, which implies that there is a subsequence, still denoted by {un},
such that

un → u∗ = (u∗1, u
∗
2, u
∗
0) in Lt(R2)× Lt(R2)× Lt(R2) with t ∈ [2,+∞).

Hence, we get
0 = lim

n→∞
I(un) ≥ I(u∗) ≥ m(N∗) = 0.

It shows that u∗ is a minimizer of m(N∗), which contradicts to Lemma 3.2. Thus, we obtain the claim.
Further, we conclude from (3.20) that

lim
n→∞

∫
R2

(|u1n|4 + |u2n|4 + |u0n|4)dx ≥ 1

3
· lim
n→∞

∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx = +∞.

Now, define

εn :=
√
N∗
(
A(un)

)− 1
2

=
√
N∗
(∫

R2

(
|∇u1n|2 + |∇u2n|2 + |∇u0n|2

)
dx
)− 1

2
, (3.21)

then it is easy to see that εn → 0 as n→∞.

Proof of Theorem 2. First, suppose B(x) ≥ 0 and Nn ↗ N∗. On the one hand, we obtain from
(3.9) that

m(Nn) ≤ Nnτ
−2

2a∗

∫
R2

|x|2Q2(x)dx+
Nn

2N∗
(N∗ −Nn)τ2.

By (3.10), it follows that

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≤
(N∗ ∫R2 |x|2Q2(x)dx

a∗

) 1
2
. (3.22)
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On the other hand, let w̃n := (w̃1n, w̃2n, w̃0n) with w̃in(x) := εnuin(εnx) (i = 1, 2, 0), then A(w̃n) =
ε2
nA(un) = N∗ and from (3.20), we have

lim
n→∞

A(w̃n)∫
R2(|w̃1n|2 + |w̃2n|2 + |w̃0n|2)2dx

= lim
n→∞

A(un)∫
R2(|u1n|2 + |u2n|2 + |u0n|2)2dx

=
a∗

2N∗
, (3.23)

which yields that

lim
n→∞

∫
R2

(|w̃1n|2 + |w̃2n|2 + |w̃0n|2)2dx =
2(N∗)2

a∗
. (3.24)

We claim that there exist {yn} ⊂ R2 and R0, η > 0, such that at least one i ∈ {0, 1, 2} satisfies
lim inf
n→∞

∫
BR0

(yn) |w̃in|
2dx ≥ η > 0. Otherwise, suppose for any R > 0, there has a subsequence {w̃ink

} (i =

0, 1, 2), such that lim
k→∞

sup
x∈R2

∫
BR(y) |w̃ink

|2dx = 0. Then by Lion’s vanishing Lemma, we conclude that

w̃ink
→ 0 (i = 0, 1, 2) in Lt(R2) for t ∈ (2,∞), which contradicts to (3.24). Hence, we obtain the claim.

Now we define wn := (w1n, w2n, w0n) with

win(x) := w̃in(x+ yn) = εnuin(εnx+ εnyn), i = 1, 2, 0, (3.25)

then

lim
n→∞

A(wn) = lim
n→∞

∫
R2

(|w1n|2 + |w2n|2 + |w0n|2)dx = N∗

and

lim
n→∞

∫
R2

(|w1n|2 + |w2n|2 + |w0n|2)2dx =
2(N∗)2

a∗
.

Moreover, there exists some i ∈ {0, 1, 2}, such that

lim inf
n→∞

∫
BR0

(0)
|win|2dx ≥ η > 0. (3.26)

It follows that

lim
n→∞

A(wn)
∫
R2(|w1n|2 + |w2n|2 + |w0n|2)dx∫

R2(|w1n|2 + |w2n|2 + |w0n|2)2dx
=
a∗

2
. (3.27)

By Lemma 2.2, {wn} is a minimizing sequence for the following minimization problem:

j := inf
(0,0,0) 6=u∈H

J(u1, u2, u0),

where

J(u1, u2, u0) :=
A(u)

∫
R2(|u1|2 + |u2|2 + |u0|2)dx∫

R2(|u1|2 + |u2|2 + |u0|2)2dx
.

Applying the arguments in [16] and [17], the minimizer (w1, w2, w0) must be

w1(x) =

√
N∗

a∗
Q(x) sinϕ1 cosϕ2, w2(x) =

√
N∗

a∗
Q(x) sinϕ1 sinϕ2

and w0(x) =
√

N∗

a∗ Q(x) cosϕ1, for ϕ1, ϕ2 ∈ [0, π2 ]. Since
∫
R2(|w1|2 + |w2|2 + |w0|2)dx = N∗, we get

win → wi in L2(R2) for i = 1, 2, 0. Further, using the interpolation inequality, there holds win → wi in
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L4(R2) for i = 1, 2, 0. From (3.27), we obtain

a∗

2

∫
R2

(|w1|2 + |w2|2 + |w0|2)2dx = N∗
∫
R2

(
|∇w1|2 + |∇w2|2 + |∇w0|2

)
dx

≤ lim
n→∞

Nn

∫
R2

(
|∇w1n|2 + |∇w2n|2 + |∇w0n|2

)
dx =

a∗

2
lim
n→∞

∫
R2

(|w1n|2 + |w2n|2 + |w0n|2)2dx

=
a∗

2

∫
R2

(|w1|2 + |w2|2 + |w0|2)2dx,

which gives that

lim
n→∞

∫
R2

(
|∇w1n|2 + |∇w2n|2 + |∇w0n|2

)
dx =

∫
R2

(
|∇w1|2 + |∇w2|2 + |∇w0|2

)
dx,

that is, wn → (w1, w2, w0) in H as n→∞. Therefore, there exists some x1 ∈ R2, such that

lim
n→∞

w1n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 cosϕ2, lim

n→∞
w2n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 sinϕ2

and

lim
n→∞

w0n(x) =

√
N∗

a∗
Q(x− x1) cosϕ1, for ϕ1, ϕ2 ∈ [0,

π

2
].

By direct calculations, we obtain from (3.25) that∫
R2

|x|2|un|2dx =
2∑
i=0

∫
R2

|x|2 · 1

ε2
n

∣∣∣win(x− εnyn
εn

)∣∣∣2dx
=

2∑
i=0

∫
R2

|εnx+ εnyn|2|win(x)|2dx =
2∑
i=0

ε2
n

∫
R2

∣∣∣x+ yn + x1

∣∣∣2|win(x+ x1)|2dx.

(3.28)

We now claim lim
n→∞

|yn| ≤ C for arbitrary positive C. Otherwise, suppose that lim
n→∞

∣∣yn + x1

∣∣ = +∞,
then it follows from (3.28) that for arbitrary C1 > 0, there holds

∫
R2 |x|2|un|2dx ≥ C1ε

2
n, as n → ∞.

By (3.23), we get

I(un) ≥ 1

2
A(un)− a∗

4Nn

∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
1

2

∫
R2

|x|2|un|2dx− F (un)

+
( a∗

4Nn
− c0 + c1

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
c1

4

∫
R2

(|u0n|2 − 2|u1n||u2n|)2dx

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|un|2dx+
( a∗

4Nn
− c0 + c1

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)
· C1ε

2
n +

( a∗

2Nn
− c0 + c1

2

)
· (N∗)2ε−2

n

a∗
+ o(1)

=
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)
· C1ε

2
n +

N∗

2Nn
(N∗ −Nn)ε−2

n + o(1),

where o(1)→ 0 as n→∞. Taking the infimum with respect to εn > 0, then we conclude

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥
(
C1(1− 2

∥∥B(x)

x2

∥∥
L∞

)
) 1

2
.
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However, it contradicts to (3.22). Thus, there exists x2 ∈ R2, such that

lim
n→∞

(
yn + x1

)
= x2, (3.29)

which yields lim
n→∞

|yn| ≤ C. Therefore, by (3.23), (3.28) and Fatou’s Lemma, we have

I(un) ≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|un|2dx+
( a∗

4Nn
− c0 + c1

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗ε2
n

a∗
·
∫
R2

|x|2Q2(x)dx+
N∗

2Nn
(N∗ −Nn)ε−2

n + o(1). (3.30)

Then taking

εn =

(
a∗(N∗ −Nn)

Nn

(
1− 2

∥∥B(x)
x2

∥∥
L∞

) ∫
R2 |x|2Q2(x)dx

) 1
4

,

we can see that

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥
(

1− 2
∥∥∥B(x)

x2

∥∥∥
L∞

) 1
2 ·
(N∗ ∫R2 |x|2Q2(x)dx

a∗

) 1
2
.

Combining (3.22), we conclude m(Nn) ∼ (N∗ −Nn)
1
2 , as n→∞.

Next, suppose B(x) < 0 satisfies (1.9) and Nn ↗ N∗. The proof is similar to the case of B(x) ≥ 0,
we just sketch the differences here.

Let Φ = (Φ1,Φ2,Φ0) be the test function defined in (3.7), by (1.9) and direct calculations, we get

Re

∫
R2

B(x)(Φ1Φ0 + Φ0Φ2)dx =

∫
R2

B(x)
(√θ +M

2a∗
+

√
θ −M

2a∗

)
·
√
N − θ
a∗

τ2Q2(τx)dx

=
(√θ +M

2a∗
+

√
θ −M

2a∗

)
·
√
N − θ
a∗

∫
R2

B(τ−1x)Q2(x)dx

= τ−p
(√θ +M

2a∗
+

√
θ −M

2a∗

)
·
√
N − θ
a∗

∫
R2

B(x)Q2(x)dx.

Taking θ = M2+N2

2N , then A :=
(√

θ+M
2a∗ +

√
θ−M
2a∗

)
·
√

N−θ
a∗ =

√
2(N2−M2)

2a∗ and thus

m(N) ≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
N

2N∗
(N∗ −N)τ2 −Aτ−p

∫
R2

B(x)Q2(x)dx. (3.31)

For 0 < p < 2, we deduce

m(N) =
N

2N∗
(N∗ −N)τ2 −Aτ−p

∫
R2

B(x)Q2(x)dx+ o(1),

where o(1)→ 0 as τ →∞. Taking

τ =
(−pN∗A ∫R2 B(x)Q2(x)dx

N(N∗ −N)

) 1
p+2

,
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we get

m(N) ≤
(p+ 2

2

)(N(N∗ −N)

pN∗

) p
p+2 ·

(
−A

∫
R2

B(x)Q2(x)dx
) 2

p+2
, (3.32)

that is, lim
N↗N∗

m(N) ≤ 0. For p = 2, denote

S :=
N

2a∗

∫
R2

|x|2Q2(x)dx−A
∫
R2

B(x)Q2(x)dx,

we have m(N) ≤ N
2N∗ (N

∗ −N)τ2 + Sτ−2. Taking τ =
(

2SN∗

N(N∗−N)

) 1
4
, then

m(N) ≤
(2SN(N∗ −N)

N∗

) 1
2
. (3.33)

For p > 2, there holds

m(N) ≤ Nτ−2

2a∗

∫
R2

|x|2Q2(x)dx+
N

2N∗
(N∗ −N)τ2 + o(1),

where o(1)→ 0 as τ →∞. Then

m(N) ≤
(N2(N∗ −N)

∫
R2 |x|2Q2(x)dx

a∗N∗

) 1
2
. (3.34)

On the one hand, from (3.32)-(3.34), we obtain

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≤
(p+ 2

2

)(1

p

) p
p+2 ·

(
−A

∫
R2

B(x)Q2(x)dx
) 2

p+2
, for 0 < p < 2, (3.35)

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≤ (2S)
1
2 , for p = 2 (3.36)

and

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≤
(N∗ ∫R2 |x|2Q2(x)dx

a∗

) 1
2
, for p > 2. (3.37)

On the other hand, let wn := (w1n, w2n, w0n) be the function defined in (3.25), then by (1.9) and some
direct calculations, we get

Re

∫
R2

|B(x)|(u1nu0n + u0nu2n)dx

=
1

ε2
n

Re

∫
R2

|B(x)|
(
w1n

(x− εnyn
εn

)
w0n

(x− εnyn
εn

)
+ w0n

(x− εnyn
εn

)
w2n

(x− εnyn
εn

))
dx

= Re

∫
R2

|B(εnx+ εnyn)|(w1nw0n + w0nw2n)dx

= εpnRe

∫
R2

∣∣∣B(x+ x1 + yn

)∣∣∣(w1n(x+ x1)w0n(x+ x1) + w0n(x+ x1)w2n(x+ x1)
)
.

