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Abstract. For each positive integer n ≤ 34, we construct traveling waves with small speed for5
the Gross-Pitaevskii equation, by gluing n(n+1)/2 pairs of degree ±1 vortice of the Ginzburg-Landau6
equation. The location of these vortice is symmetric in the plane and determined by the roots of7
a special class of Adler-Moser polynomials, which are originated from the study of Calogero-Moser8
system and rational solutions of the KdV equation. The construction still works for n > 34, under9
the additional assumption that the corresponding Adler-Moser polynomials have no repeated roots.10
It is expected that this assumption holds for any n ∈ N.11
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1. Introduction and statement of the main results. The Gross-Pitaevskii14

(GP for short) equation arises as a model equation in Bose-Einstein condensate as15

well as various other related physical contexts. It has the form16

(1.1) i∂tΦ = ∆Φ + Φ
(

1− |Φ|2
)
, in R2 × (0,+∞) ,17

where Φ is complex valued and i represents the imaginary unit. For traveling wave18

solutions of the form U (x, y − εt) , the GP equation becomes19

(1.2) − iε∂yU = ∆U + U
(

1− |U |2
)
, in R2.20

In this paper, we would like to construct multi-vortex type solutions of (1.2) when the21

speed ε is close to zero. Note that when the parameter ε = 0, equation (1.2) reduces22

to the well-known Ginzburg-Landau equation:23

(1.3) ∆U + U
(

1− |U |2
)

= 0, in R2.24

Let us use (r, θ) to denote the polar coordinate of R2. For each d ∈ Z\ {0} , it is25

known that the Ginzburg-Landau equation (1.3) has a degree d vortex solution, of26

the form Sd (r) eidθ. The function Sd is real valued and vanishes exactly at r = 0. It27

satisfies28

−S′′d −
1

r
S′d +

d2

r2
Sd = Sd

(
1− S2

d

)
, in (0,+∞) .29

This equation has a unique solution Sd satisfying Sd (0) = 0 and Sd (+∞) = 1 and30

S′ (r) > 0. See [22, 27] for a proof. The “standard” degree ±1 solutions S1 (r) e±iθ31

are global minimizers of the Ginzburg-Landau energy functional(For uniqueness of the32

global minimizer, see [37, 45]). When |d| > 1, these standard vortice are unstable([36,33
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2 Y. LIU, J. WEI

31]). It is also worth mentioning that for |d| > 1, the uniqueness of degree d vortex34

Sd (r) eidθ in the class of solutions with degree d is still an open problem. We refer35

to [7, 43, 44] and the references therein for more discussion on the Ginzburg-Landau36

equation.37

Obviously the constant 1 is a solution to the equation (1.2). We are interested in38

those solutions U with39

U(z)→ 1, as |z| → +∞.40

The existence or nonexistence of solutions to (1.2) with this asymptotic behavior41

has been extensively studied in the literature. Jones, Putterman, Roberts([28, 29])42

studied it from the physical point of view, both in dimension two and three. It turns43

out that the existence of solutions is related to the traveling speed ε. When ε ≥
√

244

(the sound speed in this context), nonexistence of traveling wave with finite energy45

is proved by Gravejat in [24, 25]. On the other hand, for ε ∈
(
0,
√

2
)
, the existence46

of traveling waves as constrained minimizer is studied by Bethuel, Gravejat, Saut47

[10, 12], by variational arguments. For ε close to 0, these solutions have two vortice.48

The existence issue in higher dimension is studied in [11, 15, 16]. We also refer to49

[9] for a review on this subject. Recently, Chiron-Scheid [14] performed numerical50

simulation on this equation. We also mention that as ε tends to
√

2, a suitable51

rescaled traveling waves will converge to solutions of the KP-I equation([8]), which52

is a classical integrable system. In a forthcoming paper, we will construct transonic53

traveling waves based on the lump solution of the KP-I equation.54

Another motivation for studying (1.2) arises in the study of super-fluid passing55

an obstacle. Equation (1.2) is the limiting equation in the search of vortex nucleation56

solution. We refer to the recent paper [33] for references and detailed discussion.57

To simplify notations, we write the degree ±1 vortex solutions of the Ginzburg-58

Landau equation (1.3) as59

v+ = eiθS1 (r) , v− = e−iθS1 (r) .60

In this paper, we construct new traveling waves for ε close to 0, using v+, v− as basic61

blocks. Our main result is62

Theorem 1.1. For each n ≤ 34, there exists ε0 > 0, such that for all ε ∈ (0, ε0) ,63

the equation (1.2) has a solution Uε which has the form64

Uε =

n(n+1)/2∏
k=1

(
v+

(
z − ε−1pk

)
v−
(
z + ε−1pk

))
+ o (1) ,65

where pk, k = 1, ..., n (n+ 1) /2 are the roots of the Adler-Moser polynomial An defined66

in the next section, and o (1) is a term converging to zero as ε→ 0.67

Remark 1.2. The case n = 1 corresponds to the two-vortex solutions constructed68

by variational method ([12]) as well as reduction method ([32]). For large n, Uε69

are higher energy solutions which have been observed numerically in [14]. It is also70

possible to construct families of traveling wave solutions using higher degree vortice71

of the Ginzburg-Landau equation under suitable nondegeneracy assumption of these72

vortice.73

Remark 1.3. For general n, the theorem remains true under the additional as-74

sumption that An has no repeated roots. The condition n ≤ 34 is only technical. In75

this case, we can verify, using computer software, that the Adler-Moser polynomial76
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MULTI-VORTEX TRAVELING WAVES 3

An has no repeated roots. We also know that if An−1 and An have no common roots,77

then An has no repeated roots. On a usual personal laptop, it takes around 5 hours78

to compute the common factors of A33 and A34 using Maple. It is possible to develop79

faster algorithms to verify this for large n(for instance, using the recursive identity80

(2.5) to compute the Adler-Moser polynomials, instead of computing the Wronskian81

(2) directly), but we will not pursue this here. We conjecture that the special Adler-82

Moser polynomial An(as constructed in this paper) has only simple roots for all n.83

Remark 1.4. If An has repeated roots(For instance, suppose p is a root of multi-84

plicity j > 1, and other roots are simple), to do the construction, we then have to put85

a degree j vortex at the point ε−1p. However, we still don’t know the nondegeneracy86

of higher degree vortice(although they are believed to be nondegenerated). Hence in87

this paper we need the assumption that An has no repeated roots.88

Our method is based on finite dimensional Lyapunov-Schmidt reduction. We89

show that the existence of multi-vortex solutions is essentially reduced to the study of90

the nondegeneracy of a symmetric vortex-configuration. To show this nondegeneracy,91

we use the theory of Adler-Moser polynomials and the Darboux transformation. An92

interesting feature of the solutions in Theorem 1.1 is that the vortex location has a93

ring-shaped structure for large n, see Figure 1. The emergence of this remarkable94

property still remains mysterious.95

In Section 2, we introduce the Adler-Moser polynomials and prove the nondegen-96

eracy of the symmetric configuration. In Section 3, we recall the linear theory of the97

degree one vortex of the Ginzburg-Landau equation. In Section 4, we use Lyapunov-98

Schmidt reduction to glue the standard degree one vortice together and get a traveling99

wave solution for sufficiently small ε > 0.100

Acknowledgement Y. Liu is partially supported by “The Fundamental Re-101

search Funds for the Central Universities WK3470000014,” and NSFC grant 11971026.102

J. Wei is partially supported by NSERC of Canada. Part of this work is finished while103

the first author is visiting the University of British Columbia in 2017. He thanks the104

institute for the financial support. Both authors thank Professor Fanghua Lin for105

stimulating discussions and suggestions.106

2. Vortex location and the Adler-Moser polynomials. Adler-Moser[1] has107

studied a set of polynomials corresponding to rational solutions of the KdV equa-108

tion. Around the same time, it is found that these polynomials are related to the109

Calogero-Moser system [2]. It turns out that the Adler-Moser polynomials also have110

deep connections to the vortex dynamics with logarithmic interaction energy. This111

connection is first observed in [6], and later studied in [3, 4, 5, 17, 30]. It is worth112

pointing out that Vortex configuration for more general systems have been studied113

in [21, 34, 38, 39, 40] using polynomial method and from integrable system point of114

view. On the other hand, periodic vortex patterns have been investigated in [26]. See115

also the references cited in the above mentioned papers. While the above mentioned116

results mainly focus on the generating polynomials of those point vortice, we haven’t117

seen much work on the application of these results to a PDE problem, such as GP118

equation. One of our aims in this paper is to fill this gap. In this section, we will first119

recall some basic facts of these polynomials and then analyze some of their properties,120

which will be used in our construction of the traveling wave for the GP equation.121

Let p1, ..., pk designate the position of the positive vortice and q1, ..., qm be that122

of the negative ones. In general, pj and qj are complex numbers. Let µ ∈ R be a123

fixed parameter. As we will see later, the vortex location of the traveling waves will124
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4 Y. LIU, J. WEI

be determined by the following system of equations125

(2.1)


∑
j 6=α

1
pα−pj −

∑
j

1
pα−qj = µ, for α = 1, ..., k,∑

j 6=α

1
qα−qj −

∑
j

1
qα−pj = −µ, for α = 1, ...,m.

126

Adding all these equation together, we find that if µ 6= 0, then m = k(In the case of127

µ = 0, this is no longer true). That is, the number of positive vortice has to equal that128

of the negative vortice. Solutions of this system(see for instances [5]) are related to the129

Adler-Moser polynomials. To explain this, let us define the generating polynomials130

P (z) =
∏
j

(z − pj) , Q (z) =
∏
j

(z − qj) .131

If pj , qj satisfy (2.1) , then we have(see equation (68) of [5], or equation (3.8) of [17])132

(2.2) P ′′Q− 2P ′Q′ + PQ′′ = −2µ (P ′Q− PQ′) .133

This equation is usually called generalized Tkachenko equation. Setting ψ (z) = P
Qe

µz,134

we derive from (2.2) that135

ψ′′ + 2 (lnQ)
′′
ψ = µ2ψ.136

This is a one dimensional Schrodinger equation with the potential 2 (lnQ)
′′
. It is137

well known that this equation appears in the Lax pair of the KdV equation. Hence138

equation (2.2) is naturally related to the theory of integrable systems.139

For any z ∈ C, we use z̄ to denote its complex conjugate. To simplify the notation,140

we also write −z̄ as z∗. Note that this is just the reflection of z across the y axis. Let141

K = (k2, ...) , where ki are complex parameters. Following [17], we define functions142

θn, depending on K, by143

+∞∑
n=0

θn (z;K)λn = exp

zλ− ∞∑
j=2

kjλ
2j−1

2j − 1

 .144

Note that θn is a degree n polynomial in z and θ′n+1 = θn. Let cn =
n∏
j=1

(2j + 1)
n−j

.145

For each n ∈ N, the Adler-Moser polynomials are then defined by146

Θn (z,K) := cnW (θ1, θ3, ..., θ2n−1) ,147

where W (θ1, θ3, ..., θ2n−1) is the Wronskian of θ1, ..., θ2n−1. In particular, the degree148

of Θn is n (n+ 1) /2. The constant cn is chosen such that the leading coefficient of149

Θn is 1. Note that this definition is slightly different from that of Adler-Moser[1](The150

parameter τi in that paper is different from ki here). We observe that for a given µ,151

