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Abstract

In this paper, we study the nearly critical Lane-Emden equations

— Au=uP~¢ in Q,
u>0 in €, ()
u=0 on 01},

where @ ¢ RY with N > 3,p = % and € > 0 is small. Our main result is
that when 2 is a smooth bounded convex domain and the Robin function on 2 is a
Morse function, then for small ¢ the equation has a unique solution, which is also
nondegenerate. In particular, the above conclusion holds for half balls.

In general, the solutions of () may blow-up at multiple points a1, - - - , a; of €2 as
€ — 0. In particular, when €2 is convex, there must be a unique blow-up point (i.e., k =
1). In this paper, by using the local Pohozaev identities and blow-up techniques, even
having multiple blow-up points (non-convex domian), we can prove that such blow-up
solution is unique and nondegenerate. Combining these conclusions, we finally obtain
the uniqueness and nondegeneracy of solutions to (x)).

2010 Mathematics Subject Classification: 35J50, 35J15, 35J60.

1 Introduction

We study the uniqueness and nondegeneracy of the solution to the following Lane-Emden problem:

— Au=uP™® in 2,
w>0 inQ, (1.1
u=20 on 0.

Here Q2 C RY is a smooth bounded domain, and when N > 3, itholds 0 < & < p— land p = 2* — 1 = {42,

when N = 2, weassume e =0and 1 < p < 4+00.

It is known that if ¢ > 0 problem (1.1) has at least one solution. But the uniqueness or multiplicity are
much more complicated, which is known depending on the domain €2 and the value p — «.

*This work is supported by NSFC(12171265); E-mails: li-hw17 @mails.tsinghua.edu.cn, jcwei@math.ubc.ca, zou-
wm@mail.tsinghua.edu.cn



A longstanding and largely unsolved open question is whether (I.I) has a unique solution when € is
convex. It was conjectured by Dancer ([[14]) that the answer is affirmative. As of today, this conjecture has been
verified only if p — € is close to 1 for N > 2 by Lin Changshou ([27]), and if p — € is close to +oc for N = 2
by Grossi etc. ([17,123]).

When the domain {2 possesses some kind of symmetric properties, there are some results about uniqueness.
For example, when () is a ball, as a consequence of the famous symmetry result by Gidas, Ni and Nirenberg
([19]) it follows that any solution of (I.I)) is radial, and then one gets the uniqueness of the solution to (I.I))
by ODE techniques. Another cases were considered by Damascelli, Grossi and Pacella ([13]] with N = 2) and
Grossi ([21] with N > 3) separately where uniqueness has been proved when the domain is both symmetric
and convex with respect to N orthogonal directions for small e. We note that their (i.e.,[13, 21]) symmetry
and special “convexity” play an essential role. Such domains do not need to be convex in common sense and
the conjecture due to Dancer have not been solved before. It is well known, if the convex domain has no any
symmetry, the problem becomes very challenging.

In this paper, we prove a weaker version of this conjecture when p — ¢ is close to 2* — 1 for N > 3. We
obtain

Theorem 1.1. Let N > 3 and Q C RY be a smooth bounded convex domain, and the Robin Sfunction on Q is a
Morse function. Then there exists £g > 0 such that for any 0 < € < gq problem (1.1) has exactly one solution,
which is also nondegenerate.

Remark 1.1. (1) The Robin function R(z) on § is given in (2.2). We say a function is a Morse function, if
all its critical points are nondegenerate. When Q@ C R? is a convex domain, Caffarelli and Friedman ([9)])
proved that the Robin function on ) is a Morse function and it has only one critical point. While for con-
vex domain Q C RN with N > 3, whether the Robin function is a Morse function becomes a challenging
problem. In [lI1|], Cardaliaguet and Tahraoui proved that for convex domain, the Robin function has only
one critical point, but whether it is a Morse function is still open. Specially, for domain which is sysmetric
with respect to N orthogonal directions, Grossi ([22l]) proved that the Robin function is a Morse function.
While there are still non-sysmetric domains on which the Robin function is a Morse function, f.g., the half balls
{ac ERYN :|z| < p,xn > O}. So applying our Theorem we obtain that the same conclusion holds for half
balls.

(2) We say a solution u of (I.1)) is nondegenerate if the linearized equation

—Av = (p— e)upflfev inQ, wv=0o0n00

has only trivial solution v = 0. It is known that, the uniqueness and nondegeneracy of solutions to Lane-Emden
equation are important for many problems. For example, in [8], under a key assumption that the domain € is
such that the solution of

—AV:cV%inQ, V=00n9Q, forsomec>0

is nondegenerate, Bonforte and Figalli got the sharp extinction rates as t — T~ for the fast diffusion equations
ur = Au™ in (0,T) x Q for %—;3 < m < 1. By scaling, our Theoremm implies that this assumption is

naturally true for some smooth bounded convex domains when m is close to and N > 3.

Recall that a solution sequence u., is blow-up, if there exists some points ay,--- ,ar € €2 and some
sequences Z., 1, - ,%e, k € 2 such that as ¢, — 0, it holds 2., ; = a; and u., (2., j) — +o00o. The points
ai,--- ,ay are called blow-up points. Below in Section 2 we will see that for N > 3, any sequence u., of

solutions to (I.1)) blows-up as €,, — 0, when the equation (I.1)) with € = 0 has no solution (it is indeed true for
convex domains). Moreover, u. , satisfies (up to a subsequence)

k
Ve, 2= SY/23 64y, asen — 0, (1.2)

=1



where a; € ), k € N, §, is the Dirac measure and Sy is the best Sobolev constant defined by

Jul}?

inf -
ueHA(RN) [|ullZy4

Sy =

By [24, [11]], when €2 is convex, ., must blow-up at a single point xo € € with x is the unique critical point
of the Robin function (defined by (2.2))). However, this fact does not imply the uniqueness of solutions to (I.1),
the problem is: whether or not there are two solution sequences ugl) uf’ blow-up at the same point x(, but the

blow-up rates is different.

In this paper, using the Pohozaev identities and blow-up techniques (see [28, 23[]), we prove that under
some conditions, there can not be two sequences of different solutions ugi) ,ugi) blow-up at a given blow-up
point zy. Then combining these uniqueness results together, we obtain the uniqueness part in Theorem [T.1]

Also we obtain the nondegeneracy of blow-up solutions, which implies the nondegeneracy part in Theorem[I.T}

Therefore we need to study the blow-up phenomenon firstly, i.e., the behavior of the solutions u. as e — 0.
When ¢ = 0, Pohozaev proved in [31] that if € is starshaped has no solution; whereas Bahri and Coron
proved in [2] that (T.1I) has a solution provided that © has non-trivial topology. Since then a lot of attention
has been paid to the limiting behavior of the solutions u. of (I.1) as € — 0. In [} [6], Peletier etc. study this
problem firstly with {2 replaced by a ball. Later, Rey in [32] and Han in [25] extended the previous results to
general domains separately.

Since our final result concerns the single point blow-up, we consider the simplest case £ = 1 in (1.2) at
first. Let €, — 0 and u.,, be a sequence of solutions to with € = ¢, which satisfies

Ve, |? — S]I\\,[/Qéxo, as e, — 0. (1.3)

Naturally, it stresses that the sequence u., blows-up and the blow-up point is x¢. For u. satisfying (I.3), Rey
(132]) and Han ([25]) proved that =, must be a critical point of the Robin function R(x). Moreover, u., can be
writen as

Ue, = o, PU -1+ we,,

n Tep Men

N-2
with o, — a9 = [N(N —2)] %, ., — X0, ite, — 0 and w., — 0, and they also gave some detailed
asymptotic behaviors of these parameters as ,, — 0. But to get the uniqueness of such blow-up solutions, we
have to prove a more sharper asymptotic description.

Theorem 1.2. Suppose Q@ C RY with N > 3 is a smooth bounded domain (need no convex property). For
xog € Q, let €, — 0 and u&), uéi) be two sequences of solutions to @D with € = e, which blow-up at the
same point xq. If xo is a nondegenerate critical point of the Robin function R(x), then there exists an ng > 1

such that
uM = ug

n

2
n), forn > ng.

Remark 1.2. The assumption ué}) u§2) blow-up at the same point xy can be formulated as

|Vu‘§ln)|2 - Sﬁ/zézo, forl=1,2, ase, —0.

Then according to [32) 23], x is a critical point of the Robin function R(x). The assumption that xq is
nondegenerate is necessary, since if xq is degenerate, there are examples with more than one solutions which
concentrates at xq, see [20|].

The existence of such solutions has been promised. One example is the least energy solution of (I.1).
Indeed, take u.,, be a sequence of least energy solutions to (1) with ,, — 0, i.e., uc is a minimizer of

2

JEn = inf {HUE"

HuEn [27+1fsn

: ueH&(Q),u;«éO}.




It is known that J., = Sy + o, (1) (see [37]). Then the discussion in Section 2 shows that u. satisfies
(T:3). But there are another approaches to the existence of such solutions. Actually, using the finite dimensional
reduction, Rey ([33| 134)]) proved that for any xoy € Q, if N > 3 and x¢ is a nondegenerate critical point of
R(x), then there exists a g > 0 such that for any 0 < € < &g, equation (L.I) has a solution u., which satisfies

|Vu|? — S]I\\,[/Q(SEO, ase — 0.

To prove Theorem@ we recall the Pohozaev identities,

1 1 .
—/ (Vu,v) Qudo + f/ [Vul*vido = — / u? ~“fydo,
a9 2 o 2* — ¢ o

and

- / (Vu, vy (Vu,z —y)do + 1 / (x —y,v) |Vu|?*do — N=2 (Vu,v) udo
o0 2 Joor 2 Jogr
1

2% —¢ Ne / 2% —
- - do— ——° “d
2 ¢ /89, (w-gv)” Tdo—gmmm )¢

see Lemma or a proof. In general, for two different solutions ué}} and ugi) define
1) (2)

_ Ue,, — Ue,
N ORC) !
|ue,’ — ue, L)

we know ||&:|lcc = 1. Roughly speaking, we want to use the Pohozaev identities and blow-up techniques to
prove that &. is small both near and away from the blow-up points, and then we can get a contradiction. To this
aim, we need to calculate carefully each surface integrals in the local Pohozaev identities.

Note that Theorem[I.2 holds for any smooth bounded domain. However, the uniqueness result in Theorem
[I:2]does not promise the uniqueness of solutions to (I.1)), since there can be many different critical points zo of
the Robin function R(x), and there can be also solutions blowing up at more than one point.

Now we would like to introduce some known results about uniquness of blow-up solutions. For simplicity,
we call the solution in Theorem [I.2]one-peak solution, since it has only one blow-up point.

When N > 3 and ) is both symmetric and convex with respect to N orthogonal directions, Grossi ([21]])
proved the uniqueness of one-peak solution to (I.1) provided € > 0 small. Note that such domains do not need
to be convex, so the uniqueness results in Theorem@ and [21] do not contain each other.

When N = 2 and € = 0, Marchis, Ianni and Pacella ([15} [16]) obtained the “blow-up” phenomena of the
solutions to (I.I) as p — +oo. For instance, let p,, — +oc and u,, be a sequence of solutions to (I.I) with
p = py, which satisfies

pn/ |Vupn\2 — 8me, asp, — +00, (1.4)
Q

then there exists a sequence of z,,, € 2 and a critical point of the Robin function ., € €2 such that up to a
subsequence

Tp, = Tooy,  Up, (Tp,) = Ve, up () =0, VreQ\{zx}, asp,— +oc.

Actually condition (T.4) plays the same role as (I.3) when N = 2. Recently, in [23], Grossi etc. proved that
if 2, is a nondegenerate critical point of the Robin function, then (T.I)) has only one solution concentrating at

Too € Q satisfying (T.4).

A natural question is whether the uniqueness results in Theorem [I.2] still hold for solutions blowing-up at
more than one point. The answer is affirmative.

Similar to the one-peak solution, we suppose the sequence u.,, of solutions to (I.I) satisfies (T.2). Like
assumption (T:3), (I:2) stress that the sequence u., blows-up and the blow-up points are aq,- -+ ,ax. For



@=(ay,--,a) € QF, let the matrix My (@), the vector X(@) € R and the function @ (@, X) be defined by
221), @22)) and 2.20). In [3}34]], Bahri, Li and Rey proved that if the matrix My, (@) is positive definite, then

(@, X(@)) must be a critical point of (@, X). Moreover, u., can be writen as

k
Ue,, = E O‘En»jPUzsn,j,#;jJ + we,
Jj=1

with o, ; — o, Te,, ; — a5, e, ; — 0and we, — 0, and they also gave detailed asymptotic behaviors of
these parameters. Then following the idea to prove Theorem[I.2] we obtain uniqueness of multi-peak solutions.
But the uniqueness of multi-peak solutions is much more complicated than one-peak solutions, since we have
to estimate the coupled terms of different bubbles.

Theorem 1.3. Suppose Q@ C RN with N > 7 is a smooth bounded domain (need no convex property). For
different k > 1 points ay,--- ,ar € €, lete,, — 0 and uél) ug) be two sequences of solutions to @)_'with
€ = &y, which concentrate at the same points a1, - - - , ai. Suppose that My,(@) is positive definite and (@, \(@))

is a nondegenerate critical point of ®i. Then there exists an ng > 1 such that
ug) = ugi), Sforn > ng.

Remark 1.3. The existence of such solutions has been given by Musso and Pistoia. In [30], Musso and Pistoia
proved that for N > 3 and different k > 1 points a1,--- ,a € Q, if (d, X) is a stable critical point of ®y,
with @ = (a1, ,ax) and some X = (M1, , Ag), then there exists a g > 0 such that for any 0 < £ < &,
equation (1) has a solution u., which satisfies

k
|Vu|? — 285/25%, ase — 0.

j=1

Due to our method, we don’t know whether or not Theorem @ holds true for 3 < N < 6, see Remark
4.2l The main reason is that we can proceeding as in case handling one-peak solutions to get the asymptotic
estimation of critical points
(1) () _ (n2
Tej— T - O(:u’s)'

€,J €,J
But is is not enough to get the final result. Instead, we need a more sharper estimation
1) (2) _ =2
g xe,j - O(/J’E)v
which is proved thanks to the Propositions#.4 and Then the limitation N > 7 comes up.

