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Abstract

In this paper, we give a complete study on the existence and non-existence of solutions to the
following mixed coupled nonlinear Schrodinger system

—Au+ Mu = Buv + pud + pv®u in RV,
—Av 4 Av = §u2 + p2v® + puv  in RV,

under the normalized mass conditions [,y u?dz = b3 and [,y v’dz = b3. Here by, by > 0 are
prescribed constants, N > 1, pi, e, p > 0, 8 € R and the frequencies A, A2 are unknown and
will appear as Lagrange multipliers. In the one dimension case, the energy functional is bounded
from below on the product of L?-spheres, normalized ground states exist and are obtained as global
minimizers. When N = 2, the energy functional is not always bounded on the product of L2-
spheres. We give a classification of the existence and nonexistence of global minimizers. Then under
suitable conditions on b; and by, we prove the existence of normalized solutions. When N = 3, the
energy functional is always unbounded on the product of L2-spheres. We show that under suitable
conditions on b; and bs, at least two normalized solutions exist, one is a ground state and the other
is an excited state. Furthermore, by refining the upper bound of the ground state energy, we provide
a precise mass collapse behavior of the ground state and a precise limit behavior of the excited
state as 8 — 0. Finally, we deal with the high dimensional cases N > 4. Several non-existence
results are obtained if # < 0. When N = 4, § > 0, the system is a mass-energy double critical
problem, we obtain the existence of a normalized ground state and its synchronized mass collapse
behavior. Comparing with the well studied homogeneous case = 0, our main results indicate that
the quadratic interaction term not only enriches the set of solutions to the above Schrodinger system
but also leads to a stabilization of the related evolution system.
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1 Introduction and main results

In this paper, we look for solutions to the following coupled Schrédinger system

{—Au + Mu = Buv + pud + pv®u in RY, (1.1)

—Av+ \ov = gu2 + v 4+ pu?v  in RV,

satisfying the additional constraints

/ u?dr = b} and / v?dx = b3, (1.2)
RN RN

Here, b1,bs > 0 are prescribed constants, N > 1, ui, e, p > 0, 8 € R and the frequencies A1, Ao are
unknown and will appear as Lagrange multipliers.

Problem (1.1)-(1.2) arises from the research of stationary exponentially localized bright solitary waves
for the following two-wave mixing system

{z‘%";+A<I>1+ﬁ<1>>;<1>2+s<|¢>1|2+p|<1>2|2> —0, )

922 4 ADy — By + B02 4 5(5|®a|? + p|®1[2) P2 = O,

which describes the dynamics of beam propagation in lossless bulk x(? media inhering cubic non-
linearity, under conditions for second-harmonic generation type-I. z is the propagation distance co-
ordinate, the superscript * denotes the complex conjugate function and 3 is a constant. The slowly
varying complex envelope functions of the fundamental wave ®; = ®1(x, z) and of the second harmonic
®y = dy(x, z) are assumed to propagate with a constant polarization, ?1, €5 along the z axis. The
electric field E = E(ﬁ, Z,M) is given by

E = E(R,Z,M) = E(®169, + 20,612 ), (1.4)

where ﬁ =rozr, Z = 29z, h = ki1Z — w1 M, w is fundamental frequency and (®;, ®3) satisfies (1.3).
The real normalization parameters Ey, 29 and Ry are given by

—(2) ~(3)

4 3

0 = 7&3) , 20 = 2]{:17“3 and r% = —’Xllﬂm , (1.5)
Xy | 16p0wt (X7 )?

where 119 is the vacuum permeability and &, is the wave number at the frequency w,. The real param-
eters v, s,n and p are given by
(3) ~(3)

(3) 5521@

= 220(2]{31 - k2), § = S’L’gn(%lk )7 n= 16~ y P = 8~1C ) (16)
(3) (3)
X1k X1k

where 2k; — ko < k; is the phase-mismatch parameter, 5{% =/ (wp) denote the Fourier components at

frequency wy, of the jth order susceptibility tensor and the scalar xf,,q is the vectorial Fourier transform

of x* (p,q=1,2). Thus, 5{&2) = iéz) represents the quadratic nonlinearity, %1(;;;) and 2&? = %g? are the

parts of the cubic nonlinearity responsible for self-phase and cross-phase modulation, respectively. For
more details about physical meaning of system (1.3), one can refer to the papers [1-3,9].



Indeed, if we substitute
Dy (z, 2) = u(x)e™* and ®o(x, z) = v(z)e'? 0 (1.7)

into (1.3), then (u,v) solves the following stationary system

{—Au + AMu = Buv + s(u? + pv?)u  in RY, (1.8)

—Av + v = qu +s(nv? + pu?)v in RV,

with A\; = A9, A2 = 4\g+~ and s = £1. In this paper we consider the focusing case, i.e., s = 1 in (1.8).
After rescaling and renaming the parameters, we obtain system (1.1).
Motivated by the fact that the L?-norm is a preserved quantity of the evolution, (see [3]), we are
interested in searching solutions to (1.1) with prescribed L?-norm-the so-called normalized solutions
o (1.1). It is standard that the solutions of (1.1)-(1.2) can be obtained as critical points of the energy
functional

1 1
Jg(u,v) = = /RN(WUIZ + |VoP)dx — - /RN (au? + pov* + 2puv?)dr — g

5 1 w?vdz,

RN

on the constraint space T}, X Ty,, where for b € R we define

Ty := {u e HY(RY) : / u? = b2}.
RN

In the last ten years, the study of normalized solutions for Schrodinger equations or systems has
received lots of attention. However almost all the results deal with the cubic interactions. When
B =0, N=1, p> 0, N. Nguyen and Z. Wang in [34] proved the existence of normalized solutions
to problem (1.1) by minimizing the corresponding energy functional constrained on the product of the
L?-sphere and using concentration-compactness arguments, they also studied the stability properties
of these solutions. Since the corresponding constrained functional is unbounded both from above and
from below on the L2-sphere, the approach used in [34] does not work for problem (1.1) with N = 3.
When 5 =0, N =3, T. Bartsch, L. Jeanjean and N. Soave [5] proved that for arbitrary masses b; and
positive parameter p;, there exists p2 > p; > 0 such that for both 0 < p < p; and p > pg, system (1.1)-
(1.2) has a positive radial solution. T. Bartsch and N. Soave in [6] proved the existence of at least one
normalized solution to problem (1.1) in the case of p < 0 by a new approach based on the introduction
of a natural constraint associated to problem (1.1), and in [8], they proved the existence of infinitely
many solutions of problem (1.1) with pq = ug > 0 and p < —py by using a suitable minimax argument.
Later, by using bifurcation theory and the continuation method, T. Bartsch, X. Zhong and W. Zou [7]
obtained the existence of normalized solutions for any given by, b2 > 0 for p in a large range. They also
got a result about the nonexistence of positive solutions which shows that their existence theorem is
almost optimal. By using standard Ljusternik-Schnirelmann theory, when 5 = 0, the authors in [35,43]
considered problem (1.1) in bounded domains under the case u1, p2, p < 0, they proved the existence of
infinitely many normalized solutions and occurrence of phase-separation as p — —oo. In [36], B. Noris
et al. studied problem (1.1) in bounded domains of RY, or the problem with trapping potentials in the
whole space RV (the presence of a trapping potential makes the two problems essentially equivalent)
with N < 3. In both cases, they proved the existence of positive solutions with small masses b; and bo,
and the orbital stability of the associated solitary waves. When 5 =0, N = 2, Guo et al. in [18-20]
considered the existence, non-existence, uniqueness and asymptotic behavior of solutions to problem
(1.1)-(1.2) with certain type of trapping potentials.



Since competing quadratic and cubic nonlinearities is a general physical phenomenon, it is important
to know the effect of such a competition on normalized solutions. In [45] the authors gave a first study
to problem (1.1) with both quadratic and cubic interactions (without the mass constraints). In the
present paper, we give a complete study on the existence of normalized solutions in the less studied
case 8 # 0. First, we consider the one dimensional case, in which the energy functional is bounded from
blow on the product of L?-spheres Ty, x T4, (see Lemma 2.2), so we define

mg(b1,b2) = inf Jz(u,v) (1.9)

(U:U)ETbl ><Tb2
and then we prove the following result

Theorem 1.1. If N =1, pi, p2,p > 0, then for every 5 > 0, —oo < mg(b1,b2) < 0 is achieved. In
addition any minimizing sequence for (1.9) is, up to translation, strongly convergent in H'(R) x H'(R)
to a solution of (1.1)-(1.2).

Next, we turn to N = 2. In this case, the energy functional is not always bounded on Tp, x Tj,,
relating to the values b; and bs. Let ( be the unique positive radial solution to

—AQ+Q=Q°, Qe H'(R?). (1.10)
The main results in dimension N = 2 can be stated as follows:

Theorem 1.2. Let N =2 and pq, po, p > 0:
(i) 1 mac{ (1 + )03, (o2 + p)E3) < QU g, then
a) for every B < 0, problem (1.1)-(1.2) has no positive solutions,
b) for every B >0, when 0 < by < [|Q||p2(r2), —00 < mg(b1,b2) < 0 is achieved by (u,v) which is a

positive solution of (1.1)-(1.2).

. b+ p2bs+2pb2 b2
(i) If % > ||QH%2(R2), then mg(b1,ba) = —oo for any B € R.

In order to prove Theorem 1.2, in section 2, we introduce the following minimization problem

. Jr2(IVul? + [V [*)da
A= A(u, p, p, b1, b2) = f
(11, 1, p, b1, b2) (u,v)ElTnbl xToy fge (H1ut + pov* + 2pu0?) da

and prove that

Q122 o S0 IQ
2max{(pn + p)bT, (2 + p)03} ~ T puabi + p2by + 2pbib3

We shall prove that if A > I, then Jg(u,v) is coercive on Ty, x Ty, and mg(by, bg) > —oo is achieved,
so there exists at least one normalized ground state for (1.1).

Remark 1.1. When N = 2, if A < %, then mg(bi,b2) = —oo. Thus the minimization problem con-
strained on Ty, x Ty, does not work. Since [po |Vul? + |[Vv|? and Jre prut 4 vt + 2puv? behave
at the same way under L? preserving scaling of (u,v), Jz(wu(iz),w(tx)) may strictly increasing with
respect to + € R, so the usual methods developed on the Pohozaev-Nehari constraint can not be applied
directly here, see [5,6,41,42]. Inspired by the recent works [29, 48], we try to construct a submanifold
of Ty, x T4, as following

1
Noy by = {(u,v) € Ty, x Th, | Py by (u,v) =0 and /Rz(\Vu|2 + | Vo]?)dz < 5 /]Rz (raut + pov* + 2puv?) dx},



on which J(u,v) may admits a minimizer, where Py, p,(u,v) = 0 is the related Pohozaev-Nehari identity. Indeed,

for any (u,v) on the set Ny, p,, Ja(tu(tx), w(iz)) has a unique mazimum point i, and is strictly increasing
in (—00, Ly,y) and decreasing in (Ly ., +00). Therefore, we expect a constrained variation can be used to obtain
a normalized solution to (1.1). However, due to the uncertainty of sign of the quadratic interaction term and
inhomogeneity of the coupling term, it seems difficult to prove the compactness of the minimizing sequences (or
Palais-Smale sequences) developed in Ny, p,. We believe that when A < %, the existence of normalized solutions
to (1.1) in dimension two is an expected interesting result.

Now, we deal with the three dimensional case. In this case, mg(b1,b2) = —oo for any by, by > 0.
Indeed, the leading term is L? supercritical and Sobolev subcritical, the energy function Jz(u,v) is
unbounded both from above and from below on Tj, x Tp,. In order to search for two normalized
solutions, we use the ideas introduced by N. Soave [41,42] to study the corresponding fiber maps
U,.4(t) (see (4.2)), which has the same Mountain pass structure as the original functional. The benefits
of the fiber map are that the critical point of ¥, (¢) allow to project a function on Py, 4, (see (4.1)). The
monotonicity and convexity of W, ,(t) has a strongly affect the structure of Py, 3, and then intimately
related to the minimax structure of Jg(u,v)|r, xT,,. To show our main results, we first introduce the
Gagliardo-Nirenberg-Sobolev inequality

17
HUHL;}(RN) < CnpllVu| Z’;(RN)HUHLQ?RISN) for all w € Hl(RN), (1.11)
where
N(p—2
Yo = (2)5
p

and we denote by Cy;, the best constant in the the Gagliardo-Nirenberg-Sobolev inequality H HRY) —
LP(RN), 2 < p < 2* = 2 (N > 3). Our main results are the following:

Theorem 1.3. When N =3, uy, p2,p,8 >0 and

3 3 11 2v6
B <2512 + b§> Cg,scg,zx\/ﬂlbl + pi2ba + pb by < \3[7
then (1.1)-(1.2) has at least two positive normalized solutions, one is a ground state (ug,vg), the other
is an excited state (ug,vg). Moreover, Ja(lg,vg) — 0T, [os(|VUg|? + |VUs[*)da — 0 and there exists
p2 > 0 such that when p > pa, then (g, vg) — (lio, Vo) strongly in H(R3) x H'(R3) as 8 — 0, where
(uo,v0) ts a normalized ground state of (1.1) with 5 = 0.

Remark 1.2. Theorem 1.3 gives the existence of two normalized solutions for (1.1). The first one is
a local minimizer for which we establish the compactness of minimizing sequence. The second solution
is obtained through a constrained linking. Theorem 1.3 also shows the limit behavior of the solutions as
B8 — 0. The first solution will disappear and the second solution will converge to the normalized solution
of system (1.1) with = 0, which has been studied by T. Bartsch, L. Jeanjean and N. Soave in [5].
When =0, N = 3, in [5] the authors proved that for arbitrary masses b; and parameter ;, there
exists pa > p1 > 0 depending on the masses such that for both 0 < p < p1 and p > pa system (1.1)—(1.2)
has a positive radial solution. Recently, T. Bartsch, X. Zhong and W. Zou in [7] obtained the existence
of normalized solutions for any given by,bs > 0 and p > 0 in a large range, which is independent of
the masses. They also have a result about the nonexistence of positive solutions which shows that their
existence theorem is almost optimal. Therefore our results indicate that the quadratic interaction term
not only enriches the set of solutions to the above Schrédinger system but also expands the permissible

range of p.



Furthermore, we give a mass collapse behavior of the ground states obtained in Theorem 1.3. From
Theorem 1.2 of [49], we know that (ug,vo) = (V28 w, 7 w) is the unique positive solution of

—Au+u= gu;} ?n R3, (1.12)
—Av+wv=gu° in R3,
where w is the unique positive solution of
—Au+u=1u* ue HY(R?). (1.13)

Theorem 1.4. Assume that the assumptions in Theorem 1.3 hold, and (up, p,, Vb, p,) 5 a ground state
for (1.1)-(1.2). Up to a subsequence, we have

(Ll_lubl,bQ (91_1(1'))7 L2_lvb1,b2 (02_1(.%')>) - (ﬁv 17)
in HY(R?) x HY(R3) as by,by — 0 and by « by, where (i, v) satisfies

—Au+ Nu=puv in R3,
—Av 4+ v = §u2 in R3,

2,8,3 2,8, 3 488 0%, 8

26265 b b3 b 284b,5 b 4843 b

for some A], A5 > 0, where 91:2’6%, 0 :f%, 1 :f%, 2:#.
165 [[wl| 2 g3, 165 [wll} 2 g3, 165 w72 g3, 165 [[wll 5 g3,

Moreover, if X = A5, then (4,v) = (v28 'w, 37 w).

