
Normalized solutions for Schrödinger system with

quadratic and cubic interactions

Xiao Luo 1 Juncheng Wei 2 Xiaolong Yang 3 Maoding Zhen 4

1 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China
2 Department of Mathematics, University of British Columbia, Vancouver, B.C., V6T 1Z2, Canada

3 School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, P. R. China
4 School of Mathematics, Hefei University of Technology, Hefei, 230009, P. R. China

Abstract

In this paper, we give a complete study on the existence and non-existence of solutions to the
following mixed coupled nonlinear Schrödinger system{

−∆u+ λ1u = βuv + µ1u
3 + ρv2u in RN ,

−∆v + λ2v = β
2u

2 + µ2v
3 + ρu2v in RN ,

under the normalized mass conditions
∫
RN u

2dx = b21 and
∫
RN v

2dx = b22. Here b1, b2 > 0 are
prescribed constants, N ≥ 1, µ1, µ2, ρ > 0, β ∈ R and the frequencies λ1, λ2 are unknown and
will appear as Lagrange multipliers. In the one dimension case, the energy functional is bounded
from below on the product of L2-spheres, normalized ground states exist and are obtained as global
minimizers. When N = 2, the energy functional is not always bounded on the product of L2-
spheres. We give a classification of the existence and nonexistence of global minimizers. Then under
suitable conditions on b1 and b2, we prove the existence of normalized solutions. When N = 3, the
energy functional is always unbounded on the product of L2-spheres. We show that under suitable
conditions on b1 and b2, at least two normalized solutions exist, one is a ground state and the other
is an excited state. Furthermore, by refining the upper bound of the ground state energy, we provide
a precise mass collapse behavior of the ground state and a precise limit behavior of the excited
state as β → 0. Finally, we deal with the high dimensional cases N ≥ 4. Several non-existence
results are obtained if β < 0. When N = 4, β > 0, the system is a mass-energy double critical
problem, we obtain the existence of a normalized ground state and its synchronized mass collapse
behavior. Comparing with the well studied homogeneous case β = 0, our main results indicate that
the quadratic interaction term not only enriches the set of solutions to the above Schrödinger system
but also leads to a stabilization of the related evolution system.
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1 Introduction and main results

In this paper, we look for solutions to the following coupled Schrödinger system{
−∆u+ λ1u = βuv + µ1u

3 + ρv2u in RN ,
−∆v + λ2v = β

2u
2 + µ2v

3 + ρu2v in RN ,
(1.1)

satisfying the additional constraints∫
RN

u2dx = b21 and

∫
RN

v2dx = b22. (1.2)

Here, b1, b2 > 0 are prescribed constants, N ≥ 1, µ1, µ2, ρ > 0, β ∈ R and the frequencies λ1, λ2 are
unknown and will appear as Lagrange multipliers.

Problem (1.1)-(1.2) arises from the research of stationary exponentially localized bright solitary waves
for the following two-wave mixing system{

i∂Φ1
∂z + ∆Φ1 + βΦ∗1Φ2 + s(|Φ1|2 + ρ|Φ2|2) = 0,

i∂Φ2
∂z + ∆Φ2 − γΦ2 + β

2 Φ2
1 + s(η|Φ2|2 + ρ|Φ1|2)Φ2 = 0,

(1.3)

which describes the dynamics of beam propagation in lossless bulk χ(2) media inhering cubic non-
linearity, under conditions for second-harmonic generation type-I. z is the propagation distance co-
ordinate, the superscript ∗ denotes the complex conjugate function and β is a constant. The slowly
varying complex envelope functions of the fundamental wave Φ1 = Φ1(x, z) and of the second harmonic
Φ2 = Φ2(x, z) are assumed to propagate with a constant polarization, −→e 1,

−→e 2 along the z axis. The

electric field
−→
E =

−→
E (
−→
R,Z,M) is given by

−→
E =

−→
E (
−→
R,Z,M) = E0(Φ1e

iθ1−→e 1 + 2Φ2e
i2θ1−→e 2), (1.4)

where
−→
R = r0x, Z = z0z, θ1 = k1Z − ω1M , ω1 is fundamental frequency and (Φ1, Φ2) satisfies (1.3).

The real normalization parameters E0, z0 and R0 are given by

E0 =
4χ̃

(2)
1

3|χ̃(3)
1k |

, z0 = 2k1r
2
0 and r2

0 =
3|χ̃(3)

1k |
16µ0ω2

1(χ̃
(2)
1 )2

, (1.5)

where µ0 is the vacuum permeability and kp is the wave number at the frequency ωp. The real param-
eters γ, s, η and ρ are given by

γ = 2z0(2k1 − k2), s = sign(χ̃
(3)
1k ), η = 16

χ̃
(3)
2k

χ̃
(3)
1k

, ρ = 8
χ̃

(3)
1c

χ̃
(3)
1k

, (1.6)

where 2k1 − k2 � k1 is the phase-mismatch parameter, χ̃jp = χ̃j(ωp) denote the Fourier components at
frequency ωp of the jth order susceptibility tensor and the scalar χ3

p,q is the vectorial Fourier transform

of χ3 (p, q = 1, 2). Thus, χ̃
(2)
1 = χ̃

(2)
2 represents the quadratic nonlinearity, χ̃

(3)
pk and χ̃

(3)
1c = χ̃

(3)
2c are the

parts of the cubic nonlinearity responsible for self-phase and cross-phase modulation, respectively. For
more details about physical meaning of system (1.3), one can refer to the papers [1–3,9].
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Indeed, if we substitute

Φ1(x, z) = u(x)eiλ0z and Φ2(x, z) = v(x)ei2λ0z (1.7)

into (1.3), then (u, v) solves the following stationary system{
−∆u+ λ1u = βuv + s(u2 + ρv2)u in RN ,
−∆v + λ2v = β

2u
2 + s(ηv2 + ρu2)v in RN ,

(1.8)

with λ1 = λ0, λ2 = 4λ0 +γ and s = ±1. In this paper we consider the focusing case, i.e., s = 1 in (1.8).
After rescaling and renaming the parameters, we obtain system (1.1).

Motivated by the fact that the L2-norm is a preserved quantity of the evolution, (see [3]), we are
interested in searching solutions to (1.1) with prescribed L2-norm–the so-called normalized solutions
to (1.1). It is standard that the solutions of (1.1)-(1.2) can be obtained as critical points of the energy
functional

Jβ(u, v) =
1

2

∫
RN

(|∇u|2 + |∇v|2)dx− 1

4

∫
RN

(µ1u
4 + µ2v

4 + 2ρu2v2)dx− β

2

∫
RN

u2vdx,

on the constraint space Tb1 × Tb2 , where for b ∈ R we define

Tb :=
{
u ∈ H1(RN ) :

∫
RN

u2 = b2
}
.

In the last ten years, the study of normalized solutions for Schrödinger equations or systems has
received lots of attention. However almost all the results deal with the cubic interactions. When
β = 0, N = 1, ρ > 0, N. Nguyen and Z. Wang in [34] proved the existence of normalized solutions
to problem (1.1) by minimizing the corresponding energy functional constrained on the product of the
L2-sphere and using concentration-compactness arguments, they also studied the stability properties
of these solutions. Since the corresponding constrained functional is unbounded both from above and
from below on the L2-sphere, the approach used in [34] does not work for problem (1.1) with N = 3.
When β = 0, N = 3, T. Bartsch, L. Jeanjean and N. Soave [5] proved that for arbitrary masses bi and
positive parameter µi, there exists ρ2 > ρ1 > 0 such that for both 0 < ρ < ρ1 and ρ > ρ2, system (1.1)-
(1.2) has a positive radial solution. T. Bartsch and N. Soave in [6] proved the existence of at least one
normalized solution to problem (1.1) in the case of ρ < 0 by a new approach based on the introduction
of a natural constraint associated to problem (1.1), and in [8], they proved the existence of infinitely
many solutions of problem (1.1) with µ1 = µ2 > 0 and ρ ≤ −µ1 by using a suitable minimax argument.
Later, by using bifurcation theory and the continuation method, T. Bartsch, X. Zhong and W. Zou [7]
obtained the existence of normalized solutions for any given b1, b2 > 0 for ρ in a large range. They also
got a result about the nonexistence of positive solutions which shows that their existence theorem is
almost optimal. By using standard Ljusternik-Schnirelmann theory, when β = 0, the authors in [35,43]
considered problem (1.1) in bounded domains under the case µ1, µ2, ρ < 0, they proved the existence of
infinitely many normalized solutions and occurrence of phase-separation as ρ→ −∞. In [36], B. Noris
et al. studied problem (1.1) in bounded domains of RN , or the problem with trapping potentials in the
whole space RN (the presence of a trapping potential makes the two problems essentially equivalent)
with N ≤ 3. In both cases, they proved the existence of positive solutions with small masses b1 and b2,
and the orbital stability of the associated solitary waves. When β = 0, N = 2, Guo et al. in [18–20]
considered the existence, non-existence, uniqueness and asymptotic behavior of solutions to problem
(1.1)-(1.2) with certain type of trapping potentials.
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Since competing quadratic and cubic nonlinearities is a general physical phenomenon, it is important
to know the effect of such a competition on normalized solutions. In [45] the authors gave a first study
to problem (1.1) with both quadratic and cubic interactions (without the mass constraints). In the
present paper, we give a complete study on the existence of normalized solutions in the less studied
case β 6= 0. First, we consider the one dimensional case, in which the energy functional is bounded from
blow on the product of L2-spheres Tb1 × Tb2(see Lemma 2.2), so we define

mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) (1.9)

and then we prove the following result

Theorem 1.1. If N = 1, µ1, µ2, ρ > 0, then for every β > 0, −∞ < mβ(b1, b2) < 0 is achieved. In
addition any minimizing sequence for (1.9) is, up to translation, strongly convergent in H1(R)×H1(R)
to a solution of (1.1)-(1.2).

Next, we turn to N = 2. In this case, the energy functional is not always bounded on Tb1 × Tb2 ,
relating to the values b1 and b2. Let Q be the unique positive radial solution to

−∆Q+Q = Q3, Q ∈ H1(R2). (1.10)

The main results in dimension N = 2 can be stated as follows:

Theorem 1.2. Let N = 2 and µ1, µ2, ρ > 0:
(i) If max{(µ1 + ρ)b21, (µ2 + ρ)b22} < ‖Q‖2L2(R2), then

a) for every β < 0, problem (1.1)-(1.2) has no positive solutions,
b) for every β > 0, when 0 < b2 ≤ ‖Q‖L2(R2), −∞ < mβ(b1, b2) < 0 is achieved by (u, v) which is a

positive solution of (1.1)-(1.2).

(ii) If
µ1b41+µ2b42+2ρb21b

2
2

(b21+b22)
> ‖Q‖2L2(R2), then mβ(b1, b2) = −∞ for any β ∈ R.

In order to prove Theorem 1.2, in section 2, we introduce the following minimization problem

A = A(µ1, µ1, ρ, b1, b2) := inf
(u,v)∈Tb1×Tb2

∫
R2(|∇u|2 + |∇v|2)dx∫

R2 (µ1u4 + µ2v4 + 2ρu2v2) dx

and prove that

‖Q‖2L2(R2)

2 max{(µ1 + ρ)b21, (µ2 + ρ)b22}
≤ A ≤

1
2(b21 + b22)‖Q‖2L2(R2)

µ1b41 + µ2b42 + 2ρb21b
2
2

.

We shall prove that if A > 1
2 , then Jβ(u, v) is coercive on Tb1 × Tb2 and mβ(b1, b2) > −∞ is achieved,

so there exists at least one normalized ground state for (1.1).

Remark 1.1. When N = 2, if A < 1
2 , then mβ(b1, b2) = −∞. Thus the minimization problem con-

strained on Tb1 × Tb2 does not work. Since
∫
R2 |∇u|2 + |∇v|2 and

∫
R2 µ1u

4 + µ2v
4 + 2ρu2v2 behave

at the same way under L2 preserving scaling of (u, v), Jβ(ιu(ιx), ιv(ιx)) may strictly increasing with
respect to ι ∈ R, so the usual methods developed on the Pohozaev-Nehari constraint can not be applied
directly here, see [5, 6, 41, 42]. Inspired by the recent works [29, 48], we try to construct a submanifold
of Tb1 × Tb2 as following

Nb1,b2 :=
{

(u, v) ∈ Tb1 × Tb2 | Pb1,b2(u, v) = 0 and

∫
R2

(|∇u|2 + |∇v|2)dx <
1

2

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx
}
,
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on which J(u, v) may admits a minimizer, where Pb1,b2(u, v) = 0 is the related Pohozaev-Nehari identity. Indeed,
for any (u, v) on the set Nb1,b2 , Jβ(ιu(ιx), ιv(ιx)) has a unique maximum point ιu,v and is strictly increasing
in (−∞, ιu,v) and decreasing in (ιu,v,+∞). Therefore, we expect a constrained variation can be used to obtain
a normalized solution to (1.1). However, due to the uncertainty of sign of the quadratic interaction term and
inhomogeneity of the coupling term, it seems difficult to prove the compactness of the minimizing sequences (or
Palais-Smale sequences) developed in Nb1,b2 . We believe that when A < 1

2 , the existence of normalized solutions
to (1.1) in dimension two is an expected interesting result.

Now, we deal with the three dimensional case. In this case, mβ(b1, b2) = −∞ for any b1, b2 > 0.
Indeed, the leading term is L2 supercritical and Sobolev subcritical, the energy function Jβ(u, v) is
unbounded both from above and from below on Tb1 × Tb2 . In order to search for two normalized
solutions, we use the ideas introduced by N. Soave [41, 42] to study the corresponding fiber maps
Ψu,v(t) (see (4.2)), which has the same Mountain pass structure as the original functional. The benefits
of the fiber map are that the critical point of Ψu,v(t) allow to project a function on Pb1,b2 (see (4.1)). The
monotonicity and convexity of Ψu,v(t) has a strongly affect the structure of Pb1,b2 and then intimately
related to the minimax structure of Jβ(u, v)|Tb1×Tb2

. To show our main results, we first introduce the
Gagliardo-Nirenberg-Sobolev inequality

‖u‖Lp(RN ) ≤ CN,p‖∇u‖
γp
L2(RN )

‖u‖1−γp
L2(RN )

for all u ∈ H1(RN ), (1.11)

where

γp =
N(p− 2)

2p
,

and we denote by CN,p the best constant in the the Gagliardo-Nirenberg-Sobolev inequality H1(RN ) ↪→
Lp(RN ), 2 < p < 2∗ = 2N

N−2(N ≥ 3). Our main results are the following:

Theorem 1.3. When N = 3, µ1, µ2, ρ, β > 0 and

β

(
2b

3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 <

2
√

6

3
,

then (1.1)-(1.2) has at least two positive normalized solutions, one is a ground state (ûβ, v̂β), the other
is an excited state (ũβ, ṽβ). Moreover, Jβ(ûβ, v̂β) → 0+,

∫
R3(|∇ûβ|2 + |∇v̂β|2)dx → 0 and there exists

ρ2 > 0 such that when ρ > ρ2, then (ũβ, ṽβ) → (ũ0, ṽ0) strongly in H1(R3)×H1(R3) as β → 0, where
(ũ0, ṽ0) is a normalized ground state of (1.1) with β = 0.

Remark 1.2. Theorem 1.3 gives the existence of two normalized solutions for (1.1). The first one is
a local minimizer for which we establish the compactness of minimizing sequence. The second solution
is obtained through a constrained linking. Theorem 1.3 also shows the limit behavior of the solutions as
β → 0. The first solution will disappear and the second solution will converge to the normalized solution
of system (1.1) with β = 0, which has been studied by T. Bartsch, L. Jeanjean and N. Soave in [5].
When β = 0, N = 3, in [5] the authors proved that for arbitrary masses bi and parameter µi, there
exists ρ2 > ρ1 > 0 depending on the masses such that for both 0 < ρ < ρ1 and ρ > ρ2 system (1.1)–(1.2)
has a positive radial solution. Recently, T. Bartsch, X. Zhong and W. Zou in [7] obtained the existence
of normalized solutions for any given b1, b2 > 0 and ρ > 0 in a large range, which is independent of
the masses. They also have a result about the nonexistence of positive solutions which shows that their
existence theorem is almost optimal. Therefore our results indicate that the quadratic interaction term
not only enriches the set of solutions to the above Schrödinger system but also expands the permissible
range of ρ.
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Furthermore, we give a mass collapse behavior of the ground states obtained in Theorem 1.3. From
Theorem 1.2 of [49], we know that (u0, v0) = (

√
2β−1w, β−1w) is the unique positive solution of{

−∆u+ u = βuv in R3,

−∆v + v = β
2u

2 in R3,
(1.12)

where w is the unique positive solution of

−∆u+ u = u2, u ∈ H1(R3). (1.13)

Theorem 1.4. Assume that the assumptions in Theorem 1.3 hold, and (ub1,b2 , vb1,b2) is a ground state
for (1.1)-(1.2). Up to a subsequence, we have(

L−1
1 ub1,b2(θ−1

1 (x)), L−1
2 vb1,b2(θ−1

2 (x))
)
→ (ū, v̄)

in H1(R3)×H1(R3) as b1, b2 → 0 and b1 v b2, where (ū, v̄) satisfies{
−∆u+ λ∗1u = βuv in R3,

−∆v + λ∗2v = β
2u

2 in R3,

for some λ∗1, λ
∗
2 > 0, where θ1 =

2β2b
6
5
1 b

4
5
2

16
2
5 ‖w‖2

L2(R3)

, θ2 =
β2b

8
5
1 b

2
5
2

16
1
5 ‖w‖2

L2(R3)

, L1 =
2β4b

14
5

1 b
6
5
2

16
3
5 ‖w‖4

L2(R3)

, L2 =
4β4b

12
5

1 b
8
5
2

16
4
5 ‖w‖4

L2(R3)

.

Moreover, if λ∗1 = λ∗2, then (ū, v̄) = (
√

2β−1w, β−1w).

Denote the set of ground states to (1.1)-(1.2) by Mb1,b2 . If (u, v) solves (1.1) with some λ1, λ2 ∈ R,
then Φ(z, x) = e−iλ1zu(x), Ψ(z, x) = e−iλ2zv(x) satisfies the time-dependent system{

i∂zΦ−∆Φ = βΦΨ + µ1Φ3 + ρΨ2Φ in R3,

i∂zΨ−∆Ψ = β
2 Φ2 + µ2Ψ3 + ρΦ2Ψ in R3,

(1.14)

where (z, x) ∈ R×R3, i =
√
−1. From [10], we know the local well-posedness of solutions to (1.14) holds

for β > 0, then we can consider the stability of Mb1,b2 . The set Mb1,b2 is said to be stable under the
Cauchy flow of (1.14) if for any ε > 0, there exists δ > 0 such that for any (Φ0,Ψ0) ∈ H1(R3)×H1(R3)
satisfying

distH1(R3)×H1(R3)((Φ0,Ψ0),Mb1,b2) < δ,

then the solution ((Φ(z, ·),Ψ(z, ·)) of (1.14) with ((Φ(0, ·),Ψ(0, ·)) = (Φ0,Ψ0) satisfies

sup distH1(R3)×H1(R3)((Φ(z, ·),Ψ(z, ·)),Mb1,b2) < ε,

where Z is the maximal existence time for ((Φ(z, ·),Ψ(z, ·)). We have

Theorem 1.5. When µ1, µ2, ρ, β > 0 and

β

(
2b

3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 <

2
√

6

3
,

then the set Mb1,b2 is compact, up to translation, and it is stable.
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Remark 1.3. Theorem 1.5 indicates that the small quadratic interaction term leads to a stabilizations
of standing waves corresponding to (1.14). Indeed, when β = 0, T. Bartsch, L. Jeanjean and N.
Soave in [5] showed that the associated solitary wave is orbitally unstable by blowing up in finite time.
Therefore, by creating a gap in the ground state energy level of the system (from positive to negative), the
quadratic coupling term not only makes the ground state solutions stable, but also changes the structure
of the energy functional and enriches the solution set.

Now, we deal with the four dimensional case. In this case, mβ(b1, b2) = −∞ for any b1, b2 > 0.
Indeed, the leading term is L2-critical and Sobolev critical, the energy function Jβ(u, v) is unbounded

both from above and from below on Tb1 × Tb2 . Denote S = infD1,2(R4)\{0}
‖∇u‖2

L2(R4)
‖u‖2

L4(R4)
. From [44], we

know that S is attained by the Aubin-Talanti bubbles

Uε(x) :=
2
√

2ε

ε2 + |x|2
, ε > 0, x ∈ R4. (1.15)

Then Uε satisfies −∆u = u3 and
∫
R4 |∇Uε|2dx =

∫
R4 |Uε|4dx = S2. On the other hand, if 0 < ρ <

min{µ1, µ2} or ρ > max{µ1, µ2}(see Lemma 6.3),
(√

ρ−µ2
ρ2−µ1µ2Uε,

√
ρ−µ1

ρ2−µ1µ2Uε

)
is the least energy solu-

tions to the following elliptic system:
−∆u = µ1u

3 + ρv2u in R4,

−∆v = µ2v
3 + ρu2v in R4,

u, v ∈ D1,2(R4).

(1.16)

Define

Sµ1,µ2,ρ = inf
(u,v)∈[D1,2(R4)]2\{(0,0)}

∫
R4(|∇u|2 + |∇v|2)dx(∫

R4 (µ1u4 + µ2v4 + 2ρu2v2) dx
) 1

2

. (1.17)

The main results on this aspect can be stated as follows:
If β < 0, we have the following non-existence results.

Theorem 1.6. Let µi, bi, ρ > 0(i = 1, 2) and β < 0.