(3.38)

We now claim that lim
n→∞

|yn| ≤ C for arbitrary positive C. Otherwise, suppose lim
n→∞

∣∣yn + x1

∣∣ = +∞.
Since B(x) satisfies (1.9), we get for arbitrary C1 > 0, there holds

Re

∫
R2

|B(x)|(u1nu0n + u0nu2n)dx ≥ C1ε
p
n, as n→∞.
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Moreover, from (3.28), for arbitrary C2 > 0, there holds
∫
R2 |x|2|un|2dx ≥ C2ε

2
n, as n → ∞. Then we

get

I(un) ≥
( a∗

4Nn
− c0 + c1

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
1

2

∫
R2

|x|2|un|2dx

+Re

∫
R2

|B(x)|(u1nu0n + u0nu2n)dx

≥ N∗

2Nn
(N∗ −Nn)ε−2

n +
C2

2
ε2
n + C1ε

p
n + o(1),

where o(1)→ 0 as n→∞. Taking the infimum with respect to εn > 0, then we conclude for 0 < p < 2,

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≥ L1,

and for p ≥ 2,

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥ L2,

for arbitrary large L1, L2 > 0. However, it contradicts to (3.35), (3.36) or (3.37). Thus, there exists
x2 ∈ R2, such that

lim
n→∞

(
yn + x1

)
= x2,

which yields lim
n→∞

|yn| ≤ C. Therefore, we conclude from (3.38) that

lim inf
n→∞

ε−pn Re

∫
R2

|B(x)|(u1nu0n + u0nu2n)dx

≥ Re
∫
R2

lim inf
n→∞

(∣∣∣B(x+ x1 + yn

)∣∣∣(w1n(x+ x1)w0n(x+ x1) + w0n(x+ x1)w2n(x+ x1)
))
dx

=
N∗

2a∗
sin(2ϕ1)(cosϕ2 + sinϕ2)

∫
R2

∣∣B(x+ x2)
∣∣Q2(x)dx.

Denote

T :=
N∗

2a∗
sin(2ϕ1)(cosϕ2 + sinϕ2)

∫
R2

∣∣B(x+ x2)
∣∣Q2(x)dx, (3.39)

we get for n large enough,

I(un) ≥
( a∗

4Nn
− c0 + c1

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
1

2

∫
R2

|x|2|un|2dx

+Re

∫
R2

|B(x)|(u1nu0n + u0nu2n)dx

≥ N∗

2Nn
(N∗ −Nn)ε−2

n +
N∗ε2

n

2a∗

∫
R2

|x|2Q2(x)dx+ Tεpn + o(1).

(3.40)

Taking

εn =



(
N∗(N∗−Nn)

NnpT

) 1
p+2

, if 0 < p < 2,(
(c0+c1)N∗(N∗−Nn)

Nn

( ∫
R2 |x|2Q2(x)dx+2T (c0+c1)

)) 1
4
, if p = 2,

(
(c0+c1)N∗(N∗−Nn)
Nn

∫
R2 |x|2Q2(x)dx

) 1
4
, if p > 2,
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then we have for 0 < p < 2,

lim
n→∞

m(Nn)

(N∗ −Nn)
p

p+2

≥
(p+ 2

2

)
·
(1

p

) p
p+2

T
2

p+2 ,

for p = 2,

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥
(N∗ ∫R2 |x|2Q2(x)dx

a∗
+ 2T

) 1
2
,

and for p > 2,

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥
(N∗ ∫R2 |x|2Q2(x)dx

a∗

) 1
2
.

Together with (3.35)-(3.37), we obtain the conclusion.
Now, we are ready to prove the limit behavior of {un} as n → ∞. Without loss of generality, we

may assume B(x) ≥ 0, the proof for the case B(x) < 0 can be obtained through slight modifications.
By (3.18), (3.25) and the fact that lim

N↗N∗
m(N) = 0, we get

lim
n→∞

1

ε2
n

∫
R2

(|w0n|2 − 2|w1n||w2n|)2dx = lim
n→∞

∫
R2

(|u0n|2 − 2|u1n||u2n|)2dx = 0.

Since win → wi (i = 1, 2, 0) is strongly in H1(R2) and εn → 0 as n→∞, we deduce∫
R2

(|w0|2 − 2|w1||w2|)2dx = 0.

By some direct calculations, we get

lim
n→∞

w1n(x) =
N∗ +M

2
√
a∗N∗

Q(x− x1),

lim
n→∞

w2n(x) =
N∗ −M
2
√
a∗N∗

Q(x− x1),

lim
n→∞

w0n(x) =

√
(N∗)2 −M2

2a∗N∗
Q(x− x1).

(3.41)

Noting that un satisfies the Euler-Lagrange system (3.17), then

A(un) +

∫
R2

|x|2|un|2dx = µnNn + λnM + E(un) + 2F (un),

which implies that

µnNn + λnM = A(un) +

∫
R2

|x|2|un|2dx− E(un)− 2F (un)

= A(un) +

∫
R2

|x|2|un|2dx− 2
(
A(un) +

∫
R2

|x|2|un|2dx− 2F (un)− 2I(un)
)
− 2F (un)

= 4I(un)−A(un)−
∫
R2

|x|2|un|2dx+ 2F (un).
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Hence, by (3.6), (3.19) and (3.21), we get

lim
n→∞

ε2
n

(
µnNn + λnM

)
= −N∗. (3.42)

By (3.17) and (3.25), wn satisfies the following system

−∆w1n + ε2
n|εnx+ εnyn|2w1n = (µn + λn)ε2

nw1n + (c0 + c1)|w1n|2w1n + (c0 − c1)w1n|w2n|2

+ (c0 + c1)|w0n|2w1n + c1w2nw
2
0n + ε2

nB(εnx+ εnyn)w0n,

−∆w2n + ε2
n|εnx+ εnyn|2w2n = (µn − λn)ε2

nw2n + (c0 + c1)|w2n|2w2n + (c0 − c1)|w1n|2w2n

+ (c0 + c1)|w0n|2w2n + c1w1nw
2
0n + ε2

nB(εnx+ εnyn)w0n,

−∆w0n + ε2
n|εnx+ εnyn|2w0n = µnε

2
nw0n + c0|w0n|2w0n + (c0 + c1)(|w1n|2 + |w2n|2)w0n

+ 2c1w1nw2nw0n + ε2
nB(εnx+ εnyn)(w1n + w2n).

(3.43)

Multiplying the first equation and the second equation in (3.43) by w2n and w1n respectively and then
integrating by parts, we get

0 = 2λnε
2
n

∫
R2

w1nw2ndx+ c1

∫
R2

(
2|w1n|2w1nw2n − 2|w2n|2w2nw1n + |w2n|2w2

0n − |w1n|2w2
0n

)
dx

+ ε2
n

∫
R2

B(εnx+ εnyn)w0n(w2n − w1n)dx. (3.44)

From (3.41), we obtain

lim
n→∞

∫
R2

w1nw2ndx > 0, lim
n→∞

∫
R2

(
2|w1n|2w1nw2n − 2|w2n|2w2nw1n + |w2n|2w2

0n − |w1n|2w2
0n

)
dx = 0.

(3.45)
In addition, we drive from (1.9) that∣∣∣∣∫

R2

B(εnx+ εnyn)w0n(w2n − w1n)dx

∣∣∣∣
≤ εpn

∫
R2

B
(
x+ x1 + yn

)(
|w1n(x+ x1)|2 + |w2n(x+ x1)|2 + |w0n(x+ x1)|2

)
dx,

then

lim sup
n→∞

ε−pn

∣∣∣∣∫
R2

B(εnx+ εnyn)w0n(w2n − w1n)dx

∣∣∣∣
≤ lim sup

n→∞

∫
R2

B
(
x+ x1 + yn

)(
|w1n(x+ x1)|2 + |w2n(x+ x1)|2 + |w0n(x+ x1)|2

)
dx

≤
∫
R2

lim sup
n→∞

(
B
(
x+ x1 + yn

)(
|w1n(x+ x1)|2 + |w2n(x+ x1)|2 + |w0n(x+ x1)|2

))
dx

=
N∗

a∗

∫
R2

B(x+ x2)Q2(x)dx.

It follows that

lim sup
n→∞

ε2
n

∣∣∣∣∫
R2

B(εnx+ εnyn)w0n(w2n − w1n)dx

∣∣∣∣ = 0. (3.46)
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Together with (3.42), (3.44), (3.45), we obtain lim
n→∞

λnε
2
n = 0 and lim

n→∞
µnε

2
n = −1. From (3.43), for

sufficiently large n, there holds −∆win ≤ bin(x)win + fin(x) for i = 1, 2, 0, where

b1n(x) = (c0 + c1)
(
|w1n|2 + |w0n|2

)
+ (c0 − c1)|w2n|2;

b2n(x) = (c0 + c1)
(
|w2n|2 + |w0n|2

)
+ (c0 − c1)|w1n|2;

b0n(x) = c0|w0n|2 + (c0 + c1)
(
|w1n|2 + |w2n|2

)
+ 2c1|w1n||w2n|;

f1n(x) = c1|w2n||w0n|2 + ε2
nB(εnx+ εnyn)|w0n|;

f2n(x) = c1|w1n||w0n|2 + ε2
nB(εnx+ εnyn)|w0n|;

f0n(x) = ε2
nB(εnx+ εnyn)(|w1n|+ |w2n|).

Hence, by (3.46), we get bin(x), fin(x) ∈ Lt(R2) for t > 2. Using the De Giorgi-Nash-Moser theory
(see for example Theorem 4.1 in [24] or Theorem 8.15 in [22]), we obtain for any ξ ∈ R2,

sup
B1(ξ)

win ≤ C
(
‖win‖Lt(B2(ξ)) + ‖fin‖Lt(B2(ξ))

)
,

where C > 0 is a constant. It follows that

win(x)→ 0, as |x| → ∞ uniformly on n, (3.47)

and {win} is bounded uniformly in L∞(R2) for i = 1, 2, 0. Then there exists at least one global
maximum point for win and uin.

