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ABSTRACT. The elliptic sine-Gordon equation is a semilinear elliptic equation
with a special double well potential. It has a family of explicit multiple-end
solutions. We show that all finite Morse index solutions belong to this family. It
will also be proved that these solutions are nondegenerate, in the sense that the
corresponding linearized operators have no nontrivial bounded kernel. Finally,
we prove that the Morse index of 2n-end solutions is equal to n(n−1)/2.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

This paper is concerned with the finite Morse index solutions to the elliptic
sine-Gordon equation in the plane. Before explicitly writing down the equation
and stating our results, let us briefly mention the classical sine-Gordon equation,
which originated from the study of surfaces with constant negative curvature in the
nineteenth century. We shall call it hyperbolic sine-Gordon equation throughout
the paper. The hyperbolic sine-Gordon equation also appears in various physical
contexts such as Josephson junction. It has been extensively studied partly due
to the facts that it is integrable and one can use the technique of inverse scatter-
ing transform to analyze its solutions. There exists vast literature on this subject.
To mention a few, we refer to the book [54] and the references therein for more
information about the background and detailed discussion for the hyperbolic sine-
Gordon equation.

In the laboratory coordinate, the hyperbolic sine-Gordon equation takes the
form:

(1.1) ∂
2
z u−∂

2
x u+ sinu = 0.

In this paper, the elliptic version of this equation will be investigated. More pre-
cisely, we shall consider the following elliptic sine-Gordon equation:

(1.2) −∆u = sinu in R2, |u|< π

where ∆ = ∂ 2
x +∂ 2

y . The reason that we are interested in this equation stems from
the fact that (1.2) is actually a special case of the Allen-Cahn type equations

(1.3) ∆u =W ′ (u) in RN ,

where W are double well potentials. This equation is the Euler-Lagrangian equa-
tion of the energy functional

J :=
∫ (1

2
|∇u|2 +W (u)

)
.
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Choosing W = cosu, we obtain the equation (1.2) . On the other hand, if W (u) =
1
4

(
u2−1

)2
, then (1.3) reduces to the classical Allen-Cahn equation:

(1.4) −∆u = u−u3 in RN .

This is an important model in the phase transition theory.
A crucial property of Allen-Cahn type equations (1.3) is that they possess one-

dimensional monotone increasing heteroclinic solutions, which connect two sta-
ble states in the phase transition phenomenon. In the case of (1.2), the one-
dimensional heteroclinic solution is given explicitly by

H (x) = 4arctanex−π.

The celebrated De Giorgi conjecture concerns the classification of monotone bounded
solutions of the Allen-Cahn type equation (1.3). Many works have been done to-
wards a complete resolution of this conjecture. In particular, it is known that in di-
mension two and three, monotone bounded solutions must be one dimensional. We
refer to [3, 13, 16, 17, 18, 24, 36, 43, 52] and the references cited there for results
in this direction. A natural generalization of the De Giorgi conjecture is to classify
those solutions not necessary monotone. This seems to be a difficult problem for
general nonlinearities W. In this paper, we are interested in those non-monotone
solutions in the plane for the special case of elliptic sine-Gordon equation.

Without any assumption on the asymptotic behavior of the solutions at infinity,
the structure of the solution set could be extremely complicated. To bypass this
difficulty, let us recall the following

Definition 1. (See [11, 12]) A solution u of (1.2) is called a multiple-end(2n-end)
solution, if outside a large ball, the nodal set of u is asymptotic to 2n half straight
lines.

These asymptotic half straight lines are called ends of the solution. One can
show that actually along these lines, the multiple-end solution u behaves like the
one dimensional solution H in the transverse direction. The set of 2n-end solution
will be denoted by M2n. By the curvature decay estimates of Wang-Wei[56], a
solution is multiple-end if and only if it has finite Morse index.

In [12], the infinite dimensional Lyapunov-Schmidt reduction method has been
used to construct a family of 2n-end solutions for the Allen-Cahn equation (1.4).
The method there can also be applied to general double well potentials, including
the elliptic sine-Gordon equation (1.2). The nodal sets of these solutions consist of
almost parallel curves. In particular, the angles between consecutive ends are close
to 0 or π. Actually, the nodal curves are given approximately by suitable rescaled
solutions of the Toda system. It is also known that locally around each 2n-end
solution, the moduli space of 2n-end solutions has the structure of a real analytic
variety. If the solution happens to be nondegenerate, then locally around it, the
moduli space is indeed a 2n-dimensional manifold[11]. For general nonlinearities,
little is known for the structure of the moduli space of 2n-end solutions, except in
the n = 2 case. In this case, a Hamiltonian identity has been used in [26, 27] to
study the symmetry properties of these solutions. It is now known[37, 38, 39] that
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the space of four-end solutions is diffeomorphic to the open interval (0,1) , modulo
translation and rotation(they give 3 free parameters in the moduli space). Based on
these four-end solutions, an end-to-end construction for 2n-end solutions has been
carried out in [40]. Roughly speaking, solutions arising from this construction are
near the “boundary” of the moduli space.

The classification of M2n is still largely open for general double well nonlinear-
ities. Important open questions include: Are solutions in M2n nondegenerate? Is
M2n connected? What is the Morse index of the solutions in M2n? In a recent pa-
per [44], Mantoulidis proves a lower bound n−1 on the Morse index of solutions
in M2n for the Allen-Cahn equation. Here we shall give a complete answer to the
above questions in the case of the elliptic sine-Gordon equation (1.2).

It is well known that the classical sine-Gordon equation (1.1) is an integrable
system. Methods from the theory of integrable systems can be used to find solu-
tions of this system. In particular, it has soliton solutions. Note that (1.2) is elliptic,
while (1.1) is hyperbolic in nature. We show in this paper that the Hirota direct
method of integrable systems also gives us real nonsingular solutions of (1.2) . Let
Un be the functions defined by (2.15) . Then Un are solutions to (1.2) . They depend
on 2n parameters, p j,η

0
j , j = 1, ...,n. We are interested in the spectral property of

these solutions and shall prove the following

Theorem 2. Each Un ∈M2n is L∞-nondegenerate in the following sense: If ϕ is a
bounded solution of the linearized equation

−∆ϕ−ϕ cosUn = 0.

Then there exist constants c j, j = 1, ...,n, such that

ϕ =
n

∑
j=1

(
c j∂η0

j
Un

)
.

We remark that the nonlinear stability of 2-soliton solutions of the classical hy-
perbolic sine-Gordon equation (1.1) has been proved recently by Muñoz-Palacios
[45], also using Bäcklund transformation. We refer to the references therein for
more discussion on the dynamical properties of the hyperbolic sine-Gordon equa-
tion. For general background and applications of Bäcklund transformation, we
refer to [50, 51].

The Morse index of Un is by definition the number of negative eigenvalues of
the operator −∆− cosUn, in the space H1

(
R2
)
, counted with multiplicity. The

Morse index can also be defined as the maximal dimension of the space of com-
pactly supported smooth functions where the associated quadratic form of the en-
ergy functional J is negative. Our next result is

Theorem 3. The set M2n of 2n-end solutions of the elliptic sine-Gordon equation
(1.2) is a 2n-dimensional connected smooth manifold. The Morse index of Un is
equal to n(n−1)

2 . Moreover, all the finite Morse index solutions of (1.2) are of the
form Un, with suitable choice of the parameters p j,q j,η

0
j , j = 1, ...,n.
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We emphasize that the parameters p j and q j are not independent. Actually they
have to satisfy p2

j + q2
j = 1. The classification result stated in this theorem fol-

lows from a direct application of the inverse scattering transform studied in [29].
Inverse scattering of elliptic sine-Gordon equation has also been used in [4, 5]
to study solutions with periodic asymptotic behavior or vortex type singularities.
Note that certain class of vortex type solutions were analyzed through Bäcklund
transformation or direct method in [35, 42, 47, 53], and finite energy solutions
with point-like singularities have been studied in [58]. It is also worth mentioning
that more recently, some classes of quite involved boundary value problems of the
elliptic sine-Gordon equation have been investigated via Fokas’ direct method in
[19, 20, 48, 49].

Theorem 3 implies that in the special case n = 2, the four-end solutions of the
equation (1.2) have Morse index one. In the family of four-end solutions, there is
a special one, called saddle solution(see (2.16)), explicitly given by

4arctan

cosh
(

y√
2

)
cosh

(
x√
2

)
−π.

The nodal set of this solution consists of two orthogonally intersected straight lines.
Saddle-shaped solutions of Allen-Cahn type equation ∆u=W ′ (u) in R2k with k≥ 2
have been studied by Cabré and Terra in a series of papers. In [6, 7, 8] it is proved
that in R4 and R6, the saddle-shaped solutions are unstable, while in R2k with
k≥ 7, they are stable. It is also conjectured in [6] that for k≥ 4, the saddle-shaped
solution should be a global minimizer of the energy functional. However, the gen-
eralized elliptic sine-Gordon equation(−∆u = sinu) in even dimension higher than
two is believed to be non-integrable, hence no explicit formulas are available for
these saddle-shaped solutions. We expect that our nondegeneracy results in this
paper will be useful in the construction of solutions of the generalized elliptic sine-
Gordon equation in higher dimensions.

It is worth pointing out that W (u) = 1 + cosu is essentially the only double
well potential such that the corresponding equation is integrable[14]. Note that
sine nonlinearity also appears in the Pierls-Nabarro equation whose solutions have
been classified in [55]. A classification result like Theorem 3 for general double
well potentials could be very difficult.

Finally we mention that recently there have been some interesting works on
the construction of minimal surfaces using Allen-Cahn type equations. See, for
instances, [10, 21, 22, 25, 44]. Based on these links between minimal surfaces and
Allen-Cahn type equations, it is expected that the classification results obtained
in this paper could be used to provide another proof of the existence of infinitely
many closed geodesics on any given Riemann surface. Actually this is one of our
main motivations to study the elliptic sine-Gordon equation.

This paper is organized as follows. In Section 2, we write down an explicit
family of 2n-end solutions Un for the elliptic sine-Gordon equation. We investigate
the Bäcklund transformation of these solutions in Section 3. The nondegeneracy
of Un and Theorem 2 will be proved in Section 4. In Section 5, we classify all
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the 2n-end solutions by their asymptotic behavior at infinity. Finally, in Section 6,
we compute the Morse index of these solutions using a deformation argument and
prove Theorem 3.

Acknowledgement The first author is partially supported by the Fundamen-
tal Research Funds for the Central Universities(WK3470000014) and NSFC un-
der grant 11971026. The research of J. Wei is partially supported by NSERC
of Canada. Part of this work was finished while the first author was visiting the
University of British Columbia in 2017. He thanks the institute for the financial
support.

2. A FAMILY OF MULTIPLE-END SOLUTIONS OF THE ELLIPTIC SINE-GORDON
EQUATION

In this section, for each n ∈N, we would like to write down a family of explicit,
real valued, nonsingular solutions of the elliptic sine-Gordon equation:

(2.1) −∂
2
x u−∂

2
y u = sinu, in R2.

We will see that these solutions are indeed 2n-ended, hence of finite Morse index.
It turns out that this family of solutions has 2n free parameters. This also means
that this set of solutions is a 2n-dimensional manifold.

Equation (2.1) has been studied by Leibbrandt in [42] using Bäcklund trans-
formation, with an application to the Josephson effect. However, the solutions he
found are singular somewhere in the plane. Gutshabash-Lipovskiı̆ [29] studied
the boundary value problem of the elliptic sine-Gordon equation in the half plane
using inverse scattering transform and obtained mutli-soliton solutions in the de-
terminant form, with certain parameters. The question that for which parameters
will the solutions be real and nonsingular was not considered there. The boundary
problems of (2.1) in a half plane or a quarter have also been studied by the Fokas
direct method, see [19, 20, 48, 49].

The construction of explicit multi-soliton solutions of the hyperbolic(classical)
sine-Gordon equation (1.1) was carried out in [30], using the Hirota direct method.
It is worth mentioning that there are also related results on certain soliton solutions
in higher dimensions, we refer to [23, 31, 32, 53, 57] for more discussions in this
direction. Note that the solutions of the hyperbolic sine-Gordon equation obtained
in [30] contain free parameters. At this point, let us emphasize that for many
integrable systems, it is usually a delicate issue to determine, for which parameters,
the solutions are real and nonsingular. As we will see, this issue is actually closely
related with our analysis of the elliptic sine-Gordon equation (2.1) in this paper.

It turns out to be more convenient to replace u by u+π in (2.1) . The equation
then transforms to

(2.2) ∂
2
x u+∂

2
y u = sinu.

Our first observation is the following: In the hyperbolic sine-Gordon equation
(1.1) , if we introduce the changing of variable z = yi, where i will represent the
complex unit throughout the paper, then we arrive at the equation (2.2). Based on
this, by choosing certain complex parameters for the solutions of the hyperbolic
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sine-Gordon equation of [30], we then get multiple-end solutions of the elliptic
sine-Gordon equation. The case of 2-soliton has been studied in [53].

To obtain solutions in closed form, we shall write the sine-Gordon equation in
the bilinear form. Let D be the bilinear derivative operator(See [33], Page 27). For
any j,k ∈ N, and two functions φ ,η , we have

D j
xDk

yφ ·η :=
[
(∂x−∂x′)

j (
∂y−∂y′

)k
][

φ (x,y)η
(
x′,y′

)]
|x′=x,y′=y.

For instance,

DxDyφ ·η = η∂x∂yφ −∂xφ∂yη−∂yφ∂xη +φ∂x∂yη .

Throughout the paper, we use F̄ to denote the complex conjugate of F. Let us take
the bi-logrithmic transformation:

u = 2i ln
F̄
F
.

Note that the log function is multiple-valued. Here we can simply take the principle
branch. One can also choose other branches, which amounts to add 4kπ,k ∈ Z, to
the function u. We compute

sinu =
eiu− e−iu

2i
=

1
2i

(
F2

F̄2 −
F̄2

F2

)
,

∂
2
x u = i

(
D2

xF̄ · F̄
F̄2 − D2

xF ·F
F2

)
.

Then equation (2.2) can be written as:[(
D2

x +D2
y
)

F ·F +
1
2
(
F̄2−F2)] F̄2−

[(
D2

x +D2
y
)

F̄ · F̄ +
1
2
(
F2− F̄2)]F2 = 0.

We also refer to [33], Page 45, for the derivation of the bilinear form in the case
of hyperbolic sine-Gordon equation. We then get the following bilinear form of
equation (2.2):

(2.3)
(
D2

x +D2
y
)

F ·F +
1
2
(
F̄2−F2)= λF2,

where λ is a real parameter. This means that if F satisfies (2.3), then u will be
a solution to (2.2) . On the other hand, if (2.2) is true, then we can consider the
function

ρ (x,y) :=

(
D2

x +D2
y
)

F ·F + 1
2

(
F̄2−F2

)
F2 .

Writing ρ into the real and imaginary parts: ρ1 (x,y)+ iρ2 (x,y), we see that ρ2 = 0.
Hence necessary(at least when F 6= 0), there holds(

D2
x +D2

y
)

F ·F +
1
2
(
F̄2−F2)= ρ1F2.
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Fix an integer n∈N. Let p j,q j, j = 1, ...,n, be real numbers satisfying p2
j +q2

j =
1. Define

(2.4) α ( j,k) :=
(p j− pk)

2 +(q j−qk)
2

(p j + pk)
2 +(q j +qk)

2 .

We will always assume throughout the paper that (p j,q j) 6= ±(pl,ql), for j 6= l.
This assumption is consistent with our classification result in Section 4. Note that
α ( j,k) = α (k, j)≥ 0. Moreover, since p2

j +q2
j = 1, we have

(2.5) p j− iq j =
1

p j + iq j
.

Therefore, we can rewrite α in the form

α ( j,k) =
(p j− pk + iq j− iqk)

(
1

p j+iq j
− 1

pk+iqk

)
(p j + pk + iq j + iqk)

(
1

p j+iq j
+ 1

pk+iqk

)
=−

(p j− pk + iq j− iqk)
2

(p j + pk + iq j + iqk)
2 .(2.6)

We then define
a( j1, ..., jm) := 1, if m = 0,1,

(2.7) a( j1, ..., jm) := ∏
k<l≤m

α ( jk, jl) , if m≥ 2.

Let us introduce the notation η j = p jx+ q jy+η0
j , j = 1, ...,n, where at this mo-

ment, η0
j are real parameters. Then we define

(2.8) fn =
bn/2c

∑
k=0

(
∑
{n,2k}

[a( j1, ..., j2k)exp(η j1 + ...+η j2k)]

)
,

(2.9) gn =
b(n−1)/2c

∑
k=0

(
∑

{n,2k+1}

[
a( j1, ..., j2k+1)exp

(
η j1 + ...+η j2k+1

)])
.

Here the notation ∑
{n,k}

means taking sum over all possible k different integers

j1, ..., jk from the set of integers {1, ...,n} . Moreover, the floor function bxc repre-
sents the greatest integer less than or equal to x.

In the special case n = 3, we have

f3 =
1

∑
k=0

(
∑
{3,2k}

a( j1, ..., j2n)exp(η j1 + ...+η j2k)

)
= 1+a(1,2)exp(η1 +η2)+a(1,3)exp(η1 +η3)+a(2,3)exp(η2 +η3)

= 1+α (1,2)exp(η1 +η2)+α (1,3)exp(η1 +η3)+α (2,3)exp(η2 +η3) ,



8 YONG LIU AND JUNCHENG WEI

g3 =
1

∑
k=0

(
∑

{3,2k+1}
a( j1, ..., j2k+1)exp

(
η j1 + ...+η j2k+1

))
= exp(η1)+ exp(η2)+ exp(η3)+a(1,2,3)exp(η1 +η2 +η3)

= exp(η1)+ exp(η2)+ exp(η3)+α (1,2)α (1,3)α (2,3)exp(η1 +η2 +η3) .

It is worth mentioning that these solutions can also be written in the determi-
nant form([46]). Here we choose to use the form (2.8) ,(2.9), because it is more
convenient to check the positive condition of the function.

Theorem 4. For each fixed n, let fn,gn be defined by (2.8) ,(2.9) . Then the function
4arctan(gn/ fn) is a solution to the elliptic sine-Gordon equation (2.2) .

Proof. The proof is similar to that of [30]. We sketch it for completeness.
For fixed integer n, we would like to find explicit n-soliton solutions of the

bilinear equation (2.3) , with the parameter λ being zero. The equation to be solved
becomes

(2.10)
(
D2

x +D2
y
)

F ·F +
1
2
(
F̄2−F2)= 0.

Note that the constant 1 is a solution to this equation. The key idea is to seek
solutions with formal expansion in powers of ε :

(2.11) F = 1+ εF1 + ε
2F2 + ....

We will see that for the n-soliton solutions stated in Theorem 4, this power series
truncates into a polynomial of ε with degree n.

Inserting (2.11) into (2.10) , we find that for O(ε) terms, there holds

(2.12)
(
D2

x +D2
y
)

F1 ·1+
1
2
(F̄1−F1) = 0.

For O
(
ε2
)

terms:

2
(
D2

x +D2
y
)

F2 ·1+
(
D2

x +D2
y
)

F1 ·F1

=−1
2
(
F̄2

1 −F2
1 +2F̄2−2F2

)
.(2.13)

The O
(
ε3
)

terms are:

(2.14)
(
D2

x +D2
y
)

F3 ·1+
(
D2

x +D2
y
)

F2 ·F1−
1
2
(F̄2F̄1−F2F1 + F̄3−F3) .

The expansion can be further performed to any higher order.
Let us choose

F1 := i
n

∑
j=1

exp(η j) .

Since p2
j +q2

j = 1, we see that (2.12) is satisfied by this choice. Moreover, direct
computation shows that(

D2
x +D2

y
)

F1 ·F1 =−2 ∑
j1< j2

[(
(p j1− p j2)

2 +(q j1−q j2)
2
)

exp(η j1 +η j2)
]
.
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We now define
F2 := ∑

j1< j2

[a( j1, j2)exp(η j1 +η j2)] .

Here the index j2 ≤ n. Then we can compute(
D2

x +D2
y
)

F2 ·1 = ∑
j1< j2

[
a( j1, j2)

(
(p j1 + p j2)

2 +(q j1 +q j2)
2
)

exp(η j1 +η j2)
]
.

From this, using the definition (2.4) of a( j1, j2) , we find that

2
(
D2

x +D2
y
)

F2 ·1+
(
D2

x +D2
y
)

F1 ·F1 = 0.

Hence equation (2.13) also holds.
To proceed, we define

F3 := i ∑
j1< j2< j3

[a( j1, j2, j3)exp(η j1 +η j2 +η j3)] .

We would like to show that with this choice, the ε3 order terms (2.14) sum up to
zero. Indeed, for fixed triple j1 < j2 < j3, direct computation tells us that in (2.14) ,
the coefficient J before iexp(η j1 +η j2 +η j3) is

a( j1, j2)
(
(p j1 + p j2− p j3)

2 +(q j1 +q j2−q j3)
2−1

)
+a( j2, j3)

(
(p j2 + p j3− p j1)

2 +(q j2 +q j3−q j1)
2−1

)
+a( j1, j3)

(
(p j1 + p j3− p j2)

2 +(q j1 +q j3−q j2)
2−1

)
+a( j1, j2, j3)

(
(p j1 + p j2 + p j3)

2 +(q j1 +q j2 +q j3)
2−1

)
.

Using (2.5) and (2.6) , setting v j := p j + iq j, we find that J is equal to

(v j1− v j2)
2

(v j1 + v j2)
2

(
1− (v j1 + v j2− v j3)

(
1

v j1
+

1
v j2
− 1

v j3

))
+

(v j2− v j3)
2

(v j2 + v j3)
2

(
1− (v j2 + v j3− v j1)

(
1

v j2
+

1
v j3
− 1

v j1

))
+

(v j1− v j3)
2

(v j1 + v j3)
2

(
1− (v j1 + v j3− v j2)

(
1

v j1
+

1
v j3
− 1

v j2

))
+

(v j1− v j2)
2 (v j2− v j3)

2 (v j1− v j3)
2

(v j1 + v j2)
2 (v j2 + v j3)

2 (v j1 + v j3)
2

(
1− (v j1 + v j2 + v j3)

(
1

v j1
+

1
v j2

+
1

v j3

))
.

Multiplying it by (v j1 + v j2)
2 (v j2 + v j3)

2 (v j1 + v j3)
2 v j1v j2v j3 , we obtain a homo-

geneous polynomial in v j1 ,v j2 ,v j3 , of degree 9. Let us denote this polynomial by

L(v j1 ,v j2 ,v j3) . Observe that
(

v2
j1− v2

j2

)2
is a factor of L. Due to symmetry, this

implies that L is a polynomial of degree at least 12. Hence L has to be identically
zero. Next we consider the special case that the triple ( j1, j2, j3) has repeated in-
dices, for instance, j1 = j2 < j3. Observe that L is continuous respect to v j1 ,v j2 ,v j3 .
Hence sending v j2 to v j1 , we see that in this special case, we also have L = 0. This
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proves that (2.14) is zero. Note that the case of repeated indices can also be directly
proved in the same way as the general case, by regarding v j1 ,v j2 ,v j3 as abstract
variables.

Now for 4≤ j ≤ n, let us define

Fj := exp
((

1− (−1) j
)

πi
4

)
∑

l1<...<l j≤n

[
a(l1, ..., l j)exp

(
ηl1 + ...+ηl j

)]
.

In particular, this implies that for odd j,Fj is purely imaginary; while for even j,
Fj is real valued. We also set Fj = 0 if j > n.

We claim that the O
(
εk
)

terms sum up to zero in the power series expansion
of ε for each k ≥ 4. We only consider the case of k being odd. The proof will be
similar if k is even.

For fixed indices j1 ≤ ...≤ jk, the coefficient before iexp(η j1 +η j2 + ...+η jk)
is equal to ∑l Gl, where

Gl := ∑
m(l)

[
α ( jm1 , ..., jml )α

(
jml+1 , ..., jmk

)
(h−1)

]
.

Here

h :=
(

v jm1
+ ...+ v jml

− v jml+1
− ...− v jmk

)(
v−1

jm1
+ ...+ v−1

jml
− v−1

jml+1
− ...− v−1

jmk

)
,

∑m(l) means summation over indices m1, ...,mk satisfying m j ≤ k, and

m1 < ... < ml; ml+1 < ... < mk.