Θn depends on n−1 complex parameters k2, ..., kn. This together with the translation152

in z give us a total of n complex parameters.153

Let µ be another parameter, the modified Adler-Moser polynomial Θ̃ is defined154

by155

Θ̃n (z, µ,K) := cne
−µzW (θ1, θ3, ..., θ2n−1, e

µz) .156

It is still a polynomial in z with degree n (n+ 1) /2.157

Let K̃ =
(
k2 + µ−3, k3 + µ−5, ..., kn + µ−2n+1

)
. The following result, pointed out158

without proof in [17], will play an important role in our later analysis.159
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MULTI-VORTEX TRAVELING WAVES 5

Lemma 2.1. The Adler-Moser and modified Adler-Moser polynomials are related160

by161

Θ̃n (z, µ,K) = µnΘn

(
z − µ−1, K̃

)
.162

Proof. We sketch the proof for completeness. First of all, direction computation163

shows that164

+∞∑
n=0

θn (z;K)λn =

√
1 + µ−1λ

1− µ−1λ

+∞∑
n=0

θn

(
z − µ−1; K̃

)
λn.165

From this we obtain166

µ−1
+∞∑
n=0

θn−1 (z;K)λn = µ−1λ

√
1 + µ−1λ

1− µ−1λ

+∞∑
n=0

θn

(
z − µ−1; K̃

)
λn.167

Hence using the fact that θ′n = θn−1, we get168

+∞∑
n=0

(
θn (z;K)− µ−1θ′n (z;K)− θn

(
z − µ−1; K̃

))
λn169

=

(√
1 + µ−1λ

1− µ−1λ
− 1− µ−1λ

√
1 + µ−1λ

1− µ−1λ

)
+∞∑
n=0

θn

(
z − µ−1; K̃

)
λn.170

171

We observe that172 √
1 + µ−1λ

1− µ−1λ
− 1− µ−1λ

√
1 + µ−1λ

1− µ−1λ
=
√

1− µ−2λ2 − 1.173

The Taylor expansion of this function contains only even powers of λ. Hence for odd174

n, θn (z;K)−µ−1θ′n (z;K)− θn
(
z − µ−1; K̃

)
can be written as a linear combination175

of θk

(
z − µ−1; K̃

)
with k being odd. The desired identity then follows.176

The next result, which essentially follows from Crum type theorem, reveals the177

relation of the Adler-Moser polynomial with the vortex dynamics([5], see also Theorem178

3.3 in [17]).179

Lemma 2.2. The functions Q = Θn (z,K) , P = Θ̃n (z, µ,K) satisfy (2.2) .180

By definition, θn is a polynomial in z. A general degree m term in this polynomial181

has the form kl22 · · ·k
lj
j z

m. We define the index of this term to be (−1)
l2+...+lj+m . We182

now prove the following183

Lemma 2.3. For each term of θ2n+1, its index is −1.184

Proof. Let kl22 · · · k
lj
j z

m be a degree m term in θ2n+1. By Taylor expansion of185

the generating function and using the fact that 2n + 1 is odd, this term comes from186

functions of the form,187

1

α!

zλ− ∞∑
j=2

kjλ
2j−1

2j − 1

α

,188

where α is an odd integer. Hence l2 + ...+ lj = α−m. Then the index is (−1)
α

= −1.189
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Lemma 2.4. For each term of Θn, its index is equal to (−1)
n(n+1)

2 .190

Proof. Let us consider a typical term of Θn, say θ1θ
′
3...θ

(n−1)
2n−1 , where the notation191

(n− 1) represents taking n−1-th derivatives. By Lemma 2.3, terms in θ
(j)
k have index192

(−1)
1+j

. Hence the index of terms in θ1θ
′
3...θ

(n−1)
2n−1 is (−1)

1+2+...+n
= (−1)

n(n+1)
2 . This193

finishes the proof.194

Let t be another parameter, we introduce the notation195

Θn,t (z,K) := Θn (z − t,K) .196

For any polynomial φ (with argument z), we use R (φ) to denote the set of roots of197

φ. We have the following198

Lemma 2.5. Suppose µ is a real number. Assume t = −µ2 and kj = − 1
2µ

2j−1 for199

j = 2, .... Then200

(Θn,t (z,K))
∗

= (−1)
n(n+1)

2 +1
Θ̃n,t

(
z∗, µ−1,K

)
.201

As a consequence, in this case, the reflection of R (Θn,t (z,K)) across the y axis is202

R
(

Θ̃n,t

(
z, µ−1,K

))
, and R (Θn,t (z,K)) is invariant respect to the reflection across203

the x axis.204

Proof. By Lemma 2.4, for each term f = ki11 · · · k
ij
j (z − t)m of the function205

Θn,t (z,K), there is a corresponding term k̃i11 · · · k̃
ij
j (z∗ − t− µ)

m
in Θ̃n,t

(
z∗, µ−1,K

)
,206

denoted by g. Due to the choice of kj , we have207

k̃j = −kj .208

By Lemma 2.4, the index of ki11 · · · k
ij
j z

m is (−1)
n(n+1)

2 . Hence using the fact that µ209

is real, we get210

f∗ = −ki11 · · · k
ij
j (−z∗ − t)m211

= (−1)
1+i1+...+ij+m k̃i11 · · · k̃

ij
j (z∗ + t)

m
212

= (−1)
n(n+1)

2 +1
g.213214

This completes the proof.215

In the sequel, for simplicity, we shall choose µ = 1 and t = kj = − 1
2 . Let us denote216

the corresponding polynomial Θn,t (z,K) by An (z) . Then An(z) is a polynomial with217

real coefficients. In particular, the roots of An(z) is symmetric with respect to the x218

axis. Then from Lemma 2.5, we infer that the polynomial Θ̃n,t

(
z, µ−1,K

)
andAn(−z)219

have the same roots. Hence in view of their leading coefficients, Θ̃n,t

(
z, µ−1,K

)
is220

equal to (−1)n(n+1)/2An (−z) , which we denote by Bn (z) . We observe that since An221

is a polynomial with real coefficients, automatically we have −(An(z∗))∗ = An(−z).222

See Figure 1 for the location of the roots of A25.223

Since our traveling wave solutions will roughly speaking have vortice at the roots224

of An, it is natural to ask that whether all the roots of An are simple. This question225

seems to be nontrivial. Following similar ideas as that of [13], we have226

Lemma 2.6. Let P (z) , Q (z) be two polynomials satisfying227

(2.3) P ′′Q− 2P ′Q′ + PQ′′ = −2µ (P ′Q− PQ′) ,228

This manuscript is for review purposes only.



MULTI-VORTEX TRAVELING WAVES 7

Fig. 1. Roots of A25

or229

(2.4) P ′′Q− 2P ′Q′ + PQ′′ = 0.230

Suppose P (ξ) = 0 and Q (ξ) 6= 0 at a point ξ. Then ξ is a simple root of P.231

Proof. We prove the lemma assuming (2.3) . The case of (2.4) is similar.232

Suppose ξ is root of P with multiplicity k ≥ 2. We have233

P ′′Q = 2P ′Q′ − PQ′′ − 2µ (P ′Q− PQ′) .234

Then ξ is a root of the right hand side polynomial with multiplicity at least k − 1.235

But its multiplicity in P ′′Q is k − 2. This is a contradiction.236

Lemma 2.7. Suppose P (z) , Q (z) are two polynomials satisfying (2.3) or (2.4) .237

Let ξ be a common root of P and Q. Assume ξ is a simple root of Q. Then ξ can not238

be a simple root of P.239

Proof. We prove this lemma assuming (2.4) . The case of (2.3) is similar.240

Assume to the contrary that ξ is a simple root of P. Then241

2P ′ (ξ)Q′ (ξ) 6= 0.242

But this contradicts with the equation (2.4) . This finishes the proof.243

Lemma 2.8. Suppose An and An−1 have no common roots. Then An has no244

repeated roots. Moreover, An (z) and An (−z) have no common roots.245

Proof. We know(See [17], Theorem 3.1) that the sequence of Adler-Moser poly-246

nomials satisfy the following recursion relation247

(2.5) A′′nAn−1 − 2A′nA
′
n−1 +AnA

′′
n−1 = 0.248

By Lemma 2.6, any root of An is a simple root. Similarly, any root of An (−z) is a249

simple root.250

This manuscript is for review purposes only.
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Now suppose to the contrary that ξ is a common root of An (z) and An (−z) .251

Note that(−1)n(n+1)/2An(−z) = Bn(z). We have252

A′′nBn − 2A′nB
′
n +AnB

′′
n = −2µ (A′nBn −AnB′n) .253

Then by Lemma 2.7, either ξ is a repeated root of An (z) , or it is a repeated root of254

An (−z). This is a contradiction.255

2.1. Linearization of the symmetric configuration. Our construction of256

traveling wave solutions requires that the vortex configuration we found is nondegen-257

erated in the symmetric setting(in the sense of Lemma 2.5). For small number of258

vortice, the nondegeneracy can be proved directly. To explain this, we now consider259

the case of n = 2. Let p1, p2, p3 be the three roots of the Adler-Moser polynomial A2.260

Here p1 is the real root and p3 = p̄2. Note that p1, p2, p3 lie on the vertices of a regular261

triangle. Let qi = p∗i . For z1 ∈ R, z2 ∈ C, we define the force map262

F1 (z1, z2) :=
1

z1 − z2
+

1

z1 − z̄2
− 1

2z1
− 1

z1 + z2
− 1

z1 − z∗2
,263

F2 (z1, z2) :=
1

z2 − z1
+

1

z2 − z̄2
− 1

z2 + z1
− 1

2z2
− 1

z2 − z∗2
.264

265

We have in mind that z1 represents the vortex on the real axis and z2 represents the266

one lying in the second quadrant. Note that by symmetry, F1 (z1, z2) ∈ R. The name267

“force map” comes from the fact that if z1 = p1, z2 = p2, then268

F1(z1, z2) = 1, F2(z1, z2) = 1,269

which reduces to the equation (2.1).270

Writing z1 = a1, z2 = a2 + b2i, where ai, bi ∈ R, we can define271

F (a1, a2, b2) := (F1,ReF2, ImF2) .272

The configuration (p1, p2, p3, q1, q2, q3) is called nondegenerated, if273

detDF (p1,Re p2, Im p2) 6= 0.274

Numerical computation shows that detDF (p1,Re p2, Im p2) 6= 0. Hence it is nonde-275

generated. It turns out for n large, this procedure is very tedious and we have to find276

other ways to overcome this difficulty.277

In the general case, let p =
(
p1, ..., pn(n+1)/2

)
,q =

(
q1, ..., qn(n+1)/2

)
. Define the278

map F :279

(p,q)→
(
F1, ..., Fn(n+1)/2, G1, ..., Gn(n+1)/2

)
,280

where281

Fk =
∑
j 6=k

1

pk − pj
−
∑
j

1

pk − qj
,282

Gk =
∑
j 6=k

1

qk − qj
−
∑
j

1

qk − pj
.283

284

Let a=
(
a1, ..., an(n+1)/2

)
, where aj are the roots of An. Set b = −

(
ā1, ..., ān(n+1)/2

)
.285

Moreover, we assume that there exists i0 such that for j = 1, ..., i0,286

a2j−1 = ā2j ,287
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while for j = 2i0 + 1, ..., n (n+ 1) /2, Im aj = 0. We consider the linearization of F at288

(p,q) = (a, b) . Denote it by DF |(a,b). It is a map from Cn(n+1) to Cn(n+1).289

The map DF |(a,b) always has kernel. Indeed, for any parameter K = (k2, ..., kn) ,290