The assumption that My,(@) is positive and (@, \) € Q¥ x (RT)¥ is a non-degenerate critical point of ®y,
is necessary for our result. Recently, Bartsch, Micheletti and Pistoia give some domains such that @y, possesses
some critical points and all these critical points are nondegenerate, see [4) |5 29] and the reference therein.
Moreover, there are also some non-convex domains such that ®j, possesses some critical points and all these
critical points are nondegenerate, see Remark 1.4 in [[10]. So the uniqueness results in Theorem[I.3|make sense.

z;

As we said in Remark[T.3] there are non-convex domains such that ®;, possesses some critical points and
all these critical points are nondegenerate. It means that the solution to (T-1)) is not unique. We want to count
the number of solutions to (II) by using Theorem[T.4] Below denote

-

Ti = {(@ %) : V4@ X) = 0, Va@4(@,X) = 0}
We give two assumptions about the domain (2,
(A1): Qs such that (T.T) with € = 0 has no solutions,
and fora k € N*
(A2),: My (@) is positive and (@, X) is nondegenerate stable critical point for any (@, X) € Ty

Then we have



Theorem 1.4. Let N > 7. Suppose ) satisfies (Al), then there exists a ko € NT such that if (A2)y, holds for
any 1 < k < ko, then for ¢ > 0 small,

ko
the number of solutions to (1.1) is exactly Z [Tk,
k=1

where |Ty| is the number of elements in Ty

Finally, we study the nondegeneracy of the blow-up solutions to (T.I)). It is well known that the linearized

equation of (L.I) is
~Av=(p—e)uriE in )
{ v=(p—¢)u v in Q, (L.5)

v=20 on 0N).

Then a solution u of (I.T)) is nondegenerate if and only if the linearized equation (I.5) has only trivial solution
v=0.

Theorem 1.5. Suppose Q C RN with N > 4 is a smooth bounded domain (need no convex property). For
different k > 1 points a1, -+ ,ay, € Q, let u., be a solution to (1) satisfying (L2). Let (., be a solution of
(T3) with uw = u.,,. Suppose that My, (@) is positive and (@, X(@)) is a nondegenerate critical point of ®,. Then
there exists an ng > 0 such that

Ce,, =0, forn > ny.

Remark 1.4. We remark that our method is not applied for N = 3, see Remark[5.2]

Note that when k = 1, the assumption that M}, (@) is positive and (@, ) is a nondegenerate critical point
of &, turns to be the assumption of Theorem Moreover, when k = 1, the nondegeneracy still holds for
N =3.

Theorem 1.6. Suppose Q@ C RN with N > 3 is a smooth bounded domain (need no convex property). For
xog € O, let u., be a solution to (I.1)) sarisfying (I.3). If x¢ is a nondegenerate critical point of the Robin
Sfunction R(x), then there exists an ng > 0 such that

Ce,, =0, forn > ny.

Before closing this section, we would like to mention the following equation for the Brezis-Nirenberg
problem

—Au=uP +cu in Q,
u>0 in Q, (1.6)
u=20 on 0.

under assumption (.3). Rey ([32]) and Han ([23]) obtained blow-up behaviors of wu., satisfying and
(I3) as e,, — 0. Later, Glangetas ([20]) proved the uniqueness of one-peak solution for N > 4, i.e., if zg
is a nondegenerate critical point of the Robin function R(z), then (T.6) has only one solution satisfying (I.3)
provided €, > 0 small, where the used method is to reduce into finite dimensional problems and count the local
degree, which is a different method to this paper. Recently, Cao, Luo and Yan ([10]) proved the uniqueness of
multi-peak solutions to for N > 6.

This paper is organized as follows. In Section 2, we collect some results which will be used in the following

sections. In Section 3, we handle the one-peak solutions: In Section 3.1, we give a sharper blow-up estimation
(1) _ (@

of one-peak solutions; In Section 3.2, we apply blow-up techniques to analyse the difference . = m;

In Section 3.3, we use the local Pohozaev identities to show that &, is 0 both near and away from the blow-up

points, and then give the proof of Theorem[I.2] In Section 4, we deal with the multi-peak solutions: In Section



4.1, as in Section 3.1 we give a blow-up estimation of multi-peak solutions; In Section 4.2, we obtain a sharper
estimation of &, inspired by [10]; In Section 4.3, we show that &, is 0 both near and away from the blow-
up points, and then give the proof of Theorem [I.3] In Section 5, we study the nondegeneracy of multi-peak
solutions: In Section 5.1, we use blow-up techniques to estimate the solution of (. ; In Section 5.2, we show
that (., is 0 both near and away from the blow-up points, and then give the proof of Theorem [I.5]and In
Section 6, we consider the case 2 is convex and prove the Theorem|I.1] and also we give the proof of Theorem
L4

Throughout the paper, we use C' to denote various positive constant. We use A = o(e) and B = O(e)
denote A/e — 0 and |B/e| < C as ¢ — 0 respectively. We use 9; and V to denote the partial derivative for
any function f(x,y) with respect to x, while we use D; and D to denote the partial derivative for any function
f(z,y) with respect to y. In this paper, ||ul| = ([, |Vu|?dz)'/? denotes the norm in H{(€2) and (-, -) means
the inner product. For simplicity, we denote u. = u. .

2 Preliminaries

2.1 Green and Robin functions

The Green’s function G(x, y) is the solution of

2.1

— A G(z,y) =6y in £,
G(z,y)=0 on 01},

where 0, is the Dirac function. It has the following form
G(:p,y):S(J:,y)fH(x,y), (I,y)GQXQ,

where S(x,y) = W is the singular part and H(x,y) is the regular part of G(z,y), wy is the

N—2)
measure of the unit sphere of R™Y. We recall that H is a smooth function in  x €2, G and H are symmetric in
x and y, and

0<G(z,y) < S(z,y), x,y€.

For any x € 2, we denote
R(x) = H(z,z), 2.2)

which is called the Robin function. Then R(z) > 0 in .

Lemma 2.1. ([11)]). If Q C RN with N > 3 is a bounded convex domain, then R(x) is strictly convex and it
has a unique critical point which is a strict minimum.

Lemma 2.2. ([24)]). Let Q@ C RN with N > 3 be a smooth bounded convex domain and let k > 2 be an integer:

Set A = {(z1,-++ ,2) : 2 = 2, for some i # j}. Then there does not exist (21, - - , z) € Q* \ A such that
k
VR(ZZ)AZQ -2 Z VG(Z“ Z])AzAJ = 0,
J=1,5#i
fori=1,--- k.

For any point z,. € €2, let us define the following quadric forms

P(u,v) : = —r/ (Vu, vy (Vu,v)do + f/ (Vu, Vo) do
OB, (x.) 2 JoB,(z.)
[ 2.3)
- 7/ (Vu,v) v+ (Vo,v) udo,
4 JoaB,.(x.)



ov

Qu,v) = —/ (Vu, V) do —/ (Vu,v) %da —|—/ (Vu, Vo) vda, 2.4)
OB, (v.) Ox; 9By (z.) Ox; OB, (x.)

where u, v € C2(Q2) and r > 0 is such that By,.(7,) C Q. Then we have the following computations about P, )
and Green’s function.

Lemma 2.3. Fori,h=1,--- | N, we have

_T_QR(x*)y l‘fy* :$*7Z* :$*7
=2qg Zxy Ly if Yo = T, 2 7 T,
P(G(y*,$)7G(Z*,$)) = N4,2G( ) . B (2.5)
1 (Y 74) Y # Tuoy 2 = T,
0 Y # Tuoy 24 # T,
_¥6hR(x*)a lfy* = Ty Zx = Tx,
N=29, G (2., zx if Ys = Ty, 24 F T,
P (Gl ). G o) = 4 b OO 0 5 7 o)
TG (74, ys) if Y 7 T, 26 = Ty
0 lfy*?éiﬁ*?Z*?éxm
_azR(x*)a lfy* = Tx,y 25 = Tx,
0;G (4, 24 ifYs = Tu, 24 F Ty,
Q (Glyer), Glaya)) = § HGFw2) T ? Xy
81'G(33*7y*) I Ys 7 Ty 26 = T,
0 Y 7 Tuy 2 F T,
—%ath(x*), lfy* = Txy Zx = Tx,
D;0,G(zy, Ts if Ys = Ty, 25 F T,
Q (Gl ). G2 = § DO T =05 7 e®)
G (T, ) I Ys # Ty 26 = T,
0 i Ys # T, 26 7F T,
Proof. The proof can be found in [10} Section. 5]. O
2.2 Asymptotic behavior of blow-up solutions
For z € RN and A > 0, U, , is the function
AN;2
Usn(y) = — onRY, (2.9)
W= el — o) 7
and PU,,  denotes the projection of U, y onto HZ (), i.e.,
—APUwA:—AUwA inQ,
’ : (2.10)
PU, =0 on 052,
Writing
P X = Ux,)\ - PUx,)u (211)
the PDE method yields

Lemma 2.4. Let x € Q and A > 0. We have
(]) 0 < P\ < U:D,X
(2) Yar = WH(JU, ) + fa.n where

B 1 Ofen 1 Ofex 1
foO<)\(N+2)/2> " TN O(/\(N+4)/2) and ox; O()\(N+2)/2> ’

as A — +oo.




Proof. The proof can be found in [33]]. O
For solutions u. of (I.I), we claim

Lemma 2.5. For any N > 3 there exists g > 0 and S > 0 such that
ucl| <8, forany0 <e < . (2.12)

Proof. The proof is implied in [24]], but for reader’s convenience we sketch it. Suppose to the contrary, there
exists a sequence &,, — 0 such that ||u, || — +oco. Since

_ p+l—ey,
£ - b)
e, | / WP =Enda 5 oo
Q

there must be ||u,, || (o) — +00. Denote
B={ze€Q: thereexists z., € Qsuchthatz., — zandu., (z.,) — +oo}.
We know that B # (). Since €2 is smooth, the moving plane method (see [18}, pp.137] or [19]) implies that
dist(B,0Q) > §, for some d > 0.

Then using a result by Li Yanyan ([26]), it is possible to show that any x € B is isolated and simple, and it
implies that |Ju., || < C for some positive constant C. Thus we have proved (2.12). O

Then by [36], we have up to a subsequence

k
Ue, = ug + z; 0, jPU,, | ot Fwe,, (2.13)
J:
where uy is either 0 or a solution of
— Au =uP in 2,
u>0 in €2, (2.14)
u=0 on 0f),

we, goes to 0in Hy(Q2) and k € N. Moreover if & > 1, it holds

N-—2

Qe 5 € R’ Qe g — Qg = [N(N - 2)] 4 ’

Te,j €y Te,j;—a; €9,

and pie,, ; > 0 with

dist(z.,, j,08) — 400,
Hen,j

Ue,, i He,, i 1 1
- + : + ‘x{‘:nﬂ: - msn;j
Heni  Hen,j  Hen,i Hen,j

Besides these results we have the estimation

2 5 400, i#].

2 2 ¥
ue, 17 = lluoll” + kS + o(1).
As mentioned in [3]], Schoen ([35]]) proved that

either up=0,%k>0 or wuyg#0, k=0.



If we assume (2.14) has no solutions, then u., must satisfy

J

k
e, =) e, jPU, o1+, (2.15)
Jj=1 '

which implies
k
|Vau,, | = S]]\\,]/2 Zéa]., ase, — 0,
j=1

for some ay,- - ,ar € Qwithl < k < ﬁ That is, u., will blow-up at k points. Moreover, in the blow-up
case, one can get more precisions about the parameters: using the moving plane method, one can get

dist(z., j,08) > 6, forsomed > 0;

it follows from the results of Schoen ([33]]) that there exist 8’ > 0 and ¢y > 0 such that for ,, small enough
|Te,,i — Te, | = &, Peng <co, Yi#J;
Enst

lastly, it can be proved that (see [3]])
enlogpe, ; —0 ase, =0, Vj.
Specially, for one-peak solutions, i.e., k = 1, the asymptotic behavior has been done in [25} 32].

Theorem 2.6. (/23] 32]). For N > 3 and xo € Q, let €, — 0 and u., be a solution of (L.1) with e = &,
Suppose u.,, satisfies the assumption (1.3), then (for simplicity we denote u. = u.,,)
(1) g is a critical point of R(x),
(2) if we write
Ue = ongUzE“u? + we, (2.16)
then .
pnee N2 — c € (0,400),
pe =1+ 0(u 2| log ),
re €Q, x:— T, 2.17)

ae = ag + O(ul ~?|log pie|),

N-2
[welloo = O(pe > ),
ase — 0.

Lemma 2.7. Under the assumptions of Theorem[2.6] we have

.| <CU, -1, inQ (2.18)

Proof. See Lemma 3 in [235]. O

Also the asymptotic behavior of multi-peak solutions has been done in [3]] (with N > 4) and [34] (with

N = 3). Define the constants
A:/ Ukt B:/ Ut .. (2.19)
RV RN

Let (%, X) : Q% x (RT)* — R be defined by

Op(Z, ) = aEBX 7

N-—2

k
M(R)(X7 )T = (N =2)) log \;, (2.20)
j=1

10



N N-2 N-2
where Xz = (A2, A7 ), = (21, - ,ox) with z; € Q, and the matrix My (&) = (my;(Z))kxk 1S
defined by

mi (L) = R(x;), mj(X) = —G(xj,x;) fori#j,i,j=1,--- k. (2.21)

We see that if M}, (@) is positive definite, then F5(X) := @ (@, X) is strictly convex on (R*)*, and F} is infinity
on the boundary. Thus there is a unique critical point A(@) of Fg, i.e.,

Va®i(d@, N@)) = 0. (2.22)

For any x € Q and A > 0, we define

Joap {ueﬂg(ﬂ)  (PU, ) = <6Pa[§\$’>‘,u> - <3];Z%’A,u> _0vi=1,... ,N}.