Denote the set of ground states to (1.1)-(1.2) by My, p,. If (u,v) solves (1.1) with some A1, Ag € R,
then ®(z,z) = e~ ™*u(x), ¥(z,x) = e~ ?2%y(z) satisfies the time-dependent system

10,0 — AD = OV o3 U2 in R3
{18 BRY + 111 ®° + p in R?, (1.14)

0,9 — AV = 582 1 11,03 4 pd2F  in R?,
where (z,7) € RxR3, i = v/—1. From [10], we know the local well-posedness of solutions to (1.14) holds
for 8 > 0, then we can consider the stability of My, 3,. The set My, 3, is said to be stable under the
Cauchy flow of (1.14) if for any € > 0, there exists § > 0 such that for any (®g, ¥o) € H*(R?) x H'(R?)
satisfying

diStHl(RS)XHl(RS)(((I)O, Uy), Mbth) < 4,
then the solution ((®(z,-), ¥(z,-)) of (1.14) with ((®(0,-), ¥(0,-)) = (o, ¥¢) satisfies

sup dist g1 rsy w1 (r3) ((2(2,7), U(2, ), My, p,) < €,
where Z is the maximal existence time for ((®(z,-), U(z,-)). We have

Theorem 1.5. When p1, us2, p, 8 > 0 and

26

3 3 11
g <2bf + b§> 03?7303?74\/M1b1 + pabe + pbiby < ——,

then the set My, v, s compact, up to translation, and it is stable.



Remark 1.3. Theorem 1.5 indicates that the small quadratic interaction term leads to a stabilizations
of standing waves corresponding to (1.14). Indeed, when 5 = 0, T. Bartsch, L. Jeanjean and N.
Soave in [5] showed that the associated solitary wave is orbitally unstable by blowing up in finite time.
Therefore, by creating a gap in the ground state energy level of the system (from positive to negative), the
quadratic coupling term not only makes the ground state solutions stable, but also changes the structure
of the energy functional and enriches the solution set.

Now, we deal with the four dimensional case. In this case, mg(b1,b2) = —oo for any by,by > 0.

Indeed, the leading term is L?-critical and Sobolev critical, the energy function J3(u,v) is unbounded

IVul?
both from above and from below on Ty, x Typ,. Denote S = inf p1.2gra) f0 W. From [44], we

L4(RY)
know that S is attained by the Aubin-Talanti bubbles

2v/2¢

V=

€e>0, R (1.15)

Then U, satisfies —Au = u? and [, [VU?dz = [ |Uc|*dz = S*. On the other hand, if 0 < p <

min{pq, po} or p > max{u, u2}(see Lemma 6.3), (\/pgp::fﬂ2 U, \/pr:;lenz U€> is the least energy solu-

tions to the following elliptic system:
—Au = v + pv’u in R?,
—Av = ppv® + pu?v  in R?, (1.16)
u,v € DV2(RY).

Define
Jpa(IVul? + |Vo]?)da

inf )
() [DVAENO0} ([ (uyul + pov® + 2pu2v?) dm)%

The main results on this aspect can be stated as follows:
If 8 < 0, we have the following non-existence results.

Spr pap = (1.17)

Theorem 1.6. Let y;, b, p > 0(i =1,2) and 8 < 0.
1. If N = 4, then problem (1.1)-(1.2) has no positive solution (u,v) € H'(R*) x H'(R*).

2. If N =5, problem (1.1)-(1.2) has no positive solutio
additional assumption that u € LP(R®) for some p € (

n (u,v) € H'(R?) x H'(R®) satisfying the
0, 3].
’ 3

3. Moreover, if N > 4, problem (1.1)-(1.2) has no non-trivial radial solution.

Next, we consider the case 5 > 0.

Theorem 1.7. When N = 4, let u;,b; > 0(i =1,2), >0, andp € (O,min{ul,,ug})u(max{m,,ug},oo),
then the following conclusions hold.

1. If0 < by < 2|023|3 and 0 < Bby < ﬁ, then (1.1)-(1.2) has a positive ground state solution

(Ubl,b27vb1,b2) € Tbl X Tb2'



2. Moreover, there exists o1 > 0 such that

(o1Upy by (012), 0108, by (012)) — <\/ P H2 Usoa\/ p— er)

p? — p1pie p? — pap2

in DY2(RY) x DY2(RY), for some g9 > 0 as (b1,b2) — (0,0), up to a subsequence.

Remark 1.4. If N = 4, in problem (1.1), fuv and §u2 can be regarded as mass-critical terms.
Moreover, the terms u3,v® and the coupled terms u?
Theorem 1.7 indicate that problem (1.1) with mass critical lower order perturbation term possesses at
least one normalized ground state solution, whose two components both converge to the Aubin-Talanti
bubble in related Sobolev space by making appropriate scaling, as the masses of two components vanish.
More recently, in [31] jointly with W. Zou, the first and third authors in this present paper considered
the equation

v, v%u are mass super-critical and energy critical.

{Au +Mu = onfulP2u+ pud + frPu in RY (1.18)

—Av + Aov = az|v[P720 + pev® + Buv in R,

under the mass constraint (u,v) € Tp, X Ty,, where p1, p2, 5 >0, a1, a2 € R, pe(2,4) and A1, A2 €R
appear as Lagrange multipliers. We must point out that compared with [31], the problem (1.1) in R*
is more delicate due to the uncertainty of sign of the quadratic interaction term and inhomogeneity of
the coupling term. Moreover, since system (1.1) with mized couplings is asymmetric, the permissible
range of by, bs obtained in Theorem 1.7 may not be optimal, so it is difficult to prove the non-existence
of normalized solutions to (1.1) for larger by and bs.

Finally, we give outline of the proofs. In the one dimension case, the energy functional is bounded from
below on the product of L?-spheres, the constrained minimization method developed by L. Jeanjean [17]
can be used to obtained a normalized ground state, which is obtained by establishing the compactness of
the minimizing sequences. When N = 3, the energy functional is always unbounded on the product of
L%-spheres. We use the ideas introduced by N. Soave [41,42] to study the related fiber maps ¥, ,(t)(see
(4.2)). It is easy to see that the critical point of ¥, ,(t) allow to project a function on Py, p,(see (4.1))
and the monotonicity and convexity properties of W, ,(t) has a strongly affect the structure of Py, 4,
and then intimately related to the minimax structure of Jg(u, v)|T, xT,,-

However, for the system (1.1) we study, due to the uncertainty of the sign of the term 3 [pn u?vdz
in the corresponding energy functional, the above method cannot be used directly, and we need to
introduce additional constrains on the previous Pohozaev manifold. On the new manifold with ad-
ditional constrains Py, p,(see (4.3)-(4.5)), under suitable condition on b; and by, we can prove that
Ja(u, U)|Tb1 X T, admits a convex-concave geometry and the new manifold Py, 5, is non-empty. To show
that Py, 5, is a natural constraint, we use some ideas introduced by F. Clarke in [13] and already used
by J. Mederski and J. Schino in [33] to deal with minimization problems whose constraints are given by
inequalities. Therefore, Jg(u, v)\Tb1 X T, has a local minimizer and a mountain pass critical point. By
establish the compactness of minimizing sequence, we obtain a solution which is a local minimizer. The
second solution is obtained through a constrained mountain pass. It is worth pointing out that after
proving the strongly convergence of minimizing sequences, we need to verify that the limit function
(u,v) is still in the allowed set Py, p,. Indeed, if § [pn w?vdx < 0, then the local minimum point will
disappear, thus we get a contradiction.

When N = 3, obviously, we obtain that Jg(u,v)|Tbleb2 has no local minimizer as 8 — 01, i.e.
the ground state energy converges to 0 as 3 — 0%. The mountain pass solutions (ug,vg) obtained in



Theorem 1.3 depends on 8, we shall analyze the convergence properties of (ug, vg) as § — 07. We first
deduce that for the function € [0, 00) — mg(b1,b2) € R is monotone non-increasing, and {(ug, vg)} is
bounded in H!(R?) x H1(R3). Then there exists a subsequence, such that (g, ) converge to (g, o)
strongly in H(R?) x HY(R3) as 8 — 0T, where (o, 0) is a ground state solution of (1.1)-(1.2) with
8 =0.

In the proof of Theorem 1.4, the main ingredient is the refined upper bound of m™ (b, b2) (see Lemma
5.2) i.e.

22 8 16 14
1[ 48%7 b5, B by

e 1 2
61165 lw]6 gy 162 [w]|Sps)

mif (b, ba) < [ 192 g

This refinement needs to keep the testing functions staying in the admissible set Ar, = {(u, v) €
Ty, x Ty ¢ [[Vull3, ®}) T V|12, ®%) < R3}. We overcome this difficulty by utilising the properties of
the unique positive radial ground state solution of (1.12). By accurate estimation and careful analysis,
we give a precise description of the asymptotic behavior of solutions as the mass by, by goes to zero.

To prove item 1 of Theorem 1.7, we follow the approach of [46]. We can obtain a bounded minimizing
sequence by using the Pohozaev constraint approach(see [41,42]). However, it is very difficult to prove
the compactness of a minimizing sequence at positive energy levels. Motivated by [46], we drive a better
energy estimate on the associated mountain pass energy level (see Lemma 6.7 ), i.e

ki + ko

2
48.

0< mg(bl,bQ) <

This is enough to guarantee the compactness of minimizing sequences at the energy level mg(by, b2).
To prove item 2 of Theorem 1.7, we first prove the following energy splitting asymptotic property of
the solution

||vub1,b2”§ + ||va1,b2\|§ - (kl + k2)527 :U*lHubl,lnH?l + NZHUbl,sz?L + 2p”ubl,bzvb1,bz”§ — (kl + k2)82’

as (b1, b2) — (0,0). Then we obtain that (u, p,, Vb, b,) is a special minimizing sequence of the minimizing
problem (1.17). We follow some ideas from Lemma 3.5 of [26], and by the uniqueness of ground state
solution of (1.17), we obtain the precisely asymptotic behavior of (up, p,, Vs, 5,) as (b1, b2) — (0,0).

Throughout the paper, we shall write a «~ b if Cia < b < Csa where Cj,i = 1,2 are constants.
H} denotes the subspace of functions in H' which are radially symmetric with respect to 0, and
Ty, = Tp, N H! i=1,2. The rest of this paper is organized as follows. In section 2, we prove Theorem
1.1. In section 3, we prove Theorem1.2. In section 4, we prove Theorem 1.3. In section 6, we prove
Theorems 1.6 and 1.7.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we use the ideas introduced in [16,17]. First we recall the rearrangement results
of M. Shibata [40] as presented in [16,22]. Let u be a Borel measurable function on RY. It is said to
vanish at infinity if the level set [{x € RY : u(x) > t}| < +o0 for every ¢t > 0. Here |A| stands for the N-
dimensional Lebesgue measure of a Lebesgue measurable set A C RY. Considering two Borel mesurable
functions u, v which vanish at infinity in RY, for ¢ > 0, we define A*(u,v : t) := {x € RV : |z| < r},
where r > 0 is chosen so that

B(0,7) = {z e RN : |u(x)| > t}| + {z e RN : ju(z)| > t}],



and {u,v}* by
@) = [ xa @i
where x () is a characteristic function of the set A C RV,

Lemma 2.1 ( [22] Lemma A.1). (i) The function {u,v}* is radially symmetric, non-increasing and
lower semi-continuous. More, for each t > 0 there holds {x € RN : {u,v}* >t} = A*(u,v : t).

(ii) Let @ : [0,00) — [0,00) be non-decreasing lower semi-continuous, continuous at 0 and ®(0) = 0.
Then {®(u), ®(v)}* = @({u,v}*)

(i) [|{u, v} 0 @y = ||UHLp vy VI @y for 1< p < oo

(i) If u,v € HY(RY), then {u v}* € HI(RN) and

||V{U>U}*||%2(RN) < ||VU||%2(RN) + ||VUH%2(RN)-

In addition, if u,v € (H'(RN) N CLRN)) \ {0} are radially symmetric, positive and non-increasing,

then
/ \V{u,v}*|2d:c</ \Vu]de—i—/ Vo|2da.
RN RN RN

(v) Let uy,uz,v1,vy > 0 be Borel measurable functions which vanish at infinity, then

/ (uluz—l—vlvg)dwg/ {uy,v1} {ug, vo } dx.
RN RN

The solution of (1.1)—(1.2) can be found as a critical point of the following energy functional
1
Ja(u,v) = / (IVul? + |Vo|?)dx — / (put + povt 4 2pu*v?)dx — B/ u?vdz.
2 4 RN 2 RN
From Gagliardo-Nirenberg-Sobolev inequality (1.11), we have

H1 H1 41-N N H2 K2 4-N N
Z /RN ’U/4d],‘ S ZC?LVAbl HVUHLQ(RN)’ Z /RN ’U4d$ S ZC?VAbZ HV'UHLQ(RN), (21)

1 1
2 2
/ w v?dr < (/ u4d:z> </ v4d33) (2.2)
RN RN RN

” 4-N 4-N N N
< CN,4b1 : b2 ? Hvu|’L22(RN)vaHL22(RN)
1 4—N 4-N %

Chaby? b7 [IVulan + I Vulan)

2 3 % 3 %
ﬁ/RNu vdz < | (/RN |ul dCL‘) (/RN ] dx) (2.3)
[2 1
<9 ; /. \u|3dx+§ /. rv|3dm}

<181 | 23ty ™ IVl faamy + 3Chas” IVl ]

(2,555 L5 2 2 i
< B <3b1 +§b2 )CN,3 [HVUHH(RN) + HVU||L2(RN)] } .

10



Next, we show that m(by, b2) < 0. We now focus on Sobolev subcritical nonlinear Schrodinger equation
with prescribed L? norm. For fixed 1> 0,2 <p < 2+ %, we search for H' and A € R solving

—~Au+u = plulP2u in RV,
f]RN widr = b2,

Solutions of (2.4) can be found as critical points of J,,, : H' — R,

1
Jup = Q/RIVunIQdac— 'Z/R|u]pdx (2.5)

constrained on Sy = {u € H| [pn u?dz = b*}.
Lemma 2.2. When N =1, for any p > 0,3 > 0, we have

b1,b0) = inf Jg(u,v) < 0.
mg (b1, ba) (um)el%lbleb 5(u, v)

Proof. From (2.1), (2.2) and (2.3), we can deduce that

wvdz

1 1
Jg(u,v) = 3 /R(|Vu|2 + |Vo|*)dz — 1 /R(u1u4 + vt + 2puv?)dx —

@
E

-

1 p1 2 P 3.2 2
= /ROVU’Q +|Vol*)dz — [4011,45? + ZCf‘Abg + ZCf‘Abf b3 [Hvu”%%u@) + ”V“H%?(R) ’

B 25 13 i
I (20F 4 303) € [Vl ey + 19003 ]|

so J is coercive and in particular mg(by, ba) > —oo. Since
1 1
Jg(u,v) = = / (|Vul?® + |Vo|?)dx — 5 / wvdx — / (pau® + pov® + 2puv?) da
2 Jr 2 Jr 4 Jr

1
=uﬂw»hm4w—/ﬁﬁ&m—5/ﬁ%w,
2R Q]R

where Jy, 4,9 = 1,2 is defined in (2.5). Then we choose u = uy, pp, and v = uy,4p,, Where
Uy, 4, (1 = 1,2) is the unique positive solution of (2.4) with b and p are replaced by b; and p;. We have
Jupa(up; ap,) <0, (see details in Lemma 2.1 of [11]). Therefore

mp(b1,b2) < Jp(tpy aby> Uus apy) < 0,
so for any 8 > 0, we obtain

bi,by) = inf J 0.
mﬁ( 1, 2) (%U)El%lleTbQ 5(“70) <

O

Lemma 2.3. Let {(un,vn)} C Ty, x Tp, be a minimizing sequence for m(by,b2). Then for § > 0,
{(Jun|, |vn])} is also a minimizing sequence.

11



Proof. Since

/ |V!un||2d:r§/|Vun|2dm,/ |V|vn|2dm§/|an|2d:1:,
RN R RN R

/uivndxg/]un]2|vn\dx,
R R

1 B
Ta(lualstou) = 5 [ (Vhual P+ V1ol B)dz = 5 [ funPlonlda

we have

1
1 / (s lun|* + pzlvn|* + 2p|up *|vn]?) da
R

1
< /(|vun|2+|vvn|2)dx_B/ugvndx
2 Jr 2 Jr

1
- 4/ (H1up + povy + 2puzv2) do = Jg(tn, vy).
R

Thus, Jg(|unl, |vn]) < Jg(tn,vy). Therefore, when 8 > 0, {(|unl, |vn|)} is also a minimizing sequence.
O

Lemma 2.4. (i) If (d},dy) is such that (d},d3) — (di,d2) as n — 400 with 0 < d}} <b; fori=1,2,
we have mg(d},dy) — mg(di,d2) as n — +o0.