Θn (z,K) and Θ̃n (z,K) satisfy291

Θ′′nΘ̃n − 2Θ′nΘ̃′n + ΘnΘ̃′′n = −2µ
(

Θ′nΘ̃n −ΘnΘ̃′n

)
.292

Differentiating this equation with respect to the parameters t, kj , j = 2, ..., n− 1, we293

get correspondingly n linearly independent elements of the kernel. Denote them by294

(2.6) $1, ..., $n.295

Let ξ =
(
ξ1, ..., ξn(n+1)/2

)
∈ Cn(n+1)/2, η =

(
η1, ..., ηn(n+1)/2

)
∈ Cn(n+1)/2. The296

pair (ξ, η) , with η = ξ∗, is called symmetric if for j = 1, ..., i0,297

ξ2j−1 = ξ̄2j ,298

while for j = 2i0 + 1, ..., n (n+ 1) /2, Im ξj = 0.299

The main result of this section is the nondegeneracy of the vortex configuration300

given by An :301

Proposition 2.9. Suppose DF |(a,b) (ξ, η) = 0 and (ξ, η) is symmetric. Then302

ξ = η = 0.303

The rest of this section will be devoted to the proof of this result.304

2.2. Darboux transformation and nondegeneracy of the symmetric con-305

figuration. Before going to the details of the proof of Proposition 2.9, let us explain306

the main idea of the proof. We would like to investigate the relation between the n-th307

and (n− 1)-th Adler-Moser polynomials An, An−1. This will enable us to transform308

elements of the kernel of DF for An to that of An−1, and finally to that of A0, which309

is much easier to be handled.310

We first recall the following classical result on Darboux transformation([35], The-311

orem 2.1).312

Theorem 2.10. Let λ, λ1 be two constants. Suppose313

−Ψ′′ + uΨ = λΨ,314

−Ψ′′1 + uΨ1 = λ1Ψ1.315316

Then the function Φ := W (Ψ1,Ψ) /Ψ1 satisfies317

−Φ′′ + ũΦ = λΦ,318

where ũ := u− 2 (ln Ψ1)
′′
.319

The function Φ is called the Darboux transformation of Ψ. Since later on we320

need a linearized version of this result, we sketch its proof below. For more detailed321

computation, we refer to Sec. 2.1 of [35].322
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Proof. We compute323

−Φ′′ + ũΦ− λΦ = −
(

Ψ′ − Ψ′1
Ψ1

Ψ

)′′
+ (ũ− λ)

(
Ψ′ − Ψ′1

Ψ1
Ψ

)
324

= (−Ψ′′ + (u− λ) Ψ)
′
+

(
ũ− u+ 2

(
Ψ′1
Ψ1

)′)
Ψ′325

+

(
−u′ +

(
Ψ′1
Ψ1

)′′
+

Ψ′1
Ψ1

(u− ũ)

)
Ψ.326

327

For later applications, we write this equation as328

−Φ′′ + ũΦ− λΦ = (−Ψ′′ + (u− λ) Ψ)
′

329

+

(
ũ− u+ 2

(
Ψ′1
Ψ1

)′)(
Ψ′ − Ψ′1

Ψ1
Ψ

)
330

+

(
Ψ′′1 − uΨ1 + λ1Ψ1

Ψ1

)′
Ψ.(2.7)331

332

The theorem follows directly from this identity.333

Let φn = An+1

An
and ψn (z) = Bn

An
eµz, where µ = 1. Note that ψn has the Wronskian334

representation:335

ψn =
W (θ1, ..., θ2n−1, e

µz)

W (θ1, ..., θ2n−1)
.336

An application of the repeated Dauboux transformation tells us that(See [17])337

(2.8) ψ′′n + 2 (lnAn)
′′
ψn = µ2ψn.338

Moreover, the Darboux transformation between ψn and ψn+1 is given by339

(2.9) ψn+1 =
W (φn, ψn)

φn
.340

As we mentioned before, our main idea is to transform the kernel of DF at341

(An, Bn) to (A0, B0) . To do this, we need the following identities. The first one is the342

equation (2.9) , which connects ψj to ψj+1, hence connect Bj to Bj+1. The second343

one is the recursive identity (2.5) between Aj and Aj+1 :344

(2.10) A′′jAj+1 − 2A′jA
′
j+1 +AjA

′′
j+1 = 0.345

This equation can also be written in terms of φj as346

φ′′j + 2 (lnAj)
′′
φj = 0.347

Note that this is an equation has the form appeared in Theorem 2.9. The third one348

is the relation between Aj and Bj :349

(2.11) A′′jBj − 2A′jB
′
j +AjB

′′
j + 2µ

(
A′jBj −AjB′j

)
= 0.350

This equation implies (2.8) . In certain sense, the linearization of equation (2.11)351

corresponds to the kernel of DF. As we will see later on, the linearized version of352
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these three identities together with (2.7) will enable us to transform the kernel of DF353

at the j-th step to j − 1-th step.354

To proceed, we would like to analyze the linearized equations of (2.9) , (2.10) and355

(2.11) . First of all, linearizing the equation (2.11) at (Aj , Bj) , we obtain the following356

equation(ξj , ηj are the infinitesimal variations of Aj , Bj):357

ξ′′jBj − 2ξ′jB
′
j + ξjB

′′
j + 2µ

(
ξ′jBj − ξjB′j

)
358

+A′′j ηj − 2A′jη
′
j +Ajη

′′
j + 2µ

(
A′jηj −Ajη′j

)
359

= 0.(2.12)360361

Next we need to connect (ξj+1, ηj+1) to (ξj , ηj) . Linearizing the equation (2.10)362

at (Aj , Aj+1) , we obtain363

(2.13) ξ′′j Aj+1 − 2ξ′jA
′
j+1 + ξjA

′′
j+1 +A′′j ξj+1 − 2A′jξ

′
j+1 +Ajξ

′′
j+1 = 0.364

It will be more convenient to introduce a new function365

(2.14) fj =

(
ξj
Aj

)′
.366

The equation (2.13) then becomes367

f ′j +

(
ln

A2
j

A2
j+1

)′
fj + f ′j+1 +

(
ln
A2
j+1

A2
j

)′
fj+1 = 0.368

Given function fj+1, “formally” we can solve this equation and get a solution369

fj (z) = −
A2
j+1

A2
j

∫ z

a

A2
j

A2
j+1

(
f ′j+1 +

(
ln
A2
j+1

A2
j

)′
fj+1

)
ds370

= fj+1 − 2
A2
j+1

A2
j

∫ z

c

A2
j

A2
j+1

f ′j+1ds.(2.15)371

372

The last equality follows from integrating by parts for the second term. Here a, c are373

two numbers and we intentionally haven’t specified the integration paths, because the374

integrands may have singularities, depending on the form of the function fj+1.375

Linearizing the equation (2.9) yields the equation(with σj being the infinitesimal376

variation of ψj):377

σj+1 = −σj (lnφj)
′
+ σ′j − ψj

(
ξj+1

Aj+1
− ξj
Aj

)′
.378

Inserting (2.14) into this equation, we get379

σ′j − σj (lnφj)
′

= (fj+1 − fj)ψj + σj+1.380

For given functions fj , fj+1, σj , we can solve this equation and get a solution381

(2.16) σj (z) = φj

∫ z

c

(ψj (fj+1 − fj) + σj+1)φ−1
j ds.382
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Note that the infinitesimal variation σj should be related to ξj and ηj . Indeed,383

linearizing the relation ψj =
Bj
Aj
eµz, we get384

(2.17) σje
−µz = −Bjξj

A2
j

+
ηj
Aj
.385

With all these preparations, we are now ready to prove the following386

Proposition 2.11. For any n, the elements of the kernel of the map DF |(a,b) are387

given by linear combinations of $j , j = 1, ..., n, defined in (2.6) .388

Proof. Suppose we have an element of the kernel of the map DF |(a,b), with the389

form390 (
τ1, ..., τn(n+1)/2, δ1, ..., δn(n+1)/2

)
.391

Consider the generating functions
∏
j

(z − aj − ρτj) and
∏
j

(z − bj − ρδj) , where ρ is392

a small parameter. Differentiating these two functions with respect to ρ at ρ = 0, we393

get two polynomials ξn, ηn, with degree less than n (n+ 1) /2, satisfying394

ξ′′nBn − 2ξ′nB
′
n + ξnB

′′
n + 2µ (ξ′nBn − ξnB′n)395

+A′′nηn − 2A′nη
′
n +Anη

′′
n + 2µ (A′nηn −Anη′n)396

= 0.(2.18)397398

Consider the function fn =
(
ξn
An

)′
. It is a rational function with possible poles399

at the roots of An. Using (2.15) , for each j ≤ n− 1, we can define functions400

(2.19) fj = fj+1 − 2
A2
j+1

A2
j

∫ z

c

A2
j

A2
j+1

f ′j+1ds.401

Here c is to be determined later on. With this definition, we see that fj has possible402

poles at the roots of Aj , Aj+1, ..., An. In particular,403

(2.20) f0 = f1 − 2

(
z +

1

2

)2 ∫ z

c

f ′1(
s+ 1

2

)2 ds.404

We remark that as a complex valued function with poles, at this stage, fj may be405

multiple-valued.406

On the other hand, we can define σn through407

σne
−µz = −Bnξn

A2
n

+
ηn
An

,408

and then define σj , j ≤ n−1, in terms of relation (2.16). Finally, we define ηj , j ≤ n−1,409

using (2.17) . We recall that φ0 = A1

A0
= z + 1

2 and ψ0 = eµz. Hence410

(2.21) σ0 =

(
z +

1

2

)∫ z

c

1

s+ 1
2

(eµs (f1 − f0) + σ1) ds.411

Since equation (2.12) holds for ξn, ηn(see equation (2.18)), then by linearizing412

the identity (2.7) (with Ψ1 being φj ,Ψ being ψj), we find that (2.12) also holds for413

j ≤ n− 1. Therefore, using A0 = B0 = 1, we get414

(2.22) ξ′′0 + 2µξ′0 + η′′0 − 2µη′0 = 0.415

This manuscript is for review purposes only.