Theorem 2.8. (/3| 134]). For N > 3 and different k points a1, - ,ax € §, let £, — 0 and u. be a sequence
of solutions to with € = &, Suppose u., satisfies the assumption (I.2), then (for simplicity we denote
Ue = Ug,,)

(1) the matrix My (@) is non-negative definite with @ = (
V@ (@, N@)) = 0, i.e., (@, X(@)) is a critical point of (@
(2) if My(@) is positive, then there holds

a1, yag). If Mi(@) is positive definite, then
).

k
U = Zaw—PUwa ot e (2.23)
j:l ’ €57
with )
He i€ N2 = ¢; € (0,+00),
ps; =1+ 0(md 2| log ic|),
Te; €Q, x5 — aj,
_N—2 _ (2.24)
;= ao + O(f; [ log fic|),
b N-2
we € (VE, 0 Ilwelloo = O ).
j=1
and
O ~?) if N <5,
lwe|| = { O@Y | log pe|**)  if N =6, (2.25)
N+2
O(/_j‘f 2 ) lfN Z 77
ase — 0, where fic = max {e 1, , fek }-

Note that when M;,(@) is positive definite, it holds V,® (@, X(@)) = 0 with X = X(&@), which implies that

k N-2 N-2
VR(ai)/\iv72—2 Z VG(ai7aj))\iT)\j2 =0,
Jj=1,j#i

fori=1,---, k. So Lemma[2.2]applies. We claim that in general, we can apply Lemma[2.2]
Lemma 2.9. Let N > 3 and u. be a solution satisfying (1.2). There holds

k
VR(a;)A} =2 Y VG(ai,a;)AA; =0, (2.26)

j=1,j#i

fori=1,---  kand some \; > 0.

11



Proof. 1t is enough to prove (2:26) for i = 1. Applying (2.32) with . = a; and © = u., we obtain

2 .
Quc,ue) = / u? ~fv;do, (2.27)
2* —¢ JoB,(ar)

for small 7 > 0. Using (2.13)), we can proceed as in Section 2 of [12] to prove that
k N2 N2 X
ue =3 Cipe] Glo.zj)+o(pe ), inCHO\UL Balay)),

for any d > 0 small and C; > 0, where fi. = max {ftc1,- -, fte,r}. We have cal < “5—’ < ¢p for small ¢.
Then

8B, (a1)
and
ﬁs_(N_z)Q(usvus) = _2/ <ﬂ8_
BBT(al)

— IVFI2v; —2(Vf,v)0ifdo, ase — 0,
SB,,(al)

N-—-2

N-—2
2 ug,u> 9;(fiz 2 us)do—&—/ V(s ? u)lPrido
0B (al)

with i
Z G(z,aj),

for some C; > 0. Thus, (2.27) implies, for any r > 0 small, that

/ IV fIPvi = 2(V f,v) 0;fdo = 0. (2.28)
8B, (a1)
Denote
— k —
g(x) = C1H(z,a1) + Y C;G(x,a;),
jz2

then g € C>(B,(a1)) and f(z) = C1S(x,a1) — g(x). By direct computation, we obtain that for z € 9B,.(a1),

2
‘Vf| v; —2<Vf,l/> 81‘]0: (N72)wn7‘N*18ig_ (N 2)2(‘0]2\{1'2]\{ 1( CLl)l—‘rO(l)
It follows from (2:28) that
2C

5096 + O =,

where £ — a; as € — 0. Then letting ¢ — 0, we obtain 9;g(a1) = 0, i.e.,
k
C’%VR((M) -2 Z élch(al, aj) = 0,
j>2

which finish the proof. O
Lemma 2.10. Under the assumptions of Theorem[2.8] we have

lug| < CZ vyt NS (2.29)
Proof. See Appendix A in [12]. O

12



2.3 Other results

The next lemma is a well known characterization of the kenel of the linearized equation. We refer to [7]]
for a proof.

Lemma 2.11. Let Uy 1 be defined by (2.9) and v be a solution of the problem

—Av=N(N+2U7'v  inRY,

/ Vof? < . (230
]RN
Then there exists a; € R, i =0,1,--- , N such that
1— |22 al ;
v(x) = agp i L

A+ a7 " &M A+ )7

i=1
We give the Pohozaev identities.
Lemma 2.12. Let u be a solution of @), 2 € Qand r > 0is such that Ba,(x,) C €, then

r

- / u? ~*do — L/ u? ~dz, 2.31)
2" —¢ JaB,(z.) 24(2* =€) JB, ()

2 «
Qu,u) = 52 / u? “fydo. (2.32)
2* —¢ JoB,(2.)

P(u,u) =

Proof. Multiplying d;u on (I.I), integrating over ' C 2 and applying the divergence theorem and Green’s
indentity:

1 1 .
—/ (Vu,v) udo + f/ [Vul*vido = — / u? ~fydo.
oq 2 Jogr 2" —¢ Joor

Then taking ' = Bo,(x.), we obtain (2:32).
Multiplying (z — y) - Vu on (I.I), integrating over ' C  and applying the divergence theorem and
Green’s indentity:

1
— / (Vu,v)y (Vu,z — y)do + 7/ (x —y,v) |Vu|*do
re) o

2
(2.33)
1 . N-2_ o, N
= - d —|Vul® - “dx.
2*_5/89,@ Y, V) o+ o 2 [Vul T T
Also multiplying u on (T.1)), integrating over ' C €2, we obtain
|Vu|?dz = / u? ~fdx + / (Vu,v)udo. (2.34)
Q/ ’ 89/
Combining (2.33) with (2:34), we have
1 ,. N-2
- (Vu,v) (Vu,x —y)do + = (x —y,v)|Vul*"do — —— (Vu,v) udo
o0 2 Joor 2 Jow
1 . N .
= / (x —y,v)u? ~°do — 75/ u? ~edu.
2% — ¢ Ik 2*(2* — E) ’
Then taking ' = By, (z.) and y = ., we obtain (Z.31). O
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Lemma 2.13. Let u be a solution of (I.1) and v be a solution of (I.3), . € Q and r > 0 be such that
Bo,(x4) C €, then

N —2
P(u,v) = 7/ uP"vdo — g/ uP " vdz, (2.35)
2 JoB,(w.) 4 B ()

Q(u,v) = / uP " fvydo. (2.36)
OB, ()

Proof. Multiplying 9;u on (I.5) and multiplying d;v on (I.I), adding them together, integrating over ' C Q
and applying the divergence theorem and Green’s indentity:

- / (Vu,v) 0;v + (Vu,v) d;udo + /
o’

(Vu, Vo) v;do :/ uP"fvy;do.
o’

oY

Then taking ' = Bs,(x.), we obtain (2.36).
Multiplying (z — y) - Vu on (I.3) and multiplying (z — y) - Vv on (I.1), adding them together, integrating
over )’ C Q and applying the divergence theorem and Green’s indentity:

- / (Vu,v) (Vo,z —y) + (Vo,v) (Vu,x — y)do + / (x —y,v) (Vu, Vv)do
QY QY (2.37)
= / (x —y,vyuP fvdo + / (N —2) (Vu, Vo) — NuP™*vdz.
Q! ’

Also multiplying v on (T.3)) and multiplying v on (T.1)), adding them together, integrating over ' C €2, we
obtain

/(Vu,Vv)dx:/ upfsvd:rJr/ (Vu,v)vdo, (2.38)
’ ’ 80/

and

/ (Vu, Vo)ydz = (p — €) / uP"fvdx + / (Vov,v) udo. (2.39)
’ /7 BQ/
Combining (2.37) with 2.38), 2.39), we have

- / (Vu,v) (Vv,z —y) + (Vu,v) (Vu,z —y)do +/ (x —y,v) (Vu,Vv)do
o o

N -2 N -2
= / (x —y,v)uP"*vdo + —— / (Vu,v) v+ (Vu,v)udo — N=2e / uP"vde.
aQ/ 2 69/ 2 ’

Then taking ' = By, (z.) and y = ., we obtain (2.33). O
By direct computations, we have
Lemma 2.14. For any q > 1, we have
(a+b)?=a?+ O(a? b+ b),
(a+b)?=a?+ qa? b + ob? + a?=7 b‘f),
where ¢* = min {2, ¢}.

Lemma 2.15. Let ®y, be defined by (2.20).
(1) Denote & = (z1,--- ,xr) = (Y1,Y2, -, Yen) With x; € Qand y; € R, then for i € [(j — 1)N +1,jN]
for some 1 < j < k, we have

k
0y, @i(#,X) = "B | AN 20, R(z;) =2 > A7 N 2 0,,Glaj,m) | - (2.40)
1#j,1=1

14



(2) Denote X = (A1, , k), then for 1 < j <k,

k

Y N -2 OépB _ N—2 N-2 1
O (7, A) = % MR = D N N Gl ) -
7 I#£4,1=1 o

(3) Fori € [(j — 1)N 4+ 1,jN] for some 1 < j < k, we have that if s € [(j — 1)N + 1, jN],

2 Sy N—2 £ br2 N2,
0y @1 (T, A) = g B [ A 70,4, R(xj) — 2 Z A2 0, Glrg,m) |
I#j,1=1

while if s € [(t — 1)N + 1,tN] for some t # j,
2 N Py ey T a2
0yiy. Pi(T,N) = =200BA; 2 A2 0y, G(xj,24).

(3) For1 < j <k 1<i<kN,wehave that ifi € [(j —1)N +1,jN],

5 Lo N—4 N-2 k N-2
075, Ok(FX) = (N =2MBX; 2 [ A7 0y R(z) — Y A 7 0,,Glaj,m) | ;
1#£5,1=1

while ifi € [(t — 1)N + 1,tN] for some t # j,

- N—-4 N-2
925, Pu(T,N) = =(N = 2)ABN; T A, T 0y, G, ).

3 One-peak solutions

In this section, we assume that N > 3 and z¢ € ().

3.1 Sharper estimations of one-peak solutions

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

We obtain some improtant estimations for solutions of (I.T)) satisfying (T.3). We start with the following

proposition.

Proposition 3.1. Let u. be a solution of (L.1) satisfying (1.3), then for any small v > 0, it holds

Nt2
O(pe® |logpel), N =3,
N+42

ue(x) = CeG(ae, ) + Nz inC'(Q\ Bar(x2)),
O(HS 2 )7 N Z 47
where .

O(uz | log pc|), N =3,

—€ D % 2
C. = u?™ dr = agBue * + € O(ue * |log puel), N =4,

By (xc) N42
O(,L"E 2 )7 N - 5

Proof. Forx € Q\ Ba,.(z:), we have

ue(x) = /QG(m,y)uls’*E(y)dy = /Q\BT(%)G(:E,y)uI;E(y)dy—i—/ Gz, y)ul™= (y)dy.

B, (z:)
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N-—-2
From Lemma , we see that ue(z) = O(ue 2 ) forz € Q\ B, (z.). Hence
N+2

)/ G(z,y)dy = O(ue > ). (3.4)
O\B, (z.)

N+2

/ G(z,y)ul™*(y)dy = O(ue*
O\B, ()

And by Taylor’s expansion, we know

N
/ G(z,y)u?™*(y)dy = G(z,zc) / ul~edy + > 0:G(x, x.) / (yi — e i)ul™ dy
B7(w5)

B, (z¢) i=1 B (zc)

Z Gz, . / (Yi — i) (Yj — Te,5)ul =dy 3.5
By (ze)

i,j=1

+0 (/ ly — ac5|3u§_edy> .
By (ze)

We give one-by-one estimates of every term in the above equality in Lemma[A.2] then

w2 1 P

[ Gl =)y = CGle ) + MGGt 5 e dy
By (ze) lyl<uztr (14 [y]?) 2
N2
O(pe* |logpel), N =3,
N+2
Ou7), N >4, (36)
Oz |1 N =3
N2 2 =
=C.pz? G(m,ze) + (MEN+2| 0g fle|), )
O(/LE : )7 N z 4’
where .
| O ?\logugl) N =3,
C. = uP™fdzr =« B/,LE 2 —|— O (e |1ogus|) N =4,
B, (zc) N+
O(IUEQ )a N -
Then (3.3) and (3.6) imply
O(ue? |1 N=3
ue(r) = C.G(z, 1) + (MENLJ 08 fel): 7 inQ\ Bap(ze).
O(ME 2 )7 N Z 4;
On the other hand, for z € Q \ Ba,(x.), we have
N2
Ouc(o) = [ Gl = [ OG-+ O ) G.7)
By (zc)
Similar to the above estimates, for x € Q \ Ba,.(x.), we can prove
(0] 3 1 N =3,
/ oG (x, y)ul™*(y)dy = C-0,G(x, z) + (1 e l 0g el). (3.8)
Br(xs) O(/,Lg ), N = 4.
Then (3-7) and (3:8) imply
O(ue? |1 N=3
e () = ConGla,ze) +  OWe ) 108 1) =% inQ)\ Boy(z2). 3.9)
O(:LLE ? )’ N z 4’
O
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Proposition 3.2. Let u. be a solution of (I.1)) satisfying (I.3). If zo is a nondegenerate critical point of R(z),

then
O(p2|1og pie|), N =3,
O(p2), N >4,
and
o (OGReepl), N =3,
e — proe™=2| = O(M?UOgusDa N =4, G.1D)
O(u2), N>5,
where Ho = <2N2é4R(mo)> o
Proof. Applying 2.32) with ., = z. and u = u,., we obtain
2 .
Que,u.) = 7/ u? ~“fydo, (3.12)
2" —¢ JoB,(a.)
Using the expansion of u. in Proposition [3.I] we have
O(ul|log pel), N =3,
Q1) = CQ(G(o ). Glaesa) + {ow}), o Nea
N_2
Since ue = O(pe 2 ) in 2\ By (x.), we have
/ uZ ~vido = O(pl).
OB, ()
It follows from Lemma [2.3]and (3:12)) that
O(p2| 1 N=3
VR(z) = (u;l og fel), , 3.13)
O(pz), N >4,
Since VR(zg) = 0 and V?R(z¢) is nondegenerate, we have
VR(z.) = V2R(w0)(we — x0) + o(|ze — 20])
which yields
O(p2|1 N=3
|.’175—.’L'()| — (u’;| Og:u/f:‘|)a ) (314)
O(z), N >4,
On the other hand, applying 2.31) with z,. = x. and u = u., we also obtain
r . Ne .
P(ue,ue) = 7/ u? ~¢do — 7/ u? ~edax. 3.15)
(te, e 2* =€ JoB,(a) 24(2* =€) UB,(a)
Using again the expansion of u. in Proposition[3.I] we have
O(u|logpel), N =3
P =C?P(G G ° ’ ’
(usvus) e ( (:cs,x), (:me))Jr{O(uév), N > 4.