Multiplying Gl by
(

k
∏
l=1

v jl

)(
∏

a<b≤k
(v ja + v jb)

2
)
, we get a homogeneous polyno-

mial L with degree k2. On the other hand, the function
(

v2
jl − v2

jm

)2
is a factor of

L. Hence the degree of L is at least 2k (k−1) . It follows that L is identically zero.
This finishes the proof of the claim.

Finally, we take ε = 1 and set fn = ReF, gn = ImF. Then we have

2i ln
F̄
F

= 4arctan
gn

fn
.

The proof of the theorem is thereby completed. �

Note that fn and gn are both positive functions. By Theorem 4, the function

(2.15) Un := 4arctan
gn

fn
−π

is a family of smooth solution to the elliptic sine-Gordon equation (2.1) , with
p j,q j,η

0
j being parameters. Note that −π <Un < π.

Next, we would like to analyze the asymptotic behavior of Un at infinity. We
have the following

Lemma 5. Let c ∈ R be a fixed constant and k be a fixed index. Suppose (x j,y j)
is a sequence of points such that ηk (x j,y j) = c and as j→ +∞, x2

j + y2
j → +∞.
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Moreover, relabeling (pm,qm),m = 1, ...,n if necessary, we can assume that as
j→+∞,

ηm (x j,y j)→+∞,m = 1, ...,k−1,

ηm (x j,y j)→−∞,m = k+1, ...,n.

Then we have

lim
j→+∞

Un (x j,y j) =

{
4arctan(exp(ηk−βk))−π, if k is odd,

4arctan(exp(−ηk−βk))−π, if k is even.

where βk =
k−1
∑
j=1

ln(α ( j,k)) .

Proof. We first consider the case that k is odd. Then as j→ +∞, the main order
term of fn is

a(1, ...,k−1)exp(η1 + ...+ηk−1) .

At the same time, the main order of gn is

a(1, ...,k)exp(η1 + ...+ηk) .

Hence along this sequence, Un converges to

4arctan
(

a(1, ...,k−1)
a(1, ...,k)

ec
)
−π

= 4arctan(exp(ηk−βk))−π.

If k is even, then as j→+∞, the main order term of fn is

a(1, ...,k)exp(η1 + ...+ηk) ;

while the main order term of gn will be

a(1, ...,k−1)exp(η1 + ...+ηk−1) .

Hence in this case,

Un→ 4arctan
(

a(1, ...,k−1)
a(1, ...,k)

e−c
)
−π

= 4arctan(exp(−ηk−βk))−π.

�

By Lemma 5, away from the origin, the nodal set of the solutions Un is asymp-
totic to 2n half straight lines, each line is parallel to one of the lines η j = 0, j =
1, ...,n, with the phase shift determined by the constants βk appeared in Lemma
5. Hence Un is a 2n-end solution. Note that Un contains 2n free real parameters:
p j,η

0
j , j = 1, ...,n. Hence this solution set is a 2n dimensional manifold. Note that

the dimension 2n is consistent with the prediction given by the moduli space theory
[11] of the Allen-Cahn type equation.
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In the special case of n = 2, if we choose p1 = p2 = p and q1 = −q2 = q,
η0

1 = η0
2 = ln p

q , then we get the solution

ϕp,q (x,y) := 4arctan
(

pcosh(qy)
qcosh(px)

)
−π.

This corresponds to a 4-end solution of the elliptic sine-Gordon equation (1.2).
Note that on the lines px =±qy, ϕp,q = 4arctan p

q −π. In the special case p = q =
√

2
2 , the solution is

(2.16) 4arctan

cosh
(

y√
2

)
cosh

(
x√
2

)
−π.

This is the classical saddle solution.
We remark that this family of 4-end solutions ϕp,q has analogous in the minimal

surface theory. They are the so called Scherk second surface family, which are
embedded singly periodic minimal surfaces in R3. Explicitly, these surfaces can be
described by

cos2
θ cosh

x
cosθ

− sin2
θ sinh

y
sinθ

= cosz.

Here θ is a parameter. Each of these surfaces has four wings, called ends of the sur-
faces. Geometrically, they are obtained by desingularizing two intersected planes
with intersection angle θ .

3. BÄCKLUND TRANSFORMATION OF THE MULTIPLE-END SOLUTIONS

Lamb[41] has established a superposition formula for the Bäcklund transforma-
tion of the hyperbolic sine-Gordon equation. In particular, the formula enables us
to get multi-soliton solutions in an algebraic way. However, in this formulation, for
n-soliton solutions with n large, it will be quite tedious to write down the explicit
expressions for the solutions. Nevertheless, it turns out that the soliton solutions
in Theorem 4 can be obtained through Bäcklund transformation. This will be dis-
cussed in more details in this section.

In the light-cone coordinate, the hyperbolic sine-Gordon equation has the form

(3.1) ∂s∂tu = sinu,(s, t) ∈ R2.

Let k be a real parameter. The Bäcklund transformation between two solutions u1
and u2 of (3.1) is given by(see for instance [51]):

(3.2)
{

∂su1 = ∂su2−2k sin u1+u2
2 ,

∂tu1 =−∂tu2−2k−1 sin u1−u2
2 .

An interesting property of this transformation is the following: If two functions
u1,u2 solve the system (3.2) , then they satisfy (3.1) simultaneously.

Next we recall the bilinear form of the hyperbolic sine-Gordon equation([33]).
Let F = f + ig. We still write u in the bi-logrithmic form:

u = 2i ln
F̄
F

= 4arctan
g
f
.
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Here the log and arctan function are also taken to be the principle branch. Then
(3.1) has the bilinear form

DsDtF ·F =
1
2
(
F2− F̄2) .

The following result can be found in [33].

Lemma 6. Suppose u1 = 2i ln F̄
F ,u2 = 2i ln Ḡ

G satisfy

(3.3)
{

DsG ·F =− k
2 ḠF̄ ,

DtG · F̄ =− 1
2k ḠF.

Assume k is real. Then u1,u2 satisfy (3.2) .

Proof. We sketch the proof for completeness. We have

∂su1−∂su2 = 2i
(

∂sF̄
F̄
− ∂sF

F

)
−2i

(
∂sḠ
Ḡ
− ∂sG

G

)
= 2i

Ḡ∂sF̄− F̄∂sḠ
F̄Ḡ

−2i
G∂sF−F∂sG

FG
.(3.4)

On the other hand,

(3.5) sin
u1 +u2

2
= sin

(
i ln

F̄Ḡ
FG

)
=

1
2i

(
FG
F̄Ḡ
− F̄Ḡ

FG

)
.

From (3.4) and (3.5) , using (3.3) and the assumption that k is real, we deduce

∂su1−∂su2 =−ki
F̄Ḡ
FG

+ ki
FG
F̄Ḡ

=−2k sin
u1 +u2

2
.

Similarly, we have

∂tu1 +∂tu2 =−2k−1 sin
u1−u2

2
.

�

Fix n ∈ N. Let k j,δ j, j = 1, ...,n, be real parameters. We now set

β j := k js+ k−1
j t +δ j, j = 1, ...,n.

At this moment, they are regarded as functions of the real variables s and t. We
define

Gn := ∑
ε

(
exp

[
n

∑
j=1

(
ε j

2

(
β j +

πi
2

))
+

nπi
4

]
∏

j<l≤n
(k j− ε jεlkl)

)
.

Here the summation ∑
ε

is taken over all possible n-tuples (ε1, ...,εn) with ε j =

±1, j = 1, ...,n. Note that Gn is a complex-valued function. By this definition, we
have

G1 = exp
(
−β1

2

)
+ iexp

(
β1

2

)
,
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G2 =−(k1− k2)exp
(

1
2
(β1 +β2)

)
+(k1− k2)exp

(
1
2
(−β1−β2)

)
+ i(k1 + k2)exp

(
1
2
(β1−β2)

)
+ i(k1 + k2)exp

(
1
2
(−β1 +β2)

)
.

When n = 0, Gn is understood to be 1.

Lemma 7. Assume that k j,δ j, j = 1, ...,n, are real numbers, k j 6= 0. Then Gn−1
and Gn are connected through the following Bäcklund transformation:{

DsGn ·Gn−1 =− kn
2 ḠnḠn−1,

DtGn · Ḡn−1 =− 1
2kn

ḠnGn−1.

Proof. Results of this type for the KdV equation and certain superposition formulas
can be found in [34]. Since we are not able to locate the precise references for a
direct proof of this lemma, here we sketch the proof for the first identity. The
second one will follow from same arguments.

Fix the integer n and let us introduce the notation

ε = (ε1, ...,εn) ,ε
′ =
(
ε
′
1, ...,ε

′
n−1
)
.

To simplify notations, we also set

h1 := exp

[
n

∑
j=1

(
ε j

2

(
β j +

πi
2

))
+

nπi
4

]
∏

j<l≤n
(k j− ε jεlkl) ,

h2 := exp

[
n−1

∑
j=1

(
ε ′j
2

(
β j +

πi
2

))
+

(n−1)πi
4

]
∏

j<l≤n−1

(
k j− ε

′
jε
′
l kl
)
.

Using ∂sβ j = k j, we can compute

2Dsh1 ·h2 =

(
n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
))

h1h2

=

(
n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
))

∏
j<n

(k j− ε jεnkn)W.(3.6)

Here

W := ∏
m<l≤n−1

[
(km− εmεlkl)

(
km− ε

′
mε
′
l kl
)]

exp
(

εn

2

(
βn +

πi
2

))

× exp

n−1

∑
j=1


(

ε ′j + ε j

)
2

(
β j +

πi
2

)+
(2n−1)πi

4

 .

With all these notations, we have

(3.7) 2DsGn ·Gn−1 = ∑
ε,ε ′

([
n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
)]

∏
j<n

(k j− ε jεnkn)W

)
.
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It turns out that this expression can be further simplified, due to cancellations be-
tween some terms. Observe that if for some index j0 ≤ n− 1, ε j0 = ε ′j0 , then the
corresponding term does not contribute to the coefficient

n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
)
.

To compute the right hand side of (3.7), first of all, let us consider the following
simplest case of the summation indices.

Case 1: In the summation, ε1 =−ε ′1 and for 2≤ j ≤ n−1, ε j = ε ′j.

Fixing the indices ε j = ε ′j with j ≥ 2. Then in this case, for different ε1 =−ε ′1,

each term in the right hand side of (3.7) has the common factor

∏
1<l≤n−1

(
k2

1− k2
l
)

∏
1<m<l≤n−1

(km− εmεlkl)
2

∏
2≤ j≤n−2

(k j− ε jεnkn)

× exp

(
εn

2

(
βn +

πi
2

)
+

n−1

∑
j=2

(
ε j

(
β j +

πi
2

))
+

(2n−1)πi
4

)
.

Taking out this common factor and freezing the indices ε2, ...,εn, we are led to
compute

I1 := ∑
ε1

[(εnkn +2ε1k1)(k1− ε1εnkn)] .

Here the summation is over the index ε1 =±1, since we impose the restriction that
ε1 =−ε ′1. Using the fact that ε2

j = 1, we deduce

I1 = ∑
ε1

(
εnknk1− ε1k2

n +2ε1k2
1−2εnk1kn

)
.

The summation over the second term is zero, since the terms with ε1 = 1 and
ε1 = −1 cancel each other. The same occurs for the third term. Hence we obtain
I1 =−2εnk1kn. On the other hand, we compute

∑
ε1

[εnkn (k1− ε1εnkn)] = 2εnknk1.

It then follows that
I1 =−∑

ε1

[εnkn (k1− ε1εnkn)] .

Using this identity, we find that, when the indices ε j = ε ′j, j ≥ 2, are fixed,

∑
ε1=−ε ′1

([
n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
)]

∏
j<n

(k j− ε jεnkn)W

)

=− ∑
ε1=−ε ′1

[
εnkn ∏

l≤n−1
(kl− εlεnkn) ∏

m<l≤n−1

[
(km− εmεlkl)

(
km− ε

′
mε
′
l kl
)]

× exp

εn

2

(
βn +

πi
2

)
+

n−1

∑
j=1


(

ε j + ε ′j

)
2

(
β j +

πi
2

)+
(2n−1)πi

4

 .
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Denote the right hand side by F1. On the other hand, for the same fixed indices
ε j = ε ′j, j ≥ 2, in ḠnḠn−1, we have the term

F∗1 := ∑
ε1=−ε ′1

[
∏

l≤n−1
(kl− εlεnkn) ∏

m<l≤n−1

[
(km− εmεlkl)

(
km− ε

′
mε
′
l kl
)]

× exp

εn

2

(
βn−

πi
2

)
+

n−1

∑
j=1


(

ε j + ε ′j

)
2

(
β j−

πi
2

)− (2n−1)πi
4

 .
Since ε1 =−ε ′1 and ε j = ε ′j for j ≥ 2, we always have

εn exp

[(
εn +

n−1

∑
j=1

(
ε j + ε

′
j
)
+2n−1

)
πi
2

]
= 1.

Hence

(3.8) F1 =−knF∗1 .

Next we consider the following
Case 2: The indices satisfy ε1 =−ε ′1,ε2 =−ε ′2, and for 3≤ j ≤ n−1, ε j = ε ′j.

In this case, for fixed indices ε j = ε ′j with j≥ 3, terms in (3.7) have the common
factor

∏
2<l≤n−1

[(
k2

1− k2
l
)(

k2
2− k2

l
)]

∏
2<m<l≤n−1

(km− εmεlkl)
2

∏
2≤ j≤n−2

(k j− ε jεnkn)

× exp

(
εn

2

(
βn +

πi
2

)
+

n−1

∑
j=3

(
ε j

(
β j +

πi
2

))
+

(2n−1)πi
4

)
.

Taking out this common factor and freezing the indices ε3, ...,εn, in view of the
assumption ε1 =−ε ′1 and ε2 =−ε ′2, we are led to compute

I2 := ∑
ε1,ε2

[
(εnkn +2ε1k1 +2ε2k2)(k1− ε1εnkn)(k2− ε2εnkn)(k1− ε1ε2k2)

2
]
.

To simplify I2, let us first of all compute

I2,2 := ∑
ε1,ε2

[
(ε1k1 + ε2k2)(k1− ε1εnkn)(k2− ε2εnkn)(k1− ε1ε2k2)

2
]
.

We can expand the bracket into individual terms. Observe that if a resulted term
has odd power of ε1 or ε2, than taking the summation over this term will yield zero,
due to cancellation between +1 and −1. Hence we obtain

I2,2 = ∑
ε1,ε2

[
(ε1k1)k1 (−ε2εnkn)(−2ε1ε2k1k2)+(ε1k1)(−ε1εnkn)k2

(
k2

1 + k2
2
)]

+ ∑
ε1,ε2

[
(ε2k2)k1 (−ε2εnkn)

(
k2

1 + k2
2
)
+(ε2k2)(−ε1εnkn)k2 (−2k1ε1ε2k2)

]
= ∑

ε1,ε2

[
2εnk3

1k2kn− εnk1k2kn
(
k2

1 + k2
2
)
− εnk1k2kn

(
k2

1 + k2
2
)
+2εnk1k3

2kn
]

= 0.
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Therefore,

I2 = ∑
ε1,ε2

[
εnkn (k1− ε1εnkn)(k2− ε2εnkn)(k1− ε1ε2k2)

2
]
.

It follows from this identity that when the indices ε j = ε ′j, j≥ 2, are fixed, we have

∑
ε1=−ε ′1,ε2=−ε ′2

([
n

∑
j=1

(ε jk j)−
n−1

∑
j=1

(
ε
′
jk j
)]

∏
j<n

(k j− ε jεnkn)W

)

= ∑
ε1=−ε ′1,ε2=−ε ′2

[
εnkn ∏

l≤n−1
(kl− εlεnkn) ∏

m<l≤n−1

[
(km− εmεlkl)

(
km− ε

′
mε
′
l kl
)]

× exp

εn

2

(
βn +

πi
2

)
+

n−1

∑
j=1


(

ε j + ε ′j

)
2

(
β j +

πi
2

)+
(2n−1)πi

4

 .
Denote the right hand side by F2. On the other hand, for the same fixed indices
ε j = ε ′j, j ≥ 3, in ḠnḠn−1, we have the term

F∗2 := ∑
ε1=−ε ′1,ε2=−ε ′2

[
∏

l≤n−1
(kl− εlεnkn) ∏

m<l≤n−1

[
(km− εmεlkl)

(
km− ε

′
mε
′
l kl
)]

× exp

εn

2

(
βn−

πi
2

)
+

n−1

∑
j=1


(

ε j + ε ′j

)
2

(
β j−

πi
2

)− (2n−1)πi
4

 .
Since ε1 =−ε ′1,ε2 =−ε ′2, and ε j = ε ′j for j ≥ 3, we always have

εn exp

[(
εn +

n−1

∑
j=1

(
ε j + ε

′
j
)
+2n−1

)
πi
2

]
=−1.

It follows that

(3.9) F2 =−knF∗2 .

Having understood Case 1 and Case 2, we proceed to consider the general case.
Assume without loss of generality that the indices satisfy, for some integer m0,

ε j =−ε
′
j, j = 1, ...,m0, and ε j = ε

′
j, j = m0 +1, ...,n−1.

Then we can compute (3.7) by separating these indices into pairs (ε1,ε2) ,(ε3,ε4) , ....
Applying formula (3.9) for each pair and using (3.8) in case m0 is odd, we finally
deduce

2DsGn ·Gn−1 =−knḠnḠn−1

The proof is thus completed. �

In view of the definition of Gn, we now define ωn to be

∑
ε:

n
∏

m=1
εm=(−1)n

(
exp

[
n

∑
j=1

(
ε j

2

(
β j +

πi
2

))
+

nπi
4

]
∏

j<l≤n
(k j− ε jεlkl)

)
,
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where ε j =±1. Similarly, we define ρn by

∑
ε:

n
∏

m=1
εm=(−1)n+1

(
exp

[
n

∑
j=1

(
ε j

2

(
β j +

πi
2

))
+

(n−2)πi
4

]
∏

j<l≤n
(k j− ε jεlkl)

)
.

Note that if k j,δ j are real numbers, and s, t are real variables, then

ωn = ReGn, ρn = ImGn.

In particular, we have

ω0 = 1,ρ0 = 0,

ω1 = exp
(
−β1

2

)
,ρ1 = exp

(
β1

2

)
,

ω2 =−(k1− k2)exp
(

1
2
(β1 +β2)

)
+(k1− k2)exp

(
1
2
(−β1−β2)

)
ρ2 = (k1 + k2)exp

(
1
2
(β1−β2)

)
+(k1 + k2)exp

(
1
2
(−β1 +β2)

)
.

Applying Lemma 6 and Lemma 7, we see that the real valued function ũn :=
4arctan(ρn/ωn) satisfies

(3.10)
{

∂sũn−1 = ∂sũn−2kn sin ũn−1+ũn
2 ,

∂t ũn−1 =−∂t ũn−2k−1
n sin ũn−1−ũn

2 .

For later applications, we would like to generalize this system to complex valued
functions(The function arctan is understood to be the principle branch). This is the
content of the following

Lemma 8. Assume k j,δ j are complex numbers, and s, t are complex variables.
Then (3.10) is still true.

Proof. We already know that (3.10) is true for real parameters. The assertion of
the lemma then follows from the fact that the functions involved are analytic with
respect to those parameters and variables. �

Next, let us come back to the solutions Un of the elliptic sine-Gordon equation
appeared in Theorem 4. We would like to show that they are indeed Bäcklund
transformation of certain (n−1)-soliton type solutions. As we will see later, this
will be achieved by applying Lemma 8. To do this, first of all, we need to write the
functions fn and gn in a form adapted to Lemma 7.

Recall that p j,q j are parameters in Un. For j = 1, ...,n, let k j = p j + iq j and
choose a complex number ι j such that

eι j = ∏
l< j

kl + k j

kl− k j
∏
l> j

k j + kl

k j− kl
.

For instance, one can simply choose ι j to be the principle value of the log function
evaluating at the right hand side.
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Since p2
j + q2

j = 1, we know that k−1
j = p j− iq j = k̄ j. Recall that η j = p jx+

q jy+η0
j . We emphasize that here x,y are regarded as real variables. Let us now

define

(3.11) η̃ j := η j− ι j.

We then set
(3.12)

f̃n := ∑
ε:

n
∏

m=1
εm=(−1)n

(
exp

[
n

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

nπi
4

]
∏

j<l≤n
(k j− ε jεlkl)

)
,

where ε j =±1. We also define
(3.13)

g̃n = ∑
ε:

n
∏

m=1
εm=(−1)n−1

(
exp

[
n

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(n−2)πi
4

]
∏

j<l≤n
(k j− ε jεlkl)

)
.

Lemma 9. Let fn,gn be defined by (2.8) ,(2.9) . There holds

gn

fn
=

g̃n

f̃n
.

Proof. Since η j = η̃ j + ι j, fn can be written in the form:

bn/2c

∑
m=0

(
∑
{n,2m}

[a(i1, ..., i2m)exp(ιi1 + ...+ ιi2m)exp(η̃i1 + ...+ η̃i2m)]

)
.

For fixed indices (i1, ..., i2m) , using the definition (2.7) of a, we have

a(i1, ..., i2m)exp(ιi1 + ...+ ιi2m)

= (−1)m(2m−1)
∏

j<l≤2m

(
ki j − kil

ki j + kil

)2

exp(ιi1 + ...+ ιi2m)

= (−1)m(2m−1)
∏

j<l≤n

k j− ε jεlkl

k j− kl
,

where ε j = 1 if j = i1, ..., i2m; otherwise ε j =−1. Note that in this case,

n

∑
j=1

ε j = 4m−n.

Hence the sign satisfies

(−1)m(2m−1) = exp

(
πi
4

(
n

∑
j=1

ε j +n

))
.
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It follows that

fn exp
(
−1

2
(η̃1 + ...+ η̃n)

)
=

1
∏

j<l≤n
(k j− kl)

∑
ε:

n
∏

m=1
εm=(−1)n

[
exp

(
n

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

nπi
4

)
∏

j<l≤n
(k j− ε jεlkl)

]

=
1

∏
j<l≤n

(k j− kl)
f̃n.

Similarly, we have

gn exp
(
−1

2
(η̃1 + ...+ η̃n)

)
=

1
∏

j<l≤n
(k j− kl)

g̃n.

As a consequence
gn

fn
=

g̃n

f̃n
.

This finishes the proof. �

Let η̃ j, j = 1, ...,n−1, be defined by (3.11) . We define γ = γn−1 to be

∑

ε:
n−1
∏

m=1
εm=(−1)n−1

(
exp

[
n−1

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(n−1)πi
4

]
∏

j<l≤n−1
(k j− ε jεlkl)

)
.

Moreover, we define τ = τn−1 by

∑

ε:
n−1
∏

m=1
εm=(−1)n

(
exp

[
n−1

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(n−3)πi
4

]
∏

j<l≤n−1
(k j− ε jεlkl)

)
.

We emphasize that η̃ j, j = 1, ...,n−1, actually also depends on kn.

Lemma 10. The function τ/γ is purely imaginary.

Proof. For each fixed j, we choose η ′j such that

exp(η j) := exp
(
η
′
j
)
∏
l< j

kl + k j

kl− k j
∏

j<l≤n−1

kl + k j

kl− k j
.

Note that there are infinitely many choices for such η ′j. We may just choose one
of them, for instance, the one arising from the principle branch of the log function.
Consider the function γ ′,τ ′ defined by

γ
′ := ∑

ε:
n−1
∏

m=1
εm=(−1)n−1

(
exp

(
n−1

∑
j=1

(
ε j

2

(
η
′
j +

πi
2

))
+

(n−1)πi
4

)
∏

j<l≤n−1
(k j− ε jεlkl)

)
,
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τ
′ := ∑

ε:
n−1
∏

m=1
εm=(−1)n

(
exp

(
n−1

∑
j=1

(
ε j

2

(
η
′
j +

πi
2

))
+

(n−3)πi
4

)
∏

j<l≤n−1
(k j− ε jεlkl)

)
.