1. If N = 4, then problem (1.1)-(1.2) has no positive solution (u, v) ∈ H1(R4)×H1(R4).

2. If N = 5, problem (1.1)-(1.2) has no positive solution (u, v) ∈ H1(R5) × H1(R5) satisfying the
additional assumption that u ∈ Lp(R5) for some p ∈ (0, 5

3 ].

3. Moreover, if N ≥ 4, problem (1.1)-(1.2) has no non-trivial radial solution.

Next, we consider the case β > 0.

Theorem 1.7. When N = 4, let µi, bi > 0(i = 1, 2), β > 0, and ρ ∈
(
0,min{µ1, µ2}

)
∪
(

max{µ1, µ2},∞
)
,

then the following conclusions hold.

1. If 0 < βb1 <
3

2|C4,3|3 and 0 < βb2 <
3

|C4,3|3 , then (1.1)-(1.2) has a positive ground state solution

(ub1,b2 , vb1,b2) ∈ Tb1 × Tb2.
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2. Moreover, there exists σ1 > 0 such that

(
σ1ub1,b2(σ1x), σ1vb1,b2(σ1x)

)
→
(√ ρ− µ2

ρ2 − µ1µ2
Uε0 ,

√
ρ− µ1

ρ2 − µ1µ2
Uε0

)
in D1,2(R4)×D1,2(R4), for some ε0 > 0 as (b1, b2)→ (0, 0), up to a subsequence.

Remark 1.4. If N = 4, in problem (1.1), βuv and β
2u

2 can be regarded as mass-critical terms.
Moreover, the terms u3, v3 and the coupled terms u2v, v2u are mass super-critical and energy critical.
Theorem 1.7 indicate that problem (1.1) with mass critical lower order perturbation term possesses at
least one normalized ground state solution, whose two components both converge to the Aubin-Talanti
bubble in related Sobolev space by making appropriate scaling, as the masses of two components vanish.
More recently, in [31] jointly with W. Zou, the first and third authors in this present paper considered
the equation {

−∆u+ λ1u = α1|u|p−2u+ µ1u
3 + βv2u in R4,

−∆v + λ2v = α2|v|p−2v + µ2v
3 + βu2v in R4,

(1.18)

under the mass constraint (u, v) ∈ Tb1 × Tb2, where µ1, µ2, β > 0, α1, α2 ∈ R, p∈ (2, 4) and λ1, λ2∈R
appear as Lagrange multipliers. We must point out that compared with [31], the problem (1.1) in R4

is more delicate due to the uncertainty of sign of the quadratic interaction term and inhomogeneity of
the coupling term. Moreover, since system (1.1) with mixed couplings is asymmetric, the permissible
range of b1, b2 obtained in Theorem 1.7 may not be optimal, so it is difficult to prove the non-existence
of normalized solutions to (1.1) for larger b1 and b2.

Finally, we give outline of the proofs. In the one dimension case, the energy functional is bounded from
below on the product of L2-spheres, the constrained minimization method developed by L. Jeanjean [17]
can be used to obtained a normalized ground state, which is obtained by establishing the compactness of
the minimizing sequences. When N = 3, the energy functional is always unbounded on the product of
L2-spheres. We use the ideas introduced by N. Soave [41,42] to study the related fiber maps Ψu,v(t)(see
(4.2)). It is easy to see that the critical point of Ψu,v(t) allow to project a function on Pb1,b2(see (4.1))
and the monotonicity and convexity properties of Ψu,v(t) has a strongly affect the structure of Pb1,b2
and then intimately related to the minimax structure of Jβ(u, v)|Tb1×Tb2

.

However, for the system (1.1) we study, due to the uncertainty of the sign of the term β
∫
RN u

2vdx
in the corresponding energy functional, the above method cannot be used directly, and we need to
introduce additional constrains on the previous Pohozaev manifold. On the new manifold with ad-
ditional constrains Pb1,b2(see (4.3)-(4.5)), under suitable condition on b1 and b2, we can prove that
Jβ(u, v)|Tb1×Tb2

admits a convex-concave geometry and the new manifold Pb1,b2 is non-empty. To show
that Pb1,b2 is a natural constraint, we use some ideas introduced by F. Clarke in [13] and already used
by J. Mederski and J. Schino in [33] to deal with minimization problems whose constraints are given by
inequalities. Therefore, Jβ(u, v)|Tb1×Tb2

has a local minimizer and a mountain pass critical point. By
establish the compactness of minimizing sequence, we obtain a solution which is a local minimizer. The
second solution is obtained through a constrained mountain pass. It is worth pointing out that after
proving the strongly convergence of minimizing sequences, we need to verify that the limit function
(u, v) is still in the allowed set Pb1,b2 . Indeed, if β

∫
RN u

2vdx ≤ 0, then the local minimum point will
disappear, thus we get a contradiction.

When N = 3, obviously, we obtain that Jβ(u, v)|Tb1×Tb2
has no local minimizer as β → 0+, i.e.

the ground state energy converges to 0 as β → 0+. The mountain pass solutions (ũβ, ṽβ) obtained in
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Theorem 1.3 depends on β, we shall analyze the convergence properties of (ũβ, ṽβ) as β → 0+. We first
deduce that for the function β ∈ [0,∞) 7→ mβ(b1, b2) ∈ R is monotone non-increasing, and {(ũβ, ṽβ)} is
bounded in H1(R3)×H1(R3). Then there exists a subsequence, such that (ũβ, ṽβ) converge to (ũ0, ṽ0)
strongly in H1(R3) ×H1(R3) as β → 0+, where (ũ0, ṽ0) is a ground state solution of (1.1)-(1.2) with
β = 0.

In the proof of Theorem 1.4, the main ingredient is the refined upper bound of m+(b1, b2) (see Lemma
5.2) i.e.

m+
β (b1, b2) < −1

6

[ 4β4b
22
5

1 b
8
5
2

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1 b
14
5

2

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

This refinement needs to keep the testing functions staying in the admissible set AR0 =
{

(u, v) ∈
Tb1 × Tb2 : ‖∇u‖2L2(R3) + ‖∇v‖2L2(R3) < R2

0

}
. We overcome this difficulty by utilising the properties of

the unique positive radial ground state solution of (1.12). By accurate estimation and careful analysis,
we give a precise description of the asymptotic behavior of solutions as the mass b1, b2 goes to zero.

To prove item 1 of Theorem 1.7, we follow the approach of [46]. We can obtain a bounded minimizing
sequence by using the Pohozaev constraint approach(see [41,42]). However, it is very difficult to prove
the compactness of a minimizing sequence at positive energy levels. Motivated by [46], we drive a better
energy estimate on the associated mountain pass energy level (see Lemma 6.7 ), i.e

0 < mβ(b1, b2) <
k1 + k2

4
S2.

This is enough to guarantee the compactness of minimizing sequences at the energy level mβ(b1, b2).
To prove item 2 of Theorem 1.7, we first prove the following energy splitting asymptotic property of
the solution

||∇ub1,b2 ||22 + ‖∇vb1,b2‖22 → (k1 + k2)S2, µ1‖ub1,b2‖44 + µ2‖vb1,b2‖44 + 2ρ‖ub1,b2vb1,b2‖22 → (k1 + k2)S2,

as (b1, b2)→ (0, 0). Then we obtain that (ub1,b2 , vb1,b2) is a special minimizing sequence of the minimizing
problem (1.17). We follow some ideas from Lemma 3.5 of [26], and by the uniqueness of ground state
solution of (1.17), we obtain the precisely asymptotic behavior of (ub1,b2 , vb1,b2) as (b1, b2)→ (0, 0).

Throughout the paper, we shall write a v b if C1a ≤ b ≤ C2a where Ci, i = 1, 2 are constants.
H1
r denotes the subspace of functions in H1 which are radially symmetric with respect to 0, and

Tbi,r = Tbi ∩H1
r , i = 1, 2. The rest of this paper is organized as follows. In section 2, we prove Theorem

1.1. In section 3, we prove Theorem1.2. In section 4, we prove Theorem 1.3. In section 6, we prove
Theorems 1.6 and 1.7.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we use the ideas introduced in [16,17]. First we recall the rearrangement results
of M. Shibata [40] as presented in [16, 22]. Let u be a Borel measurable function on RN . It is said to
vanish at infinity if the level set |{x ∈ RN : u(x) > t}| < +∞ for every t > 0. Here |A| stands for the N-
dimensional Lebesgue measure of a Lebesgue measurable set A ⊂ RN . Considering two Borel mesurable
functions u, v which vanish at infinity in RN , for t > 0, we define A?(u, v : t) := {x ∈ RN : |x| < r},
where r > 0 is chosen so that

B(0, r) = |{x ∈ RN : |u(x)| > t}|+ |{x ∈ RN : |v(x)| > t}|,

9



and {u, v}? by

{u, v}?(x) :=

∫ ∞
0

χA?(u,v:t)(x)dt,

where χA(x) is a characteristic function of the set A ⊂ RN .

Lemma 2.1 ( [22] Lemma A.1). (i) The function {u, v}? is radially symmetric, non-increasing and
lower semi-continuous. More, for each t > 0 there holds {x ∈ RN : {u, v}? > t} = A?(u, v : t).

(ii) Let Φ : [0,∞)→ [0,∞) be non-decreasing lower semi-continuous, continuous at 0 and Φ(0) = 0.
Then {Φ(u),Φ(v)}? = Φ({u, v}?).

(iii) ‖{u, v}?‖p
Lp(RN )

= ‖u‖p
Lp(RN )

+ ‖v‖p
Lp(RN )

for 1 ≤ p <∞.
(iv) If u, v ∈ H1(RN ), then {u, v}? ∈ H1(RN ) and

‖∇{u, v}?‖2L2(RN ) ≤ ‖∇u‖
2
L2(RN ) + ‖∇v‖2L2(RN ).

In addition, if u, v ∈ (H1(RN ) ∩ C1(RN )) \ {0} are radially symmetric, positive and non-increasing,
then ∫

RN
|∇{u, v}?|2dx <

∫
RN
|∇u|2dx+

∫
RN
|∇v|2dx.

(v) Let u1, u2, v1, v2 ≥ 0 be Borel measurable functions which vanish at infinity, then∫
RN

(u1u2 + v1v2)dx ≤
∫
RN
{u1, v1}?{u2, v2}?dx.

The solution of (1.1)–(1.2) can be found as a critical point of the following energy functional

Jβ(u, v) =
1

2

∫
RN

(|∇u|2 + |∇v|2)dx− 1

4

∫
RN

(µ1u
4 + µ2v

4 + 2ρu2v2)dx− β

2

∫
RN

u2vdx.

From Gagliardo-Nirenberg-Sobolev inequality (1.11), we have

µ1

4

∫
RN

u4dx ≤ µ1

4
C4
N,4b

4−N
1 ‖∇u‖NL2(RN ),

µ2

4

∫
RN

v4dx ≤ µ2

4
C4
N,4b

4−N
2 ‖∇v‖NL2(RN ), (2.1)

∫
RN

u2v2dx ≤
(∫

RN
u4dx

) 1
2
(∫

RN
v4dx

) 1
2

(2.2)

≤ C4
N,4b

4−N
2

1 b
4−N

2
2 ‖∇u‖

N
2

L2(RN )
‖∇v‖

N
2

L2(RN )

≤ 1

2
C4
N,4b

4−N
2

1 b
4−N

2
2

[
‖∇u‖2L2(RN ) + ‖∇u‖2L2(RN )

]N
2
,

β

∫
RN

u2vdx ≤ |β|
(∫

RN
|u|3dx

) 2
3
(∫

RN
|v|3dx

) 1
3

(2.3)

≤ |β|
[

2

3

∫
RN
|u|3dx+

1

3

∫
RN
|v|3dx

]
≤ |β|

[
2

3
C3
N,3b

6−N
2

1 ‖∇u‖
N
2

L2(RN )
+

1

3
C3
N,3b

6−N
2

2 ‖∇v‖
N
2

L2(RN )

]
≤ |β|

[(
2

3
b
6−N

2
1 +

1

3
b
6−N

2
2

)
C3
N,3

[
‖∇u‖2L2(RN ) + ‖∇v‖2L2(RN )

]N
4

]
.
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Next, we show thatm(b1, b2) < 0.We now focus on Sobolev subcritical nonlinear Schrödinger equation
with prescribed L2 norm. For fixed µ > 0, 2 < p < 2 + 4

N , we search for H1 and λ ∈ R solving{
−∆u+ u = µ|u|p−2u in RN ,∫
RN u

2dx = b2.
(2.4)

Solutions of (2.4) can be found as critical points of Jµ,p : H1 → R,

Jµ,p =
1

2

∫
R
|∇un|2dx−

µ

p

∫
R
|u|pdx (2.5)

constrained on Sb = {u ∈ H1|
∫
RN u

2dx = b2}.

Lemma 2.2. When N = 1, for any ρ > 0, β > 0, we have

mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) < 0.

Proof. From (2.1), (2.2) and (2.3), we can deduce that

Jβ(u, v) =
1

2

∫
R

(|∇u|2 + |∇v|2)dx− 1

4

∫
R

(µ1u
4 + µ2v

4 + 2ρu2v2)dx− β

2

∫
R
u2vdx

≥ 1

2

∫
R

(|∇u|2 + |∇v|2)dx−
[
µ1

4
C4

1,4b
3
1 +

µ2

4
C4

1,4b
3
2 +

ρ

4
C4

1,4b
3
2
1 b

3
2
2

] [
‖∇u‖2L2(R) + ‖∇u‖2L2(R)

] 1
2

− |β|
2

[(
2

3
b
5
2
1 +

1

3
b
5
2
2

)
C3

1,3

[
‖∇u‖2L2(R) + ‖∇v‖2L2(R)

] 1
4

]
,

so J is coercive and in particular mβ(b1, b2) > −∞. Since

Jβ(u, v) =
1

2

∫
R

(|∇u|2 + |∇v|2)dx− β

2

∫
R
u2vdx− 1

4

∫
R

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx

= Jµ1,4(u) + Jµ2,4(v)− 1

2

∫
R
ρu2v2dx− β

2

∫
R
u2vdx,

where Jµi,4, i = 1, 2 is defined in (2.5). Then we choose u = uµ1,p,b1 and v = uµ2,4,b2 , where
uµi,4,bi(i = 1, 2) is the unique positive solution of (2.4) with b and µ are replaced by bi and µi. We have
Jµ1,4(uµi,4,bi) < 0, (see details in Lemma 2.1 of [11]). Therefore

mβ(b1, b2) ≤ Jβ(uµ1,4,b1 , uµ2,4,b2) < 0,

so for any β > 0, we obtain
mβ(b1, b2) = inf

(u,v)∈Tb1×Tb2

Jβ(u, v) < 0.

Lemma 2.3. Let {(un, vn)} ⊂ Tb1 × Tb2 be a minimizing sequence for m(b1, b2). Then for β > 0,
{(|un|, |vn|)} is also a minimizing sequence.
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Proof. Since ∫
RN
|∇|un||2dx ≤

∫
R
|∇un|2dx,

∫
RN
|∇|vn||2dx ≤

∫
R
|∇vn|2dx,∫

R
u2
nvndx ≤

∫
R
|un|2|vn|dx,

we have

Jβ(|un|, |vn|) =
1

2

∫
R

(|∇|un||2 + |∇|vn||2)dx− β

2

∫
R
|un|2|vn|dx

− 1

4

∫
R

(
µ1|un|4 + µ2|vn|4 + 2ρ|un|2|vn|2

)
dx

≤ 1

2

∫
R

(|∇un|2 + |∇vn|2)dx− β

2

∫
R
u2
nvndx

− 1

4

∫
R

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx = Jβ(un, vn).

Thus, Jβ(|un|, |vn|) ≤ Jβ(un, vn). Therefore, when β > 0, {(|un|, |vn|)} is also a minimizing sequence.

Lemma 2.4. (i) If (dn1 , d
n
2 ) is such that (dn1 , d

n
2 )→ (d1, d2) as n→ +∞ with 0 ≤ dni ≤ bi for i = 1, 2,

we have mβ(dn1 , d
n
2 )→ mβ(d1, d2) as n→ +∞.

(ii) Let di ≥ 0, bi ≥ 0, i = 1, 2 such that b21 + d2
1 = c2

1, b
2
2 + d2

2 = c2
2, then mβ(b1, b2) + mβ(d1, d2) ≥

mβ(c1, c2).

Proof. The proof is similar to that of Lemma 3.1 in [16], we omit the details here.

Lemma 2.5. For any ρ > 0, β > 0, let (un, vn) ⊂ H1(R)×H1(R) be a sequence such that

Jβ(un, vn)→ mβ(b1, b2) and

∫
R
u2
ndx = b21,

∫
RN

v2
ndx = b22,

then {(un, vn)} is relatively compact in H1(R)×H1(R) up to translations, that is there exists a subse-
quence (unk , vnk), a sequence of points {yk} ⊂ RN and a function (ũ, ṽ) ∈ Tb1 ×Tb2 ×H1(R)×H1(R)
such that (unk(·+ yk), vnk(·+ yk))→ (ũ, ṽ) strongly in H1(R)×H1(R).

Proof. We use the ideas introduced in [16,17]. Assume that (un1 , u
n
2 ) is a minimizing sequence associated

to the functional J on Tb1 × Tb2 , from (3.7) and the coerciveness of functional J on Tb1 × Tb2 , the
sequence (un1 , u

n
2 ) is bounded in H1(RN )×H1(R). If

sup
y∈R

∫
B(y,R)

(v2
n + v2

n)dx = o(1), for some R > 0,

then by Vanishing lemma (see Lemma I.1 in [27]), we have that (un, vn)→ (0, 0) in 2 < p < 2∗, contrary
with the fact m(b1, b2) < 0, therefore there exists a β0 > 0 and a sequence {yn} ⊂ R such that∫

B(yn,R)
(v2
n + v2

n)dx ≥ β0 > 0.
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Since (un1 , u
n
2 ) is bounded in H1(R) × H1(R), (un1 , u

n
2 ) is weakly convergence in H1(R) × H1(R) and

local compactness in L2(R)× L2(R), so

(un(x− yn), vn(x− yn)) ⇀ (u, v) 6= (0, 0) in H1(R)×H1(R).

Let
wn(x) = un(x)− u(x+ yn), σn(x) = vn(x)− v(x+ yn),

we show that wn(x)→ 0, σn(x)→ 0 in Lp(R) for 2 < p < 2?, suppose by contradiction that there exists
a sequence {zn} ⊂ RN such that

(wn(x− zn), σn(x− zn)) ⇀ (w, σ) 6= (0, 0) in H1(R)×H1(R).

By the Brezis-Lieb lemma and Lemma 2.4 in [17], we have

Jβ(un, vn) = Jβ(un(x− yn), vn(x− yn)) (2.6)

= Jβ(wn(x− yn), σn(x− yn)) + Jβ(u, v) + o(1)

= Jβ(wn(x− zn)− w, σn(x− zn)− σ) + Jβ(w, σ) + Jβ(u, v) + o(1),

‖un(x− yn)‖2L2(R) = ‖wn(x− zn)‖2L2(R) + ‖u‖2L2(R) + o(1)

= ‖wn(x− zn)− w‖2L2(R) + ‖w‖2L2(R) + ‖u‖2L2(R) + o(1),

and

‖vn(x− yn)‖2L2(R) = ‖σn(x− zn)‖2L2(R) + ‖v‖2L2(R) + o(1)

= ‖σn(x− zn)− σ‖2L2(R) + ‖σ‖2L2(R) + ‖v‖2L2(R) + o(1).

So, we obtain

‖wn(x− zn)− w‖2L2(R) = b21 − ‖w‖2L2(R) − ‖u‖
2
L2(R) + o(1) (2.7)

:= d2
1 + o(1),

‖σn(x− zn)− σ‖2L2(R) = b22 − ‖σ‖2L2(R) − ‖v‖
2
L2(R) + o(1) (2.8)

:= d2
2 + o(1).

By (2.6)-(2.8), (i) of Lemma 2.4 and Jβ(un, vn)→ mβ(b1, b2), we obtain

mβ(b1, b2) ≥ mβ(d1, d2) + Jβ(w, σ) + Jβ(u, v). (2.9)

If Jβ(w, σ) > mβ(‖w‖L2(R), ‖σ‖L2(R)) or Jβ(u, v) > mβ(‖u‖L2(R), ‖v‖L2(R)), then by (2.7)-(2.9) and (ii)
of Lemma 2.4, we have

mβ(b1, b2) > mβ(d1, d2) +mβ(‖w‖L2(R), ‖σ‖L2(R)) +mβ(‖u‖L2(R), ‖v‖L2(R))

> mβ(d1, d2) +mβ(
√
b21 − d2

1,
√
b22 − d2

2) ≥ mβ(b1, b2)
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which is impossible. So,

Jβ(w, σ) = mβ(‖w‖L2(R), ‖σ‖L2(R)), Jβ(u, v) = mβ(‖u‖L2(R), ‖v‖L2(R)).

Let w̃, σ̃, ũ, ṽ be the Schwarz symmetric-decreasing rearrangement of w, σ, u, v. From Section 3.3 in [25],
we know that w̃, σ̃, ũ, ṽ are nonnegative. Since

‖w̃‖2L2(R) = ‖w‖2L2(R), ‖σ̃‖
2
L2(R) = ‖σ‖2L2(R),

‖ũ‖2L2(R) = ‖u‖2L2(R), ‖ṽ‖
2
L2(R) = ‖v‖2L2(R),

Jβ(w̃, σ̃) ≤ Jβ(w, σ), Jβ(ũ, ṽ) ≤ Jβ(u, v).

By the standard argument as [25], we can deduce that

Jβ(w̃, σ̃) = mβ(‖w‖L2(R), ‖σ‖L2(R)), Jβ(ũ, ṽ) = mβ(‖u‖L2(R), ‖v‖L2(R)).