By Lemma[A2] we have

N . N —2)?
—/ e “edw = P2 (o 1 032 log )

2+(2% — ¢) AN
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It follows from Lemma[2.3]and (3:15) that

N-2¢ - O(pe' | log ) N =3,
R((Es) = 2N 02 (anglA—i—O(,uéV 2|10g:u5|) + {O(‘u?\/') ) N >
€ ’ -
A c O(pe| log e l), N =3,
= 5nan vzt Ok2|log e|), N =4,
2NZB ] :
O(k2), N =5

1

Let pio = (WM) "%, where A, B are defined in (Z.19). Then

O(pie|log pic|),

N=3
£ 1 2N?B ’
5~ N5 = |R(zc) — R(zo)| +  O(p2|log pe|), N =4,

e 7 A
0 O(1?), N >5,
O(pe| log pe|), N =3,
= O(|VR(zc)|[ze — wo]) + { O(u2|log pe|), N =4,
O(u?), N >5,
O(pellogpel), N =3,
= 0(u§|10gua|), N =4,
O(u2), N=>5
Hence 1
O(p2|log pel), N=3)\""
pe = [y 2e+ S O |log pe]), N =4,
o(ul), N >5,
1 O(uZllogpel), N =3,
= poe™7 +Q O(pl|log pe|), N =4,
O(13), N >5.

3.2 Blow-up analysis of one-peak solutions

(3.16)

(3.17)

(3.18)

In this section, we use the Pohozaev identities and blow-up techniques to estimate the difference between

two solutions concentrating at the same point.
Let u") and u® be solutions of (TT) satisfying (I-3). We see that

ug) = agl)PUwgz)’(#(sz))

t+ wg),
satisfying, forl = 1, 2,

o) = o +

o) 1og ")), N =3,
( 4

o [0 0gnl), N =3,
p = o=+ O log ), N =4,
O ). N =5,

18
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al) = ag+ O((u)N 2 log V),
O((uP)yN-2), if N <5,
W €Ew o1, and W] =S o)V log il 2/%) it N =6,
o((u")**) ifN > 7.
We set
ngl) B 1L§2)

)

f p—
T

—ul? | o= ()

then [|£. || (o) = 1 and
—A¢ =D&, inQ,

where
p—1l—e

De(z)=(p—¢) / 1 (@) + (1 =@ @) at

Lemma 3.3. For any constant o > 0, there is a constant C > 0 such that

/ 1 1 . (1+y)) o< N-2
v [y — 2V 2 L+ 2D =\ Cllog [yl + [y)~¥-2,  o>N-2.

Proof. When 0 < N — 2, it has been proved by Lemma B.2 in [38]. Wheno > N — 2,

[ i< [ Lz
o fy = 2V (T D25 S Ty = 272 (T 2N
< Ofloglyl|(1+ ly) =,

where in the last inequality we used again Lemma B.2 in [38].

Let ji. = max {uél), & }

Proposition 3.4. For N > 3 and &, defined by (3.23), we have

2 Jlog(u”) e - |\

E(@)] <C
Z(1+< )1z —a0))"

in §.

Hence

/Q|§a|=0(/1§*2|log,1£|) and  &.(x) = O(il *|log ic|) in Q\ By (aV).

Proof. Since

D)) < € (Jul =72 4 @ P17) < O (0,0 o7+ 10,00 o) P71,
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we obtain from (3.26)) that

6c(2)] = / D2 (1) ()Gl )|y

2 (1)y—2
(pe’) 1
<C d
- Z/Q 0)y—2 0\ ly—av -2
o (14 () 2y - o)
2
1 dz
<cy [ G N
=/ (14 1z]) 5 (Mg))_l(x (l))‘
e (D)1 15—z ®
02?21 [log(n") = z—a (V|| <4

( ’
(1) e—a)) N-2)

2 1
CZZ:l (1+(H£l))_1|l‘_$g)|)2, N > 5

<

Repeating the above process, we get

dz
|€e (2 Z/ 1+| )6 ‘ _ (u Q))—l(x—x§l>)N 3

|log (l)) Ha— m(””

Syl Lot ey VSO
1
ey EmpET— N>T.

Then proceeding for finite number of times, we can prove

2 Jlog(u”) M — 2l

SO e
(1 )—1|x—x§”\)N i

Hence [;, &.] = O(iY 2| log fi]) and & (2) = O(3 2| log ic]) in 2\ B, (a£")) can be deduced by G27.

Now let o
~ Q—x

Ey) = &o® + M), ye =~
e

Then §~5 satisfies ~ ~
= A& (y) = (") De(al!) + plVy)ec (), in Q.

Proposition 3.5. Let &, be defined by (3.30). Then after taking a subsequence if necessary, we have

N _ _

- O(fic|log fic|), N =3, .

& = botoo + Y _ bihi + { (e Log i in Cioe(R™),
i=1

O(ﬁ5)7 N Z 47
where b; are constants fori =0,1,--- | N,
1- |y|2 Yi
=—F——— and Y= -—"-"—+.
T LR G (A ML
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(
Proof. First, we estimate D, (xg) + ugl)y). Let 2. = (ugl))_l(mf) — xél)) and \, = %, then from Propo-
pe

sition[3.2] we know

O(fic|log fic|),

O(fic|logic|), N =3 N =3
He| 1Og Lel ), = 9 _ _
|Z€‘: {O(_E) : N>4 and |)\5_1|: O(lu’g|10g/’l’€‘)7 N:47
He ), = 4, O(ﬂg), N>5
It follows that for any fixed R > 0,
Uz§2>7(u<52>)71($£1) +uMy)
= ()T UL ()
_N- oU, oU,
= ) (Voal) + O 0 1) 4 P o - 11412 )

— (4D _Nf;zU 1+ O(ﬂe“Ogﬂsl)a N=3 in Br(0).
(ke 0.1(y) O(ji.), N>4) r(0)
Also ) . ) ) ) ) )
ul (2 + pMy) = ol )U1§1>7(M§1>)_1($£ ) 4+ uMy) +w® — Prd) ()1
N-2 N-2
= oM (uM)"F Uoa(y) + O 7 ),
and

_N-2 O(fic|log fic]), N =3 _S5=
(2) (1) M) = @ (N7, 1 ’ O(pe? ). 3.33
u (xg) + ply) = o (ug) o,1(y)< +{O(ﬂa)7 Noal T (e ). (3.33)

Then

D (x" + p{y)

1
—(p-2) [ [+ ) + (1= P @l D)
0

O(ﬂeHOgﬂeDa N =
(1 ’ {ow,

p—1l—¢

dt

p—1l—e
3.34
=(p—¢) 639

N-2 N-2
) ao(pM)="F Upaly) + O(fi= = |log fic)

N
- — O :ELS logﬂs 9 N = 3
= NN+ 2057 () () 2<1+ o T2

) + O log fe).

Let
fe(y) = (u)2D (2 + pMy).
Then
| log i1 N =
O(/fe| Og,ue‘)v 3, in BR(O).
O(fe), N >4,

fe= N(N +2)Up 7" = {
On the other hand, since
|D€(y)‘ S C (lUmgl)’(ug1))71‘p_1 + ‘sz),(u(gz>)71|p—1) S C|Uz(51)7(#(51))71|p_1’ (335)

we have
/Q VEPdy = (uD)? /Q Do (M + uDy)E(y)dy

log |y|
<C — 27 ___dy < +o0.
= / (It [y =7
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Then up to a subsequence, & — &in DY2(RY). Also by standard elliptic estimates, we have
& — & inCh(RY).
Letting ¢ — 0 in (3:31)), we obtain
—A& = N(N+2)Ub1'¢ inRN.
As areslut of Lemma[2.1T} we get
§o(y):b01_|y|2+§:bi( v

(1 + [y[2)N/2 L [y)N72

Moreover, since for any R > 0,
~AE &) = N(N+2Uf7 (6 — &) + g, in Br(0)

with

1192 || oo _ O(fic|log fic|), N =3,
ellL>>(Br(0)) O(ﬂa)a N > 47

a Brezis-Kato iteration tells that

€ 7 SOIL=(BR(0 O N >4

and then the Schauder estimates implies

||£E goHcl «(Br(0)) O( Ns“OgME N =3,
O N> 4.

Then we finish the proof of (3:32).
Proposition 3.6. Let & be defined by (3:23). Then for small r > 0, there holds

&(y) = Be oGz y +ZBHaG xM,y) + 0l log fic|), inC'(Q\ Bar (M),

=1

where

B.o = D.(y)é-(y)dy and B., = D.(y)&(y)(y — zM)idy.
B, (z") B, (z")

Moreover, for any fixed large R > 0,

1 N— log R _ _
Bug = ~N(N = 2) b (14 Ol ) ) Y2+ OBl =2 4 o),
and log B
B. ;= N(N + 2)B;b; (1+O(R2)>“N 1_|_C,0]g2 HN 1y (Név 1)7
where C' are constants indenpendent of ¢, R and B; = fR Adz.

N N4
(1+[z*) 2
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Proof. Forany z € Q\ By, (zt"), from (3.27) and (3.35) we find

/ De(y)&(y)G(x,y)dy = O(zl | log fic|) / G(z,y)dy = O(zl | log fic|),
OB, («") Q\B,(z{")
and
[ Py Py
By (zM)
2 ‘1og(u§l))‘1|y - x(l)\‘
<C ly — x§1)|2Up(:>1 & ,1(?/) dy
Br(wél)) we,(ne’) (1 + (M @) ) 1|y (l)|)
—2
< Cuiv/ (D)2, 2 (u)=2 |log|2|| + Ilog(lfvlt()( ))Idz
12]< ()~ 1r (1+ 24 (1+1z])
= O(i | og fic|).
Then
/ D ()& (v) Gl y)dy
- [ PwEwcE [ D.(y)&-(4)G(z, y)dy
B, (z{M) O\B,(zV)
N
= B. oGz, y) + Z B i0:G(zM )
=1
+0 </B oy DeWEW = mémdy> +O(iit| log fic|)
r(Ze
N
= BE,OG(xgl)v y) + Z Bs,iaiG(ajgl)a y) + O(ﬂév‘ lOg /jsD
1=1
For any fixed large R > 0, we see that
Beo = /Mm De(y)é“e(y)der/ e D (y)é(y)dy =: K1 + K>. (3.39)
<HE < R< (f) <£)

From (3:32) and (3:34), we obtain

T O(ﬂallogﬂs‘)7 N=3 M
K, = [, <1 + {O(ME): N > 4) /|y|<R (1+ [y[2)2 ( 0to(y) + Zbﬂ/}l )

+ O(EEN 4 log . ) / & ()l

lyI<R

By symmetry we obtain

N(N +2) < 1 )
T | boto(y) + bzwl — _N(N-2)Bb (1+0(=)],
where B is defined in (2:19) and we have used

1= [yP i i
(N+2)/ 71\74(:1:[/: —(N—2)/ ———x Ay + O(+3)
wi<r (1+[y2) "% wi<r (L+[y[2) " R
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which can be proved by —Ag = N(N + 2)U7 ' vo. By (3:27), we have

g |y|| + |log(ly| + O(ie))|

dy = O(1).
en T+ 2 y=0W)

| way=c
ly|[<R
As a result,

1\ N O(aY~1|log fic|), N =3,
Ky = NV = 2)80 (14 0() ) ¥ 2+{O§HN_1') SN
¢ ’ - (3.40)

= —N(N — 2)Bb, (1 + O(é)) N2+ o(ad 2.

On the other hand, from (3:27) and (3:33), we obtain

N | log y|dy
|Ka| < Cﬂi-v 2/ 212 N-2
refyl<— (L [y1*)*(1+yl) 3.41)

+O(jit'| log fic ),

logR _n_
=C—y it

where C are constants indenpendent of ¢, R. So from (3.39), (3.40) and (34T)), we find (3:37).
Similarly, for any fixed large R > 0, we see that

D.(y)&(y)(y — aV)idy

D. ()€ (y)(y — 2V);dy (3.42)

= Kg -|— K4.
From (3.27), (3.32) and (3.33)), we obtain

B B _ ) N
Ky — N <1+ {O(uallogua% N—3> /ll RN(NJF% <bo¢0(y) +Zbi¢i(y)> dy
y|< i=1

O(fie), N =>4 (1+[y?)?

+ 02N~ log . ). /

& ()| |yldy
ly|I<R

(3.43)

2
_N— Yi _N—
=NV [y o)
i<k (14 [y[*) =

1
= N(N +2)B;b; (1 + O(R2)> BN 4 o(pl T,

where B; = [ox %dz Also from (3:27) and (3:33), we obtain
(+]z]?) 2

N_ | log y||y|dy
Kl <op [ . —
R§|y|§#§1) (T4 [y») (M +[yl) (3.44)

logR _n_ _ _
= T’ué\’ L+ O(pl | log ic ),

where C' are constants indenpendent of ¢, R. So from (3:42), (3:43) and (3.44), we find (3:38). O

24



3.3 Proof of Theorem

Proposition 3.7. Forl = 1,2 and small r > 0, there holds

N+2 -
WD (z) = COGW gy 4 § O 08D N =30 v g, o)), (345
O(,L_LE 2 )a N > 47

where
oW = / lu® [P~z
B (z?)

Proof. First, (3.1) implies that (3.45) holds for [ = 1 and

N2
76 2 1 78 b} N = ) .
U () = COC(®) ) 4 { O, 108D V=34 10\ B,y (o),
O(ﬂf 2 )? N > 4a ?