MULTI-VORTEX TRAVELING WAVES 13

That is, (ξ0 + η0)
′
+2µ (ξ0 − η0) is locally a constant, say C. By (2.17) , η0 = σ0e

−µz+416

ξ0. It follows that417

(2.23)
(
σ0e
−µz + 2ξ0

)′ − 2µ
(
σ0e
−µz) = C.418

Recall that f0 = ξ′0. Thus by (2.21) ,419

(2.24)

f0 + f1 + σ1e
−µz +

(
1− 3µ

(
z +

1

2

))
e−µz

∫ z

c

1

s+ 1
2

(eµs (f1 − f0) + σ1) ds = C.420

Our next aim is to show that f1 has no singularity except the root of A1, that is,421

− 1
2 .422

Assume to the contrary that d0 6= − 1
2 is a singularity of f1. Let c be a number423

close to d0. Note that d0 has to be a root of some Ak. Integrating by parts in (2.19)424

yields425

(2.25) fj = −fj+1 + 2
A2
j+1

A2
j

∫ z

c

(
A2
j

A2
j+1

)′
fj+1ds+ c1

A2
j+1

A2
j

,426

for some constant c1.427

We first consider the case that Aj has no repeated roots for any j ≤ n. Actually428

numerical computation tells us that this holds if n = 34.429

Since ξn, fn are polynomials with degree less than n (n− 1) /2, by (2.19) , we can430

assume that the main order(non-analytic part) of f1 around the singularity d0 has431

the form432

β1 (z − d0)
−1

+ β2 (z − d0)
−2

+ β3 (z − d0)
2

ln (z − d0) ,433

where at least one of the constants βj is nonzero.434

Let us first consider the case that β2 is nonzero and d0 is not a root of A2.435

By (2.20) , around d0, at the main order, f0 has the form −β2 (z − d0)
−2
. From436

(2.16) , we deduce that437

(2.26) σ1 =
A2

A1

∫ z

c

A1

A2

(
B1e

µs

A1
(f2 − f1) + σ2

)
ds.438

Since σ2 has no (z − d0)
−2

term and f2 ∼ −β2 (z − d0)
2
, we infer from (2.26) that439

the main order term of σ1 is 2d0−1
2d0+12β2e

d0 (z − d0)
−1
. Inserting this into (2.24) and440

applying (2.25) , we find that the (z − d0)
−1

order terms in (2.24) satisfy441

(2.27)

4

d0 + 1
2

β2 (z − d0)
−1

+
2d0 − 1

2d0 + 1
2β2 (z − d0)

−1 −
1− 3

(
d0 + 1

2

)
d0 + 1

2

2β2 (z − d0)
−1

= 0.442

This equation has no solution and we thus get a contradiction. Hence β2 = 0. Sim-443

ilarly, we have β1 = β3 = 0. Thus we know that f1 has no singularity other other444

− 1
2 .445

Now we choose the base point c to be −∞. We would like to show that f0 = 0.446

Using the recursive relation and the fact that f1 has no singularities other than − 1
2 ,447

we deduce that f1 is actually single valued and f1 = a1
1

z+ 1
2

+ a2
1

(z+ 1
2 )

2 . Recall that448

σ1 = φ1

∫ z

c

φ−1
1 (ψ1 (f2 − f1)− σ2) ds.449
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Putting this into (2.24) , we find that a1 = 0. This implies that f0 = 0 and σ0 = 0.450

Once this is proved, we can show that ξn, ηn actually come from the differentiation451

with respect to the parameters t and kj , j = 2, ..., n.452

Next we consider the general case that Aj has repeated roots for some j ≤ n.(We453

conjecture that this case does no happen).454

Let d 6= − 1
2 be a repeated root of some Aj , j ≤ n, with highest multiplicity r.455

We still would like to show that d0 6= d. Assume to the contrary that d0 = d. Then456

around d0, by (2.19) , the main order terms of the function f1 has the form457

β1 (z − d0)
−1

+ β2 (z − d0)
−2

+ ...β2r (z − d0)
−2r

+ β2r+1 (z − d0)
2

ln (z − d0) .458

Then same arguments above tell us that all the βj are zero, which is a contradiction.459

Hence the only pole of f1 is − 1
2 and the claim of the proposition follows.460

Let K =
(
− 1

2 ,−
1
2 , ....

)
. We also need the following uniqueness result about the461

symmetric configuration.462

Lemma 2.12. Suppose K̂ is an n−1 dimensional vector and
∣∣∣K̂ −K∣∣∣+ t+ 1

2 < δ463

for some small δ > 0, with K̂ 6= K. Then464

Θn

(
−z − t, K̂

)
6= (−1)

n(n+1)/2
Θ̃n

(
z − t, K̂

)
.465

Proof. We prove this statement using induction argument. This is true for n = 1.466

Assume it is true for n = j, we shall prove that it is also true for n = j + 1.467

Suppose to the contrary that

Θj+1

(
−z − t, K̂

)
= (−1)

(j+1)(j+2)/2
Θ̃j+1

(
z − t, K̂

)
.

We know that468

Θ′′j+1

(
z − t, K̂

)
Θj

(
z − t, K̂

)
− 2Θ′j+1

(
z − t, K̂

)
Θ′j

(
z − t, K̂

)
469

+ Θj+1

(
z − t, K̂

)
Θ′′j

(
z − t, K̂

)
= 0.470

471

Replacing z by −z, we get472

Θ̃′′j+1

(
z − t, K̂

)
Θj

(
−z − t, K̂

)
− 2Θ̃′j+1

(
z − t, K̂

)
Θ′j

(
−z − t, K̂

)
473

+ Θ̃j+1

(
z − t, K̂

)
Θ′′j

(
−z − t, K̂

)
= 0.(2.28)474

475

On the other hand,476

Θ̃′′j+1

(
z − t, K̂

)
Θ̃j

(
z − t, K̂

)
− 2Θ̃′j+1

(
z − t, K̂

)
Θ̃′j

(
z − t, K̂

)
477

+ Θ̃j+1

(
z − t, K̂

)
Θ̃′′j

(
z − t, K̂

)
= 0.478

479

This together with (2.28) imply that480

Θj

(
−z − t, K̂

)
= (−1)

j(j+1)/2
Θ̃j

(
z − t, K̂

)
.481

Hence by assumption t = − 1
2 , and the first j − 1 components of K̂ is − 1

2 . It then482

follows that the last component of K̂ is also − 1
2 . This is a contradiction.483
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Now we can prove Proposition 2.9. By Proposition 2.11, elements of the kernel of484

the map DF |(a,b) is given by linear combination of $j , j = 1, ..., n. But on the other485

hand, for µ = 1, we know from Lemma 2.12 that t = − 1
2 , kj = − 1

2 , j = 1, ..., n− 1, is486

the only set of parameters for which Θn and Θ̃n give arise to symmetric configuration.487

Hence the configuration determined by An and Bn is nondegenerated. We remark that488

by the same method, it is also possible to show that the balancing configuration given489

by other Adler-Moser polynomials are also nondegenerated.490

3. Preliminaries on the Ginzburg-Landau equation. In this section, we491

recall some results on the Ginzburg-Landau equation. Most of the materials in this492

section can be found in the book [43](possibly with different notations though).493

Stationary solutions of the GP equation (1.1) solve the following Ginzburg-Landau494

equation495

(3.1) −∆Φ = Φ
(

1− |Φ|2
)

in R2,496

where Φ is a complex valued function. We have mentioned in the first section that497

equation (3.1) has degree ±d vortice of the form Sd (r) e±idθ. It is also known that as498

r → +∞,499

(3.2) Sd (r) = 1− d2

2r2
+O

(
r−4
)
.500

On the other hand, as r → 0, there is a constant κ = κd > 0 such that501

(3.3) Sd (r) = κr

(
1− r2

8
+O

(
r4
))

.502

See [22] for detailed proof of these facts.503

In the case of d = ±1, the solution will be denoted by v±, and S1 will simply be504

written as S. The linearized operator of the Ginzburg-Landau equation around v+505

will be denoted by L :506

(3.4) η → ∆η +
(

1− |v+|2
)
η − 2v+ Re (ηv̄+) .507

It turns out to be more convenient to study the operator508

Lη := e−iθL
(
eiθη

)
.509

If we write the complex function η as w1 +iw2 with w1, w2 being real valued functions,510

then explicitly511

Lη = e−iθ∆
(
eiθη

)
+
(
1− S2

)
η − 2S2w1512

= ∆w1 +
(
1− 3S2

)
w1 −

1

r2
w1 −

2

r2
∂θw2513

+ i

(
∆w2 +

(
1− S2

)
w2 −

1

r2
w2 +

2

r2
∂θw1

)
.514

515

Invariance of the equation (3.1) under rotation and translation gives us three linearly516

independent elements of the kernel of the operator L, called Jacobi fields. Rotational517

invariance yields the solution518

(3.5) Φ0 := ie−iθv+ = iS,519

This manuscript is for review purposes only.



16 Y. LIU, J. WEI

while the translational invariance along x and y directions leads to the solutions520

Φ+1 := S′ cos θ − S

r
sin θ,521

Φ−1 := S′ sin θ +
S

r
cos θ.522

523

Note that these elements of the kernel are bounded but decay slowly at infinity,524

hence not in L2
(
R2
)
. As a consequence, the analysis of the mapping property of L525

is quite delicate. An important fact is that v+ is nondegenerated in the sense that526

all the bounded solutions of Lη = 0 are given by linear combinations of Φ0 and527

Φ+,Φ−([43], Theorem 3.2). Similar results hold for the degree −1 vortex v−. It is also528

worth mentioning that the nondegeneracy of those higher degree vortice eidθSd (r) ,529

|d| > 1, is still an open problem. Actually this is the main reason that we only deal530

with the degree ±1 vortice in this paper. One can indeed construct solutions of GP531

equation by gluing higher degree vortices under the additional assumption that they532

are nondegenerated in suitable sense.533

The analysis of the asymptotic behavior of the elements of the kernel of L near 0534

and ∞ is crucial in understanding the mapping properties of the linearized operator535

L. In doing this, the main strategy is to decompose the elements of the kernel into536

different Fourier modes. Let us now briefly describe the results in the sequel. Lemma537

3.1, Lemma 3.2 and Lemma 3.3 below can be found in Section 3.3 of [43].538

We start the discussion with the lowest Fourier mode, which is the simplest case539

and plays an important role in analyzing the mapping property of the linearized540

operator.541

Lemma 3.1. Suppose a is a complex valued solution of the equation La = 0,542

depending only on r.543

(I) As r → 0, either |a| blows up at least like r−1, or a can be written as a linear544

combination of two linearly independent solutions w0,1, w0,2, with545

w0,1 (r) = r
(
1 +O

(
r2
))
,546

w0,2 (r) = ir
(
1 +O

(
r2
))
.547548

549

(II) As r → +∞, if a is an imaginary valued function, then a = c1 +c2 ln r+O
(
r−2
)

;550

if a is real valued, then it either blows up or decays exponentially.551

Proof. We sketch the proof for completeness.552

If La = 0 and the complex function a depends only on r, then a will satisfy553

(3.6) a′′ +
1

r
a′ − 1

r2
a = S2ā−

(
1− 2S2

)
a.554

Note that this equation is not complex linear and its solution space is a 4-dimensional555

real vector space. The Jacobi field Φ0 defined by (3.5) is a purely imaginary solution556

of (3.6) . Writing a = a1 + a2i, where ai are real valued functions, we get from (3.6)557

two decoupled equations:558

a′′1 +
1

r
a′1 −

1

r2
a1 +

(
1− 3S2

)
a1 = 0,559

560

(3.7) a′′2 +
1

r
a′2 −

1

r2
a2 +

(
1− S2

)
a2 = 0.561
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Observe that due to (3.2), as r → +∞,562

1− 3S2 − r−2 = −2 +O
(
r−2
)
,563

1− S2 − r−2 = O
(
r−4
)
.564565

The results of this lemma then follow from a perturbation argument.566

For each integer n ≥ 1, we consider element of the kernel of L the form a (r) einθ+567

b (r) e−inθ. The complex valued functions a, b will satisfy the following coupled ODE568

system in (0,+∞) :569

(3.8)

{
a′′ + 1

ra
′ − (n+1)2

r2 a = S2b̄−
(
1− 2S2

)
a

b′′ + 1
r b
′ − (n−1)2

r2 b = S2ā−
(
1− 2S2

)
b.