Let z̃in be a global maximum point of uin for i = 1, 2, 0 and we define

w̃in(x) := εnuin(εnx+ z̃in) = win

(
x+

z̃in − εnyn
εn

)
, (3.48)

then x = z̃in−εnyn
εn

is the global maximum point of win. Moreover,
∣∣ z̃in−εnyn

εn

∣∣ ≤ C, as n→∞. Thus,

lim
n→∞

∣∣∣ z̃in − z̃jn
εn

∣∣∣ ≤ C, i, j = 1, 2, 0. (3.49)

From (3.41),
w̃in(x)→ XiQ(x+ yi − x1), strongly in H1(R2), (3.50)

where

X1 =
N∗ +M

2
√
a∗N∗

, X2 =
N∗ −M
2
√
a∗N∗

, X0 =

√
(N∗)2 −M2

2a∗N∗

and yi = lim
n→∞

z̃in−εnyn
εn

, i = 1, 2, 0. Moreover, since B(x) ∈ Cαloc(R2), we conclude by a standard elliptic

regularity theory that
w̃in(x)→ XiQ(x+ yi − x1), in C2,α

loc (R2). (3.51)
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Suppose xin is an arbitrary local maximum point of w̃in, then by (3.43) and (3.48), we obtain

(c0 + c1)|w̃1n(x1n)|2 + (c0 − c1)
∣∣∣w̃2n

(
x1n +

z̃1n − z̃2n

εn

)∣∣∣2 + (c0 + c1)
∣∣w̃0n

(
x1n +

z̃1n − z̃0n

εn

)∣∣∣2
+

c1

w̃1n(x1n)
w̃2n

(
x1n +

z̃1n − z̃2n

εn

)
w̃2

0n

(
x1n +

z̃1n − z̃0n

εn

)
+

ε2
n

w̃1n(x1n)
B(εnx1n + z̃1n)w̃0n

(
x1n +

z̃1n − z̃0n

εn

)
≥ 1

2
,

(c0 + c1)|w̃2n(x2n)|2 + (c0 − c1)
∣∣∣w̃1n

(
x2n +

z̃2n − z̃1n

εn

))∣∣∣2 + (c0 + c1)
∣∣∣w̃0n

(
x2n +

z̃2n − z̃0n

εn

)∣∣∣2
+

c1

w̃2n(x2n)
w̃1n

(
x2n +

z̃2n − z̃1n

εn

)
w̃2

0n

(
x2n +

z̃2n − z̃0n

εn

)
+

ε2
n

w̃2n(x2n)
B(εnx2n + z̃2n)w̃0n

(
x2n +

z̃2n − z̃0n

εn

)
≥ 1

2
,

c0|w̃0n(x0n)|2 + (c0 + c1)

(∣∣∣w̃1n

(
x0n +

z̃0n − z̃1n

εn

)∣∣∣2 +
∣∣∣w̃2n

(
x0n +

z̃0n − z̃2n

εn

)∣∣∣2)
+ 2c1w̃1n

(
x0n +

z̃0n − z̃1n

εn

)
w̃2n

(
x0n +

z̃0n − z̃2n

εn

) w̃0n(x0n)

w̃0n(x0n)

+
ε2
n

w̃0n(x0n)
B(εnx0n + z̃0n)

(
w̃1n

(
x0n +

z̃0n − z̃1n

εn

)
+ w̃2n

(
x0n +

z̃0n − z̃2n

εn

))
≥ 1

2
.

From (3.26), (3.48) and (3.51), we deduce that lim
n→∞

w̃in(xin) > 0. Further, by some similar arguments

in [20], w̃in decays exponentially. It follows from (1.9) and (3.47)-(3.49) that {xin} is bounded uniformly
as n→∞. Similar to Theorem 1.2 in [38], we obtain the uniqueness of maximum point for w̃in and the
uniqueness of maximum point for uin. Noting that the origin is the unique maximum point of w̃in and it
is also the unique maximum point of Q(x), then yi = x1 for i = 1, 2, 0. Moreover, for i, j = 1, 2, 0, i 6= j,

lim
n→∞

∣∣ z̃in − z̃jn
εn

∣∣ = 0, lim
n→∞

z̃in = lim
n→∞

εnyn = 0.

Therefore, by (3.48), (3.50) and the fact a∗ = (c0 + c1)N∗, we complete the proof.

3.3 Proof of Theorem 3

In this subsection, we consider the limit behavior of the minimizer un = (u1n, u2n, u0n) for m(Nn) as
n→∞ when c1 < 0, Nn ↗ N∗ and M = 0.

Proof of Theorem 3. On the one hand, if B(x) ≥ 0, taking M = 0 and τ =
(
Nn
2N∗ (N

∗ −Nn)
)− 1

4 in
(3.15), we obtain

m(Nn) ≤ I(Φ) ≤
( Nn

2N∗
(N∗ −Nn)

) 1
2 ·
(

1 +
Nn

2a∗

∫
R2

|x|2Q2(x)dx
)
→ 0,

as Nn ↗ N∗. If B(x) < 0, we can get the similar result. On the other hand, for any u ∈ M(Nn), we
have

I(u) ≥ 1

2N∗
(N∗ −Nn)A(u) +

(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|u|2dx ≥ 0.
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It follows that for c1 < 0 and M = 0, lim
Nn↗N∗

m(Nn) = 0. Then similar to (3.19) and (3.20), we get

lim
n→∞

(1

2

∫
R2

|x|2|un|2dx− F (un)
)

= 0

and

lim
n→∞

A(un)∫
R2(|u1n|2 + |u2n|2 + |u0n|2)2dx

=
a∗

2N∗
.

Moreover,

lim
n→∞

A(un) = lim
n→∞

∫
R2

(
|∇u1n|2 + |∇u2n|2 + |∇u0n|2

)
dx = +∞.

Let εn, win and w̃in (i = 1, 2, 0) be defined as in Theorem 2, then since M = 0, we can deduce for some
x1 ∈ R2, there holds

lim
n→∞

w1n(x) = lim
n→∞

w2n(x) =

√
N∗

2a∗
Q(x− x1) sinϕ1

and

lim
n→∞

w0n(x) =

√
N∗

a∗
Q(x− x1) cosϕ1, for ϕ1 ∈ [0,

π

2
].

By the fact that lim
N↗N∗

m(N) = 0 and the definition of win, we have

lim
n→∞

1

ε2
n

∫
R2

(
(|w1n|2 − |w2n|2)2 + 2(|w1n|+ |w2n|)2|w0n|2

)
dx

= lim
n→∞

∫
R2

(
(|u1n|2 − |u2n|2)2 + 2(|u1n|+ |u2n|)2|u0n|2

)
dx = 0,

then it is easy to see that∫
R2

(
(|w1|2 − |w2|2)2 + 2(|w1|+ |w2|)2|w0|2

)
dx = 0,

where wi(x) = lim
n→∞

win(x) (i = 1, 2, 0). Hence, there are two cases to be discussed:

lim
n→∞

w1n(x) = lim
n→∞

w2n(x) =

√
N∗

2a∗
Q(x− x1), lim

n→∞
w0n = 0, strongly in H1(R2), (3.52)

or

lim
n→∞

w1n = lim
n→∞

w2n = 0, lim
n→∞

w0n(x) =

√
N∗

a∗
Q(x− x1), strongly in H1(R2). (3.53)

If (3.52) holds, then similar to the proof of Theorem 2, we get lim
n→∞

λnε
2
n = 0 and lim

n→∞
µnε

2
n = −1.

Further, let z̃in (i = 1, 2) be the maximum point of uin, then lim
n→∞

|z̃1n−z̃2n|
εn

= 0 and

lim
n→∞

w̃1n(x) = lim
n→∞

w̃2n(x) =

√
N∗

2a∗
Q(x), lim

n→∞
w̃0n = 0, strongly in H1(R2).

In addition, we conclude w̃1n and w̃2n decay exponentially and thus for i = 1, 2,

εnuin(εnx+ z̃in) = w̃in(x)→
√
N∗

2a∗
Q(x), uniformly in R2.
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We next argue by contradiction to show that if (3.52) holds, then u0n ≡ 0 in R2. Otherwise, suppose
u0n 6≡ 0 in R2, we denote

û0n(x) :=
1

Q∞σn
u0n(εnx+ z̃0n),

where σn = ‖u0n‖L∞ > 0 and Q∞ = 1
‖Q(x)‖L∞

> 0. By (3.17) and (3.48), we obtain

−∆û0n + ε2
n|εnx+ z̃0n|2û0n = µnε

2
nû0n + c0ε

2
n(Q∞σn)2|û0n|2û0n

+ (c0 + c1)

(∣∣∣w̃1n

(
x+

z̃0n − z̃1n

εn

)∣∣∣2 +
∣∣∣w̃2n

(
x+

z̃0n − z̃2n

εn

)∣∣∣2)û0n

+ 2c1w̃1n

(
x+

z̃0n − z̃1n

εn

)
w̃2n

(
x+

z̃0n − z̃2n

εn

)
û0n

+
εn

Q∞σn
B(εnx+ z̃0n)

(
w̃1n

(
x+

z̃0n − z̃1n

εn

)
+ w̃2n

(
x+

z̃0n − z̃2n

εn

))
.

Moreover, we deduce

lim
n→∞

|z̃0n − z̃in|
εn

≤ C, i = 1, 2,

and further

lim
n→∞

z̃0n − z̃1n

εn
= lim

n→∞

z̃0n − z̃2n

εn
= x1.

It then yields that the limit û0(x) = lim
n→∞

û0n(x) satisfies

−∆û0 + û0 =
(

1 +
2N∗c1

a∗

)
Q2(x)û0.

However, since c1 < 0, the above equation contradicts to the fact (see [43]) that for any u ∈ H1(R2),
there holds ∫

R2

(|∇u|2 + |u|2)dx ≥
∫
R2

Q2(x)|u|2dx. (3.54)

Hence, we have proved that u0n ≡ 0 in R2.
In the following, we consider the second case, that is if (3.53) holds, then by M = 0 and (3.42),

lim
n→∞

µnε
2
n = −1, lim

n→∞
λnε

2
n is bounded. (3.55)

It yields that the limit w0(x) = lim
n→∞

w0n(x) satisfies

−∆w0 + w0 = c0w
3
0 =

N∗

a∗
w3

0.

Then we obtain

lim
n→∞

w̃1n = lim
n→∞

w̃2n = 0, lim
n→∞

w̃0n(x) =

√
N∗

a∗
Q(x), strongly in H1(R2).