Therefore, (w̃, σ̃), (ũ, ṽ) are solutions of system (1.1), by the standard regularity results, we can get
w̃, σ̃, ũ, ṽ ∈ C2(R2). Without restriction, we may assume w 6= 0. We divide into two cases.

Case 1: w 6= 0 and u 6= 0.
From (ii), (iv), (v) of Lemma 2.1, we have∫

R
|∇{w̃, ũ}?|2dx <

∫
R
|∇w̃|2dx+

∫
R
|∇ũ|2dx ≤

∫
R
|∇w|2dx+

∫
R
|∇u|2dx,

∫
R
|{w̃, ũ}?|2|{σ̃, ṽ}?|2dx =

∫
R
{|w̃|2, |ũ|2}?{|σ̃|2, |ṽ|2}?dx

≥
∫
R
|w̃|2|σ̃|2 + |ũ|2|ṽ|2dx

=

∫
R

(̃|w|2)(̃|σ|2) + (̃|u|2)(̃|v|2)dx

≥
∫
R
|w|2|σ|2 + |u|2|v|2dx,

∫
R
|{w̃, ũ}?|2{σ̃, ṽ}?dx =

∫
R
{|w̃|2, |ũ|2}?{σ̃, ṽ}?dx

≥
∫
R
|w̃|2σ̃ + |ũ|2ṽdx

=

∫
R

(̃|w|2)(̃|σ|) + (̃|u|2)(̃|v|)dx

≥
∫
R
|w|2|σ|+ |u|2|v|dx,

so

Jβ(w, σ) + Jβ(u, v) > Jβ({w̃, ũ}?, {σ̃, ṽ}?). (2.10)
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By (iii) of Lemma 2.1, we get∫
R
|{w̃, ũ}?|2dx =

∫
R

(|w̃|2 + |ũ|2)dx =

∫
R

(|w|2 + |u|2)dx, (2.11)

∫
R
|{σ̃, ṽ}?|2dx =

∫
R

(|σ̃|2 + |ṽ|2)dx =

∫
R

(|σ|2 + |v|2)dx. (2.12)

By (2.7)-(2.12), (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we obtain

mβ(b1, b2) > mβ(d1, d2) +mβ(
√
b21 − d2

1,
√
b22 − d2

2) ≥ mβ(b1, b2),

a contradiction.
Case 2: w 6= 0, u = 0 and v 6= 0.
If σ 6= 0, we only need to replaced w, u by σ, v in Case 1, by the same argument as Case 1, we can

get a contradiction. Thus, we suppose that σ = 0. By (ii)-(v) of Lemma 2.1, we have

Jβ({w̃, 0}?, {ṽ, 0}?) ≤ 1

2

∫
R

(|∇w̃|2 + |∇ṽ|2)dx− µ2

4

∫
RN
|w̃|4dx− µ1

4

∫
R
|ṽ|4dx (2.13)

− ρ

2

∫
R
|w̃|2|ṽ|2dx− β

2

∫
R
|w̃|2ṽdx

≤ 1

2

∫
R

(|∇w̃|2 + |∇ṽ|2)dx− µ2

4

∫
R
|w̃|4dx− µ1

4

∫
R
|ṽ|4dx

= Jβ(w̃, 0) + Jβ(0, ṽ) ≤ Jβ(w, 0) + Jβ(0, v).

By (iii) of Lemma 2.1, we get ∫
R
|{w̃, 0}?|2dx =

∫
R
|w̃|2dx =

∫
R
|w|2dx, (2.14)

∫
R
|{ṽ, 0}?|2dx =

∫
R
|ṽ|2dx =

∫
R
|v|2dx. (2.15)

By (2.7)-(2.8), (2.9),(2.13),(2.14)(2.15), (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we obtain

mβ(b1, b2) > mβ(d1, d2) +mβ(
√
b21 − d2

1,
√
b22 − d2

2) ≥ mβ(b1, b2),

a contradiction. The contradictions obtained in Case 1 and Case 2 indicate that wn(x) = un(x)−u(x+
yn)→ 0, σn(x) = vn(x)− v(x+ yn)→ 0 in Lp(R) for 2 < p < 2∗.

Proof of Theorem 1.1. Let {wn, σn} be any minimizing sequence for the functional J on Tb1 ×Tb2 .
By Lemma 2.5, we know that there exists {yn} ⊂ R such that (wn, σn) ⇀ (w, σ) in H1(R) × H1(R)
and (wn, σn)→ (w, σ) in Lp(R)×Lp(R) for 2 < p < 2∗. Hence, by the weakly lower semi-continuity of
the norm, we have

Jβ(w, σ) ≤ mβ(b1, b2) < 0. (2.16)
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To show the compactness of {wn, σn} in H1(R) ×H1(R), it suffices to prove that (w, σ) ∈ Tb1 × Tb2 .
If
∫
R |w|

2dx = b21 and
∫
RN |σ|

2dx = b22, we are done. Assume by contradiction that there exists b1 < b1

and b2 < b2 such that
∫
R |w|

2dx = b
2
1 < b21, or

∫
R |σ|

2dx = b
2
2 < b22. Then, by the definition of mβ(b1, b2),

we have
mβ(b1, b2) ≤ Jβ(w, σ).

Case 1 If
∫
R |w|

2dx = b
2
1 < b21 and

∫
R |σ|

2dx = b
2
2 < b22. By Lemma 2.2 and (ii) of Lemma 2.4, we

have

Jβ(w, σ) ≤ mβ(b1, b2) ≤ mβ(b1, b2) +mβ

(√
b21 − b

2
1,

√
b22 − b

2
2

)
< mβ(b1, b2) ≤ Jβ(w, σ),

a contradiction.
Case 2 If

∫
R |w|

2dx = b21 and
∫
R |σ|

2dx = b
2
2 < b22. By Lemma 2.2 and (ii) of Lemma 2.4 and

m(0,

√
b22 − b

2
2) < 0, we have

Jβ(w, σ) ≤ mβ(b1, b2) ≤ mβ(b1, b2) +mβ

(
0,

√
b22 − b

2
2

)
< mβ(b1, b2) ≤ Jβ(w, σ),

a contradiction.
Case 3 If

∫
R |w|

2dx = b
2
1 < b21 and

∫
R |σ|

2dx = b22. By Lemma 2.2 and (ii) of Lemma 2.4 and

m(

√
b21 − b

2
1, 0) < 0, we have

Jβ(w, σ) ≤ mβ(b1, b2) ≤ mβ(b1, b2) +mβ

(√
b21 − b

2
1, 0
)
< mβ(b1, b2) ≤ Jβ(w, σ),

a contradiction.
Therefore,

(w, σ) ∈ Tb1 × Tb2 .

3 Proof of Theorem 1.2

To show our results, we first define following constant A,

A = inf
(u,v)∈Tb1×Tb2

∫
R2(|∇u|2 + |∇v|2)dx∫

R2 (µ1u4 + µ2v4 + 2ρu2v2) dx
. (3.1)

From Gagliardo-Nirenberg-Sobolev inequality in [39],

‖u‖4L4(R2) ≤
2

‖Q(x)‖2
L2

‖∇u‖2L2(R2)‖u‖
2
L2(R2) for all u ∈ H1(R2),

where Q(x) is the unique positive solution of

−∆u+ u = u3, u ∈ H1(R2),

and the identity is achieved at u(x) = Q(|x|). It is easy to see that Q(|x|) satisfies that

‖∇Q‖2L2(R2) = ‖Q‖2L2(R2) =
1

2
‖Q‖4L4(R2).
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From above Gagliardo-Nirenberg-Sobolev inequality, we have∫
R2

(µ1u
4 + µ2v

4 + 2ρu2v2)dx ≤ 2

‖Q(x)‖2
L2

[
µ1b

2
1 + µ2b

2
2 + 2ρb1b2

] ∫
R2

(|∇u|2 + |∇v|2)dx,

so

A ≥ 1

C
> 0. (3.2)

Next, we prove that

‖Q‖2L2(R2)

2 max{(µ1 + ρ)b21, (µ2 + ρ)b22}
≤ A ≤

1
2(b21 + b22)‖Q‖2L2(R2)

µ1b41 + µ2b42 + 2ρb21b
2
2

. (3.3)

It is easy to see that ( b1Q(x)
‖Q(x)‖L2

, b2Q(x)
‖Q(x)‖L2

) ∈ Tb1 × Tb2 . Thus,

A ≤ b21 + b22
µ1b41 + µ2b42 + 2ρb21b

2
2

‖Q(x)‖2L2

∫
R2 |∇Q|2dx∫

R2 Q4dx
=

1
2(b21 + b22)‖Q‖2L2(R2)

µ1b41 + µ2b42 + 2ρb21b
2
2

.

On the other hand, for any (u, v) ∈ H1(R2) ×H1(R2) and
∫
R2 u

2dx = b21,
∫
R2 v

2dx = b22. Then from
Gagliardo-Nirenberg-Sobolev inequality, we have

‖Q‖2L2(R2)

2 max{(µ1 + ρ)b21, (µ2 + ρ)b22}
≤

∫
R2(|∇u|2 + |∇v|2)dx∫

R2(µ1 + ρ)u4dx+
∫
R2(µ2 + ρ)v4dx

≤
∫
R2(|∇u|2 + |∇v|2)dx∫

R2 (µ1u4 + µ2v4 + 2ρu2v2) dx
.

From (2.1), (2.2) and the definition of A, we have

J0(u, v) =
1

2

∫
R2

(|∇u|2 + |∇v|2)dx− 1

4

∫
R2

(µ1u
4 + µ2v

4 + 2ρu2v2)dx (3.4)

≥
[

1

2
− 1

4A

] ∫
R2

(|∇u|2 + |∇v|2)dx,

so J0(u, v) is bounded from below on Tb1 × Tb2 provided that

A >
1

2
. (3.5)

Let u ∈ Tb and t ? u = e
Nt
2 u(etx), then t ? u ∈ Tb, we define

t ? (u, v) = (t ? u, t ? v). (3.6)

Under the condition of max{(µ1 + ρ)b21, (µ2 + ρ)b22} < ‖Q‖2L2(R2), we have

A >
1

2
,
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so
1

2

∫
R2

(|∇u|2 + |∇v|2)dx− 1

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx > 0.

Therefore

1

2
β

∫
R2

u2vdx =
1

2

∫
R2

(|∇u|2 + |∇v|2)dx− 1

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx > 0.

Since

Ψu,v(t) = Jβ(t ? (u, v)) =
e2t

2

[ ∫
R2

(|∇u|2 + |∇v|2)dx− 1

2

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx

]
− β

2
et
∫
R2

u2vdx.

Jβ(u, v) =
1

2

∫
RN

(|∇u|2 + |∇v|2)dx− 1

4

∫
RN

(µ1u
4 + µ2v

4 + 2ρu2v2)dx− β

2

∫
RN

u2vdx.

Lemma 3.1. Under the condition of max{(µ1 + ρ)b21, (µ2 + ρ)b22} < ‖Q‖2L2(R2), we have

−∞ < mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) < 0.

Proof. If
‖Q‖2

L2(R2)
max{(µ1+ρ)b21,(µ2+ρ)b22}

> 1 and β > 0, we have A > 1
2 , thus

Jβ(u, v) =
1

2

∫
R2

(|∇u|2 + |∇v|2)dx− 1

4

∫
R2

(µ1u
4 + µ2v

4 + 2ρu2v2)dx− β

2

∫
R2

u2vdx (3.7)

≥
[

1

2
− 1

4A

] ∫
R2

(|∇u|2 + |∇v|2)dx

− β

2

[(
2

3
b21 +

1

3
b22

)
C3

2,3

[
‖∇u‖2L2(R2) + ‖∇v‖2L2(R2)

] 1
2

]
,

so Jβ(u, v) is coercive on Tb1 × Tb2 and

mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) > −∞.

Next, we prove
mβ(b1, b2) = inf

(u,v)∈Tb1×Tb2

Jβ(u, v) < 0.

It is easy to see that

Jβ(t ? (u, v)) =
e2t

2

∫
R2

(|∇u|2 + |∇v|2)dx− β

2
et
∫
R2

u2vdx

− e2t

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx,

when β > 0 we choose u > 0, v > 0 and (u, v) ∈ Tb1 ×Tb2 , it is easy to see (t ? u, t ? v) ∈ Tb1 ×Tb2 and

lim
t→−∞

Jβ(t ? (u, v)) < 0,
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when β < 0 we choose u > 0, v < 0 and (u, v) ∈ Tb1 ×Tb2 , it is easy to see (t ? u, t ? v) ∈ Tb1 ×Tb2 and

lim
t→−∞

Jβ(t ? (u, v)) < 0.

Thus for any β ∈ R \ {0}, we obtain

mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) < 0.

Proof of Theorem 1.2. When max{(µ1 + ρ)b21, (µ2 + ρ)b22} < ‖Q‖2L2(R2), by the definition of A, we

have A > 1
2 . Thus, if β < 0 and there exists a positive solution (u, v) to (1.1)-(1.2), we have

1

2
β

∫
R2

u2vdx =

∫
R2

(|∇u|2 + |∇v|2)dx− 1

2

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx ≥ 0,

a contradiction.
Next, we consider β > 0. When max{(µ1 + ρ)b21, (µ2 + ρ)b22} < ‖Q‖2L2(R2), from Lemma 3.1, we get

Jβ(u, v) is coercive on Tb1 × Tb2 and

mβ(b1, b2) = inf
(u,v)∈Tb1×Tb2

Jβ(u, v) > −∞.

Let {(un, vn)} ⊂ Tb1 × Tb2 be any minimizing sequence for mβ(b1, b2). By Lemma 2.3, we know that
{|un|, |vn|} is also a minimizing sequence. Then by taking {(|un|, |vn|)} and adapting the Schwarz
symmetrization to{(|un|, |vn|)} if necessary, we can obtain a new minimizing sequence (up to a subse-
quence), such that{(un, vn)} are all real valued, nonnegative, radially symmetric. Since {(un, vn)} is
bounded in H1

r (R2) × H1
r (R2). By the Sobolev embedding theorem, we have H1

r (R2) ↪→↪→ Lpr(R2)
for 2 < p < +∞, thus there exists a (u, v) ∈ H1

r (R2) × H1
r (R2) such that (un, vn) ⇀ (u, v) in

H1
r (R2) × H1

r (R2), (un, vn) → (u, v) in Lpr(R2) × Lpr(R2) for 2 < p < +∞ and (un, vn) → (u, v)
a.e in R2. Hence u, v ≥ 0 are radial functions.

Step 1: Prove λ1 > 0 and λ2 > 0. By Ekeland’s variational principle yields in a standard way
the existence of a new minimizing sequence, which is also a Palais-Smale sequence for Jβ on Tb1 ×Tb2 .
So J ′β |Tb1×Tb2

(un, vn) → 0, by the Lagrange multipliers rule, we know that there exists a sequence

(λ1,n, λ2,n) ∈ R2 such that∫
R2

(∇un∇ϕ+∇vn∇ψ)dx+

∫
R2

(λ1,nunϕ+ λ2,nvnψ)dx

−
∫
R2

(µ1u
3
nϕ+ µ2v

3
nψ + ρv2

nunϕ+ ρu2
nvnψ)dx

− β
∫
R2

unϕvn −
β

2

∫
R2

u2
nψ = o(1)‖(ψ,ϕ)‖H1(R2)×H1(R2) in R2,

(3.8)

for every (ϕ,ψ) ∈ H1(R2)×H1(R2). We claim both λ1,n and λ2,n are bounded sequence, and at least
one of them is converging, up to a subsequence, to a strictly negative value. Indeed, we can using
(un, 0) and (0, vn) as text function in (3.8), we have∫

R2

λ1,nu
2
ndx = −

∫
R2

|∇un|2dx+

∫
R2

(µ1u
4
n + ρv2

nu
2
n)dx+ β

∫
R2

u2
nvn + o(1)‖ϕ‖H1(R2),
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∫
R2

λ2,nv
2
ndx = −

∫
R2

|∇vn|2dx+

∫
R2

(µ2v
4
n + ρv2

nu
2
n)dx+

β

2

∫
R2

u2
nvn + o(1)‖ψ‖H1(R2),

so ∫
R2

(λ1,nu
2
n + λ2,nv

2
n)dx = −

∫
R2

(|∇un|2 + |∇vn|2)dx+

∫
R2

(µ1u
4
n + µ2v

4
n + 2ρv2

nu
2
n)dx

+
3

2
β

∫
R2

u2
nvndx.

(3.9)

By (2.1)-(2.3) and the boundedness of {(un, vn)}, we can deduce that (λ1,n, λ2,n) is bounded, hence up
to a subsequence (λ1,n, λ2,n)→ (λ1, λ2) ∈ R2, passing to limits in (3.8), we can deduce that (u, v) is a
nonnegative solutions of (1.1) . Therefore∫

R2

(|∇u|2 + |∇v|2)dx+

∫
R2

(λ1u
2 + λ2v

2)dx =

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

2
β

∫
R2

u2vdx.

On the one hand, we multiply the first equation of (1.1) by x · ∇u and the second equation of (1.1) by
x · ∇v, integrate by parts, we can get∫

R2

(λ1u
2 + λ2v

2)dx =
1

2

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+ β

∫
R2

u2vdx. (3.10)

Since Pb1,b2(un, vn)→ 0, which implies that∫
R2

(|∇un|2 + |∇vn|2)dx− 1

2

∫
R2

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx− 1

2
β

∫
R2

u2
nvndx = on(1). (3.11)

Together (3.9) with (3.11), we can get

λ1,nb
2
1 + λ2,nb

2
2 =

1

2

∫
R2

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx+ β

∫
R2

u2
nvndx, (3.12)

when β > 0, it is easy to see that at least one sequence of (λi,n) is positive and bounded away from 0.
Let n→ +∞ in (3.12), we have

λ1b
2
1 + λ2b

2
2 =

1

2

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+ β

∫
R2

u2vdx. (3.13)

We claim that if λ1 > 0(resp.λ2 > 0), then λ2 > 0(resp.λ1 > 0). Indeed, we know that at least one
sequence of (λi) is positive and bounded away from 0. If λ2 > 0, now we argue by contradiction and
assume that λ1 ≤ 0, then

−∆u = −λ1u+ βuv + µ1u
3 + ρv2u ≥ 0.

Using a Liouville type theorem[ [22], Lemma A.2], we can deduce that u = 0. So, v satisfies that
−∆v + λ2v = µ2v

3, in R2,

v > 0, in R2,∫
R3 v

2dx = b22, in R2.
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Therefore, when 0 < b2 ≤ ‖Q‖L2(R2) we have

mβ(b1, b2) = lim
n→+∞

Jβ(un, vn) = lim
n→+∞

Jβ(un, vn − v) + J(0, v)

= lim
n→+∞

[
1

2

∫
R2

(|∇un|2 + |∇(vn − v)|2)dx− 1

4

∫
R2

(
µ1u

4
n + µ2(vn − v)4 + 2ρu2

n(vn − v)2
)
dx

− 1

2
β

∫
R2

u2
n(vn − v)dx

]
+ J(0, v) ≥ lim

n→+∞

1

2

∫
R2

(|∇(un − u)|2 + |∇vn|2)dx+mβ(0, b2) ≥ 0,

in contradiction with mβ(b1, b2) < 0, where we use the fact that mβ(0, b2) = 0 for 0 < b2 ≤ ‖Q‖L2(R2),
(see Theorem 1.2 in [30]). Thus, λ1 > 0, λ2 > 0.

If λ1 > 0, now we argue by contradiction and assume that λ2 ≤ 0, then

−∆v = −λ2v
β

2
u2 + µ2v

3 + ρu2v ≥ 0.

Using a Liouville type theorem[ [22], Lemma A.2], we can deduce that v = 0. So, by the structure of
system (1.1), we get u = 0, which is impossible.

Step 2: Prove the L2 convergence. Indeed, it is easy to see that
∫
R2 u

2 ≤ b21,
∫
R2 v

2 ≤ b22. From
(3.10) and (3.12), we have

λ1

(
b21 −

∫
R2

u2dx

)
+ λ2

(
b22 −

∫
R2

v2dx

)
= 0,

so ∫
R2

u2 = b21,

∫
R2

v2 = b22.

Step 3: Prove the H1 convergence. It is easy to see that

mβ(b1, b2) = lim
n→+∞

Jβ(un, vn)

= lim
n→+∞

[
1

2

∫
R2

(|∇un|2 + |∇vn|2)dx− 1

4

∫
R2

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx− 1

2
β

∫
R2

u2
nvndx

]
.

Case 1 If u = 0, v = 0, by compact Sobolev embedding, we have

mβ(b1, b2) = lim
n→+∞

Jβ(un, vn) ≥ lim
n→+∞

1

2

∫
R2

(|∇un|2 + |∇vn|2)dx ≥ 0.

contradict with Lemma 3.1.
Case 2 If u 6= 0, v = 0, indeed, if v = 0, by the structure of system (1.1), we get u = 0, so Case 2

doesn’t happen.
Case 3 If u = 0, v 6= 0, let

un = un, vn = vn − v,

from [17, Lemma 2.4], we get∫
R2

|un|2|vn|2dx =

∫
R2

|un|2|vn|2dx−
∫
R2

|u|2|v|2dx+ o(1). (3.14)
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By Brezis Lieb Lemma in [47], we can obtain that∫
R2

|un|2vndx =

∫
R2

|un|2vndx−
∫
R2

|u|2vdx+ o(1). (3.15)

So, from (3.14) and (3.15), we have

Jβ(un, vn) = Jβ(un, vn) + Jβ(u, v) + o(1).