Also using Proposition 3.2} we calculate

G, ) — G, x) = VG022 + (1 - 0)el) 2) (@ — alV)

g €
_ O(ﬂg|10gﬂe|)7 N =3,
0G), N4
Since By (xé”) C Bgr(xél)) for small £ > 0, we get (3:43). O

Proposition 3.8. For N > 3, there holds
by =0, (3.46)

where by is the constant in Proposition[3.3]

Proof. Applying 231) with z, = xél) and u = ug), 1 =1, 2, we obtain

W 0y " W\ —eq. _ _ Ne (0)y2"—=
P(Us y Ue )_ 2% _ ¢ \/887.(:&1))(/“45 ) do 2*(2* —6) Br(wél))(us ) dx. (347)

We estimate the difference between P (ugl), ugl)) and P (u@, u§2)). From Proposition Proposition and
Lemma[2.3] we get

P(uél), ugl)) - P(ug), ug))

ful? — ul® | o= ()

= — (1) (2) f (1) (2)
T/aBr(xg)) <v€57l/> <V(U/5 + ua )al/> dU + 2 k/8\B7‘($él)) <V(U/€ + ’U/a )’V£E>dg

N -2
S e
2 JoB. ™M)

(3.48)
= (Cél) + C&gz))BE,OP(G(xél)v ')a G(l‘gl), ))
N
+(CD + )Y By P(GED, ), 0,G(2D, ) + Oz 7 |log fi])
h=1

N=-2 ), - 1) N-1 ¢ (1) e
=— (C +C) | BeoR(zg) + ) g B nOnR(zg”) | +o(fie 2 ).
h=1

2 \E 2(N
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Now we estimate the right hand side of (3.47). Let
. ! p—e
D.(z) = / <tu£l)(z) +(1- t)ug)) dt.
0

) R (1)
Since us’ = O(fic * ) on dB,.(z, ;), we have

1)\2* _g 2)\2* —e
r / (ug ))2 i (ug ))2 o
2*—¢ BBT(:ES)) ||’U,£1) - Ug) HL‘X’ (Q) (3.49)

D aN-_2
= 7‘/ (1>‘ E(y)§5<y)d0' = O(ﬁe 2 ‘logﬂ€|),
y—x

A similar approach as (3:34), we find for any fixed R > 0,

2 O(fic|log fie|), N =3 50
1 0] I c
<+{O(ug), N>4) " (pe ™ 1og 1),

D. (a2 + pMy) = U (y) ()~

in Br(0). And for fixed large R > 0,

B (z")

(2* - 6) H’U,gl) — UgZ)HLoc(Q)
- W&+ [ ) DAy
ﬁ R 1<
=: K5 + K6.
Then similar to (3:40), we have
1 xe [0 log ), N
Ky =0(—= 2 O 1 c
5 (RN)ME + {O ﬂé\l/2)’ N> +O( | log fic|)
_N72 _N*Q
=0(5x)ie® +olpe® ).
Since
De(z) < CU (uD)-17
we have | d
N—2
Ks < Cpi ® / [ log vldy
R<lyl <~ (1+ [y 1+ [y -
logR _N2—2 N;Q
=O0(pyJhe” +olie? )
Thus " @
1 / (ue )2 = — (ue)? ¢ logR,_~-2 nN_2
Y dz = O( Va2 +o(fie 2 ). (3.50)
(2* =€) JB, () ||u£1)*U22)HL°°(Q) RN T )
From (3:47)-(3:30), we get
N N
BeoR(zM) + AN=2) > BenowR(zM)
P (3.51)
logR, _n_ _N—
= O( )i 2 4 o(pd?).
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Substituting (3.13), (3.16) and (B:38)) into (3.531)), we find

B.y= O(l(;fNR)ﬂf 2t o(d?). (3.52)
Hence from (3:37), we obtain
= 02T 0.1+ 0B,
then letting ¢ — 0 and R — +o0, we have by = 0. O
Proposition 3.9. For N > 3, there holds
b =0, i=1,--- N, (3.53)

where b; are the constants in Proposition[3.3]

Proof. Applying 2.32) with 2, = xél) and u = ug), [ =1, 2, we obtain

2 .
QY ull) = = (uM)? ~fp,do. (3.54)
2 g 9B (w(l))

As in Proposition 3.8 we have

Qut”, ul) — Q) ul?)

||U(1) é )HLOO(Q)
- / (Ve v) dulD) + <vu£3>, u> d;6.do + / <V§6, V(D) + ug2>)> vido
8B, (M) 3B, (z)
= (CV + C#)B.0Q(G (2", ), Gz, ) (3.55)
N
+ (M +c®) Z B nQ(G(zl",),0,G(z(M, ) + O( | log fic|)
h=1

3N—4

=<c§”+c§2>><aoaR ) Ztha <1>>> o(ic ),

Since by = 0, we have

logR _n_
Beg = O = + ol 72), (3.56)
It follows from (3:32) and (3:36) that
B.o=o(n}?). (3.57)
Then from (3:13), (3:34), (3:33), B37) and (B.49), we get
VZR(wo) - (Bep+++, Ben)" = o(i ™), (3.58)

which implies B. ; = o(lY ~!). Hence from (3.38), we obtain

1
b= O(5) +0.(1),

then letting ¢ — 0 and R — +oo, we have b; = 0. O

We are now ready to show Theorem[I.2]
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Proof of Theorem[I.2} Let 2 be a maximum point of &, which says

€= (x2)] = 1.

In view of Proposition [3.6] we obtain
xr — xp.

Let s. = |z* — 2{"|. By (346), (3.33) and Proposition it holds
£ =0 inCp, (RY).

Thus 5

lim —— = +o0. 3.59)
e—0 ,,(1)
He

Setting £ (y) = & (xgl) + scy), then & satisfies

{—Ag: ) = $2D. (2 + s.y)éz (y),
€2 (L2t = 1.

€

From the fact

2 (1)\2
- (pe)*, -
R SRRl LT
=1

2 () 2

for y # 0, we see that & — &% in CL (R \ {0}) with

~A& =0 inRY\ {0}.

Since [£5] < 1, we know &F is a constant, which means £ = —1 or £ = 1. Therefore, we obtain that

, Y]z —zW| =s.. (3.60)

|~

& (z)| =
By (3.27), we have

1
() = O(?), VaeeQ\ BMg)R(xS)).
Since ,ugl) < 8¢, there holds
1
)l < g0 VIe el =s.,

which contradicts with (3.60). We finish the proof. O
4 Multi-peak solutions

In this section, we assume that aq,--- ,a; €  are k different points. Let @ := (a1, - ,ax), and X =

(A1, -+, Ak) be the unique solution of (2:22)). We also suppose that Mj,(@) is positive and (@, X) € QF x (R*+)*
is a non-degenerate critical point of ®y,.
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4.1 Sharper estimations of multi-peak solutions

In this section, we obtain some improtant estimations for solutions of (I-1)) satisfying (T.2)). We start with
the following proposition. Let fi. = max {1, -+ , fte k }-

Proposition 4.1. Let u. be a solution of (I.1)) satisfying (I.2), then for any small r > 0, it holds

LI O |log i N=4 k
ue(x) = aﬁBZpE’j G(zej,x) + ('Ijafwz' 8 fiel) T oincCl(Q\ U By, (zc5)). (4.1
j=1 O(pe? ), N =5, j=1

Proof. Forxz € Q\ U;?:l By, (z.,;), we have

- / G, y)u == (y)dy
Q

“4.2)
:/ G(z,y)ul™( dy+2/ G(z,y)ul ™ (y)dy.
AU, Br(e.;) B (z..j)
N-2
We see that u.(x) = O(fic 2 ) forax € Q\ Ule B, (z. ;). Hence
_ _ N+42
/ Gl )l (y)dy = Oz ).
Q\UjZ, Br(we )
As in Proposition 4.1} we know
e o log [ie N =4,
[ Gl )y = hBuT Gl + § O o
Br(ze,;5) O(N€2 )» N =Y
Then (@.I)) can be easily obtained. O
Proposition 4.2. Let u. be a solution of (I.1)) satisfying (1.2). Then
(zllog ficl), N =4,
s 43
Fed = % {ow N5, @
and
L, JO(E2|log fic|), N =4,
= peEE 4 : 4.4
fea =1 {O(ﬂi), N5, @9
1
where [1; = \; (%) A
Proof. Applying (2.32) with , = z. ; and u = u., we obtain
2 «
Que,u:) = u? ~fydo, 4.5
* €
2 =€ Jop,(a.y)
Using Proposition .T]and Lemma[2.3] we have
Q(u&us)
72 N2 O(ﬂN|logﬂ5D N =4
= g’ B o7 e Q(G(weisa), Glaema)) + 9 1 ’ ’
’ lmzl sl B ( l ) O(‘U,év), N > 57
k N2 N_2 (4.6)
= —a?)pBQ ,u?ij_Q&;R(xEJ) -2 Z e uE,f 0,G(zc j, e )
I£4,1=1
+ O(ﬂé\/'logﬂaDa N =4,
O(nY), N >5.
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Also

2% — ¢

1
aPA T N-—2 1
Aej = (2]\223) fre & N2,

Then we obtain from (.3)-@.7) and Lemma [2.13] that

- 2| log fi.
V(g L) = {ow og fic|),

2 .. .
/ u? “fv;do = O(pd).
6BT(IEJ')

Let

N =
O(n?), N>5

with

Te = (xe,la te 7x6,]€) and Xs = ()\5,17 te a)\67k)'

On the other hand, applying (2.31) with =, = 2. ; and u = u., we also obtain

T * Ne X
P = 2 *Ed = 2 75d )
(e ue) = 50— /aBrm,j) e T ey /Brm,j) e

Again using Proposition f.T)and Lemma[2.3] we have

P(’LLE,’U,E)
2p pR2 k N_2 N_2 O(ﬂé\rﬂog‘asb,
=0’ BY 3 ped e P(Grs ), Glren ) +4 605
l,m=1 iy,
k
N-2 — N—-2 N-2
— —Tangz ILLQ]J, 2R(=’Cs,j) — Z /u,Ej ILLE,lz G(ms,jyx‘gl)
1#£4,1=1
L oG Nog icl), N =4,
O(nl), N > 5.
Note that " )2
@ _ —2 o )
RHS of @) = O(f:") — =< (""" A+ O(a | log fi)) -

Thus we obtain

VA(I)k(fsa /\E) =

Then from @.12) we see L
Ze —d and A — A(@).

Moreover, since V®,,(@, X) = 0 and V2®,(a@, X) is non-degenerate, we have

VU (T, Ne) = V20u(E, N)(Ze — @, Xe — N) + o(|Z2 — @] + | Xe — X|)

which yields

|Z. — a

Then (@.3) and (@.4) can be obtained easily.
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- O(p?llogic|), N =4
O(i2), N >5.

)

)

— 7 N O 7? 10 75 y N = 4
O(nz2), N >5.

“.7)

4.8)

(4.9)

(4.10)

@11

4.12)



4.2 Blow-up analysis of multi-peak solutions

In this section, we use the Pohozaev identity and blow-up techniques to estimate the difference between

two solutions concentrating at the same point.
Let u") and u'® be solutions of (T.1) satistying (T.2). We see that

k
D= Zagg‘PUxS).,(ug).)*l +w£l)a
j:l 2J 2J

satisfying, for N > 4andl =1,2,as¢ — 0,

2 = a; +O(2),

w = pe™2 + 0(12),

l _N— _
o) = ag + O(u 2| log fic ),

O(u=2), if N <5,

BONS ﬂE O ()2 and [lw| = { O(pN~2|log fi.|?/3),  if N =6,
Ntz

j=1 O(i-? ), N > 7,

_ 1 2 2
Where:us max{ﬂi%a" 7#;5-}3;3#&%37#531)@}

We introduce the following operator. Let i* : LP=(Q2) — HZ () be defined by

(i3 (u),v) = /qudx, Vo€ Hi(Q),

2N—(N—2)e

m is such that

where p. =
1 1

p5+2*75

=1.
Then there exists a constant C' > 0 such that
liz(wll < Cllullp., Ve>0.

Define L. : H}(Q) — H}(Q)
Lau ::u—i: ZO( )PU (1) (1)) 1 u

where f(s) = sP~¢. Moreover, we have

Lemma 4.3. There exist g > 0 and C' > 0 such that for any 0 < € < €g

k
ILeull > Cllull, ¥Vue () E,m o1

j=1
Proof. See [30, Lemma 1.7] for a proof.
Proposition 4.4. For N > 7, there holds

N+2

ol — @] = offc ®

).

31

(4.13)

4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)



Proof. For brevity, we assume k = 1, and the other cases & > 2 can be proved in the same way. Let . =

wél) — wgz), and

OPU o) (u(”) 1 OPU o) (u(l)) 1

N
Zﬁ“

Weip = BePU, ()1 + B

be such that

We 1 ' =W —We2 € Er(il)7(l‘§1))71. (4.20)

Then
[[well <

0|l + C|| Letwe, 4.21)

We estimate the last three terms one by one.
Firstly we prove ||@. 2| = O(ﬂ8)||w£2)||. From <wa71, PUwgl))(uél))_l> =0and Lemma we obtain

BellPU, e 0y

_ OPUL0 (u0)-1
= <w€7 PUm§1>7(“§1>)71> = Beo { PU0 (0015 —

0
a aPUwS) (piH-1
_Z/Bs,i PUwgl),(u(sl))‘“a—g;i

=1
= = (o, PU,0 (0 = PU, )0 )

N

+O((EM)N Bz ol + O(u)N2) Zwm

aPUIu) (1)y_1 PUI(I) (1)y—1
=0<||;,§‘“||~|<u§”>-1 W)+ 2 o) — 2] | [l

+O(()N B0l + OV 2) Z|551|

Also from Proposition 3.2} we know

()™ = ()7 = O(fe) and  [alV — 2| = O(a2).