570

By analyzing this coupled ODE system, one gets the precise asymptotic behavior of571

its solutions. The next lemma deals with the n = 1 case.572

Lemma 3.2. Suppose w = a (r) eiθ + b (r) e−iθ solves Lw = 0.573

(I) As r → 0, either |w| blows up at least like − ln r, or w can be written as a linear574

combination of four linearly independent solutions w1,i, i = 1, ..., 4, satisfying: As575

r → 0,576

w1,1 = r2
(
1 +O

(
r2
))
eiθ +O

(
r6
)
e−iθ,577

w1,2 = ir2
(
1 +O

(
r2
))
eiθ +O

(
r6
)
e−iθ,578

w1,3 =
(
1 +O

(
r2
))
e−iθ +O

(
r4
)
eiθ,579

w1,4 = i
(
1 +O

(
r2
))
e−iθ +O

(
r4
)
eiθ.580581

582

(II) As r → +∞, either |w| is unbounded(blows up exponentially or like r), or |w|583

decays to zero(exponentially or like r−1).584

For the n ≥ 2 case, we have the following585

Lemma 3.3. Suppose w = a (r) einθ + b (r) e−inθ solves Lw = 0.586

(I) As r → 0, either |w| blows up at least like r1−n, or w can be written as a linear587

combination of four linearly independent solutions w1,i, i = 1, ..., 4, satisfying: As588

r → 0,589

wn,1 = rn+1
(
1 +O

(
r2
))
einθ +O

(
rn+5

)
e−inθ,590

wn,2 = irn+1
(
1 +O

(
r2
))
einθ +O

(
rn+5

)
e−inθ,591

wn,3 = rn−1
(
1 +O

(
r2
))
e−inθ +O

(
rn+3

)
einθ,592

wn,4 = irn−1
(
1 +O

(
r2
))
e−inθ +O

(
rn+3

)
einθ.593594

595

(II) As r → +∞, either |w| is unbounded(blows up exponentially or like rn), or |w|596

decays to zero(exponentially or like r−n).597

By Lemma 3.3, for n ≥ 3, if Lw = 0 and w is bounded near 0, then decays598

at least like r2 as r → 0, hence decaying faster than the vortex solution itself. For599

n ≤ 2, solutions of Lw = 0 bounded near 0 behaves like O (r) or O (1) . Note that600

Φ0,Φ+1,Φ−1 have this property. Let Ψ0 = κw0,2,601

Ψ+1 = κw1,3 +
κ

8
w1,1,Ψ−1 = κw1,4 −

κ

8
w1,2,602

Ψ+2 = w2,3,Ψ−2 = w2,4.603604
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Then they behave like O (r) or O (1) near 0, but blow up as r → +∞.605

From the above lemmas, we know that for r large, the imaginary part of the606

linearized operator essentially behaves like ∆, while the real part looks like ∆− 2.607

4. Construction of multi-vortex solutions.608

4.1. Approximate solutions and estimate of the error. We would like to609

construct traveling wave solutions by gluing together n (n+ 1) /2 pairs of degree ±1610

vortice. Let us simply choose n = 2, the proof of the general case is almost the same,611

but notations will be more involved.612

For k = 1, 2, 3, Let pk, qk ∈ C. We have in mind that pk are close to roots of the613

Adler-Moser polynomial A2. We define the translated vortice614

uk = v+

(
z − ε−1pk

)
, u3+k = v−

(
z − ε−1qk

)
.615

We then define the approximate solution616

u :=

6∏
j=1

uj .617

Note that as r → +∞, u→ 1. Hence the degree of u is 0. Let us denote the function618

z → u (z) by ū. The next lemma states that the real part of u is even both in the x619

and y variables, while the imaginary part is even in x and odd in y.620

Lemma 4.1. The approximate solution u has the following symmetry:621

u (z̄) = ū (z) , u (z∗) = u (z) .622

Proof. Observe that the standard vortex v+ = S (r) eiθ satisfies623

v+ (z̄) = v̄+ (z) , v+ (z∗) = (v+ (z))
∗
.624

The opposite(degree −1) vortex v− has similar properties. Hence using the fact that625

the set {p1, p2, p3} is invariant with respect to the reflection across the x axis, we get626

u (z̄) =

3∏
k=1

(
v+

(
z̄ − ε−1pk

)
v−
(
z̄ − ε−1qk

))
627

=

3∏
k=1

(
v̄+

(
z − ε−1p̄k

)
v̄−
(
z − ε−1q̄k

))
= ū (z) .628

629

Moreover, since v− = v̄+, we have630

u (z∗) =

3∏
k=1

(
v+

(
z∗ − ε−1pk

)
v−
(
z∗ − ε−1qk

))
631

=

3∏
k=1

((
v+

(
z − ε−1qk

))∗ (
v−
(
z − ε−1pk

))∗)
632

=

3∏
k=1

(
v̄+

(
z − ε−1qk

) (
v̄−
(
z − ε−1pk

)))
= u (z) .633

634

This finishes the proof.635
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We use E (u) to denote the error of the approximate solution:636

E (u) := εi∂yu+ ∆u+ u
(

1− |u|2
)
.637

We have638

∆u = ∆ (u1...u6)639

=
∑
k

∆uk
∏
j 6=k

uj

+
∑
k 6=j

(∇uk · ∇uj)
∏
l 6=k,j

ul

 ,640

641

where ∇uk ·∇uj := ∂xuk∂xuj +∂yuk∂yuj . On the other hand, writing |uk|2− 1 = ρk,642

we obtain643

|u|2 − 1 =
∏
k

(1 + ρk)− 1 =
∑
k

ρk +

6∑
k=2

Qk,644

where Qk =
∑
i1<i2<···<ik (ρi1 · · · ρik) . Using the fact that uk solves the Ginzburg-645

Landau equation, we get646

E (u) = εi
∑
k

∂yuk∏
j 6=k

uj

647

+
∑

k,j,k 6=j

(∇uk · ∇uj)
∏
l 6=k,j

ul

− u 6∑
k=2

Qk.(4.1)648

649

We have in mind that the main order terms are ∂yuk
∏
j 6=k

uj and (∇uk · ∇uj)
∏
l 6=k,j

ul.650

Throughout the paper (rj , θj) will denote the polar coordinate with respect to651

the point ε−1pj . Note that652

∂x
(
eiθ
)

= −yie
iθ

r2
, ∂y

(
eiθ
)

=
xieiθ

r2
.653

Moreover, ∂xr = x/r, ∂yr = y/r. Hence we have, for k ≤ 3,654

∂xuk = − iyke
iθk

r2
k

S (rk) +
xk
rk
S′ (rk) eiθk ,655

∂yuk =
ixke

iθk

r2
k

S (rk) +
yk
rk
S′ (rk) eiθk .656

657

Now we study the projection of the error of the approximate solution on the658

kernel of the linearized operator at the approximate solutions. Lyapunov-Schmidt659

reduction arguments require that these projections are “small”, in suitable sense(See660

Proposition 4.5 below).661

In the region where
∣∣z − ε−1pk

∣∣ ≤ Ck,jε
−1, with Ck,j = 1

2|pk−pj | , using S′ (r) =662

O
(
r−3
)
, we get663

∇uk · ∇uj = ∂xuk∂xuj + ∂yuk∂yuj664

= ∂xuk

(
−yjie

iθj

r2
j

)
+ ∂yuk

(
xjie

iθj

r2
j

)
+O

(
ε3
)
.665

666
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Note that Im
(
∂yuk(∂xuk)

)
= SS′

rk
. It follows that for k, j ≤ 3,667

Re

∫
|z−ε−1pk|≤Ck,jε−1

e−iθj (∇uk · ∇uj)
(
∂xuk

)
dxdy668

= −Re

(
ε

pk − pj

)∫
|z−pk|≤Ck,jε−1

Im
(
∂yuk(∂xuk)

)
+O

(
ε2
)

669

= −Re

(
ε

pk − pj

)∫
|z−ε−1pk|≤Ck,jε−1

SS′

rk
+O

(
ε2
)

670

= −πRe

(
ε

pk − pj

)
+O

(
ε2
)
.671

672

In general, for t > 0, we also have673

Re

∫
|z−ε−1pk|≤A

e−iθj (∇uk · ∇uj)
(
∂xuk

)
dxdy674

= −πS2 (t) Re

(
ε

pk − pj

)
+O

(
ε2
)
.(4.2)675

676

Now we compute677

Re

∫
|z−ε−1pk|≤Ck,jε−1

e−iθj (∇uk · ∇uj) (∂yuk)dxdy678

= π Im

(
ε

pk − pj

)
+O

(
ε2
)
.679

680

Next, if l, j 6= k, we estimate that for
∣∣z − ε−1pk

∣∣ ≤ minj 6=k Ck,jε
−1,681

(∇ul · ∇uj) (∂xuk) ∼ e−iθk
(
yl
r2
l

eiθl
yj
r2
j

eiθj +
xl
r2
l

eiθl
xj
r2
j

eiθj

)(
−ykS
r2
k

+
xkS

′

rk

)
682

= O
(
ε2
)
.683684

Finally, we compute685

Re

∫
|z−ε−1pk|≤Ck,jε−1

iε∂yuk(∂yuk) = O
(
ε2
)
,686

Re

∫
|z−ε−1pk|≤Ck,jε−1

iε∂yuk(∂xuk) = πε+O
(
ε2
)
.687

688

Note that if the integrating region is replaced by the ball radius t centered at ε−1pk,689

then we get a corresponding estimate like (4.2) with π replaced by πS2 (t) .690

We can do similar estimates as above for k ≤ 3 and j ≥ 4, with a possible691

different sign before the main order term. Combining all these estimates, we find that692

the projected equation at the main order is (2.1) with µ = 1.(See also system (4.26)).693

4.2. Solving the nonlinear problem and proof of Theorem 1.1. In this694

subsection, we would like to construct solutions of the GP equation stated in Theorem695

1.1, near the family of approximate solutions u analyzed in Section 4.1. To this aim,696

we shall use the finite dimensional Lyapunov-Schmidt reduction method to reduce the697
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original problem to the nondegeneracy of the roots of the Adler-Moser polynomials.698

This nondegeneracy result has already been proved in Section 2, see Proposition 2.9.699

Applying finite or infinite dimensional Lyapunov-Schmidt reduction to construct700

solutions of nonlinear elliptic PDEs is by now more or less standard. There exists701

vast literature on this subject. It is well known that one of the steps in the Lyapunov-702

Schmidt reduction is to establish the solvability of the projected linear problem, in703

suitable functional spaces. In our case, this will be accomplished in Proposition 4.5.704

For each ε > 0 sufficiently small, we look for a traveling wave solution U of the705

GP equation:706

(4.3) − iε∂yU = ∆U + U
(

1− |U |2
)
.707

Let u be the approximate solution. Then around each vortex point(it is a root of708

the associated Adler-Moser polynomial), u is close to the standard degree one vortex709

solution of the Ginzburg-Landau equation, described in Section 3. Recall that by710

E (u) we mean the error of u, which has the form711

E (u) = εi∂yu+ ∆u+ u
(

1− |u|2
)
.712

If u is written as w + iv, where w, v are its real and imaginary parts, then we know713

from Lemma 4.1 that u has the following symmetry:714

w(x, y) = w(−x, y) = w(x,−y); v(x, y) = v(−x, y) = −v(x,−y).715

The following lemma states that E(u) has the same symmetry as u.716

Lemma 4.2. The real part of E (u) is even in both x and y variables. The imag-717

inary part of E (u) is even in x and odd in y.718

Proof. This follows from the symmetry of the approximate solution u and the719

fact that E(u) consists of terms which are suitable derivatives of u. Note that taking720

second order derivatives of u in x or y does not change this symmetry. On the other721

hand, the term εi∂yu is obtained by taking the y derivative and multiplying by i.722