(ii) Let d; > 0, b; > 0,i = 1,2 such that b? + d? = ¢}, b3 + d3 = c3, then mg(b1,b2) + mg(dy,ds) >
mB(Cl,Cg).

Proof. The proof is similar to that of Lemma 3.1 in [16], we omit the details here. O

Lemma 2.5. For any p > 0,8 > 0, let (up,v,) C HY(R) x H(R) be a sequence such that

J3(tn,vn) = mg(bi,b2) and /

ulde = b3, / v2dx = b3,
R RN

then {(un,vn)} is relatively compact in H'(R) x HY(R) up to translations, that is there exists a subse-
quence (Un, ,Vn, ), a sequence of points {yr} C RN and a function (u,v) € Ty, x Tp, x HL(R) x H(R)
such that (un, (- + yk), vn, (- + yx)) — (4, 0) strongly in H'(R) x HY(R).

Proof. We use the ideas introduced in [16,17]. Assume that (uf, u%) is a minimizing sequence associated
to the functional J on T}, x T},, from (3.7) and the coerciveness of functional J on Tj, x T,, the
sequence (u?,u%) is bounded in H*(RY) x H'(R). If

sup/ (v2 4 v2)dx = o(1), for some R > 0,
yeR JB(y,R)

then by Vanishing lemma (see Lemma I.1 in [27]), we have that (uy,v,) — (0,0) in 2 < p < 2*, contrary
with the fact m(by, b2) < 0, therefore there exists a 5y > 0 and a sequence {y,} C R such that

/ (v2 4+ v2)dx > By > 0.
B(yn,R)

12



Since (u},u%) is bounded in HY(R) x HY(R), (u},u}) is weakly convergence in H*(R) x H(R) and
local compactness in L2(R) x L?(R), so

(Un (@ — Yn), Vn(z — yn)) = (u,v) # (0,0) in HY(R) x HY(R).

Let
Wy () = un(x) — u(@ + yn), on(z) = vo(z) — V(T + Yn),

we show that wy,(z) — 0,0, (x) — 0 in LP(R) for 2 < p < 2*, suppose by contradiction that there exists
a sequence {z,} C R such that

(1 — 22), o — 20)) = (1,0) # (0,0) in H'(R) x H'(R).
By the Brezis-Lieb lemma and Lemma 2.4 in [17], we have

Jg(un, Un) = Jﬂ(un(‘r - yn)vvn(x - yn)) (26)
= Jp(wn(x = yn), on(x = yn)) + Jp(u,v) + o(1)
= Jg(wn(x — 2,) —w, 0n(z — 2,) — 0) + Jg(w,0) + Jz(u,v) + o(1),

[un(@ = yn)|72@) = llwn(z = z0) 1 22(g) + lull 72 + o(1)

= wn(z — 20) =Wl Zo@y + [wl|720r) + lullF2) +o(1),
and
[on(z =yl 2@y = 1o (@ = 20) 1 22(m) + V]| 72(m) + 0(1)

= llon(z = z0) = ol T2y + 0172y + 072y + o(1).

So, we obtain

[wn(z — 2n) — w||%2(R) =07 - ”wH%Z(R) - HUH%Q(R) +o(1) (2.7)
= d% +o(1),

lon(z — 2n) — UH%?(R) =03 — HUH%%R) - HUH%Q(R) +o(1) (2.8)
= d3 +o(1).

By (2.6)-(2.8), (i) of Lemma 2.4 and Jg(uy,v,) — mg(b1, b2), we obtain
mg(b1,b2) > mg(di,da) + Jg(w, o) + Jg(u,v). (2.9)

If Jg(w, o) > mg([|wll L2y, ol L2r)) or Jg(u,v) > ma([lull L2(r), [[0]] L2()), then by (2.7)-(2.9) and (i)
of Lemma 2.4, we have

mg(bi,b2) > mp(di,d2) + ma(|wl 2wy, lollL2@)) + ma(llullp2@y, vl L2®))
> mp(dy, da) +m(y/6 — a2, /03 — dB) = mis(by, bo)

13



which is impossible. So,

J,B(U%U) = mB(HwHL2(R)7 HUHB(R))a Jﬁ(ua v) = mB(HUHL2(R)7 HUHLQ(R))-

Let w, o, w, v be the Schwarz symmetric-decreasing rearrangement of w, o, u, v. From Section 3.3 in [25],
we know that w, o, u, v are nonnegative. Since

18122 = o2y 151220 = o122,

@72y = lullZem), 170122@) = 0l 2,
Jag(w,0) < Jg(w,0), Jg(u,v) < Jg(u,v).
By the standard argument as [25], we can deduce that
Jp(w,a) = mp(|w|l 2wy, lloll2my)), J5(w,v) = ma(|lull L2y V] 22®))-

Therefore, (w,0), (u,v) are solutions of system (1.1), by the standard regularity results, we can get
w,a,u,v € C?(R?). Without restriction, we may assume w # 0. We divide into two cases.

Case 1: w # 0 and u # 0.

From (ii), (iv), (v) of Lemma 2.1, we have

/\V{@,ﬂ}*|2da:</V117|2dx+/|Vﬂ|2dx§/|Vw2dx—|—/|Vu\2dx,
R R R R R

~ ~\ k2| = S x|2 _ @262* 5252*.%
Ame}waHdw—Aﬂ\J!}ﬂ\J\}d

z/ﬁwwﬁ+mmww
R

:/(yw|2)(ya|2)+(|u|2)(\v|2)dx
R

z/hwwﬁ+w%ﬁm,
R

~ ~ V%2~ S\ * _ w2ﬂ2*55*$
AHMUH{dex—AHIJI}{,}d

> / @25 + a5
R

- / (wP) (o) + (uf?) (fo])de
R

z/w9w+wmwm,
R

SO

Js(w, o) + Jg(u,v) > Js({w, a}*, {5, 5}). (2.10)

14



By (iii) of Lemma 2.1, we get

0, u}*|Pde = @ + |u)?)de = w|* 4 |ul?)dx .
/Rr{w,u}rdw—/Ru 24 @) /Ru 2 4 Juf)dr, (2.11)

7.0V |%dr = 712 + [712)dx = ol? + [v[*)dzx. .
/R!{o,v}ldx—/R(\lﬂl)d /R<||+|r>d (2.12)

By (2.7)-(2.12), (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we obtain

mia(br.ba) > mi(dy, da) + ms(\/0F — dF.\ /03 — BB) > mp (b, bo).

a contradiction.

Case 2: w#0, u=0 and v # 0.

If o # 0, we only need to replaced w,u by o,v in Case 1, by the same argument as Case 1, we can
get a contradiction. Thus, we suppose that o = 0. By (ii)-(v) of Lemma 2.1, we have

To(@.07, 5.0y < 5 [ (Vo + ViR = 22 [ jattae = [t @13)

/|w| |2dx — ﬁ/|w\2vdaz
/(yw|2+|w )dx—“?/ @ftde — AL /\ da
= Jg(w,0) + Jg(0,v) < Jz(w,0) + Jg(0,v).

/R|{1Z,O}*|2d:v:/R|1E|2d:n:/R|w|2dx, (2.14)
/|{v 0} 2da;—/ ] dx—/ v|?d. (2.15)

y (2.7)-(2.8), (2.9),(2.13),(2.14)(2.15), (iii) of Lemma 2.1 and (ii) of Lemma 2.4, we obtain

By (iii) of Lemma 2.1, we get

mg(br,ba) > mis(d, da) +mp(\/03 — @2, \[93 — d3) > mis(br, ba),

a contradiction. The contradictions obtained in Case 1 and Case 2 indicate that wy,(z) = un,(z) —u(x+
yn) = 0, op(z) =vp(z) —v(z +yn) = 0in LP(R) for 2 < p < 2*. O

Proof of Theorem 1.1. Let {wy,, 0, } be any minimizing sequence for the functional J on Tp, x Ty,.
By Lemma 2.5, we know that there exists {y,} C R such that (w,,0,) — (w,0) in H}(R) x HY(R)
and (wp,0,) = (w,0) in LP(R) x LP(R) for 2 < p < 2*. Hence, by the weakly lower semi-continuity of
the norm, we have

Jg(w, o) < mg(br,b2) < 0. (2.16)
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To show the compactness of {wy,o,} in H'(R) x H*(R), it suffices to prove that (w,o) € Tp, X T,.
If [o|w]?dz = b3 and [pn [o|*da = b3, we are done. Assume by contradiction that there exists b1 < by
and by < by such that [ [w[2dz = b] < b2, or [, |o|2dz = by < b3. Then, by the definition of m(b1, bs),
we have

mg(gl,gg) S Jﬁ(w,a).

Case 1 If [, |w|*dz = Bi < bfand [p|o]*de = Bg < b3. By Lemma 2.2 and (ii) of Lemma 2.4, we
have

Js(w, o) < mg(by, by) < mg(by,by) + mﬁ(\/bﬁ — b, \/bg —By) < mg(by, by) < Js(w, o),

a contradiction. .
Case 2 If [, |w|*dz = b and [, |o|*dz = by, < b3. By Lemma 2.2 and (ii) of Lemma 2.4 and

m(0,4/b3 — 5;) < 0, we have

— 72 —
J(w, ) < mp(bi,ba) < mp(br,b2) +mg(0,1/b3 — by) < mp(br,b2) < Jg(w,0),

a contradiction. 72
Case 3 If [, |w|?’dz = b < b and [, |o]|?°dz = b3. By Lemma 2.2 and (ii) of Lemma 2.4 and

m(y/b? —5?,0) < 0, we have

— 72 —
Jg(w,a) < mg(bl,bQ) < m@(bl, bQ) + mg(\/ b% — bl,O) < mﬁ(bl,bg) < Jg(w,O'),

a contradiction.
Therefore,
(w,a) S Tb1 X Tb2.

O
3 Proof of Theorem 1.2
To show our results, we first define following constant A,
Vul? + |Vov|?)d

(u,0)€Ty, x Ty, fR2 (prut + povt + 2pu20v?) da

From Gagliardo-Nirenberg-Sobolev inequality in [39],

2
lull 74 g2y < WHVUH%2(R2)HUH%Q(R2) for all u e H'(R?),
L

where Q(x) is the unique positive solution of
—Au+u=u’ uec H(R?),

and the identity is achieved at u(x) = Q(|z|). It is easy to see that Q(|x|) satisfies that
1
IVQUZ2 g2y = Q72 g2y = iHQH%‘l(RQ)‘
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From above Gagliardo-Nirenberg-Sobolev inequality, we have

/2(u1u4 + povt + 2putv?)de < —— o [u1bF + p2b3 + 20b1bo] /2(|Vu|2 + |Vo|*)dz
R R

1Q()13. )||

SO

A>=>0. (3.2)

1
C
Next, we prove that

QN2 e

102+ 03))1QII2
2 4o SO DI
2max{ (1 + p)62, (2 + )3}

T T mbi A+ pabs + 2pb703

(3.3)

. b b
It is easy to see that (|| Ql(%(ﬁg; . QQ(%(IQIsz) € Ty, x T4,. Thus,

b3 + b3 1Q@)I22 [z [VQPde _ 3%+ D)IIQII72ge)
= bt + pabi + 200703 Jp2 Qde b + pobf + 200763

On the other hand, for any (u,v) € H'(R?) x H'(R?) and [p, u?dx = b}, [pe v?dz = b3. Then from
Gagliardo-Nirenberg-Sobolev inequality, we have

||Q”%2(R2 < Jre (IVul? + |Vv]?)da
2max{(p1 + p)bi, (12 + p)b3} ~ Jpa(p1 + p)utde + [go (2 + p)vida
Sz (IVul?* + [Vo]?)da
< .
T Jge (it + povt 4 2pu0?) da

From (2.1), (2.2) and the definition of A, we have

1 1
Jo(u,v) = 5 /RZ(|Vu|2 + |Vo|*)dx — 1 /R2 (prut + pov® + 2pu*0?)da (3.4)

> |2 -
> [2 4A} /RQ(WUI + |Vo|*)dz,

SO Jo(u, U) is bounded from below on Tbl X sz provided that

Let u € Tpand txu=ez 3 u(e x), then t x u € Ty, we define
tx (u,v) = (txu,t xv). (3.6)

Under the condition of max{(u1 + p)b3, (u2 + p)b3} < HQHLQ(RQ we have
A>—
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S0
1 1
5 /RQ(’VUF + Vol dx — 1 /]R2 (r1ut + pov* + 2pu0?) dz > 0.

Therefore

1 1 1
ﬁ/ w vdr = / (|IVu* + |Vv|?)dz — / (raut + pov* + 2pu0?) dz > 0.
2" Jeo 2 Jo 4 Jo

Since

2t 1
Uy o(t) = Jg(t* (u,v)) = c [/ (IVul* + |Vv|?)dz — / (p1ut + pov* + 2puv?) dm}
2 R2 2 R2
— éet wvdz.
RZ

é wlvdz.
2 JrN

1 1
Jg(u,v) = B /RN(|Vu|2 + |Vo|?)dz — 1 /RN (v + pov? + 2puv?)de —

Lemma 3.1. Under the condition of max{(u1 + p)b?, (u2 + p)b3} < HQH%Q(RQ), we have

—00 < bi,b2) = inf Ja(u,v) < 0.
o0 mﬁ(l 2) (u’v)el%lbleh ﬁ(u v)

”Q”iQ(IRQ)

Proof. If max{(p1+p)b7,(k2+p)b3}

> 1 and 8 > 0, we have A > %, thus

1 1
Ja(u,v) = = /RQ(\WP + |Vo|?)dx — 1 /Rz(ulu4 + vt + 2puv?)dr — g/ uwvdx (3.7)

2 -
> (5= 1| [ (vul + 7o)
=27 1A Jp orer

B

2 1 3
-5 [<3b% + 3b§> C33 [HVUH%Q(RQ) + HVUH%?(R%} 2] ;
so Jg(u,v) is coercive on Ty, x Ty, and

bi1,bs) = inf Jg(u,v) > —oo.
mﬁ( 1,02) (u,v)elﬁlebQ B(U v) o0

Next, we prove

b1,b0) = inf Jg(u,v) < 0.
mﬁ( 1,02) (va)el%lbler‘bQ B(U v)

It is easy to see that
2t

Js(tx (uv) =

/ (|Vul? + |Vo|?)dz — Bet/ wvdz
R2 2 R2
2
- /2 (,u,1u4 + vt + 2pu2v2) dx,
R

when S > 0 we choose u > 0,v > 0 and (u,v) € T, x Ty,, it is easy to see (t xu,txv) € Ty, x T}, and

lim Jg(t* (u,v)) <0,

t——o0
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when 5 < 0 we choose u > 0,v < 0 and (u,v) € Ty, x Ty,, it is easy to see (t xu,txv) € Ty, x T}, and

lim Jg(t* (u,v)) <O.

t——o00

Thus for any 8 € R\ {0}, we obtain

bi,by) = inf J < 0.
mﬁ( 1, 2) (u,v)El%llesz ﬁ(uvv)

O

Proof of Theorem 1.2. When max{(u1 + p)b?, (u2 + p)b3} < HQHLQ(R2 by the definition of A, we
have A > 5 . Thus, if 5 < 0 and there exists a positive solution (u,v) to (1.1)-(1.2), we have

1 1
—B | wPudz = / (IVu* + |Vo|?)dz — / (raut + pov' + 2puv?) dx > 0,
2" g2 R2 2 Jp2
a contradiction.
Next, we consider 8 > 0. When max{(u1 + p)b, (u2 + p)b3} < HQH%Q(RQ), from Lemma 3.1, we get
Js(u,v) is coercive on Ty, x Ty, and

b1,b9) = inf J —00.
mg(bi, b2) (u,v)él%lble;n 3(u,v) > —00

Let {(un,vn)} C Tp, x T4, be any minimizing sequence for mg(by,bz). By Lemma 2.3, we know that
{Junl,|vn|} is also a minimizing sequence. Then by taking {(|unl,|vn|)} and adapting the Schwarz
symmetrization to{(|uy|, |v,|)} if necessary, we can obtain a new minimizing sequence (up to a subse-
quence), such that{(uy,v,)} are all real valued, nonnegative, radially symmetric. Since {(un,vy)} is
bounded in H}!(R?) x H!(R?). By the Sobolev embedding theorem, we have H}(R?) —— LI(R?)
for 2 < p < +oo, thus there exists a (u,v) € H}!(R?) x H!(R?) such that (u,,v,) — (u,v) in
HY(R?) x HNR?), (up,vn) — (u,v) in LY(R?) x LE(R?) for 2 < p < 400 and (un,vn) — (u,0)
a.e in R?. Hence u,v > 0 are radial functions.