By the proof of Lemma 9, we have

fn−1 = exp
(

1
2
(η̃1 + ...+ η̃n−1)

)
γ
′

∏
j<l≤n−1

1
k j− kl

,

gn−1 = exp
(

1
2
(η̃1 + ...+ η̃n−1)

)
τ
′

∏
j<l≤n−1

1
k j− kl

.

Since η̃ j = η j− ι j, using the definition of η ′j, we find that

exp(η̃ j) = exp
(
η
′
j
) k j + kn

k j− kn
:= exp

(
η
′
j +η

′0
j
)
.

Then γ is equal to

∑

ε:
n−1
∏

m=1
εm=(−1)n−1

(
exp

[
n−1

∑
j=1

(
ε j

2

(
η
′
j +η

′0
j +

πi
2

))
+

(n−1)πi
4

]
∏

j<l≤n−1
(k j− ε jεlkl)

)
.

Therefore, still using the proof of Lemma 9(with the phase constant η0
j replaced

by η0
j +η ′0j ), we can also write τ

γ
as

(3.14)

∑
b(n−2)/2c
m=0

(
∑

{n−1,2m+1}

[
a(i1, ..., i2m+1)

2m+1
∏
j=1

ki j+kn

ki j−kn
exp
(
ηi1 + ...+ηi2m+1

)])

∑
b(n−1)/2c
m=0

(
∑

{n−1,2m}

[
a(i1, ..., i2m)

2m
∏
j=1

ki j+kn

ki j−kn
exp(ηi1 + ...+ηi2m)

]) .

On the other hand, from the fact that

a( j,n) =−
(

k j− kn

k j + kn

)2

,

we infer that k j+kn
k j−kn

is imaginary. This together with (3.14) tell us that τ

γ
is imagi-

nary. �

Let us set u = 4arctan gn
fn
= 4arctan g̃n

f̃n
, v = 4arctan τ

γ
. Here the arctan function

is still understood to be the principle value. Let us define

(3.15)
{

x = s+ t,
y = i(s− t) .

A direct consequence of Lemma 8 is the following
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Lemma 11. The functions u and v are connected through the following Bäcklund
transformation:

(3.16)
{

∂xv = i∂yu− kn sin v+u
2 − k̄n sin v−u

2 ,
i∂yv = ∂xu− kn sin v+u

2 + k̄n sin v−u
2 .

Proof. Applying Lemma 8, using the fact that k−1
n = k̄n, we see that the functions

u,v satisfy {
∂sv = ∂su−2kn sin v+u

2 ,
∂tv =−∂tu−2k̄n sin v−u

2 .

Note that ∂s = ∂x + i∂y,∂t = ∂x− i∂y. Hence{
∂xv+ i∂yv = ∂xu+ i∂yu−2kn sin v+u

2 ,
∂xv− i∂yv =−∂xu+ i∂yu−2k̄n sin v−u

2 .

The system (3.16) follows immediately. �

We point out that since the function τ

γ
is purely imaginary, sin v

2 ,cos v
2 , should

be understood as

(3.17) sin
(

2arctan
τ

γ

)
=

2γτ

γ2 + τ2 , cos
(

2arctan
τ

γ

)
=

γ2− τ2

γ2 + τ2 .

Moreover, ∂xv = 4 γ∂xτ−τ∂xγ

γ2+τ2 . Hence sin
(u±v

2

)
,cos

(u±v
2

)
, are complex valued func-

tions, with possible singularities at those points where γ2+τ2 = 0. The analysis of
these singularities will be carried out in the next section.

Let n be fixed and η̃ j be defined as before. For δ = 1, ...,n−2, we now define
γδ to be

∑

ε:
δ

∏
m=1

εm=(−1)δ

(
exp

[
δ

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

δπi
4

]
∏

j<l≤δ

(k j− ε jεlkl)

)
.

Moreover, we define τδ by

∑

ε:
δ

∏
m=1

εm=(−1)δ−1

(
exp

[
δ

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(δ −2)πi
4

]
∏

j<l≤δ

(k j− ε jεlkl)

)
.

Moreover, we define γ0 = 1 and τ0 = 0. Let vδ = arctan τδ

γδ
. Arguing similarly as

Lemma 10, we know that for δ = 1, ..., the function τn−2δ

γn−2δ
is real valued, while

τn−2δ+1
γn−2δ+1

is purely imaginary(except τ0
γ0

, which is always equal to 0).
A direct generalization of Lemma 11 is the following

Lemma 12. For δ = 1, ...,n−1, the functions vδ and vδ−1 are connected through
the following Bäcklund transformation:

(3.18)
{

∂xvδ−1 = i∂yvδ − kδ sin vδ−1+vδ

2 − k̄δ sin vδ−1−vδ

2 ,

i∂yvδ−1 = ∂xvδ − kδ sin vδ−1+vδ

2 + k̄δ sin vδ−1−vδ

2 .
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4. LINEARIZED BÄCKLUND TRANSFORMATION AND NONDEGENERACY OF
THE 2n-END SOLUTIONS

This section will be devoted to prove the nondegeneracy of the multiple-end
solutions. To state our result in a more precise way, let us recall that Un is the 2n-
end solution defined in (2.15), and η0

j are “phase” parameters in Un. Let u =Un +

π = 4arctan gn
fn
= 4arctan g̃n

f̃n
. In this section, the differentiation of u with respect

to these parameters will be denoted by ζ j. That is, ζ j := ∂
η0

j
u, j = 1, ...,n. Since

for any η0
j , Un is a solution to the elliptic sine-Gordon equation, ζ j automatically

solves the linearized equation:

∆ζ j = ζ j cosu.

For convenience, let us restate Theorem 2, which is already claimed in the first
section.

Theorem 13. Suppose η is bounded in R2 and satisfies the linearized equation

∆η = η cosu.

Then there exist constants c1, ...,cn such that

η =
n

∑
j=1

c jζ j.

Roughly speaking, this result tells us that the solution Un is L∞ nondegenerate.
The main idea of the proof is as follows. Using linearized Bäcklund transforma-
tion, we transform η to a kernel χ of the linearized operator at the trivial solution
0. Hence ∆χ− χ = 0. The solutions to this equation can be classified. By analyz-
ing the reversed Bäcklund transformation from the trivial solution 0 to u, we then
conclude that η has to be the form stated in Theorem 13.

Linearizing the Bäcklund transformation (3.16) at (v,u)(with perturbation of the
form (εφ ,εη) and ε tends to 0), we get the linearized system ∂xφ = i∂yη− kn cos u+v

2

(
φ+η

2

)
− k̄n cos u−v

2

(
φ−η

2

)
,

i∂yφ = ∂xη− kn cos u+v
2

(
φ+η

2

)
+ k̄n cos u−v

2

(
φ−η

2

)
.

Intuitively, given function η , we would like to solve this system and find a solution
φ . For this purpose, we write it in the form:

(4.1)
{

Lφ = Mη ,
T φ = Nη ,
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where

Lφ := ∂xφ +

(
kn cos

u+ v
2

+ k̄n cos
u− v

2

)
φ

2
,

T φ := i∂yφ +

(
kn cos

u+ v
2
− k̄n cos

u− v
2

)
φ

2
,

Mη := i∂yη−
(

kn cos
u+ v

2
− k̄n cos

u− v
2

)
η

2
,

Nη := ∂xη−
(

kn cos
u+ v

2
+ k̄n cos

u− v
2

)
η

2
.

To simplify the notation, we write f̃n as f , and g̃n as g. Using (3.17) , we see
that explicitly, Lφ is equal to

∂xφ +

(
kn

(
2( f γ−gτ)2

( f 2 +g2)(γ2 + τ2)
−1

)
+ k̄n

(
2( f γ +gτ)2

( f 2 +g2)(γ2 + τ2)
−1

))
φ

2

:= ∂xφ +Re(Γ− kn)φ ,

where the function Γ is defined to be

(4.2) 2kn
( f γ−gτ)2

( f 2 +g2)(γ2 + τ2)
.

Similarly, we have
T φ = i∂yφ + i Im(Γ− kn)φ .

Note that by Lemma 10, τ/γ is purely imaginary. As a consequence, the function
γ2 + τ2 could be equal to zero somewhere in R2. We define this singular set to be

S = S (v) :=
{
(x,y) ∈ R2 : γ

2 + τ
2 = 0

}
.

To analyze S , we also define

S0 := {(x,y) ∈S : γ = 0} ,
S∗ := {(x,y) ∈S : γ 6= 0} .

The closure of S∗ will be denoted by S̄∗. These sets depend on the function v, which
is determined by the parameters p j,q j,η

0
j . Observe that S̄∗ is also a subset of S .

Rotating the axis if necessary, we can assume p j 6= 0, for all j. By the classification
results to be proved in the next section, we actually can assume that p j < 0 for all
j. Using the identity

cosθ1 + isinθ1− (cosθ2 + isinθ2)

cosθ1 + isinθ1 +(cosθ2 + isinθ2)
= i tan

θ1−θ2

2
,

we may further assume( by relabeling the indices if necessary) that
k j− kl

k j + kl
i < 0, if j < l.

This property together with an induction argument based on formula (3.14) ensure
that in the Bäcklund transformation sequence {v1, ...,vn−1}, the functions vn−2δ are
real and nonsingular for δ = 1,2, ....
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Lemma 14. Let R0 be a large constant and BR0 be the ball of radius R0 centered at
the origin. The set S \BR0 consists of 2n−2 curves. Each curve is asymptotic to a
line which is parallel to one of the lines of the form p jx+q jy = 0, j = 1, ...,n−1.

Proof. We first recall that γ is the sum of all those terms of the form:

exp

(
n−1

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(n−1)πi
4

)
∏

j<l≤n−1
(k j− ε jεlkl) ,

where
n−1
∏
j=1

ε j = (−1)n−1 . At the same time, τ is the sum of terms

exp

(
n−1

∑
j=1

(
ε j

2

(
η̃ j +

πi
2

))
+

(n−3)πi
4

)
∏

j<l≤n−1
(k j− ε jεlkl) ,

where
n−1
∏
j=1

ε j = (−1)n .

Let
{
(x j,y j)

}+∞

j=1 be a sequence of points in S such that x2
j + y2

j → +∞. Using
the fact that |γ|= |τ| in S , we infer that, up to a subsequence, there exists an index
j0 and a universal constant C such that∣∣η j0 (x j,y j)

∣∣≤C, j = 1, ....

Otherwise,
∣∣∣ τ

γ

∣∣∣ will be tending to +∞ or 0, depending on the parity of n. Then
without loss of generality, we can assume that as j→+∞,

ηm→−∞, for m = 1, ..., j0−1,
ηm→+∞, for m = j0 +1, ...,n.

Suppose n− j0 = 2k+1 is odd, then the main order term in τ is

Aexp
(

1
2
(−η̃1− ...− η̃ j0−1 + η̃ j0 + η̃ j0+1 + ...+ η̃n−1)

)
∏

j<l≤n−1

(
k j− ε

′
jε
′
l kl
)
,

where ε ′1 = ...= ε ′j0−1 =−1, ε ′j0 = ...= ε ′n−1 = 1, and

A = exp

(
πi
4

(
n−1

∑
j=1

ε
′
j +n−3

))
= exp(kπi) .

On the other hand, the main order term in γ is

Bexp
(

1
2
(−η̃1− ...− η̃ j0−1− η̃ j0 + η̃ j0+1 + ...+ η̃n−1)

)
∏

j<l≤n−1
(k j− ε jεlkl) ,

where ε1 = ...= ε j0 =−1, ε j0+1 = ...= εn−1 = 1, and

B = exp

(
πi
4

(
n−1

∑
j=1

ε j +n−1

))
= exp(kπi) .
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It follows that as j→+∞,

(4.3)
τ

γ
|(x j,y j)→ exp(η̃ j0)

j0−1

∏
j=1

k j + k j0

k j− k j0

n−1

∏
j= j0+1

k j0− k j

k j0 + k j
.

Note that if n− j0 is even, then (4.3) still holds. We know that τ =±γi. Let µ j0 be
the complex number defined by

exp(µ j0) =±iexp(−ι j0)
j0−1

∏
j=1

k j + k j0

k j− k j0

n−1

∏
j= j0+1

k j0− k j

k j0 + k j
.

Note that µ j0 is real. Then using the fact that η̃ j0 = η j0− ι j0 and (4.3) , we find that

exp(η j0 +µ j0) |(x j,y j)→ 1.

This implies (x j,y j) is on the curve in S which is asymptotic to the line

p j0x+q j0y+η
0
j +µ j0 = 0.

This finishes the proof. �

Lemma 15. As min j=1,...,n
∣∣p jx+q jy

∣∣→+∞, we have

Γ(x,y)→ 0, if pnx+qny→+∞,

Γ(x,y)→ 2kn, if pnx+qny→−∞.

Proof. Suppose min j=1,...,n
∣∣p jx+q jy

∣∣→ +∞ and pnx+ qny→ +∞. Without loss
of generality, we assume that η j (x,y)→−∞ for j = 1, ...,m0, and η j (x,y)→+∞

for j = m0 +1, ...,n.
If n−m0 is even, then the main order term(up to a coefficient) in f is

exp
(

1
2
(−η1− ...−ηm0 +ηm0+1 + ...+ηn)

)
.

This implies that g/ f → 0. On the other hand, the main order term(up to a coeffi-
cient) in τ is

exp
(

1
2
(−η1− ...−ηm0 +ηm0+1 + ...+ηn−1)

)
.

Hence γ/τ → 0. It follows that for each fixed y,

Γ = 2kn

(
γ

τ
− g

f

)2(
1+
(

g
f

)2
)(

1+
(

γ

τ

)2
) → 0.

If n−m0 is odd, then the main order term(up to a coefficient) in g is

exp
(

1
2
(−η1− ...−ηm0 +ηm0+1 + ...+ηn)

)
.

Hence f/g→ 0. Similarly, the main order term in γ is

exp
(

1
2
(−η1− ...−ηm0 +ηm0+1 + ...+ηn−1)

)
,
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and τ/γ → 0. Therefore, we still have

Γ = 2kn

(
γ

τ
− g

f

)2(
1+
(

g
f

)2
)(

1+
(

γ

τ

)2
) → 0.

Next, we suppose min j=1,...,n
∣∣p jx+q jy

∣∣→ +∞ and pnx+qny→−∞. We may
assume that for some index m0, there holds η j (x,y)→ +∞ for j = 1, ...,m0, and
η j (x,y)→−∞ for j = m0 +1, ...,n.

If m0 is even, then the main order term(up to a coefficient) in f is

exp
(

1
2
(η1 + ...+ηm0−ηm0+1− ...−ηn)

)
.

As a consequence, g/ f → 0. The main order term(up to a coefficient) in γ is

exp
(

1
2
(η1 + ...+ηm0−ηm0+1− ...−ηn−1)

)
,

which implies that τ/γ → 0. We then deduce that

Γ = 2kn

(
1− gτ

f γ

)2(
1+
(

g
f

)2
)(

1+
(

τ

γ

)2
) → 2kn.

If m0 is odd, then the main order term(up to a coefficient) in g is

exp
(

1
2
(η1 + ...+ηm0−ηm0+1− ...−ηn)

)
.

Hence f/g→ 0. Similarly, γ/τ → 0. We then deduce that

Γ = 2kn

(
f γ

gτ
−1
)2(

1+
(

f
g

)2
)(

1+
(

γ

τ

)2
) → 2kn.

This finishes the proof. �

For each fixed y, let us consider the homogeneous first order ODE Lξ = 0, that
is,

(4.4) ∂xξ +Re(Γ− kn)ξ = 0.

If Γ were a smooth function, then Lemma 15 tells us that the integral
∫ x
−∞

Γ(l,y)dl
is well defined and (4.4) has a solution of the form

ξ (x,y) := exp
(

pnx+qny−
∫ x

−∞

Re(Γ(l,y))dl
)
.
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However, since in reality Γ has singularities, we need to define ξ in a rigorous way.
To do this, it will be important to understand the function

ϑ := kn
( f γ−gτ)2

( f 2 +g2)(γ∂sγ + τ∂sτ)
.

Let us first of all consider the simple case of n= 2. We then have γ = exp
(
−1

2 η̃1
)
,τ =

exp
(1

2 η̃1
)
,

f =−exp
(

1
2
(η̃1 + η̃2)

)
(k1− k2)+ exp

(
1
2
(−η̃1− η̃2)

)
(k1− k2) ,

g = exp
(

1
2
(η̃1− η̃2)

)
(k1 + k2)+ exp

(
1
2
(−η̃1 + η̃2)

)
(k1 + k2) .

By definition, γ2+τ2 = 0 on S∗, which implies that 1+exp(2η̃1)= 0. If exp(η̃1)=
i, then

g
f
=

exp
(1

2 (η̃1− η̃2)
)
(k1 + k2)+ exp

(1
2 (−η̃1 + η̃2)

)
(k1 + k2)

−exp
(1

2 (η̃1 + η̃2)
)
(k1− k2)+ exp

(1
2 (−η̃1− η̃2)

)
(k1− k2)

=
k1 + k2

k1− k2
i.

Moreover, recalling the relation (3.15) between (x,y) and (s, t) , we get

∂sγ + i∂sτ

γ
=−k1.

If follows that

ϑ =−k2

k1

(
1+ k1+k2

k1−k2

)2

1−
(

k1+k2
k1−k2

)2 = 1, on S∗.

One can show that if exp(η̃1) = −i, we still have ϑ = 1 on S∗. We would like to
prove that this identity is true for all n. For this purpose, we first show the following

Lemma 16. Let (x j,y j) be a sequence of points in S∗ such that x2
j + y2

j →+∞, as
j→+∞. Then

(4.5) ϑ (x j,y j)→ 1, as j→+∞.

Proof. As in the proof of Lemma 14, we still assume that as j→+∞,

ηm→−∞, for m = 1, ..., j0−1,
ηm→+∞, for m = j0 +1, ...,n.

It follows that as j→+∞,

(4.6)
τ

γ
|(x j,y j)→ exp(η̃ j0)

j0−1

∏
j=1

k j + k j0

k j− k j0

n−1

∏
j= j0+1

k j0− k j

k j0 + k j
.
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Similarly, we have

(4.7)
g
f
→−exp(−η̃ j0)

j0−1

∏
j=1

k j− k j0

k j + k j0

n

∏
j= j0+1

k j0 + k j

k j0− k j
.

Since γ =±iτ at (x j,y j) , from (4.6) and (4.7) , we get

(4.8)
g2

f 2 →−
(

k j0 + kn

k j0− kn

)2

.

We also have
gτ

f γ
→−

k j0 + kn

k j0− kn
.

Hence as j→+∞, at (x j,y j) ,

kn
( f −gτ/γ)2

( f 2 +g2)
= kn

(
1− gτ

f γ

)2(
1+ g2

f 2

) → kn

(
1+

k j0+kn

k j0−kn

)2

1−
(

k j0+kn

k j0−kn

)2 =−k j0 .

(4.5) then follows from the fact that

γ∂sγ + τ∂sτ

γ2 →−k j0 .

�

Lemma 17. ϑ = 1 on S∗.

Proof. Before starting the proof, we point out that a simplified proof of this result
will be sketched in the proof of Lemma 21. However, the proof given below may
be also of independent interest.

On S∗, τ =±iγ. We may assume without loss of generality that τ = γi.The case
of τ =−γi is similar. We then would like to prove that

(4.9) knγ ( f −gi)2−
(

f 2 +g2)(∂sγ + i∂sτ) = 0, on S∗.

Let us consider the case of n = 3. The idea for the general case is same, but the
notations would be heavy. We denote

a∗ (i1, ..., im) := a(i1, ..., im)
m

∏
j=1

ki j − k3

ki j + k3
.

Recall that(see (3.14))

γ = 1+a∗ (1,2)exp(η1 +η2) .

τ = a∗ (1)exp(η1)+a∗ (2)exp(η2) .

On S, from τ = γi, we get

(4.10) exp(η2) =
i−a∗ (1)exp(η1)

a∗ (2)− ia∗ (1,2)exp(η1)
.
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It follows that

γ = 1+a∗ (1,2)exp(η1)
[i−a∗ (1)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

=
a∗ (2)− ia∗ (1,2)exp(η1)+a∗ (1,2)exp(η1) [i−a∗ (1)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

:=
J1

a∗ (2)− ia∗ (1,2)exp(η1)
.

Similarly,

f = 1+a(1,3)exp(η1 +η3)+ [a(1,2)exp(η1)+a(2,3)exp(η3)]exp(η2)

=
[1+a(1,3)exp(η1 +η3)] [a∗ (2)− ia∗ (1,2)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

+
[a(1,2)exp(η1)+a(2,3)exp(η3)] [i−a∗ (1)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

:=
J2

a∗ (2)− ia∗ (1,2)exp(η1)
.

g = exp(η1)+ exp(η2)+ exp(η3)+a(1,2,3)exp(η1 +η2 +η3)

=
[exp(η1)+ exp(η3)] [a∗ (2)− ia∗ (1,2)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

+
[1+a(1,2,3)exp(η1 +η3)] [i−a∗ (1)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

:=
J3

a∗ (2)− ia∗ (1,2)exp(η1)
.

We also have

∂sγ + i∂sτ = [(k1 + k2)a∗ (1,2)exp(η1)+ ia∗ (2)k2]
[i−a∗ (1)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

+ ik1a∗ (1)exp(η1)
[a∗ (2)− ia∗ (1,2)exp(η1)]

a∗ (2)− ia∗ (1,2)exp(η1)

=
J4

a∗ (2)− ia∗ (1,2)exp(η1)
.

We then get

knγ ( f −gi)2−
(

f 2 +g2)(∂sγ + i∂sτ)

=
knJ1 (J2− J3i)2−

(
J2

2 + J2
3
)

J4

[a∗ (2)− ia∗ (1,2)exp(η1)]
3 .

Let us write

knJ1 (J2− J3i)2−
(
J2

2 + J2
3
)

J4 = ∑
j,k

A j,k exp( jη1 + kη3) .

We would like to show that A j,k = 0. To see this, we assume without loss of gener-
ality that along a sequence (x j,y j) with |η2| bounded, both η1 and η3 tend to +∞,
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and η1 > η3. Observe that the main order term is A6,2 exp(6η1 +2η3) . By Lemma
16, along this sequence, ϑ → 1. This implies that A6,2 has to be zero, otherwise
the limit of ϑ will not be equal to 1. Once we know A6,2 is zero, the main order
term becomes A6,1 exp(6η1 +η3) . Using again the fact that ϑ → 1 along (x j,y j) ,
we deduce that A6,1 is 0. Repeating this argument, we see that A j,k = 0 for all j,k.
The identity (4.9) is then proved.

We remark that, in the case of n = 3, one can also explicitly compute A j,k. For
instance, A0,0 is

k3a∗ (2)(a∗ (2)− i(i))2−
(

a∗ (2)2 + i2
)

i2a∗ (2)k2

= a∗ (2)

[
k3

(2k2)
2

(k2− k3)
2 + k2

(
1− (k2 + k3)

2

(k2− k3)
2

)]
= 0.

The coefficient A6,0 of exp(6η1) is equal to

− k3a∗ (1,2)a∗ (1) [−a(1,2)a∗ (1)− i(−ia∗ (1,2))]2

−
(
(−a(1,2)a∗ (1))2 +(−ia∗ (1,2))2

)
[(k1 + k2)a∗ (1,2)(−a∗ (1))+ k1a∗ (1)a∗ (1,2)]

= a∗ (1,2)a∗ (1)(a(1,2)a∗ (1))2
[
−k3 (1+a∗ (2))2− k2

(
1− (a∗ (2))2

)]
= 0.

For general n, this computation would be tedious. �

At this stage, we emphasize that the function ϑ is not well defined on the set
S0 (v) . For given function v with parameters p j,q j,η

0
j , it is not clear whether the

corresponding set S0 (v) is empty or only consists of finitely many points. In prin-
ciple, it is even possible that S0 contains a smooth curve. The following result deals
with some special cases of parameters, but it will not be relevant to our later proof
in this section.

Lemma 18. There exist parameters p j,q j,η
0
j , j = 1, ...,n− 1, such that for the

corresponding solution v, the set S0 is empty.