Therefore

mβ(b1, b2) = lim
n→+∞

Jβ(un, vn) = lim
n→+∞

Jβ(un, vn) + Jβ(0, v)

= lim
n→+∞

[
1

2

∫
R2

(|∇un|2 + |∇vn|2)dx− 1

4

∫
R2

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx

− 1

2
β

∫
R2

u2
nvndx

]
+ Jβ(0, v)

≥ lim
n→+∞

1

2

∫
R2

(|∇un|2 + |∇vn|2)dx+ Jβ(0, v) ≥ mβ(0, b2) = 0.

contradict with Lemma 3.1, where we use the fact that mβ(0, b2) = 0 for 0 < b2 ≤ ‖Q‖L2(R2).
Case 4 If u 6= 0, v 6= 0, let

ũn = un − u, ṽn = vn − v,

from [21, Lemma 2.1], we get∫
R2

|ũn|2|ṽn|2dx =

∫
R2

|un|2|vn|2dx−
∫
R2

|u|2|v|2dx+ o(1). (3.16)

By Brezis Lieb Lemma in [47], we can obtain∫
R2

|ũn|2ṽndx =

∫
R2

|un|2vndx−
∫
R2

|u|2vdx+ o(1). (3.17)

So, from (3.16) and (3.17), we have

Jβ(un, vn) = Jβ(ũn, ṽn) + Jβ(u, v) + o(1).

Therefore

mβ(b1, b2) = lim
n→+∞

Jβ(un, vn) = lim
n→+∞

Jβ(ũn, ṽn) + Jβ(u, v)

= lim
n→+∞

[
1

2

∫
R2

(|∇ũn|2 + |∇ṽn|2)dx

− 1

4

∫
R2

(
µ1ũ

4
n + µ2ṽ

4
n + 2ρũ2

nṽ
2
n

)
dx− 1

2
β

∫
R2

ũ2
nṽndx

]
+ Jβ(u, v)

≥ lim
n→+∞

1

2

∫
R2

(|∇ũn|2 + |∇ṽn|2)dx+ Jβ(u, v) ≥ mβ(b1, b2).

Thus, Jβ(u, v) = mβ(b1, b2) and (un, vn)→ (u, v) in H1(R2)×H1(R2).
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Next, we prove the second part of Theorem 1.2. It is easy to see that

J0(t ? (u, v)) =
e2t

2

∫
R2

(|∇u|2 + |∇v|2)dx− e2t

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx.

If

1

2

∫
R2

(|∇u|2 + |∇v|2)dx <
1

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx, (3.18)

then
J0(t ? (u, v))→ −∞ as t→ +∞.

It is easy to see

Jβ(t ? (u, v)) =
e2t

2

∫
R2

(|∇u|2 + |∇v|2)dx− β

2
et
∫
R2

u2vdx− e2t

4

∫
R2

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx (3.19)

= e2tJ0(u, v)− β

2
et
∫
R2

u2vdx.

If (3.18) holds, there exists (u, v) ∈ Tb1 × Tb2 such that J0(u, v) < 0, by (3.19) we can deduce

inf
(u,v)∈Tb1×Tb2

Jβ(u, v) = −∞.

4 Proof of Theorem 1.3

Define the set

Pb1,b2(u, v) :=
{

(u, v) ∈ Tb1 × Tb2 : Pb1,b2(u, v) = 0, β

∫
R3

u2vdx > 0
}
, (4.1)

where

Pb1,b2(u, v) =

∫
R3

(|∇u|2 + |∇v|2)dx− 3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx− 3

4
β

∫
R3

u2vdx,

and

Ψu,v(t) = Jβ(t ? (u, v)) =
e2t

2

∫
R3

(|∇u|2 + |∇v|2)dx− β

2

∫
R3

e
3t
2 u2vdx (4.2)

− e3t

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx.

It is easy to check

Ψ′u,v(t) = e2t

∫
R3

(|∇u|2 + |∇v|2)dx− 3β

4

∫
R3

e
3t
2 u2vdx− 3e3t

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx,

and

Ψ′u,v(t) = Pb1,b2(t ? u, t ? v), Pb1,b2(u, v) =
{

(u, v) ∈ Tb1 × Tb2 : Ψ′u,v(0) = 0, β

∫
R3

u2vdx > 0
}
.
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We decompose Pb1,b2(u, v) into three disjoint unions

Pb1,b2(u, v) = P+
b1,b2

(u, v) ∪ P0
b1,b2(u, v) ∪ P−b1,b2(u, v),

where

P+
b1,b2

(u, v) :=
{

(u, v) ∈ Tb1 × Tb2 , (u, v) ∈ Pb1,b2 , β
∫
R3

u2vdx > 0 : Ψ′′u,v(0) > 0
}
, (4.3)

P0
b1,b2(u, v) :=

{
(u, v) ∈ Tb1 × Tb2 , (u, v) ∈ Pb1,b2 , β

∫
R3

u2vdx > 0 : Ψ′′u,v(0) = 0
}
, (4.4)

P−b1,b2(u, v) :=
{

(u, v) ∈ Tb1 × Tb2 , (u, v) ∈ Pb1,b2 , β
∫
R3

u2vdx > 0 : Ψ′′u,v(0) < 0
}
. (4.5)

To prove Theorem 1.3, we first give some lemmas. The following auxiliary result shows the role of
Pb1,b2(u, v).

Lemma 4.1. If (u, v) is a solution of problem (1.1)–(1.2) for some λ1, λ2 ∈ R, then (u, v) ∈ Pb1,b2(u, v).

Proof. On the one hand, we multiply the first equation of (1.1) by x · ∇u and the second equation of
(1.1) by x · ∇v, integrate by parts, we can get

1

2

∫
R3

(|∇u|2 + |∇v|2)dx+
3

2

∫
R3

(λ1u
2 + λ2v

2)dx (4.6)

=
3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

2
β

∫
R3

u2vdx.

On the other hand, we multiply the first equation of (1.1) by u and the second equation of (1.1) by v,
integrate by parts, we have∫

R3

(|∇u|2 + |∇v|2)dx+

∫
R3

(λ1u
2 + λ2v

2)dx =

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

2
β

∫
R3

u2vdx. (4.7)

Together (4.6) with (4.7), we obtain∫
R3

(|∇u|2 + |∇v|2)dx− 3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx− 3

4
β

∫
R3

u2vdx = 0. (4.8)

To show that the energy functional has a concave-convex structure, by (2.1)-(2.3), we introduce

D1 = µ1C
4
3,4b1, D2 = µ2C

4
4,4b2, D3 = C4

3,4b
1
2
1 b

1
2
2 , D4 =

(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3.

If ρ > 0

Jβ(u, v) ≥ 1

2

∫
R3

(|∇u|2 + |∇v|2)dx− 1

4
D1

( ∫
R3

|∇u|2dx
) 3

2 − 1

4
D2

( ∫
R3

|∇v|2dx
) 3

2 (4.9)

− 1

4
ρD3

( ∫
R3

(|∇u|2 + |∇v|2)dx
) 3

2 − 1

2
|β|D4

( ∫
R3

(|∇u|2 + |∇v|2)dx
) 3

4

≥ h
(( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2

)
,

where h(t) : (0,+∞)→ R defined by

h(t) =
1

2
t2 − 1

4
(D1 +D2 + ρD3)t3 − 1

2
|β|D4t

3
2 .
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Lemma 4.2. When |β|
(

2b
3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 < 2

√
6

3 holds, then h(t) has exactly

two critical points, one is a local minimum at negative level, the other one is a global maximum at
positive level. Further, there exists 0 < R0 < R1 such that h(R0) = h(R1) = 0, h(t) > 0 if and only if
t ∈ (R0, R1).

Proof. Since

h(t) = t
3
2

[1

2
t
1
2 − 1

4
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )t

3
2 − 1

2
|β|
(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

]
it is easy to see that h(t) > 0 if and only if ϕ(t) > 1

2 |β|
(

2
3b

3
2
1 + 1

3b
3
2
2

)
C3

3,3, where ϕ(t) = 1
2 t

1
2 − 1

4C
4
3,4(µ1b1 +

µ2b2 + ρb
1
2
1 b

1
2
2 )t

3
2 , since

ϕ′(t) =
1

4
t−

1
2 − 3

8
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )t

1
2 ,

it is easy to see that ϕ(t) has a unique global maximum point at positive level in t̃ = 2

3C4
3,4(µ1b1+µ2b1+ρb

1
2
1 b

1
2
2 )

and

ϕ(t̃) =

√
6

9

1√
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )

,

therefore h(t) is positive on an open interval (R0, R1) if and only if ϕ(t̃) > 1
2 |β|

(
2
3b

3
2
1 + 1

3b
3
2
2

)
C3

3,3, so

|β|
(
2b

3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 <

2
√

6

3
. (4.10)

Since

h′(t) = t
1
2

[
t
1
2 − 3

4
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )t

3
2 − 3

4
|β|
(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

]
= t

1
2 g(t),

we can deduce that when

g(
4

9C4
3,4(µ1b1 + µ2b1 + ρb

1
2
1 b

1
2
2 )

) =
4

9

√
C4

3,4(µ1b1 + µ2b1 + ρb
1
2
1 b

1
2
2 )

− 3

4
|β|
(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3 > 0,
(4.11)

then h(t) has exactly two critical points, one is a local minimum at negative level, the other one is a
global maximum at positive level. It is easy to see that when (4.10) holds, then (4.11) also holds.

Let

N :=
{

(u, v) ∈ H1(R4)×H1(R4) | β
∫
R3

u2vdx > 0
}
,

and for simplicity, we still denote

Pb1,b2 =
{

(u, v) ∈ (Tb1 × Tb2) ∩N | Pb1,b2(u, v) = 0
}
.

Lemma 4.3. Under the assumption (4.10), then P0
b1,b2

= ∅ and Pb1,b2 is a C1 submanifold in H1(R3)×
H1(R3) with codimension 3.
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Proof. Assume by contradiction that there exists a (u, v) ∈ P0
b1,b2

such that∫
R3

(|∇u|2 + |∇v|2)dx =
3

4

∫
R3

(µ1u
4 + µ2v

4 + 2ρu2v2)dx+
3

4
β

∫
R3

u2vdx (4.12)

and

2

∫
R3

(|∇u|2 + |∇v|2)dx− 9β

8

∫
R3

u2vdx− 9

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx = 0. (4.13)

From (4.12) and (4.13), we obtain

β

∫
R3

u2vdx = 2

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx. (4.14)

Thus, from (2.1)-(2.3), we have∫
R3

(|∇u|2 + |∇v|2)dx =
9

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx (4.15)

≤ 9µ1

4
C4

3,4b1‖∇u‖3L2(R3) +
9µ2

4
C4

3,4b2‖∇v‖3L2(R3)

+
9

4
ρC4

3,4b
1
2
1 b

1
2
2

[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
2

≤ 9

4
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )
[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
2
,

∫
R3

(|∇u|2 + |∇v|2)dx =
9

8
β

∫
R3

u2vdx (4.16)

≤ 9

8
|β|
[(

2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
4

]
.

So, by (4.15) and (4.16), we get

1

3

√
C4

3,4(µ1b1 + µ2b1 + ρb
1
2
1 b

1
2
2 )

≤ 9

16
|β|D4,

therefore

|β|
(

2b
3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 ≥

16

9
, (4.17)

contract the assumption (4.10), which implies that P0
b1,b2

= ∅. Next, we show that Pb1,b2 is a smooth

manifold of codimension 3 on H1(R3)×H1(R3). It is easy to see that Pb1,b2 is defined by Pb1,b2(u, v) = 0,
G(u) = 0, F (u) = 0 and E(u, v) > 0, where

G(u) =

∫
R3

u2dx− b21, F (v) =

∫
R3

v2dx− b22 and E(u, v) = β

∫
R3

u2v.

Since Pb1,b2(u, v), G(u), F (u) and E(u, v) are class of C1, we only need to check that

d(Pb1,b2(u, v), G(u), F (v), E(u, v)) : H → R3 is surjective,
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for every (u, v) ∈ (G−1(0) × F−1(0)) ∩ E−1(0) ∩ P−1
b1,b2

(0). If this is not true, dPb1,b2(u, v) has to be
linearly dependent from dG(u), dF (v) and dE(u, v) i.e. there exist ν1, ν2, ν3 ∈ R such that{

2
∫
R3 ∇u∇ϕ+ ν1uϕ+ ν3βuvϕ = 3

∫
R3(µ1u

3ϕ+ ρv2uϕ) + 3β
2

∫
R3 uϕv in R3,

2
∫
R3 ∇v∇ψ + ν2vψ + ν3

2 βu
2ψ = 3

∫
R3(µ2v

3ψ + ρu2vψ) + 3β
4

∫
R3 u

2ψ in R3,

for every (ϕ,ψ) ∈ H1(R3)×H1(R3), so{
−2[∆u+ ν1u+ ν3βuv] = 3(µ1u

3 + ρv2u) + 3β
2 uv in R3,

−2[∆v + ν2v + ν3
2 βu

2] = 3(µ2v
3 + ρu2v) + 3β

4 u
2 in R3.

The Pohozaev identity for above system is∫
R3

(|∇u|2 + |∇v|2)dx− 9

8

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx− 3

2

(3

8
− ν3

2

)
β

∫
R3

u2vdx = 0.

Then
∫
R3(|∇u|2 + |∇v|2)dx = 9

8

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx. Since (u, v) ∈ (G−1(0) × F−1(0)) ∩

E−1(0) ∩ P−1
b1,b2

(0), we have
∫
R3(|∇u|2 + |∇v|2)dx = 3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx, this is a contra-

diction. By Proposition A.1 of [33], we get that if mβ := inf
(u,v)∈Pb1,b2

Jβ = Jβ(ū, v̄), then there exist

λi ∈ R(i = 4), such that

− (1 + λ4)∆ū+ λ1ν1ū+ λ3βūv̄ = (1 +
3λ4

2
)(µ1ū

3 + ρv̄2u) + (1 +
3λ4

4
)βūv̄,

− (1 + λ4)∆v̄ + λ2v̄ +
λ3

2
βū2 = (1 +

3λ4

2
λ4)(µ2v̄

3 + ρū2v̄) + (1 +
3λ4

4
)
β

2
ū2.

Since E(ū, v̄) > 0, from Theorem 1 of [13] or the proof of Lemma 2.11 in [33], we have λ3 = 0. Therefore,
we obtain that the restricted set N does not change the structure of the manifold Pb1,b2 . Then, we have
that Pb1,b2 is a smooth manifold of codimension 3 on Tb1 × Tb2 .

Lemma 4.4. When β
∫
R3 u

2vdx > 0. For every (u, v) ∈ Tb1×Tb2, the function Ψu,v(t) has exactly two
critical points su,v < tu,v ∈ R and two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v. Moreover,

(1) su,v ? (u, v) ∈ P+
b1,b2

(u, v) and tu,v ? (u, v) ∈ P−b1,b2(u, v), and if t ? (u, v) ∈ Pb1,b2(u, v), then either
t = su,v or t = tu,v.

(2) (
∫
R3(|∇(t ? u)|2 + |∇(t ? v)|2)dx)

1
2 ≤ R0 for every t ≤ cu,v, and

Jβ(u, v)(su,v ? (u, v))

= min

{
Jβ(t ? (u, v) : t ∈ R and (

∫
R3

(|∇(t ? u)|2 + |∇(t ? v)|2)dx)
1
2 < R0

}
< 0,

where R0 is defined in Lemma 4.2.

(3) We have
Jβ(tu,v ? (u, v)) = max{Jβ(t ? (u, v)) : t ∈ R} > 0

and Ψu,v(t) is strictly decreasing and concave on (tu,v,+∞). In particular, if tu,v < 0, then
Pb1,b2(u, v) < 0.
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(4) The maps (u, v) ∈ Tb1 × Tb2 : su,v ∈ R and (u, v) ∈ Tb1 × Tb2 : tu,v ∈ R are of class C1.

Proof. Let (u, v) ∈ Tb1 × Tb2 , since t ? (u, v) ∈ Pb1,b2(u, v) if and only if (Ψu,v)
′(t) = 0. Thus, we first

show that Ψu,v(t) has at least two critical points. From (4.9), we have

Ψu,v(t) = Jβ(t ? (u, v)) ≥ h
([ ∫

R3

(|∇(t ? u)|2 + |∇(t ? v)|2)dx
] 1
2

)
= h

(
et
[ ∫

R3

(|∇u|2 + |∇v|2)dx
]
)
1
2

)
.

Thus, the C2 function Ψu,v(t) is positive on(
ln

R0[ ∫
R3(|∇u|2 + |∇v|2)dx

] 1
2

, ln
R1[ ∫

R3(|∇u|2 + |∇v|2)dx
] 1
2

)
,

Ψu,v(+∞) = −∞ and Ψu,v(−∞) = 0−.

Indeed, (Ψu,v)
′(t) = 0 implies that g(t) = 3β

4

∫
R3 u

2vdx where

g(t) = e
t
2

∫
R3

(|∇u|2 + |∇v|2)dx− 3e
3t
2

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx.

It is easy to see that g(t) has a unique maximum point, thus the above equation has at most two
solutions. If 3β

4

∫
R3 u

2vdx > 0. So, Ψu,v(−∞) = 0−, Ψu,v(+∞) = −∞. It is easy to see that Ψu,v(t) has

a local minimum point su,v at negative level in (0, ln R0

(
∫
R3 (|∇u|2+|∇v|2)dx)

1
2

) and has a global maximum

point tu,v at positive level in
(

ln R0[ ∫
R3 (|∇u|2+|∇v|2)dx

] 1
2
, ln R1[ ∫

R3 (|∇u|2+|∇v|2)dx
] 1
2

)
. Next, we show that

Ψu,v(t) has no other critical points. From (u, v) ∈ Tb1×Tb2 , t ∈ R is a critical point of Ψu,v(t) if and only
if t?(u, v) ∈ Pb1,b2 , we have su,v?(u, v), tu,v?(u, v) ∈ Pb1×b2 and t?(u, v) ∈ Pb1×b2 if and only if t = su,v or
t = tu,v. Since su,v is a local minimum point of Ψu,v(t), we know that (Ψu,v)

′′(su,v) ≥ 0, from P0
b1,b2

= ∅,
we know that (Ψu,v)

′′(su,v) 6= 0, thus (Ψu,v)
′′(su,v) > 0, therefore su,v ?(u, v) ∈ P+

b1,b2
. Similarly, we have

tu,v?(u, v) ∈ P−b1,b2 . By the monotonicity and the behavior at infinity of Ψu,v(t), we know that Ψu,v(t) has
exactly two zeros cu,v < du,v with su,v < cu,v < tu,v < du,v and Ψu,v(t) has exactly two inflection points,
in particular, Ψu,v(t) is concave on [tu,v,+∞) and hence if tu,v < 0, then Pb1,b2(u, v) = (Ψu,v)

′(0) < 0.
Finally, we prove that (u, v) ∈ Tb1 × Tb2 7→ su,v ∈ R and (u, v) ∈ Tb1 × Tb2 7→ tu,v ∈ R are of class
C1. Indeed, we can apply the implicit function theorem on the C1 function Φ(t, u, v) = (Ψu,v)

′(t), then
Φ(su,v, u, v) = (Ψu,v)

′(su,v) = 0, ∂sΦ(su,v, u, v) = (Ψu,v)
′′(su,v) < 0, thus (u, v) ∈ Tb1 × Tb2 7→ su,v ∈ R

is class of C1. Similarly, we can prove that (u, v) ∈ Tb1 × Tb2 7→ tu,v ∈ R is class of C1.

4.1 Existence of a local minimizer

For k > 0, set

Ak =
{

(u, v) ∈ Tb1 × Tb2 :
( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2 < k
}
,

and
m+
β (b1, b2) = inf

(u,v)∈AR0

Jβ(u, v).

From Lemma 4.4, we have following corollary
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Corollary 4.1. The set P+
b1,b2

is contained in

AR0 =
{

(u, v) ∈ Tb1 × Tb2 :
( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2 < R0

}
and

sup
P+
b1,b2

Jβ(u, v) ≤ 0 ≤ inf
P−
b1,b2

Jβ(u, v).

Lemma 4.5. We have m+
β (b1, b2) ∈ (−∞, 0) that

m+
β (b1, b2) = inf

Pb1,b2
Jβ(u, v) = inf

P+
b1,b2

Jβ(u, v) and m+
β (b1, b2) < inf

AR0
\AR0−ρ

Jβ(u, v).

Proof. For (u, v) ∈ AR0 , we have

Jβ(u, v) ≥ h
(( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2

)
≥ min

t∈[0,R0]
h(t) > −∞.

Therefore, m+
β (b1, b2) > −∞. Moreover, there exists (u, v) ∈ Tb1 × Tb2 , such that(∫

R3

(|∇(t ? u)|2 + |∇(t ? v)|2)dx
) 1

2
< R0

and Jβ(t? (u, v)) < 0 for t� −1. Hence m+
β (b1, b2) < 0. Since P+

b1,b2
⊂ AR0 , we know that m+

β (b1, b2) ≤
infP+

b1,b2

Jβ(u, v). On the other hand, if (u, v) ∈ AR0 , then su,v ? (u, v) ∈ P+
b1,b2
⊂ AR0 and

Jβ(u, v)(su,v ? (u, v)) = min
{
Jβ(t ? (u, v)) : t ∈ R and

( ∫
R3

(|∇(t ? u)|2 + |∇(t ? v)|2)dx
) 1

2 < R0

}
≤ Jβ(u, v),

where R0 is defined in Lemma 4.2, so infP+
b1,b2

Jβ(u, v) ≤ m+
β (b1, b2). Since Jβ(u, v) > 0 on P−b1,b2 , we

know that infP+
b1,b2

Jβ(u, v) = infPb1,b2 Jβ(u, v). Finally, by the continuity of h, there exists ρ > 0 such

that h(t) ≥ m+
β (b1,b2)

2 if t ∈ [R0 − ρ,R0]. Therefore,

Jβ(u, v) ≥ h
(( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2

)
≥
m+
β (b1, b2)

2
> m+

β (b1, b2)

for every (u, v) ∈ Tb1×Tb2 with R0−ρ ≤
(∫

R3(|∇u|2 + |∇v|2)dx
) 1

2 ≤ R0. This completes the proof.