Then
Be(u) ™ = OM) WP + O((n) ¥ =2)[B- 0] + O((p (4.22)
imi o 2P ) o OPUm )
Similarly, from ( we 1, ——=5y*—— ) =0 and We 1, —gp = 0 ,we find
N
Beo = O [wP | + O((u)N =) Be] + O((u )N =) Y " (Bl (4.23)
i=1
and
Bei ()72 = O [w | + O((u )N =2)Be| + O(()N 1Bz 0l + O((u)N72) D 18251 (4.24)

J#i
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Hence it follows from (@.22)-(4.24) that
N
Bl ()™ + 1Beol + 3 1Beal (1) 2 = Ol
i=1

As a consequence,

N
e 2ll = O(Be] + B0l + Y 1824l (1) 1) = Oae) 1w
=1

Using (@.17) and the Holder inequality, we know that

”LE‘DEJH < ||@5,2 | + ||ZZ [f/(agl)PUm(EU_y(ugl))fl)‘bsﬁ]”

_ 11— _
< ||W£,2H + C”PUJI;S))(’21))_1‘*}6,2”1)5
< l@eall + CIPU 0 (g0, P~ l1@ ol

< Clle 2|l-
For the remainder ||L.&.||, we see that
Lew. = & — it [f' (D PU ) 00y )]
= () = aPU, 0 ) = (0 = P PUe o))

- (i:[f/(agl)PUTg)y(#g)),l)ng)] - i:[f/(agl)PUTg)’(#gn)fl)Wg)])
=RY —RP - S. + T,

where
R‘gl) = 7’: [f(ugl)) - f(agl)PUlg),(u(sl))—l) - f/(agl)Pngl)7(uél))—1)w£l):| )

S. = (L@ PUg o0y )] = aVPU e )
- (i: [f(a§2)PUw§2)7(Mg2>)_1)] - ag)PUémy(Hg))_l) ;
T. =i; Kf'(aﬁl)Pngm’(Hg))fl) - f’(OééQ)PUwgg(ug))fl)) wgz)] :
Using Lemma|2.14] we have that, for [ = 1, 2,
||R§l)” < C”f(ugl)) - f(aé‘l)PUwgl)’(H(sl))fl) - f/(agl)PUmgz)’(ug))71)wgl)||p5
< ClW)P~elp. < Cllw® P
Also from Lemma [2.14] Lemma[2.4] and the facts that

U, s = (1 0N, (0, o

Po ()1 = (1 OB 2y (,0)-1:
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(4.25)

(4.26)

4.27)

(4.28)



we obtain

1Se] = sup / [(f(agl)Pngn,(#g)),l) —alVag U] )

(1) ¢, () -
lvll=1 /% ze (pe ')t

—17,p—1
~ (P PU@ (o)) —aPaf U] o )] vdy

_N-—2 _
= Ol og ieDIU gy 0yl + sup ag/Q [(PUfé”,(ué”)fl N Ufé”,(ué”)fl)

lol=1 4.29)
= (PUL (s = Ul g0 ) J o
= O(pl~?|log fic|) + P O(pe) /Q Uﬁgf’(ugn),l%gw,(#gn)flv RO
Ntz
= O(ul~?|1og fic) + o(fz= = ).
Since N > 7, we obtain from (@.29) that
Ni2
IScll = o(fie 2 ). (4.30)
Finally, it holds
—2—¢
T[] < Cl (agl)PUng,(,Lg))fl - a£2)PUz§2)7(H(E2>)71) PU§§1)’(H§1)),1W£2)||175
OPU_a) )y
<C (nfa;“f’nuug”)—l — ()
(431)
OPU ) . )y
2 2 = 2] ) 1PU, ) 0, P72 )]
= 0w
Combining (@.28), (@.30), (@.31) with @.27), we obtain
=0 @ =
[Lewe|| = O Z [we” [|” + fellwe™ [ ) + o(fe * ). (4.32)
=1

Then from (@.23)), (4.26) and (@.32), we see

2
Nt2
e ]| = O (Z lw®||P + ﬁa|w§2)||> +o(fie* ),

=1

which and @16) give @19). O

Remark 4.1. When N = 6, we see from [@29) that

ISl = O(fig| log ic ),
and hence ||@.|| = O(ji2|log ji.|).

Proposition 4.5. For N > 7Tand j = 1,--- | k, there holds
o) — 2] = o(2), (4.33)

1) — 1) = o(?). (4.34)
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Proof. First, from Proposition[4.2] we see

ey =

2 _ 1
Y 2P =0 and |ul) -

2 _
uel = OG).
Applying 232) with 2, = ;v( ) and u = u'”, we obtain

2 .
Qu,ul") = /3 o m)(ué”f “vido. (4.33)

We want to estimate the difference between Q(uE U ne ) and Q(ug), (2 )) By direct calculations as in Propo-
sition[d.1] we find

0 0 it ), inC! )
PO (,0)-1(y) = NN - 2)B() T Gl y)+ 0@ ), inC'(Q\ Ba)).
Let l ! :
Gl = NV = 2)B(ul)) "% G(all.y)
and ! :
5( .= PU 2, (Hiz’)j)_l(y) - Gi,i"

which satisfy
5% = (1+0(7))5t), inc'(@Q\ Ba(z).

&
Asa consequence,

Za( . PU ) (u®)- 1aza PU =) (u®)-1

k k
1 1 1 1 2 2 2 2
S PREEED SERCH BT Do ot
1 1
= = (4.36)
k k k
1 1 1 1 2 2 2 2
+2Q [ Y-al)ol). > alhal) | —20 ZasﬁéwZaé}GE,} +0(E*?)
j= j=1 Jj=1
k N—2 N—2
1 1 1 — 1 — - 1 1
=ag? B2 | (WD 20REN) 2 3 () ()T 0,6, )
I#35,1=1
k
2 2 2 2 1 _
DN 20,REE) 2 N (W)= (W) T 0.6, ) | | + o),
I#5,1=1
and
k
ZO& )PU (1) (1))_17 ZOK )PU (2) H(2)) §2)
= @) o) @7
=Q Z;oza’jPU 213( (1)) Lwe | +@Q z;a ' PU 213’( 213) OzE’jPUI@) (Hg) Wy
J= J

=O(p 7 [|@e])) + O(z |wP|l) = o(a).
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Also
QW) = O(llw[1?) = o(pl).
On the other hand, we have

(1) 22— [ (22 —¢] .,
/ (1)) (u™) vido

=o) [ (Pl do = of).
Br(zl))
Let

PA N
)\g = (;\?23> Mgf ¥ forl=1,2.

Then from (#.33) and (@.36)-(#.38), we obtain
qu)k (fgl)a X‘E‘l)) - qu>k(f£‘2)7 X§2)) = O(ﬂg)

with l (l ) 0
Z20 — (2)1’7 E)k) and )\(l) ()\()1’...7)\67]6).

€

While applying (2.31) with z, = x( ) and u = ug ), we can prove similarly that
Vad (@, X) = V@, (7, XP) = o(g2).
Then (@.33)-(@.34) follows by (@.40) and @[)

Let &, be defined by (3:23).
Proposition 4.6. For N > 4 and &, defined by (3.23), we have

[XE |<CZZ

N-27
= (1 (W) - “’|)

l
[log () -

in Q.

Hence
/Q|fa| = O(ﬂév_2‘ log fic|]) and §&.(x) = O(ﬂév_2‘ log fic|) in 2\ U B, (
j=1
W _ -l
Proof. LetQ_; = 0 <. Since
De)] < € (Jul P2 4 fulp=1) <OZZU”<#( o)

=1 j5=1
we obtain that

()] = / D2 ()6 (4) Gz, )|y

o
(e )2 1
<CZ / ; 2\ Iy—xIN‘Qdy
=1 j5=1 Msg) 2|y E’j|2)

dz
<CZZ/(!) 1—|—|z|

! V2
|2 = (1)1 (@ - =)

2 ko osul) M e—a )|
§ Cim1 2 (R N =4,
C L N >5.
Zl 1 Z] 1 (1+(ui{§)‘1|z—w(€{§\)2’ =
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For N > 5, repeating the above process, we get

2 k
€(2)] < /Q D.(ye(y)Gyldy<c Y 3 1

l,m=1j,5=1

with

) \—

hm (uié) ’ 1 1 dy

7 Ja (1) y—2 02} (m)y_1 )\ ly — =[N
(14 W)=l = 2P) " (14 () - 2L

For j = s,

He j d T Tej €,]

Il’m _/ 1 1 dz
JJ 4 2 N-2
o0 (L +z]) (1 + () Oz 4 20 (m)D ‘Z )1 — D)

<C’/ 1 dz
- o (1+]z|)6 D N2
ol WD o ()1 = )|

While for j # s, take 0 < 1 < §|x§§ - xgﬁ)L since

) _ glm) 0 W (m)
X_. . — Te.s A + Tl — Tes
iz +al) —al)| 2 v — | LB < 0| P e o),
H‘E,s ME,S
0] o _ (m
He 5% + m(i;j) Te,s > C|Z‘,
He,s
we have
bm (1)) 1 1
Ij:s = (m) 0 , ) 12) 2 = o e dy
ly—z s |>r (1 + (Ms,j)_2|y - xs,j|2) (1 + ('u/67s )_1|.’L' — ‘)
I\
(1))~ ; X
+ O) (0 1) 19) 2 ) o2 Ty =272 dy
|y7w€,j‘zr (1 + (:us,j>_2|y - xs,j‘g) (1 + (Me,s >_1|33 — Te,s |>

2]

<C’/ 1 1 dz
< 2 N—2
ottt OV (1 |t ) fo - - a0

1 1 dz

e /
|6l 242l o)

i om0 (N (14 |2])2 m)y_ myy |V 2
z (1 + |5 i (755 =2 ) ( =D ‘Z - (,Ufg,s)) Yz — xg,s))‘
€3
1 1 1
C’/ + dz.
- 1+]z|)8 ! ny V2 m myy |V 2
R = )@= o= ) @ -l

As a result, we obtain

2 & 1 dz
@i <eXY [ v -

o 2= ()1 z — 2

tog ()~ lu—a |

C 27 k‘i | £,7 £,5 _

Zl—l Z]_l (1+(Iti€§)7l‘l‘—.’rgz|)N 2

CY > ! N>T7.
EEEIE (1) e 01)

N <6,
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Then proceeding for finite number of times, we can prove [#.42)), and (4.43) can be deduced by (#.42) easily. [J

Now let "
3 M Q-
Eiy) = &l +u€ ) YEQ;=—7rt (4.44)
E’j
Then éa,j satisfies
— A& () = (12D (eD + uOyE i (y), i Qe 4.45
§€,J(y) (/’LEJ) E("L‘sd +M5,jy)£€,,](y)7 n €,7" ( . )
Proposition 4.7. Let N > 7 and &. ; be defined by @44). Then after taking a subsequence if necessary, we
have
~ k N
€e = bioto+ DD bji+o(fie),  Cloe(RY), (4.46)

j=11i=1

. . 1—|y i
where b; ; are constants for j = 1,--- k, i =0,1,--- , N, 9g = W and Y; = (I-Hyyw

Proof. First we need to estimate D, (z, ( ) + u( ) y). Forany R > 0,y € Bg(0) and | # j,

e Y
N-—2
0< PUo) ()1 (T, O+ ullly) < ng;,(,igg)fl(xif? +ul)y) =07 ),
and N-—2
0< PU izl),( (2)) 1( (2) +M£2l)y) < U$(Ezl>’(ugzl)), ( (2) —I—,ui l)y) O(ﬂs 2 )
S0 (1) (1) (1) (1) () (1) (1)
“gl)( +hejy) = ag;U, M (w1 V(@e + e jy) — (bzilz’(uilz)—l(xa’j + e jY)
+ Z PU, ) 00 (0] + i) + ol @0 + i)
1#£5,1=1 e
N2 )
= o) " Upa(y) + Oz 7 ), in Br(0),
and

ul® (z (1)+u() ) = i?g)-Um(2> ()1 (@ 21]) E:lg) )= ¢, @ <23.)71(x21)'+“£:,3y)
k
+ Z PU @) (1) 1( Te g +u(1)y)+w§2)( (1)+:u§:1l)y)
1#35,l=1

@, _ A -
=a (e i) = U01( Jo(fte) + O(pe * ), in Bg(0),

where in the last we used
L@ 4 uly) = () Una (v)o(ie)-
Then as in (3:39)
De(al) + ul)y) = N(N +2)U5 T () () 72 (1 + oljic)) + O(il | log jic ).

Hence ~ ~
—A& ;= N(N+2)US'E j +ol(fic) in Br(0).

So ([@#46) follows as in Proposition [3.3] O

38



Proposition 4.8. Let N > 7 and &, be defined by (3.23). Then for small r > 0, there holds

k
ZB 506Gl y +ZZBWM 2} y) + O log ficl),  inC*(2\ UBQT (=),
j=11:=1 j=1
4.47)
where
Bejo = / De(y)é(y)dy and B j; = / D () (y)(y — ={))dy.
B (z() B (x)
Moreover, for any fixed large R > 0,
Bejo= —N(N —2)Bbyo (14 0(—)) g2 4 0108 jv— N-1 4.48
€,5,0 — 3,0 R2 He + R2 He + (H’s )a ( . )
and
—N—-1 log R _n_4 N-1
B ji=N(N+2)B;bj; 1+O(R2) e+ C—p=pz  +ola ), (4.49)
where C' are constants indenpendent of ¢, R and B; = fRN ('zifNHdz.
Proof. Forany z € 0\ Ule BQT((ESJ)), since
[, o P0Gy =y
; 2 ko Jlog(n®)- 1|a:f:c”1-|]
< C/ W |Z/—$Sj)|2 Uf(_l)i(u(l)_),l(y) ZZ 0 (l) dy
B.(af}) =1 el = (1 ()~ |>
(o)
SCﬂN/ Mél)_2z2 L%—OQQ
€ |z|§(p(;;)*1r( ,j) | | (1+|Z|)4 ( s)
| log ||| 4 |1og(|z| + O(£c))| CN-21
1 d
(el Ll S 00D o2 10g ) ) as
= O(iz; | log fic]),
we find
7) = / D.(y)e- ()G, y)dy
- Z / . DAWE)G .y + [ D (4)& (1) y)dy
“) QUL Br(2(l)
—ZBJOG 20 y) +ZZB,NGG 20 y)
j=11i=1
(1))2 -N -
+0 Z /B oy POy = 2Py | + 02 o)
k kN
Z ,J,OG jvy +ZZB7]78G ]ay)+0( |10g/j’8|)
j=1 j=11:i=1
Using Proposition[#.7] we can prove the estimations of B, ; ; as in Proposition [3.6] O
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4.3 Proof of Theorem
Proposition 4.9. Let N > 5. Forl = 1,2 and small r > 0, there holds

Ni2
—a”BZ uN TG ) 0 ), inCY( Q\UBQT (zD)).
Jj=1

Proof. It can be proved as Proposition [3.7] O
Proposition 4.10. For N > 7, there holds

bjo=0, j=1,---,k, (4.50)
where bj ¢ is the constant in Proposition[4.7}

Proof. Applying 2:31) with x, = a:(l) and u = v, we obtain

W 0y _ T (1)y2" —e _L/ (1)y2" —e
Pl ue) = 5 €/aBr(xS§)(u€ Foe 25(2* —¢) Br(xi?)(ua S @30

We estimate the difference between P (ugl), ugl)) and P (ug), u?)) From Proposition and Proposition
we get

P(ugl),uél)) P(ug),ug))

||Ua _Ue ||L°°(Q)
=—r / (Vé,v) <V(u§” +u§2>),v> o+ / <V(u£” +u£2)>,vss>da
0B, (1)) 2 Jo, (=)
N -2
- T/ (Vée, vy ult) + <Vu 2 u> £.do
9B, (z(l)) (4 52)
N—2
_2aOB Z BEIO ,U’em 2 P<G(ng)n7>7G(zgl)a))
l,m=1
3N —
ENTDD ZBM P TP (G, ), 9G] ) + O ™ [log i)
l,m=1h=1
I—|—II—|—O( |10g,u8|)
By Lemma[2.3] we find
k
1= N=2 onlop . (4O Wy _p (1) W L0
A, 57J»O(ILLE]) ( ,J) €,5,0 Z (:u’sm) ( Le m» 5])
m#j,m=1
N -2 k
- 1 1
5 0bB Y (u0))"F BeioGal) all) (4.53)
I1#£4,1=1
N-2 -
= — B agBZme,j,lds,l
=1
where L N
dey = Beyo(ul))~ "= . (4.54)
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and

N—

k
2N 2R) — Y (W)

Me jl = m;éj m=1

— (= (W) T el e, forl # .