Step 1: Prove A; > 0 and A\; > 0. By Ekeland’s variational principle yields in a standard way
the existence of a new minimizing sequence, which is also a Palais-Smale sequence for Jg on T}, x Ty,.
So J/g |Tb1><Tb2 (un,vn) — 0, by the Lagrange multipliers rule, we know that there exists a sequence
(ALns A2.n) € R? such that

/ (Vu, Vo + Vo,Vip)dx + / (ALntUne + Ao popt))dx
2 2

/ (B1upsp + p2vpt) + pUatn@ + pus vt da (3-8)
— 5/ UnPUn — = /2 uptp = o(D)[|(, @)l (m2yx i (r2) in R,

for every (p,1) € HY(R?) x H'(R?). We claim both A;, and A2, are bounded sequence, and at least
one of them is converging, up to a subsequence, to a strictly negative value. Indeed, we can using
(un,0) and (0,vy,) as text function in (3.8), we have

/ M puide = —/ |V, |*dx +/ (paut 4+ poZu?)ds + B/ ulv, + oDl g1 w2y
RQ RQ RQ RQ
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/ Ao pvide = / |V, |2dz +/ (p2vh + pv2u?)dx + g/ ulv, + oYl g (r2),
R2 R2 R2 R2

SO
[ Ot N == [ (Va4 [FoaP)do + [ v+ v + 20082
R R R

3 (3.9)
+ ﬁ/ ulv,dz.
2 R2

By (2.1)-(2.3) and the boundedness of {(un,vy)}, we can deduce that (A1, A25) is bounded, hence up
to a subsequence (A1 n, Aan) — (A1, A2) € R?, passing to limits in (3.8), we can deduce that (u,v) is a
nonnegative solutions of (1.1) . Therefore

/ (|Vul* + |Vo|*)dx —I—/ (A 4+ Apv?)dz = /
R2 R2

3
(paut + pov* +20u0?) dz + =B | vPoda.
R2 2 R2

On the one hand, we multiply the first equation of (1.1) by « - Vu and the second equation of (1.1) by
x - Vv, integrate by parts, we can get

1
/ (Aluz + )\sz)dx == / (M1u4 + pov? + 2pu2v2) dx + 58 wvdz. (3.10)
]RZ 2 R2 ]RQ

Since Py, p, (tn,vn) — 0, which implies that

1 1
/ (|Vun|? + |Von|?)dz — 2/ (H1up + povpy + 2pulvl) do — 2ﬁ/ ulv,dz = op(1). (3.11)
R? R? R2

Together (3.9) with (3.11), we can get

1
M nb? + Ao bl = 3 /R2 (ului + povi + 2pu,21v,21) dr + 3 /R2 ulvpde, (3.12)

when 3 > 0, it is easy to see that at least one sequence of (\; ) is positive and bounded away from 0.
Let n — +o0 in (3.12), we have

1
M 008 = 5 [ (a4 et +20) do+ 5 [ alude. (3.13)

We claim that if Ay > O(resp.A2 > 0), then Ay > O(resp.A\; > 0). Indeed, we know that at least one
sequence of ();) is positive and bounded away from 0. If A2 > 0, now we argue by contradiction and
assume that A\; <0, then

—Au = —\u+ Pfuv + M1u3 + pv2u > 0.

Using a Liouville type theorem| [22], Lemma A.2], we can deduce that u = 0. So, v satisfies that

—Av + Av = pgv3, in R?,
v >0, in R2,
Jgs vidz = b3, in R2.
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Therefore, when 0 < by < ||Q||z2(r2) We have

mg(b1,b2) = lim Jg(up,vn) = lim Jg(up,vn —v) + J(0,v)

n—-+o0o n—-+o0o

1 1
= ngrfoo [2 /RZ(|Vun|2 + |V (v, —v)|*)dz — 1 /]R2 (,ulufl + p2(vn — v)* + 2pu? (v, — 0)2)daz

1 1
— §B u (v, — v)da:] + J(0,v) > lim / (IV (up, — w)[* + |V |*)dz + ms(0,b2) > 0,
R2 R2

n—-+oo 2

in contradiction with mp(b1,b2) < 0, where we use the fact that mg(0,b2) = 0 for 0 < by < [|Ql|12(r2),
(see Theorem 1.2 in [30]). Thus, Ay > 0, A2 > 0.
If A1 > 0, now we argue by contradiction and assume that Ay < 0, then

—Av = —)\2v§u2 + u2v3 + pu2v > 0.
Using a Liouville type theorem| [22], Lemma A.2], we can deduce that v = 0. So, by the structure of

system (1.1), we get u = 0, which is impossible.
Step 2: Prove the L? convergence. Indeed, it is easy to see that fR2 u? < b%, f]R2 v? < b%. From

(3.10) and (3.12), we have
A\ <b§ — / qu1=> + Ao (bg - / v2d:c> =0,
R2 R2

u? = b3, v? = b3
R2 R2

Step 3: Prove the H' convergence. It is easy to see that

SO

mg(b1,b2) = lim Jg(up,vn)

n—-+4o0o

1 1 1
= lim [/ (|[Vun|? + |Vou|?)dz — / (v + poviy + 2pue?) da — 6/ u%vndx].
2 Jo 4 Jpo 2" [

n—-+oo

Case 1 If u = 0,v = 0, by compact Sobolev embedding, we have

n—-+00

1
mg(bi, b2) = nli}I—}—loo Jg(tn,vy) > lim /RQ(\VUH\Q + |an\2)da: > 0.

contradict with Lemma 3.1.

Case 2 If u # 0,v = 0, indeed, if v = 0, by the structure of system (1.1), we get u = 0, so Case 2
doesn’t happen.

Case 3Ifu=0, v#0, let

Up = Up, Un = Un — 0,

from [17, Lemma 2.4], we get

/ \un]2|vn]2dx—/ \un]2|vn|2da:—/ lul2[o[2dz + o(1). (3.14)
RQ R2 RQ
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By Brezis Lieb Lemma in [47], we can obtain that

/ [T | vndw—/ [t vndac—/ lu|?vdz + o(1). (3.15)

So, from (3.14) and (3.15), we have
J5(tun, vn) = Jg(Un, Un) + Ja(u, v) + o(1).
Therefore

mg(b1,b2) = lim Jg(up,v,) = lim Jg(tn,vn) + J3(0,v)

n—-+o00 n—-+o0o

. 1 _ _ 1 _ _ o
= lim |= / (V| 4 |VT,|?)dx — / (11t + potyy + 2pusvs) da
2 R2 4 R2

1
- =p uivndm} + J3(0,v)
2" Jeo

1
> lim / (Vi ? + V0 |2)da + J5(0,0) = m(0, by) =
]R2

n——+o0o0 2

contradict with Lemma 3.1, where we use the fact that mg(0,b2) = 0 for 0 < by < [|Q|| £2(r2)-
Case 4 If u # 0,v # 0, let

Up = Up — U, Up = Up — U,

from [21, Lemma 2.1], we get

/ |ﬂn|2|5n|2dx:/ ]un|2|vn|2da:—/ lul?|v|*dz + o(1). (3.16)
R2 R2 R2

By Brezis Lieb Lemma in [47], we can obtain

/ || vndx—/ [t | vndx—/ lu|?vdz + o(1). (3.17)

So, from (3.16) and (3.17), we have
J,B(unavn) = J,B(am%n) + Jﬁ(ua U) + 0(1)'
Therefore

mpg(b1,b2) = lim Jg(up,vp) = lim Jg(tp,vp) + Ja(u,v)

n—-+o00 n—-+00
1
= lim [/ (Vi |* + |V, [?)dx
2 Jgr2

1 ~ ~ g 1 o~
- = / (T + paty + 2pu202) da — 6/ uivndx} + Jg(u,v)
4 R2 2 R2

1 ~ ~
> lim / (VT * + |V, [P)dz + Ja(u,v) > mg(b1, ba).
R2

n——+oo 2

Thus, Jg(u,v) = mg(b1,be) and (un,vs) — (u,v) in H(R?) x H(R?).
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Next, we prove the second part of Theorem 1.2. It is easy to see that

2t o2t
Jo(t * (u,v)) = 62 / (|[Vul* + |Vo|?)dz — Z (raut + pov® + 2puv?) da.
RZ
If
1 2 2 1 4 4 2, 2
3 RZ(!VU,\ + |[Vo|%)dz < 1 ) (,ulu + pov® + 2puv )dx, (3.18)
then

Jo(t * (u,v)) = —o0 as t — +o0.
It is easy to see

2t

Ta(t* (u,v)) = — /RQ(WUQ + Vo)) da

5 w vdr — — (u1u4 + pgvt + 2pu2212) dxr (3.19)

R2 4 Jr2

2t
B
2
_ 2t B 2
=e“Jo(u,v) e u“vdx.
2 R2

If (3.18) holds, there exists (u,v) € Ty, x T}, such that Jy(u,v) < 0, by (3.19) we can deduce

inf Js(u,v) = —occ.
(’U,,U)ETbl XTb2 B( )

O
4 Proof of Theorem 1.3
Define the set
Py by (0, v) := {(u, v) € Ty, x Ty, : Py py(u,v) =0, B w?vdx > 0}, (4.1)
R3
where
3 3
Py, v, (u,v) = / (IVul® + |Vo*)dz — = / (vt + pov* + 20u*0?) dx — =B | vPodz,
’ R3 4 Jrs 4" Jgrs
and
2t /8
Uyo(t) = Ja(t* (u,v)) =— 5 / (|Vul? + |Vo|?)d / e ulvda (4.2)
et 4 4 2,2
—— | (mu* + pov* + 2puv?) da.
4 Jos
It is easy to check
’ 2t 2 3t o 3e 4 4 2,2
U, () =e (|IVul? + |Vo]?) dxf— e2u“vd T (v + pov* + 2pu*v?) da,
R3 R3 R3

and

\Ilfw( ) = Py by (txu, txv), Pbl,bz(u,v):{(u v) € Ty, x Ty, : uv( )=0, 5 u27)dyc>0}.
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We decompose Py, 4, (u,v) into three disjoint unions

Py by (u,v) = P;,bz (u,v) U 731917,)2 (u,v) U Pl;,bz (u,v),

where
77; p, (U, V) = {(u, v) € Tp, X Tpy, (w0, v) € Poy pys 5/ w?vdz > 0: 0" (0) > 0}, (4.3)
) R3 ’
Pl?1,b2 (va) = {(’LL, U) € Tb1 X szv (U7U) € Pb1,b27 6/ UQUdJE >0: \I]Z,v(o) = 0}7 (4'4)
R3
P&M(u,v) = {(u, v) € Ty, X Tpy, (u,v) € Poypyy B w?vdz >0 : ‘1/21711(0) < 0}. (4.5)

R3
To prove Theorem 1.3, we first give some lemmas. The following auxiliary result shows the role of

Pb1,b2 (u> ’U).

Lemma 4.1. If (u,v) is a solution of problem (1.1)~(1.2) for some A1, Ay € R, then (u,v) € Py, p, (u,v).

Proof. On the one hand, we multiply the first equation of (1.1) by = - Vu and the second equation of
(1.1) by x - Vv, integrate by parts, we can get
1

3
3 /Rg(yvm? + |Vo|?)dx + 3 /Rg(mﬂ + Aov?)dx (4.6)

3 3

= / (/,L1u4 + pgvt + 2pu2v2) dz + B/ w?vdz.
4 R3 2 R3

On the other hand, we multiply the first equation of (1.1) by u and the second equation of (1.1) by v,

integrate by parts, we have

/ (IVul* + |Vo|?)dz —|—/ (Au? + Xov?)dx = /
R3 R3

(raut + pov* + 20u0?) dz + ;B wvdzr. (4.7)
R3

R3
Together (4.6) with (4.7), we obtain

3 3
/ (|Vul? + |Vo|?)dz — / (piu® + pov* + 20u0?) dz — 5B | wPodz = 0. (4.8)
R3 4 R3 4 R3
O
To show that the energy functional has a concave-convex structure, by (2.1)-(2.3), we introduce
11 23 1.3
D1 = j1Cy 4b1, Dy = p2Cj 4ba, D3 = C3,b3b3, Dy = (gbf + gbg)cg,?j3

Ifp>0

3
2

1 1 31
Js(u,v) > / (|VU|2+yW|2)dx—D1(/ |vu12dx)3 —DQ(/ |Vv|2dz) (4.9)
2 R3 4 R3 4 R3

3
1

1 3 1
~ Ly / (IVul? + [Vol?)dz)? — ~|8|Da( / (IVul? + [Vol?)dz)
4 R3 2 R3

> h((/RS(]VuF + IVU\Q)dx)%)7

where h(t) : (0,+00) — R defined by

h(t) = lp 1

1 3
3_7 3
5 4(D1+D2+/ﬂ)3)t 2’,3‘2)4152.
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3 3 11
Lemma 4.2. When |3 (2b12 + b22> C§’3C’§’4\/mb1 + paba + pbibs < % holds, then h(t) has exactly

two critical points, one is a local minimum at negative level, the other one is a global mazximum at
positive level. Further, there exists 0 < Ry < Ry such that h(Rop) = h(R1) = 0, h(t) > 0 if and only if
te (Ro, Rl)

Proof. Since

11 1 11
St2 — ZC§,4(M151 + poby + pbi sz)tz - *\5\(

3
A(t) =15 |5

3 3
it is easy to see that h(t) > 0 if and only if ¢ (t) > (8| (% 24 % 22)05373, where p(t) = %t% - i0§74(u1b1+
11
p2ba + pbibs )t%, since

1.1 3 111
(1) = 72 = SChalmby + paba + pb7 b3 )t
it is easy to see that ¢(t) has a unique global maximum point at positive level in t = 2 —r
3034(#1[71 +u2bi+pb2 b3)
and 7
~ 6 1
p(t) = o ;
1 1

\/C§,4(M151 + poba + pbib3)

3 3
therefore h(t) is positive on an open interval (Ro, Ry) if and only if ¢(t) > 18] (g 4 §b22> Cg’yg, S0

3 3 11 26
181203 + ) C34C. b + pate + poio} < 200, (4.10)
Since
/ 1 % 2 % L2\ 3 1
W) = 13 [t = SO aluaby + uaba + pb )63 — 2181 (57 + 565 O] = g,
we can deduce that when
4 4 3 293 1.3
= _ Zp2 Zp2 3
9( T 1 ) 4|/8|(3 1 +3 2)03,3>07 (4.11)

903 4 (1111 + p2b1 + pb7 b3) 9\/C§4(M1b1 + poby + pb%bé)

then h(t) has exactly two critical points, one is a local minimum at negative level, the other one is a
global maximum at positive level. It is easy to see that when (4.10) holds, then (4.11) also holds. [

Let
N o= {(u,v) e H'RY x H'RY | 8 | wPvdz > o},
]R3

and for simplicity, we still denote
Py by = {(u’v) € (Tbl X sz) NN | Pb1,b2(u7v) = O}'