Proof. Let δ be a small positive number to be determined later on. Let us denote
the lines η j = 0 by l j. For j = 1, ...,n, we choose p j =

j
2n , q j =

√
1− p2

j and

η0
j = j2 lnδ . Note that for this choice, when δ is small, no three lines l j intersect at

same point. Moreover, as δ → 0, the distance between the intersection points tend
to infinity. We also remark that there are many other different choices.

Let M > 0 be a constant independent of δ , also to be determined later on. Con-
sider the region Ω which consists of those points (x,y) satisfying: There exists at
most one η j such that

∣∣η j (x,y)
∣∣≤M.
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In view of (3.14) , τ

γ
= H1

H2
, where

H1 :=
b(n−2)/2c

∑
m=0

(
∑

{n−1,2m+1}

[
a(i1, ..., i2m+1)

2m+1

∏
j=1

ki j + kn

ki j − kn
exp
(
ηi1 + ...+ηi2m+1

)])
,

H2 :=
b(n−1)/2c

∑
m=0

(
∑

{n−1,2m}

[
a(i1, ..., i2m)

2m

∏
j=1

ki j + kn

ki j − kn
exp(ηi1 + ...+ηi2m)

])
.

Let

m0 := min
( j1,..., jl),l≤n−1

{∣∣∣∣∣a( j1, ... jl)
l

∏
b=1

(
k jb + kn

k jb− kn

)∣∣∣∣∣
}
,

m1 := max
( j1,..., jl),l≤n−1

{∣∣∣∣∣a( j1, ..., jl)
l

∏
b=1

(
k jb + kn

k jb− kn

)∣∣∣∣∣
}
.

We claim that if exp(M/4)> m1
m0

2n, then Ω∩S0 =∅. Indeed, suppose (x0,y0) is a
point in Ω. Assume without loss of generality that |η1 (x0,y0)| ≤M. We can also
assume that for some k0,

η j > M, for j = 2, ...,k0,

η j <−M, for j = k0 +1, ...,n.

We consider two different cases.
Case 1. k0 is even.
If η1 (x0,y0)> M/2. Then the main order term in H1 is

exp(η1 + ...+ηk0) .

This term dominates the sum of other terms in H1. More precisely, since exp(M/4)>
m1
m0

2n, we have

|H1 (x0,y0)| ≥ exp(η1 + ...+ηk0)

(
1− 1

2

)
> 0.

Hence τ (x0,y0) 6= 0. On the other hand, if η1 (x0,y0)≤M/2. Then the main order
term in H2 is

exp(η2 + ...+ηk0) .

This term dominates the sum of other terms in H2. Hence γ (x0,y0) 6= 0.
Case 2. k0 is odd.
If η1 (x0,y0)> M/2. Then the main order term in H2 is

exp(η1 + ...+ηk0) .

This term dominates the sum of other terms in H2, hence γ (x0,y0) 6= 0. If η1 (x0,y0)≤
M/2. Then the main order term in H1 is

exp(η2 + ...+ηk0) .

This term dominates the sum of other terms in H1. Hence τ (x0,y0) does not vanish.
The claim is thus proved.
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Now fix an M satisfying exp(M/4) > m1
m0

2n. Consider (x0,y0) ∈ R2\Ω. If δ is
sufficiently small, then by the choice of p j,q j,η

0
j , there exist precisely two η j such

that their absolute value at (x0,y0) is not larger than M. Assume they are η1,η2.
The function H1 has the form

k1 + kn

k1− kn
exp(η1)+

k2 + kn

k2− kn
exp(η2)+C1 (δ ) ,

The function H2 has the form

1−
(

k1− k2

k1 + k2

)2 k1 + kn

k1− kn

k2 + kn

k2− kn
exp(η1 +η2)+C2 (δ ) .

Here C1 (δ ) ,C2 (δ ) tend to zero as δ → 0. Note that k j+kn
k j−kn

is purely imaginary.
Hence for δ sufficiently small, either the equation H1 = 0 has no solution, or the
equation H2 = 0 has no solution. Hence the set S0 is empty. Actually, in this case,
by our choice of k j, necessarily the equation H1 = 0 has no solution. The proof is
completed. �

Throughout the section, we shall use Bε (x0,y0) to denote the open ball of radius
ε centered at (x0,y0) . Roughly speaking, the following lemma states that the set S̄∗
can’t contain several curves intersect at one point.

Lemma 19. Suppose (x0,y0)∈ S̄∗, and S0∩Bε (x0,y0) = {(x0,y0)} for some ε > 0.
Then locally around (x0,y0) , S̄∗ is a smooth curve. More precisely, there exists
δ > 0, such that either

S̄∗∩{(x,y) : |x− x0|< δ , |y− y0|< δ}= {(F (y) ,y) ,y ∈ (y0−δ ,y0 +δ )} ,
where F is a smooth function, or

S̄∗∩{(x,y) : |x− x0|< δ , |y− y0|< δ}= {(x,F∗ (x)) ,x ∈ (y0−δ ,y0 +δ )} ,
where F∗ is a smooth function.

Proof. Without loss of generality, we can assume that γ is real valued and τ is
purely imaginary. Hence τ = iτ∗, where τ∗ is real valued.

If (x0,y0) ∈ S∗, then |γ|= |τ| 6= 0 and by (4.9) , we have

γ∂sγ + τ∂sτ =
kn ( f γ−gτ)2

2( f 2 +g2)
.

This implies that as a complex valued function, at (x0,y0) ,∣∣∂s
(
γ

2 + τ
2)∣∣= ∣∣knγ2

∣∣
2

.

This also means that ∣∣∇(γ2− τ
∗2)∣∣= ∣∣knγ2

∣∣
2
6= 0.

Note that the function γ2− τ∗2 can be regarded as a map from R2 to R. There-
fore, by the implicit function theorem, the result of the lemma is true in the case
that (x0,y0) ∈ S∗. In the rest of the proof we may assume that (x0,y0) ∈ S̄∗\S∗. In
particular, (x0,y0) ∈ S0.
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Since γ,τ∗ are real analytic functions, for δ small, the set

S∗∩{(x,y) : |x− x0|< δ , |y− y0|< δ}
consists of finitely many disjoint smooth curves, c1, ...,cm. Each curve c j is deter-
mined by a smooth map M j : (0,1)→ R2, where limr→0M j (r) = (x0,y0) . The
direction of these curves at (x0,y0) will be denoted by e j :=M′

j (0) . We also write
e j = (e j,1,e j,2) . To prove the lemma, it will be suffice to show that m = 2 and
e1 =−ce2, for some c > 0.

We define α,β by exp(iβ ) = pn + iqn,

exp(iα) =
f 2−g2

f 2 +g2 − i
2 f g

f 2 +g2 .

α is indeed a function of x,y. Since f ,g > 0, we can choose α to be taking values
in (−π,0) . On S∗, if γ = τ∗, we have

ϑ =
γ2

∂s (γ2− τ∗2)
exp(i(β +α)) .

If γ =−τ∗, then

ϑ =
γ2

∂s (γ2− τ∗2)
exp(i(β −α)) .

To avoid confusion, we call the restriction of α on the curve c j to be α j := α|c j .
The key observation of the proof is the following: The fact that u,v are con-

nected through the Bäcklund transformation does not depend on the choice of the
coordinate system. Hence if we rotate the coordinate system by an angle θ , then
the corresponding function

ϑ
′ := exp((θ +β ) i)

( f γ−gτ)2

∂s′ (γ2− τ2)

in the new coordinate system is still equal to 1. That is, if we denote the new
coordinate system by (x′,y′) , then on S∗, if γ = τ∗,

(4.11) ϑ
′ = exp((θ +β +α) i)

γ2

∂s′ (γ2− τ2)
= 1,

if γ =−τ∗, then

(4.12) ϑ
′ = exp((θ +β −α) i)

γ2

∂s′ (γ2− τ2)
= 1.

We split the proof into two different cases.
Case 1. f (x0,y0) 6= g(x0,y0) .
Since we have the freedom of choosing different coordinate system, we may

choose θ1 =−β . We set

e′j,1 + ie′j,2 = (e j,1 + ie j,2)exp(iθ1) , j = 1, ...,m.

We claim that there exist at most one j such that e′j,2 > 0. Assume to the contrary
that 0 < e′j1,2 < ... < e′jl ,2, where l ≥ 2. Since f (x0,y0) 6= g(x0,y0) , we find that
if (x,y) is close to (x0,y0) , then cosα (x,y) 6= 0. On the other hand, since S0 ∩
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Bε (x0,y0) = {(x0,y0)}, the function ∂x′
(
γ2− τ∗2

)
will have different signs on the

curves c j1 and c j2 . This contradicts with the identity (4.11) and (4.12) . This proves
the claim. Similarly, there is at most one direction with e′j,2 < 0. We can then
assume, by relabeling the indices if necessary, that e′1,2 > 0,e′2,2 < 0, and e′j,2 =
0, j = 3, ...,m.

Next we choose θ2 = θ1 +σ , with |σ | being small. We denote the new coordi-
nate system by

(
xˆ,yˆ

)
. Assume γ = τ∗ on c1 and γ =−τ∗ on c3. Then

(4.13)
γ2

∂sˆ (γ2− τ∗2)
exp(i(σ +α1)) = 1, on c1,

(4.14)
γ2

∂sˆ (γ2− τ∗2)
exp(i(σ −α3)) = 1, on c3.

Observe that α1 and α3 tend to α (x0,y0) 6=−π

2 , as (x,y)→ (x0,y0) . Hence cos(σ +α1)
and cos(σ −α3) have the same sign when |σ | is small. On the other hand, since
the direction of c3 is parallel to the x′ coordinate axis, the function ∂xˆ

(
γ2− τ2

)
has

different sign on c3, for the two different choices of σ =±σ0, where σ0 is a fixed
small positive constant. This contradicts with (4.13) and (4.14) . Hence m has to
be equal to 2. Note that this argument also tells us that there at most two indices of
j such that e′j,2 = 0. Now we deduce that the function γτ∗ has same sign on c1 and
c2(otherwise, m≥ 3). We only consider the case γ = τ∗. Then

ϑ =
γ2

∂s (γ2− τ∗2)
exp(i(β +α)) , on c1 and c3.

If e1 6= −e2, we can always rotate the coordinate system (x,y) into a new one(
x#,y#

)
, such that ∂x#

(
γ2− τ∗2

)
has different sign on c1 and c3. This is a contra-

diction.
Case 2. f (x0,y0) = g(x0,y0) .
In this case, the proof is similar to Case 1, with minor modifications. More

precisely, in Case 1, we have taken θ1 = −β . Now we take θ1 = −β + ε0, where
ε0 > 0 is a small constant. Observe that for (x,y) close to (x0,y0) , cos(ε0 +α1)
and cos(ε0−α1) have the the sign. The rest of the proof is same as that of Case
1. �

At this moment, we remark that without the assumption that S0 ∩Bε (x0,y0) =
{(x0,y0)}, Lemma 19 is still true. This generalization will be proved in Lemma 21.

Lemma 20. Suppose (x0,y0) ∈ S0 and |γ| ≥ |τ| in Bδ (x0,y0) , for some δ > 0.
Then (x0,y0) is a removable singularity of Γ. That is, the limit

lim
(x,y)→(x0,y0),(x,y)/∈S

Γ(x,y)

exists.

Proof. Lemma 11 tells us that{
∂xv = i∂yu− kn sin v+u

2 − k̄n sin v−u
2 ,

i∂yv = ∂xu− kn sin v+u
2 + k̄n sin v−u

2 .



36 YONG LIU AND JUNCHENG WEI

The first equation in this system can be written as

4
∂x

(
τ

γ

)
1+
(

τ

γ

)2 = 4i
∂y

(
g
f

)
1+
(

g
f

)2

− (pn +qni)
(

2γτ

γ2 + τ2
f 2−g2

f 2 +g2 −
γ2− τ2

γ2 + τ2
2 f g

f 2 +g2

)
− (pn−qni)

(
2γτ

γ2 + τ2
f 2−g2

f 2 +g2 +
γ2− τ2

γ2 + τ2
2 f g

f 2 +g2

)
.

Still setting τ = iτ∗, we get
(4.15)

∂x

(
τ∗

γ

)
=

∂y

(
g
f

)
1+
(

g
f

)2

(
1−
(

τ∗

γ

)2
)
− pn

τ∗

γ

f 2−g2

f 2 +g2 +

(
1+
(

τ∗

γ

)2
)

qn f g
f 2 +g2 .

Similarly, the second equation of the system has the form
(4.16)

−∂y

(
τ∗

γ

)
=

∂x

(
g
f

)
1+
(

g
f

)2

(
1−
(

τ∗

γ

)2
)
+ pn

(
1+
(

τ∗

γ

)2
)

f g
f 2 +g2 +qn

τ∗

γ

f 2−g2

f 2 +g2 .

Differentiating the equation (4.15) with respect to x and equation (4.16) with y, we
get

∆

(
τ∗

γ

)
=

2 τ∗

γ

1+
(

g
f

)2

(
∂y

(
τ∗

γ

)
∂x

(
g
f

)
−∂x

(
τ∗

γ

)
∂y

(
g
f

))

+

(
1+
(

τ∗

γ

)2
)(

qn∂y

(
f g

f 2 +g2

)
− pn∂x

(
f g

f 2 +g2

))
+

2 f g
f 2 +g2

τ∗

γ

(
qn∂y

(
τ∗

γ

)
− pn∂x

(
f g

f 2 +g2

))
− τ∗

γ

(
pn∂y

(
f 2−g2

f 2 +g2

)
+qn∂x

(
f 2−g2

f 2 +g2

))
− f 2−g2

f 2 +g2

(
pn∂y

(
τ∗

γ

)
+qn∂x

(
τ∗

γ

))
.

Inserting (4.15) and (4.16) into this equation, we find that τ∗

γ
satisfies an equation

of the form

(4.17) ∆

(
τ∗

γ

)
=

3

∑
j=0

(
a j (x,y)

(
τ∗

γ

) j
)
,

where a j are smooth functions determined by f ,g. Since γ and τ∗ are both real an-
alytic and |τ∗/γ| ≤ 1, the function τ∗/γ can be smoothly extended to the punctured
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ball Bδ (x0,y0)\{(x0,y0)} . Since |τ∗/γ| ≤ 1, elliptic regularity and removable sin-
gularity theorem of harmonic functions tell us that actually τ∗

γ
can be regarded as

a smooth function in Bδ (x0,y0) .
Now we distinguish two cases.
Case 1. lim(x,y)→(x0,y0)

τ∗

γ
= A0 ∈ (−1,1) .

In this case, we have

lim
(x,y)→(x0,y0)

Γ(x,y) = lim
(x,y)→(x0,y0)

kn ( f γ− igτ∗)2

( f 2 +g2)(γ2− τ∗2)

=
kn ( f − igA0)

2

( f 2 +g2)
(
1−A2

0

) |(x,y)=(x0,y0).

Case 2. lim(x,y)→(x0,y0)
τ∗

γ
=±1.

We first consider the case that limit is equal 1. From (4.15) ,(4.16) , we deduce
that at the point (x0,y0) ,

(4.18) ∂x

(
τ∗

γ

)
=−pn

f 2−g2

f 2 +g2 +
2qn f g
f 2 +g2 := c,

(4.19) ∂y

(
τ∗

γ

)
=−2pn

f g
f 2 +g2 −qn

f 2−g2

f 2 +g2 := d.

Observe that c2 +d2 = 1. Hence

τ∗

γ
= 1+ c(x− x0)+d (y− y0)+O

(
(x− x0)

2 +(y− y0)
2) ,

as (x,y) → (x0,y0) . But this contradicts with the assumption that |γ| ≥ |τ| in
Bδ (x0,y0) . Hence the limit can’t be 1. Similarly, it can’t be −1. Therefore Case 2
will not happen. �

In view of the proof this lemma, we now define

S =

{
(x0,y0) ∈S : lim

x→x0

∣∣∣∣τ∗γ (x,y0)

∣∣∣∣= 1
}
.

By this definition, automatically we have S∗ ⊂ S.

Lemma 21. Suppose (x0,y0)∈ S. Then locally around (x0,y0), S is a smooth curve.
Moreover, there exist real numbers c,d, with c2 + d2 = 1, such that as (x,y)→
(x0,y0) ,

Γ(x,y) =
c+di+O(|x− x0|+ |y− y0|)

c(x− x0)+d (y− y0)+O
(
(x− x0)

2 +(y− y0)
2
) .

Proof. If (x0,y0) ∈ S∗, then the result follows from the implicit function theorem
and the fact that ϑ = 1 on S∗.
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If (x0,y0) ∈ S̄∗\S∗. Then for δ small, the set S̄∗∩Bδ (x0,y0) separates Bδ (x0,y0)
into several disjoint connected open components Ω j, j = 1, .... Since

∂s

(
τ∗

γ

)
=

γ∂sτ
∗− τ∗∂sγ

γ2 ,

we find that

∂s

(
τ∗

γ

)
=

 −
∂s(γ2−τ∗2)

γ2 , if γ = τ∗ 6= 0,
∂s(γ2−τ∗2)

γ2 , if γ =−τ∗ 6= 0.

Hence using equations (4.15) and (4.16) , we deduce that for any (x1,y1)∈ S, there
holds

(4.20) ϑ (x,y1)→ 1, as x→ x1.

We observe that the proof of Lemma 20 yields that any point (x1,y1) ∈ S is not
isolated in S( τ∗

γ
satisfies equation (4.17) and is smooth around (x1,y1)). We also

observe that if (x2,y2) ∈ Ω1 ∩ (S0\S) , then in a small neighborhood of (x2,y2) ,
either γ2 ≥ τ∗2, or γ2 ≤ τ∗2. Now with (4.20) at hand, we can deal with the arcs
contained Ω1 ∩ S in a similar way as that of S∗. Hence we can apply arguments
of Lemma 19 to infer that Ω1 ∩ S = ∅. At this point, we emphasize that in prin-
ciple, Ω1 ∩ S0 could be nonempty. Note that this argument also tells us that the
set S̄∗∩Bδ (x0,y0) separates Bδ (x0,y0) precisely into two disjoint connected open
components Ω1,Ω2, each component is diffeomorphic to a half ball.

Now we can assume without loss of generality that at some points in Ω1, there
holds

∣∣∣ τ∗

γ

∣∣∣ < 1. Since Ω1 ∩ S = ∅, we must have |τ∗| ≤ |γ| in Ω1. Note that the

function τ∗

γ
still satisfies equation (4.17) . That is,

∆

(
τ∗

γ

)
=

3

∑
j=0

(
a j (x,y)

(
τ∗

γ

) j
)

in Ω1.

Elliptic regularity and
∣∣∣ τ∗

γ

∣∣∣≤ 1 imply that τ∗

γ
is smooth and the limit A0 = lim(x,y)→(x0,y0)

τ∗

γ

exists. Since Bδ (x0,y0)∩ S∗ is not empty, there holds |A0| = 1. Hence it follows
from same arguments as that of the previous lemma that as (x,y)→ (x0,y0), if
A0 = 1, then

τ∗

γ
= A0 + c(x− x0)+d(y− y0)+O

(
(x− x0)

2 +(y− y0)
2) ,

where c,d are defined in (4.18) ,(4.19) . As a consequence, in a small neighbor-
hood of (x0,y0),

Γ(x,y) =
c+di+O(|x− x0|+ |y− y0|)

c(x− x0)+d (y− y0)+O
(
(x− x0)

2 +(y− y0)
2
) .

A similar formula holds in the case of A0 =−1.
Finally, suppose (x0,y0) ∈S \S̄∗. By Lemma 20, if

(4.21) |γ| ≥ |τ| , or |γ| ≤ |τ| , in Bδ (x0,y0) , for some δ > 0.
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Then the limit lim(x,y)→(x0,y0) Γ(x,y) 6= ±1 and (x0,y0) /∈ S. On the other hand, if
(4.21) does not hold, then by the previous arguments, one can show that (x0,y0) ∈
S, and the set Bδ (x0,y0)∩S is a smooth curve. Moreover, one still has

Γ(x,y) =
c+di+O(|x− x0|+ |y− y0|)

c(x− x0)+d (y− y0)+O
(
(x− x0)

2 +(y− y0)
2
) ,

for some constants c,d with c2 +d2 = 1. �

Recall that we have defined

ξ (x,y) = exp
(

pnx+qny−
∫ x

−∞

Re(Γ(l,y))dl
)
.

Let (x0,y0) ∈ S. By Lemma 21, we may assume that around this point, S is the
graph of a smooth function x = F (y)(The case that S is the graph of a function
y = F∗(x) can be handled in a similar way). Then we can define the integral in ξ in
the principle value sense. Applying Lemma 21 and using the fact that τ2/γ2 is real
valued, we find that in a small neighborhood Ω of (x0,y0) ,

(4.22) ξ (x,y) =
G(x,y)

x−F (y)
,

where G is a function smooth in Ω.
At this moment, ξ only satisfies the first equation of (4.1) . However, it “asymp-

totically” satisfies the second equation of (4.1), which means that ξ−1T ξ → 0
as x→−∞. Later on we shall prove that indeed ξ satisfies the second equation of
(4.1) , in certain sense. On the other hand, with the help of the function ξ , for given
η , we can solve the first equation in (4.1) using the variation of parameter formula.
However, to simultaneously solve the system (4.1), we need the following

Lemma 22. Let u,v be functions defined in Lemma 11. Suppose that two functions
φ ,η satisfy Lφ = Mη and

∆η−η cosu = 0.
Let Φ := T φ −Nη . Then Φ satisfies the following ODE:

(4.23) ∂xΦ =−
(

kn

2
cos

v+u
2

+
k̄n

2
cos

v−u
2

)
Φ.

Proof. Lemma 11 tells us that u,v satisfy{
−∂xv+ i∂yu− kn sin v+u

2 − k̄n sin v−u
2 = 0,

−i∂yv+∂xu− kn sin v+u
2 + k̄n sin v−u

2 = 0.

We denote the left hand side of the first equation by A1, and that of the second
equation by A2. Then we compute

i∂yA1−∂xA2 =−∆u− kni
2

(∂yv+∂yu)cos
v+u

2
− k̄ni

2
(∂yv−∂yu)cos

v−u
2

+
kn

2
(∂xv+∂xu)cos

v+u
2
− k̄n

2
(∂xv−∂xu)sin

v−u
2

.



40 YONG LIU AND JUNCHENG WEI

In view of the identities:

−∂xv+ i∂yu = A1 + kn sin
v+u

2
+ k̄n sin

v−u
2

,

−i∂yv+∂xu = A2 + kn sin
v+u

2
− k̄n sin

v−u
2

,

we find that i∂yA1−∂xA2 is equal to

−∆u+
(

A1 + kn sin
v+u

2
+ k̄n sin

v−u
2

)(
k̄n

2
cos

v−u
2
− kn

2
cos

v+u
2

)
+

(
A2 + kn sin

v+u
2
− k̄n sin

v−u
2

)(
k̄n

2
cos

v−u
2

+
kn

2
cos

v+u
2

)
.

Using the fact that |kn|= 1, we obtain

i∂yA1−∂xA2 =−∆u+ sinu+A1

(
k̄n

2
cos

v−u
2
− kn

2
cos

v+u
2

)
+A2

(
k̄n

2
cos

v−u
2

+
kn

2
cos

v+u
2

)
.(4.24)

Note that the linearization of −∆u+ sinu = 0 is

∆η−η cosu = 0.

Moreover, the linearization of A1 = 0 is Lφ =Mη ; while that of the equation A2 = 0
is T φ = Nη . Hence differentiating the equation (4.24) in u,v, we get the desired
identity (4.23) . �

With Lemma 22 at hand, we proceed to prove

Lemma 23. T ξ = 0 in R2\S.

Proof. For each fixed y0 ∈ R, we consider the set

Ey0 := {x : (x,y0) ∈ S} .
Observe that the functions γ and τ are explicitly given by suitable combination of
exponential functions. Hence S is the zero set of a real analytic function. This
together with Lemma 14 tell us that for fixed y0, the set Ey0 has no accumu-
lation points(the existence of an accumulation point would imply that Ey0 con-
tains a whole straight line). Hence Ey0 has finitely many elements, denoted by
ξ j (y0) , j = 1, ..., in increasing order.