El’ £,]

Also, from Lemma[2.3] Lemma[2.13] Proposition[4.2]and (&.6), we get

e,m e,m) Ve, j

k

N
2 N—2
T BB Bejn ()T onRED) — Y ()T 9,6l ),
h=1 m#j,m=1
1 N Nos k
1 — 1 1
= 306B Y Begu |(WE) T onR@l) —2 Y0 (W) T Gl 2l
h=1 m#j,m=1
N—2 P .
- B > N Beyn(ul)) T 0nG (), 2)
1#£4,l=1 h=1
1 k N -
1 OégA >2 1, N4 82<I>k(6 )\) 3N
= —= giA, 2 B ? +O _62 ,
where

X=X@) = (1,5 ).
Thus from (#.52)), (@.53) and (#.56])), we obtain

P ul)) — PP uf)  N-2
||u£1) _ug) — (6 Bzm87]

(PR P

1 kE N >
1 agA \? 1 —n-s O*®y(a, \)
— = TN 2 Bejp—— 2
2 <2N2.B) c 7 ZZ E’l’hay(l_l)N+h8>\j to

Now let

O _ o (1)
Since us” = O(fic > ) on 9B, (z ;), we have

1 *—g 2)\2* —¢
r / (ug ))2 - (ug ))2 o
2= Jop)  lue —ul o)

D aN-_2
= 7‘/ (1>‘ e(y)fe(y)da = O(ﬁa 2 “ngf')'
y—x

By a similar approach as (3:34), we also find

~ 1 1 1
Do) + nWy) = B0 (1) (1) 5 (1 4 ojic)) + O(ic 7 | og fi])-
Then for fixed large R > 0,

()y2*—¢ (2)\2* —¢
1 N —
[l by
) ((1))

||u§1) — Ug )”L )

:/E_Tgl)‘@f’ﬁ( Y)Ee(y >dy+/R< L D (y)é-(y)dy

I
=
_l’_
=

41

(u(l)) 2 G(:c(l) 2 )) forl = j,

(4.55)

(4.56)
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Similar to (3:40) and (3:41), we have

1 N-—2

O

and
log R, N-2

RN )ﬂE 2

K(;:O(

Thus

1 (ugl))Q*—g . (ug2))2*_6 B IOgR 7N;2 N
@”ﬂﬂémﬁh dz = O(5 )= + o). 4.61)

From @31), @38), @.60) and (#.61), we get

Hugl) - ng) ||L°°(Q)

N 1 9 L oo = IOgR _3N-—6 _3N-—4
M, yde +€2Dp V5,01 (d, A)Bex, = O( RN Vae 2 +o(fe 2 ), (4.62)
_N-4 _N-4
where the matix My . = (me j1)kxk, the matrix Dy, = diag(CA; 2 ,---,CA, * ) with constant C' > 0,
and the vectors . Do b weo
Ao = (Beaolul) "% o Boro (W) ™7, (463)
Bs,k = (3571, e 7BE,]€N)7 with Bgﬂ‘ = B&j)h,i = (] — 1)N + h. (4.64)

From (@.10) and (@.T1)), we see that for € small enough, M. j is the mainly diagonally dominant matrix, and the
eigenvalues
CVIE S pmzn(Ma,k) S pmaz(MsA,k) S 025'

So (@.62) means
log R, _n_ _N—
Bs-,j,O = O( RN )/u‘év ? + O(Mév 1)'

Then from (#.48)), we obtain that b; o = 0 and B j o = o(lY ~1). Therefore, we find

logR_n_
ol

where C is independent of R, e. It follows from (@.49) that C = 0 and hence

V2,85,(@ N)B.p = C +o(E 1),

V2, @5 (@, N)B. = o(zN ). (4.65)

Proposition 4.11. For N > 7, there holds

bj; =0, j=1,---,k, i=1---,N, (4.66)
where bj ; are the constants in Proposition[4.7]

Proof. Applying 2.32) with z, = a:glj) and u = u”, we obtain

2 .
O LWy = (1))2"—¢,,
Que’su’) = 5 8/837(:8(513-)(1% S “en
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As in Proposition .10 we can prove that

Qut”, ul) — Q) ul?)
Hu(l)

u?|| oo ()

— aOB Z Bs l, 0 :ugl)n Q(G( glv)rn ')7 G(mgl)7 ))

l,m=1

3n—4

k N
+abB 3 Bean(p)) T QG (Y, ), 00G (), ) + o T )

l,m=1h=1

N (4.68)

k
1
= — E a’O’BBE,j,h Q(Mij)) zh E /j‘glr)n i, G( i}xi z))
= 1#5,1=1

N 3N —4
+y° Z ol BB n(1 .) = DGz, ;})+o(,-ﬁ )
h=11#£j,1=1

o1 abA
2 \2N2B
Then from (@.60), (#.67)) and (@.68), we obtain
V2, ®5.(@, N)Bej, = o(pN ). (4.69)

3N—-4

kN )
ZZ P43 ) Beyn+o(fe > ).

y(l 1)N+hay(j—1)+i

m\»—A

Noting that (&, X) is a nondegenerate critical point of @, we see
Rank (v%w, 22 P, X)) = kN. 4.70)

Hence, (@.63), (#.69) and (@.70) imply that

Beji=o(al ™).
It follows from @.49) that b; ; = 0. O
Proof of Theorem[I.3] It can be proved just like Theorem T.2} O

Remark 4.2. When N = 6, we see from @) that ||S|| = O(jit|log fic|) and hence ||w.|| = O(2|log fic|).
1) (2)

As a result, we are unable to obtam lze; — 2 ;| = o(fit), instead, we only have \:z:(l) gj)| = O(j12). Then
similarly as in Proposition[#.50} we have

vi)\q)k(a:v X)BE, O(/’(’év 1))

which is not enough to prove b; ; = 0.
5 Nondegeneracy of positive blow-up solutions

5.1 Blow-up analysis of the solutions to linearized equation

In this section, we assume that aq,- - ,a; €  are k different points. Let @ := (a1, - ,ax), and X =
(A1, , Ax) be the unique solution of (2.22). We also suppose that M}, (@) is positive and (@, \) € QF x (RT)k
is a non-degenerate critical point of ®y,.
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Let u. be solutions of (I.1) satisfying (T.2). We see that

Zasj Te ]y.u'_l +w6’
satisfying, for N > 4,as ¢ — 0,
_ )
Tej = Ay + O(/’Ca)

1 _
pej = e ™2 + O(12)
ae,j = ag + O(a ~?|log ic ),

O ~2), if N <5,
We € ﬂ Eﬂcs,j7/1,;;7 and [Jwe|| = Ok g+:|10gﬂe‘2/3) if N =6,
= O(fi:* ) if N >7,

where fte = max {M5717 T 7”6,/@}’-
Suppose (. is a solution of

—Av = (p—e)ul™ v in £,
v=20 on 05,

||’UHLoc(Q) =1.
Then
Proposition 5.1. For N > 4, we have

k

logpctie eyl
|Ce (e |<CZ =J ~—5,  nQ
o (U4 pijle — o))

Hence

k
/Q|g6|:0(;1§v*2\logg6|) and (o(z) = O(Y ~*|log fic|)  in Q\ | Br(ae,y).

j=1
Proof. Tt can be proved as in Proposition 4.6]
Now let (. ; be defined by

Q-

gs,j (y) = CE(xs,j + MS,jy)> Y€ QE,j =
He,j

Then (. ; satisfies
— NGy =pdip— el T,
with
Us,j(?J) = ue(ajs,j + Me,jy)'

(5.1)
(5.2)
(5.3)

54

(5.5)

(5.6)

6.7

(5.8)

(5.9)

(5.10)

Proposition 5.2. Let N > 4 and Q:E) ; be defined by (5.8). Then after taking a subsequence if necessary, we have

kN
Ce.j = bj0tho + Z Z bjahi + o(fic), Cloe(RY),

j=11i=1
7 . . 1—lyl?
where b; ; are constants for j = 1,--- k, i =0,1,--- N, 9y = deﬁ/}i =
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Proof. First we need to estimate (p — )u?’; 17 Forany R > 0,y € Br(0) and [ # 7,

N-—2

PUJ)E L, (xal + L, ly) O(ﬂs 2 )

Then
U (Tej + e jY) = as,jU ; ,fl(xs,j + e jY) — d’xs s (xs j+ HejY)
+ Z PU,, ot (Te g+ e jy) + we (@ + pe 5y) (5.12)
1#35,l=1
_N-2 N-2 )
= Qe e ; : UO,l(y) + O(/_LE : )7 mn BR(O)a
and
p—1l—¢ N-2 K-z p—l-¢
(p—eul; “(y)=(p—e) (as il Uo 1(y) + O(fie )) 5.13)
= N(N +2)U¢7 () (1+ o(fic)) + O(Y ~*|log fic|)  in Br(0).
Hence B -
—Alj=N(N+2)U§7" ¢ +olfie) in Br(0). (5.14)
So ([@.46) follows as in Proposition [3.3] O
Remark 5.1. When N = 3, we actually have
} . kK N
Coj = bjoto + Y D bjithi + Oljic|log jic|),  Cloo(RY). (5.15)
j=11i=1
Proposition 5.3. Let N > 4. Then for small v > 0, there holds
k k
Z s]OG Te g, Y ""ZZ x&]v )+O(/~_Lév|10gﬁs|)a incl(Q\UBQT(x&j))v
j=1 j=1i=1 j=1
(5.16)

where

Bejo=(p—c) / TG and Bi= (p-2) / ) Gy
B (e, ; B (ze,;

Moreover, for any fixed large R > 0,

~ ~ 1 log R
B.jo=—N(N —2)Bbj, (1 + O(R2)> BN+ C—— g Y72+ o(pl ), (5.17)
and
Do N 1 logR N-1 _N-1
where C' are constants indenpendent of ¢, R and B; = fR ~ &
Proof. Forany x € Q\ U§:1 By, (z. ;), since
[ el oy
Br(a:s,j)
k k -1
) B log p_ i |z — zc 4] 5.19
< Cuiv/ ly—ae P | DU )] | D log “]l,z dy ©-19)
Br(zc ;) j=1 07T j=1 (1 + g e — xe,j|)

= O(n{'|log fi= ),
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k
—p-9 (X [ wrcmeE s | W12 ()G, y)dy
j=1 Br(zc,;) Q\U?:l Br(ze,;)
k _ k N ~
= Z B. joG(-;,y) + Z Z Bc ;i0iG(ze 5, y) (5.20)
j=1 j=1i=1
k

oS / P )y — o2y | + O log )

k k N
= Z B, joG(.;,y) + Z Z B. ;:0iG(ze 5, y) + O(ﬂé\q log fic|).

<
Il
-

<.
Il
—
-
Il
—

Using Proposition we can prove the estimations of B, 4,4 as in Proposition O

5.2 Proof of Theorem .5 and Theorem
Proposition 5.4. For N > 4, there holds
bjo=0, j=1,---,k, (5.21)
where bj o is the constant in Proposition
Proof. Applying 233) with z, = x. j and u = u., v = (., we obtain

N -2
Plue, () = = / wP=*Codo — (W —2)e / uP=*C.dz, (5.22)
2 OBy (< ;) 4 Br(ze,j)

From Proposition[5.3]and Proposition[d.I] we get as in Proposition 4.10] that

(uaa Ca = aoB Z el OME m (G(memfu ')a G<xa,l7 ))

I,m=1
- N2
+a8B SN Bevnpiedi P(Glaems ) 0nGlwes,)) + Oz |logfic])
Im=1 h:l (5.23)
N —2 5
= 4 apBZmEJstl
1=1
1 k N -
1 Ong 2 1 _N-s ~ 82(1)]@(67 A) 3N—4
— = 2\, 2 B kA et ROV =2
4 (2N2B) R ;; S DN n O +o(fs ),
where s
deq = Bejoty; * - (5.24)
and
N-2 : Nz No2 .
~ 2p, R(z. ;) — Z st pe,im G(TemsTe,5), forl=j,
e j1 = mjm=1 (5.25)

-2

_”sa “sz G(xey,xe ), forl #j.
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Moreover, we also have

3N -2
/ u?™(.do = O(ﬂs : |10g ﬂa|)-7 (5.26)
OB, (zc, ;)
and oo R
o N-—2 N
/ ul™*(dr = O( gN Ve 2 +o(ne). (5.27)
B, (ze,j5) R

From (3.22), (3.23)., (3.26) and (5.27)), we get

10gR 3N—6 3N—-4

N pdz + €2 D V3 84(@. X)Bey = O )ie * + o = ), (5.28)
- _N-4 _N-4
where the matix My . = (M j1)kxk, the matrix Dy, = diag(CA; 2 ,---,CA, 2 ) with constant C' > 0,
and the vectors s s
0o = (Beaoncy™ oo Bewonin” ) (5.29)
B. = (B, ,Begn), withB.;=B.jp,i=(j—1)N+h. (5.30)

From ([@.10) and (@1T), we see that for ¢ small enough, M. j, is the mainly diagonally dominant matrix, and the
eigenvalues

CIE S pmzn(Ma,k) S pmaz(MQk) S CQE'

So (5.28) means
log R

RN
Then from ([@48), we obtain that b; o = 0 and B. ;o = o(Y ). Therefore, we find

B.jo=0( N2+ o).

log R _n_
Tl

where C' is nondependent of R, e. It follows from (5.18) that C' = 0 and hence

V2,84(@,N) By = C +o(E ), (5.31)

V2, @5 (@, N)B.j = o(aN 7). (5.32)

Proposition 5.5. For N > 4, there holds
bji=0, j=1,+,ki=1-- N, (5.33)
where Bj,i are the constants in Proposition

Proof. Applying 2.36) with ., = z. ; and u = u., v = (., we obtain

Que, &) = / u? ™ (.v;do. (5.34)

OB (zc,j)
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As in Proposition .66 we can prove that

k

Qo) = BB S Beyopied QG laem, ) Glaes,)

l,m=1

kN
~ N—-2 3N—-4
+ Ong Z Z Bs,l,h,UJe,rzn Q(G(Is,mv ')a ahG(zs,lv )) + O(ﬂf 2 )
l,m=1h=1
N 1 k N-2
= Z abBB. ;1 us 2 mR(xe,j) = > ped 035Gy, 2) (5.35)
I#£4,1=1
N 3N—-4
+ Z Z agBBgl hﬂsj 8hD G(2ej, ) +0(fie )
h=11£j,l=1
> (v ) ST B PEA LR S
=—= ED <1,k + 0(fle .
2 2N2‘B =1 h=1 ay(l 1)N+hay(j—1)+i
Then from (5.34)), (5.33) and (5.26)), we obtain
V2, 84(@,X)Be = ol ), (5.36)
with B, ;. defined by (5.30). Hence, (5.32), (5.36) and (#.70) imply that
Beji=o(pd"). (5.37)
It follows from (5.18) that b, ; = 0. O
Remark 5.2. When N = 3, we can only get from (5.13)) that
VaA®k(@, ) Be = O(pY ), (5.38)

which is not enough to prove Bj,i =0.