Lemma 4.3. Under the assumption (4.10), then 771?1 b, = 0 and Py, p, is a Ct submanifold in H'(R?) x
HY(R3) with codimension 3.
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Proof. Assume by contradiction that there exists a (u,v) € Pl?l’b2 such that

/ (IVul> 4 |Vo|?)dz = 3/ (pru* 4 pov* + 2pu*v?)dx + §B wvdz (4.12)
R3 4 R3 4 R3
and
9 9
2/3(|Vu2 + Vo) dz — g \ wvdx — 1 /3 (pau* + pov® + 2pu*v?) da = 0. (4.13)
R R R
From (4.12) and (4.13), we obtain
B wvdz = 2/ (,u,1u4 + povt + 2pu2v2) dx. (4.14)
R3 R3
Thus, from (2.1)-(2.3), we have
9
/ (|[Vul* + |Vo|]?)dz = 1 / (v + pov* + 2pu0?) da (4.15)
R3 R3

9,u1 9#2

C3 4bIHVUHL2(]R3 —=Cs 4b2HV’UHL2(R3)

3
- Zpo;imf b3 [\|Vu||%zm3> + 1190l s )

[SIY)

11
< =C5 4(pab1 + pgba + pb7b3) HVUH%?(R:%) + HVUH%Q(R?’)] :

| ©

/ (IVul? +[Vo[*)d 5/ uvda (4.16)

|

lw

3 3
< 3161 | (20 + 303 ) €2 190l + 10l o)

So, by (4.15) and (4.16), we get

1 9
7‘5|D41

CD

11
3\/C§,4(Mlb1 + pi2by + pbi b3)

therefore

3 3 11
91 (208 + 83 ) C34CEaV bt + ot + o} = (117)

5)
contract the assumption (4.10), which implies that 73,?1 by = (). Next, we show that P, p, is a smooth

manifold of codimension 3 on H'(R?) x H(R?). It is easy to see that Py, 5, is defined by Py, p, (u,v) = 0,
G(u) =0, F(u) =0 and E(u,v) > 0, where

G(u) = / wlde — b3, F(v) = / v’dr — b3 and E(u,v) =8 [ v
R3 R3 R3

Since Py, p, (u,v), G(u), F(u) and E(u,v) are class of C, we only need to check that

d(Py, b, (u,v), G(u), F(v), E(u,v)) : H — R? is surjective,
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for every (u,v) € (G71(0) x F~1(0)) n E~1(0) N Pb_l}bQ(O). If this is not true, dPp, p,(u,v) has to be
linearly dependent from dG(u), dF(v) and dE(u,v) i.e. there exist 11,12, v3 € R such that

2 [s VUV + viup + v3Buvg = 3 [ (miude + po?up) + % 30 fR3 wpv in R3,
2 [gs VUV + v9vth + B Bueh = 3 [o5 (nov® + puoy)) + Sﬂ 2 [psu?y in R3,

for every (p,1) € HY(R3) x H'(R?), so
—2[Au + viu + v3Buv] = 3(puud + pvu) + %uv in R3,
—2[Av + vov + B u?] = 3(pav® + puv) + %zﬂ in R3.

The Pohozaev identity for above system is

/ ([Vul? + |Vv|?)dz — 9/ (piu® + pov® + 2pu0?) dz — = (= — @)B wvdz = 0.

R3 8 R3 8 2 R3

Then [ps(|Vul? + [Vo|?)dz = § [ps (pu? + pov? + 2pu*v?) dz. Since (u,v) € (G71(0) x F~1(0)) N
E~Y0)N Pb;lbz(O), we have [, (|Vul? + |Vo[?)dz = %ng (pu* + pov* + 2puv?) dz, this is a contra-

diction. By Proposition A.1 of [33], we get that if mg := ( )ing Js = Jg(u,v), then there exist
U,V)EPpy by

Ai € R(i =4), such that

3\ 3\

— (14 M)A+ Mrya + Azfuv = (1 + 74)(;11713 + po?u) + (1 + —4)5"
34 3\

— (14 X)) AU+ A0 + 5 02 = (1+ —)\4)( 27> + pu?T) + (1 + T“)% 72

Since E(u,v) > 0, from Theorem 1 of [13] or the proof of Lemma 2.11 in [33], we have A3 = 0. Therefore,
we obtain that the restricted set N does not change the structure of the manifold Py, p,. Then, we have
that Py, p, is a smooth manifold of codimension 3 on Ty, x Tj,. O

Lemma 4.4. When f [gs u’vdx > 0. For every (u,v) € Ty, x Ty,, the function U, ,(t) has ezactly two
critical points sy, < tyn € R and two zeros cyp < dyy € R with sy4 < cyp < tyuw < dyw. Moreover,

(1) syp*(u,v) € P;LbQ (u,v) and tyy * (u,v) € Py 4 (u,v), and if tx (u,v) € Py, p,(u,v), then either
t = Sy ort=tyy.

(fR3(|V(t*u)|2 + |V(t*v)|2)d$)% < Ry for every t < ¢y, and
J5(u, v) (Sy0 * (u,v))

= min{Jg(t*(u,v) :t€R and (/R?)(|V(t*u)|2 + |V (t *v)|})dz)

D=

Ro} <0,

where Ry is defined in Lemma 4.2.

(3) We have
J3(tuw * (u,v)) = max{Jg(t * (u,v)) : t € R} >0

and W, ,(t) is strictly decreasing and concave on (ty,,+00). In particular, if t,, < 0, then
thb2 (u,v) < 0.
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(4) The maps (u,v) € Ty, X Tp, : Sup € R and (u,v) € Ty, X Ty, : tyy € R are of class CL.

Proof. Let (u,v) € Ty, x Ty,, since t x (u,v) € Py, p,(u,v) if and only if (¥, ,)'(¢t) = 0. Thus, we first
show that ¥, ,(¢) has at least two critical points. From (4.9), we have

[NIE

Uyo(t) = Ja(t * (u,v)) > h([/ (|V(t*u)‘2 + \V(t*v”?)daﬁ]
R3
- h(et[/ (IVul? + |vu\2)dx])%).
R3
Thus, the C? function U, ,(¢) is positive on

C— R
n -, In = ],
[ng(]VuP + |Vv\2)da:] 2 [fR3(|Vu\2 + |Vv\2)dx] 2

Uy (+00) = —o00 and ¥y, ,(—00) =07,

Indeed, (¥, ) (t) = 0 implies that g(t) = % Jgs u*vdz where

3.

t (&

g(t) = ez / (|Vul? + |Vo?)dz — —— (raut + pov® + 2pu0?) da.
R3 4 Jps

It is easy to see that g(¢) has a unique maximum point, thus the above equation has at most two
solutions. If % ng w?vdz > 0. So, Uy o(—00) =07, ¥, »(+00) = —o0. It is easy to see that W, ,(¢) has
Ro

a local minimum point s, , at negative level in (0,In T
(Jes (IVul+|Vo[?)dz) 2

) and has a global maximum

point t,, at positive level in (ln o -, 1n 1 T > Next, we show that
[ fea (Vul2+(Vo2)dz] 2 [ fes (IVul2+Vo[2)dz] 2
WU, ,(t) has no other critical points. From (u,v) € Ty, xTy,, t € Ris a critical point of ¥,, ,,(¢) if and only
if tx(u,v) € Py, by, We have sy % (0, v), tywx(u,v) € Py xp, and tx(u,v) € Py, xp, if and only if t = s,,, or
t =ty Since sy, is a local minimum point of ¥, ,(t), we know that (U, )" (syn) > 0, from 7719171)2 =0,
we know that (U, )" (Suw) # 0, thus (Uy4)" (sy,0) > 0, therefore s, ,* (u,v) € 77;271)2. Similarly, we have
tuw*(u,v) € Py 4, - By the monotonicity and the behavior at infinity of Wy, (t), we know that Wy, () has
exactly two zeros ¢, < dy, With s, < cyp < tyy < dup and ¥y, (t) has exactly two inflection points,
in particular, W, ,(t) is concave on [ty,, +00) and hence if ¢,, < 0, then Py, p,(u,v) = (¥y,)"(0) < 0.
Finally, we prove that (u,v) € Ty, x Tp, — Sy € R and (u,v) € Ty, x Ty, — ty € R are of class
C*. Indeed, we can apply the implicit function theorem on the C! function ® (¢, u,v) = (¥,,) (t), then
D(syw, u, ) = (Vyup) (Suw) = 0,05P(syp, u,v) = (Vyn)”(Suw) <0, thus (u,v) € Tp, x Ty > sy € R
is class of C'!. Similarly, we can prove that (u,v) € Ty, x Tp, + tu, € R is class of C. O

4.1 Existence of a local minimizer
For k > 0, set
1
Ay = {(u, v) € Ty, x Ty, : (/ (IVul? + |[Vo?)dz)? < k},
RS

and
m;(bl,bg) = inf  Jg(u,v).

(u,0)EAR,

From Lemma 4.4, we have following corollary

28



Corollary 4.1. The set 73;; b, 1S contained in

1
Ay = {(w0) €Ty, x Ty, (/RB(WUF +[VoP)dz)® < Ry )

and
sup Jg(u,v) <0< inf Jz(u,v).
P;,bQ pbl,bz
Lemma 4.5. We have m;(bl,bg) € (—o00,0) that

mg(bl,bg) = inf Jg(u,v) = iff Jz(u,v) and mg(bl,bg) < _inf  Jg(u,v).

by.b2 ARy \ARy—p

by,b2
Proof. For (u,v) € Ag,, we have

2 2y )% - _
Ja(u,v) > h((/RS(]VM + |Vo|?)dz) ) > ter[l(l),lgo]h(t) > —00.

Therefore, mg(bl, by) > —oo. Moreover, there exists (u,v) € Ty, x T,, such that

1

(/}W(IV(t*uﬂ2 + |V(t*v)|2)dx)5 < Ry

and Jg(tx(u,v)) <0 for t < —1. Hence mg(bl, bz) < 0. Since P;;,bQ C Ag,, we know that mg(bl, by) <

inf,+ Jg(u,v). On the other hand, if (u,v) € Agr,, then s, x (u,v) € ng’bQ C Ag, and

J5(u, v)(Sy,p * (u,v)) = min {Jg(t* (u,v)):t € R and (/Rg(|V(t*u)\2 + |V(t*v)|2)dx)% < Ro}
< Jﬁ(uvv)a

where Ry is defined in Lemma 4.2, so inf,+  Jg(u,v) < mg(bl, b). Since Jg(u,v) > 0on Py, , we
by,b2 )
know that infpb+ \ Ja(u,v) = infp, ,, Jg(u,v). Finally, by the continuity of h, there exists p > 0 such
1,92

m+
that h(t) > “2%%) if ¢ € [Ry — p, Ry]. Therefore,

1 +
To(u,v) > h((/R (Ve + [VoP)dr)?) > T2 s (o, o)

3
1
for every (u,v) € Ty, X Tp, with Ry—p < ([pa(|Vul? + [Vo|*)dz) > < Ry. This completes the proof. [
Lemma 4.6. Under the assumption (4.10) holds, we have
m™ (b1, b2) < min{m™(b1,0),m"(0,b2)}.

Proof. From [5], we know that m™ (0, b2) can be achieved by v* € T}, and v* is radially symmetric and
decreasing. We choose aproper test function u € T}, such that (¢ x u,v*) € Tp, x Tp,. From Lemma
4.4, we obtain

1

1 123 3
h(t) < hy(t) = 5752 - Zuzc*;,}Ablt?’ - 5\,6|§b§ C§ 2. (4.18)
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By direct calculations, there exists 0 < t* < Ry such that < hy(t*) = 0. From [41], we have

m*(0,b inf  Jg(0,v inf Jz(0,v).
©b)= inf Js00) = ik Ja(0.)

Therefore, from the analysis in Lemma 4.2, we have
2

Vor|p2 <t* < Ry<t= .
T T
3C3 4(p1b1 + p2by + pb7b3)

Since h(Rp) = h(R1) = 0 and the monotonicity of h(t), we deduce that (¢ *u,v*) € Tp, x Ty, N Ag, for
t <« —1, therefore,

F(by, by) = inf J(u,v) < J(t*u,v*
m ( ! 2) (’U‘,’U)GTbil;l(TbQQARO (u v) - ( o )

1 1
= |Vo*| d:L‘—,ug/ |v*|*dx — = / |t % u|?(v
2 Js 4

o2t 3t
+7 \Vu] da:—4/R ,ugu4dac—2/RN plt x uf*(v*)?dx
<J(0,U )— (O,bg)

Similarly, we have

m+(b1, bQ) < m+(b1, 0).
Hence, the proof is completed. O

Lemma 4.7. Let {(un,v,)} C HY(R?) x HY(R?) be a minimizing sequence for Ja(u, V)|, xT,, at level
mg(bl,bQ). Then {(un,vn)} is bounded in H'(R3) x H'(R?).

Proof. Since Py, p,(un,vn) — 0, we have

3
Py, by (tn, vn) :/ (]Vun|2+an2)d:U—4/ (,ulu —|—u2v +2,0u dac— B/ U vndx—on( ).
R3 R3

Thus, from (2.3), we have

\Vun\Q—i-\an\ )dx f/ uv,dr + 0,(1)
R3

| =

Cb\l—‘
\m\\

J Unyvn =
\Vun\Z—Han\ )da

s 13 1
[( bf + 3 22)033[HVUHHL2 Rr3) T Vvl 72 (R }4}

Since {(un,v,)} is a minimizer sequence for Jﬂ(u,v)\Tbleb2 at level mg(bl, ba), we have Jg(un, v,) <
mg(bl, ba) + 1 for n large. Hence

1
5 L (0l + V0 )

<1 2od 4 2]) i [V alBaquy + 17l By ] 08 0, ) + 2

$0 {(un,v,)} is bounded in H'(R?) x H!(R3). This completes the proof. O
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Lemma 4.8. Let {(un,vn)} C Ty, , X Ty, be a nonnegative minimizing sequence for Ja(u,v)|t,, xm,,
at level mg(bl,bg) with additional properties Py, p,(tun,vn) — 0 and u, v, — 0 a.e. in R3, then up
to a subsequence (un,vy) — (u,v) in HY(R3) x HY(R?), where (u,v) is a positive solution of (1.1) for
some A1, Ao > 0.