Lemma 4.6. Under the assumption (4.10) holds, we have

m+(b1, b2) < min{m+(b1, 0),m+(0, b2)}.

Proof. From [5], we know that m+(0, b2) can be achieved by v∗ ∈ Tb2 and v∗ is radially symmetric and
decreasing. We choose aproper test function u ∈ Tb1 such that (t ? u, v∗) ∈ Tb1 × Tb2 . From Lemma
4.4, we obtain

h(t) < h1(t) =
1

2
t2 − 1

4
µ2C

4
3,4b1t

3 − 1

2
|β|2

3
b
3
2
2C

3
3,3t

3
2 . (4.18)
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By direct calculations, there exists 0 < t∗ < R0 such that < h1(t∗) = 0. From [41], we have

m+(0, b2) = inf
v∈P+

0,b2

Jβ(0, v) = inf
v∈Tb2∩B(t∗)

Jβ(0, v).

Therefore, from the analysis in Lemma 4.2, we have

‖∇v∗‖L2 ≤ t∗ < R0 < t̃ =
2

3C4
3,4(µ1b1 + µ2b1 + ρb

1
2
1 b

1
2
2 )
.

Since h(R0) = h(R1) = 0 and the monotonicity of h(t), we deduce that (t ? u, v∗) ∈ Tb1 ×Tb2 ∩AR0 for
t� −1, therefore,

m+(b1, b2) = inf
(u,v)∈Tb1×Tb2∩AR0

J(u, v) ≤ J(t ? u, v∗)

=
1

2

∫
R3

|∇v∗|2dx− 1

4
µ2

∫
RN
|v∗|4dx− β

2

∫
R3

|t ? u|2(v∗)dx

+
e2t

2

∫
R3

|∇u|2dx− e3t

4

∫
RN

µ2u
4dx− 1

2

∫
RN

ρ|t ? u|2(v∗)2dx

< J(0, v∗) = m+(0, b2).

Similarly, we have
m+(b1, b2) < m+(b1, 0).

Hence, the proof is completed.

Lemma 4.7. Let {(un, vn)} ⊂ H1(R3)×H1(R3) be a minimizing sequence for Jβ(u, v)|Tb1×Tb2
at level

m+
β (b1, b2). Then {(un, vn)} is bounded in H1(R3)×H1(R3).

Proof. Since Pb1,b2(un, vn)→ 0, we have

Pb1,b2(un, vn) =

∫
R3

(|∇un|2 + |∇vn|2)dx− 3

4

∫
R3

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx− 3

4
β

∫
R3

u2
nvndx = on(1).

Thus, from (2.3), we have

Jβ(un, vn) =
1

6

∫
R3

(|∇un|2 + |∇vn|2)dx− β

4

∫
R3

u2
nvndx+ on(1)

≥ 1

6

∫
R3

(|∇un|2 + |∇vn|2)dx

− |β|
4

[(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

[
‖∇un‖2L2(R3) + ‖∇vn‖2L2(R3)

] 3
4

]
.

Since {(un, vn)} is a minimizer sequence for Jβ(u, v)|Tb1×Tb2
at level m+

β (b1, b2), we have Jβ(un, vn) ≤
m+
β (b1, b2) + 1 for n large. Hence

1

6

∫
R3

(|∇un|2 + |∇vn|2)dx

≤ |β|
4

[(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

[
‖∇un‖2L2(R3) + ‖∇vn‖2L2(R3)

] 3
4

]
+m+

β (b1, b2) + 2,

so {(un, vn)} is bounded in H1(R3)×H1(R3). This completes the proof.
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Lemma 4.8. Let {(un, vn)} ⊂ Tb1,r × Tb2,r be a nonnegative minimizing sequence for Jβ(u, v)|Tb1×Tb2

at level m+
β (b1, b2) with additional properties Pb1,b2(un, vn) → 0 and u−n , v

−
n → 0 a.e. in R3, then up

to a subsequence (un, vn)→ (u, v) in H1(R3)×H1(R3), where (u, v) is a positive solution of (1.1) for
some λ1, λ2 > 0.

Proof. From Lemma 4.7, we known that {(un, vn)} is bounded in H1
r (R3)×H1

r (R3), thus, by the Sobolev
embedding theorem, we have H1

r (R3) ↪→↪→ Lpr(R3) for 2 < p < 6, thus there exists a (u, v) ∈ H1
r (R3)×

H1
r (R3) such that (un, vn) ⇀ (u, v) in H1

r (R3)×H1
r (R3), (un, vn)→ (u, v) in Lpr(R3)×Lpr(R3) for 2 <

p < 6 and (un, vn)→ (u, v) a.e in R3. Hence u, v ≥ 0 are radial functions. Since J ′ |Tb1×Tb2
(un, vn)→ 0,

by the Lagrange multipliers rule, we know that there exists a sequence (λ1,n, λ2,n) ∈ R2 such that∫
R3

(∇un∇ϕ+∇vn∇ψ)dx+

∫
R3

(λ1,nunϕ+ λ2,nvnψ)dx

−
∫
R3

(µ1u
3
nϕ+ µ2v

3
nψ + ρv2

nunϕ+ ρu2
nvnψ)dx

− β
∫
R3

unϕvn −
β

2

∫
R3

u2
nψ = o(1)‖(ψ,ϕ)‖H1(R3)×H1(R3) in R3,

(4.19)

for every (ϕ,ψ) ∈ H1(R3)×H1(R3). We claim both λ1,n and λ2,n are bounded sequence, and at least
one of them is converging, up to a subsequence, to a strictly negative value. Indeed, we can using
(un, 0) and (0, vn) as text function in (4.19), we have∫

R3

λ1,nu
2
ndx = −

∫
R3

|∇un|2dx+

∫
R3

(µ1u
4
n + ρv2

nu
2
n)dx+ β

∫
R3

u2
nvn + o(1)‖ϕ‖H1(R3),∫

R3

λ2,nv
2
ndx = −

∫
R3

|∇vn|2dx+

∫
R3

(µ2v
4
n + ρv2

nu
2
n)dx+

β

2

∫
R3

u2
nvn + o(1)‖ψ‖H1(R3),

so ∫
R3

(λ1,nu
2
n + λ2,nv

2
n)dx = −

∫
R3

(|∇un|2 + |∇vn|2)dx+

∫
R3

(µ1u
4
n + µ2v

4
n + 2ρv2

nu
2
n)dx

+
3

2
β

∫
R3

u2
nvndx.

(4.20)

By (2.1)-(2.3) and the boundedness of {(un, vn)}, we can deduce that (λ1,n, λ2,n) is bounded, hence up
to a subsequence (λ1,n, λ2,n)→ (λ1, λ2) ∈ R2, passing to limits in (4.19), we can deduce that (u, v) is a
nonnegative solutions of (1.1) . Therefore∫

R3

(|∇u|2 + |∇v|2)dx+

∫
R3

(λ1u
2 + λ2v

2)dx =

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

2
β

∫
R3

u2vdx.

From (2.1), we can get

1

2

∫
R3

(|∇u|2 + |∇v|2)dx+
3

2

∫
R3

(λ1u
2 + λ2v

2)dx =
3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

2
β

∫
R3

u2vdx.

Thus we obtain∫
R3

(λ1u
2 + λ2v

2)dx =
1

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

4
β

∫
R3

u2vdx. (4.21)
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From Pb1,b2(un, vn)→ 0, we have∫
R3

(|∇un|2 + |∇vn|2)dx− 3

4

∫
R3

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx− 3

4
β

∫
R3

u2
nvndx = on(1). (4.22)

Together (4.20) with (4.22), we can get

λ1,nb
2
1 + λ2,nb

2
2 =

1

4

∫
R3

(
µ1u

4
n + µ2v

4
n + 2ρu2

nv
2
n

)
dx+

3

4
β

∫
R3

u2
nvndx. (4.23)

When β > 0, it is easy to see that at least one sequence of (λi,n) is positive and bounded away from 0.
Let n→ +∞ in (4.23), we have

λ1b
2
1 + λ2b

2
2 =

1

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx+

3

4
β

∫
R3

u2vdx. (4.24)

We claim that if λ1 > 0(resp.λ2 > 0), then λ2 > 0(resp.λ1 > 0). Indeed, we know that at least one
sequence of (λi) is positive and bounded away from 0. If λ2 > 0, now we argue by contradiction and
assume that λ1 ≤ 0, then

−∆u = −λ1u+ βuv + µ1u
3 + ρv2u ≥ 0.

Using a Liouville type theorem[ [22], Lemma A.2], we can deduce that u = 0. So, v satisfies that
−∆v + λ2v = µ2v

3, in R3,

v > 0, in R3,∫
R3 v

2dx = b22, in R3.

Therefore

m+
β (b1, b2) = lim

n→+∞
Jβ(un, vn) = lim

n→+∞

[
1

8

∫
R3

(µ1u
4
n + µ2v

4
n + 2ρu2

nv
2
n)dx− β

8

∫
R3

u2
nvndx

]
=
µ1

8

∫
R3

v4dx = m+
β (0, b2),

in contradiction with Lemma 4.6. Thus, λ1 > 0, λ2 > 0.
If λ1 > 0, now we argue by contradiction and assume that λ2 ≤ 0, then

−∆v = −λ2v
β

2
u2 + µ2v

3 + ρu2v ≥ 0.

Using a Liouville type theorem[ [22], Lemma A.2], we can deduce that v = 0. So, by the structure of
system (1.1), we get u = 0, which is impossible.

It is easy to see that

m+
β (b1, b2) = lim

n→+∞
Jβ(un, vn) = lim

n→+∞

[
1

6

∫
R3

(|∇un|2 + |∇vn|2)dx− β

4

∫
R3

u2
nvndx

]
.

Case 1 If u = 0, v = 0, by compact Sobolev embedding,

m+
β (b1, b2) = lim

n→+∞
Jβ(un, vn) ≥ lim

n→+∞

1

6

∫
R3

(|∇un|2 + |∇vn|2)dx ≥ 0.
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However, from Lemma 4.4, we know that m+
β (b1, b2) < 0, which is a contraction.

Case 2 If u 6= 0, v = 0, indeed, if v = 0, by the structure of system (1.1), we get u = 0, so Case 2
doesn’t happen.

Case 3 If u = 0, v 6= 0, we have

m+
β (b1, b2) = lim

n→+∞
Jβ(un, vn) ≥ lim

n→+∞

1

6

∫
R3

(|∇un|2 + |∇vn|2)dx ≥ 0,

contradicts with m+
β (b1, b2) < 0.

Case 4 if u 6= 0, v 6= 0, let
ũn = un − u, ṽn = vn − v,

from [17, Lemma 2.4], we get∫
R3

|ũn|2|ṽn|2dx =

∫
R3

|un|2|vn|2dx−
∫
R3

|u|2|v|2dx+ o(1). (4.25)

By Brezis Lieb Lemma in [47], we can obtain that∫
R3

|ũn|2ṽndx =

∫
R3

|un|2vndx−
∫
R3

|u|2vdx+ o(1). (4.26)

So, from (4.25) and (4.26), we have

0 = Pb1,b2(un, vn) + o(1) = Pb1,b2(ũn, ṽn) + Pb1,b2(u, v) + o(1)

=

∫
R3

(|∇ũn|2 + |∇ṽn|2)dx− 3

4

∫
R3

(
µ1ũ

4
n + µ2ṽ

4
n + 2ρũ2

nṽ
2
n

)
dx− 3

4
β

∫
R3

ũ2
nṽndx+ o(1).

It is easy to see that
∫
R3 u

2 ≤ b21,
∫
R3 v

2 ≤ b22. From (4.21) and (4.24), we have

λ1

(
b21 −

∫
R3

u2dx

)
+ λ2

(
b22 −

∫
R3

v2dx

)
= 0,

so ∫
R3

u2 = b21,

∫
R3

v2 = b22. (4.27)

Therefore, we know that

m+
β (b1, b2) = lim

n→+∞
Jβ(un, vn) = lim

n→+∞
Jβ(ũn, ṽn) + Jβ(u, v)

= lim
n→+∞

[
1

6

∫
R3

(|∇ũn|2 + |∇ṽn|2)dx− β

4

∫
R3

ũ2
nṽndx

]
+ Jβ(u, v)

≥ lim
n→+∞

[
1

6

∫
R3

(|∇ũn|2 + |∇ṽn|2)dx

− |β|
4

(∫
R3

|ũn|3dx
) 2

3
(∫

R3

|ṽn|3dx
) 1

3
]

+ Jβ(u, v)

≥ lim
n→+∞

1

6

∫
R3

(|∇ũn|2 + |∇ṽn|2)dx+ Jβ(u, v) ≥ m+
β (b1, b2).

Thus, Jβ(u, v) = m+
β (b1, b2) and (un, vn)→ (u, v) in H1(R3)×H1(R3).
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4.2 Existence of a second critical point of mountain pass type

Next, we prove the existence of second critical point of mountain pass type for Jβ(u, v) |Tb1×Tb2
.

Lemma 4.9. Suppose that Jβ(u, v) < m+
β (b1, b2). Then the value tu,v defined by Lemma 4.4 is negative.

Proof. From Lemma 4.4, we know that the function Ψu,v(t) has exactly two critical points su,v <
tu,v ∈ R and two zeros cu,v < du,v ∈ R with su,v < cu,v < tu,v < du,v. If du,v ≤ 0, then tu,v < 0.
Assume by contradiction that du,v > 0, if 0 ∈ (cu,v, tu,v), then Jβ(u, v) = Ψu,v(0) > 0 contract with
Jβ(u, v) < m+

β (b1, b2) < 0. Therefore, cu,v > 0. By Lemma 4.4-(2), we know that

m+
β (b1, b2) > Jβ(u, v) = Ψu,v(0) ≥ inf

t∈(−∞,cu,v ]
Ψu,v(t) ≥ Jβ(u, v)(su,v ? (u, v))

= min

{
Jβ(t ? (u, v) : t ∈ R and (

∫
R3

(|∇(t ? u)|2 + |∇(t ? v)|2)dx)
1
2 < R0

}
= Jβ(su,v ? (u, v) ≥ m+

β (b1, b2),

which is a contradiction.

Lemma 4.10. We have
m−β (b1, b2) := inf

(u,v)∈P−
b1,b2

Jβ(u, v) > 0.

Proof. From Lemma 4.2, there exists 0 < R0 < R1 such that h(R0) = h(R1) = 0, h(t) > 0 if and only
if t ∈ (R0, R1). Let tmax be the maximum point of the function h(t) at the positive level (R0, R1). For
every (u, v) ∈ P−b1,b2 , there exists τu,v ∈ R such that( ∫

R3

(|∇(τu,v ? u)|2 + |∇(τu,v ? v)|2)dx
) 1

2 = tmax,

and from Lemma 4.4 we know that tu,v ? (u, v) ∈ P−b1,b2 then t = tu,v, which implies that 0 is the unique
strict maximum of Ψu,v(t). Therefore,

Jβ(u, v) = Ψu,v(0) ≥ Ψu,v(τu,v) = Jβ(τu,v ? (u, v))

≥ h
(( ∫

R3

(|∇(τu,v ? u)|2 + |∇(τu,v ? v)|2)dx
) 1

2

)
= h(tmax) > 0,

so for any (u, v) ∈ P−b1,b2 , we have

m−β (b1, b2) := inf
(u,v)∈P−

b1,b2

Jβ(u, v) > 0.

Next, we use the idea introduced by Li and Zou [28] to give the energy estimate. We observe that

wλ,µ =
(‖w‖2

L2(R3)
µb2

)2 ‖w‖2
L2(R3)

µ
3
2 b2

w
((‖w‖2

L2(R3)
µb2

)
x
)

is a solution of the problem
−∆u+ λu = µu3 in R3,

u > 0 in R3,∫
R3 u

2dx = b2,

(4.28)

where w is the unique positive solution of −∆u+ u = u3 in R3.
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Lemma 4.11. For any b1, b2 > 0, ρ > 0, β > 0, we have

m−β (b1, b2) < min{m−β (0, b2),m−β (b1, 0)}.

Proof. Let (v, λ0) ∈ Tb2 ×R+ be the unique solution of equation (4.28) with parameters µ2 and b2. Let

u(x) = cϕ(x)
|x|m , m < 1

2

ϕ(x) ∈ C∞0 (B2(0)), 0 ≤ ϕ(x) ≤ 1, ϕ(x) = 1 in B1(0).

Then u ∈ H1(R3) and u ∈ Tb1 for some suitable c. Therefore, (t ? u, v) ∈ Tb1 × Tb2 for any t ∈ R. So,∫
R3

|t ? u|2v2dx = C0e
(3−2m)t

∫
R3

ϕ2(et(x))

|x|2m
v2(x)dx,

∫
R3

|t ? u|2vdx = C0e
(3−2m)t

∫
R3

ϕ2(et(x))

|x|2m
v(x)dx.

From the decay properties of [32] that v decays exponentially

v(x) = O(|x|−
1
2 e−λ

1
2
0 |x|) and |u(x)| ≤M in R3.

Thus,

0 <

∫
R3

v2(x)

|x|2m
dx ≤ C

(∫
BR(0)

1

|x|2m
+

∫
R3\BR(0)

|x|−1−2me−λ
1
2
0 2|x|

)
< +∞,

0 <

∫
R3

v(x)

|x|2m
dx ≤ C

(∫
BR(0)

1

|x|2m
+

∫
R3\BR(0)

|x|−
1
2
−2me−λ

1
2
0 |x|
)
< +∞.

By the Dominated Convergence Theorem, we obtain that

lim
t→−∞

∫
R3

ϕ2(et(x))

|x|2m
v2(x)dx =

∫
R3

v2(x)

|x|2m
dx = C1 ∈ (0,+∞),

lim
t→−∞

∫
R3

ϕ2(et(x))

|x|2m
v(x)dx =

∫
R3

v(x)

|x|2m
dx = C2 ∈ (0,+∞),

so∫
R3

|t ? u|2v2dx = C0e
(3−2m)t

∫
R3

ϕ2(et(x))

|x|2m
v2(x)dx = C0e

(3−2m)t(C1 + o(1)) ≥ C0C1

2
e(3−2m)t, (4.29)

as t→ −∞. ∫
R3

|t ? u|2vdx = C0e
(3−2m)t

∫
R3

ϕ2(et(x))

|x|2m
v(x)dx (4.30)

= C0e
(3−2m)t(C2 + o(1)) ≥ C0C2

2
e(3−2m)t as t→ −∞.

From Lemma 4.4, we know that t∗ = t(t?u,v) is a local maximum of Ψu,v(t) and t(t?u,v)?(t?u, v) ∈ P−b1,b2 ,
so

0 = P (t? ? (t ? u, v)) = e2(t+t?)

∫
R3

|∇u|2dx+ e2t?

∫
R3

|∇v|2dx− 3e3(t+t?)

4
µ1

∫
R3

u4dx

− 3e3t?

4
µ2

∫
R3

v4dx− 3e3t?

2
ρ

∫
R3

|t ? u|2v2dx− 3β

4
e

3t?
2

∫
R3

|t ? u|2vdx.
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From (4.29), (4.30), (4.31) and let t→ −∞, we have

e2t?

∫
R3

|∇v|2dx =
3e3t?

4
µ2

∫
R3

v4dx.

Since (v, λ0) ∈ Tb2 × R+ be the unique solution of equation (4.28) with parameters µ2 and b2, by the
Pohozaev identity for equation (4.28) with parameters µ2 and b2, we can get e3t? → 1 as t → −∞.
Therefore, from Lemma 2.1 in [28], we have

e2t?

∫
R3

|∇v|2dx− 3e3t?

4
µ2

∫
R3

v4dx < mβ(0, b2),

therefore

m−β (b1, b2) ≤ Jβ(t? ? (t ? u, v))

=
e2(t+t?)

2

∫
R3

|∇u|2dx+
e2t?

2

∫
R3

|∇v|2dx− e3(t+t?)

4
µ1

∫
R3

u4dx

− e3t?

4
µ2

∫
R3

v4dx− e3t?

2
ρ

∫
R3

|t ? u|2v2dx− β

2
e

3t?
2

∫
R3

|t ? u|2vdx

=
e2t?

2

∫
R3

|∇v|2dx− e3t?

4
µ2

∫
R3

v4dx− C0C1

2
e(3−2m)t − βC0C2

2
e(3−2m)t

< m−β (0, b2)− C0C1

2
e(3−2m)t − βC0C2

2
e(3−2m)t,

from which, we see that for sufficiently small t� −1, there holds m−β (b1, b2) < m−β (0, b2). Similarly, we
can deduce that

m−β (b1, b2) < m−β (b1, 0).

Lemma 4.12. There is a radial symmetric Palais-Smale sequence of J |Tb1×Tb2
at level m−β (b1, b2)

with the additional properties P (un, vn) → 0 and u−n , v
−
n → 0 a.e. in R3. Then up to a subsequence

(un, vn)→ (u, v) in H1(R3)×H1(R3), where (u, v) is a positive solution of (1.1) for some λ1, λ2 > 0.

Proof. From (4.2), we define the functional J̃ : R×H1(R3)×H1(R3)→ R as following

J̃β(t, u, v) = Jβ(t ? (u, v)) =
e2t

2

∫
R3

(|∇u|2 + |∇v|2)dx− β

2

∫
R3

e
3t
2 u2vdx

− e3t

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx.