We claim that T ξ = 0, if x ∈ (−∞,ξ1 (y0)) .
To see this, let ε > 0 be a small constant. We choose x0 ∈ (−∞,ξ1 (y0)) and let

ρ (y) be a function to be determined, with the initial condition ρ (y0) = 1 and

(4.25) T (ρξ )(x0,y) = 0, for y ∈ (y0,y0 + ε) .

This equation can be written as

(4.26) ρ
′+
(
ξ
−1

∂yξ − Im(Γ− kn)
)

ρ = 0.

This is an ODE for ρ and can be locally solved, yielding a solution for (4.25) .
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Since ρ only depends on y, the function ρξ satisfies the first equation of (4.1).
Hence by Lemma 22, the function T (ρξ ) satisfies the ODE

∂x (T (ρξ )) =−
(

kn

2
cos

v+u
2

+
k̄n

2
cos

v−u
2

)
(T (ρξ )) ,

for x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) . It then follows from (4.25) and the uniqueness
of solutions to ODE that

(4.27) T (ρξ ) = 0, for x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) .

In this equation, let us send x to−∞. Then from (4.26) and the asymptotic behavior
of ξ and Γ that

ρ
′ (y) = 0,y ∈ (y0,y0 + ε) .

This together with the initial condition ρ (y0) = 1 tell us that indeed ρ ≡ 1. In view
of (4.27) ,

T (ξ ) = 0, x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) .

The claim is then proved.
Next let us choose x1 ∈ (ξ1 (y0) ,ξ2 (y0)) . Let ρ1 (y) be the function with initial

condition ρ1 (y0) = 1 and

T (ρ1ξ )(x1,y) = 0, for y ∈ (y1,y1 + ε) .

Then same arguments as before tell us that

(4.28) T (ρ1ξ ) = 0, for x ∈ (ξ1 (y0) ,x1) , y ∈ (y1,y1 + ε) .

We would like to show that ρ ′1 = 0. To do this, we will send x to ξ1 (y0) in the
equation (4.28) . We have, for y ∈ (y0,y0 + ε) ,

(4.29) ρ
′
1 +
(
ξ
−1

∂yξ − Im(Γ− kn)
)

ρ1 = 0, x > ξ1 (y0) .

On the other hand, we already know that T (ξ ) = 0 for x < ξ1 (y0) . This means

ξ
−1

∂yξ − Im(Γ− kn) = 0, for x < ξ1 (y0) .

Denote Π := ξ−1∂yξ − Im(Γ− kn) . The asymptotic behavior (4.22) of ξ near
(ξ1 (y0) ,y0) implies that

(4.30) lim
x→(ξ1(y0))

+
Π(x,y0) = lim

x→(ξ1(y0))
−

Π(x,y0) .

Combining this with (4.29) , we find that ρ ′1 = 0. Hence ρ1 is a constant and

T (ξ ) = 0, x ∈ (ξ1 (y0) ,ξ2 (y0)) ,y = y0.

Repeating these arguments in the interval (ξ j (y0) ,ξ j+1 (y0)) , j = 2, ..., we see that

T (ξ ) = 0, x 6= ξ j (y0) ,y = y0.

Since y0 is arbitrary chosen, the lemma is then proved. �
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Let η be a bounded kernel of the linearized elliptic sine-Gordon equation. That
is,

(4.31) −∆η +η cosu = 0.

For each fixed y, variation of parameter formula tells us that the first equation in
(4.1) has a solution of the form

(4.32) φ (x,y) = ξ (x,y)
∫ x

−∞

ξ
−1Mηdl,

where the function ξ−1Mη is evaluated at (l,y) . Note that ξ−1Mη is smooth in
R2. This together with the assumption that pn < 0 imply that the integral is well
defined. However, since ξ has singularities on S, φ is also singular along S, but
the singular behavior is well controlled. The following result can be regarded as a
generalization of Lemma 23.

Lemma 24. Let η be a bounded solution of (4.31) . The function φ defined by
(4.32) satisfies system (4.1) in R2\S. As a consequence, φ is a kernel of the lin-
earized elliptic sine-Gordon equation at v in the following sense:

(4.33) −∆φ +φ cosv = 0 in R2\S.

Proof. We follow the same idea as the proof of Lemma 23.
We wish to show that

(4.34) T φ = Nη in R2\S.

Choose x0 ∈ (−∞,ξ1 (y0)) and let ρ (y) be the function satisfying the initial
condition ρ (y0) = 0 and

(4.35) T (ρξ +φ)(x0,y) = Nη , for y ∈ (y0,y0 + ε) .

Then the function G := T (ρξ +φ)−Nη

∂xG =−
(

kn

2
cos

v+u
2

+
k̄n

2
cos

v−u
2

)
G ,

for x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) . The initial condition (4.35) then implies that
G = 0 and hence

T (ρξ +φ) = Nη , x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) .

Sending x to−∞, using the fact that Nη→ 0 as x→−∞, we find that ρ ′ = 0. Thus
ρ ≡ 0. We deduce that

T φ = Nη , x ∈ (−∞,x0) ,y ∈ (y0,y0 + ε) .

Next we choose x1 ∈ (ξ1 (y0) ,ξ2 (y0)) . Let ρ1 (y) be the function with initial
condition ρ1 (y0) = 0 and

T (ρ1ξ +φ)(x1,y) = Nη , for y ∈ (y1,y1 + ε) .

Then same arguments as before tell us that

T (ρ1ξ +φ) = Nη , for x ∈ (ξ1 (y0) ,x1) , y ∈ (y1,y1 + ε) .



ELLIPTIC SINE-GORDON EQUATION 43

Sending x to ξ1 (y0), we have, for y ∈ (y0,y0 + ε) ,

(4.36) ρ
′
1 +
(
ξ
−1

∂yξ − Im(Γ− kn)
)

ρ1 +ξ
−1T φ = ξ

−1Nη , x > ξ1 (y0) .

Denote Π1 := ξ−1 (Nη−T φ) . The asymptotic behavior (4.22) of ξ near (ξ1 (y0) ,y0)
again implies that

lim
x→(ξ1(y0))

+
Π1 (x,y0) = lim

x→(ξ1(y0))
−

Π1 (x,y0) .

This combined with (4.30) and (4.36) yields ρ ′1 = 0. Hence ρ1 = 0 and

T φ = Nη , x ∈ (ξ1 (y0) ,ξ2 (y0)) ,y = y0.

Once (4.34) is proved, it then follows from the linearization of the Bäcklund
transformation that φ satisfies (4.33) . The proof is completed. �

Now we are ready to prove Theorem 13(Theorem 2). That is, the nondegeneracy
of 2n-end solution(it can be regarded as an n-soliton).

Proof of Theorem 13. Let us fix a solution u = Un +π. Suppose η is a nontrivial
bounded kernel of the corresponding linearized operator:

∆η = η cosu.

By the Linear Decomposition Lemma of [11] and the asymptotic behavior of ζ j,
there exist c1, ...,cn such that the function

η
∗ := η−

n

∑
j=1

c jζ j

decays exponentially fast to 0 as x→−∞, uniformly in y. That is, there exist con-
stants C,δ > 0 such that

|η∗(x,y)|<C exp(−δ |x|) ,x < 0.

We point out that for each fixed y, η always decays to zero as |x| →∞. Note that at
this moment, we don’t know whether η∗ decays to zero as x→ +∞, uniformly in
y. Nevertheless, we would like to prove that η∗ = 0.

Applying Lemma 24 to the function η∗, we get a corresponding kernel φ of the
linearized operator at the function v = 4arctan τ

γ
. That is,

∆φ = φ cosv.

Explicitly,

(4.37) φ (x,y) = ξ (x,y)
∫ x

−∞

ξ
−1Mη

∗dl.

Here the function ξ−1Mη∗ in the integral is evaluated at (l,y) . Since η∗ decays
exponentially fast to 0 as x tends to −∞, φ also decays to zero as x→−∞. Note
that φ is singular at S. However, the singular behavior of φ is well controlled.

Let us write τ as τn−1, and γ as γn−1. By Lemma 12, the function vn−1 := v =
4arctan τn−1

γn−1
is the Bäcklund transformation of vn−2. That is, vn−2 and vn−1 satisfy

(4.38)
{

∂xvn−2 = i∂yvn−1− kn−1 sin vn−2+vn−1
2 − k̄n−1 sin vn−2−vn−1

2 ,

i∂yvn−2 = ∂xvn−1− kn−1 sin vn−2+vn−1
2 + k̄n−1 sin vn−2−vn−1

2 .
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Recall that τn−2/γn−2 is a real valued function.
Let us write the function φ by φn−1. Linearizing system (4.38) and denoting

Γn−1 = 2kn−1
(γn−1γn−2− τn−1τn−2)

2(
γ2

n−1 + τ2
n−1

)(
γ2

n−2 + τ2
n−2

) ,
we get the following equation to be solved for the unknown function φn−2 :

(4.39)
{

∂xφn−2 +Re(Γn−1− kn−1)φn−2 = i∂yφn−1− iφn−1 Im(Γn−1− kn−1) ,
i∂yφn−2 + i Im(Γn−1− kn−1)φn−2 = ∂xφn−1−φn−1 Re(Γn−1− kn−1) .

Since τn−2/γn−2 is real valued, the function Γn−1 has the same singular set S
as Γn. Indeed, if P is a point outside S such that τn−2(P) = γn−2(P) = 0, then by
dividing the numerator and denominator of Γn−1 by τn−2(P) or γn−2(P), we see
that P is actually a removable singularity. The explicit formula (4.37) of φn−1 tells
us that near a singular point (x0,y0) ∈ S, there exist smooth functions F,G, such
that φn−1− G(x,y)

x−F(y) is smooth. As a consequence, near (x0,y0) , for some function
G̃,

(4.40) Mn−1φn−1 := i [∂yφn−1−φn−1 Im(Γn−1− kn−1)]∼
G̃(x,y)

x−F (y)
.

Define

ξn−2(x,y) := exp
(

pn−1x+qn−1y+
∫ x

−∞

Γn−1 (l,y)dl
)
.

By Lemma 24, the system (4.39) has a solution

(4.41) φn−2 (x,y) = ξn−2 (x,y)
∫ x

−∞

Mn−1φn−1

ξn−2
dl.

Note that ξn−2 (x,y) = O(x−F (y)) around the singular set S. Here one need to be
careful about the definition of φn−2. More precisely, suppose (x0,y0) ∈ S, then for
x > x0, with x− x0 small, the right hand side of (4.41) is defined to be

lim
ε→0+

[
ξn−2 (x,y)

(∫ x0−ε

−∞

+
∫ x

x0+ε

)
Mn−1φn−1

ξn−2
dl
]
.

Using (4.40) , we find that φn−2 is continuous in R2. We would like to show that
φn−2 is actually smooth. To see this, we use the fact that φn−2 satisfies the linearized
equation away from the singular set S. That is,

(4.42) ∆φn−2 = φn−2 cosvn−2.

Let (x0,y0) ∈ S. From (4.41) , we see that there exists smooth function g, such that
near (x0,y0) , the function

φn−2−g(y)(x−F (y)) ln |x−F (y)|

is smooth. Inserting it into (4.42) , we find that the function g ≡ 0. As a conse-
quence, φn−2 is smooth.
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With the function φn−2 at hand, now let us consider the linearized Bäcklund
transformation between vn−3 = 4arctan τn−3

γn−3
and vn−2 = 4arctan τn−2

γn−2
:{

∂xφn−3 +Re(Γn−2− kn−2)φn−3 = i∂yφn−2− iφn−2 Im(Γn−2− kn−2) ,
i∂yφn−3 + i Im(Γn−2− kn−2)φn−3 = ∂xφn−2−φn−2 Re(Γn−2− kn−2) .

Here

Γn−2 = 2kn−2
(γn−2γn−3− τn−2τn−3)

2(
γ2

n−2 + τ2
n−2

)(
γ2

n−3 + τ2
n−3

) .
Note that the function τn−3/γn−3 is purely imaginary. Hence it is now singular at
the set

Sn−3 :=
{
(x,y) ∈ R2 : γ

2
n−3 + τ

2
n−3 = 0

}
.

We can also define the set S0,n−3,S∗,n−3,Sn−3. Following the same proof as that of
Lemma 17, one can show that on S∗,n−3, there still holds

ϑn−3 := kn−2
(γn−2γn−3− τn−2τn−3)

2(
γ2

n−2 + τ2
n−2

)
(γn−3∂sγn−3 + τn−3∂sτn−3)

= 1.

Hence the same arguments as above tell us that the corresponding function ξn−3 has
similar asymptotic behavior near the singular set Sn−3 as the function ξn−1 near S.
Using this information, we can further analyze the linearized Bäcklund transfor-
mation between vn−4 and vn−3 and get a smooth solution φn−4 of the equation

∆φn−4 = φn−4 cosvn−4.

Repeating the above procedure, we may consider the Bäcklund transformation
between v j = 4arctan τ j

γ j
and v j−1 = 4arctan τ j−1

γ j−1
, j = n−4, ...,1. Linearizing these

Bäcklund transformation and solving them similarly as in Lemma 24(One also
need to be careful about the point singularities in these systems), we finally get a
solution φ0 of the equation

∆φ0− cos(v0)φ0 = 0.

Observe that whether or not τ1/γ1 is real valued, the function v0 = 4arctanτ0/γ0 is
always equal to 0. Hence from the previous argument, one can actually show that
φ0 is smooth.

We claim that φ0 is bounded in R2. To see this, let us first estimate φn−1, which
is defined by (4.37). In view of this definition, we need to analyze the function ξ .
Observe that by Lemma 15, the function Γ tends to the limit 0 or 2kn away from the
ends. Moreover, since we have assumed that pn < 0, in the region Ξ− := {(x,y) :
pnx+qny > 0}, this limit is 0; while in Ξ+ := {(x,y) : pnx+qny < 0}, the limit is
2kn.

Let us define

Θ− := {(x,y) ∈ Ξ− : dist ((x,y) ,S)> 1} .

Recall that by Lemma 14, outside a large ball, the set S consists of finitely many
curves asymptotic to rays, with each ray being parallel to one of the ends. In Θ−,
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using the exponential decay of Γ away from the ends, we have

(4.43) exp(−pnx−qny)ξ = exp
(
−
∫ x

−∞

Re(Γ(l,y))dl
)
≤C.

Therefore, in Θ−, we can estimate

φn−1 = ξ

∫ x

−∞

ξ
−1Mη

∗dl ≤C.

This estimate can be refined. Indeed, since η∗→ 0 as x→−∞, uniformly in y, we
have, in Ξ− :

(4.44) φn−1→ 0, as x→−∞, uniformly in y.

Similarly, we define

Θ+ := {(x,y) ∈ Ξ+ : dist ((x,y) ,S)> 1} .

In Θ+, since Γ converges to 2kn away from the ends, we have∫ x

−∞

Re(Γ(l,y))dl = 2pn

(
x+

qn

pn
y
)
+O(1) .

Therefore, in Θ+, there holds

(4.45) exp(pnx+qny)ξ = exp
(

2pnx+2qny−
∫ x

−∞

Re(Γ(l,y))dl
)
≤C.

To estimate φn−1 in Θ+, we define

B (y) :=
∫ +∞

−∞

ξ
−1Mη

∗dl.

Note that this is well defined, because ξ is exponential growing as x→±∞. We
have φn−1→ ξ (x,y)B (y) , as x→+∞. Inserting this into the equation

∂yφn−1 + Im(Γ− kn)φn−1 =−iNη
∗,

Using the fact that ξ also solves the equation

∂yξ + Im(Γ− kn)ξ = 0,

we infer that d
dyB = 0 and hence B is a constant. Using the estimates (4.43),

(4.45) of ξ , and the fact that η∗ converges to 0 as |y| →+∞ for all x < 0, we find
that, if qn > 0, then B (y)→ 0 as y→−∞, and if qn < 0, then B (y)→ 0 as y→
+∞. As a consequence, B = 0. Then in Θ+, we can write

φn−1 = ξ

∫ x

−∞

ξ
−1Mη

∗dl = ξ

∫ x

+∞

ξ
−1Mη

∗dl.

This together with the estimate (4.45) of ξ imply that φn−1 ≤C. Note that in the
region {(x,y) : dist ((x,y) ,S)≤ 1} , the asymptotic behavior of φn−1 is determined
by that of ξ , and we can estimate

|φn−1| ≤
∣∣∣∣ C
x−F (y)

∣∣∣∣ ,
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provided that S is locally determined by x = F (y) ; and |φn−1| ≤
∣∣∣ C

y−F∗(x)

∣∣∣ , if S is
locally determined by y = F∗ (y) . With this information at hand, we can proceed to
estimate φn−2 using similar arguments as for φn−1. Recall that φn−2 is smooth. One
then can show that actually |φn−2| ≤C in R2. Repeating this arguments, we finally
deduce that φ0 is also bounded.

Having proved that φ0 is bounded, we can use Liouville theorem to conclude
that φ0 = 0.

Up to now, we have defined φ j, j = 1, ...,n− 1, and proved that φ0 is zero. We
would like to show that φ1 ≡ 0. To see this, we analyze the reverse linearized
Bäcklund transformation from v0 to v1 :{

∂xφ0 +Re(Γ1− k1)φ0 = i∂yφ1− iφ1 Im(Γ1− k1) ,
i∂yφ0 + i Im(Γ1− k1)φ0 = ∂xφ1−φ1 Re(Γ1− k1) .

Since φ0 = 0, we see that necessarily, φ1 = cξ ∗, for some constant c, where

ξ
∗ := exp

(
−p1x−q1y+

∫ x

−∞

Γ1 (l,y)dl
)
.

Note that ξ ∗ = ξ
−1
1 . By the asymptotic behavior of Γ1, ξ ∗ does not decay to zero

along the line p1x+ q1y = 0. But on the other hand, estimate of form (4.44) also
hold for the function φ1 in the region

{(x,y) : p1x+q1y > 0} ,
Hence necessarily there holds c = 0 and φ1 = 0. Here we also remark that the
function ξ ∗ arises from differentiating the function v1 with the phase parameter
η0

1 . That is, ξ ∗ = c0∂
η0

1
v1, where c0 is a constant. Repeating the above arguments,

we see that φn−1 = 0, and η∗ = 0. Hence by the definition of η∗, we obtain η =

∑
n
j=1 c jζ j. This finishes the proof. �

5. INVERSE SCATTERING TRANSFORM AND THE CLASSIFICATION OF
MULTIPLE-END SOLUTIONS

We consider the elliptic sine-Gordon equation in the form

(5.1) ∆u = sinu, 0 < u < 2π.

Under the correspondence φ +π↔ u, multiple-end solutions of the equation−∆φ =
sinφ are corresponding to those solutions of (5.1) whose π level sets are asymp-
totic to finitely many half straight lines at infinity. Along these rays, the solutions
u resemble the one dimensional heteroclinic solution 4arctanex in the transverse
direction. In this section, we would like to classify these solutions using the in-
verse scattering transform of the elliptic sine-Gordon equation, developed in [29].
For inverse scattering of the classical hyperbolic sine-Gordon equation, we refer to
[1, 9, 15].

The main result of this section is the following

Proposition 25. Suppose φ is a 2n-end solution of the equation−∆φ = sinφ . Then
there exist parameters p j,q j,η

0
j , j = 1, ...,n, such that φ =Un, where Un is defined

in (2.15) .
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Let us denote φ +π by u and use I to denote the 2 by 2 identity matrix. Let λ

be a complex spectral parameter, and σ j be the Pauli spin matrices:

σ1 =

[
0 1
1 0

]
,σ2 =

[
0 −i
i 0

]
,σ3 =

[
1 0
0 −1

]
.

Note that σ2
j = I; σ3σ1 = iσ2 = −σ1σ3; σ3σ2 = −iσ1 = −σ2σ3; σ2σ1 = −iσ3 =

−σ1σ2. Equation (5.1) has a Lax pair

Φx = AΦ,(5.2)
Φy = BΦ,(5.3)

Here Φ is vector valued or 2 by 2 matrix valued, depending on the contexts. More-
over, the matrices A,B are defined by

A :=
i
4

[(
λ − cosu

λ

)
σ3− (ux− iuy)σ2−

sinu
λ

σ1

]
,

B :=
1
4

[
−
(

λ +
cosu

λ

)
σ3 +(ux− iuy)σ2−

sinu
λ

σ1

]
.

Indeed, the compatibility of (5.2) and (5.3) yields

Ay +AB = Bx +BA.

Direct computation shows that this is equivalent to equation (5.1).
Define K (λ ) := λ − 1

λ
. For each fixed y∈R, as x→±∞, due to the exponential

decay of u to 0 or 2π, we see that

A→ Ki
4

σ3.

We would like to investigate the existence of matrix valued solutions Φ± of (5.2)
such that Φ± (x,y)→ exp

(Ki
4 σ3x

)
, as x→±∞, using Picard iteration under certain

assumptions on λ . It turns out that different columns of Φ± have different analytic
properties(with respect to λ ). This is the content of the following

Lemma 26. Assume Imλ ≥ 0 and λ 6= 0. There exists a solution Φ+,1 to the
equation ∂xΦ+,1 = AΦ+,1, satisfying Φ+,1 exp(−Kix/4)− (1,0)T → 0, as x →
+∞. There also exists a solution Φ−,2 to the equation ∂xΦ−,2 = AΦ−,2, satisfying
Φ−,2 exp(Kix/4)−(0,1)T → 0, as x→−∞. Moreover, Φ+,1 and Φ−,2 are analytic
with respect to λ in the region {λ : Imλ > 0,λ 6= 0} .
Proof. Let us define

(5.4) A∗ (u,λ ) := A(u,λ )− Kiσ3

4
.

We write

A∗ =
(

A∗11 A∗12
A∗21 A∗22

)
.

Note that each entry of A∗ tends to 0 as |x| → +∞. Let us introduce the column
vector

ϕ+,1 = Φ+,1 exp
(
−Kix

4

)
= (ϕ+,11,ϕ+,21)

T .
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For each fixed (y,λ ) , we consider the integral equation

(5.5)
{

ϕ+,11 (x,y,λ ) = 1+
∫ x
+∞

[A∗11ϕ+,11 +A∗12ϕ+,21] (s,y,λ )ds,
ϕ+,21 (x,y,λ ) =

∫ x
+∞

exp
(Ki

2 (s− x)
)
[A∗21ϕ+,11 +A∗22ϕ+,21] (s,y,λ )ds.

If ϕ+,1 satisfies (5.5) , then ∂xΦ+,1 = AΦ+,1.
Now suppose Imλ ≥ 0 and we impose the boundary condition ϕ+,1 (x,y,λ )→

(1,0)T , as x→+∞. Under this boundary condition, the system (5.5) has a unique
solution. This can be proved by Picard iteration, starting from the constant vector
(1,0)T . More precisely, we define the sequence

(
ϕ
(n)
+,11,ϕ

(n)
+,21

)
in the following

way. Let
(

ϕ
(0)
+,11,ϕ

(0)
+,21

)
:= (1,0) and ϕ

(n)
+,11 (x,y,λ ) = 1+

∫ x
+∞

[
A∗11ϕ

(n−1)
+,11 +A∗12ϕ

(n−1)
+,21

]
(s,y,λ )ds,

ϕ
(n)
+,21 (x,y,λ ) =

∫ x
+∞

exp
(Ki

2 (s− x)
)[

A∗21ϕ
(n−1)
+,11 +A∗22ϕ

(n−1)
+,21

]
(s,y,λ )ds.

If Imλ ≥ 0 and λ 6= 0, then

(5.6) Re
(

Ki
2

)
=−1

2

(
1+

1
|λ |

)
Imλ ≤ 0.

This condition ensures that the integral∫ x

+∞

exp
(

Ki
2
(s− x)

)[
A∗21ϕ

(n−1)
+,11 +A∗22ϕ

(n−1)
+,21

]
(s,y,λ )ds

is well defined. Note that the integrand depending analytically on λ .
To simplify the notation, let us suppress the y and λ dependence of these func-

tions. We have the following estimate:∣∣∣ϕ(1)
+,11 (x)

∣∣∣≤ 1+
∫ +∞

x
|A∗11 (s)|ds,

∣∣∣ϕ(1)
+,21 (x)

∣∣∣≤ ∫ +∞

x
|A∗21 (s)|ds.

Let us define

(5.7) Q(x) :=
∫ +∞

x
(|A∗11 (s)|+ |A∗12 (s)|+ |A∗21 (s)|+ |A∗22 (s)|)ds.