Proof. From Lemma 4.7, we known that {(uy,v,)} is bounded in H!(R3) x H!(R3), thus, by the Sobolev
embedding theorem, we have H}!(R3) << LI(R3) for 2 < p < 6, thus there exists a (u,v) € H}(R3) x
H}(R3) such that (un,v,) — (u,v) in H}(R3) x HY(R3), (upn,vs) — (u,v) in LY(R3) x LY(R3) for 2 <
p < 6 and (uy,vy) — (u,v) a.ein R3. Hence u,v > 0 are radial functions. Since J’ |7y, xTy,, (Unsvn) =0,
by the Lagrange multipliers rule, we know that there exists a sequence (A1, A2y) € R? such that

/R3 (Vu, Vo + Vo,Vip)dx + /JRS (ALntUne + A2 popt))dx
- / (mupp + pavpt) + pontne + pubvat))de (4.19)
R?)
_ _ é 2,0 : R?)
B | unpvn > upy = o()||(v, @)l i3y (rey in R,
R3 R3

for every (p,) € HY(R3) x H'(R3). We claim both Ay, and Ay, are bounded sequence, and at least
one of them is converging, up to a subsequence, to a strictly negative value. Indeed, we can using
(un,0) and (0,v,) as text function in (4.19), we have

/ )\17nuidx = —/ |V, |*dz —I—/ (paut 4 pvZu?)ds + B/ ulv, + oVl 1 (msys
R3 R3 R3 R3

/ Ao pvidr = —/ |V, |2dz +/ (p2vh + pv2u?)dx + g/ ulv, + (DYl g (r3),
R3 R3 R3 R3

SO

/ (AMpu2 + A pv2)de = —/ (|[Vun|? + |Vou|?)dz + / (1t + povt + 2pv2u2 )dx
]RB R3 ]RB (4 20)
3 9 '
+ =8| wu,v,dz.
2 R3
By (2.1)-(2.3) and the boundedness of {(u,, v,)}, we can deduce that (A1, A2,,) is bounded, hence up

to a subsequence (A1, A2.n) — (A1, A2) € R?, passing to limits in (4.19), we can deduce that (u,v) is a
nonnegative solutions of (1.1) . Therefore

/ (|Vul? + |Vo|?)dx + / (Au? + Mov?)dz = / (p1u* + pov* + 2pu0?) do + §B uvdz.
R3 R3 R3 2" Jgrs

From (2.1), we can get

1 3 3 3
= / (|Vul? + |Vo|?)dz + / (Mu? + Xov?)dz = = / (u1u4 + vt + 2pu2v2) de+ =8 | wPvdz.
2 R3 2 R3 4 R3 2 R3

Thus we obtain

1 3
/R3 (Au? + Mv?)der = 1 /R3 (u1u4 + povt + 2pu2112) dxr + Zﬁ - u?vdz. (4.21)
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From Py, p,(un,vs) — 0, we have

3 3
/ (IVun* + |V, [?)dz — 4/ (H1up + poviy + 2pulvl) do — 4ﬁ/ uv,dz = op(1). (4.22)
R3 RS RS

Together (4.20) with (4.22), we can get

1 3
Al,nb% + )\gmbg =1 / (Mui + ,uzvﬁ + 2puivi) dx + 46/ uivndfc. (4.23)
R3 R3

When > 0, it is easy to see that at least one sequence of (\; ) is positive and bounded away from 0.
Let n — +o0 in (4.23), we have

1 3
A1b? + Aob3 = 1 /}R3 (u1u4 + pov® + 2pu2v2) dx + Zﬁ . wvdz. (4.24)

We claim that if Ay > O(resp.A2 > 0), then Ay > O(resp.A\; > 0). Indeed, we know that at least one
sequence of ();) is positive and bounded away from 0. If A2 > 0, now we argue by contradiction and
assume that A\; <0, then

—Au = —\ju + fuv + pud 4 pv’u > 0.

Using a Liouville type theorem[ [22], Lemma A.2], we can deduce that u = 0. So, v satisfies that
—Av + v = o3, in R3,

v > 0, in R3,
Jgs vidx = b3, in R3.

Therefore

n—-4o0o n—-+4o0o

1
mg(bl,bg): lim Jg(un,v,) = lim / (ului+ugvi+2puiv7%)dm—ﬁ/ ulv,dz
8 R3 8 R3

_ M 45+
_8/]1{321 dz =mg(0,b2),

in contradiction with Lemma 4.6. Thus, A\; > 0, A2 > 0.
If A1 > 0, now we argue by contradiction and assume that Ay < 0, then

—Avy = —A2v§u2 + pov® + putv > 0.
Using a Liouville type theorem| [22], Lemma A.2], we can deduce that v = 0. So, by the structure of

system (1.1), we get u = 0, which is impossible.
It is easy to see that

1
m;(bl,bg): lim Jg(un,v,) = lim / (|Vun|2—|—|an|2)dx—ﬁ/ ulv,dz| .
6 Jrs 4 Jgrs3

n—-+00 n—-+00

Case 1 If u = 0,v = 0, by compact Sobolev embedding,

) 1
mg(bl,bz) = lim Jg(uy,v,) > lim /]RB)(|Vun|2 + |V, |2)dz > 0.

li
n——4o00 n—+o0 6
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However, from Lemma 4.4, we know that mg (b1,b2) < 0, which is a contraction.

Case 2 If u # 0,v = 0, indeed, if v = 0, by the structure of system (1.1), we get u = 0, so Case 2
doesn’t happen.

Case 3 If u =0, v # 0, we have

1
mg(bl,bg) = lim Jg(un,v,) > lim / (|Vun|2 + |an|2)dx >0,
n—-4o0o R3

n—+o0 6

contradicts with mg(bl, ba) < 0.
Case 4 if u # 0,v # 0, let

Uy = Up — U, Up = Up — U,

from [17, Lemma 2.4], we get

/3 |t |20 | d = /5 |t |? [0 di — /5 lul?|v|?dzx + o(1). (4.25)
R R R

By Brezis Lieb Lemma in [47], we can obtain that

/ U |20 d = / |t [Popda — / lu|?vdz + o(1). (4.26)
So, from (4.25) and (4.26), we have
0= Fp b, (un’ Un) + 0(1) =Dy, by (ﬂn, 571) + Ppy b (uv U) + 0(1)
~ ~ 3 -~ - g 3 9~
— / |V, > + |V, |?)dz — = / (T + pavy + 2puv2) da — ﬁ/ W, dx + o(1).
R3 4 R3 4 R3

It is easy to see that [ps u? < b%, [psv? < b3. From (4.21) and (4.24), we have

A\ <b§ - / u2dac> + Ao <b§ — / vzdm> =0,
R3 R3
/ u? = b3, / v? = b3 (4.27)
R3 R3

mg(bl,bg) lim Jg(un,v,) = lim Jg(un,vn) + Jg(u,v)

n—-+4o0o n—-+4o0o

SO

Therefore, we know that

= lim 1/ (|Vﬂn|2+]V1~)n|2)dx—6/ Uzvndz| + Jg(u,v)
6 Jrs 4 Jus
1
R3

1Al (/ \~n3dx)§ (/3 \%!3%);’} + Js(u,v)

+
ZnﬂToo(sA (V2 + [V5u2)dz + Jo(u,0) > m (b, ba).

Thus, Jg(u,v) = mg(bl,bg) and (up,v,) — (u,v) in HY(R?) x HY(R3), O
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4.2 Existence of a second critical point of mountain pass type
Next, we prove the existence of second critical point of mountain pass type for Jg(u,v) |Tb1 X T, -

Lemma 4.9. Suppose that Jg(u,v) < mg(bl, ba). Then the value t, , defined by Lemma 4.4 is negative.

Proof. From Lemma 4.4, we know that the function W, ,(¢) has exactly two critical points s,, <
tup € R and two zeros c,p < dyy € R with s, < cyp < tup < dyp. If dyyp <0, then ¢, < 0.
Assume by contradiction that dy, > 0, if 0 € (cyyp,tuw), then Jg(u,v) = ¥, ,(0) > 0 contract with
Jz(u,v) < m;(bl, ba) < 0. Therefore, ¢, , > 0. By Lemma 4.4-(2), we know that

mg(bl, ba) > Jg(u,v) = W, (0) > inf W, (t) > Jg(u,v)(Sue * (u,v))

te(—00,cu v
= min {Jﬁ(t* (u,v) : t € R and (/RB(]V(t*u)|2 + |V(t*v)]2)d:v)% < RO}
= J3(sup * (u,v) > mg(bl, ba),
which is a contradiction. d

Lemma 4.10. We have
mg (b1, be) == inf  Jg(u,v) > 0.
(u,v)epbl’b2
Proof. From Lemma 4.2, there exists 0 < Ry < R; such that h(Ry) = h(R;) = 0, h(t) > 0 if and only
if t € (Ro, R1). Let tyq, be the maximum point of the function h(t) at the positive level (Rg, Ry). For
every (u,v) € Py ,,, there exists 7, € R such that

N

= tmama

(/RB(‘V(TU,’U * )2 + |V (Tuw *v)]Q)da:)

and from Lemma 4.4 we know that ¢, * (u,v) € 73(; b then t = t,, ,,, which implies that 0 is the unique
strict maximum of W, ,(t). Therefore,

Ja(u,v) = Wy (0) > Wy o (Tuw) = Jg(Tuw * (u,v))

1
> h((/Ra(‘v(Tu,v *u)|? + [V (Tuw *’U)]Q)d:r)2> = h(tmaz) > 0,
so for any (u,v) € P, , , we have

mg (b1,b2) == inf  Jg(u,v) > 0.
(%”)67’{1,172

O

Next, we use the idea introduced by Li and Zou [28] to give the energy estimate. We observe that

w . ”wIIiQ(RB) 2||w||iQ(R3)w (”wIIiQ(RZS)
A — b2 #%52 b2

)x) is a solution of the problem

—Au+ M= pu® in R3,
u>0 in R3, (4.28)
fR3 uldr = b2,

where w is the unique positive solution of —Awu +u = u3 in R3.
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Lemma 4.11. For any by,bs >0, p > 0,8 > 0, we have
myg (b1, b2) < min{my (0,b2), mg (b1,0)}.

Proof. Let (v, \g) € Tp, Xx RT be the unique solution of equation (4.28) with parameters 2 and be. Let

_ @) 1
u(x) = Clapm> M < 3

p(r) € C5°(B2(0)), 0 < p(x) <1, ¢(z) =1in B1(0).

Then u € H*(R?) and u € Ty, for some suitable c. Therefore, (t x u,v) € Ty, x Ty, for any t € R. So,

2/t
|t % ul*vidr = C’Oe(SQm)t/ gt (e (I))v2(a:)da:,

R3 R3 |x’2m
20t
|t % u|?vdz = Che3—2m) Mv(x)dx.
R3 R TP

From the decay properties of [32] that v decays exponentially

1
v(z) = O(|z|"2e™ l) and |u(z)| < M in R®.

2 1 1
0 </ v (;rjzdx < C(/ 5 +/ \x|71*2me*>‘32|"’c‘) < 400,
RS | 7| Br(0) 17| R\ Bj(0)

1 1
0< / o) g, < c(/ . +/ 2] 73 2me N el ) < oo,
Rrs |7| Bgr(0) 17| R3\ Bj(0)

By the Dominated Convergence Theorem, we obtain that

lim Mv2(az)dm :/ vz(x)d:z = (4 € (0, +00),

to=o0 Jgs  |z[*™

lim Mv(w)d:c = / v(mr)ndac = (3 € (0, +00),

Thus,

to=o0 Jgs  |z[*™ rs 2|

SO
2( .t
|t % ul?vide = Coe(BQm)t/ MUQ(QT)CZ:JJ = Cpe®2MH () + 0(1)) > G (3=2m)t " (4.29)
R3 R3 |l"2m 2
as t — —oo.
2( .t
|t % u|?vdx = Che3—2m)? Mv(w)dm (4.30)
R3 R3 |x’2m
= CpeB2MH(Cy 4+ 0(1)) > %6(3_2’”” as t — —o0.

From Lemma 4.4, we know that ¢, = () is a local maximum of Wy, (t) and (s, ) * (txu,v) € Py,
S0

4

R3
3 3ty 3 3t 3 3t
_ e ,ug/ vide — 2 p/ |t % ul*v?de — 5653/ |t % ul?vdz.
4 R3 2 R3 4 R3

3e3(t+te)
0= Pty * (t xu,v)) = eZ(Ht*)/ |Vul|?dz + e / \Vo|2dx — ,ul/ ulda
R3 R3
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From (4.29), (4.30), (4.31) and let ¢ — —oo, we have

3 3t
\Vo|?dz = ¢ ,ug/ vidz.
R3 4 R3
Since (v, \g) € Tp, X R* be the unique solution of equation (4.28) with parameters pg and by, by the
Pohozaev identity for equation (4.28) with parameters po and by, we can get e3* — 1 as t — —oo.
Therefore, from Lemma 2.1 in [28], we have

3€3t*
th*/ |Vo|?dz — ,ug/ vide < mg(0,ba),
R3 4 R3
therefore

mg (b1,b2) < Ja(te * (txu,v))

e2(t+tx) e3(t+t) A

- /R?’\Vu] 1 Ml/RBudﬁU
3t
- 64 ,ug/ vide — S / |t * u|?vide — 633*/ |t * u|?vdz
R3 R3

e2tx 5 e 4 CoCy CoC

— _ e(3—2m)t _ g~0>2 (3-2m)t
5 R3\Vv]dx 4,u2/Rde 5 B 5 ¢
myg (0,b2) — 700201 eB-2m)t _ 57002026(3_2m)t,

from which, we see that for sufficiently small ¢ < —1, there holds m (b1, b2) < my (0, b2). Similarly, we
can deduce that
mg (bl, bg) < m/g (bl, 0)

O

Lemma 4.12. There is a radial symmetric Palais-Smale sequence of J|Tb1><Tb at level mg 5(b1,b2)
with the additional properties P(upn,v,) — 0 and u,,v; — 0 a.e. in R3. Then up to a subsequence

ny’ n

(tn, vn) — (u,v) in HY(R3) x HY(R3), where (u,v) is a positive solution of (1.1) for some A1, A2 > 0.
Proof. From (4.2), we define the functional J : R x H*(R3) x H!(R?) — R as following

2t

6/ (|Vul? 4+ [Vo|?) dq:—/ e uvdz
2 Jps R3
€3t

- — (u1u4 + vt + 2pu202) dx.
4 Jps

Ja(t,u,v) = Jg(t* (u,v)) =

It is easy to see that J is of class C'!. Denoting J§ = {(u,v) € Ty, x Th, : Jg(u,v) < ¢} and introduce
the minimax class
b1,b
I = {y = (¢1,92) € C(10,1],R x Ty, » x Tp, ) : 7(0) € {0} x By, 7(1) € {0} x J5"* "},
(4.31)

with associated minimax level

b1, by) = inf .
op(b1, b2) = inf max Jo(1(1))
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Let (u,v) € Ty, » x Ty, ,, it is easy to see
/ (IV(Exu)® + |V(t*v)[*)dz — 0 as t — —oo,
R3

Ja(t % u,t xv) = —o0 as t — 400.
From Lemma 4.4, there exists typ < —1 and ¢; > 1 such that

tox (u,0) € Py, b1k (u,) € 73000
and
Yu(t) 1 € [0, 1] = (0, (1 = D)to) + tt1) * (u,v)) € R X T, o X T (4.32)

is a path in I'. Thus, o(b1,b2) is a real number. Next, we prove that for every

v = (v, p1,¢2) € I there exists ty € (0,1) such that a(ty) x (p1(ty), p2(ty)) € Py, 4,- (4.33)
Indeed, v(0) = (0, ¢1(0), ¢2(0)) € {0} x P;;,bg’ by Lemma 4.4 and the fact that ¢ (u,v) € Py, p, if and
only if (¥, ,)'(t) = 0, we have

La(0)x(1(0)p2(0)) = L1 (0),02(0)) > S(401(0),p2(0)) = 0

Since Jg(a(1) * (¢1(1),2(1))) = j:g(’y(l)) < 2mg(b1, b2), from Lemma 4.9, we have that

t(p1 (1) (1)) < O

From Lemma 4.4, the map fo(¢)x(p; (1),02(¢)) 15 continuous in ¢, so there exists
ty € (0,1) such that to( ya(pi(t,)pa(ts)) = 0, so forevery v = (a,p1,¢2) € T there exists t, €
(0,1) such that a(t,) x (p1(ty), p2(ty)) € Py, 4,- This implies that

max Ty > Jo(1(t) = Jslalt) * (pr(b)opalty) > inf s,

7([071]) Pb;,b2me1,rXTb2,7'

So
O’B(bl,bg) 2 inf Jﬁ.

Pbl by mel X Tb2 o

On the other hand, if (u,v) € Py ;,, N Ty, X Tp, ;, then vy, defined in (4.32) is a path in I' with

Jg(u,v) = jg(t, u,v) = max jg > o(b1, ba),
Yu,v ([0,1])
S0
inf Jﬂ > Uﬁ(bl,bg).

Pbl,bQ mel,rXTbQ,r

Thus,
inf JB:O'B(bl,bQ).

Pbl,bQ mel,rXTb2,r
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From Lemma 4.10, we know that

Uﬁ(bl, bz) = inf Jg>02=> sup Jg (4.34)

Pbl,bzmeln'XTbg,r 73;1 UJQm(bl b2)ﬂTb17,«XTb27r

b

= sup Jg.