It is easy to see that J̃ is of class C1. Denoting Jcβ = {(u, v) ∈ Tb1 × Tb2 : Jβ(u, v) ≤ c} and introduce
the minimax class

Γ =
{
γ = (α,ϕ1, ϕ2) ∈ C([0, 1],R× Tb1,r × Tb2,r) : γ(0) ∈ {0} × P+

b1,b2
, γ(1) ∈ {0} × J2m(b1,b2)

β

}
,

(4.31)

with associated minimax level
σβ(b1, b2) = inf

γ∈Γ
max
t∈[0,1]

J̃β(γ(t)).
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Let (u, v) ∈ Tb1,r × Tb2,r, it is easy to see∫
R3

(
|∇(t ? u)|2 + |∇(t ? v)|2

)
dx→ 0 as t→ −∞,

Jβ(t ? u, t ? v)→ −∞ as t→ +∞.

From Lemma 4.4, there exists t0 � −1 and t1 � 1 such that

t0 ? (u, v) ∈ P+
b1,b2

, t1 ? (u, v) ∈ J2mβ(b1,b2)
β

and
γu,v(t) : t ∈ [0, 1] 7→ (0, ((1− t)t0) + tt1) ? (u, v)) ∈ R× Tb1,r × Tb2,r (4.32)

is a path in Γ. Thus, σ(b1, b2) is a real number. Next, we prove that for every

γ = (α,ϕ1, ϕ2) ∈ Γ there exists tγ ∈ (0, 1) such that α(tγ) ? (ϕ1(tγ), ϕ2(tγ)) ∈ P−b1,b2 . (4.33)

Indeed, γ(0) = (0, ϕ1(0), ϕ2(0)) ∈ {0}×P+
b1,b2

, by Lemma 4.4 and the fact that t ? (u, v) ∈ Pb1,b2 if and
only if (Ψu,v)

′(t) = 0, we have

tα(0)?(ϕ1(0),ϕ2(0)) = t(ϕ1(0),ϕ2(0)) > s(ϕ1(0),ϕ2(0)) = 0.

Since Jβ(α(1) ? (ϕ1(1), ϕ2(1))) = J̃β(γ(1)) ≤ 2mβ(b1, b2), from Lemma 4.9, we have that

t(ϕ1(1),ϕ2(1)) < 0.

From Lemma 4.4, the map tα(t)?(ϕ1(t),ϕ2(t)) is continuous in t, so there exists
tγ ∈ (0, 1) such that tα(tγ)?(ϕ1(tγ),ϕ2(tγ)) = 0, so for every γ = (α,ϕ1, ϕ2) ∈ Γ there exists tγ ∈
(0, 1) such that α(tγ) ? (ϕ1(tγ), ϕ2(tγ)) ∈ P−b1,b2 . This implies that

max
γ([0,1])

J̃β ≥ J̃β(γ(tγ)) = Jβ(α(tγ) ? (ϕ1(tγ), ϕ2(tγ) ≥ inf
P−
b1,b2

∩Tb1,r×Tb2,r

Jβ.

So
σβ(b1, b2) ≥ inf

P−
b1,b2

∩Tb1,r×Tb2,r

Jβ.

On the other hand, if (u, v) ∈ P−b1,b2 ∩ Tb1,r × Tb2,r, then γu,v defined in (4.32) is a path in Γ with

Jβ(u, v) = J̃β(t, u, v) = max
γu,v([0,1])

J̃β ≥ σβ(b1, b2),

so
inf

P−
b1,b2

∩Tb1,r×Tb2,r

Jβ ≥ σβ(b1, b2).

Thus,
inf

P−
b1,b2

∩Tb1,r×Tb2,r

Jβ = σβ(b1, b2).
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From Lemma 4.10, we know that

σβ(b1, b2) = inf
P−
b1,b2

∩Tb1,r×Tb2,r

Jβ > 0 ≥ sup
P+
b1,b2

∪J2m(b1,b2)
β ∩Tb1,r×Tb2,r

Jβ (4.34)

= sup
{0}×P+

b1,b2
∪{0}×J2m(b1,b2)∩Tb1,r×Tb2,r

J̃β.

Let F = {γ([0, 1]) : γ ∈ Γ}. By the terminology in [ [15], section 5], which implies that {γ([0, 1]) : γ ∈ Γ}
is a homotopy stable family of compact subset of R × Tb1,r × Tb2,r with extended closed boundary

{0} ∪ ×P+
b1,b2
× {0} × J

2m(b1,b2)
β , and the superlevel set{J̃β ≥ σ} is a dual set for F , which implies

that the assumption in [ [15], Theorem 5.2] are satisfied. Therefore, taking any minimizing sequence
{γn([0, 1]), γn = (αn, ϕ1,n, ϕ2,n)} for σ with the property that α(t) = 0, ϕ1,n ≥ 0, ϕ2,n ≥ 0 for every

t ∈ [0, 1], there exists a sequence (tn, un, vn) ⊂ R×Tb1,r×Tb2,r such that J̃β(tn, un, vn)→ σ(b1, b2) and

∂tJ̃β(tn, un, vn)→ 0, ‖∂(u,v)J̃β(tn, un, vn)‖TunTb1,r
×TvnTb2,r

→ 0 (4.35)

|tn|+ dist((un, vn), (ϕ1,n([0, 1]), ϕ2,n([0, 1])))→ 0. (4.36)

Let (ũn, ṽn) = tn ? (un, vn) ∈ Tb1,r ×Tb2,r. By (4.36), we know that tn is bounded and ũ−n , ṽ
−
n → 0 a.e.

in R3. From (4.35), we can get

P (ũn, ṽn) = ∂tJ̃β(tn, un, vn)→ 0,

and

J ′β(ũn, ṽn)[φ, ψ] = ∂(u,v)J̃β(tn, un, vn)[(−tn) ? (φ, ψ)] = o(1)‖(−tn) ? (φ, ψ)‖H1(R3)×H1(R3)

= o(1)‖(φ, ψ)‖H1(R3)×H1(R3),

therefore (ũn, ṽn) is a radial Palais-Smale sequence of J̃β|Tb1,r×Tb2,r
and hence a radial symmetric Palais-

Smale sequence of J̃β|Tb1×Tb2
at level σβ(b1, b2). By the same arguments as Lemma 4.8, we can prove

prove the H1 convergence of the Palais-Smale sequence. We should point out that there are several
differences form the proof of Lemma 4.8. First, to eliminate the disappearance of the solutions, we use
m−(b1, b2) > 0 to get a contradiction. To eliminate the semi-trivial solution, we use Brézis-Lieb lemma
and Lemma 4.11 to get a contradiction.

Hence,

m−β (b1, b2) = lim
n→+∞

Jβ(ũn, ṽn) = lim
n→+∞

Jβ(wn, σn) + Jβ(u, v)

= lim
n→+∞

[
1

6

∫
R3

(|∇wn|2 + |∇σn|2)dx− β

4

∫
R3

w2
nσndx

]
+ Jβ(u, v)

≥ lim
n→+∞

[
1

6

∫
R3

(|∇wn|2 + |∇σn|2)dx− |β|
4

(∫
R3

|wn|3dx
) 2

3
(∫

R3

|σn|3dx
) 1

3
]

+ Jβ(u, v)

≥ lim
n→+∞

1

6

∫
R3

(|∇wn|2 + |∇σn|2)dx+ Jβ(u, v) ≥ m−β (b1, b2).

Thus, Jβ(u, v) = m−β (b1, b2) and (ũn, ṽn)→ (u, v) in H1(R3)×H1(R3).
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Lemma 4.13. We have

m−β (b1, b2) = inf
(u,v)∈Tb1,r×Tb2,r

max
t∈R

Jβ(t ? (u, v)).

Proof. On the one hand
m−β (b1, b2) = inf

(u,v)∈P−
b1,b2

Jβ(u, v) = Jβ(ũ, ṽ).

Then, by Lemma 4.4, we have

m−β (b1, b2) = Jβ(ũ, ṽ) = max
t∈R

Jβ(t ? (ũ, ṽ)) ≥ inf
(u,v)∈Tb1,r×Tb2,r

max
t∈R

Jβ(t ? (u, v)).

On the other hand, for any (u, v) ∈ Tb1,r × Tb2,r, we have tu,v ? (u, v) ∈ P−b1,b2 and hence

max
t∈R

Jβ(t ? (u, v)) = Jβ(tu,v ? (u, v)) ≥ m−β (b1, b2).

Before giving the estimate of m−β (b1, b2), we would like to study the dependence of m−β (b1, b2) on β.

Lemma 4.14. For any 0 < β1 < β2, then m−β2(b1, b2) ≤ m−β1(b1, b2) ≤ m−0 (b1, b2).

Proof. By Lemma 4.13

m−β2(b1, b2) ≤ max
t∈R

Jβ2(t ? (ũβ1 , ṽβ1)) ≤ max
t∈R

Jβ1(t ? (ũβ1 , ṽβ1))

= Jβ1(ũβ1 , ṽβ1) = m−β1(b1, b2),

m−β1(b1, b2) ≤ max
t∈R

Jβ1(t ? (ũ0, ṽ0)) ≤ max
t∈R

J0(t ? (ũ0, ṽ0)) = J0(ũ0, ṽ0) = m−0 (b1, b2).

Proof of Theorem 1.3. Let us consider a minimizing sequence (un, vn) for Jβ(u, v) |AR0
, we assume

that (un, vn) ∈ Tb1 × Tb2 is radial decreasing for every n. Furthermore, by Lemma 4.4, for every n we

can take sun,vn ∗ (un, vn) ∈ P+
b1,b2

such that (
∫
R3(|∇(sun,vn ? un)|2 + |∇(sun,vn ? vn)|2)dx)

1
2 ≤ R0 and

Jβ(su,v ? (un, vn)) = min

{
Jβ(t ? (un, vn) : t ∈ R and

(∫
R3

(|∇(t ? un)|2 + |∇(t ? vn)|2)dx

) 1
2

< R0

}
< Jβ(un, vn).

Thus, we obtain a new minimizing sequence {wn, σn} = {sun,un ?vn, sun,vn ?vn} with (wn, σn) ∈ Tb1,r ×
Tb2,r ∩ P+

a,µ radially decreasing for every n. By Lemma 4.5, we have
(∫

R3(|∇wn|2 + |∇σn|2)dx
) 1

2 ≤ R0

for every n and hence by Ekeland’s variational principle in a standard way, we know the existence of a
new minimizing sequence for {un, vn} ⊂ AR0 for m+

β (b1, b2) with ‖(un, vn)− (wn, σn)‖ → 0 as n→ +∞,
which is also a Palais-Smale sequence for Jβ(u, v) on Tb1 × Tb2 . By the boundedness of {(wn, σn)},
‖(un, vn)− (wn, σn)‖ → 0, Brézis-Lieb lemma and Sobolev embedding theorem, we have

Pb1,b2(un, vn) = Pb1,b2(wn, σn) + o(1)→ 0 and u−n , v
−
n → 0 a.e.in R3.
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Hence (un, vn) satisfies all the assumptions of Lemma 4.8, as a consequence, up to a subsequence
(un, vn)→ (u, v) strongly in H1(R3)×H1(R3) and (u, v) is an interior local minimizer for Jβ(u, v)|AR0

.

Finally, we prove that (u, v) is in P+
b1,b2

(u, v). i.e. β
∫
R3 u

2vdx > 0. Indeed, from (un, vn) ∈ P+
b1,b2

(u, v),

we have β
∫
R3 u

2vdx ≥ 0. Assume β
∫
R3 u

2vdx = 0, then from Pohozaev identity, we have∫
R3

(|∇u|2 + |∇v|2)dx =
3

4

∫
R3

(µ1u
4 + µ2v

4 + 2ρu2v2)dx.

Thus, from (2.1)-(2.3), we have∫
R3

(|∇u|2 + |∇v|2)dx =
3

4

∫
R3

(
µ1u

4 + µ2v
4 + 2ρu2v2

)
dx

≤ 3µ1

4
C4

3,4b1‖∇u‖3L2(R3) +
3µ2

4
C4

3,4b2‖∇v‖3L2(R3)

+
3

4
ρC4

3,4b
1
2
1 b

1
2
2

[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
2

≤ 3

4
C4

3,4(µ1b1 + µ2b2 + ρb
1
2
1 b

1
2
2 )
[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
2
,

so, [
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 1
2 ≥ 4

3C4
3,4(µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 )
. (4.37)

From Corollary 4.1 and the definition of R0 in Lemma 4.2, we have[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 1
2
< R0 ≤ t̃ =

2

3C4
3,4(µ1b1 + µ2b1 + ρb

1
2
1 b

1
2
2 )
. (4.38)

a contradiction. Thus β
∫
R3 u

2vdx > 0 and (u, v) ∈ P+
b1,b2

(u, v). From Lemma 4.5, we know that (u, v)
is a ground normalized solution. From Lemma 4.12, we get a second critical point of mountain pass
type for Jβ(u, v) |Tb1×Tb2

.
Next, we prove the second part of Theorem 1.3, that is the limit behavior of the ground state

solution as β → 0.
For b1, b2 > 0 fixed, from the proof Lemma 4.2, we can deduce that when β → 0, thenR0(b1, b2, ρ, β)→

0. By corollary 4.1, when (û, v̂) is the ground normalized solution obtained in Theorem 1.3, then( ∫
R3

(|∇u|2 + |∇v|2)dx
) 1

2 < R0(b1, b2, ρ, β)→ 0,

and

0 >m+
β (b1, b2) = Jβ(u, v)

≥ 1

2

∫
R3

(|∇u|2 + |∇v|2)dx−D1

( ∫
R3

|∇u|2dx
) 3

2 −D2

( ∫
R3

|∇v|2dx
) 3

2

− ρD3

( ∫
R3

(|∇u|2 + |∇v|2)dx
) 3

2 − |β|D4

( ∫
R3

(|∇u|2 + |∇v|2)dx
) 3

4

≥ h
(( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2

)
→ 0,
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thus
m+
β (b1, b2)→ 0.

Denote {(ũβ, ṽβ) : 0 < β < β} with β small enough. By the same arguments as Lemma 4.8, we can
obtain the H1 convergence. First, to eliminate the disappearance of the solutions, we use Lemma 4.14
and 0 < m−β (b1, b2) < m−0 (b1, b2) to get a contradiction. To eliminate the semi-trivial solution, we use
Brézis-Lieb lemma and energy comparison to get a contradiction.

Hence,

m−0 (b1, b2) = lim
β→0

Jβ(ũβ, ṽβ) = lim
β→0

Jβ(wβ, σβ) + lim
β→0

Jβ(ũ, ṽ)

= lim
β→0

[
1

6

∫
R3

(|∇wβ|2 + |∇σβ|2)dx− β

4

∫
R3

w2
βσβdx

]
+ lim
β→0

Jβ(ũ, ṽ)

≥ lim
β→0

1

6

∫
R3

(|∇wβ|2 + |∇σβ|2)dx+ lim
β→0

Jβ(ũ, ṽ) ≥ m−0 (b1, b2).

Thus, limβ→0 J(ũβ, ṽβ) = m−0 (b1, b2) and (ũβ, ṽβ)→ (ũ, ṽ) in H1(R3)×H1(R3).

5 Proof of Theorem 1.4

In this section, we give a refined upper of m+
β (b1, b2) and search for (λ1,b1,b2 , λ2,b1,b2 , ub1,b2 , vb1,b2) solving{

−∆u+ λ1u = βuv in R3,

−∆v + λ2v = β
2u

2 in R3,
(5.1)

satisfying the additional conditions∫
R3

u2dx = b21 and

∫
R3

v2dx = b22. (5.2)

Denote

J0(u, v) =
1

2

∫
R3

(|∇u|2 + |∇v|2)dx− β

2

∫
R3

u2vdx,

on the constraint Tb1 × Tb2 .

P0
b1,b2(u, v) :=

{
(u, v) ∈ Tb1 × Tb2 : P 0

b1,b2(u, v) = 0
}
,

where

P 0
b1,b2(u, v) =

∫
R3

(|∇u|2 + |∇v|2)dx− 3

4
β

∫
R3

u2vdx.

Then, the solution of (5.1)-(5.2) can be found as minimizers of

m+
0 (b1, b2) = inf

Tb1×Tb2

J0(u, v) > −∞.

If (u0, v0) is the unique positive solution of (1.12), then (u0, v0) = (
√

2β−1w, β−1w), and w is the unique
positive solution of (1.13).
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Let

θ1 =
2β2b

6
5
1 b

4
5
2

16
2
5 ‖w‖2

L2(R3)

, θ2 =
β2b

8
5
1 b

2
5
2

16
1
5 ‖w‖2

L2(R3)

, L1 =
2β4b

14
5

1 b
6
5
2

16
3
5 ‖w‖4

L2(R3)

, L2 =
4β4b

12
5

1 b
8
5
2

16
4
5 ‖w‖4

L2(R3)

,

λ1,b1,b2 =
4β4b

12
5

1 b
8
5
2

16
4
5 ‖w‖4

L2(R3)

, λ2,b1,b2 =
β4b

16
5

1 b
4
5
2

16
2
5 ‖w‖4

L2(R3)

,

we have following lemma.

Lemma 5.1. (5.1)-(5.2) has a unique positive solution(
λ1,b1,b2 , λ2,b1,b2 , L1u0(θ1x), L2v0(θ2x)

)
.

Moreover,

m+
0 (b1, b2) = J0(L1u0(θ1x), L2v0(θ2x)) = −1

6

[ 4β4b
22
5

1 b
8
5
2

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1 b
14
5

2

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

Proof. By elementary calculation, we have

(λ1,b1,b2 , λ2,b1,b2 , L1u0(θ1x), L2v0(θ2x))

is the unique positive solution of (5.1)-(5.2). Furthermore, we have

m+
0 (b1, b2) = J0(L1u0(θ1x), L2v0(θ2x))

= −1

6

[L2
1

θ1

∫
R3

|∇u0|2dx+
L2

2

θ2

∫
R3

|∇v0|2dx
]

= −1

6

[
2
L2

1

θ1
β−2 +

L2
2

θ2
β−2

]
‖∇w‖2L2(R3)

= −1

6

[ 4β4b
22
5

1 b
8
5
2

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1 b
14
5

2

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

Lemma 5.2. We have

m−β (b1, b2) < m+
0 (b1, b2) = −1

6

[ 4β4b
22
5

1 b
8
5
2

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1 b
14
5

2

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

Proof. Since

J0(u, v) =
1

2

∫
R3

(|∇u|2 + |∇v|2)dx− β

2

∫
R3

u2vdx

≥ 1

2

∫
R3

(|∇u|2 + |∇v|2)dx− |β|
2

[(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3

[
‖∇u‖2L2(R3) + ‖∇v‖2L2(R3)

] 3
4

]
= g
(( ∫

R3

(|∇u|2 + |∇v|2)dx
) 1

2

)
,
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where

g(t) =
1

2
t2 − |β|

2

(2

3
b
3
2
1 +

1

3
b
3
2
2

)
C3

3,3t
3
2 .

It is easy to see that g(t) < 0 if t ∈ (0, t̃) and g(t) > 0 if t ∈ (t̃,+∞), where t̃ =
[
|β|
(

2
3b

3
2
1 + 1

3b
3
2
2

)
C3

3,3

]2
.

Since J0(L1u0(θ1x), L2v0(θ2x)) = m+
0 (b1, b2) < 0, we get[ ∫

R3

(|∇L1u0(θ1x)|2 + |∇L2v0(θ2x)|2)dx
] 1

2
< t̃.

From Lemma 5.1, the definition of R0 in Lemma 4.2 and the definition of t̃, we have t̃ < R0,

‖L1u0(θ1x)‖2L2(R3) = b21, ‖L2v0(θ2x)‖2L2(R3) = b22,

and [ ∫
R3

(|∇L1u0(θ1x)|2 + |∇L2v0(θ2x)|2)dx
] 1

2
< t̃ < R0.

Therefore, we have

m−β (b1, b2) = inf
AR0

Jβ(u, v) ≤ Jβ(L1u0(θ1x), L2v0(θ2x))

< J0(L1u0(θ1x), L2v0(θ2x)) = m0(b1, b2)

= −1

6

[ 4β4b
22
5

1 b
8
5
2

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1 b
14
5

2

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

Proof of Theorem 1.4. Let b1,k, b2,k → 0+ with b1,k v b2,k as k → +∞ and (ub1,k,b2,k , vb1,k,b2,k) ∈ AR0

be a positive minimizer of m(b1,k, b2,k, R0)
for each k ∈ N. From

Pb1,b2(ub1,k,b2,k , vb1,k,b2,k)

=

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx− 3

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx

− 3

4
β

∫
RN

u2
b1,k,b2,k

vb1,k,b2,kdx = 0,

we have

Jβ(ub1,k,b2,k , vb1,k,b2,k) =
1

6

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx− β

4

∫
RN

u2
b1,k,b2,k

vb1,k,b2,kdx

= −1

6

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx

+
1

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx

< −1

6

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3).

43



Thus

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3) ≤

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx

and ∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx <

[
3|β|

2

[(2

3
b
3
2
1,k +

1

3
b
3
2
2,k

)
C3

3,3

]]4

.

Therefore

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3) (5.3)

≤
∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx <

[
3|β|

2

[(2

3
b
3
2
1,k +

1

3
b
3
2
2,k

)
C3

3,3

]]4

.