This operation also preserves the symmetry stated in this lemma.723

Let χ̃ be a smooth cutoff function such that χ̃ (s) = 1 for s ≤ 1 and χ̃ (s) = 0 for724

s ≥ 2. Let χ be the cutoff function localized near the vortice defined by:725

χ (z) :=

3∑
j=1

χ̃
(∣∣z − ε−1pj

∣∣)+

3∑
j=1

χ̃
(∣∣z − ε−1qj

∣∣) .726

Following [18], we seek a true solution of the form727

(4.4) U := (u+ uη)χ+ (1− χ)ueη,728

where η = η1 + η2i is complex valued function close to 0 in suitable norm which will729

be introduced below. We also assume that η has the same symmetry as u. We see730

that near the vortice, U is obtained from u by an additive perturbation; while away731

from the vortice, U is of the form ueη. The reason of choosing the perturbation η732

in the form (4.4) is explained in Section 3 of [18]. Roughly speaking, away from the733

vortex points, this specific form simplifies the higher order error terms when solving734
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the nonlinear problem, compared to the usual additive perturbation. In view of (4.4),735

we can write U = ueη + ε, where736

ε := χu (1 + η − eη) .737

Note that ε is localized near the vortex points and of the order o(η), for η small.738

Let us set A := (χ+ (1− χ) eη)u. Then U can also be written as U = uηχ+ A.739

We have740

U
(

1− |U |2
)

= (uηχ+A)
(

1− |ueη + ε|2
)
.741

By this formula, computing εi∂yU + ∆U using (4.4), we find that the GP equation742

becomes743

(4.5) −AL (η) = (1 + η)χE (u) + (1− χ) eηE (u) +N0 (η) ,744

where E (u) represents the error of the approximate solution, and745

(4.6) Lη := iε∂yη + ∆η + 2u−1∇u · ∇η − 2 |u|2 η1,746

while N0 is o(η), and explicitly given by747

N0 (η) := (1− χ)ueη |∇η|2 + iε (u (1 + η − eη)) ∂yχ748

+ 2∇ (u (1 + η − eη)) · ∇χ+ u (1 + η − eη) ∆χ749

− 2u |u|2 ηη1χ− (A+ uηχ)
[
|u|2

(
e2η1 − 1− 2η1

)
+ |ε|2 + 2 Re (ueη ε̄)

]
.750

751

Note that in the region away from the vortex points, the real part of the operator L752

is modeled on ∆η1 − 2η1 − ε∂yη2, while the imaginary part is like ∆η2 + ε∂yη1.753

Dividing equation (4.5) by A, we obtain754

− L (η)755

= u−1E (u)− |u|2
(
e2η1 − 1− 2η1

)
+ |∇η|2756

+ iεA−1 (u (1 + η − eη)) ∂yχ+ 2A−1∇ (u (1 + η − eη)) · ∇χ757

+A−1u (1 + η − eη) ∆χ−A−1uχ |∇η|2 − |ε|2 − 2 Re (ueη ε̄)758

+A−1uηχ
[
u−1E (u)− 2 |u|2 η1 − |u|2

(
e2η1 − 1− 2η1

)
− |ε|2 − 2 Re (ueη ε̄)

]
.759

760

Let us write this equation as761

L (η) = −u−1E (u) +N (η) .762

This nonlinear equation, equivalent to the original GP equation, is the one we even-763

tually want to solve. Observe that in N (η), except |u|2
(
e2η1 − 1− 2η1

)
− |∇η|2 ,764

other terms are all localized near the vortex points. As we will see later, the terms765

|u|2
(
e2η1 − 1− 2η1

)
and |∇η|2 are well suited to the functional setting below.766

Now let us introduce the functional framework which we will work with. It is767

adapted to the mapping property of the linearized operator L. Note that one of our768

purpose is to solve a linear equation of the form L(η) = h, where h is a given function769

with suitable smooth and decaying properties away from the vortex points.770

Recall that rj , j = 1, · · ·, 6, represent the distance to the j-th vortex point. Let771

w be a weight function defined by772

w(z) :=

 6∑
j=1

(1 + rj)
−1

−1

.773
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This function measures the minimal distance from the point z to those vortex points.774

We use Ba (z) to denote the ball of radius a centered at z. Let γ, σ ∈ (0, 1) be small775

positive numbers. For complex valued function η = η1 + η2i, we define the following776

weighted C2,γ norm.777

‖η‖∗778

= ‖uη‖C2,γ(w<3) +
∥∥w1+ση1

∥∥
L∞(w>2)

+
∥∥w2+σ(|∇η1|+ |∇2η1|)

∥∥
L∞(w>2)

779

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
|∇η1 (z1)−∇η1 (z2)|+

∣∣∇2η1 (z1)−∇2η1 (z2)
∣∣

w (z)
−2−σ−γ |z1 − z2|γ

)
780

+ ‖wση2‖L∞(w>2) +
∥∥w1+σ∇η2

∥∥
L∞(w>2)

+
∥∥w2+σ∇2η2

∥∥
L∞(w>2)

781

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)

1+σ+γ |∇η2 (z1)−∇η2 (z2)|
|z1 − z2|γ

)
782

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)

2+σ+γ

∣∣∇2η2 (z1)−∇2η2 (z2)
∣∣

|z1 − z2|γ

)
.783

784

Although this definition of norm seems to be complicated, its meaning is rather clear:785

The real part of η decays like w−1−σ and its first and second derivatives decay like786

w−2−σ. Moreover, the imaginary part of η only decays as w−σ, but its first and787

second derivative decay as w−1−σ and w−2−σ respectively. As a consequence, real788

and imaginary parts of the function η behave in different ways away from the vortex789

points. It is worth mentioning that the Hölder norms are taken into account in the790

definition because eventually we shall use the Schauder estimates. We remark that it791

is also possible to work in suitable weighted Lp spaces and then use the Lp estimates,792

as is done in [20] for the Allen-Cahn equation.793

On the other hand, for complex valued function h = h1 + ih2, we define the794

following weighted Hölder norm795

‖h‖∗∗ := ‖uh‖C0,γ(w<3) +
∥∥w1+σh1

∥∥
L∞(w>2)

796

+
∥∥w2+σ∇h1

∥∥
L∞(w>2)

+
∥∥w2+σh2

∥∥
L∞(w>2)

797

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)

2+σ+γ |∇h1 (z1)−∇h1 (z2)|
|z1 − z2|γ

)
798

+ sup
z∈{w>2}

sup
z1,z2∈Bw/3(z)

(
w (z)

2+σ+γ |h2 (z1)− h2 (z2)|
|z1 − z2|γ

)
.799

800

This definition tells us that the real and imaginary parts of h have different decay801

rates. Moreover, intuitively we require h1 to gain one more power of decay at infinity802

after taking one derivative. The choice of this norm is partly decided by the decay803

and smooth properties of E(u).804

As was already mentioned at the beginning of this subsection, to carry out the805

Lyapunov-Schmidt reduction procedure, we need the projected linear theory for the806

linearized operator L. We now know that the imaginary part of L behaves like the807

Laplacian operator at infinity. To deal with it, we need the following result(Lemma808

4.2 in [32]):809

Lemma 4.3. Let σ ∈ (0, 1). Suppose η is a real valued function satisfying810

∆η = h (z) , η (z̄) = −η (z) , |η| ≤ C,811
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where812

|h (z)| ≤ C

(1 + |z|)2+σ .813

Then we have814

|η (z)| ≤ C

(1 + |z|)σ
.815

It is well known that without any assumption on h, the solution η may grow at816

a logarithmic rate at infinity. This result tells us that if h is odd in the y variable,817

then η will not have the log part, due to cancellation. For completeness, we give the818

detailed proof of this fact in the sequel.819

Proof of Lemma 4.3. Let Z = X + iY. By Poisson’s formula, we have820

η (z) =
1

2π

∫
Y >0

ln

(
z̄ − Z
z − Z

)
h (Z) dXdY.821

Using the decay assumption of h, we find that η (z)→ 0, as z → +∞.822

Let us construct suitable supersolution in the upper half plane. Define823

g (z) := rβyα,824

where r = |z| and β, α are chosen such that825

β + α = −σ, 0 < σ < α < 1.826

We compute827

∆g = rβyα
((
β2 + 2βα

)
r−2 + α (α− 1) y−2

)
828

≤ −Crβyα
(
r−2 + y−2

)
829

≤ −Crβ−1yα−1 ≤ −Crβ+α−2 = −Crσ−2.830831

Hence by maximum principle,832

|η (z)| ≤ Cg (z) ≤ C

(1 + |z|)σ
.833

The proof is then completed.834

We also need the following835

Lemma 4.4. Let σ ∈ (0, 1). Suppose η is a real valued function satisfying836

∆η − 2η = h, |η| ≤ C,837

where838

|h (z)| ≤ C

(1 + |z|)2+σ .839

Then we have840

|η (z)| ≤ C

(1 + |z|)2+σ .841

The proof of this lemma is easier than that of Lemma 4.3. Indeed, one can directly842

construct a supersolution of the form 1/r2+σ for the operator −∆ + 2, in the region843

{z : |z| > a}, where a is a fixed large constant. We omit the details.844

With all these preparations, now we are ready to prove the following a priori845

estimate for solutions of the equation L(η) = h.846
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Proposition 4.5. Let ε > 0 be small. Suppose ‖η‖∗ <∞, ‖h‖∗∗ <∞ and847 
Lη = h,

Re
(∫
|z−ε−1pk|≤1

ūη̄∂xu
)

= 0, for k = 1, ..., 3,

Re
(∫
|z−ε−1pk|≤1

ūη̄∂yu
)

= 0, for k = 1, ..., 3,

uη and uη have the same symmetry as E (u) stated in Lemma 4.2.

848

Then ‖η‖∗ ≤ Cε−σ |ln ε| ‖h‖∗∗, where C is a constant independent of ε and h.849

Proof. The mapping properties of L are closely related to that of the operator850

L, which is the linearized operator of the standard degree one vortex solution v+851

of the Ginzburg-Landau equation analyzed in Section 3(See (3.4)). We would like852

to point out that one of the difficulties in the proof of this proposition is that L853

has three bounded linearly independent elements of the kernel, corresponding respec-854

tively to translation in the x variable(∂xv+), translation in the y variable(∂yv+), and855

rotation(∂θv+). But here a priori we only assume in the statement of this proposition856

that uη is orthogonal to two of them(∂xu and ∂yu) in a certain sense. This is quite857

different from the situation(only one pair of vortice, located on the x axis) considered858

in [32], where by symmetry the functions are automatically orthogonal to the kernels859

corresponding to y translation and rotation.860

It is also worth mentioning that comparing with the Ginzburg-Landau equation,861

we have the term εi∂yη in the linearized operator L. However, in our context, due862

to the fact that ε is small, essentially we can deal with it as a “perturbation term”.863

To take care of this additional term, we need to analyze the decay rate of the real864

and imaginary parts of the involved functions a little bit more precisely than the865

Ginzburg-Landau case. This issue is already reflected in the definition of the norms866

‖·‖∗ and ‖·‖∗∗.867

The proof given below is actually a straightforward modification of the proof of868

Lemma 4.1 in [18]. The ideas of the proof are almost the same. As we mentioned869

above, the norms defined here are slightly different with the one appeared in [18], in870

particular regarding the decay rate of the first derivatives of the imaginary part of871

η and real part of h. This is the reason why we have a negative power of ε in the872

bound, instead of |ln ε| in [18]. Interested readers can compare the proof of Lemma873

4.1 in [18] and the one presented here to see these minor differences.874

Recall that the vortex points of our approximate solution u are located at ε−1pj ,875

ε−1qj , j = 1, 2, 3. Let us choose a large constant d0 such that all the points pj , qj , j =876

1, 2, 3, are contained inside the ball of radius d0/2 centered at the origin of the complex877

plane. We will split the proof into several steps.878

Step 1. Estimates in the exterior domain Ξ, assuming a priori the required bound879

of η in the interior region.880

To emphasize the main idea of how to take care of the term εi∂yη, let us assume881

for the moment that we have already established the desired weighted estimate of η882

and its derivatives in terms of ε−σ |ln ε| ‖h‖∗∗, in the interior region
{
z : |z| ≤ d0ε

−1
}
.883

This assumption will be justified later on.884

Let us now estimate η and its derivatives in the exterior domain

Ξ :=
{
z : |z| > d0ε

−1
}
.