{0}x Py, {0} x J2mLb2) ATy X Ty

Let F = {7([0,1]) : v € T'}. By the terminology in [ [15], section 5], which implies that {v([0,1]) : v € '}
is a homotopy stable family of compact subset of R x Ty, , x T4, , with extended closed boundary
{0} U ><771;t7b2 x {0} x Jém(bl’bz), and the superlevel set{jg > o} is a dual set for F, which implies
that the assumption in | [15], Theorem 5.2] are satisfied. Therefore, taking any minimizing sequence
{([0,1]), v = (n, P1n, P2.n)} for o with the property that «(t) =0, ¢1,, > 0, @2, > 0 for every
t € [0,1], there exists a sequence (ty, Upn, vn) C R x Ty, , x Ty, » such that jg(tn, Un, Vn) — o(b1, by) and

05ty s Un) = 0, |00, T5 (tns tn, vn) ||, T, =0 (4.35)

nTbl,T‘ nTb2,T‘

[tn| + dist((un, vn), (1,n([0,1]), 92,((0, 1]))) = 0. (4.36)

Let (Un, Un) = tn * (un,vn) € T, » X Ty, . By (4.36), we know that ¢, is bounded and u,,,v,, — 0 a.e.
in R3. From (4.35), we can get

P (T, Un) = 05 J3(tn, tn, vn) — 0,

and

Jg(tn, 0n) @, Y] = ) T (b s v) [(—tn) * (6, 9)] = o(1)[|(—tn) * (&, V)| 1 (r3) < HL (R3)
= o()[1(¢, V)| i1 (r3) x 1 (3

therefore (uy,, v, ) is a radial Palais-Smale sequence of J, B’Tbl,rXTbQ,'r' and hence a radial symmetric Palais-

Smale sequence of jgg|Tbl XTy, ab level o3(b1,b2). By the same arguments as Lemma 4.8, we can prove
prove the H' convergence of the Palais-Smale sequence. We should point out that there are several
differences form the proof of Lemma 4.8. First, to eliminate the disappearance of the solutions, we use
m~ (b1, b2) > 0 to get a contradiction. To eliminate the semi-trivial solution, we use Brézis-Lieb lemma
and Lemma 4.11 to get a contradiction.

Hence,

mg (b1, bo) = lm Jg(Up,0p) = lm Jg(wn, on) + Ja(u, v)

n—-+o00 n—-+o0o

= lim [é/ (|Vw,|? + [Von|?)dz — ﬁ/ w o*ndx] + Jg(u,v)

n—-+00

ngrfoo [é/ ([Vwn|? + |V, |?)d _ Bl </ |wp, | d:c)s (/R3 |an|3d:v>3] + Jg(u,v)

1
> lim / (IVwnl* + Vo) dz + Jg(u,v) > my (b1, ba).
R3

n—+o0 6

v

Thus, Jg(u,v) = mg (b1, b2) and (tn, vy) — (u,v) in H'(R3) x HY(R3). O
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Lemma 4.13. We have

_ _ i '
myg (b1, b2) (u,v)eTIbIll,TbeQ,T Tg}g{ J(t * (u,v))

Proof. On the one hand
mg (b1, b)) = inf  Jg(u,v) = Jg(u,v).

(u,v)GP{LbZ

Then, by Lemma 4.4, we have

myg (b1, b2) = Ja(u,v) = max Ja(tx (u,v)) > (u’v)eTi:if;Xwa max Ja(t * (u,v)).

On the other hand, for any (u,v) € Ty, , x Tp, ,, we have t,,, * (u,v) € Py, 5, and hence

= >m> .
1§1eaRxJ5(t* (u,v)) = Ja(tuw * (u,v)) = mg (b1, b2)

O
Before giving the estimate of mg(bl, ba), we would like to study the dependence of mg(bl, by) on .
Lemma 4.14. For any 0 < 81 < B3, then m@(bh by) < 'mgl(bl, ba) < my (b, ba).
Proof. By Lemma 4.13
myg, (b1, b2) < max Jg, (¢ x (Ug,, U, )) < max Jg, (¢ x (Ug,, U,))
= Jp, (ug,, vp,) = mg (b1,b2),

mgl (bl, bg) S I?E%é( ng (t* (’lNJ,Q,:JQ)) S I{lEaRX J()(t* (ﬁo,ﬁo)) = Jo(ﬁo,fﬁo) = mg(bl, bg).

O

Proof of Theorem 1.3. Let us consider a minimizing sequence (uy,, v,) for Jg(u,v) |a Ry + We assume
that (up,vy,) € Ty, x T}, is radial decreasing for every n. Furthermore, by Lemma 4.4, for every n we

can take sy, v, * (Un, V) € P;M such that ( [ps (|V (Sup,m * un) >+ [V (Sup,0m *vn)P)da;)% < Ry and

J5(Su * (tn, vy)) = min {Jﬂ(t* (tn,vn) : t € R and </RS(]V(t*un)\2 + |V(t*vn)|2)dx> t < Rg}
< Jg(un, vy).

Thus, we obtain a new minimizing sequence {wy, op} = {Su, un * Un, Sup,vn *On } With (wy, 0y) € Tp, . X

Ty,, NP, radially decreasing for every n. By Lemma 4.5, we have ( [gs(|Vw,|* + \Van\Q)dx)% < Ry
for every n and hence by Ekeland’s variational principle in a standard way, we know the existence of a
new minimizing sequence for {u,,v,} C Ag, for mg(bl, ba) with || (un, vn) — (W, op)|| = 0 as n — +oo,
which is also a Palais-Smale sequence for Jg(u,v) on Ty, x Ty,. By the boundedness of {(wp,on)},
| (tn, vp) — (Wn, op)|| = 0, Brézis-Lieb lemma and Sobolev embedding theorem, we have

Py, by (Un, vn) = Py, p(wn,0p) +0(1) = 0 and u,, ,v, — 0 a.e.in R3.
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Hence (uy,,v,) satisfies all the assumptions of Lemma 4.8, as a consequence, up to a subsequence
(tn, vy) = (u,v) strongly in HY(R?) x H'(R?) and (u,v) is an interior local minimizer for Js(u, V)| g, -
Finally, we prove that (u,v) is in Pbt’bz (u,v). i.e. B [ps uvdz > 0. Indeed, from (up,vy,) € P;m (u,v),
we have [ ng, w?vdx > 0. Assume 8 ng u?vdr = 0, then from Pohozaev identity, we have

3
/RB(|VU|2 + [Vo2)dz = 1 /Rs(ulu4 + pov* + 2pu?v?)de.

Thus, from (2.1)-(2.3), we have

4
3,“1

3
/ (|Vul|? 4+ |[VoH)dz = = / (rau® + pov® + 2pu*v?) da
R3 R3

3#2
03 451HVU||L2(R3

C'3 4b2||VUHL2(R3)
3
+ ZpCé‘:Abf b; [uwniw) + 1190l 5]
3
2

11
< =C34(paby + poba + pbib3) [HVUH%Q(H@) + ||VUH%2(R3)] :

B oo

S0,

4
1Vl gy + 190030055)|* 2 — (4.37)

3C3 4 (p1b1 + p2ba + pb7 b3)

N

From Corollary 4.1 and the definition of Ry in Lemma 4.2, we have

1
3 ~ 2
1Vl gy + 190022z | < Ro < 7= — (4.38)

303 4 (1b1 + p2by + pb7b3)

a contradiction. Thus 8 [ps u?vdz > 0 and (u,v) € 73;; b, (U, v). From Lemma 4.5, we know that (u,v)
is a ground normalized solution. From Lemma 4.12, we get a second critical point of mountain pass

type for Jg(u,v) |1, xT,,-

Next, we prove the second part of Theorem 1.3, that is the limit behavior of the ground state
solution as 8 — 0.

For by, by > 0 fixed, from the proof Lemma 4.2, we can deduce that when 8 — 0, then Ry(b1, b2, p, 8) —
0. By corollary 4.1, when (u, ) is the ground normalized solution obtained in Theorem 1.3, then

1
([ (0P +[90)de)® < Rolb,ba,p.5) -0
R

and

0 >m+(bl,b2) = Jg(u U)
2;/ (IVul® + |Vo|*)dz — Dy ( / |Vul? dx — Dy / Vvl dﬁ

3
= Da{ [ (Val? + VeP)iz)E = |BIDA( [ (Val? + [Vf)ie)

> h((/RS(|Vu|2 + |V )dﬂz)i) — 0,

3
1

40



thus
mg(bl, bg) — 0.

Denote {(ug,vg) : 0 < 8 < B} with 3 small enough. By the same arguments as Lemma 4.8, we can
obtain the H'! convergence. First, to eliminate the disappearance of the solutions, we use Lemma 4.14
and 0 < mg (by,b2) < mg (b1,b2) to get a contradiction. To eliminate the semi-trivial solution, we use
Brézis-Lieb lemma and energy comparison to get a contradiction.

Hence,

mq (b1, b2) = limy Jg (g, Ug) = limy Jg(ws, o) + lim, J5(u, 0)

|1 2
= []311)% [6/ (|Vwg|* + |Vog|?)dz — = wﬁagd:z] + hm Jg u,v)

1 o~
> lim = Rg(ywﬁﬁ + |Vog|?)dx + éii% J3(W,0) > mg (b1, ba).

Thus, limg_, J(Ug, V) = mg (b1, b2) and (ug, vg) — (4,0) in HY(R3) x H*(R?). O

5 Proof of Theorem 1.4

In this section, we give a refined upper of mg (b1,b2) and search for (A1 p, by A2.b1 bys Uby by s Uby by ) SOLVING

—Au+ Mu=Puv in R3, (5.1)
—Av + Av = §u2 in R3, '
satisfying the additional conditions
/ u?dr = b? and / v2dx = bl (5.2)
R3 R3

Denote )
Jo(u,v) = / (|Vul? + |Vo|?)dx — 6/ w?vdz,
2 R3 2 R3

on the constraint T4, x Ty,.

P,?m (u,v) := {(u,v) € Ty, x Ty, : Pl?l’bQ(u,v) = 0},

where

Pbl b2(u v / (’VUP—F‘VU‘ )dl'— ,3/ wvdz.

Then, the solution of (5.1)-(5.2) can be found as minimizers of

mar(bl,bg) = inf Jo(u, ’U) > —0oQ.

Tbl XTb2

If (ug, vp) is the unique positive solution of (1.12), then (ug,vo) = (v28~'w, 7 w), and w is the unique
positive solution of (1.13).
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Let

6 4 8 2 14 6 12 8
_ 27%b7b3 0y — B2b5 b3 I - 26%b° b3 I, — 4847 b3
2 3 - 1 3 - 3 ) - 4 )
165”wH%2(R3) 165”wH%2(R3) 165”“’”%2@3) 165H7~UH%2(R3)
128 16 4
484 b3 Brop b3
A1,171,172 = ﬁ’ )\2,b1,b2 = #7
1671l o, 16 1] )
we have following lemma.
Lemma 5.1. (5.1)-(5.2) has a unique positive solution
(A1 by bos A2,61 bs Lo (612), Lavo(62)).
Moreover,
208 1 16 14
1 b 5 b5 5 5
mg (b1, b2) = Jo(Liug(61), Lavo (b)) = —= bl SR IVl 72 gs)-

616l 167l
Proof. By elementary calculation, we have

(ALb1,bo> A2,b1,bes L1uo(012), Lovo(O2))
is the unique positive solution of (5.1)-(5.2). Furthermore, we have

ma'(bl,bz) = Jo(Liup(b1x), Lavo(O2z))

1rL}
=5l 91/ |V dx+/ | Vol daz}

Ll -2 L2 —2 2
=—= _2E5 + 9*25 } Vw72 gs)
22 8 16 14
1 4541)15 62 + B4b15 b25 ] ”

2
6L 165Hw”L2(R3 165”“"‘%2(

w72 (gs)-
R3)

Lemma 5.2. We have

16 14

22 8
BRI b7 b3 b5 by
[ B 2 /3 1 Y9 ]HV

mg(bl,bg) < m(‘f(bl,bg) =
167 feolSagms) 16 [0l

Proof. Since

w”%%RB)-

1/ (|Vul? + |Vv|?)dz — p u*vde

2 R:a 2 R3

1 Blr,28 13 s
> 5 [+ 190 = G0k + 508 [1Vulges) + 190000

o(( [ (vul + [9)da)? ).
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where

~ ~ ~ 3 3 2
It is easy to see that ¢g(t) < 0if ¢t € (0,¢) and g(t) > 0 if ¢t € (¢, +00), where t = [|ﬁ|(%bf + %b;)Cg’B] .
Since Jo(LluO(lec), Lgvo(egx)) = mg(bl, b2) < 0, we get

[/R3(|VL1UO(‘91$)\2 + |V Lavg(f27)| )diﬂ}é

From Lemma 5.1, the definition of Ry in Lemma 4.2 and the definition of ¢, we have t < Ry,
| L1uo(612)|[72ms) = 1, [|Lovo(B22) |72 (gsy = b3,

and
1
[/ (IVLyuo(012) + |VL2v0(02x)|2)dx} > <7< Ry
RS

Therefore, we have

mg(bl, bg) = Ii4nf Jﬂ(u, U) < Jg(LluO(QlfL‘), Lgvo(egl‘))
Ro
< Jo(L1UQ((91.T), szo(egx)) = mo(bl, bg)
16 14

45 b3 45 s
1 by b3 by by
4 n 5 ]HV

= w”%?(ﬂaﬁ»)-
61163 [l S2qe 167 fu0llSs g

O

Proof of Theorem 1.4. Let by i, boj — 07 with by j, « by as k — +oo and (ubl‘k,bm, Ubl,k,bz,k) € Ag,
be a positive minimizer of m(by x, b2k, Ro)
for each k£ € N. From

Py by (Uby 4 b 10 Uy b g,)

3
_ 2 2 4 4 2 2
- /%3<|vu{)17k7b2,k| + |vvb1,k7b2,k| )dx - Z RS (/‘I’lubl’k,bgyk + Iu'2vb17k,b2,]€ + 2pub17k,bgﬂkvb1’k,b2,k> d.’E

3
2 _
- Zﬁ BN ubl’k,bg,kvbl,kvblkdx =0,

we have

1 2
Jﬁ(ubl,k7b2,k7Ubl,k:bQ,k) = 6 /}RS(‘vubl,k,bzk‘ + ‘val,k,bz,k‘ )dw - / ub1 kb2, 1 Vb1 1,2, kdm

1
- 6 /R:&(’vubl,k:bz,kP + ’vvak,bz,kP)dx

1
4 4 2 2
+ 4 R3 (ulubl,k,bzk + H2Ub, 4 bo g + 2publ,kab2,k~Ubl,lme,k)dx

4,28 4,8 1
5 5 5 5
[ Ap bl kb2k g bl,kb2,k

165 HwHLz (R3 163”“’”9 R3
) (R3)

IVl 72 gs)-
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Thus

N
bbb
e oL [Vl < [Vt i+ V00 P
165 Hw||L2(R3 163 ||wHL2(R3) R3
and
2 2 3|ﬁ’ 2 4

R3(|vub1,k7b2,k| + |vvb1,kvb2,k| )dm < T [(Bbl 1 b )C3 3} :

Therefore

- L
[ 4B b15kb25k i p bfkbfk

165||wHL2 R3) 165Hw||%2(R3)

NS (5.3)

318 !
< /]Rs(|vubl,k:b2,k|2 + |vvb1,kab2,k|2)da§ < [ 2 [( b12k:+ b )033]] .
When by v b, we can get
) ) 22 8 16 14
/Rg(|vub1,k7b2,k| + |vvb1,k7b2,k| )dx bfjkbik + b15,kb25,k' (5.4)

From (2.1)-(2.2) and (5.3), we have

1 4 4 2 2
4/ (ulubm,bz,k T 12V, by T 2’0ub1,k762,kvb1,k7b2,k)dx (5:5)

< L (G o + G+ )l 0, )

3

2

H1+p

H2 +p
C§,4bl7/€ + 4 C§,4b2,k} |:Hvub1 kb2 k H%Q (R3) + vabl,k,bz,k H%?(R?’)}

<[
<[5 L0 b+ 0O [325’[(3bfk+ Sb )cgig]r 0

as k — 4o0. Since

,84()% b% B4bL56 b%
11 4
mg(b1,k,b2,k)< 7[ 1,kY2,k 1,kY2,k

| w”%mRB)a
165H’LU||L2(R3 165||’LUHL2(]R3)
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we obtain