When b1,k v b2,k, we can get∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx v b
22
5

1,kb
8
5
2,k + b

16
5

1,kb
14
5

2,k. (5.4)

From (2.1)-(2.2) and (5.3), we have

1

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx (5.5)

≤ 1

4

∫
R3

(
(µ1 + ρ)u4

b1,k,b2,k
+ (µ2 + ρ)v4

b1,k,b2,k

)
dx

≤
[µ1 + ρ

4
C4

3,4b1,k +
µ2 + ρ

4
C4

3,4b2,k

] [
‖∇ub1,k,b2,k‖

2
L2(R3) + ‖∇vb1,k,b2,k‖

2
L2(R3)

] 3
2

≤
[µ1 + ρ

4
C4

3,4b1,k +
µ2 + ρ

4
C4

3,4b2,k

] [3|β|
2

[(2

3
b
3
2
1,k +

1

3
b
3
2
2,k

)
C3

3,3

]]6

→ 0

as k → +∞. Since

m−β (b1,k, b2,k) < −
1

6

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3),
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we obtain

− 1

6

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3) (5.6)

> m−β (b1,k, b2,k) = Jβ(ub1,k,b2,k , vb1,k,b2,k)

≥ inf
Tb1,k×Tb2,k

{1

2

∫
R3

(|∇u|2 + |∇v|2)dx− β

2

∫
R3

u2vdx
}

− 1

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx

= −1

6

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3)

− 1

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx

≥ −1

6

[ 4β4b
22
5

1,kb
8
5
2,k

16
4
5 ‖w‖6

L2(R3)

+
β4b

16
5

1,kb
14
5

2,k

16
2
5 ‖w‖6

L2(R3)

]
‖∇w‖2L2(R3) (5.7)

−
[µ1 + ρ

4
C4

3,4b1,k +
µ2 + ρ

4
C4

3,4b2,k

] [3|β|
2

[(2

3
b
3
2
1,k +

1

3
b
3
2
2,k

)
C3

3,3

]]6

.

When b1,k v b2,k, we can get

m−β (b1,k, b2,k) v b
22
5

1,kb
8
5
2,k + b

16
5

1,kb
14
5

2,k (5.8)

and

1

2

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx− β

2

∫
RN

u2
b1,k,b2,k

vb1,k,b2,kdx v b
22
5

1,kb
8
5
2,k + b

16
5

1,kb
14
5

2,k. (5.9)

The Lagrange multipliers rule implies the existence of some λ1,k, λ2,k ∈ R such that∫
R3

(∇ub1,k,b2,k∇ϕ)dx+

∫
R3

(λ1,kub1,k,b2,kϕ)dx

=

∫
R3

(µ1u
3
b1,k,b2,k

ϕ+ ρv2
b1,k,b2,k

ub1,k,b2,kϕ)dx+ β

∫
R3

ub1,k,b2,kvb1,k,b2,kϕ,

∫
R3

(∇vb1,k,b2,k∇ψ)dx+

∫
R3

(λ2,kvb1,k,b2,kψ)dx

=

∫
R3

(µ2v
3
b1,k,b2,k

ψ + ρu2
b1,k,b2,k

vb1,k,b2,kψ)dx+
β

2

∫
R3

u2
b1,k,b2,k

ψ,

for each ϕ,ψ ∈ H1(R3). Taking ϕ = ub1,k,b2,k and ψ = vb1,k,b2,k , we have

λ1,kb
2
1,k = −

∫
R3

|∇ub1,k,b2,k |
2dx+

∫
R3

(µ1u
4
b1,k,b2,k

+ ρv2
b1,k,b2,k

u2
b1,k,b2,k

)dx (5.10)

+ β

∫
R3

u2
b1,k,b2,k

vb1,k,b2,k ,
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λ2,kb
2
2,k = −

∫
R3

|∇vb1,k,b2,k |
2dx+

∫
R3

(µ1v
4
b1,k,b2,k

+ ρv2
b1,k,b2,k

u2
b1,k,b2,k

)dx (5.11)

+
β

2

∫
R3

u2
b1,k,b2,k

vb1,k,b2,k .

Since Pb1,b2(ub1,k,b2,k , vb1,k,b2,k) = 0, we get∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx− 3

4
β

∫
RN

u2
b1,k,b2,k

vb1,k,b2,kdx (5.12)

− 3

4

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx = 0.

Hence, from (5.10), (5.11), (5.12) and b1,k v b2,k, we have

−
∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx+
3β

2

∫
R3

u2
b1,k,b2,k

vb1,k,b2,k

≤ λ1,kb
2
1,k + λ2,kb

2
2,k =

∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx

− 1

2

∫
R3

(
µ1u

4
b1,k,b2,k

+ µ2v
4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx,

combing with (5.4) and (5.9), we get

λ1,kb
2
1,k + λ2,kb

2
2,k v b

22
5

1,kb
8
5
2,k + b

16
5

1,kb
14
5

2,k,

thus λ1,k v b41,k and λ2,k v b41,k when b1,k v b2,k.
Denote

θ1,k =
2β2b

6
5
1,kb

4
5
2,k

16
2
5 ‖w‖2

L2(R3)

, θ2,k =
β2b

8
5
1,kb

2
5
2,k

16
1
5 ‖w‖2

L2(R3)

, L1,k =
2β4b

14
5

1,kb
6
5
2,k

16
3
5 ‖w‖4

L2(R3)

, L2,k =
4β4b

12
5

1,kb
8
5
2,k

16
4
5 ‖w‖4

L2(R3)

.

Define
ũb1,k,b2,k = L−1

1,kub1,k,b2,k(θ−1
1,kx), ṽb1,k,b2,k = L−1

2,kvb1,k,b2,k(θ−1
2,kx),

then ∫
R3

(|∇ũb1,k,b2,k |
2 + |∇ṽb1,k,b2,k |

2)dx (5.13)

=
θ1,k

L2
1,k

∫
R3

|∇ub1,k,b2,k |
2dx+

θ2,k

L2
2,k

∫
R3

|∇vb1,k,b2,k |
2dx

≤
[16

4
5 ‖w‖6L2(R3)

2β6b
22
5

1,kb
8
5
2,k

+
16

2
5 ‖w‖6L2(R3)

2β6b
16
5

1,kb
14
5

2,k

] ∫
R3

(|∇ub1,k,b2,k |
2 + |∇vb1,k,b2,k |

2)dx

≤
[16

4
5 ‖w‖6L2(R3)

2β6b
22
5

1,kb
8
5
2,k

+
16

2
5 ‖w‖6L2(R3)

2β6b
16
5

1,kb
14
5

2,k

] [3|β|
2

[(2

3
b
3
2
1,k +

1

3
b
3
2
2,k

)
C3

3,3

]]4

,
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∫
R3

(|ũb1,k,b2,k |
2 + |ṽb1,k,b2,k |

2)dx =
θ3

1,k

L2
1,k

∫
R3

|ub1,k,b2,k |
2dx+

θ3
2,k

L2
2,k

∫
R3

|vb1,k,b2,k |
2dx (5.14)

=
2‖w‖2L2(R3) + ‖w‖2L2(R3)

β2
,

∫
R3

( θ3
1,k

L4
1,k

µ1u
4
b1,k,b2,k

+ µ2

θ3
2,k

L4
2,k

v4
b1,k,b2,k

)
dx (5.15)

<

∫
R3

(
µ1ũ

4
b1,k,b2,k

+ µ2ṽ
4
b1,k,b2,k

+ 2ρũ2
b1,k,b2,k

ṽ2
b1,k,b2,k

)
dx

=

∫
R3

( θ3
1,k

L4
1,k

µ1u
4
b1,k,b2,k

+ µ2

θ3
2,k

L4
2,k

v4
b1,k,b2,k

+ 2ρu2
b1,k,b2,k

v2
b1,k,b2,k

)
dx

≤
∫
R3

( θ3
1,k

L4
1,k

(µ1 + ρ)u4
b1,k,b2,k

+ (µ2 + ρ)
θ3

2,k

L4
2,k

v4
b1,k,b2,k

)
dx.

By the definition of θ1,k, θ2,k, L1,k, L2,k, it is easy to see that∫
R3

(
µ1ũ

4
b1,k,b2,k

+ µ2ṽ
4
b1,k,b2,k

+ 2ρũ2
b1,k,b2,k

ṽ2
b1,k,b2,k

)
dx→ +∞ as k → +∞. (5.16)

From (5.13)- (5.14), we know that (ũb1,k,b2,k , ṽb1,k,b2,k) is bounded in H1(R3)×H1(R3). Then, we have(
ũb1,k,b2,k(x), ṽb1,k,b2,k(x)

)
⇀ (ū, v̄) 6= (0, 0),

for some (ū, v̄) ∈ H1(R3)×H1(R3). Thus, we see that (ũb1,k,b2,k(x), ṽb1,k,b2,k(x)) satisfies
−∆ũb1,k,b2,k +

λ1,k
θ21,k

ũb1,k,b2,k = µ1
L2
1,k

θ21,k
ũ3
b1,k,b2,k

+ ρ
L2
2,k

θ21,k
ṽ2
b1,k,b2,k

ũb1,k,b2,k + β
L2,k

θ21,k
ũb1,k,b2,k ṽb1,k,b2,k ,

−∆ṽb1,k,b2,k +
λ2,k
θ22,k

ṽb1,k,b2,k = µ2
L2
2,k

θ22,k
ṽ3
b1,k,b2,k

+ ρ
L2
1,k

θ22,k
ũ2
b1,k,b2,k

ṽb1,k,b2,k + β
2

L2
1,k

L2,kθ
2
2,k
ũ2
b1,k,b2,k

.

(5.17)
By the definition of θ1,k, θ2,k, L1,k, L2,k, we have

L2
1,k

θ2
1,k

=
β4b

16
5

1,kb
4
5
2,k

16
2
5 ‖w‖4

L2(R3)

→ 0,
L2

2,k

θ2
2,k

=
β4b

8
5
1,kb

12
5

2,k

16
1
5 ‖w‖4

L2(R3)

→ 0,

L2
2,k

θ2
1,k

=
4β4b

12
5

1,kb
8
5
2,k

16
4
5 ‖w‖4

L2(R3)

→ 0,
L2

1,k

θ2
2,k

=
4β4b

12
5

1,kb
8
5
2,k

16
4
5 ‖w‖4

L2(R3)

→ 0,
L2,k

θ2
1,k

= 1,
L2

1,k

L2,kθ
2
2,k

= 1,

and there exists λ∗1 > 0 and λ∗2 > 0 such that

λ1,k

θ2
1,k

→ λ∗1,
λ2,k

θ2
2,k

→ λ∗2 as k → +∞.

Therefore, (ū, v̄) solves that {
−∆u+ λ∗1u = βuv in R3,

−∆v + λ∗2v = β
2u

2 in R3.
(5.18)
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From Theorem 1.2 of [49], we know that when λ∗1 = λ∗2, then(√
2λ∗1β

−1w((λ∗1)
1
2x), β−1λ∗1w((λ∗1)

1
2x)
)

is the unique positive solution of above system, where w is the unique positive solution of

−∆u+ u = u2, u ∈ H1(R3).

Texting (5.17) and (5.18) with ũb1,k,b2,k − ū, ṽb1,k,b2,k − v̄ respectively, we obtain∫
R3

|∇(ũb1,k,b2,k − ū)|2dx+

∫
R3

(
λ1,k

θ2
1,k

ũb1,k,b2,k − λ
∗
1ū)(ũb1,k,b2,k − ū) (5.19)

− β
∫
R3

(ũb1,k,b2,k ṽb1,k,b2,k − ūv̄)(ũb1,k,b2,k − ū)

=

∫
R3

|∇(ũb1,k,b2,k − ū)|2dx+ λ∗1

∫
R3

|ũb1,k,b2,k − ū|
2 = ok(1),

∫
R3

|∇(ṽb1,k,b2,k − v̄)|2dx+

∫
R3

(
λ2,k

θ2
2,k

ṽb1,k,b2,k − λ
∗
2v̄)(ṽb1,k,b2,k − v̄) (5.20)

− β

2

∫
R3

(ũ2
b1,k,b2,k

− ū2)(ṽb1,k,b2,k − v̄)

=

∫
R3

|∇(ṽb1,k,b2,k − v̄)|2dx+ λ∗2

∫
R3

|ṽb1,k,b2,k − v̄|
2 = ok(1).

Therefore

2(λ∗1)
1
2 ‖w‖2L2(R3)

β2
= ‖
√

2λ∗1β
−1w((λ∗1)

1
2x)‖2L2(R3) = ‖ū‖2L2(R3)

= lim
k→+∞

∫
R3

|ũb1,k,b2,k |
2dx = lim

k→+∞

θ3
1,k

L2
1,k

∫
R3

|ub1,k,b2,k |
2dx =

2‖w‖2L2(R3)

β2
,

(λ∗1)
1
2 ‖w‖2L2(R3)

β2
= ‖β−1λ∗1w((λ∗1)

1
2x))‖2L2(R3) = ‖v̄‖2L2(R3)

= lim
k→+∞

∫
R3

|ṽb1,k,b2,k |
2dx = lim

k→+∞

θ3
1,k

L2
1,k

∫
R3

|vb1,k,b2,k |
2dx =

‖w‖2L2(R3)

β2
,

therefore
λ∗1 = λ∗2 = 1.

From (5.17), (5.18) ,(5.19) and (5.20), we have that

(ũb1,k,b2,k , ṽb1,k,b2,k)→ (
√

2β−1w, β−1w) in H1(R3)×H1(R3).

Moreover, as the limit function (
√

2β−1w, β−1w) is independent of the sequence that we choose, which
implies that the convergence is true for the whole sequence. Therefore(

ũb1,k,b2,k , ṽb1,k,b2,k
)

=
(
L−1

1,kub1,k,b2,k(θ−1
1,k(x)), L−1

2,kvb1,k,b2,k(θ−1
2,k(x))

)
→
(√

2β−1w, β−1w
)
,

in H1(R3)×H1(R3) as b1,k, b2,k → 0 and b1,k v b2,k.
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Next, we prove Theorem 1.5. In order to prove Theorem 1.5, we first give following lemma.

Lemma 5.3. Let b1, b2, τ1, τ2 > 0. There exists β̃ = β̃(b1 + τ1, b2 + τ2) > 0 such that if 0 < b1 ≤ b1,
0 < b2 ≤ b2 and 0 < β < β̃, then

(i) 2R2
0(b1 + τ1, b2 + τ2, ρ, β) < R2

1(b1, b2, ρ, β),
(ii) for any di > 0, ci > 0, i = 1, 2 such that d2

i + c2
i = bi1, i = 1, 2, then R2

0(c1, c2, ρ, β) +
R2

0(d1, d2, ρ, β) ≤ R2
1(b1, b2, ρ, β).

Proof. By Lemma 4.2, 0 < R0 = R0(b1, b2, ρ, β) < R1 = R1(b1, b2, ρ, β) are the roots of

g(t, b1, b2, ρ, β) =
1

2
t
1
2 − 1

4
(D1 +D2 + ρD3)t

3
2 − 1

2
|β|D4 = ϕ(t, b1, b2, ρ)− 1

2
|β|D4

and the existence of R0 and R1 is guaranteed by the condition

β

(
2b

3
2
1 + b

3
2
2

)
C3

3,3C
2
3,4

√
µ1b1 + µ2b2 + ρb

1
2
1 b

1
2
2 <

2
√

6

3
. (5.21)

Let b1, b2, τ1, τ2 > 0 and consider the range of β > 0 such that (5.21) is satisfied with b1 = b1 +τ1, b2 =
b2 + τ2. Taking the limit as β → 0+, by the continuity we have that R0(b1 + τ1, b2 + τ2, ρ, β)→ 0 and
R1(b1 + τ1, b2 + τ2, ρ, β) converge to the only positive root of ϕ(t, b1 + τ1, b2 + τ2, ρ). Particularity, for
every b1, b2, τ1, τ2 > 0 fixed , there exists β̃ = β̃(b1 + τ1, b2 + τ2) > 0 such that

2R2
0(b1 + τ1, b2 + τ2, ρ, β) < R2

1(b1 + τ1, b2 + τ2, ρ, β) whenever 0 < β < β̃. (5.22)

Let 0 < b1 ≤ b1 + τ1, 0 < b2 ≤ b2 + τ2 and 0 < β < β̃. Under the condition of (5.21), we have that

∂tg(t, b1, b2, ρ, β) = ∂tϕ(t, b1, b2, ρ).

It is easy to check that ϕ(t, b1, b2, ρ) has a unique critical point on (0,+∞), which is a strict maximum
point in t = t(b1, b2, ρ) with 0 < R0(b1, b2, ρ) < t < R1(b1, b2, ρ), therefore

∂tg(R0(b1, b2, ρ), b1, b2, ρ, β) = ∂tϕ(R0(b1, b2, ρ), b1, b2, ρ) > 0.

By the implicit function theorem, we know that R0(b1, b2, ρ, β) is a locally unique C1 function of
((b1, b2, ρ, β)) with

∂tR0(b1, b2, ρ, β)

∂b1
= −∂b1g(R0(b1, b2, ρ, β), b1, b2, ρ, β)

∂tg(R0(b1, b2, ρ), b1, b2, ρ, β)
> 0,

∂tR0(b1, b2, ρ, β)

∂b2
= − ∂b2g(R0(b1, b2, ρ), b1, b2, ρ, β)

∂tg(R0(b1, b2, ρ, β), b1, b2, ρ, β)
> 0.

Similarly, we can proof that R1(b1, b2, ρ, β) is a locally unique C1 function of
((b1, b2, ρ, β)) with

∂tR1(b1, b2, ρ, β)

∂b1
= −∂b1g(R1(b1, b2, ρ, β), b1, b2, ρ, β)

∂tg(R1(b1, b2, ρ), b1, b2, ρ, β)
< 0,

∂tR1(b1, b2, ρ, β)

∂b2
= − ∂b2g(R1(b1, b2, ρ), b1, b2, ρ, β)

∂tg(R1(b1, b2, ρ, β), b1, b2, ρ, β)
< 0.
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So, R0 is monotone increasing in b1, b2 and R1 is monotone decreasing in b1, b2. By (5.22) and the
monotonicity of R1, we have 2R2

0(b1 + τ1, b2 + τ2, ρ, β) < R2
1(b1, b2, ρ, β). For any di > 0, ci > 0, i = 1, 2

such that d2
i + c2

i = bi1, i = 1, 2, then

R2
0(c1, c2, ρ, β) +R2

0(d1, d2, ρ, β) < 2R2
0(b1, b2, ρ, β) < 2R2

0(b1 + τ1, b2 + τ2, ρ, β)

< 2R2
1(b1, b2, ρ, β) < R2

1(b1, b2, ρ, β).

Proof of Theorem 1.5. Suppose that there exists a ε0 > 0 , a sequence of initial date {u0
n, v

0
n} ⊂

H1(R3) ×H1(R3) and a sequence {tn} ⊂ R+ such that the solution (un, vn) of (1.14) with the initial
date (un(0, ·), vn(0, ·)) = (un(·), vn(·)) satisfies

distH1(R3)×H1(R3)((u
0
n, v

0
n),Mb1,b2) <

1

n

and
distH1(R3)×H1(R3)((un(tn, ·), vn(tn, ·)),Mb1,b2) ≥ ε0.

Without loss of generality, we may assume that {(u0
n, v

0
n)} ⊂ Tb1 × Tb2 , since

distH1(R3)×H1(R3)((u
0
n, v

0
n),Mb1,b2)→ 0 as n→ +∞.

So, ‖u0
n‖L2(R3) := b1n → b1 ‖v0

n‖L2(R3) := b2n → b2 and Jβ(u0
n, v

0
n)→ mβ(b1, b2). By (i) of Lemma 5.3

and the continuity, we can deduce that∫
R3

(|∇u0
n|2 + |∇v0

n|2)dx < R0(b1 + τ1, b2 + τ2, ρ, β) < R1(b1n + τ1, b2n + τ2, ρ, β)

for every n large enough. Since∫
R3

(|∇u0
n|2 + |∇v0

n|2)dx ∈ [R0(b1n, b2n, ρ, β), R1(b1n, b2n, ρ, β)],

we have Jβ(u0
n, v

0
n) ≥ 0. Thus, we can deduce that∫
R3

(|∇u0
n|2 + |∇v0

n|2)dx < R0(b1n, b2n, ρ, β) < R0(b1 + τ1, b2 + τ2, ρ, β).

Since (u0
n, v

0
n) ∈ AR0(b1n,b2n,ρ,β), if (un(tn, ·), vn(tn, ·) exist from AR0(b1n,b2n,ρ,β) there exists tn ∈ (0, Tmax)

such that ∫
R3

(|∇un(tn, ·)|2 + |∇vn(tn, ·)|2)dx = R0(b1n, b2n, ρ, β);

however, Jβ(un(tn, ·), vn(tn, ·) ≥ h(R0) = 0 contract with the conservation of energy. Therefore, the
solutions starting in AR0(b1n,b2n,ρ,β) are globally defined in time and satisfy∫

R3

(|∇un(tn, ·)|2 + |∇vn(tn, ·)|2)dx < R0(b1n, b2n, ρ, β) < R0(b1 + τ1, b2 + τ2, ρ, β)

for every tn ∈ (0,+∞). Then by the conservation laws of energy and mass

{(un(tn, ·), vn(tn, ·))}
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is a minimizing sequence. Thus,{(un(tn, ·), vn(tn, ·))} is a minimizing sequence of mr
β(b1, b2). Then

according the proof of Theorem 1.3 there exists (u0, v0) ∈ Mb1,b2 such that (un(tn, ·), vn(tn, ·)) →
(u0, v0) in H1(R3)×H1(R3), which contradicts to

distH1(R3)×H1(R3)((un(tn, ·), vn(tn, ·)),Mb1,b2) ≥ ε0.

6 Proof of Theorems 1.6 and 1.7

In this section, we first give some preliminaries. For N = 4, we have the Sobolev inequality

S‖u‖2L4(R4) ≤ ‖∇u‖
2
L2(R4), ∀u ∈ D1,2(R4),

where D1,2(R4) is the completion of C∞c (R4) with respect to the norm ||u||D1,2 := ‖∇u‖2. For 2 < p < 4,
the Gagliardo-Nirenberg inequality (see [39]) is

‖u‖Lp(R4) ≤ C4,p‖∇u‖
γp
L2(R4)

‖u‖1−γp
L2(R4)

, ∀ u ∈ H1(R4), (6.1)

where C4,p > 0 is a constant and γp = 2(p−2)
p . If p = 4, γ4 = 1, then S = |C4,p|−2.