Moreover, w̃0n decays exponentially and thus w̃0n(x)→
√

N∗

a∗ Q(x) uniformly in R2.
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Similarly, we argue by contradiction to show that if (3.53) holds, then u1n = u2n ≡ 0 in R2. Otherwise,
suppose u1n 6≡ 0, u2n 6≡ 0 in R2 and define

ûin(x) :=
1

Q∞σin
uin(εnx+ z̃in), i = 1, 2,

where σin = ‖uin‖L∞ > 0. By (3.17) and (3.48), we get (û1n, û2n, w̃0n) satisfies

−∆û1n + ε2
n|εnx+ z̃1n|2û1n = (µn + λn)ε2

nû1n + (c0 + c1)ε2
n(Q∞σ1n)2|û1n|2û1n

+ (c0 − c1)ε2
n(Q∞σ2n)2û1n

∣∣∣û2n(x+
z̃1n − z̃2n

εn
)
∣∣∣2 + (c0 + c1)

∣∣∣w̃0n(x+
z̃1n − z̃0n

εn
)
∣∣∣2û1n

+ c1
σ2n

σ1n
û2n(x+

z̃1n − z̃2n

εn
)w̃2

0n(x+
z̃1n − z̃0n

εn
) +

εn
Q∞σ1n

B(εnx+ z̃1n)w̃0n(x+
z̃1n − z̃0n

εn
),

−∆û2n + ε2
n|εnx+ z̃2n|2û2n = (µn − λn)ε2

nû2n + (c0 + c1)ε2
n(Q∞σ2n)2|û2n|2û2n

+ (c0 − c1)ε2
n(Q∞σ1n)2û2n

∣∣∣û1n(x+
z̃2n − z̃1n

εn
)
∣∣∣2 + (c0 + c1)

∣∣∣w̃0n(x+
z̃2n − z̃0n

εn
)
∣∣∣2û2n

+ c1
σ1n

σ2n
û1n(x+

z̃2n − z̃1n

εn
)w̃2

0n(x+
z̃2n − z̃0n

εn
) +

εn
Q∞σ2n

B(εnx+ z̃2n)w̃0n(x+
z̃2n − z̃0n

εn
),

−∆w̃0n + ε2
n|εnx+ z̃0n|2w̃0n = µnε

2
nw̃0n + c0|w̃0n|2w̃0n

+ (c0 + c1)Q2
∞ε

2
n

(
σ2

1n

∣∣∣û1n(x+
z̃0n − z̃1n

εn
)
∣∣∣2 + σ2

2n

∣∣∣û2n(x+
z̃0n − z̃2n

εn
)
)∣∣2w̃0n

+ 2c1Q
2
∞ε

2
nσ1nσ2nû1n(x+

z̃0n − z̃1n

εn
)û2n(x+

z̃0n − z̃2n

εn
)w̃0n

+ ε3
nQ∞B(εnx+ z̃0n)

(
σ1nû1n(x+

z̃0n − z̃1n

εn
) + σ2nû2n(x+

z̃0n − z̃2n

εn
)
)
,

(3.56)

where the Lagrange multipliers µn and λn satisfy (3.55). Moreover, there exists nonnegative function
ûi ∈ H1(R2), such that ûin → ûi in C2,α

loc (R2) and ûi(0) = ‖Q‖L∞ for i = 1, 2.

We now claim that λ0 := lim
n→∞

λnε
2
n = 0. Indeed, suppose lim

n→∞
|z̃in−z̃0n|

εn
= +∞ for i = 1, 2, since

c1 < 0, we obtain from (3.56) that

−∆û1 + (1− λ0)û1 ≤ 0 and −∆û2 + (1 + λ0)û2 ≤ 0.

If λ0 ≤ 0, then û1 = 0, which contradicts to the fact that û1(0) = ‖Q‖L∞ > 0. Similarly, if λ0 ≥ 0,
then û2 = 0, there is also a contradiction. Hence, without loss of generality, we may assume that
lim
n→∞

|z̃1n−z̃0n|
εn

= +∞ and lim
n→∞

|z̃2n−z̃0n|
εn

≤ C for some C > 0, then up to a subsequence, there exists a

y2 ∈ R2, such that lim
n→∞

z̃2n−z̃0n
εn

= y2 and in this case, û1, û2 satisfies

−∆û1 + (1− λ0)û1 ≤ 0 and −∆û2 + (1 + λ0)û2 ≤ Q2(x+ y2)û2.

If λ0 ≤ 0, then û1 = 0, a contradiction. If λ0 > 0, then by (1.5), we get∫
R2

û2Q(x+ y2)dx ≤ 0.

Since û2 ∈ C2,α
loc (R2), then there exists a constant R > 0, such that û2 > 0 and Q(x + y2) > 0 in BR,

which implies ∫
R2

û2Q(x+ y2)dx >

∫
BR

û2Q(x+ y2)dx > 0,
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a contradiction as well. Suppose

lim
n→∞

|z̃1n − z̃0n|
εn

≤ C and lim
n→∞

|z̃2n − z̃0n|
εn

≤ C for some C > 0,

then up to a subsequence, we may assume that there exist y1, y2, such that

lim
n→∞

z̃1n − z̃0n

εn
= y1 and lim

n→∞

z̃2n − z̃0n

εn
= y2.

Under this circumstance, û1 and û2 satisfy

−∆û1 + (1− λ0)û1 ≤ Q2(x+ y1)û1 and −∆û2 + (1 + λ0)û2 ≤ Q2(x+ y2)û2.

Similar to the above case, we can deduce a contradiction either λ0 > 0 or λ0 < 0. Hence,

λ0 = 0 and lim
n→∞

|z̃in − z̃0n|
εn

≤ C for i = 1, 2.

Since
{
z̃in−z̃0n
εn

}
is bounded uniformly in R2 for i = 1, 2, there exist y1, y2 ∈ R2, such that up to a

subsequence,

lim
n→∞

z̃1n − z̃0n

εn
= y1, lim

n→∞

z̃2n − z̃0n

εn
= y2.

Moreover, ûi (i = 1, 2) satisfies

−∆ûi + ûi ≤ (c0 + c1) · N
∗

a∗
Q2(x+ yi)ûi =

(
1 +

c1N
∗

a∗

)
Q2(x+ yi)ûi,

which means that ∫
R2

(|∇ûi|2 + |ûi|2)dx <

∫
R2

Q2(x+ y2)|ûi|2dx.

It is a contradiction to (3.54). Therefore, u1n = u2n ≡ 0 in R2 and we complete the proof.

4 The 3D case

In this section, we are going to prove Theorems 4-6, where the 3D case of (1.1)-(1.2) is considered.
Define the Pohozaev manifold of (1.1)-(1.2) as

P :=
{
u = (u1, u2, u0) ∈M

∣∣ P (u) = 0
}
,

with

P (u) = A(u)−
∫
R3

|x|2|u|2dx− 3

4
E(u) +

∫
R3

〈∇B(x), x〉(u1u0 + u0u2)dx.

Lemma 4.1. Suppose u = (u1, u2, u0) ∈ Λ is a solution of (1.1)-(1.2), then P (u) = 0.

Proof. Since u is a solution of (1.1)-(1.2), u satisfies the Pohozaev identity

A(u) + 5

∫
R3

|x|2|u|2dx− 3

2
E(u)− 6F (u)− 2

∫
R3

〈∇B(x), x〉(u1u0 + u0u2)dx

= 3
(

(µ+ λ)

∫
R3

|u1|2dx+ (µ− λ)

∫
R3

|u2|2dx+ µ

∫
R3

|u0|2dx
)
.
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Multiplying the three equations in (1.1) by u1, u2, u0 and integrating by parts respectively, we then
obtain

A(u) +

∫
R3

|x|2|u|2dx− E(u)− 2F (u) = (µ+ λ)

∫
R3

|u1|2dx+ (µ− λ)

∫
R3

|u2|2dx+ µ

∫
R3

|u0|2dx,

which follows that P (u) = 0. Therefore, we have proved the lemma.

In Theorems 4 and 6, we shall show the multiplicity of solutions to (1.1)-(1.2) with a local minimizer
and a mountain pass solution. For simplicity, we just denoteM(N) asM. First of all, we prove a local
minima structure for I(u) on M. Define

‖u‖2
Λ̇

:= A(u) +

∫
R3

|x|2|u|2dx,

then by Lemma 2.4, there holds

‖u‖2
Λ̇
≥ 3

∫
R3

|u|2dx, for ∀u ∈ Λ.

For any r > 0, let

B(r) :=
{
u = (u1, u2, u0) ∈ Λ

∣∣‖u‖2
Λ̇
≤ r
}
.

Lemma 4.2. Suppose c0 > 0 and c0 + c1 > 0, then for any r > 0, there holds

M∩B(r) 6= ∅, if N ≤ r

3
. (4.1)

In addition, if we further assume B(x) satisfies one of (1.7) and (1.16), then I(u) is bounded from
below on M∩B(r).

Proof. For any r > 0, by Lemma 2.4, it is easy to see that
(√

N+M
2 Ψ0,

√
N−M

2 Ψ0, 0
)
∈M. Moreover,

if N ≤ r
3 ,

∥∥∥(√N +M

2
Ψ0,

√
N −M

2
Ψ0, 0

)∥∥∥2

Λ̇
= N

∫
R3

(
|∇Ψ0|2 + |x|2|Ψ0|2

)
dx = N‖(Ψ0, 0, 0)‖2

Λ̇
= 3N ≤ r.

Hence,
(√

N+M
2 Ψ0,

√
N−M

2 Ψ0, 0
)
∈M∩B(r). For any u ∈M∩B(r), by (2.2), we get if B(x) ∈ L∞,

I(u) =
1

2
A(u) +

1

2

∫
R3

|x|2|u|2dx− 1

4
E(u)− F (u)

≥ −1

4
max

{
c0, 3c0 + 4c1

}
C∗

(
A(u)

) 3
2
N

1
2 − ‖B(x)‖L∞N

≥ −1

4
max

{
c0, 3c0 + 4c1

}
C∗r

3
2N

1
2 − ‖B(x)‖L∞N.

If B(x)
x ∈ L∞, taking ε = 1

32‖B(x)
x
‖L∞

in (3.2), then we obtain

|F (u)| ≤ 1

16

∫
R3

|x|2|u|2dx+ 8
∥∥∥B(x)

x

∥∥∥2

L∞
N, (4.2)
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which follows that

I(u) ≥ −1

4
max

{
c0, 3c0 + 4c1

}
C∗r

3
2N

1
2 − 8

∥∥∥B(x)

x

∥∥∥2

L∞
N.

If B(x) satisfies (1.16), then

|F (u)| ≤
∥∥∥B(x)

x2

∥∥∥
L∞

∫
R3

|x|2|u|2dx,

further

I(u) ≥ −1

4
max

{
c0, 3c0 + 4c1

}
C∗r

3
2N

1
2 .

Therefore, I(u) is bounded from below on M∩B(r) if B(x) satisfies one of (1.7) and (1.16).

For any r > 0 and N ≤ r
3 , we consider the following local minimization problem:

m(r,N) := inf
u∈M∩B(r)

I(u).

By Lemma 4.2, m(r,N) is well defined.

Lemma 4.3. Suppose c0 > 0, c0 +c1 > 0 and B(x) ∈ L∞, then for any r > 0, there exists N0 = N0(r),
such that

m(r,N) = inf
u∈M∩B( r

2
)
I(u), for N ∈

(
0,min

{
N0,

r

12
,

r

16‖B(x)‖L∞
})
. (4.3)

Proof. For any r > 0, if M∩
(
B(r) \ B( r2)

)
= ∅, then (4.3) holds. If M∩

(
B(r) \ B( r2)

)
6= ∅, then for

any u ∈M∩
(
B(r) \ B( r2)

)
, we have

I(u) =
1

2
A(u) +

1

2

∫
R3

|x|2|u|2dx− 1

4
E(u)− F (u)

≥ 1

2
‖u‖2

Λ̇
− 1

4
max

{
c0, 3c0 + 4c1

}
C∗‖(u1, u2, u0)‖3

Λ̇
N

1
2 − ‖B(x)‖L∞N

≥ r

4
− 1

4
max

{
c0, 3c0 + 4c1

}
C∗r

3
2N

1
2 − ‖B(x)‖L∞N.

For N > 0, we define a function g(N) as

g(N) :=
r

4
− 1

4
max

{
c0, 3c0 + 4c1

}
C∗r

3
2N

1
2 − ‖B(x)‖L∞N,

then it is easy to see that there exists a constant N0 = N0(r), such that g(N) ≥ 3
16r for 0 < N ≤ N0.

It follows that

inf
u∈M∩

(
B(r)\B( r

2
)
) I(u) ≥ 3

16
r, for N ∈ (0, N0].

For any r > 0, by (4.1),

M∩B
(r

4

)
6= ∅, if N ≤ r

12
.