In view of the decay rates in the definition of the norms, the main task is to estimate885

the weighted norm of ∇η1. The estimate of η itself will be relatively easier.886
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In Ξ, by (4.6), the equation Lη = h takes the form887

iε∂yη + ∆η + 2u−1∇u · ∇η − 2 |u|2 η1 = h.888

Splitting into real and imaginary parts, we can write this equation as889

(4.7)

{
−∆η1 + 2η1 + ε∂yη2 = −h1 + 2 Re(u−1∇u · ∇η)− 2(|u|2 − 1)η1,
−∆η2 − ε∂yη1 = −h2 + 2 Im(u−1∇u · ∇η), η2(z̄) = −η2(z).

890

In Ξ, the terms in the right hand side containing η are small in suitable sense. Indeed,891

due to the asymptotic behavior S − 1 = O(r−2), we have892 ∣∣∣(|u|2 − 1
)
η1

∣∣∣ ≤ Cr−2 |η1| .893

Moreover, using the formula894

∇f · ∇g = ∂rf∂rg +
∂θf∂θg

r2
,895

we obtain,896 ∣∣Re
(
u−1∇u · ∇η

)∣∣ ≤ Cr−1 |∇η2|+ Cr−2 |∇η1| ,897 ∣∣Im (u−1∇u · ∇η
)∣∣ ≤ Cr−1 |∇η1|+ Cr−2 |∇η2| .898899

Consider any point z0 ∈ Ξ. To estimate η2 around z0, we denote |z0| by R and900

define the rescaled function g (z) := η2 (Rz) . Then by the second equation of (4.7), g901

satisfies902

∆g (z) = −εR2∂yη1 +R2h2 − 2R2 Im
(
u−1∇u · ∇η

)
,903

where the right hand side is evaluated at the point Rz. Applying Lemma 4.3 and the904

Schauder estimates to the rescaled function g, using the assumed bound of η in the905

interior domain, we find that906

‖g‖C2,γ(1<|z|<2) ≤ CεR
2 ‖∇η1(R·)‖C0,γ(2/3<|z|<3)907

+ CεR2
∥∥∥|z|2+σ∇η1 (R·)

∥∥∥
L∞(2/3<|z|)

908

+ CR−σε−σ |ln ε| ‖h‖∗∗ .909910

Rescaling back, we find that in particular,911 ∥∥w2+σ∇2η2

∥∥
L∞(Ξ)

912

≤ Cε
∥∥w2+σ∇η1

∥∥
L∞(R2)

913

+ Cε sup
z∈Ξ

sup
z1,z2∈Bw/3(z)

(
w (z)

2+σ+γ |∇η1 (z1)−∇η1 (z2)|
|z1 − z2|γ

)
914

+ Cε−σ |ln ε| ‖h‖∗∗ .(4.8)915916

We also have corresponding estimate for the weighted Hölder norm of ∇2η2. Note917

that in the right hand side, we have the small constant ε before the norm of η1.918

Similar estimates hold for ∇η2.919

This manuscript is for review purposes only.



MULTI-VORTEX TRAVELING WAVES 27

To get the desired weighted estimate of ∂yη1, instead of working directly with the920

first equation of (4.7), we shall differentiate it with respect to y. This yields921

−∆ (∂yη1) + 2∂yη1922

= −ε∂2
yη2 − ∂yh1 + 2∂y

(
Re
(
u−1∇u · ∇η

))
− 2∂y

((
|u|2 − 1

)
η1

)
.(4.9)923

924

Note that by the definition of the norm ‖·‖∗∗ , ∂yh1 decays one more power faster925

than h1. Applying the standard estimate for the operator −∆ + 2(Lemma 4.4), we926

find that927 ∥∥w2+σ∂yη1

∥∥
L∞(Ξ)

≤ Cε
∥∥w2+σ∇2η2

∥∥
C0,γ(Ξ)

928

+ Cε
∥∥w1+σ∇η2

∥∥
C0,γ(Ξ)

+ Cε−σ |ln ε| ‖h‖∗∗ .(4.10)929
930

Given any pair of points z1, z2, we define the difference quotient of φ as931

Q (φ) (z) :=
φ (z + z1)− φ (z + z2)

|z1 − z2|γ
.932

Then from equation (4.9) , we find that Q (∂yη1) satisfies933

−∆ (Q (∂yη1)) + 2Q (∂yη1)934

= −εQ
(
∂2
yη2

)
−Q (∂yh1) + 2Q

(
∂y
(
Re
(
u−1∇u · ∇η

)))
935

− 2Q
(
∂y

((
|u|2 − 1

)
η1

))
.936

937

Same argument as (4.10) applied to the function G yields the weighted Hölder norm938

of ∂yη1. Similar estimate can be derived for ∂xη1, by taking the x-derivative in the939

equation (4.7) .940

From (4.8) , (4.10) , and the corresponding weighted Hölder estimates, we deduce941 ∥∥w2+σ∂yη1

∥∥
L∞(Ξ)

+ sup
z∈Ξ

sup
z1,z2∈Bw/3(z)

(
w (z)

2+σ+γ |∂yη1 (z1)− ∂yη1 (z2)|
|z1 − z2|γ

)
942

≤ Cε−σ |ln ε| ‖h‖∗∗ .943944

With this desired decay estimate of ∂yη1 at hand, we can use the second equation of945

(4.7) and the mapping property of the Laplacian operator to get the estimates of η2946

and its derivatives, and then use the first equation of (4.7) to get the estimates of η1947

and its derivatives.948

Step 2. Estimates in the interior region.949

Let us estimate η in the interior region950

Γε :=
{
z : |z| ≤ d0ε

−1
}
.951

We will choose d1 > 0 such that the balls centered at points pj , qj , j = 1, 2, 3, with952

radius d1 are disjoint to each other. Denote the union of these balls by Ω. We then953

define Ωε to be the union of the balls of radius d1ε
−1 centered at vortex points954

ε−1pj , ε
−1qj , j = 1, 2, 3. Note that Ωε ⊂ Γε.955

To prove the bound of η, we assume to the contrary that there were sequence956

εk → 0, sequences h(k), η(k), with η(k) satisfying the orthogonality condition, Lη(k) =957

h(k), and as k tends to infinity,958

(4.11)
∥∥∥η(k)

∥∥∥
∗

= ε−σk , |ln εk|
∥∥∥h(k)

∥∥∥
∗∗
→ 0,959
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We will also write εk as ε for simplicity. According to the definition of our norms,960

this implies961 ∥∥∥η(k)
2

∥∥∥
L∞(Γε\Ωε)

+ ε−1
∥∥∥∇η(k)

2

∥∥∥
L∞(Γε\Ωε)

≤ C.962

Moreover, we have963 ∥∥∥η(k)
1

∥∥∥
L∞(Γε\Ωε)

+ ε−1
∥∥∥∇η(k)

1

∥∥∥
L∞(Γε\Ωε)

≤ Cε.964

Substep A. The L∞(R2) norm of uη(k) is uniformly bounded with respect to k.965

Before starting the proof, we point out that the main task is to estimate η2. The966

reason is that the near the vortex points, the operator L(·) resembles L(S·), where967

L is the conjugate operator of L defined in Section 3. Due to rotational symmetry968

of the Ginzburg-Landau equation, the constant i is a bounded kernel of the operator969

L(S·). One can also check directly that L(i) = 0. As we will see later on, the presence970

of this purely imaginary kernel implies that the L∞ norm of η near the vortex points971

is essentially determined by the L∞ norm of η at the boundary of Ωε.972

Let ρ be a real valued smooth cutoff function satisfying973

ρ (s) =

{
1, s < 1

2 ,
0, s > 1.

974

Consider the function975

η̃(k) (z) := η(k) (z) ρ

(
ε

d1

(
z − ε−1p1

))
.976

This function is localized in the d1
ε neighborhood of the vortex point ε−1p1. We shall977

fix a large constant R0 independent of εk. For notational simplicity, we will drop the978

superscript k if there is no confusion. In form of real and imaginary parts, we have979

η̃ = η̃1 + iη̃2.980

Claim 1: We have the following(the decay here is not optimal) estimate of η981

away from the vortex points:982

‖η̃2‖L∞(r1>2R0) + ‖r1∇η̃2‖L∞(r1>2R0)983

+
∥∥r1+σ

1 η̃1

∥∥
L∞(r1>2R0)

+
∥∥r1+σ

1 ∇η̃1

∥∥
L∞(r1>2R0)

984

≤ C
(
‖η̃‖L∞(r1<2R0) + 1

)
.(4.12)985

986

The proof of this claim is same as the proof of Lemma 4.1 in [18](although nota-987

tions here are different). We repeat their arguments for completeness.988

Let us estimate η̃1. First of all, in the region r1 > R0, using the fact that989

∂y η̃2 ≤ Cε−σr−1−σ
1 , we obtain from the first equation of (4.7) that990

(4.13) −∆η̃1 + 2S2η̃1 = O

(
1

r1

)
∇η̃2 + o (1)

1

r1+σ
1

.991

Here O(1/r1) is bounded by C/r1, and o(1) represents a term tending to 0 as k goes992

to infinity. The right hand side of (4.13) is then bounded by Br−1−σ
1 , where993

B := ‖rσ1∇η̃2‖L∞(r1>R0) + o (1) .994
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Since S converges to 1 at infinity, it is easy to check that the function r−1−σ
1 is a995

supersolution of the operator −∆ + 2S2 in this region. Using maximum principle and996

elliptic estimates, we infer from equation (4.13) that997

(4.14) |∇η̃1|+ |η̃1| ≤ C
(
B + ‖η̃1‖L∞(r1=R0)

)
r−1−σ
1 , r1 ≥ 2R0.998

On the other hand, in the region r1 > 2R0, using the fact that ∂y η̃1 ≤ Cε−σr−2−σ
1 ,999

we know that the imaginary part η̃2 satisfies an equation of the form1000

(4.15) −∆η̃2 = O

(
1

r1

)
∇η̃1 + o (1)

1

r2+σ
1

+ Cε2.1001

Using the estimate (4.14) of η̃1, we find that the right hand side of the equation1002

(4.15) is bounded by CB′r−2−σ
1 + Cε2, where B′ := ‖η̃1‖L∞(r1=R0) + o (1) , and C is1003

a universal constant. Consider the function1004

M(z) := C0B
′ (1− r−σ1

)
+ C0

(
d2

1 − r2
1ε

2
)