Then ∣∣∣ϕ(1)
+,11 (x)

∣∣∣≤ 1+Q(x) ,
∣∣∣ϕ(1)

+,21 (x)
∣∣∣≤ Q(x) .

Inserting these estimates into the integral equation defining ϕ
(2)
+, j1 and integrating

by parts, we obtain ∣∣∣ϕ(2)
+,11 (x)

∣∣∣≤ 1+Q(x)+
1
2

Q2 (x) ,∣∣∣ϕ(2)
+,21 (x)

∣∣∣≤ Q(x)+
1
2

Q2 (x) .

Using an induction argument, we get

(5.8)
∣∣∣ϕ(n)

+,11 (x)
∣∣∣≤ n

∑
j=0

Q j (x)
j!

,
∣∣∣ϕ(n)

+,21 (x)
∣∣∣≤ n

∑
j=1

Q j (x)
j!

.
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It follows that
(

ϕ
(n)
+,11,ϕ

(n)
+,21

)
converges to a solution (ϕ+,11,ϕ+,21), which is ana-

lytic in λ in the region {λ : Imλ > 0,λ 6= 0} . By (5.8) , we also have

(5.9) |ϕ+,11 (x)| ≤ exp(Q(x)) , |ϕ+,12 (x)| ≤ exp(Q(x))−1.

Observe that since the integral in ϕ
(n)
+,1 is from +∞ to x, we have (ϕ+,11,ϕ+,21)→

(1,0) , as x→+∞. We also have ∂xΦ+,1 = AΦ+,1. We emphasize that if the lower
limit +∞ in the integrand defining ϕ+,21 is replaced by other numbers, then ϕ+,21
will not have the desired asymptotic behavior.

Same arguments as above yield a solution (ϕ−,12,ϕ−,22) satisfying ϕ−,2 (x,y,λ )→
(0,1)T , as x→−∞, and the integral equation{

ϕ−,12 (x,y,λ ) =
∫ x
−∞

exp
(
−Ki

2 (s− x)
)
[A∗11ϕ−,12 +A∗21ϕ−,22] (s,y,λ )ds,

ϕ−,22 (x,y,λ ) = 1+
∫ x
−∞

[A∗21ϕ−,12 +A∗22ϕ−,22] (s,y,λ )ds.

This solution is also analytic in {λ : Imλ > 0,λ 6= 0} . This finishes the proof. �

For each fixed y ∈R, Φ+ and Φ− are solutions of the same ODE system. Hence
they are related by

(5.10) Φ+ (x,y,λ ) = Φ− (x,y,λ )
[

a(λ ,y) b(λ ,y)
b∗ (λ ,y) a∗ (λ ,y)

]
,

for some functions a,b,a∗,b∗, which are independent of x. We emphasize that the
function a defined here is not the same one as defined in Section 2.

Lemma 27. For each λ ∈ C\{0} with Imλ ≥ 0, there holds

Φ+,1 (x,y,λ ) = iσ2Φ+,2 (x,y,−λ ) .

Similarly, for each λ ∈ C\{0} with Imλ ≤ 0, there holds

Φ−,1 (x,y,λ ) = iσ2Φ−,2 (x,y,−λ ) .

Proof. Let us write Φ± into columns: Φ± = [Φ±,1,Φ±,2] , where

Φ±, j =

[
Φ±,1 j
Φ±,2 j

]
, j = 1,2.

For j = 1,2, we define

Θ±, j :=
[

Φ+,2 j
−Φ+,1 j

]
= iσ2Φ±, j.

By the symmetry of A, we know that Θ+,1 satisfies

∂xΘ+,1 (x,y,λ ) = A(u,−λ )Θ+,1 (x,y,λ ) .

It follows from the asymptotic behavior of Φ±, j at infinity and the uniqueness of
solutions to the ODE that

(5.11) Θ+,1 (x,y,λ ) =−Φ+,2 (x,y,−λ ) .

Similarly, Θ−,1 (x,y,λ ) =−Φ−,2 (x,y,−λ ) . �
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Lemma 28. Suppose λ ∈R\{0} . We have a∗ (λ ,y)= a(−λ ,y) ,b∗ (λ ,y)=−b(−λ ,y) .
As a consequence,

Φ+ (x,y,λ ) = Φ− (x,y,λ )
[

a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

]
.

Proof. By definition, Φ+ and Φ− are related by

(5.12)
{

Φ+,1 = aΦ−,1 +b∗Φ−,2,
Φ+,2 = bΦ−,1 +a∗Φ−,2.

From the second equation of (5.12) , we get

Θ+,2 = bΘ−,1 +a∗Θ−,2.

Using this and Lemma 27, we obtain

(5.13) Φ+,1 (x,y,−λ ) =−b(λ ,y)Φ−,2 (x,y,−λ )+a∗ (λ ,y)Φ−,1 (x,y,−λ ) .

On the other hand, by the first equation of (5.12) ,

(5.14) Φ+,1 (x,y,−λ ) = a(−λ ,y)Φ−,1 (x,y,−λ )+b∗ (−λ ,y)Φ−,2 (x,y,−λ ) .

Comparing (5.13) with (5.14) , we finally deduce

a∗ (λ ,y) = a(−λ ,y) ,b∗ (λ ,y) =−b(−λ ,y) .

�

The functions a(λ ,y) ,b(λ ,y) are a priori depending on y and the spectral pa-
rameter λ . Nevertheless, we have the following

Lemma 29. Suppose u is a solution to (5.1) . Assume λ ∈R\{0} . Then a(λ ,y) =
a(λ ,0) , and

(5.15) b(λ ,y) = b(λ ,0)exp
(
−1

2
(
λ +λ

−1)y
)
.

Proof. Recall that Φ+ satisfies (5.2) , but it does not satisfy (5.3) . However, the
function Φ∗ := Φ+ exp

(
−1

4

(
λ + 1

λ

)
σ3y
)

satisfies the equation

∂yΦ
∗ = BΦ

∗.

Inserting (5.10) into this equation, we get

∂yΦ−

[
a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

]
exp
(
−1

4

(
λ +

1
λ

)
σ3y
)

+Φ−

[
∂ya(λ ,y) ∂yb(λ ,y)
−∂yb(−λ ,y) ∂ya(−λ ,y)

]
exp
(
−1

4

(
λ +

1
λ

)
σ3y
)

+Φ−

[
a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

]
∂y

[
exp
(
−1

4

(
λ +

1
λ

)
σ3y
)]

= BΦ−

[
a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

]
exp
(
−1

4

(
λ +

1
λ

)
σ3y
)
.
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Sending x to−∞ and using the fact that Φ− tends exponentially fast to exp
(Ki

4 σ3x
)
,

we obtain[
∂ya(λ ,y) ∂yb(λ ,y)
−∂yb(−λ ,y) ∂ya(−λ ,y)

]
+

[
a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

](
−1

4

(
λ +

1
λ

)
σ3

)
=−1

4

(
λ +

1
λ

)
σ3

[
a(λ ,y) b(λ ,y)
−b(−λ ,y) a(−λ ,y)

]
.

It follows that

∂ya = 0, ∂yb =−1
2

(
λ +

1
λ

)
b.

The assertion of the lemma follows immediately from these two equations. �

Without loss of generality, we may assume that φ is rotated so that no end is
parallel to the x-axis. Since φ is a multiple-end solution of (1.2) , there exists a
choice of parameters p j,q j,η

0
j , with p j > 0, j = 1, ...,n, such that the zero level

set of the corresponding solution Un has the same asymptotic lines as that of φ , as
y→+∞. We denote the a part of the scattering data of Un +π by â(λ ,y) .

Lemma 30. Assume λ ∈ R\{0} . We have a(λ ,y) = â(λ ,y) ,b(λ ,y) = 0.

Proof. By (5.12) ,

(5.16) Φ+,1 (x,y,λ ) = a(λ ,y)Φ−,1 (x,y,λ )−b(−λ ,y)Φ−,2 (x,y,λ ) .

We rewrite Φ+ = exp
(Kiσ3

4 x
)

Φ∗+. Then Φ∗+ satisfies

(5.17) ∂xΦ
∗
+ = exp

(
−Kiσ3x

4

)
A∗ exp

(
Kiσ3x

4

)
Φ
∗
+.

Consider the norm ‖M‖ :=
√

∑ j,k
∣∣m jk

∣∣2, where m jk are entries of a matrix M. We
have, by (5.17) , for some constant C0,

(5.18) ∂x
∥∥Φ
∗
+

∥∥≤C0 ‖A∗‖
∥∥Φ
∗
+

∥∥ .
Applying the refined asymptotics theorem(Theorem 2.1 of [11]), we deduce that A∗

decays exponentially fast to 0 away from each end. It then follows from (5.18) and
the Gronwall inequality that

∥∥Φ∗+
∥∥ ≤ C in R2, for a universal constant C. Hence

‖Φ+‖ ≤C. Similarly, ‖Φ−‖ ≤C. Then in view of the relation (5.16) , by sending
x to −∞, we see that for each fixed λ , |b(λ ,y)| is uniformly bounded with respect
to y. This together with (5.15) implies b(λ ,y)≡ 0.

We use Â to denote the matrix obtained from replacing u by Un in A. Let Φ̂± be
the matrix valued solutions of the equation ∂xΦ̂±= ÂΦ̂±, with the same asymptotic
behavior as that of Φ±. To compare Φ̂± with Φ±, we write

∂xΦ+ = ÂΦ++
(
A− Â

)
Φ+.

By the variation of parameter formula, we have

(5.19) Φ+ = Φ̂+

(
I +

∫ x

+∞

(
Φ̂+

)−1 (
A− Â

)
Φ+ds

)
.
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By the choice of Un, there exists δ > 0 such that

(5.20) |φ −Un| ≤C exp
(
−δ

√
x2 + y2

)
, for y > 0.

Similar estimates hold for the derivatives of φ−Un. Hence from (5.19) , we deduce∥∥Φ+− Φ̂+

∥∥≤C exp
(
−δ

√
x2 + y2

)
, y > 0.

Arguing in the same manner,∥∥Φ−− Φ̂−
∥∥≤C exp

(
−δ

√
x2 + y2

)
, y > 0.

Now in view of the relation

Φ+,1 (x,y,λ ) = a(λ ,y)Φ−,1 (x,y,λ ) ,

Φ̂+,1 (x,y,λ ) = â(λ ,y)Φ̂−,1 (x,y,λ ) ,

we conclude that for fixed λ ,

lim
y→+∞

(a(λ ,y)− â(λ ,y)) = 0.

This together with Lemma 29 implies that for any y ∈ R, a(λ ,y) = â(λ ,y) . �

Observe that

ImK =

(
1+

1

|λ |2

)
Imλ .

By Lemma 26, we now know that the functions Φ+,1, Φ−,2 are analytic in the
upper half λ -plane R2,+; while Φ+,2,Φ−,1 are analytic in the lower half λ -plane.
We use W (Φ+,1,Φ−,2) to denote the Wronskian determinant of Φ+,1 and Φ−,2.
That is, W (Φ+,1,Φ−,2) = |Φ+,1,Φ−,2| . Note that for λ ∈ R\{0}, we have Φ+,1 =
a(λ )Φ−,1−b(−λ )Φ−,2, hence we obtain

W (Φ+,1,Φ−,2) =W (a(λ )Φ−,1,Φ−,2)−W (b(−λ )Φ−2,Φ−,2)

= aW (Φ−,1,Φ−,2) .

Using the asymptotic behavior of Φ−,1,Φ−,2 as x→−∞, we have W (Φ−,1,Φ−,2)=
1. This then implies that for λ ∈ R\{0},

(5.21) a(λ ,y) =W (Φ+,1,Φ−,2) .

Hence a can be analytically extended into R2,+ using (5.21) . By the asymptotic
behavior of Φ+,1,Φ−,2 as λ → 0, a will be continuous up to the boundary of R2,+.
We also remark that if λ is in the lower half plane, then the behavior of Φ+,1
is much more delicate, because in general, solutions with the desired asymptotic
behavior at +∞ may not be unique.

We have the following generalization of Lemma 30.

Lemma 31. Assume Imλ ≥ 0 and λ 6= 0. Let a be defined by (5.21) . Then a(λ ,y)=
â(λ ,y) .
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Proof. Recall that by Lemma 26, the function ϕ+,1 = Φ+,1 exp
(
−Kix

4

)
satisfies the

integral equation{
ϕ+,11 (x,y,λ ) = 1+

∫ x
+∞

[A∗11ϕ+,11 +A∗21ϕ+,21] (s,y,λ )ds,
ϕ+,21 (x,y,λ ) =

∫ x
+∞

exp
(Ki

2 (s− x)
)
[A∗21ϕ+,11 +A∗22ϕ+,21] (s,y,λ )ds.

This solution is analytic in the upper half λ -plane. Similarly, for the corresponding
functions ϕ̂+,1 associated with the potential Un, we have{

ϕ̂+,11 (x,y,λ ) = 1+
∫ x
+∞

[
Â∗11ϕ+,11 + Â∗12ϕ+,21

]
(s,y,λ )ds,

ϕ̂+,21 (x,y,λ ) =
∫ x
+∞

exp
(Ki

2 (s− x)
)[

Â∗21ϕ+,11 + Â∗22ϕ+,21
]
(s,y,λ )ds.

If we set ρ j := ϕ+, j1 (x,y,λ )− ϕ̂+, j1 (x,y,λ ) , j = 1,2, then

(5.22)
{

ρ1 =
∫ x
+∞

[
Â∗11ρ1 + Â∗21ρ2 + f1

]
(s,y,λ )ds,

ρ2 =
∫ x
+∞

exp
(Ki

2 (s− x)
)[

Â∗21ρ1 + Â∗22ρ2 + f2
]

ds,

where

f1 :=
(
A∗11− Â∗11

)
ϕ+,11 +

(
A∗12− Â∗12

)
ϕ+,21,

f2 :=
(
A∗21− Â∗21

)
ϕ+,11 +

(
A∗22− Â∗22

)
ϕ+,21.

Due to the estimate (5.9) , ϕ+,1, ϕ̂+,1 are uniformly bounded for (x,y) in the whole
plane. Similarly, using the decay estimate (5.20) , we infer from (5.22) and the
Picard iteration of (ρ1,ρ2) that

|ρ1 (x)| ≤
∫ +∞

x
(|f1 (s)|+ |f2 (s)|)dsexp(Q(x)) ,

|ρ2 (x)| ≤
∫ +∞

x
(|f1 (s)|+ |f2 (s)|)dsexp(Q(x)) .

Here Q(x) is defined by (5.7) . It follows that

lim
y→+∞

[ϕ+,1 (0,y,λ )− ϕ̂+,1 (0,y,λ )] = 0.

Similarly, letting ϕ−,2 = Φ−,2 exp
(Kix

4

)
, we have

lim
y→+∞

[ϕ−,2 (0,y,λ )− ϕ̂−,2 (0,y,λ )] = 0.

Using the definition of a, we then deduce

lim
y→+∞

[a(λ ,y)− â(λ ,y)] = 0.

On the other hand, we can still prove that ∂ya(y,λ ) = 0. Hence a(λ ,y) = â(λ ,y) .
This finishes the proof. �

Let λ j, j = 1, ...,m, be the zeros of a in R2,+. At these points, by the definition of
a, there holds W (Φ+,1,Φ−,2) = 0. Hence the vectors Φ+,1 and Φ−,2 are co-linear
to each other. Let us define c j by the formula

Φ+,1 (x,y,λ j) = c j (y)Φ−,2 (x,y,λ j) .

Then c′j = −1
2 (λ j +1/λ j)c j and therefore c j (y) = c j (0)exp

(
−1

2 (λ j +1/λ j)y
)
.

It is worth pointing out that unlike b, the function c j is in general not uniformly
bounded with respect to y. Let us use ĉ j (y) to denote the corresponding function
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of Un. It is a natural question that whether one can prove c j (y) = ĉ j (y) , following
similar idea as that of Lemma 30. It turns out that, to do this, one need to directly
analyze the precise asymptotic behavior of Φ+,1 as y→ ∞. While in principle this
can be done, we choose to bypass this difficulty and verify it a posteriori, after we
prove that φ =Un.

Now we have all the necessary scattering data at hand, which are a,b,λ j,c j.

Lemma 32. Suppose all the zeros of a in the upper half λ -plane are simple. Then
u =Un +π.

Before proceeding to the proof, we emphasize that the result proved in this
lemma is proved under the additional assumption that all the zeros of a in the
upper half λ -plane are simple. However, we will show in the next lemma(Lemma
33) that for the standard solution Un +π, the corresponding scattering data â only
has simple zeros, whicn in turn implies that a only has simple zeros. The proof of
Lemma 33 does not depend on the result of Lemma 32, however, the construction
of explicit Jost functions in Lemma 33 is inspired by the formula (5.25) of the
proof of Lemma 32.

Proof of Lemma 32. We would like to carry out a simplified version of the inverse
scattering procedure to construct the potential u from the scattering data, following
[29]. Part of the arguments here are more or less standard. Since it is not easy to
locate the precise references, we sketch the proof below for completeness.

For fixed y ∈ R, by (5.16) , we have, for λ ∈ R,

(5.23) Φ−,1 (x,y,λ ) =
Φ+,1 (x,y,λ )

a(λ ,y)
.

Consider the operator

(P f )(ξ ) :=
1

2πi

∫ +∞

−∞

f (λ )
λ −ξ

dλ .

Let us rewrite the equation (5.23) as
(5.24)

Φ−,1 (x,y,λ )exp
(
−K (λ ) i

4
x
)
−(1,0)T =

Φ+,1 (x,y,λ )
a(λ ,y)

exp
(
−K (λ ) i

4
x
)
−(1,0)T .

The left hand side is analytic in the lower half λ plane, while the right hand side
is meromorphic in the upper half plane with simple poles λ j, j = 1, ...,m. Here

Imλ j > 0. Note that the function exp
(
−K(λ )i

4 x
)

has two essential singularities:
λ = ∞ and λ = 0. However, one can show that

Φ−,1 (x,y,λ )exp
(
−K (λ ) i

4
x
)
− (1,0)T → 0 as λ → ∞.

Moreover, Φ−,1 (x,y,λ )exp
(
−K(λ )i

4 x
)

can be continued to the origin. We refer
to [15](P. 396) for related discussion on this issue for the hyperbolic sine-Gordon
equation. For each fixed ξ ∈ C with Imξ < 0, applying the operator P to both
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sides of the equation (5.24), using the residue theorem and the fact that Φ+,1 (λ j) =
c jΦ−,2 (λ j), we obtain

Φ−,1 (x,y,ξ )exp
(
−K (ξ ) i

4
x
)
− (1,0)T(5.25)

=
m

∑
j=1

[
c̃ j

ξ −λ j
exp
(
−

K (λ j) i
4

x
)

Φ−,2 (x,y,λ j)

]
,

where

(5.26) c̃ j (y) :=
c j (y)

∂λ a(λ j,y)
.

On the other hand, by Lemma 27, Φ−,2 (x,y,−ξ ) =−iσ2Φ−,1 (x,y,ξ ) . Hence tak-
ing ξ =−λl in (5.25) , we get

iσ2Φ−,2 (x,y,λl)exp
(

K (λl) i
4

x
)
− (1,0)T

=−
m

∑
j=1

[
c̃ j

λl +λ j
exp
(
−

K (λ j) i
4

x
)

Φ−,2 (x,y,λ j)

]
.

This is a system of m equations for the functions Φ−,2 (x,y,λ j) , j = 1, ...,m. Let M
be the matrix with entries

ml j :=
c̃ j (y)

λl +λ j
exp
(
−

K (λ j)

2
ix
)
.

Let η := (η1, ...,η2m)
T , where

ηl =

 exp
(

K(λl)ix
4

)
Φ−,22 (x,y,λl) , if l = 1, ...,m,

exp
(

K(λl−m)ix
4

)
Φ−,12 (x,y,λl−m) , if l = m+1, ...,2m.

Then we get

(5.27)
(

I M
−M I

)
η = e1,

where I is the m by m identity matrix and e1 = (1, ...,1,0, ...,0)T . Observe that(
I M
−M I

)
=

(
I 0
iI I

)(
I + iM M

0 I− iM

)(
I 0
−iI I

)
.

Defining

η
∗
+ =

(
I 0
−iI I

)
η , e∗+ =

(
I 0
−iI I

)
e1,Z+ =

(
I + iM M

0 I− iM

)
,

we can transform equation (5.27) into Z+η∗+ = e∗+. It follows that for j = 1, ...,m,

(5.28) η j =
detH+, j

detZ+
,



ELLIPTIC SINE-GORDON EQUATION 57

where the matrix H+, j is obtained from replacing the j-th column of Z+ by the
vector e∗+. Similarly, we have

η j =
detH−, j
detZ−

, j = 1, ...,m,

where

e∗− =

(
I 0
iI I

)
e1, Z− =

(
I− iM M

0 I + iM

)
,

and H−, j is obtained from replacing the j-th column of Z− by e∗−.
Inserting (5.25) into the vector equation ∂xΦ−,1 = AΦ−,1, expanding both sides

in terms of ξ (for ξ large), and comparing the O(1) term in the second component,
we get

ux− iuy = 2i
m

∑
j=1

[
c̃ j (y)exp

(
−

iK (λ j)

4
x
)

Φ−,22 (x,y,λ j)

]
.

Hence by (5.28) ,

ux− iuy = 2i
m

∑
j=1

[
c̃ j (y)exp

(
−

iK (λ j)

2
x
)

detH+, j

detZ+

]
.

We would like to simplify this expression. To do this, let us set

ν j := c̃ j (y)exp
(
−

iK (λ j)

2
x
)
.

Note that in terms of ν j, the entries of M are of the form ν j/(λl +λ j) . We use Z̃+

to represent the matrix obtained from Z+ by multiplying the l and l+m-th rows of
Z+ by νl, l = 1, ...,m. For each fixed j = 1, ...,m, applying the same operation to
the matrix H+, j, we get the corresponding matrix H̃+, j. Then

(5.29) ux− iuy = 2i
m

∑
j=1

ν j det H̃+, j

det Z̃+
.

Similarly, we also have

(5.30) ux− iuy = 2i
m

∑
j=1

ν j det H̃−, j
det Z̃−

.

Observe that (∂x− i∂y)(νlν j) = −i(λl +λ j)νlν j. We define the matrix M̃ whose
entries are (λl +λ j)

−1
νlν j. Let Ĩ be the diagonal matrix whose entries on the di-

agonal is ν j, j = 1, ...,m. For fixed j, observe that in det H̃+, j + det H̃−, j, terms
involving the last m components of the j-th column of det H̃+, j and det H̃−, j cancel.
Hence we have

m

∑
j=1

(
ν j det H̃+, j +ν j det H̃−, j

)
= 2det

(
Ĩ + iM̃

)
(∂x− i∂y)det

(
Ĩ− iM̃

)
−2det

(
Ĩ− iM̃

)
(∂x− i∂y)det

(
Ĩ + iM̃

)
.
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In view of the fact that det Z̃± = det
(
Ĩ + iM̃

)
det
(
Ĩ− iM̃

)
, we infer

ux− iuy = 2i(∂x− i∂y) ln
det
(
Ĩ− iM̃

)
det
(
Ĩ + iM̃

)
= 2i(∂x− i∂y) ln

det(iI +M)

det(−iI +M)
.

Next we show that u can be written in the Hirota form appeared in Section 2.
Indeed, if we define ν∗j = λ

−1
j ν j, then the entries of M become (λl +λ j)

−1
λ jν

∗
j

and there holds

(5.31) det(iI +M) =
m

∑
j=1

(
∑

l1<....<l j

[
im− jb(l1, ..., l j)ν

∗
l1 · · ·ν

∗
l j

])
,

where

b(l1, ..., l j) = ∏
1≤α<β≤ j

(
λlα −λlβ

λlα +λlβ

)2

.

This precisely means that u has the Hirota form given in Section 2. The identity
(5.31) can be proved by considering the coefficients of the polynomial

g(r) := det |irI +M| .