Since N < r
16‖B(x)‖L∞

, for any u ∈M∩ B( r4), we have

I(u) ≤ 1

2
‖u‖2

Λ̇
+ ‖B(x)‖L∞N <

3r

16
≤ inf

u∈M∩
(
B(r)\B( r

2
)
) I(u).
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Hence, if

0 < N < min
{
N0,

r

12
,

r

16‖B(x)‖L∞

}
,

we conclude
m(r,N) ≤ inf

u∈M∩B( r
4

)
I(u) < inf

u∈M∩
(
B(r)\B( r

2
)
) I(u).

Therefore, we complete the proof.

Remark 4.1. Indeed, the constant N0 in Lemma 4.3 is defined by

N0 =

(√
C2

0r
3 + 4‖B(x)‖L∞r − C0r

3
2

8‖B(x)‖L∞

)2

,

where C0 := max{c0, 3c0 + 4c1}C∗ and C∗ = 4
√

3
9a∗ is the optimal constant of the Gagliardo-Nirenberg

type inequality (2.1) for d = 3. Further, suppose c0 > 0, c0 + c1 > 0, then for any r > 0, there also
exists N1 = N1(r), such that

m(r,N) = inf
u∈M∩B( r

2
)
I(u), for N ∈ (0, N1).

Here, if B(x)
x ∈ L∞, then

N1 = min

{
N0,

r

12
,

3r

512‖B(x)
x ‖

2
L∞

}
and N0 = N0(r) =

(√
C2

0r
3 + 16‖B(x)

x ‖
2
L∞r − C0r

3
2

64‖B(x)
x ‖

2
L∞

)2

.

If B(x) satisfies (1.16), then

N1 = min
{
N0,

r

12

}
and N0 = N0(r) =

(1− 8‖B(x)
x2
‖L∞

4C0r
1
2

)2
.

The proofs are similar to Lemma 4.3, we omit the details here.

Lemma 4.4. Suppose c0 > 0, c0 + c1 > 0 and B(x) satisfies one of (1.7) and (1.16), then for any
r > 0, there exists N∗∗ = N∗∗(r), such that

inf
u∈M∩B( r

4
)
I(u) < inf

u∈M∩
(
B(r)\B( r

2
)
) I(u), for N ∈ (0, N∗∗). (4.4)

Proof. From the proof of Lemma 4.3, it is sufficient to show that M∩
(
B(r) \ B( r2)

)
6= ∅ for small N .

First, we assume B(x) ∈ L∞. For any τ > 0 and u ∈ H1(R3), we define

τ ? u = e
3
2
τu(eτx), (4.5)

then

U = (U1, U2, U0) := τ ?

(√
N +M

2
Ψ0,

√
N −M

2
Ψ0, 0

)
∈M∩ B(r),

and by direct calculations, we get from (2.3) that∥∥U∥∥2

Λ̇
= e2τN

∫
R3

|∇Ψ0|2dx+ e−2τN

∫
R3

|x|2|Ψ0|2dx =
3N

2

(
e2τ + e−2τ

)
≥ 3N.
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Hence for any r > 0, if we choose N ≤ r
4 , then there exists τ > 0, such that

∥∥U∥∥2

Λ̇
= 3

4r, that is

U ∈M∩
(
B(r) \ B( r2)

)
. Let

N∗∗ := min
{
N0,

r

12
,
r

4
,

r

16‖B(x)‖L∞

}
= min

{
N0,

r

12
,

r

16‖B(x)‖L∞

}
,

we get (4.4). If B(x)
x ∈ L∞ or B(x) satisfies (1.16), we set

N∗∗ := min
{
N0,

r

12
,
r

4
,

3r

512‖B(x)
x ‖

2
L∞

}
= min

{
N0,

r

12
,

3r

512‖B(x)
x ‖

2
L∞

}
or

N∗∗ := min
{
N0,

r

12
,
r

4

}
= min

{
N0,

r

12

}
,

then we obtain the conclusion.

Lemma 4.5. Suppose c0 > 0, c0 + c1 > 0 and B(x) satisfies one of (1.7) and (1.16), then for any
r > 0, there holds

m(r,N) <
3N

2
, for N ∈ (0, N∗∗).

Proof. From the proof of Lemma 4.2, we get
(√

N+M
2 Ψ0,

√
N−M

2 Ψ0, 0
)
∈M∩ B(r). Thus

m(r,N) = inf
u∈M∩B(r)

I(u) ≤ I
(√N +M

2
Ψ0,

√
N −M

2
Ψ0, 0

)
<
N

2

∫
R3

(
|∇Ψ0|2 + |x|2|Ψ0|2

)
dx =

N

2
‖(Ψ0, 0, 0)‖2

Λ̇
=

3N

2
.

4.1 Proof of Theorem 4

Proof of Theorem 4. (i) For any r > 0 and 0 < N ≤ r
3 , let {un} := {(u1n, u2n, u0n)} be a minimizing

sequence of m(r,N), i.e. I(un)→ m(r,N) as n→∞. Then ‖un‖2Λ = ‖un‖2Λ̇ + ‖un‖2L2 ≤ r+N, which
implies that {un} is bounded in Λ. Therefore, there exists ũ := (ũ1, ũ2, ũ0) ∈ Λ, such that up to a
subsequence, as n→∞,

un ⇀ ũ, in Λ.

un → ũ, in Lt(R3)× Lt(R3)× Lt(R3), ∀t ∈ [2, 2∗).

un → ũ, a.e. in R3.

Then we get ũ ∈M∩ B(r). Further, by the lower semi-continuity of the norm in Λ, there holds

m(r,N) ≤ I(ũ) ≤ lim
n→∞

I(un) = m(r,N).

It yields that I(ũ) = m(r,N). Hence, m(r,N) has at least one minimizer for any r > 0 and N ≤ r
3 .

(ii) For any r > 0 and 0 < N < N∗∗, by (4.3), we can see that ũ ∈ B( r2), which follows that ũ stays
away from the boundary of B(r). Thus, ũ is indeed a critical point of I(u) restricted toM and further
ũ is a weak solution of (1.1)-(1.2).
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Next, we argue by contradiction to show that ũ is a ground state solution of (1.1)-(1.2) when N is
sufficiently small. Let Nn := min{ 1

n , N0}, suppose there exist r0 > 0 and {vn} = {(v1n, v2n, v0n)} ⊂
M(Nn), such that

I ′|M(vn) = 0 and I(vn) < m(r0, Nn). (4.6)

Then by Lemma 4.1, we get P (vn) = 0 and further if B(x) ∈ L∞,

I(vn) ≥ 1

6
A(vn) +

5

6

∫
R3

|x|2|vn|2dx−
1

3

∫
R3

〈∇B(x), x〉(v1nv0n + v0nv2n)dx− ‖B(x)‖L∞Nn.

If B(x)
x ∈ L∞, we can show

I(vn) ≥ 1

6
‖vn‖2Λ̇ −

1

3

∫
R3

〈∇B(x), x〉(v1nv0n + v0nv2n)dx− 8
∥∥∥B(x)

x

∥∥∥2

L∞
Nn,

and if B(x) satisfies (1.16), then

I(vn) ≥ 1

6
A(vn) +

(5

6
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R3

|x|2|vn|2dx−
1

3

∫
R3

〈∇B(x), x〉(v1nv0n + v0nv2n)dx.

Thus, by (4.6), Lemma 4.5 and the fact that Nn → 0 as n→∞, we conclude

‖vn‖2Λ̇ = A(vn) +

∫
R3

|x|2|vn|2dx→ 0, as n→∞,

then vn ∈M(Nn)∩B(r0). We can see that I(vn) ≥ m(r0, Nn), which is a contradiction. Therefore, ũ
is a ground state of (1.1)-(1.2).
(iii) Suppose B(x) ∈ L∞, we shall show that

‖u− (k1Ψ0, k2Ψ0, k0Ψ0)‖2Λ = O(N), as N → 0+, (4.7)

where ki = ki0 =
∫
R3 uiΨ0dx for i = 1, 2, 0 and Ψ0 = 1

π
3
4
e−

x2

2 . Set

kij =

∫
R3

uiΨjdx, for i = 1, 2, 0,

then

u =

( ∞∑
j=0

k1jΨj ,

∞∑
j=0

k2jΨj ,

∞∑
j=0

k0jΨj

)
.

Moreover, we conclude

N = ‖(u1, u2, u0)‖2L2 =

∞∑
j=0

(k2
1j + k2

2j + k2
0j)‖Ψj‖2L2 =

∞∑
j=0

(k2
1j + k2

2j + k2
0j) (4.8)

and

‖u‖2
Λ̇

=
∞∑
j=0

(k2
1j + k2

2j + k2
0j)‖Ψj‖2Λ̇ =

∞∑
j=0

ξj(k
2
1j + k2

2j + k2
0j).
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By Lemma 4.1, we can see that

m(r,N) = I(u) =
1

2
A(u) +

1

2

∫
R3

|x|2|u|2dx− 1

4
E(u)− F (u)

=
1

6
A(u) +

5

6

∫
R3

|x|2|u|2dx− 1

3

∫
R3

〈∇B(x), x〉(u1u0 + u0u2)dx− F (u)

≥ 1

6

∥∥u∥∥2

Λ̇
− 1

3

∫
R3

〈∇B(x), x〉(u1u0 + u0u2)dx− F (u).

Then ∥∥u∥∥2

Λ̇
≤ 6m(r,N) + 2

∫
R3

〈∇B(x), x〉(u1u0 + u0u2)dx+ 6F (u)

≤
(

9 + 2
∥∥〈∇B(x), x〉

∥∥
L∞

+ 6‖B(x)‖L∞
)
N.

Together with (2.2), we get

m(r,N) = I(u) =
1

2
‖u‖2

Λ̇
− 1

4
E(u)− F (u)

≥ 1

2
‖u‖2

Λ̇
− 1

4
max

{
c0, 3c0 + 4c1

}
C∗

(
A(u)

) 3
2
N

1
2 − ‖B(x)‖L∞N

≥ 1

2
‖u‖2

Λ̇
− 1

4
max

{
c0, 3c0 + 4c1

}
C∗‖u‖3Λ̇N

1
2 − ‖B(x)‖L∞N

≥ 1

2

∞∑
j=0

ξj(k
2
1j + k2

2j + k2
0j)− ‖B(x)‖L∞N

− 1

4
max

{
c0, 3c0 + 4c1

}
C∗

(
9 + 2

∥∥〈∇B(x), x〉
∥∥
L∞

+ 6‖B(x)‖L∞
) 3

2
N2

=
1

2

∞∑
j=0

(ξj − ξ0)(k2
1j + k2

2j + k2
0j) +

1

2

∞∑
j=0

ξ0(k2
1j + k2

2j + k2
0j)− ‖B(x)‖L∞N

− 1

4
max

{
c0, 3c0 + 4c1

}
C∗

(
9 + 2

∥∥〈∇B(x), x〉
∥∥
L∞

+ 6‖B(x)‖L∞
) 3

2
N2.

Then by Lemma 4.5 and (4.8), we have

(ξ1 − ξ0)
∞∑
j=1

(k2
1j + k2

2j + k2
0j) ≤

∞∑
j=1

(ξj − ξ0)(k2
1j + k2

2j + k2
0j)

≤ 1

2
max

{
c0, 3c0 + 4c1

}
C∗

(
9 + 2

∥∥〈∇B(x), x〉
∥∥
L∞

+ 6‖B(x)‖L∞
) 3

2
N2

−
∞∑
j=0

ξ0(k2
1j + k2

2j + k2
0j) + 2‖B(x)‖L∞N + 2m(r,N)

≤ 1

2
max

{
c0, 3c0 + 4c1

}
C∗

(
9 + 2

∥∥〈∇B(x), x〉
∥∥
L∞

+ 6‖B(x)‖L∞
) 3

2
N2 + 2‖B(x)‖L∞N.

Denote

M0 :=
1

2
max

{
c0, 3c0 + 4c1

}
C∗

(
9 + 2

∥∥〈∇B(x), x〉
∥∥
L∞

+ 6‖B(x)‖L∞
) 3

2
,
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then
∞∑
j=1

(k2
1j + k2

2j + k2
0j) ≤

M0N
2 + 2‖B(x)‖L∞N
ξ1 − ξ0

.