+ ‖η̃2‖L∞(r1=2R0).1005

If C0 is a fixed large constant, then1006

−∆ (M − η̃2) ≥ 0.1007

Moreover,1008

η̃2 ≤M, if r1 = 2R0 or r1 = d1/ε.1009

Hence by the maximum principle, η̃2 ≤M . That is,1010

‖η̃2‖L∞(r1>2R0) ≤ CB
′ (1− r−σ1

)
+ C

(
d2

1 − r2
1ε

2
)

+ ‖η̃2‖L∞(r1=2R0)1011

≤ C + ‖η̃‖L∞(r1<2R0) .(4.16)1012
1013

Given R > 0, to obtain the decay estimate of ∇η̃2 near any point of the form ε−1p1 +1014

Rz0, where |z0| = 1, we use the scaling argument again and define the rescaled1015

function η∗ := η̃2

(
ε−1p1 +R (z + z0)

)
. Elliptic estimates for the equation satisfied1016

by η∗ together with (4.16) yield1017

(4.17) ‖r1∇η̃2‖L∞(r1>R0) ≤ C
(

1 + ‖η̃‖L∞(r1<2R0)

)
.1018

Inserting this estimate back to (4.14) , we finally deduce1019

(4.18) |∇η̃1|+ |η̃1| ≤ Cr−1−σ
1

(
1 + ‖η̃‖L∞(r1<2R0)

)
.1020

Claim 1 then follows.1021

To proceed, we need to pay special attention to the projection of η̃ onto the lowest1022

Fourier mode(the constant mode, with respect to the angle). In the (r1, θ1) coordinate,1023

we still use v+ to denote the standard degree one vortex solution S(r1)eiθ1 of the1024

Ginzburg-Landau equation, and L will be the linearized Ginzburg-Landau operator1025

around v+. The linear operator L is its conjugate operator, as is defined in Section1026

3. In the lowest Fourier mode, L has a bounded kernel of the form iS, which tends to1027

the constant i as r1 goes to infinity. This kernel arises from rotation. We define the1028

projection onto the constant mode as:1029

β (r1) :=
S (r1)

2πr1

∫
|z|=r1

η̃
(
ε−1p1 + z

)
.1030
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We also write β into its real and imaginary form: β = β1 + β2i. We recall that L1031

is decoupled in this Fourier mode. Let us use L1 to denote the operator obtained1032

from L − iε∂yη, replacing u by S(r1)eiθ1 . Note that in Ωε, u is close to S(r1)eiθ1 ,1033

up to an error of the order O(ε2). The operator L1 and L are equivalent under the1034

transformation g → Sg : If L1g = 0, then L (Sg) = 0. Hence using the assumption1035

that ‖η‖∗ = ε−σ and ‖h‖∗∗ ≤ o (1) |ln ε|−1
, where o (1) means a term tending to 0 as1036

εk → 0, we infer from the explicit form of the operator L(see (3.7)) that in the region1037

1 < r1 < d1ε
−1,1038

(4.19) β′′1 +
1

r1
β′1 −

1

r2
1

β1 +
(
1− 3S2

)
β1 = o (1) |ln ε|−1

r−1−σ
1 ,1039

1040

(4.20) β′′2 +
1

r1
β′2 −

1

r2
1

β2 +
(
1− S2

)
β2 = o (1) |ln ε|−1

r−2−σ
1 .1041

Note that due to the asymptotic behavior of S, the left hand side of the equation1042

(4.20) essentially behaves like β′′2 + 1
r1
β′2 for r1 large. Since S is the unique bounded1043

solution of (4.20), variation of parameter formula(See Lemma 3.1 for the asymptotic1044

behavior of the homogeneous equation) together with the fact that β2 is bounded by1045

a constant at the point r1 = d1
ε tell us that indeed |β2| ≤ C. Similarly, from (4.19) ,1046

we deduce that |β1| ≤ C.1047

We remark that the estimate of β can also be obtained directly(and actually will1048

be easier, especially if we are going to deal with higher order vortex solutions) from1049

the explicit form of the operator L, without using L. The reason that we choose the1050

arguments above is to fit the linear theory cited in Section 3.1051

Claim 2:
∥∥uη̃(k)

∥∥
L∞(r1<2R0)

is uniformly bounded with respect to k1052

Let us assume to the contrary that, up to a subsequence,
∥∥uη̃(k)

∥∥
L∞(r1<2R0)

→1053

+∞. Then we define the renormalized function1054

ξ(k) :=
∥∥∥uη̃(k)

∥∥∥−1

L∞(r1<2R0)
uη̃(k).1055

Using (4.12) and elliptic estimates, we see that this sequence of functions will converge1056

to a bounded solution ξ of the equation L (ξ) = 0. By the nondegeneracy of degree one1057

vortex v+, we have ξ = c1iv+ + c2∂xv+ + c3∂yv+. The fact that β is bounded implies1058

c1 = 0. The orthogonality of ξ(k) with ∂xu and ∂yu tells that c2 = c3 = 0. Hence1059

ξ = 0. This contradicts with the fact that ‖ξ‖L∞(r1<2R0) ≥ 1. Claim 2 is thereby1060

proved.1061

We observe that similar estimates as above are also valid near other vortex points1062

ε−1pj , ε
−1qj , j = 1, 2, 3. Hence we have proved that

∥∥uη(k)
∥∥
L∞(R2)

is uniformly1063

bounded with respect to k.1064

Substep B.
∥∥uη(k)

∥∥
L∞(R2\Ωε)

tends to zero as k goes to infinity.1065

We assume to the contrary that up to a subsequence,
∥∥uη(k)

∥∥
L∞(R2\Ωε)

≥ C1 > 0,1066

for a universal constant C1. With the estimates (4.18) of ∇η1 at hand, we find that1067

the rescaled function η
(k)
2

(
ε−1z

)
will converge to a bounded solution of the problem1068

∆g = 0, in R2\ {p1, p2, p3, q1, q2, q3} , g is odd in y.1069

By the removable singularity theorem of harmonic functions, g is smooth and has to
be zero. This contradict with the fact that for k large,∥∥∥uη(k)

2

∥∥∥
L∞(R2\Ωε)

≥ C1/2.
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Therefore, we conclude that1070

(4.21)
∥∥∥uη(k)

∥∥∥
L∞(R2\Ωε)

→ 0, as k → 0.1071

Substep C.
∥∥uη(k)

∥∥
L∞(Ωε)

tends to zero as k goes to infinity.1072

The proof of Claim 2 tells us that the L∞ bound of η is determined by the value1073

of η2 at ∂Ωε. In view of the estimate (4.21), we can repeat the arguments in Claim 21074

to infer that actually1075

(4.22)
∥∥∥uη(k)

∥∥∥
L∞(r1<2R0)

→ 0.1076

It then follows from Claim 1 that
∥∥uη(k)

∥∥
L∞(Ωε)

tends to zero as k goes to infinity.1077

Once we obtain (4.22) for the L∞ norm, we can estimate ∇2η, ∇η and their1078

weighted Hölder norms using inequalities like (4.8) and (4.10), and deduce that1079

εσ
∥∥η(k)

∥∥
∗ → 0. But this will contradict with the assumption (4.11). This contradic-1080

tion finally tells us that actually ‖η‖∗ ≤ Cε−σ |ln ε| ‖h‖∗∗ , for some universal constant1081

C. The proof is then completed.1082

Now we would like to turn to estimate the error of the approximate solution in1083

the exterior region Ξ, which is far away from the vortex points. Let r be the distance1084

of z to the origin. We have the following1085

Lemma 4.6. In Ξ, we have1086

(4.23) |E (u)| ≤ Cr−2.1087

Moreover,1088

(4.24)
∣∣∣Im(e−iθ̃E (u)

)∣∣∣ ≤ Cεr−3.1089

Proof. Recall that u =
∏
j

uj =
∏
j

(
S (rj) e

iθj
)
. For r ≥ d0ε

−1, we have1090

|∂y (θj − θj+3)| ≤ Cε−1r−2, j = 1, 2, 3.1091

Hence |∂yu| ≤ Cε−1r−2. Next,1092

|∇uk · ∇uj | = |∂xuk∂xuj + ∂yuk∂yuj |1093

≤ |∂xuk| |∂xuj |+ |∂yuk| |∂yuj |1094

≤ Cr−2.10951096

Finally, since ρk ≤ Cr−2, we have Qk ≤ Cr−4. Combining these estimates, we get1097

(4.23) .1098

Now we prove (4.24) . For each k, using the fact that S′ (r) = O
(
r−3
)
, we have1099

Im

e−iθ̃iε∂yuk∏
j 6=k

uj

 = O
(
r−3
)
.1100
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Moreover, for k 6= j, with k, j ≤ 3, we know that uk and uj are vortex of degree one.1101

Then we compute1102

Im

e−iθ̃ (∇uk · ∇uj)
∏
l 6=k,j

ul

1103

= S (rk) ∂xθkS
′ (rj) ∂xrj + S′ (rk) ∂xrkS (rj) ∂xθj1104

+ S (rk) ∂yθkS
′ (rj) ∂yrj + S′ (rk) ∂yrkS (rj) ∂yθj1105

= O
(
r−4
)
.11061107

For general k 6= j ≤ 6, we may have different signs before θk, θj in the above identity.1108

Hence we have the same estimates. This proves (4.24) .1109

Now we are ready to prove our main theorem in this paper. Since technically the1110

method is quite similar to that of [32], we only sketch the main steps.1111

Recall that we need to solve1112

(4.25) L (η) = −u−1E (u) +N (η) .1113

Lemma 4.6 tells us that Im
(
e−iθ̃E (u)

)
= O

(
εr−3

)
for r > d1ε

−1. We can also1114

estimate E (u) in terms of rj , if r < d1ε
−1. Now if we choose σ > 0 and γ > 0 to be1115

sufficiently small. Then the error E (u) can be estimated in terms of ε as1116

‖E (u)‖∗∗ ≤ Cε
1−β ,1117

where β is a positive constant satisfying 1 − β > 2σ. Applying Proposition 4.5 and1118

using contradiction argument, we see that the equation (4.25) can be solved modulo1119

the projection onto the kernels ∂xu, ∂yu localized near the vortices(Keep in mind that1120

∂xv+ and ∂yv− decay like r−1 and is not in L2). More precisely, let ρk ≥ 0 be cutoff1121

functions supported in the region where
∣∣z − ε−1pk

∣∣ ≤ A0, where A0 > 0 is a fixed1122

constant. We can find ck, dk, η such that1123

Lη = −u−1E (u) +N (η) +
∑
k

(
cke
−iθ̃∂xu+ dke

−iθ̃∂yu
)
ρk.1124

Moreover, ‖η‖∗ ≤ Cε1−β−2σ. Projecting both sides on ∂xu, ∂yu and using the estimate1125

of η, we find that if we want all the constants ck, dk to be zero, then pk, qk should1126

satisfy the system1127

(4.26)


∑
j 6=α

1
pα−pj −

∑
j

1
pα−qj = 1 +O

(
εδ
)
, for α = 1, ..., 3,∑

j 6=α

1
qα−qj −

∑
j

1
qα−pj = O

(
εδ
)
, for α = 1, ..., 3,

1128

for some small δ > 0. Using the nondegeneracy(Proposition 2.9) of the roots of1129

the Adler-Moser polynomial and the Lipschitz dependence of the O
(
εδ
)

term on1130

{pk}, {qk}, we can solve this system using contraction mapping principle again and get1131

a solution (p1, p2, p3, q1, q2, q3) , close to the roots a, b, of the Adler-Moser polynomials.1132

This gives us the desired traveling wave solutions of the GP equation.1133
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