Proof of Theorem[I.3] We prove it by contradiction. Suppose (., # 0 for a sequence &,, — 0. Without loss of
generality, we can assume ||(;,, || (o) = 1 for every n > 1. Then just like in the proof of Theorem|I.2} we can
get a contradiction.

Proof of Theorem[I.6) When N > 4, it has been proved in Theorem[I.3] When N = 3, proceeding exactly as
in Section 3, we can actually prove

é:faj = O(:a€| log p’ED? Clloc(RN)'

Then a contradiction disscussion gives the final conclusion. L

6 Proof of Theorem [I.1 and Theorem 1.4

Proof of Theorem|[I.1] The existence of a solution to (I-I)) can be abtained easily by using the Nehari manifold.
We prove the uniqueness by contradiction. Suppose that there exists a sequence €,, — 0 such that equation

(TI) with e = &,, have two different solutions ul), uP for every n > 1. Since the domain (2 is convex, uly

and ug ) must blow-up at k different points a1, - - - , a;. By Lemma and Lemma we see that there must
bek=1,1ie., ug) satisfy
|VUS)\2 - SN/25;C<L>
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for two critical points (1), 2(2) €  of R(z). On the other hand, according to Lemma when the domain 2
is convex, it holds z(1) = 2 Since () is nondegenerate, Theorem applies. Then we obtain u%l) = ug)
for n large, which is a contradiction.

As for the nondegeneracy, suppose to the contrary, there exists a sequence €,, — 0 such that the solution
Uy, tO with € = ¢, is degenerate. That is, for any n > 1, there exists a nontrivial solution (,, of with

U = U, , € = €,. However, from Theorem@ we see that (,, = 0 for n large, which is a contradiction. O
Proof of Theorem[I.4] From Lemma[2.5] we know that
[lucl] < S, forany0 < e < ep.
Denote kg = ﬁ
For any 1 < k < kg, since (A2);, holds, we obtain from [30] that

ko
the number of solutions to (T.I) > Z [Tx|,

k=1

for 0 < e < &f, where |7y| is the number of elements in 7; and 0 < g, < €¢. Suppose that there exists a
sequence €,, — 0 such that

ko
the number of solutions to (T.1)) withe = ¢,, > Z [Tk |,
k=1

for any n > 1. Since ( satisfies (A1), we have a solutions ., to (L.I) with ¢ = ¢, satisfies (up to a subse-
quence)

k
uan = Z aenajPUzEn’j,/,Lgnlyj + wgn’
j=1
for some 1 < k < ko, where z., ; — a; with (@, X(@)) € Ti. Then there must exista 1 < k < ko and two
sequences of solutions uéi) u?) to (L.T) with ¢ = &,, such that they blow-up at the same points a1, - - ,a
and u&) Z ugi) for n > 1. However, from Theorem we see that u§}3 = ugi) for n large, which is a
contradiction. That is .
°0
the number of solutions to (I.I) = Z [ Tx|,
k=1
for0 < e < . O
Appendix A Some Computations
In this section, we give some important estimations.
Lemma A.1. Let N > 4. There hold
U o =1+ 0l ?|log pel), (A1)
PU; -+ =1+0(ul"?|log pel), (A.2)
/ |PU,_ -1 PT175 = A+ O(u*|log pe), (A.3)
Q
N2 N2
/ |PUwa,u;1|p =pe® B+O(ue* ), (A.4)
Q

49



3N -6
N-z 0] 2 |lo , N =4,
/|pr e = Ty { Olie ) Tospe) (A5)
Q e O(ME 2 )7 N Z 57
/ |PU,_ ot P7175 = 0(u), (A.6)
6—N
/Q \PUIE’H?\P*H =O(pe? ), for N =45, (A7)
Proof. The equation (A.T)) was proved in [32]. Then
€ € € EIOg(l_sz)“{ ) _
PUCEqufa_l = (Umsvﬂgl - QOIEHU';I) = UZI3£7IL5_16 Feme ' = 1 + O(IU’?] 2| log :u’5|)?
and hence
1PV s P17 = (14 O 10g ) ( Jvriavo[ vr e )
= A+ 0(uY 2| log ..
From Lemma [2.14] we have
/ | Te,fte |p_ Up 71+pU' 190(55 H51+O( 157H;1+U551551¢Z:;N;1)
N+2
= Ue T B +O0(ue® ).
Then,
L 1PV st = (0 O 108 i) [ 1PU, ol
3N -6
_ By O(MsN; [log pie]), N =4,
- €
O(pe 2 ), N > 5.
Finally,
[ PO b =0 [ U2+ 25 = 062,
and
6—N
/Q |PUzs,u§1 P27 =O(ue * ), for N =4,5.
O
Lemma A.2. Let N > 3 and u. be as in Section 3.1. There hold
/B () Juc P17 = af T A+ O(ul 2 log pe), (A.8)
Te
3
s ( 3\10gue|) N =3,
/B o [ue[P™% = agBue >+ O(ue \logu5|) N =4, (A.9)
o O(N‘E 2 )7 N - Y%
N+42
/ (@ — w)ifunp—e = § Ol Hognel)s N =3, (A.10)
By (zc) O(ME 2 ), N = 4,



ly|? N2
(= 2e)i(x — 2)j|uc|P~° = 0y pe® / — L dy+O0(u? ), (A.11)
/B (ze) ’ J N ly|<pztr 1_|_|y‘ ) +

3 N+2
/ & — 2o Pluc = O(ue ). (A12)
B, (z¢)

Proof. Denote
Ue = OCOUIE’Ma—l + v,

with
ve = (e — OLO)PUIE’“E—I — O[O(sts”us—l + we.
Then -
ve| < Ol 2 log pU,_ =1 +O(pe = ),

uniformly in 2. We prove the equations one-by-one.
(1) By Lemma[2.74] we have

/ uP e dy = / (U, uott v )P e de
Br(z¢) B (z) ore

= / (aonmel)p“_e + O(l)Uﬁ_i,lva +O(1)wPt4da.
Since

o T PP
= a8 (1 + Ol 72| log ) (A + O(12))
= af " A+ O(ul | log pel),

N N-=-2
/ Upis,lvgdx:O(,uév_2|log,u5|)/ UpH,ldac—i—O( )/ UP _dx
B, (z) By (z:) By (ze)

d
[ @, et = a1 0 g [ v
Br(zc) ’ ly|<pz "7 (

Tey e Te, e Te, e

= O(u2*|log pe|) + O(u ),
and
/ P12 de = O(u2V| logue\pﬂ)/ UPt_dz+ o)
By (ze)

Bp(z.) oM
=O0(u?),
we obtain
/B (@) Jue |17 = af T A+ O(ul 2| log pie)-

(2) By Lemma[2.14] we have

/ ué’_sdxz/ (aoU,, -1 +ve)P" da
B, (xc) B, (z:)

= / (U, o)~ 5 + O Fo + 012 + O()UF ==~ 0= da.
Br(z<)

Te;He

Since
N-—2
2

m
/ (U, ,-1)P "dz = ag(1 + O(u 2|10gua\))/ ﬁdy
By (z.) yl<us'r (1+[y[?) 72

=af(1+ 0< Nz 1ogu€\>>u7’ (B +0(u2))

Nz
—aoBMe2 + O(pe ? e |10gus|)
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72
/ U~ 1,1v5dx:0(,uév*2|log,us|)/ U? . dz+ O(ue )/ UrTtdx
B',v(ajg) Te, e B, (Ia) TesMe BT»(ZEE) Te,le

N+2
= O(pe |1ogus|+ue )s
N+2 2
[ =0 Hogul) [ vr e+ o)
B (735) BT(zE) eihe
N+2
:O</’[/52 )7

and for N <5

U "tuide = O(u2V ! |log pe | / UP e+ 0 / UP2 da
AT(IE) xa7ual ( | ‘ ) B, (x.) 2757/"51 ( ) Br(z2) 3657#51

_ {0< pélogpucl?), N =3,

2

+2

O(/’LEZ )7 N24a

we obtain \
v [OWllorud, V=

/B - lue|P™° = agBus > = 4 O(u |log,u5|), N =4,

O(pe 2 )7 N =5

(3) By Lemma[2.T4] we have

/ (x . xe)iué’_adx — / (x — xa)i(aona u? + UE)P—de
BT(IE) B, (ﬁs) e

TesHe TesMe Te,He

:/ (z — z2)i [(aoU ST OMUP T 4 0 )vf:”e+O(1)Up_6j5p_5)*v£p’5)*]dx.
B (Is)

Since
/ (x —ze)i(aoU,_ ,-1)P""dz =0,
Br(zc) '
/ \x—xs|Up ' da
By (zc) e
N-2
0¥ Ptogpel) [ fr-av? et 0T [ fe-afur ! de
() Tesle By (z2) Te,le
5
_ O(Még“ogua‘)’ N =3,
= N+2
O(pe® ), N =4,
Ni2
[ e =0 Poguap) [ o alU? |, dot O
Br(z¢) B, (ze Teobte
N+42
= O(/’LE : )7
and for N <5

/ \m—x€|Up E,IUde
By (ze)

— 0 Hog ) [ e et 0 ) [ e de
Br(ws) Te, e B (is) Te,Me
N+2

= O(/J'E : )7
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we obtain

Ni2
/ (2 — 22)i|uclPc = O(N6N2+2|10g11'5|)a N =3,
EJ1 € -
B, (ws) O(’u,‘E 2 )7 N > 4
(4) By Lemma[2.74] we have

/ (SIJ — LUE)Z(ZL' — xa)julg—sdx = / (:E — (EE)Z(LC — {EE)J‘(OZOUa:E u? + Ug)p_ad:v
By.(x¢) B, (z¢) e

:/ (x — x)i(z — x2); [(aoU, L)+ 001 YUP™ 50,
Br(zc) - s

+ O + O(1)U§*Zi5p*5)*vgp—5>*]da:.

Since
/ (= )iz — ze)j(aol,, 1) "d
B (me) e
=0;; (z — )3 (U, uo1)Poda
Br(xa) e
— a1+ O log eyl - I —
Qp € € N
N Jyipzte (L4 [y2) =
p Ntz 1 |y|2 q O 3N—2|1 )
Qg fe y+ ? |log pel),
TN et U ) " )
/ |z — z.|? Up 1,1vadx
Br(xe)
N-—2
:O(ué\’_2\logu5|)/ |z — 2. |?U? ,1dx+0(uj)/ |z — z.|? ur ' dzx
B (Is) Te, e B ($s) Te,Me
Ntz
= O(/J’E 2 )7
Ntz
[ e aerede = 0 o) [ e a7 det OuT)
B, (zc) B, (zc eore
Ntz
- O(.U’E 2 )7
and for N <5
/ |x—x€\2Up ,IUde
B, (.) e
— 0 og ) [ o w U7 e+ 0 ) [ e afUr? e
Br(ws) Te,Me B (Es) Te, e
N+2
= O(/JJE 2 )7
we obtain

e _ g 2 1 lyl* g
(@ —xe)i(r — ) j|uc|P™F = dijpe N 71“2(19‘*‘0( ).
B..(z¢) lyl<uztr (

1+ [y[?)~2
(5) By Lemma[2.74] we have
/ |z — 2 Pul ™ dr = / 2 — 2> (U, uot Hve) o da
B, (z:) B, (z2) erle

= [P, o s O
Br(ﬂ?g) esMe

TerHe

+ O + O()UP === (=) g,

Te,He
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Since
/ |z — 2 |* (U, Lo de
BT(IE) esMe

N_o N4 ly|?
— @+ 0N HloguoeT) [ gy
lyl<uztr (1+[y|?) =2
N+2

=O0(pe* ),
|z — 2 PUP " " da
Br(ﬂ’:a) Te, e
— O og ) [

N-2
r=2 —1
o= U7 et 0T [ e afUT L de

B, (x2) B, (x2)
N+2
= O(/J’E 2 )7
Ntz

[ e aPertde = 0 o) [ fo-afU2 | do s O(u)

BT‘(IE) Br(xs) Tesbe

Ntz
= O(IU'E 2 )7

and for N <5

—e—2
/ lv — x PUP ™ T vide
B, (zc) Te,He

= 0(u2N 4| log 1e?) /

o= P07, do+ 0 2) [
Br(xs) Te,Me

-2
|z — w€|3U5 _dz
B, (wc) esHe

N+2

= O(ME : )7

we obtain

3 N+2
/ |z — 2| |uc 7% = O(ue ).
Br(ws)

Lemma A.3. Let N > 4. There hold

OPU, -
<PU%N51, e >

oOPU 1
Te, Me N—
<PU9057H51’ 8:51-” > = O(:ua 2)7

oPU -1 OPU_ 1
Te e Tey e _ N-1
< 8/\ ’ 61]91 > - O(lu’a )a

<8PU%HE_1 OPU, - > _ ot

o1,

pe ), where i+ j,
axi afﬁj
IPU, ,-1]* = N(N = 2)A+ O(u}2),
OPU,
| =55 I = NV + 2)Bu? + O(u)
e - - au,
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(A.13)

(A.14)

(A.15)

(A.16)
(A.17)

(A.18)

(A.19)



9?PU

Le, 5;1
=5l = 0(k2), (A.20)

82PU%AME_1
HWH =0(1), (A21)

K]
82PU$E uo ! _2

=2 Il = O0u). (A.22)
Proof. The proof can be found in [33, Appendix. B]. O
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