For instance, since the determinant of the matrix
(

2λ j
λn+λ j

)
n, j

is equal to

∏
1≤α<β≤m

(
λα −λβ

λα +λβ

)2

,

g(0) can be explicitly computed and is equal to

detM = b(1, ...,m)ν
∗
1 · · ·ν∗m;

while the coefficient of ir is the sum of all the (m−1)-th order principle minors
M :

∑
l1<....<lm−1

[
b(l1, ..., lm−1)ν

∗
l1 · · ·ν

∗
lm−1

]
.

Now we would like to compare u with Un +π. Recall that in the expression of
Un+π = 4arctan g̃n

f̃n
, there are parameters p j,q j,η

0
j , j = 1, ...,m, and p j are chosen

to be positive. On the other hand, in ν∗j , the coefficient before x is −K(λ j)
2 i, which

is equal to

Imλ j

2

(
1+

1

(Reλ j)
2 +(Imλ j)

2

)
− i

Reλ j

2

(
1− 1

(Reλ j)
2 +(Imλ j)

2

)
.

The coefficient before y is −1
2

(
λ j +λ

−1
j

)
, which is equal to

−
Reλ j

2

(
1+

1

(Reλ j)
2 +(Imλ j)

2

)
− i

Imλ j

2

(
1− 1

(Reλ j)
2 +(Imλ j)

2

)
.
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Since u is real valued and has the same asymptotic behavior as Un +π as y→+∞,

it then follows from the Hirota form of u, that (Reλ j)
2 + (Imλ j)

2 = 1, m = n.
Moreover,

(5.32) Imλ j = p j,Reλ j =−q j, for j = 1, ...,m,

and u =Un +π, c j (0) = ĉ j (0) .
We would like to point out that for λ ∈ C with Imλ ≥ 0,

(5.33) a(λ ) = â(λ ) =
m

∏
j=1

λ −λ j

λ +λ j
,

Indeed, for λ ∈R\{0} , from (5.23) and detΦ±= 1, and b= 0, we get a(λ )a(−λ )=
1. Let us define

β (λ ) = a(λ )
m

∏
j=1

λ +λ j

λ −λ j
.

The function β is analytic in the upper half λ -plane R2,+. By (5.23) and (5.25) ,
using the asymptotic behavior of Φ+,1(as x→+∞), we find that for some constants
d j,

1
a(λ )

= 1+
m

∑
j=1

d j

λ −λ j
, if λ ∈ R.

Now in view of a(λ )a(−λ ) = 1, we deduce that

a(λ ) =
m

∏
j=1

λ −λ j

λ +λ j
, if λ ∈ R.

That is, β (λ ) = 1 for λ ∈ R. Hence by the Liouville theorem, β (λ ) = 1 in R2,+.
We then get (5.33) . The proof is completed. �

Next, we proceed to compute the scattering data of the “standard” solution Un+
π. We first point out that the scattering data â, b̂,λ j, ĉ j of Un + π is well defined
through functions Φ̂±, which are solutions of ODEs in the Lax pair. We have the
following

Lemma 33. Let p j,q j be the parameters appearing in the solution Un +π and let
λ j be defined through (5.32) . Then the scattering data â of Un +π is given by

â(λ ) =
n

∏
j=1

λ −λ j

λ +λ j
, for λ ∈ R2,+.

Proof. Before proceeding to the details, which requires tedious computation, let
us sketch the main idea of the proof. The proof has two main steps. In the first
step, we compute the scattering data of the simplest two-end solution U1 + π by
finding the explicit form of the corresponding Φ̂±(The so called Jost function). In
the second step, for n > 1, we analyze the behavior of Φ̂± for y→ ∞, using the
asymptotic behavior of Un +π. The reason we can do this is that â is independent
of y. Now our key observation is that as y tends to ∞, Un +π asymptotically splits
into n heteroclinic solutions(U1 +π with suitable parameters), passing each one of
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these heteroclinic solutions along the x direction, we gain a factor λ−λ j
λ+λ j

in â(for

λ ∈ R\{0}), because â is the “ratio” between Φ̂+,1 and Φ̂−,1.
Step 1. Compute â for U1 +π.
We shall define Φ̂−,1 directly. The definition given below is inspired by (5.25) .

More precisely, define

Φ̂−,1 (x,y,λ ) = exp
(

K (λ ) i
4

x
)
(1,0)T

+ exp
(

K (λ ) i
4

x
) n

∑
j=1

[
c̃ j (y)

λ −λ j
exp
(
−

K (λ j) i
4

x
)

Φ̂−,2 (x,y,λ j)

]
.(5.34)

Here

c̃ j (y) := ĉ j (y)

[
∂λ

(
n

∏
l=1

λ −λl

λ +λl

)
|λ=λ j

]−1

=
ĉ j (0)exp

(
−1

2 (λ j +1/λ j)y
)

2λ j
∏
l 6= j

λ j +λl

λ j−λl
,(5.35)

ĉ j (0) are parameters, and Φ̂−,2 (x,y,λ j)=
(
Φ̂−,12 (x,y,λ j) ,Φ̂−,22 (x,y,λ j)

)T
is given

by

Φ̂−,12 (x,y,λ j) = exp
(
−

K (λ j) ix
4

)
detH+, j + idetH+, j+n

detZ+
,

Φ̂−,22 (x,y,λ j) = exp
(
−

K (λ j) ix
4

)(
detH+, j

detZ+

)
.

With the definition of c̃ j given by (5.35) , ml j is defined by

ml j :=
c̃ j (y)

λl +λ j
exp
(
−

K (λ j)

2
ix
)
.

We emphasize that in this lemma, c̃ j (y) is not defined through (5.26) , and actu-
ally defined by (5.35) . Hence the definition of c̃ j (y) here does not require any
assumption of simpleness of the zeros of â.

Intuitively, the function Φ̂−,1 should satisfy

(5.36) ∂xΦ̂−,1 = ÂΦ̂−,1.

However, a direct proof of this fact for general n seems to be quite tedious. Never-
theless, in what follows, we will see that in the case of n = 1, we can verify (5.36)
by direct computation. Indeed, in this case, we have

U1 +π = 2i ln
i+m11

−i+m11
.



ELLIPTIC SINE-GORDON EQUATION 61

We also have

sinU1 =
1
2i

[(
i+m11

−i+m11

)2

−
(
−i+m11

i+m11

)2
]
,(5.37)

cosU1 =−
1
2

[(
i+m11

−i+m11

)2

+

(
−i+m11

i+m11

)2
]
.(5.38)

Moreover,

Φ̂−,1 (x,y,λ ) = exp
(

K (λ ) i
4

x
)
(1,0)T

+ exp
(

K (λ ) i
4

x
)[

ĉ1 (y)
2(λ −λ1)λ1

exp
(
−K (λ1) i

4
x
)

Φ̂−,2 (x,y,λ1)

]
,

where Φ̂−,2 (x,y,λ1) =
(
Φ̂−,12 (x,y,λ1) ,Φ̂−,22 (x,y,λ1)

)T
,

Φ̂−,12 (x,y,λ1) = exp
(
−K (λ1) ix

4

)
m11

1+m2
11
,

Φ̂−,22 (x,y,λ1) = exp
(
−K (λ1) ix

4

)
1

1+m2
11
.

Recall that

ÂΦ̂−,1 =
i
4

[(
λ +

cosU1

λ

)
σ3− [(∂x− i∂y)U1]σ2 +

sinU1

λ
σ1

]
Φ̂−,1.

The first component J1 of the vector ÂΦ̂−,1 is

i
4

(
λ +

cosU1

λ

)
exp
(

K (λ ) i
4

x
)[

1+
ĉ1 (y)

2(λ −λ1)λ1
exp
(
−K (λ1) i

2
x
)

m11

1+m2
11

]
+

1
4
[(∂x− i∂y)U1]exp

(
K (λ ) i

4
x
)[

ĉ1 (y)
2(λ −λ1)λ1

exp
(
−K (λ1) i

2
x
)

1
1+m2

11

]
+

i
4

sinU1

λ
exp
(

K (λ ) i
4

x
)[

ĉ1 (y)
2(λ −λ1)λ1

exp
(
−K (λ1) ix

2

)
1

1+m2
11

]
.

Recall that the function m11 is defined by

m11 =
ĉ1 (y)
4λ 2

1
exp
(
−K (λ1) i

2
x
)
.

Using this, we find that J1 exp
(
−K(λ )i

4 x
)

is equal to

i
4

(
λ +

cosU1

λ

)(
1+

2λ1

λ −λ1

m2
11

1+m2
11

)
+

1
4
[(∂x− i∂y)U1]

(
2λ1

λ −λ1

m11

1+m2
11

)
+

i
4

sinU1

λ

(
2λ1

λ −λ1

m11

1+m2
11

)
.
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On the other hand, the first component J∗1 of ∂xΦ̂−,1 has the form:

K (λ ) i
4

exp
(

K (λ ) i
4

x
)(

1+
2λ1

λ −λ1

m2
11

1+m2
11

)
+ exp

(
K (λ ) i

4
x
)

2λ1

λ −λ1

−K (λ1) im2
11(

1+m2
11

)2 .

Now we can compute

4(J1− J∗1 )exp
(
−K (λ ) i

4
x
)
= i

1+ cosU1

λ

(
1+

2λ1

λ −λ1

m2
11

1+m2
11

)
+ i

sinU1

λ

2λ1

λ −λ1

m11

1+m2
11
− 8i

λ −λ1

m2
11(

1+m2
11

)2 .

Inserting (5.37) ,(5.38) into the right hand, we see that it is identically zero. There-
fore, the first component of ∂xΦ̂−,1− ÂΦ̂−,1 vanishes. Similarly, its second com-
ponent is 0. We then obtain ∂xΦ̂−,1 = ÂΦ̂−,1. We also observe that Φ̂−1 has the
required asymptotic behavior:

Φ̂−1 exp(−Kix/4)→ (1,0) , as x→−∞.

With the explicit form of the function Φ̂−,1 at hand, using the relation Φ̂+,1 =

aΦ̂−,1 for λ ∈ R\{0} , we directly compute that

(5.39) â(λ )−1 = 1+
d1

λ −λ1
,λ ∈ R\{0} ,

for some constant d1(actually one can calculate directly that d1 = 2λ1). In view of
â(λ ) â(−λ ) = 1 for λ ∈ R\{0} , we deduce from (5.39) that

(5.40) â(λ ) =
λ −λ1

λ +λ1
, if λ ∈ R\{0} .

We should point out that at this moment we still don’t know whether λ1 is a zero
of â. Hence we can’t use the argument of the last paragraph in the proof of Lemma
32 to conclude that â(λ ) = λ−λ1

λ+λ1
in R2,+. To bypass this difficulty, we would like

to show that â cannot have repeated zeros in R2,+. Indeed, suppose to the contrary
that λ ∗j is a zero of â in the upper half λ plane with multiplity κ > 1. Then using
the residue theorem as that of (5.25) , we find that in Φ̂−,1 (x,y,ξ ) , there are terms
like

Φ+,1

(
x,y,λ ∗j

)
exp
(
−K(λ ∗j )i

4 x
)

(
ξ −λ ∗j

)κ .

This together with the relation Φ̂+,1 = aΦ̂−,1 implies that â−1 will not have the
form λ+λ1

λ−λ1
on R, which is a contradiction. Hence all the zeros of â has to be simple

and then by Lemma 32, the scattering data of U1 +π is given by

a(λ ) = â(λ ) =
λ −λ1

λ +λ1
, for λ ∈ R2,+.
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Step 2. Compute â for Un +π,n > 1.
Let us first compute the scattering data â of the four-end solution U2 + π. To

carry out the analysis in full details, we need to introduce some additional nota-
tions. U2 +π has two ends in the upper half x-y plane, which are two half straight
lines denoted by L1,L2. Along each end, as y→+∞, it converges to the one dimen-
sional solution U1 +π with suitable parameters, p j,q j,η j,0. Let us denote the one
dimensional solution around L1 by U1,α +π , and the one around L2 by U1,β +π.
We also assume without loss of generality that L1 is at the left of L2 in the upper
half plane.

For U1,α +π and U1,β +π , we have corresponding Jost functions Φ̂−,1,α , Φ̂−,1,β ,
defined in the first step. Hence

∂xΦ̂−,1,α = ÂαΦ̂−,1,α ,∂xΦ̂−,1,β = Âβ Φ̂−,1,β .

Moreover, Φ̂−,1,α exp(−Kix/4)→ (1,0)T , and Φ̂−,1,β exp(−Kix/4)→ (1,0)T , as
x→−∞. We emphasize that Φ̂−1,α and Φ̂−1,β also depend on the y variable.

The Jost function of U2 +π will still be denoted by Φ̂−,1, but at this moment we
don’t have explicit formula for it(although it is expected to be of the form (5.34) ,
we didn’t prove that, because the computation is tedious). We also have

∂xΦ̂−,1 = ÂΦ̂−,1

and Φ̂−,1 exp(−Kix/4)→ (1,0)T , as x→−∞. Recall that for λ ∈ R\{0} , â(λ )
is defined by the relation

(5.41) Φ̂+,1 = aΦ̂−,1,

where Φ̂+,1 is the Jost function with Φ̂+,1 exp(−Kix/4)→ (1,0)T , as x→ +∞.

Hence computing â amounts to analyzing the asymptotic behavior of Φ̂−,1 as x→
+∞.

In the following, we consider the relevant functions in the upper half plane. The
half straight lines L1 and L2 form an angle. Let us denote its angular bisector as
L∗. Since U2 +π tends to U1,α +π along the end L1 exponentially fast, the proof
of Lemma 30 tells us that for some positive constant δ1,
(5.42)∣∣Φ̂−,1− Φ̂−,1,α

∣∣≤C exp
(
−δ1

√
x2 + y2

)
, if y > 0 and (x,y) is at the left of L∗.

We remark that although Lemma 30 deals with matrix valued solutions, the argu-
ment also can be applied to vector valued solutions with straightforward changes.
On the other hand, by the explicit formula of Φ̂−1,α (or using the fact that the scat-
tering data â of U1,α is λ−λ1

λ+λ1
), we have, if (x,y) lies in the right of L1, then

(5.43)
∣∣∣∣Φ̂−1,α (x,y)exp(−Kix/4)− λ +λ1

λ −λ1
(1,0)T

∣∣∣∣≤C exp(−δ2d (x,y)) .

where δ2 > 0 is a small positive constant and d (x,y) is the distance of (x,y) to L1.
Combining (5.42) and (5.43) , we find that on the line L∗,

(5.44)
∣∣∣∣Φ̂−,1 (x,y)exp(−Kix/4)− λ +λ1

λ −λ1
(1,0)T

∣∣∣∣≤C exp(−δd (x,y)) ,
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for some small positive constant δ .
Next let us consider the function Φ̂∗−,1,β , defined by

Φ̂
∗
−,1,β :=

λ +λ1

λ −λ1
Φ̂−,1,β .

Note that Φ̂∗−,1,β still satisfies the equation ∂xΦ̂∗−,1,β = Âβ Φ̂∗−,1,β . We have∣∣∣∣Φ̂∗−,1,β exp(−Kix/4)− λ +λ1

λ −λ1
(1,0)T

∣∣∣∣≤C exp
(
−δ̃ d̃ (x,y)

)
, on L∗,

for some positive constant δ̃ , and d̃ (x,y) is the distance of (x,y) to L2. Hence by
(5.44) , reducing δ if necessary, we get, for (x,y) ∈ L∗ in the upper half plane,∣∣∣Φ̂−,1 (x,y)− Φ̂

∗
−,1,β

∣∣∣≤C exp(−δy) .

Again by the proof of Lemma 30, we find that for (x,y) at the left of L∗

(5.45)
∣∣∣Φ̂−,1 (x,y)− Φ̂

∗
−,1,β

∣∣∣≤C exp(−δy)+C exp
(
−δ

√
x2 + y2

)
.

Here we emphasize that in the right hand side of the above inequality, we have the
term C exp(−δy). The reason is that Φ̂−,1 (x,y) and Φ̂∗−,1,β are not identical on the
line L∗. Nevertheless, we also know that solution η of the equation ∂xη = Âη with
initial condition η = Φ̂−,1 (x,y)− Φ̂∗−,1,β at L∗ is bounded by C exp(−δy) at the
right of L∗. This fact again follows from the proof of Lemma 30, which using the
assumption λ ∈ R in an essential way.

Now by the asymptotic behavior of Φ̂−,1,β as x→+∞, (5.45) implies that

lim
x→+∞

∣∣∣∣Φ̂−,1 (x,y)exp(−Kix/4)− λ +λ1

λ −λ1

λ +λ2

λ −λ2
(1,0)T

∣∣∣∣≤C exp(−δy) .

Sending y to +∞ and using (5.41) , we deduce

â(λ ) =
λ −λ1

λ +λ1

λ −λ2

λ +λ2
, for λ ∈ R\{0} .

For general Un + π,n ≥ 2, we can repeat the above arguments as we passing
across each end along the x direction, and conclude that

â(λ ) =
n

∏
j=1

λ −λ j

λ +λ j
, for λ ∈ R\{0} .

Then we can use the arguments in the last paragraph of Step 1 to conclude that all
the zeros of â are simple and

â(λ ) =
n

∏
j=1

λ −λ j

λ +λ j
, for λ ∈ R2,+.

This finishes the proof. �

With these preparations, we are now ready to prove the main result of this sec-
tion.
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Proof of Proposition 25. Recall that a is the scattering data of our original solution
u. Lemma 31 tells us that u and Un +π have the same a part of the scattering data.
Hence

a(λ ) =
n

∏
j=1

λ −λ j

λ +λ j
, for λ ∈ R2,+.

In particular, all the zeros of a in the upper half λ -plane are simple. We then apply
Lemma 32 to conclude that u =Un +π. The proof is completed. �

6. MORSE INDEX OF THE MULTIPLE-END SOLUTIONS

In this section, we shall compute the Morse index of the multiple-end solu-
tions Un of the elliptic sine-Gordon equation −∆u = sinu through a deformation
argument. By definition, the Morse index of Un is the total number of negative
eigenvalues of the operator η → −∆η −η cosUn defined on L2

(
R2
)
. The main

result of this section is the following

Proposition 34. The Morse index of the 2n-end solutions to the elliptic sine-
Gordon equation is equal to n(n−1)/2.

We shall split the proof of this result into several lemmas. Before proceeding,
let us first of all briefly recall the so called end-to-end construction of multiple-end
solutions of the Allen-Cahn type equation, developed in [40]. Roughly speaking,
for each n ≥ 2, we can glue n(n−1)/2 number of four-end solutions together by
matching their ends and obtain a solution with 2n ends.

To explain the construction in a more precise way, we choose n straight lines
L1, ...,Ln such that these lines intersect at n(n−1)/2 distinct points. The intersec-
tion point of Li with L j will be denoted by ωi, j. We assume the minimal distance
between those points ωi, j is equal to 2.

For each k large, the end-to-end construction in [40] tells us that we can “desin-
gularize” the configuration of n rescaled lines kL1, ...,kLn. Actually, we can put
four-end solutions gi, j near each rescaled intersection point kωi, j at a distance of
O(1) order in a suitable way and match their ends to form an approximate solution
ũk. The center of gi, j will be denoted by zi, j = zi, j (uk) . Around each zi, j, ũk is equal
to gi, j. By slightly adjusting their ends, we can perturb the approximate solution ũk
into a true solution uk of the Allen-Cahn type equation.

Throughout this section, we shall use Br (p) to denote be the ball of radius r
centered at the point p. Let c0 be a fixed large constant. The following estimate is
a direct byproduct of the end-to-end construction: There exists δ > 0 such that

(6.1) |uk− ũk| ≤C exp(−δk) , in Bc0k (0) .

This essentially follows from the fact that the error ∆ũk + sin ũk of the approximate
solution ũk is of the order O

(
e−δk

)
.

Lemma 35. Let uk be a solution obtained from the end-to-end construction dis-
cussed above. The Morse index of uk is at least n(n−1)/2 for k large.
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Proof. For each index pair (i, j) , i, j = 1, ...,n, i < j, we use ηi, j with
∥∥ηi, j

∥∥
L∞ =

1 to denote a choice of the negative eigenfunction of the operator −∆− cosgi, j,
corresponding to the (unique) negative eigenvalue σi, j. That is,

−∆ηi, j−ηi, j cosgi, j = σi, jηi, j.

The total number of such functions is n(n−1)/2.
Let ρi, j be cutoff function localized near zi, j, such that

ρi, j =

{
1, in B√k (zi, j) ,

0, in R2\B2
√

k (zi, j) .

We can also assume that ρi, j and its first derivatives are uniformly bounded with
respect to k. Let η∗i, j := ρi, jηi, j. Since the mutual distance between those point zi, j

are of the order O(k) , we see that η∗i, j have disjoint supports. Using the fact that
ηi, j decays exponentially fast to zero away from zi, j, we can show that for k large,∫

R2

(∣∣∇η
∗
i, j

∣∣2− (η∗i, j)2 cosuk

)
=
∫
R2

((∣∣∇ηi, j
∣∣2−η

2
i, j cosuk

)
ρ

2
i, j +2ρi, jηi, j∇ρi, j∇ηi, j +η

2
i, j

∣∣∇ρi, j
∣∣2)

< 0.

Hence the Morse index of uk is at least n(n−1)/2. �

Before proceeding, we need to introduce some notations. Let N (uk) be the
nodal set of uk and let d(p,N (uk)) be the distance of a point p to the set N (uk) .
Let r0 be a large constant, we set

Ω = Ωr0 :=
⋃

i, j,i< j

Br0 (zi, j (uk)) .

We use H to denote the one dimensional heteroclinic solution. Explicitly,

H (s) = 4arctan(es)−π.

Throughout the section, we use C to denote a universal constant. One of the main
ingredients in the proof of Proposition 34 is the following

Lemma 36. Let −λ 2
k (with λk > 0) be a negative eigenvalue of the operator −∆−

cosuk. Then there exists a constant ϑ < 0 independent of k, such that−λ 2
k < ϑ for

all k.

Proof. Let φk be the corresponding eigenfunction of the eigenvalue −λ 2
k , normal-

ized such that ‖φk‖L∞ = 1.
First of all, we would like to prove that if r0 is a fixed constant chosen to be large

enough, then
‖φk‖L∞(Ωr0)

≥ α,

where α is some positive constant independent of k.
Be definition, φk satisfies

(6.2) −∆φk−φk cosuk =−λ
2
k φk.
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As d(p,N (uk))→ +∞, there holds |uk| → π and cosuk → −1. It follows that
when d(p,N (uk)) is sufficiently large, −cosuk +λ 2

k ≥ 1/2. Hence by construct-
ing suitable barrier functions of exponential type, we find that for some positive
constant δ > 0,

(6.3) |φk (p)| ≤C exp(−δd(p,N (uk))) , for p ∈ R2.

Let us estimate φk in the region R2\Ω. To be more specific, we focus on the
region around the the nodal line l∗, which connects two adjacent four-end solutions,
say g1,2 and g1,3. Without loss of generality, using (6.1) , we may assume that
this nodal line is given by the graph of the function y = w(x) , and reducing δ if
necessary,

|w(x)| ≤C exp(−δ min{|x− t1| , |x− t2|}) ,x ∈ [t1, t2] ,

with (t1,w(t1)) ∈ ∂Br0 (z1,2 (uk)), (t2,w(t2)) ∈ ∂Br0 (z1,3 (uk)) . Note the |t1− t2| is
of the order O(k) , and t1, t2 actually also depend on k.

Let us define the function

h(x) :=
∫ +∞

−∞

φk (x,y)H ′ (y)dy.

Since φk satisfies (6.2) , for x ∈ [t1, t2] , h satisfies

−h′′ (x) =−λ
2
k h(x)+O(exp(−δ min{|x− x1| , |x− x2|}))︸ ︷︷ ︸

µ(x)

.

Variation of parameter formula then tells us that for some constants a,b,

h(x) = aexp(λkx)+bexp(−λkx)

+
1

2λk
exp(λkx)

∫ x

t1
exp(−λks)µ (s)ds

− 1
2λk

exp(−λkx)
∫ x

t1
exp(λks)µ (s)ds.(6.4)

Let us define

f (s) =
∫ s

t1+t2
2

µ (s)ds.

By the estimate of µ, we have

| f (s)| ≤C exp(−δ min{|x− t1| , |x− t2|}) .