We have the following already known results.

Lemma 6.1. ( [28, Corollary B.1]) Suppose (u, v) ∈ H1(RN ) × H1(RN ) (N ≥ 3) is a nonnegative
solution of (1.1)-(1.2), then (u, v) is a smooth solution.

Lemma 6.2. ( [28, Lemma 2.3]) Suppose µ1, µ2, β > 0 and (u, v) ∈ H1(R4)×H1(R4) is a nonnegative
solution of (1.1)-(1.2), then u > 0 implies λ1 > 0; v > 0 implies λ2 > 0.

From [12, 38], we get the least energy solutions to (1.16). Note that (1.16) has semi-trivial solu-

tions (µ
− 1

2
1 Uε, 0) and (0, µ

− 1
2

2 Uε). Here, we are only interested in nontrivial solutions of (1.16), this is
(
√
k1Uε,

√
k2Uε), where Uε is defined in (1.15), k1 = ρ−µ2

ρ2−µ1µ2 and k2 = ρ−µ1
ρ2−µ1µ2 . The main results in

this aspect are summarized below. Next, we turn to the related limiting elliptic system (1.16).

Lemma 6.3. ( [12, Theorems 1.5 and 4.1]) For µ1, µ2 > 0, if 0 < ρ < min{µ1, µ2} or ρ > max{µ1, µ2},
then any positive least energy solution (u, v) of (1.16) must be of the form

(u, v) =
(√

k1Uε,
√
k2Uε

)
.

Solutions to (1.16) correspond to critical points of the functional

I(u, v) =

∫
R4

1

2

(
|∇u|2 + |∇v2|

)
dx− 1

4

(
µ1|u|4 + µ2|v|4 + 2ρ|u|2|v|2

)
dx,

u, v ∈ D1,2(R4). From [38, Lemma 2.1], if 0 < ρ < min{µ1, µ2} or ρ > max{µ1, µ2}, (u0, v0) is a least
energy solution of (1.16), we can deduce that

I(u0, v0) =
k1 + k2

4
S2 and Sµ1,µ2,ρ =

√
k1 + k2S.
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We first study the case β < 0, µi > 0(i = 1, 2) and ρ > 0.

Proof of Theorem 1.11. If β < 0, let (u, v) be a constraint critical point of Jβ on Tb1 × Tb2

and u, v > 0. Therefore, (u, v) solves (1.1)-(1.2) for some λ1, λ2 ∈ R. By the Pohozaev identity
Pb1,b2(u, v) = 0, we have

λ1‖u‖2L2(R4) + λ2‖v‖2L2(R4) =
4−N

4

(
µ1‖u‖4L4(R4) + µ2‖v‖4L4(R4) + 2ρ‖uv‖2L2(R4)

)
+

6−N
4

β

∫
RN
|u|2vdx

For N = 4, 5, then one of the λ1, λ2 is negative. With out of generality, we assume λ1 < 0. It follows
from Lemma 6.1 that (u, v) is smooth, and is in L∞(RN ) × L∞(RN ); thus, |∆u|, |∆v| ∈ L∞(RN ) as
well, and stand gradient estimates for the Poisson equation (see formula (3,15) in [14]) imply that
|∇u|, |∇v| ∈ L∞(RN ). Combining the fact that u, v ∈ L2(RN ), we get u(x), v(x) → 0 as |x| → ∞.
Thus, we have

−∆u =
(
− λ1 + βv + µ1u

2 + ρv2
)
u ≥ −λ1

2
u > 0

for |x| > R0, with R0 > 0 large enough, and then u is superharmonic at infinity. From the Hadamard
three spheres theorem [37, Chapter 2], this implies that the function m(r) := min

|x|=r
u(x) satisfies

m(r) ≥
m(r1)

(
r2−N − r2−N

2

)
+m(r2)

(
r2−N

1 − r2−N)
r2−N

1 − r2−N
2

∀R0 < r1 < r < r2.

Since u decays at infinity, we have that m(r2) → 0 as r2 → +∞, it is not difficult to see that r 7→
rN−2m(r) is monotone non-decreasing for r > R0. Moreover, m(r) > 0 for every r > 0 because u > 0
in RN . Thus,

m(r) ≥ m(R0)RN−2
0 · r2−N ∀r > R0.

If N = 4, it follows from u ∈ H1(RN ) that u ∈ L
N
N−2 (RN ). We deduce that

‖u‖
N
N−2

L
N
N−2 (RN )

≥ C
∫ +∞

R0

|m(r)|
N
N−2 rN−1dr ≥ C

∫ +∞

R0

1

r
dr = +∞,

with C > 0. This is a contradiction. If N = 5, the fact that u ∈ H1(RN ) does not imply that

u ∈ L
N
N−2 (RN ) or that u ∈ Lp(RN ) for some p ∈ (0, N

N−2 ]. But, imposing such condition as an
assumption, we still reach a contradiction.

If N ≥ 4, and u ∈ H1(RN ) is a radial function by [4, Radial Lemma A.II], there exist C > 0 and
R1 > 0 such that

|u(x)| ≤ C|x|−
N−1

2 for |x| ≥ R1.

If β < 0, let (u, v) be a non-trivial radial solution of (1.1)-(1.2). Similarly, we assume λ1 < 0. Setting
p(x) = −βv − µ1u

2 − ρv2, then
−∆u+ p(x)u = −λ1u. (6.2)

Therefore, for N ≥ 4,

lim
n→+∞

|x||p(x)| ≤ lim
n→+∞

[
C|x|

3−N
2 + C|x|2−N

]
= 0.

By Kato’s result [24], i.e. Schrödinger operator H = −∆ + p(x) has no positive eigenvalue with an
L2-eigenfunction if p(x) = o(|x|−1), then (6.2) has no solution. We get (1.1)-(1.2) has no non-trivial
radial solution for β < 0.
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Lemma 6.4. If 0 < βb1 <
3

2|C4,3|3 and 0 < βb2 <
3

|C4,3|3 , for all (u, v) ∈ Tb1 × Tb2, there exists t(u,v)

such that t(u,v) ? (u, v) ∈ Pb1,b2. t(u,v) is the unique critical point of the function Ψu,v and is a strict
maximum point at positive level. Moreover:

(1) Ψ′′u,v(0) < 0 and Pb1,b2(u, v) < 0 iff t(u,v) < 0.
(2) Ψu,v is strictly increasing in (−∞, t(u,v)).
(3) The map (u, v) 7→ t(u,v) ∈ R is of class C1.

Proof. We are therefore considering the defocusing nonlinearity mass-critical. We rewrite (4.2) as

Ψu,v(s) =
e2s

2

∫
R4

(
|∇u|2 + |∇v|2 − β|u|2v

)
dx− e4s

4

∫
R4

(
µ1|u|4 + µ2|v|4 + 2ρ|u|2|v|2

)
dx

≥ e2s

2

[
‖∇u‖2L2(R4)

(
1− 2β|C4,3|3

3
b1
)

+ ‖∇v‖2L2(R4)

(
1− β|C4,3|3

3
b2
)]

− e4s

4

(
µ1‖u‖4L4(R4) + µ2‖v‖4L4(R4) + 2ρ‖uv‖2L2(R4)

)
.

s ? (u, v) ∈ Pb1,b2 if and only if Ψ′u,v(s) = 0, it’s easy to see that if
[
‖∇u‖2L2(R4)

(
1 − 2β|C4,3|3

3 b1
)

+

‖∇v‖2L2(R4)

(
1 − β|C4,3|3

3 b2
)]

is positive, then Ψu,v(s) has a unique critical point t(u,v), which is a strict

maximum point at positive level. Therefore, under the condition of 0 < b1 <
3

2β|C4,3|3 and 0 < b2 <
3

β|C4,3|3 , we know that
∫
R4

(
|∇u|2 + |∇v|2 − β|u|2v

)
dx > 0. If (u, v) ∈ Pb1,b2 , then t(u,v) is a maximum

point, we have that Ψ′′u,v(t(u,v)) ≤ 0. We claim that Ψ′′u,v(t(u,v)) < 0. By contradiction, this is Ψ′u,v(0) =
Ψ′′u,v(0) = 0, then necessarily

∫
R4

(
µ1|u|4 + µ2|v|4 + 2ρ|u|2|v|2

)
dx = 0, which is not possible because

(u, v) ∈ Tb1 × Tb2 . Thus, Ψ′′u,v(0) < 0.

As in the proof of Lemma 4.4 shows that the map (u, v) ∈ Tb1 × Tb2 7→ t(u,v) ∈ R is of class C1.
Finally, Ψ′u,v(s) < 0 if and only if s > t(u,v), then Pb1,b2(u, v) = Ψ′u,v(0) < 0 if and only if t(u,v) < 0.

Lemma 6.5. If 0 < βb1 <
3

2|C4,3|3 and 0 < βb2 <
3

|C4,3|3 , then the set Pb1,b2 is a C1-submanifold of

codimension 1 in Tb1 × Tb2, and it is a C1-submanifold of codimension 3 in H1(R4)×H1(R4).

Proof. The proof is similar to that of Lemma 4.3.

Lemma 6.6. Assume µi, bi > 0(i = 1, 2) and ρ, β > 0. Let 0 < βb1 <
3

2|C4,3|3 and 0 < βb2 <
3

|C4,3|3 ,

then
mβ(b1, b2) := inf

(u,v)∈Pb1,b2
Jβ(u, v) > 0.

Proof. If (u, v) ∈ Pb1,b2 , then by Gagliardo-Nirenberg and the Sobolev inequalities, we have

‖∇u‖2L2(R4) + ‖∇v‖2L2(R4)

= µ1‖u‖4L4(R4) + µ2‖v‖4L4(R4) + 2ρ‖uv‖2L2(R4) + β

∫
R4

|u|2vdx

≤ S2
µ1,µ2,ρ

[
‖∇u‖2L2(R4) + ‖∇v‖2L2(R4)

]2
+

2β|C4,3|3

3
b1‖∇u‖2L2(R4) +

β|C4,3|3

3
b2‖∇v‖2L2(R4).

Moreover, 0 < βb1 <
3

2|C4,3|3 and 0 < βb2 <
3

|C4,3|3 , and ‖∇u‖2L2(R4) + ‖∇v‖2L2(R4) 6= 0 (since (u, v) ∈
Tb1 × Tb2), we get

inf
(u,v)∈Pb1,b2

‖∇u‖2L2(R4) + ‖∇v‖2L2(R4) ≥ C > 0.
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So
mβ(b1, b2) = inf

(u,v)∈Pb1,b2
Jβ(u, v)

= inf
(u,v)∈Pb1,b2

1

4

[
‖∇u‖2L2(R4) + ‖∇v‖2L2(R4) − β

∫
R4

|u|2vdx
]

≥ inf
(u,v)∈Pb1,b2

1

4

(
1− 2β|C4,3|3b1

3

)
‖∇u‖2L2(R4) +

1

4

(
1− β|C4,3|3b2

3

)
‖∇v‖2L2(R4)

≥ C > 0.

From the above lemmas, then Jβ
∣∣
Tb1×Tb2

has a mountain pass geometry. We need an estimate from

above on mβ(b1, b2) = inf
(u,v)∈Pb1,b2

Jβ(u, v).

Lemma 6.7. Let β, µ1, µ2 > 0, ρ ∈
(
0,min{µ1, µ2}

)
∪
(

max{µ1, µ2},∞
)
. If 0 < βb1 <

3
2|C4,3|3 and

0 < βb2 <
3

|C4,3|3 , then

0 < mβ(b1, b2) <
k1 + k2

4
S2,

where k1 = ρ−µ2
ρ2−µ1µ2 and k2 = ρ−µ1

ρ2−µ1µ2 .

Proof. From (1.15), Uε = 2
√

2ε
ε2+|x|2 , taking a radially decreasing cut-off function ξ ∈ C∞0 (R4) such that

ξ ≡ 1 in B1, ξ ≡ 0 in R4\B2, and let Wε(x) = ξ(x)Uε(x). We have (see [23, Lemma 7.1]),

‖∇Wε‖2L2(R4) = S2 +O(ε2), ‖Wε‖4L4(R4) = S2 +O(ε4), (6.3)

and
‖Wε‖3L3(R4) = O(ε), ‖Wε‖2L2(R4) = O(ε2| ln ε|). (6.4)

Setting (
W ε, V ε

)
=
(
a1

Wε

‖Wε‖L2(R4)
, a2

Wε

‖Wε‖L2(R4)

)
,

then (W ε, V ε) ∈ Tb1 ×Tb2 . From Lemma 6.4, there exists τε ∈ R such that τε ? (W ε, V ε) ∈ Pb1,b2 , this
implies that,

mβ(b1, b2) ≤ Jβ
(
τε ? (W ε, V ε)

)
= max

t∈R
Jβ
(
t ? (W ε, V ε)

)
,

and [
‖∇W ε‖2L2(R4) + ‖∇V ε‖2L2(R4)

]
= e2τε

[
µ1‖W ε‖4L4(R4) + µ2‖V ε‖4L4(R4)

+ 2ρ‖W εV ε‖2L2(R4)

]
+

∫
R4

β|W ε|2V εdx.
(6.5)

Then,
e2τε

[
µ1‖W ε‖4L4(R4) + µ2‖V ε‖4L4(R4) + 2ρ‖W εV ε‖2L2(R4)

]
=
[
‖∇W ε‖2L2(R4) + ‖∇V ε‖2L2(R4)

]
−
∫
R4

β|W ε|2V εdx

≥
(
1− 2β|C4,3|3b1

3

)
‖∇W ε‖2L2(R4) +

(
1− β|C4,3|3b2

3

)
‖∇V ε‖2L2(R4).
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Therefore, for ε small enough, we have

Jβ
(
τε ? (W ε, V ε)

)
=
e2τε

2

(
‖∇W ε‖2L2(R4) + ‖∇V ε‖2L2(R4)

)
− e2τε

2

∫
R4

|W ε|2V εdx

− e4τε

4

(
µ1‖W ε‖4L4(R4) + µ2‖V ε‖4L4(R4) + 2ρ‖W εV ε‖2L2(R4)

)
≤ max

s1,s2>0

s2
1 + s2

2

2
‖∇Wε‖2L2(R4) −

(
µ1s

4
1 + µ2s

4
2 + 2ρs2

1s
2
2

)
4

‖Wε‖4L4(R4)

− e2τε

2

∫
R4

|W ε|2V εdx,

where s1 = eτεb1
‖Wε‖L2(R4)

and s2 = eτεb2
‖Wε‖L2(R4)

. Define

f(s1, s2) =
s2

1 + s2
2

2
‖∇Wε‖2L2(R4) −

(µ1s
4
1 + µ2s

4
2 + 2ρs2

1s
2
2)

4
‖Wε‖4L4(R4).

Using that, for all 0 < s1, s2,

max
s1,s2>0

f(s1, s2) ≤ k1 + k2

4
S2 +O(ε2).

Finally,
e2τε

2

∫
R4

|W ε|2V εdx =
e2τε

2

b21b2
‖Wε‖3L2(R4)

∫
R4

|Wε|3dx

≥ C

‖Wε‖L2(R4)

∫
R4

|Wε|3dx

≥ C| ln ε|−
1
2 ,

hence, we deduce that

max
t∈R

Jβ
(
t ? (W ε, V ε)

)
<
k1 + k2

4
S2.

Now, we are ready to show that the infimum is attained by nontrivial positive radial functions.

Lemma 6.8. Let µi, bi > 0(i = 1, 2), and ρ ∈
(
0,min{µ1, µ2}

)
∪
(

max{µ1, µ2},∞
)
. If 0 < βb1 <

3
2|C4,3|3 , 0 < βb2 <

3
|C4,3|3 and

0 < mβ(b1, b2) <
k1 + k2

4
S2,

where k1 = ρ−µ2
ρ2−µ1µ2 and k2 = ρ−µ1

ρ2−µ1µ2 , then mβ(b1, b2) can be achieved by some function (ub1,b2 , vb1,b2) ∈
Tb1 × Tb2 which is real valued, positive, radially symmetric and radially decreasing.

Proof. By Lemma 4.12, we can also find a radial Palais-Smale sequence for Jβ
∣∣
Tb1×Tb2

at level mβ(b1, b2)

such that P (un, vn)→ 0 and u−n , v
−
n → 0 a.e. in R4. The rest of proof is similar to that of Lemma 5.5

in [31], and just needs a slight modification..
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Lemma 6.9. Let µi, β > 0(i = 1, 2), and ρ ∈
(
0,min{µ1, µ2}

)
∪
(

max{µ1, µ2},∞
)
. If 0 < b1 <

3
2β|C4,3|3

and 0 < b2 <
3

β|C4,3|3 , for any ground state (ub1,b2 , vb1,b2) of (1.1)-(1.2), then

Jβ(ub1,b2 , vb1,b2) = mβ(b1, b2)→ k1 + k2

4
S2 as (b1, b2)→ (0, 0).

Moreover, there exists εb1,b2 > 0 such that(
σ1ub1,b2(σ1x), σ1vb1,b2(σ1x)

)
→ (

√
k1Uε0 ,

√
k2Uε0) in D1,2(R4)×D1,2(R4),

for some ε0 > 0 as (b1, b2)→ (0, 0) up to a subsequence, where k1 = ρ−µ2
ρ2−µ1µ2 and k2 = ρ−µ1

ρ2−µ1µ2 .

Proof. By Pb1,b2(ub1 , vb2) = 0, we have

k1 + k2

4
S2 > Jβ(ub1,b2 , vb1,b2) =

1

4

(
‖∇ub1,b2‖2L2(R4) + ‖∇vb1,b2‖2L2(R4) − β

∫
R4

|ub1,b2 |2vb1,b2dx
)

≥ 1

4

(
1− 2βb1

3
|C4,3|3

)
‖∇ub1,b2‖2L2(R4) +

1

4

(
1− βb2

3
|C4,3|3

)
‖∇vb1,b2‖2L2(R4),

then {(ub1,b2 , vb1,b2)} is bounded in H1(R4) × H1(R4). Using the Hölder and Gagliardo-Nirenberg
inequality again,

β

∫
R4

|ub1,b2 |2vb1,b2dx ≤ β|C4,3|3‖∇ub1,b2‖
4
3

L2(R4)
‖∇vb1,b2‖

2
3

L2(R4)
b21b2 → 0,

as (b1, b2)→ (0, 0). Therefore, it follows from P (ub1,b2 , vb1,b2) = 0 that

‖∇ub1,b2‖2L2(R4) + ‖∇vb1,b2‖2L2(R4) = µ1‖ub1,b2‖4L4(R4) + µ2‖vb1,b2‖4L4(R4) + 2ρ‖ub1,b2vb1,b2‖2L2(R4) + o(1).

From (1.17), we have√
k1 + k2S

(
µ1‖ub1,b2‖4L4(R4) + µ2‖vb1,b2‖4L4(R4) + 2β‖ub1,b2vb1,b2‖2L2(R4)

) 1
2 ≤ ||∇ub1,b2 ||2L2(R4) + ‖∇vb1,b2‖2L2(R4).

Thus, we distinguish the two cases

either (i) ||∇ub1,b2 ||2L2(R4) + ‖∇vb1,b2‖2L2(R4) → 0 or(ii) ||∇ub1,b2 ||2L2(R4) + ‖∇vb1,b2‖2L2(R4) → l > 0.

We claim that (i) is impossible. Indeed, if l = 0, by Ψ′′ub1,b2 ,vb1,b2
(0) < 0,

‖∇ub1,b2‖2L2(R4) + ‖∇vb1,b2‖2L2(R4) < 2
[
µ1‖ub1,b2‖4L4(R4) + µ2‖vb1,b2‖4L4(R4)

+ 2ρ‖ub1,b2vb1,b2‖2L2(R4)

]
+

∫
R4

β|ub1,b2 |2vb1,b2dx,

we obtain a contradiction(
1− 2βb1

3
|C4,3|3

)
‖∇ub1,b2‖2L2(R4) +

(
1− βb2

3
|C4,3|3

)
‖∇vb1,b2‖2L2(R4)

<
2

S2
µ1,µ2,ρ

[
‖∇ub1,b2‖2L2(R4) + ‖∇vb1,b2‖2L2(R4)

]2
.

The claim is proved. Therefore, l > 0, we obtain that Jβ(ub1,b2 , vb1,b2)→ k1+k2
4 S2 as (b1, b2)→ (0, 0).
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Thus, we know that

||∇ub1,b2 ||2L2(R4) + ‖∇vb1,b2‖2L2(R4) → (k1 + k2)S2,

µ1‖ub1,b2‖4L4(R4) + µ2‖vb1,b2‖4L4(R4) + 2β‖ub1,b2vb1,b2‖2L2(R4) → (k1 + k2)S2,

as (b1, b2) → (0, 0). It follows that, up to a subsequence, {(ub1,b2 , vb1,b2)} is a minimizing sequence of
the minimizing problem (1.17). From Lemma 6.8, (ub1,b2 , vb1,b2) is radially symmetric. By [47, Theorem
1.41] or [26, Lemma 3.5], up to a subsequence, there exists σ1 := σ1(a1, a2) such that for some ε0 > 0,(

σ1ub1,b2(σ1x), σ1vb1,b2(σ1x)
)
→
(√

k1Uε0 ,
√
k2Uε0

)
in D1,2(R4)×D1,2(R4), as (b1, b2)→ (0, 0).

Proof of Theorem 1.5. The proof is finished when we combine Lemma 6.8 and Lemma 6.9.
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