Thus

∞∑
j=1

ξj(k
2
1j + k2

2j + k2
0j) =

∞∑
j=1

(ξj − ξ0)(k2
1j + k2

2j + k2
0j) + ξ0

∞∑
j=1

(k2
1j + k2

2j + k2
0j)

≤M0N
2 + 2‖B(x)‖L∞N + ξ0 ·

M0N
2 + 2‖B(x)‖L∞N
ξ1 − ξ0

=
ξ1

ξ1 − ξ0
·
(
M0N

2 + 2‖B(x)‖L∞N
)
.

For N → 0+, we can see that

‖u− (k1Ψ0, k2Ψ0, k0Ψ0)‖2
Λ̇

=

∥∥∥∥( ∞∑
j=1

k1jΨj ,
∞∑
j=1

k2jΨj ,
∞∑
j=1

k0jΨj

)∥∥∥∥2

Λ̇

=

∞∑
j=1

ξj(k
2
1j + k2

2j + k2
0j) = O(N)

and

‖u− (k1Ψ0, k2Ψ0, k0Ψ0)‖2L2 =

∥∥∥∥( ∞∑
j=1

k1jΨj ,

∞∑
j=1

k2jΨj ,

∞∑
j=1

k0jΨj

)∥∥∥∥2

L2

=
∞∑
j=1

(k2
1j + k2

2j + k2
0j) = O(N).

Therefore, it is obvious that (4.7) holds. If B(x)
x ∈ L∞ or B(x) satisfies (1.16), we can prove (4.7) with

small modifications, here we omit the details. Hence, we complete the proof of Theorem 4 (iii).

Next, we prove Theorem 5, that is the minimizers obtained in Theorems 1 and 4 are radial symmetric
if c1 ≥ 0 and B(x) ≥ 0.

4.2 Proof of Theorem 5

Proof of Theorem 5. By a standard regularity bootstrap argument, we conclude w is of class C1.
For c1 ≥ 0 and B(x) ≥ 0, it is easy to see that F (|w|) ≥ F (w) and I(|w|) ≤ I(w). Hence, |w| is also
a minimizer of m(N). Applying the maximum principle, |w| > 0. Since w and |w| are minimizers, we
conclude

1

2

(
A(w)−A(|w|)

)
+

1

4

(
E(|w|)− E(w)

)
+
(
F (|w|)− F (w)

)
= 0,

which implies that A(|w|) = A(w). Using Theorem 5 of appendix B in [6], we get wj(x) = eiθjρj(x), j =
1, 2, 0, where θj ∈ R is a constant and ρ = (ρ1, ρ2, ρ0) is a real valued minimizer with ρj(x) > 0 for
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every x ∈ Rd. Moreover, by direct calculations, we obtain

Re

∫
Rd

w1w2w
2
0dx = Re

∫
Rd

(
ρ1ρ2 cos(θ1 + θ2)− iρ1ρ2 sin(θ1 + θ2) + ρ2

0 cos(2θ0) + iρ2
0 sin(2θ0)

)
dx

=

∫
Rd

ρ1ρ2ρ
2
0 cos(2θ0 − θ1 − θ2)dx

and

Re

∫
Rd

B(x)(w1w0 + w0w2)dx =

∫
Rd

B(x)
(
ρ1ρ0 cos(θ0 − θ1) + ρ2ρ0 cos(θ0 − θ2)

)
dx.

It yields that

I(w) =
1

2
A(ρ) +

1

2

∫
Rd

|x|2|ρ|2dx− 1

4

∫
Rd

((
c0 + c1

)(
|ρ1|4 + |ρ2|4

)
+ c0|ρ0|4

)
dx

− 1

2

∫
Rd

((
c0 − c1

)
|ρ1|2|ρ2|2 +

(
c0 + c1

)
(|ρ1|2 + |ρ2|2)|ρ0|2

)
dx

− c1

∫
Rd

ρ1ρ2ρ
2
0 cos(2θ0 − θ1 − θ2)dx−

∫
Rd

B(x)
(
ρ1ρ0 cos(θ0 − θ1) + ρ2ρ0 cos(θ0 − θ2)

)
dx,

by the fact that w is a minimizer, we then conclude

2θ0 − θ1 − θ2 = 2k1π, θ0 − θ1 = 2k2π and θ0 − θ2 = 2k3π for kj ∈ Z (j = 1, 2, 3),

which implies θ1 + θ2 − 2θ0 = 2kπ (k ∈ Z). Denote ρ∗ = (ρ∗1, ρ
∗
2, ρ
∗
0) as the Schwarz symmetrization of

ρ, by [34], we have 

A(ρ∗) ≤ A(ρ),

∫
Rd

|x|2(ρ∗)2dx ≤
∫
Rd

|x|2ρ2dx,∫
Rd

(ρ∗j )
4dx =

∫
Rd

ρ4
jdx, j = 1, 2, 0,∫

Rd

(ρ∗j )
2(ρ∗k)

2dx ≥
∫
Rd

ρ2
jρ

2
kdx, j, k = 1, 2, 0,∫

Rd

ρ∗1ρ
∗
2(ρ∗0)2dx ≥

∫
Rd

ρ1ρ2ρ
2
0dx.

Since B(x) ≥ 0, again by [34], we get∫
Rd

B(x)(ρ1 + ρ2)ρ0dx ≤
∫
Rd

B(x)(ρ∗1 + ρ∗2)ρ∗0dx.

Then, it is obvious that I(ρ∗) ≤ I(ρ) and as a consequence ρ∗ is also a minimizer. Since ρ is a
minimizer, it yields that ∫

Rd

|x|2(ρ∗)2dx =

∫
Rd

|x|2ρ2dx.

Applying Theorem 4 in appendix of [6] with V (x) = |x|2, then ρ = ρ∗ and hence the minimizer is
symmetric. Hence, we complete the proof.
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4.3 Proof of Theorem 6

In the end of this section, we shall prove Theorem 6, that is there exists an excited state solution
û := (û1, û2, û0) ∈M(N) to system (1.1)-(1.2) with some µ̂, λ̂ as Lagrange multipliers.

For any r > 0 and 0 < N ≤ N∗∗, suppose ũ = (ũ1, ũ2, ũ0) ∈ M∩ B(r) is the solution of (1.1)-(1.2)
obtained in Theorem 4 (ii), then ũ ∈ B( r2). For any τ > 0 and u ∈ H1(R3), let τ ? u be the operation
defined in (4.5). Then for any u = (u1, u2, u0) ∈M, when c0 > 0 and c0 + c1 > 0, we get if B(x) ∈ L∞,

I(τ ? u) =
1

2
e2τA(u) +

1

2
e−2τ

∫
R3

|x|2|u|2dx− 1

4
e3τE(u)−Re

∫
R3

B(e−τx)(u1u0 + u0u2)dx

≤ 1

2
e2τA(u) +

1

2
e−2τ

∫
R3

|x|2|u|2dx− 1

4
e3τE(u) + ‖B(x)‖L∞N.

If B(x)
x ∈ L∞, then

I(τ ? u) ≤ 1

2
e2τA(u) +

9

16
e−2τ

∫
R3

|x|2|u|2dx− 1

4
e3τE(u) + 8

∥∥∥B(x)

x

∥∥∥2

L∞
N.

If B(x) satisfies (1.16), then

I(τ ? u) ≤ 1

2
e2τA(u) +

(1

2
+
∥∥∥B(x)

x2

∥∥∥
L∞

)
e−2τ

∫
R3

|x|2|u|2dx− 1

4
e3τE(u).

It means that for any u ∈ M, there holds lim
τ→+∞

I
(
τ ? u

)
= −∞ if B(x) satisfies (1.7) or (1.16). Thus

there exists a large τ1 > 0, such that
∥∥(τ1 ? ũ)

∥∥2

Λ̇
> r and I(τ1 ? ũ) < 0. We now define a path as

Γ :=
{
g ∈ C

(
[0, 1],M

)∣∣g(0) = ũ, g(1) = τ1 ? ũ
}
,

then for t ∈ [0, 1], it is easy to see that g(t) :=
(
(1 − t) + tτ1

)
? ũ ∈ Γ, that is Γ 6= ∅. Hence, the

minimax value
σ := inf

g∈Γ
max
t∈[0,1]

I
(
g(t)

)
is well defined.

Proposition 4.1. Suppose c0 > 0 and c0 + c1 > 0, then for any r > 0 and 0 < N ≤ N∗∗, there exists a
bounded Palais-Smale sequence {un} = {(u1n, u2n, u0n)} for I restricted to M at level σ. In addition,

P (un) = A(un)−
∫
R3

|x|2|un|2dx−
3

4
E(un) +

∫
R3

〈∇B(x), x〉(u1nu0n + u0nu2n)dx = o(1), as n→∞.

Proof. First, we are going to prove the existence of Palais-Smale sequence {un} with P (un) = o(1), as
n→∞. Now, we define an auxiliary functional as Ĩ

(
τ,u

)
= I
(
τ ? u

)
. Let

Γ̃ =
{
h̃ ∈ C

(
[0, 1],R×M

)∣∣ h̃(0) =
(
0, ũ

)
, h̃(1) =

(
0, τ1 ? ũ

)}
,

then it is easy to see that
σ̃ = inf

h̃∈Γ̃
max
t∈[0,1]

Ĩ
(
h̃(t)

)
= σ.
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Taking a sequence {gn} := {(g1n, g2n, g0n)} ⊂ Γ, such that

max
t∈[0,1]

I
(
gn(t)

)
≤ σ +

1

n
.

Let g̃n := (0, gn) ⊂ Γ̃, then we get

max
t∈[0,1]

Ĩ
(
g̃n(t)

)
= max

t∈[0,1]
I
(
gn(t)

)
≤ σ +

1

n
= σ̃ +

1

n
.

By Lemma 2.3 in [28], there exists a sequence
{(
τn, ũn

)}
:=
{(
τn, (ũ1n, ũ2n, ũ0n)

)}
⊂ R ×M, such

that

(1) lim
n→+∞

Ĩ
(
τn, ũn

)
= σ̃ = σ;

(2) lim
n→+∞

|τn|+ dist
(
ũn, gn(t)

)
= 0;

(3) let E := R×H and E−1 denote the dual space of E, then there holds∥∥∥Ĩ ′∣∣R×H(τn, ũn

)∥∥∥
E−1
≤ 2

√
1

n
.

That is, ∣∣〈Ĩ ′(τn, ũn

)
,
(
τ,u∗

)〉∣∣ ≤ 2

√
1

n
‖(τ,u∗)‖E ,

for all
(
τ,u∗

)
:=
(
τ, (u∗1, u

∗
2, u
∗
0)
)
∈ T̃(τn,ũn), where

T̃(τn,ũn) :=
{(
τ,u∗

)
∈ E

∣∣∣ ∫
R3

(
u∗1ũ1n + u∗2ũ2n + u∗0ũ0n

)
dx = 0,∫

R3

(
u∗1ũ1n − u∗2ũ2n

)
dx = 0

}
.