Integrating by parts leads to

I :=
1

2λk
exp(λkx)

∫ x

t1
exp(−λks)µ (s)ds− 1

2λk
exp(−λkx)

∫ x

t1
exp(λks)µ (s)ds

=
1
2

exp(λkx)
∫ x

t1
f (s)exp(−λks)ds+

1
2

exp(−λkx)
∫ x

t1
f (s)exp(λks)ds.

Then I can be estimated by

|I| ≤C exp(−δ min{|x− t1| , |x− t2|}) .
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Let I0 (x) := aexp(λkx)+bexp(−λkx) . By maximum principle, we have

|I0 (x)| ≤max{|I0 (t1)| , |I0 (t2)|} , for x ∈ [t1, t2] .

Therefore,

|h(x)| ≤C (|h(t1)|+ |h(t2)|+ exp(−δ min{|x− t1| , |x− t2|})) .

In particular, this implies that

(6.5) |h(x)| ≤C‖φk‖L∞(Ω)+C exp(−δ min{|x− t1| , |x− t2|}) , x ∈ [t1, t2] .

On the other hand, we define

υ
∗ := φk (x,y)−h(x)H ′ (y) .

Let σ0 > 0 be a fixed small constant and y0 (x) := σ0 min{|x− t1| , |x− t2|}+ 10.
Consider the region

E := {(x,y) : x ∈ (t1, t2) ,y ∈ (−y0 (x) ,y0 (x))} .

Let ρ be a cutoff function such that ρ = 0 in R2\E, and ρ = 1 in

{(x,y) : x ∈ (t1 +1, t2−1) ,y ∈ (−y0 (x)+1,y0 (x)−1)} .

Define υ = ρυ∗. Observe that although υ is not necessary orthogonal to H ′, we
still have ∫

R2
υ (x,y)H ′ (y)dy =

∫ [
φk (x,y)−h(x)H ′ (y)

]
ρdy

= O(exp(−δ min{|x− t1| , |x− t2|})) .

By the decay estimate (6.3) of φk, we have

−∆υ−υ cosH (y) = O(exp(−δ min{|x− t1| , |x− t2|})) .

Applying the estimates established in Lemma 3.5 of [12], reducing δ if necessary,
we get

(6.6) |υ | ≤C exp(−δ min{|x− t1| , |x− t2|}) .

Estimates (6.3) ,(6.5) and (6.6) tell us that(enlarging the constant r0 if necessary)

‖φk‖L∞(Ω) ≥ α,

where α is some positive constant independent of k.
To prove the lemma, we assume to the contrary that for a sequence kn → +∞,

the eigenvalues λkn (ukn) were tending to 0. We still denote kn by k and λkn (ukn) by
λk (uk) .

Suppose for some constant α > 0, an index pair (ı̄, j̄) satisfies

‖φk‖L∞(Br0(zı̄, j̄))
≥ α > 0 for all k.

Then the function φk
(
z− zı̄, j̄

)
converges to a nontrivial bounded kernel βı̄, j̄ of the

operator −∆− cos g̃ı̄, j̄, where g̃ı̄, j̄ is the four-end solution centered at the origin
obtained from suitable translation of gı̄, j̄. We would like to analyze the asymptotic
behavior of φk around zı̄, j̄ in a more precise way.
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To simplify the notation, we assume zı̄, j̄ = 0. After a possible rotation, the four-
end solution g̃ı̄, j̄ has the form

4arctan
pcosh(qy)
qcosh(px)

−π,

where p,q are positive constants with p2 +q2 = 1. Then by the L∞-nondegeneracy
of four-end solutions, βi, j = τ1∂xg̃ı̄, j̄+τ2∂yg̃ı̄, j̄, for some constants τ1,τ2. The nodal
curve of g̃ı̄, j̄ in the first quadrant is asymptotic to the line

l1 : qy− px = ln
q
p
.

The ends in the second, third and fourth quadrants are asymptotic to l2, l3, l4 re-
spectively, where

l2 : qy+ px = ln
q
p
,

l3 :−qy− px = ln
q
p
,

l4 :−qy+ px = ln
q
p
.

Without loss of generality, we assume p < q. The case of p ≥ q is similar. The
line l1 intersects with the y-axis at the point

(
0, 1

q ln q
p

)
. This point will be denoted

by P+. The intersection point of the line l3 with the y axis will be denoted by
P− :=

(
0,−1

q ln q
p

)
. We also introduce the coordinate system (x1,y1) adapted to

the end in the first quadrant, where the x1 axis is on l1, and the y1 axis is orthogonal
to l1. Hence the angle between x and x1 axes is equal to arctan p

q , which is also
equal to the angle between the y and y1 axis. The origin of the (x1,y1) coordinate
system will be the point P+. Similarly, for j = 2,3,4, we have the coordinate system
(x j,y j) corresponding to the end in the j-th quadrant, where the x j axis is on l j. The
origin of (x2,y2)-system is P+, while the origin of (x3,y3) and (x4,y4) systems is
P−.

By the linear decomposition lemma(Lemma 4.2 of [11]), or using the explicit
formula of the four-end solutions, there exists constant δ > 0, such that∣∣∂xg̃ı̄, j̄ +qH ′ (y1)

∣∣+ ∣∣∂yg̃ı̄, j̄− pH ′ (y1)
∣∣≤C exp(−δx1) , in the first quadrant.

Hence in this region,

(6.7) βı̄, j̄ = (−τ1q+ τ2 p)H ′ (y1)+O(exp(−δx1)) .

Similar asymptotic behavior holds in other quadrants. Let us list them below for
later purpose.

βı̄, j̄ = (τ1q+ τ2 p)H ′ (y2)+O(exp(−δx2)) , in second quadrant,

βı̄, j̄ = (τ1q− τ2 p)H ′ (y3)+O(exp(−δx3)) , in third quadrant,

βı̄, j̄ = (−τ1q− τ2 p)H ′ (y4)+O(exp(−δx4)) , in fourth quadrant.

We also set a1 :=−τ1q+τ2 p, a2 := τ1q+τ2 p, a3 := τ1q−τ2 p, a4 :=−τ1q−τ2 p.
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By the end-to-end construction(see the construction of the kernel ξk at the end
of the proof of this lemma), there exists a solution γk solving

(6.8) −∆γk− γk cosuk = 0,

such that for some constant δ > 0,
∣∣γk−βı̄, j̄

∣∣≤C exp(−δk) in Bk
(
zı̄, j̄
)
. The bound

exp(−δk) essentially follows from the estimate (6.1) . Recall that

(6.9) −∆φk−φk cosuk =−λ
2
k φk.

If we denote the outward normal derivative with respect to the boundary of the ball
Bk := Bk

(
zı̄, j̄
)

by ∂ν , then from (6.8) and (6.9) , we deduce

(6.10) λ
2
k =

∫
∂Bk

(γk∂νφk−φk∂νγk)∫
Bk
(φkγk)

.

For j = 1, ...,4, in the j-th quadrant, by (6.4) and (6.6) ,

(6.11) φk =
[
bk, j exp(−λkx j)+mk, j exp(λkx j)

]
H ′ (y j)+ζ j (x,y) ,

where bk, j,mk, j are constants depending on k and∣∣ζ j
∣∣≤C exp(−δx j) , in j-th quadrant.

We emphasize that in the decomposition of the form (6.11) , the constants bk, j,mk, j
may not be uniquely determined and may not be uniformly bounded with respect
to k. However, we know that as k→ +∞, around zı̄, j̄, φk → βı̄, j̄ and λk → 0. This
implies that as k→+∞,

bk, j +mk, j→ a j, for j = 1, ...,4.

Recall that the minimal distance between points kωi, j is equal to 2k. Using the
asymptotic behavior of βı̄, j̄ and (6.11) , we have
(6.12)∫

∂Bk

(γk∂νφk−φk∂νγk)=
4

∑
j=1

(
a jλk

[
−bk, j exp(−λkk)+mk, j exp(λkk)

])
+O(exp(−δk)) .

On the other hand, still by (6.7) and (6.11) , we have
(6.13)∫

Bk

(φkγk) = λ
−1
k

4

∑
j=1

(
a j
[
−bk, j (exp(−λkk)−1)+mk, j (exp(λkk)−1)

])
+O(1) .

To simplify the notation, let us set

M :=
4

∑
j=1

(
a j
[
−bk, j exp(−λkk)+mk, j exp(λkk)

])
,

and

(6.14) N :=
4

∑
j=1

(
a j
(
bk, j−mk, j

))
.
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Using these notations and (6.12) ,(6.13) , we see from the identity (6.10) that

λ
2
k =

λkM+O(exp(−δk))
λ
−1
k M+λ

−1
k N +O(1)

.

This implies that

(6.15) N = λ
−1
k O(exp(−δk))+o(1) .

Claim: λkk→ 0 as k→+∞.
To prove this claim, we assume to the contrary that the claim were not true.

Then we can find a subsequence, still denoted by λk, such that λk ≥ c1k−1 for some
fixed positive constant c1. Then by (6.15) ,

(6.16) N→ 0, as k→+∞.

Note that for each index pair (i0, j0) , we can associate to it the corresponding
quantity N, which satisfies (6.16) . To make things more rigorous, let us introduce
some notations.

For any index pair (i, j) , we have the rescaled lines kLi,kL j introduced at the
beginning of this section. They intersect at the point kωi, j. We also designate a
direction for each of these lines. We know that around the point zi, j, we have
put the four-end solution gi, j, as a building block for the approximate solution for
uk. As k → +∞, φk (z− zi, j) tends to a kernel βi, j of the operator −∆− cos g̃i, j.
Previous analysis tells us that along the four ends of g̃i, j, we can associate the data
a j,bk, j,mk, j. To distinguish between different intersection points, we write those
“a” part of the data as a∗i,+, j and a∗i,−, j. More precisely, a∗i,+, j will be the “a” along
the end of g̃i, j corresponding to the positive direction of kLi, while a∗i,−, j will be the
“a” along the end of g̃i, j corresponding to the negative direction of kLi. Similarly,
we have b∗i,+, j,m

∗
i,+, j and b∗i,−, j,m

∗
i,−, j, which actually depend on k. We also point

out that some of a∗i,±, j could be zero.
For each fixed j = 1, ...,n, we associate the following quantities to the line kL j :

Pj := ∑
i 6= j

[
a∗j,+,i

(
b∗j,+,i−m∗j,+,i

)
+a∗j,−,i

(
b∗j,−,i−m∗j,−,i

)]
,

Q j := ∑
i 6= j

[
a∗i,+, j

(
b∗i,+, j−m∗i,+, j

)
+a∗i,−, j

(
b∗i,−, j−m∗i,−, j

)]
.

Summing up the identities (6.16) for all index pairs (i, j) , we find that as k→+∞,

n

∑
l=1

Ql → 0.

There are two possible cases.
Case 1. There exist constant σ > 0, and index j0, both independent of k, such

that Q j0 > σ for all k large.
In this case, summing up the identities (6.16) for all index pairs of the form

(i, j0) , we find that

(6.17) Pj0 ≤−
σ

2
, for k large.
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We can relabel the indices such that j0 = n, and the intersection points ω1,n, ...,ωn−1,n
are in the order consistent with the positive kLn direction. Fix an index i and write
the line segment connecting kωi,n with kωi+1,n as L∗. For the four-end solution gi,n,
the coordinate system adapted to its end corresponding to L∗ will be written as
(xi,yi) . For the four-end solution gi+1,n, the coordinate system adapted to its end
corresponding to L∗ will be written as (xi+1,yi+1) . As we have analyzed above,
around L∗, the main order(the part parallel to H ′) of φk in the (xi,yi)-coordinate
has the form [

b∗n,+,i exp(−λkxi)+m∗n,+,i exp(λkxi)
]

H ′ (yi) ;

while the main order of φk in (xi+1,yi+1)-coordinate has the form[
b∗n,−,i+1 exp(−λkxi+1)+m∗n,−,i+1 exp(λkxi+1)

]
H ′ (yi+1) .

Choose any point on L∗ and let di be the sum of its xi and xi+1 coordinates. Note
that di = O(k) . Then we have the following relation:

(6.18) b∗n,+,i = m∗n,−,i+1 exp(diλk) .

Similarly,
b∗n,−,i+1 = m∗n,+,i exp(diλk) .

It follows that

b∗2n,+,i−m∗2n,+,i +b∗2n,−,i+1−m∗2n,−,i+1

=
(
m∗2n,+,i +m∗2n,−,i+1

)
(exp(2diλk)−1) .(6.19)

In view of the fact that b∗n,+,i +m∗n,+,i = a∗n,+,i +o(1), we obtain

a∗n,+,i
(
b∗n,+,i−m∗n,+,i

)
= b∗2n,+,i−m∗2n,+,i +o

(∣∣b∗n,+,i−m∗n,+,i

∣∣) ,
= b∗2n,+,i−m∗2n,+,i +o(1)

(
1+
∣∣m∗n,+,i

∣∣) ,
and

a∗n,−,i
(
b∗n,−,i−m∗n,−,i

)
= b∗2n,−,i−m∗2n,−,i +o(1)

(
1+
∣∣m∗n,−,i∣∣) .

Here we remark that under the assumption that λk ≥ c1k−1, we can actually show
that m∗i,±, j are uniformly bounded with respect to k. But the proof below does not
need this.

Now by (6.19) , for the line kLn, we have

Pn = ∑
i 6=n

[
a∗n,+,i

(
b∗n,+,i−m∗n,+,i

)
+a∗n,−,i

(
b∗n,−,i−m∗n,−,i

)]
=

n−2

∑
i=1

[(
m∗2n,+,i +m∗2n,−,i+1

)
(exp(2diλk)−1)

]
+
(
b∗2n,−,1−m∗2n,−,1

)
+
(
b∗2n,+,n−1−m∗2n,+,n−1

)
+o(1)

n−1

∑
i=1

(
1+
∣∣m∗n,+,i

∣∣+ ∣∣m∗n,−,i∣∣) .(6.20)
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Due to the fact that φk decays to zero at infinity, there holds m∗n,−,1 = m∗n,+,n−1 = 0.
It follows that

b∗2n,−,1−m∗2n,−,1 +b∗2n,+,n−1−m∗2n,+,n−1

= a∗2n,−,1 +a∗2n,+,n−1 +o(1) .

Therefore using the assumption that λk ≥ c1k−1, we get

exp(2diλk)−1≥ exp
(
2c1dik−1)−1≥ c2 > 0

for some fixed constant c2 and thus liminfk→+∞ Pn≥ 0. This contradicts with (6.17)
and hence Case 1 can’t happen.

Case 2. For any index l, Ql → 0 as k→+∞.
In this case, we should have

(6.21) lim
k→+∞

Pl = 0, for any fixed index l.

On the other hand, we still have identities similar to the form (6.20) , for any line
kL j. In view of the assumption that ‖φk‖L∞ = 1, we know that for at least one index
pair (i0, j0) , the constant a j0,+,i0 is nonzero. Without loss of generality, we assume
j0 = n.

If a∗n,−,1 is nonzero, by (6.20) , we have liminfk→+∞ Pn > 0, which contradicts
with (6.21) . If a∗n,−,1 = 0, then we consider m∗n,+,1. There are two possible sub-
cases.

Subcase 1. Up to a subsequence,
∣∣∣m∗n,+,1

∣∣∣ ≥ α0 > 0, where α0 is a constant
independent of k.

In this subcase, still by (6.20) , we have liminfk→+∞ Pn > 0, which again contra-
dicts with (6.21) .

Subcase 2. m∗n,+,1→ 0 as k→+∞.
In this subcase, using the fact that a∗n,+,1 = a∗n,−,1 = 0, we have b∗n,+,1 → 0 as

k→ +∞. Hence m∗n,−,2 also tends to 0, by (6.18) . Now instead of a∗n,−,1, we can
consider a∗n,−,2. If a∗n,−,2 is nonzero, then we again get a contradiction by using
(6.20) .

This procedure can be repeated until we arrive at an,−,i0 and get a contradiction.
Hence Case 2 can’t happen. The Claim is then proved.

Let c be a fixed large constant. With the information on λk at hand, next we
would like to prove: there exists a function ξk satisfying ‖ξk‖L∞ <+∞,

‖ξk−φk‖L∞(Bck)
= o(1) ,

and

(6.22) −∆ξk−ξk cosuk = 0.

The proof of this fact will be based on the end-to-end construction. Let us explain
it in the sequel. More details about the end-to-end construction can be found in
Section 3 of [40].
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We recall that around each zi, j, the sequence of functions φk (z− zi, j) converges
to βi, j, where βi, j is bounded and

−∆βi, j−βi, j cos g̃i, j = 0.

Up to a rotation of the coordinate system, we can choose positive direction e j =
(e j,1,e j,2) for each line kL j such that e j,1 > 0. We also assume

∣∣e j
∣∣= 1 and e j,2 <

e j+1,2 for all j. For each fixed index j, the line kL j intersects with other n−1 lines.
The one with the rightmost intersection point with kL j will be denoted by kLι j . The
ends of uk in the right half plane are asymptotic to the lines kL j, j = 1, ...,n. For
the functions βι j, j, recall that we have introduced the constants a j,+,ι j .

Let ε > 0 be a small parameter. Let kL j,ε be the line obtained by parallel trans-
lation of kL j in the direction orthogonal to e j with a distance equal to ε

∣∣a j,+,ι j

∣∣ .
If a j,+,ι j is positive, then kL j,ε is above kL j, and if a j,+,ι j is negative, then kL j,ε
will be below kL j. By the end-to-end construction, there exists a solution uk,ε to
the equation−∆uk,ε = sinuk,ε , whose ends in the right half plane are asymptotic to
the lines kL j,ε , j = 1, ...,n. This construction relies on the fact that we can consec-
utively adjust the centers of the four-end solutions according to the new set of lines
kL j,ε , from right to left. Let us define

ξk := lim
ε→0

uk,ε −uk

ε
.

Then ξk is the desired function. To see this, we first observe that by the construc-
tion, ξk satisfies (6.22) and has the same asymptotic behavior as βι j, j along the end
kL j in the positive kL j direction. Note that for any bounded kernel of the four-
end solution, its asymptotic behavior(the part parallel to H ′) at infinity is deter-
mined by its asymptotic behavior along two of its ends. The estimate λk = o

(
k−1
)

tells us that away from the centers of gi, j, the projection of φk onto H ′ is not too
far from a constant, indeed, its error is of the order o(1) . We then deduce that
‖φk−ξk‖L∞(Bck)

= o(1) . It remains to prove that ξk is bounded. To show this, let
us recall that uk is equal to Un with suitable parameters p j,q j,η

0
j . We then con-

sider the solutions Un,ε with the same p j,q j as Un, and with η0
j,ε being close to η0

j ,
chosen in such a way that the ends of Un,ε in the right half plane is asymptotic to
kL j,ε . Then we define the function

ξ
∗
k := lim

ε→0

Un,ε −Un

ε
.

Since the ends of Un,ε in the left half plane is also parallel to kL j, j = 1, ...,n, we see
that

∥∥ξ ∗k
∥∥

L∞ <+∞. Now we consider the function Φ := ξk−ξ ∗k . Then Φ(x,y)→ 0,
along the ends of uk in the right half plane. Then by the proof of nondegener-
acy in Section 4, Φ = 0. The fact that Φ = 0 can also be proved in the following
way. We know that the dimension of the kernel of the operator −∆− cosuk in
the space of functions with at most linearly growing rate along each end is equal
to 2n, which follows from the nondegeneracy of Un. On the other hand, differen-
tiating Un with respect to q j yields a kernel linearly growing along kL j, both in
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the positive and negative directions. These provides us with n-linearly indepen-
dent unbounded kernels. We also observe that differentiating Un with respect to η0

j
yields bounded kernel which does not decay to zero along kL j, both in the posi-
tive and negative directions. Hence Φ has to be zero. We then conclude that ξk is
bounded and hence is the desired function. Note that there is a delicate issue here.
Namely we are not choosing ξk to be ξ ∗k directly, because at the beginning we don’t
have very precise asymptotic behavior of ξ ∗k and we can’t immediately infer that∥∥ξ ∗k −φk

∥∥
L∞ = o(1) . This is why we use the end-to-end construction to get better

asymptotic behavior of ξk.
Along each end, φk decays to zero, let (x,y) be the coordinate adapted to this

end, then φk has the form

φk = bk exp(−λkx)H ′ (y)+O(d(z,∪zi, j)) .

Along this same end,

ξk = akH ′ (y)+O(d(z,∪zi, j))

Moreover, using the properties of ξk, we have bk − ak → 0. We also know that
there exists at least one end such that the corresponding |ak| is bounded away from
0 uniformly with respect to k. We then compute that

∫
R2 (ξkφk)> 0, which implies

λk = 0. We remark that one can also use similar arguments as that of the proof
of the claim proved above to conclude directly that λk = 0(here one uses the fact
that along each end, the m∗ part of the function φk vanishes). In any case, this
contradicts with −λ 2

k < 0. Hence the lemma is proved. �

Lemma 37. The Morse index of uk is at most n(n−1)/2 for k large.

Proof. Suppose to the contrary that there were n(n−1)/2+ 1 negative eigenval-
ues(counted with multiplicity), with corresponding eigenfunctions φk, j, j = 1, ...,
n(n−1)/2+ 1, normalized such that

∥∥φk, j
∥∥

L2(R2)
= 1, and

∫
R2

(
φk,iφk, j

)
= 0 for

i 6= j.
For each index l and index pair (i0, j0) , as k → +∞, the sequence ϕk (·) :=

φk,l (·− zi0, j0) converges, up to a subsequence, to a function ϕ∞, satisfying

−∆ϕ∞−ϕ∞ cos g̃i0, j0 = σi0, j0ϕ∞,

where σi0, j0 is the unique negative eigenvalue of the operator −∆− cos g̃i0, j0 . Note
that ϕ∞ could be the trivial zero function. However, for at least one index pair, it
will be nontrivial.

Let η∗i, j be the function introduced in Lemma 35. Let d(p,∪zi, j) be the distance
of a point p to the set of all points zi, j, i, j = 1, ...,n, i 6= j. For each fixed index l, up
to a subsequence, we can assume that for some constants αi, j,l, i, j = 1, ...,n, i 6= j,
independent of k, and some δ > 0,

φk,l (z) = ∑
i, j,i 6= j

(
αi, j,lη

∗
i, j
)
+ϖl (z)exp(−δd(z,∪zi, j)) ,

where ‖ϖl‖L∞(R2)→ 0 as k→ +∞. Observe that there exist constants cs,s = 1, ...,
n(n−1)/2+1, at least one of them being nonzero, such that for each fixed index
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pair (i, j) ,
n(n−1)/2+1

∑
s=1

αi, j,scs = 0.

Hence
n(n−1)/2+1

∑
s=1

csφk,s =
n(n−1)/2+1

∑
s=1

(csϖs (z)exp(−δd(z,∪zi, j))) .

Since φk,i and φk, j are L2-orthogonal to each other for i 6= j, the L2 norm of the left

hand side is equal to

√√√√n(n−1)/2+1

∑
s=1

c2
s > 0; while the L2 norm of the right hand side

tends to 0 as k→ +∞. This is a contradiction. Hence the Morse index of uk can’t
be greater than n(n−1)/2 for k large.

We remark that from technical point of view, there is an alternative way to prove
this lemma. That is, firstly, one can perturb the function η∗i, j into a true eigen-
function η̂i, j using implicit function theorem. Then one can show that any eigen-
function corresponding to a negative eigenvalue can’t be orthogonal to all these
eigenfunctions η̂i, j. �

Proof of Proposition 34. We have proved that the Morse index of uk is equal to
n(n−1)/2 if k is large. Now observe that any 2n-end solution Un can be deformed
to a solution of the above form, through a family of 2n-end solutions. As we
proved in Section 4, all the solutions in this family are L∞-nondegenerate. Due to
the continuous dependence of the eigenfunction upon this deformation, the Morse
indices of all these solutions have to be same. This implies that the Morse index of
any 2n-end solutions is equal to n(n−1)/2. �

Proof of Theorem 3. Proposition 25 tells us that any 2n-end solution is belong to
the family Un. All solutions in this family are L∞-nondegenerate and this family has
2n free parameters. Hence the set M2n of the 2n-end solutions is a 2n dimensional
manifold. Proposition 34 tells us that their Morse index is equal to n(n−1)/2.
This finishes the proof of Theorem 3. �
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