Let
un := (u1n, u2n, u0n) := τn ? ũn = (τn ? ũ1n, τn ? ũ2n, τn ? ũ0n),

then by point (1), we obtain

I(un) = I(τn ? ũn) = Ĩ
(
τn, ũn

)
→ σ, as n→∞. (4.9)

Further, by direct calculations, we conclude from (3) that

P (un) = P
(
τn ? ũn

)
= e2τnA(ũn)− 3

4
e3τnE(ũn) +

∫
R3

〈
∇B(e−τnx), e−τnx

〉
(ũ1nũ0n + ũ0nũ2n)dx

=
〈
Ĩ ′
(
τn, ũn

)
,
(
1, (0, 0, 0)

)〉
→ 0, as n→∞. (4.10)

Next, we are going to show that I ′
∣∣
M(un) → 0 as n → ∞. For this purpose, it is sufficient to show

that there exists a certain constant C > 0, such that∣∣〈I ′(un),u∗〉
∣∣ ≤ C√

n
‖u∗‖, (4.11)
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for all

u∗ ∈ Tun :=
{
u∗ ∈ H

∣∣∣ ∫
R3

(
u∗1u1n + u∗2u2n + u∗0u0n

)
dx = 0,∫

R3

(
u∗1u1n − u∗2u2n

)
dx = 0

}
.

For any u∗ ∈ Tun , we set ũ∗ := (ũ∗1, ũ
∗
2, ũ
∗
0) := (−τn) ? u∗, then (0, ũ∗) ∈ T̃(τn,ũn) and〈

Ĩ ′
(
τn, ũn

)
, (0, ũ∗)

〉
= 〈I ′(un),u∗〉.

By point (2), we may assume that τn → 0 as n→∞, then

‖(0, ũ∗)‖2E = ‖ũ∗‖2 =

∫
R3

(
|∇u∗1|2 + |∇u∗2|2 + |∇u∗0|2

)
dx+

∫
R3

(
|ũ∗1|2 + |ũ∗2|2 + |ũ∗0|2

)
dx

= e−2τn

∫
R3

(
|∇u∗1|2 + |∇u∗2|2 + |∇u∗0|2

)
dx+

∫
R3

(
|u∗1|2 + |u∗2|2 + |u∗0|2

)
dx ≤ 2‖u∗‖2.

For any u∗ ∈ Tun , set ũ∗ := (ũ∗1, ũ
∗
2, ũ
∗
0) := (−τn) ? u∗, then

(0, ũ∗) ∈ T̃(τn,ũn) and
〈
Ĩ ′
(
τn, ũn

)
, (0, ũ∗)

〉
= 〈I ′(un),u∗〉.

By point (2), we may assume that τn → 0 as n→∞, then

‖(0, ũ∗)‖2E = ‖ũ∗‖2 =

∫
R3

(
|∇u∗1|2 + |∇u∗2|2 + |∇u∗0|2

)
dx+

∫
R3

(
|ũ∗1|2 + |ũ∗2|2 + |ũ∗0|2

)
dx

= e−2τn

∫
R3

(
|∇u∗1|2 + |∇u∗2|2 + |∇u∗0|2

)
dx+

∫
R3

(
|u∗1|2 + |u∗2|2 + |u∗0|2

)
dx

≤ 2‖u∗‖2.

Then by point (3), we get

∣∣〈I ′(un),u∗〉
∣∣ =

∣∣〈Ĩ ′(τn, ũn

)
,
(
0, ũ∗

)
〉
∣∣ ≤ 2

√
1

n
‖(1, ũ∗)‖ ≤ 2

√
2

n
‖u∗‖,

thus (4.11) holds. Together with (4.9), (4.10), {un} is a Palais-Smale sequence for I restricted to M.
Finally, we show {un} ⊂ M is bounded in Λ. Indeed, direct calculation gives

I(un) = I(un)− 1

3
P (un) + o(1)

=
1

6
A(un) +

5

6

∫
R3

|x|2|un|2dx−
1

3

∫
R3

〈∇B(x), x〉(u1nu0n + u0nu2n)dx− F (un) + o(1).

It follows that if B(x) ∈ L∞, then

1

6
‖un‖2Λ̇ ≤ I(un) +

1

3

∫
R3

〈∇B(x), x〉(u1nu0n + u0nu2n)dx+ F (un) + o(1)

≤ σ +
1

3
‖〈∇B(x), x〉‖L∞N + ‖B(x)‖L∞N + o(1).
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If B(x)
x ∈ L∞, then

1

6
‖un‖2Λ̇ ≤ σ +

1

3
‖〈∇B(x), x〉‖L∞N + 8

∥∥∥B(x)

x

∥∥∥2

L∞
N + o(1)

and if B(x) satisfies (1.16), then

1

6
‖un‖2Λ̇ ≤ σ +

1

3
‖〈∇B(x), x〉‖L∞N + o(1).

Since {un} ⊂ M, then we get the boundedness of {un} in Λ. Therefore, we complete the proof.

Lemma 4.6. Suppose c0 > 0 and c0 + c1 > 0, for any r > 0 and 0 < N ≤ N∗∗, let {un} ⊂ M be the
Palais-Smale sequence obtained in Proposition 4.1, then there exists û = (û1, û2, û0) ∈ M, such that
un → û is strongly in Λ.

Proof. By Lemma 2.1 and Proposition 4.1, there exists û = (û1, û2, û0) ∈ Λ, such that up to a subse-
quence, as n→ +∞, 

un ⇀ û, in Λ.

un → û, in Lt(R3)× Lt(R3)× Lt(R3), ∀t ∈ [2, 2∗).

un → û, a.e. in R3.

(4.12)

Since I ′
∣∣
M(un)→ 0, then there exist two sequences {µn}, {λn} ⊂ R, such that〈1

2
A′(un)− 1

4
E′(un)− F ′(un),φ

〉
+

∫
R3

|x|2
(
u1nφ1 + u2nφ2 + u0nφ0

)
dx

= µn

∫
R3

(
u1nφ1 + u2nφ2 + u0nφ0

)
dx+ λn

∫
R3

(u1nφ1 − u2nφ2)dx

= (µn + λn)

∫
R3

u1nφ1dx+ (µn − λn)

∫
R3

u2nφ2dx+ µn

∫
R3

u0nφ0dx+ o(1),

(4.13)

for any φ = (φ1, φ2, φ0) ∈ Λ. Since {un} ⊂ M is bounded in Λ by Proposition 4.1, taking φ = un in
(4.13), then {µn}, {λn} are two bounded sequences in R. Suppose that µn → µ̂, λn → λ̂ as n → ∞.
Taking φ = un − û in (4.13), we get〈1

2
A′(un)− 1

4
E′(un)− F ′(un),un − û

〉
+

∫
R3

|x|2
(
u1n(u1n − û1) + u2n(u2n − û2) + u0n(u0n − û0)

)
dx (4.14)

= (µn + λn)

∫
R3

u1n(u1n − û1)dx+ (µn − λn)

∫
R3

u2n(u2n − û2)dx

+ µn

∫
R3

u0n(u0n − û0)dx+ o(1).

By (4.12), we get û satisfies (1.1)-(1.2). Thus using (u1n − û1, u2n − û1, u0n − û0) as a test function in
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(1.1), we then obtain 〈1

2
A′(û)− 1

4
E′(û)− F ′(û), (u1n − û1, u2n − û1, u0n − û0)

〉
+

∫
R3

|x|2
(
û1(u1n − û1) + û2(u2n − û2) + û0(u0n − û0)

)
dx

= (µ̂+ λ̂n)

∫
R3

û1(u1n − û1)dx+ (µ̂− λ̂)

∫
R3

û2(u2n − û2)dx

+ µ̂

∫
R3

û0(u0n − û0)dx+ o(1).

Together with (4.12), (4.14), we can see that

A(un − û) +

∫
R3

|x|2|un − û|2dx = o(1),

which gives

A(un)→ A(û) and

∫
R3

|x|2|un|2dx→
∫
R3

|x|2|û|2dx, as n→∞.

Therefore, we get the strong convergence of un → û in Λ as n→∞.

Proof of Theorem 6. The proof follows from Proposition 4.1 and Lemma 4.6.

Appendix

In this section, suppose Nn ↗ N∗, c0 + c1n > 0 and c1n ↗ 0, then we investigate the limit behavior of
un = (u1n, u2n, u0n) as n→∞.

Proposition 4.2. Suppose c0 + c1n > 0, c1n ↗ 0. Let Nn ↗ N∗,

lim
n→∞

c1n

Nnc0(N∗ −Nn)
= η < 0 as n→∞

and un = (u1n, u2n, u0n) ∈M(Nn) be a corresponding minimizer of m(Nn), then
(i) if B(x) satisfies (1.8) with B(x) ≥ 0, then

M1(N∗ −Nn)
1
2 ≤ m(Nn) ≤M2(N∗ −Nn)

1
2 , as n→∞.

(ii) if B(x) satisfies (1.8) and (1.9) with B(x) < 0, then for 0 < p < 2,

M3(N∗ −Nn)
p

p+2 ≤ m(Nn) ≤M4(N∗ −Nn)
p

p+2 , as n→∞,

for p = 2,

M5(N∗ −Nn)
1
2 ≤ m(Nn) ≤M6(N∗ −Nn)

1
2 , as n→∞

and for p > 2,

m(Nn)

(N∗ −Nn)
1
2

→
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 , as n→∞,
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where

M1 =

((
1− 2

∥∥∥B(x)

x2

∥∥∥
L∞

) 1

c0

∫
R2

|x|2Q2(x)dx

) 1
2

(1− ηM2)
1
2 ,

M2 =
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 ,

M3 =
p+ 2

2

(1− ηM2

p

) p
p+2

T
2

p+2 , M4 =
p+ 2

2

(1− ηM2

p

) p
p+2
(
A

∫
R2

|B(x)|Q2(x)dx
) 2

p+2
,

M5 =
( 1

c0

∫
R2

|x|2Q2(x)dx+ 2T
) 1

2
(1− ηM2)

1
2

and

M6 =
( 1

c0

∫
R2

|x|2Q2(x)dx+ 2A

∫
R2

|B(x)|Q2(x)dx
) 1

2
(1− ηM2)

1
2 ,

here T has been defined in (3.39). In addition, if B(x) ≡ 0, then un satisfies
lim
n→∞

εnu1n(εnx+ z̃1n) =

√
N∗ +M

2N∗c0
Q(x),

lim
n→∞

εnu2n(εnx+ z̃2n) =

√
N∗ −M
2N∗c0

Q(x), strongly in H1(R2),

u0n ≡ 0 in R2,when n > 0 is large enough,

where z̃in (i = 1, 2) is the unique maximum point of uin with

lim
n→∞

∣∣ z̃1n − z̃2n

εn

∣∣ = 0 (i, j = 1, 2, i 6= j), lim
n→∞

|z̃in| = 0

and εn = C

(
N∗ −Nn

) 1
4

.

Proof. Without loss of generality, we may assume B(x) ≥ 0. Similar to (3.30), we can see that

I(un) ≥ 1

2

∫
R2

|x|2|un|2dx+
( a∗

4Nn
− c0

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx− F (un)

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|un|2dx+
( a∗

4Nn
− c0

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx (4.15)

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗ε2
n

a∗

∫
R2

|x|2Q2(x)dx+
( a∗

2N
− c0

2

)(N∗)2ε−2
n

a∗
+ o(1).

From (3.15), we have

m(Nn) ≤ Nnτ
−2

2a∗

∫
R2

|x|2Q2(x)dx+
(Nn

2
− c0N

2
n

2a∗
− c1nM

2

2a∗

)
τ2.

Taking τ =
(

Nn
∫
R2 |x|

2Q2(x)dx

Nnc0(N∗−Nn)−c1nM2

) 1
4

and noting that

lim
n→∞

c1n

Nnc0(N∗ −Nn)
= η < 0, (4.16)
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then we get

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≤
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 . (4.17)

Therefore, lim
n→∞

m(Nn) = 0, which implies that

lim
n→∞

A(un)∫
R2(|u1n|2 + |u2n|2 + |u0n|2)2dx

=
a∗

2N∗
.

Further, we also have

lim
n→∞

A(un) = lim
n→∞

∫
R2

(
|∇u1n|2 + |∇u2n|2 + |∇u0n|2

)
dx = +∞.

Let εn, win and w̄in (i = 1, 2, 0) be defined as Theorem 2, then by scaling, we conclude

lim
n→∞

∫
R2

(
|∇w1n|2 + |∇w2n|2 + |∇w0n|2

)
dx = N∗

and

lim
n→∞

∫
R2

(|w1n|2 + |w2n|2 + |w0n|2)2dx =
2(N∗)2

a∗
.

Moreover, there exists some x1 ∈ R2, such that

lim
n→∞

w1n(x) =

√
N∗

a∗
Q(x− x1) sinϕ1 cosϕ2, lim

n→∞
w2n(x) =

√
N∗

2a∗
Q(x− x1) sinϕ1 sinϕ2

and

lim
n→∞

w0n(x) =

√
N∗

a∗
Q(x− x1) cosϕ1, for ϕ1, ϕ2 ∈ [0,

π

2
].

Set t = sin2 ϕ1 ∈ [ MN∗ , 1], then by the fact that un ∈ M, that is ‖u1n‖2L2 − ‖u2n‖2L2 = M and some
direct calculations, we obtain

lim
n→∞

w1n(x) =

√
N∗t+M

2a∗
Q(x− x1), lim

n→∞
w2n(x) =

√
N∗t−M

2a∗
Q(x− x1)

and

lim
n→∞

w0n(x) =

√
N∗(1− t)

a∗
Q(x− x1)

are strongly convergent in H1(R2). Denote

M2 :=
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 ,

then by (4.15) and (4.17), for n large enough, we have(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗ε2
n

a∗

∫
R2

|x|2Q2(x)dx ≤M2(N∗ −Nn)
1
2

and ( a∗
2N
− c0

2

)(N∗)2ε−2
n

a∗
≤M2(N∗ −Nn)

1
2 .
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It follows that for n large enough,

(N∗(N∗ −Nn)
1
2

2NM2

) 1
2 ≤ εn ≤

( M2(N∗ −Nn)
1
2

(1
2 − ‖

B(x)
x2
‖L∞) 1

c0

∫
R2 |x|2Q2(x)dx

) 1
2
.

Then up to a subsequence, we may assume that

lim
n→∞

εn

(N∗ −Nn)
1
4

= ξ. (4.18)

By direct calculations, we get

lim
n→∞

1

(N∗ −Nn)
1
2

{( a∗
Nn
− c0

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx− c1n

∫
R2

(|u1n|2 − |u2n|2)2dx
}

= lim
n→∞

(N∗ −Nn)
1
2

{a∗( 1
Nn
− 1

N∗ )

(N∗ −Nn)

∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx

− c1n

N∗ −Nn

∫
R2

(|u1n|2 − |u2n|2)2dx
}

= lim
n→∞

(N∗ −Nn)
1
2

ε2
n

{a∗( 1
Nn
− 1

N∗ )

(N∗ −Nn)

∫
R2

(|w1n|2 + |w2n|2 + |w0n|2)2dx

− c1n

N∗ −Nn

∫
R2

(|w1n|2 − |w2n|2)2dx
}

= lim
n→∞

(N∗ −Nn)
1
2

ε2
n

{a∗( 1
Nn
− 1

N∗ )

(N∗ −Nn)
· 2(N∗)2

a∗
− c1n

N∗ −Nn
· 2M2

a∗

}
=

2

ξ2
(1− ηM2).

Further,

m(Nn) ≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)∫
R2

|x|2|un|2dx+
( a∗

4Nn
− c0

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx

− c1n

4

∫
R2

(|u1n|2 − |u2n|2)2dx

≥
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗ε2
n

a∗

∫
R2

|x|2Q2(x)dx

+
1

4

{( a∗
Nn
− c0

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx− c1n

∫
R2

(|u1n|2 − |u2n|2)2dx
}

=
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗ε2
n

a∗

∫
R2

|x|2Q2(x)dx+
N∗ −Nn

2ε2
n

(1− ηM2).
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Hence, it implies that

lim inf
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥ lim inf
n→∞

ε2
n

(N∗ −Nn)
1
2

(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗
a∗

∫
R2

|x|2Q2(x)dx

+ lim inf
n→∞

(N∗ −Nn)
1
2

2ε2
n

(1− ηM2)

= ξ2
(1

2
−
∥∥∥B(x)

x2

∥∥∥
L∞

)N∗
a∗

∫
R2

|x|2Q2(x)dx+
ξ−2

2
(1− ηM2)

≥
((

1− 2
∥∥∥B(x)

x2

∥∥∥
L∞

) 1

c0

∫
R2

|x|2Q2(x)dx

) 1
2

(1− ηM2)
1
2 .

(4.19)

On the other hand, by (4.17) and denote

M1 :=
((

1− 2
∥∥∥B(x)

x2

∥∥∥
L∞

) 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 ,

we conclude that
M1(N∗ −Nn)

1
2 ≤ m(Nn) ≤M2(N∗ −Nn)

1
2 as n→∞.

If B(x) ≡ 0, then

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

=
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 . (4.20)

Now, we assume that B(x) < 0 and p > 2 in (1.9). By direct calculations, we obtain

m(Nn) ≤ Nnτ
−2

2a∗

∫
R2

|x|2Q2(x)dx+
(Nn

2
− c0N

2
n

2a∗
− c1M

2

2a∗

)
τ2 +Aτ−p

∫
R2

|B(x)|Q2(x)dx

=
Nnτ

−2

2a∗

∫
R2

|x|2Q2(x)dx+
(Nn

2
− c0N

2
n

2a∗
− c1M

2

2a∗

)
τ2 + o(1).

Then by (4.17),

lim
n→∞

m(Nn)

(N∗ −Nn)
1
2

≤
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 .

On the other hand, similar to (3.40), we get

I(un) ≥
( a∗

4Nn
− c0

4

)∫
R2

(|u1n|2 + |u2n|2 + |u0n|2)2dx+
1

2

∫
R2

|x|2|un|2dx− F (un)

≥ N∗

2Nn
(N∗ −Nn)ε−2

n +
N∗ε2

n

2a∗

∫
R2

|x|2Q2(x)dx+ Tεpn + o(1)

=
N∗

2Nn
(N∗ −Nn)ε−2

n +
N∗ε2

n

2a∗

∫
R2

|x|2Q2(x)dx+ o(1).

Following the produces for B(x) ≥ 0, we can deduce that

lim inf
n→∞

m(Nn)

(N∗ −Nn)
1
2

≥ N∗ξ2

2a∗

∫
R2

|x|2Q2(x)dx+
ξ−2

2
(1− ηM2)

≥
( 1

c0

∫
R2

|x|2Q2(x)dx
) 1

2
(1− ηM2)

1
2 .

(4.21)
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That is, (4.20) holds as well in this case. In addition, if B(x) < 0 and 0 < p ≤ 2 in (1.9), we can similar
obtain the energy estimations. Precisely, for 0 < p < 2,

M3(N∗ −Nn)
p

p+2 ≤ m(Nn) ≤M4(N∗ −Nn)
p

p+2 , as n→∞

and for p = 2,

M5(N∗ −Nn)
1
2 ≤ m(Nn) ≤M6(N∗ −Nn)

1
2 , as n→∞.

By (4.20), the inequalities (4.19) and (4.21) hold if and only if t = 1 and ξ =
(

c0(1−ηM2)∫
R2 |x|2Q2(x)dx

) 1
4
. Then

lim
n→∞

εn

(N∗ −Nn)
1
4

=
( c0(1− ηM2)∫

R2 |x|2Q2(x)dx

) 1
4
.

Since t = 1, we have

lim
n→∞

w1n(x) =

√
N∗ +M

2a∗
Q(x− x1), lim

n→∞
w2n(x) =

√
N∗ −M

2a∗
Q(x− x1) and lim

n→∞
w0n(x) = 0.

In addition, similar to the proofs of Theorems 2 and 3, we conclude as n→∞,

w̃1n(x)→
√
N∗ +M

2a∗
Q(x), w̃2n(x)→

√
N∗ −M

2a∗
Q(x) and w̃0n(x)→ 0

uniformly in R2.
To end the proof, we are going to show that u0n ≡ 0 in R2 by contradiction in the case of B(x) ≡ 0

or B(x) < 0 with p > 3 in (1.9). Indeed, the conclusion can be proved as Theorem 1.3 in [30] with
small modifications, we just sketch the differences here. Suppose u0n 6≡ 0 in R2 and define

ûin :=
1

Ai
εnuin(εnx+ z̃1n), i = 1, 2, û0n(x) :=

1

Q∞σn
u0n(εnx+ z̃1n),

where σn = ‖u0n‖L∞ > 0, Q∞ = 1
‖Q‖L∞

> 0 and

A1 :=

√
N∗ +M

2a∗
, A2 :=

√
N∗ −M

2a∗
.

Using the linearized operators defined as in [30] and some calculations, we can obtain

λnε
2
na
∗ + 2c1nM + c1nε

2
n(Q∞σn)2a∗

(A2

A1
− A1

A2

)
+
Q∞σnε

3+p
n

2

∫
RN

B(x)Q2(x)dx
( 1

A1
− 1

A2

)
= 0

and

λnε
2
na
∗ + 2c1nε

2
n(Q∞σn)2a∗ + 2c1n(M −N∗) + 2c1n

A2

A1
ε2
n(Q∞σn)2a∗

− 4c1nA1A2a
∗ +

Q∞σnε
3+p
n

A1

∫
RN

B(x)Q2(x)dx− (A1 +A2)ε1+p
n

Q∞σn

∫
RN

B(x)Q2(x)dx = 0.
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It follows that

− 2c1nε
2
n(Q∞σn)2a∗ + 2c1nN

∗ + c1nε
2
n(Q∞σn)2a∗

(A2

A1
− A1

A2

)
− 2c1n

A2

A1
ε2
n(Q∞σn)2a∗ − Q∞σnε

3+p
n

2

∫
RN

B(x)Q2(x)dx
( 1

A1
+

1

A2

)
+ 4c1nA1A2a

∗ +
(A1 +A2)ε1+p

n

Q∞σn

∫
RN

B(x)Q2(x)dx = 0.

If B(x) ≡ 0 or B(x) < 0 satisfies (1.9) for p > 3, then it yields from (4.16), (4.18) and c1n < 0 that
N∗ + 2A1A2a

∗ = 0. However, it is impossible as N∗ + 2A1A2a
∗ > 0. Therefore, u0n ≡ 0 in R2 and we

complete the proof.
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53