4 22 8 4 16 14
T a2 2 Wil L2(r3)
6163 Hw”%Q(R3) 163 |’wH%2(R3)

> mig (b, bak) = Ja(Uby . bo k> Uby b i)

1
> inf {/ (’VU‘2+|VU‘2)d£U—ﬁ/ u%dx}
Tbl,kXsz,k 2 R3 2 R3

1
4 4 2 2
4 - (Mlubl,mbzk + H2Ub, 4 bo e + 2pub1,kab2,kUbl,k»bQ,k)dx

4,2 8 gl 1
— 1 46 bl?kaE,k 5 bf:kb;:k 9
B _6[ 3 6 T2 6 :|||vaL2(R3)
165 [[wl|> sy 165 w]1%a gy
1 B A ) )
~1 /]R3 (/Llublyk,bzyk + M2V, 4 by ), + 2pub1,k,b2,kvb1,k,b2,k)dx
5,28 4,8 14
5 bb 5 15
o i £ T S R O
6 £ 2 L2(R3)
0 165”w”%2(R3) 165||w”g2(R3)
6
FLEP H2+ Py 38|r,2,8 1.3 .
_ [Tcg,ﬂ?l,k + 1 03,46274 [2[(3bik + 565,003,3] .
When by ; « by, we can get
22 8 16 14

Mg (b1 ba k) o b7b3 1 + b0

and
1 6 14

22 8 1 1
2 2 /B 2 RN 5 15
) /R?’(’vuh,k,bzk’ + ’vvbl,kabZk’ )dz — 9 /RN ubl,kbe,kvbl,k»bZ,kdx - bl,kb2,k + bl,ka,k'

The Lagrange multipliers rule implies the existence of some A, A2 € R such that

/(vubl,k’bZ,kaO)dx—"_/ (Al,kub1,k7bz,k¢)dx
R3 R3

_ 3 2
- /]R?’ (Mlubl,k,bzk@ + pvbl,k,bz,kubl,k,bz,k@)dx + /]R3 Uby jo,ba, i Vb kb2, 1 P>

/(vvb1,k7bz,kvw)dx+/ <)\27kvb1,k7b2,kw)dx
R3 R3

3 2 6 2
= \/R?) (szbl,k,b27kw + publyk,bgk,Ubl,kbe,kw)dx + E \/Rf’) ublyk,bg’k,(/%

for each o, € HY(R3). Taking ¢ = up, , b, , and ¥ = vp, , p, ., We have
2 _ 2 4 2 2
ALy = — /R3 Vb, by | “d + /}R3 (KU, by T PV, by Wby o ba )T

2
+ ’B/ Upy 1o 1 Vb1 1,02 k0
g3 Lkb2,

45

(5.6)

(5.10)



2 2 4 2 2
szka,k - /]RS ‘vvbl,kbe,k‘ dx + /]Rg(ulvbl,kvblk + pvbl’k,bg’kublyk,bg’k)d‘x

8 2
+ 5 /]‘{3 ubl’k,bg’kvbl,kablk'

Since Py, b, (ub1,k7b2,k7vb1,k,b2,k) =0, we get

(5.11)

3
2 2 2
(’vubl,k:bZk’ + ’vvbl,k,bZk’ )dw - =B Up, 4.,bo kvb1,k7b2,kdx (5-12)
R3 4" Jgn LR
3 4 4 2 2
T4 R3 ('ululh,k,bzk + H2Upby 4 bo i + 2pub1,k7b2,kvb1,k:b2,k) dr = 0.
Hence, from (5.10), (5.11), (5.12) and by j « by i, we have
2 38 2
- / <‘vub1,k7b2,k‘ + ‘vvbl,kvbQ,k‘ )d:L‘ + 5 Wby 1bo 1 Vb1 osb2 i
R3 2 R3 ’ ?
<Agb? g+ hopbs o= | (|Vu >+ |Vv ?)da:
= ALKV K 2,kY2 k - b1 kb2, K b1,k,02,k
— 1 up + ugvp + 2pu? v? dx
2 Jps H1Wp, 4 by T H2Vby 4 by PUy 4. b2 1 Vby ,bo i, )
combing with (5.4) and (5.9), we get
) 5 22 8 16 14
5 5 5 5
ALEDT gk + A2kb5 g o 0 bs 4 077005,
4 4
thus Aj g v bl,k and Agj v bLk when by~ ba k.
Denote
5,8 4 2 2 LN L1208
26 bfk 2.k B7b7 kb3, 260,03 ), 4B670b3
1Lk = ok =—1 — > L1k ET— Lop=—5—"—".
167 165 w25 g, 165 ] g 16 o] g,
Define
~ -1 -1 ~ 1 —1
Wby gobar = Ll,kubl,k:bQ,k(el,kx>7 Uby gsbok = L2,kvb1,k7b2,k (62,kx)7
then

/RB(‘vabl,k»bZ,k‘Q + ‘va}bl,k’bZ,kP)d‘r

01.% 2
= ’ \Vub , ’V’Ub b ’ dx
L%’k 1,k L%k 1,k502 )k
4
163”“’”?;2 R3 165Hw||L2 R3
- [ 22 é ) + 16 ; )}/ (|Vub1,k7b2,k‘2+ |val,k7b2,k|2)dx
25651fkb5,k 265070y, T TF
4 2
163 ] Sagpe 163082 m7 315 [
<|—ai2 et — H : [( bfk+ b3 )C§,3H :
ﬂﬁbﬁbé ! 2/36b15,kb25,k
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_ _ 07 03
/]Rg(‘ubl,k,bz,k‘Q + ‘Ub1,k,b2,k ’2)dx = L27 ‘ubl kb2 K L ‘Ub1,k,b2,k ’2dx (5-14)
2||wHL2 Rr3) T ||7UHL2 R3)
(2 ’
0 63
ul 2,k 4
/ <L4 H1Up, 1 by g + “2L4 Uby b2 k)dm (5.15)

~4 ~4 ~2 ~2
< /R (ulubl,kvbQ,k + H2Up; 4 bo g + 2publ,k7b2,kvb1,kvb2,k) dx

9 9
_ ul 2,k 4 2 2
/R?’ (L4 kul b1,k,b2 Kk + p2 L4 kvbl ksb2 K + 2publ,k’b2,kvb1,k7b2,k)dx

03 . Hg,k 4
< L4 = (1 + )R, by + (24 ) T4 by pba ) O
2,k

By the definition of 61y, 02 %, L1k, Lok, it is easy to see that

/R3 (Mlubl,k7b2,k + H2Uby 4,,by s + 2pul2’1,k7b2,kvgl,k7b2,k)dx — +oo as k — +oo. (5.16)
From (5.13)- (5.14), we know that (@, , 5, > 0, b, ,) is bounded in H'(R?) x H*(R?). Then, we have

(ﬂbl kb2 k (x)75b1,k,b2,k (:U)) - (ﬂ,T)) e (Oa 0)7
for some (@,7) € H'(R3) x H'(R?). Thus, we see that (Wb, 4,021 (), Vby 4 by, (7)) satisfies

L2 2 L
U 1,k ~3 2 k "’2 2,k ~ ~
_Aubl,k,bz,k + 92 ub1 Jsba e = H1 92 . Up) kobo g t g 07 Yby gsbo b1,k7b2,k + 8 02, Uby 12,1 Vb1 1,2 k0

- Ao L2 =3 L2 i —
_Avak,bQ,k + 92 7)b1 b2 = H2 922 . Uy, kb2 k + p92 ub1 kb2 ke b1 kb2, k + 27T, klek b1 kb
(5.17)
By the definition of 61 1, 02, L1k, L2, we have
2 4% s 2 45
5 5 5 5
Ly, 870,703, Loy, 8707 1ba),
02~ a2 1 — 0, 02~ ab 1 0,
1,k 165Hw”L2(R3) 2,k 165”w||L2(R3)
2 4% 3 2 453 2
5 5 5 5
Loy AB7bDsy, 50 Ly, A4B7b7bs, Loy iy 1
2 4 ’ 2 4 » p2 T b 5 — b
Ol 165 w4 gy 0o 165 w|Ls gy 01k Lokt
and there exists AT > 0 and A5 > 0 such that
A A
e%’k—> 1 92k—>)\2asl<:—>+oo
1k
Therefore, (u,v) solves that
—Au+ XNu=Buv in R3, (5.18)
—Av + Xjv = §u2 in R3. '
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From Theorem 1.2 of [49], we know that when A} = A3, then
(VaX; B~ w((A) ), A A w((A)) 2 ))
is the unique positive solution of above system, where w is the unique positive solution of
—Autu=1u% ue Hl(]RS).

Texting (5.17) and (5.18) with wp, , b, , — U, Up, ; by, — ¥ respectively, we obtain
- ALk~ ~
N2 _ _
/ ’v(ubl,k,bz,k —u)|*dx +/ (9 Wby b2k ATU)(ub1,k7b2,k — )
R3 R3
-8 /R3 (abl,kybzkabl,kab&k - ﬂ@)(abl,mblk — 1)

— / IV (@i, gy — @)+ ] / by s — 02 = o (1),
R3 R3

. _ A2k~ s B
/RS |v(vb1,k7b2,k - U)de + /]1%3(9 Uby jo,ba, Aé”)(vbm,bzk — )
2k
5

9\ i~ _
( Upy gyboy — U )(Ubl,k:bZk - U)

/ IV s, = P 5 [ [ = 0 = 0u(1).

Therefore
1
2(A))3 ||w||§2 ) ,
= [V2X 87 w((A)22) 172 msy = 1@l Z2gs)
03 2[|wl|72 gs
_ ) 25 L2(R3)
= kEToo/ ‘ub1 k b2k’ dx = kgrfoo L2 /]R3 ‘ubl,kbe,k’ dx = Tﬂ
1
(AD)z[[wl| s gs _ 1
g = 18T AN 20 ey = 191 2qes)
03 ||w|\22 3
o . ~ 2 1,k 2 _ L2(R3)
= kgr-{loo RS ’Ubl,k7b2,k’ dx = khr-{loo L%k /3 ’vb1,k7bz,k| dx = T?
therefore
AT=X =1

From (5.17), (5.18) ,(5.19) and (5.20), we have that

(abl,k,b2,k75bl,k7b2,k) - (ﬂﬁ_1w75_1w) in Hl(R3) X HI(RS)-

(5.19)

(5.20)

Moreover, as the limit function (v28 'w, ~'w) is independent of the sequence that we choose, which

implies that the convergence is true for the whole sequence. Therefore

(abl,k»bQ,k’:ﬁbl,kabZ,k) = (Liiubl,kvbQ,k(eii(x))’Lil]%vbl,mbz,k(ei]];;(x))) — (\/iﬁ_lw’ﬁ_lw)7

in HY(R3) x HY(R?) as by, ba — 0 and by j - b .
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Next, we prove Theorem 1.5. In order to prove Theorem 1.5, we first give following lemma.

Lemma 5.3. Let by, 52,~7'1, 79 > 0. There ezists E = 5(51 +71,b2 + 12) > 0 such that if 0 < by < by,
0< by <by and 0 < B < B, then

(Z) 2R(2)(51 +7‘1,52 + T2, P, ﬁ) < R%(gl,gz,p,ﬂ),

(ii) for any d; > 0, ¢; > 0,i = 1,2 such that d? + ¢ = b}, i = 1,2, then R3(c1,c2,p,8) +
R}(dy,da, p, B) < R}(b1,ba, p, B).-

Proof. By Lemma 4.2, 0 < Ry = Ro(b1, b2, p, 8) < R1 = R1(b1, b2, p, 8) are the roots of

11 1 3 1 1
g(t,bi,b2,p, B) = 5“ - Z(Dl + Dy + pD3)t2 — §|5’D4 = @(t, by, b2, p) — §|5|D4

and the existence of Ry and R; is guaranteed by the condition

38\ . I 1 26
8 <2bf + b§> C3aCR 4V by + uabs + phib3 < =3, (5.21)

Let by, by, 71, T2 > 0 and consider the range of 3 > 0 such that (5.21) is satisfied with by = by +71, by =
by + 7o. Taking the limit as 3 — 0T, by the continuity we have that Ro(b; + 71,b2 + 72, p, 3) — 0 and
R1(by + 71,b2 + 72, p, B) converge to the only positive root of @(t,by + 71, by + T2, p). Particularity, for
every by, by, T, T2 > 0 fixed , there exists 3 = 5(by + 71, by + 72) > 0 such that

ZR(Q)(El + 7'1,62 + 12, p, ﬁ) < R%(Bl + 7’1,52 + Tz,p,ﬁ) whenever 0 < 8 < 5 (5.22)
Let 0 < by <bj+7,0<by<by+mand 0< B < B Under the condition of (5.21), we have that

atg(ta b17 b27 p?/B) = 8t<p(t7 b17 b27 P)

It is easy to check that ¢(t, b1, ba, p) has a unique critical point on (0, +00), which is a strict maximum
point in ¢ = t(by, ba, p) with 0 < Rg(b1, b2, p) <t < R1(b1, b, p), therefore

atg(RU(blaanp)?blvb%pa B) = atSO(RO(bla b2>p)7b17b27p) > 0.

By the implicit function theorem, we know that Rg(b1,bs,p,3) is a locally unique C! function of
((b1, b2, p, B)) with

atRO(blv b25 P, 5) o _ablg(RO(bh b25 pr)v bla b27p7 B)

= > 0,

abl atg(RO(blab27p)7blab27p7 B)
8tRO(b17b2ap7/8) _ abQQ(RO(bl,b2,p),b1,b2,,0, B) >0
8b2 8tg(R0(b17b2apa ﬁ)ablvb%p’ﬁ) '

Similarly, we can proof that Ry (b1, bs, p, 3) is a locally unique C* function of
((b1, b2, p, B)) with

atRl(bla b?a pvﬂ) o _8b1g(R1(b17 b27 P75)7 blu 627P7 B)

= <0,
oby Org(Ry(b1, b2, p), b1, b2, p, B)

Oy R(b1,b2,p,B) Oy g(Ri(br, b2, p),b1,b2,p, 5) <0
by 0¢g(R1(b1,ba, p, B), b1, b2, p, B) .
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So, Ry is monotone increasing inﬁbl,bQ %nd Ry is monotone (iecreasing in by,by. By (5.22) and the
monotonicity of Ry, we have 2R3(by + 71, bs + 72, p, B) < R3(b1,b2,p, 8). For any d; >0, ¢; > 0,i=1,2
such that d% + c? =0bi, i=1,2, then

R(%(Clv C2, P, 5) + R%(dla d27 P B) < 2R(2)(b17 b27 P, B) < 2R(2)(El + 7—1762 + 72, P, 5)

< 2R} (b1, ba, p, B) < Ri(b1, b2, p, B).

O

Proof of Theorem 1.5. Suppose that there exists a ¢g > 0 , a sequence of initial date {ul,v2} C
H'(R3) x HY(R3) and a sequence {t,} C RT such that the solution (uy,,v,) of (1.14) with the initial
date (un(0,-),v,(0,-)) = (un(-), vn()) satisfies

. 1
dZStHl(R3)><H1(R3)((u2>U?L)vMbhbz) < ”

and
dist g w3y x i (r3) (Un (tns ) On(tn, +)), My by) = €o

Without loss of generality, we may assume that {(u2, v0

)} € Tp, X T,, since
diStHl(RS)XHl(RS)((ug, Ug),Mbth) —0as n— +oo.

So, \|u2|yL2(R3) =bip, > b1 HUS,HL?(R?)) := bap, — by and Jg(ul, v2) — mg(b1, b2). By (i) of Lemma 5.3
and the continuity, we can deduce that

/ (IVul]? + |V [P)dx < Ro(by + 71, b2 + 7, p, B) < Ri(bin + 71, b2n + 72, p, B)
R3
for every n large enough. Since

/3<‘vu2‘2 + ‘VUSLP)CL/I; € [Rﬁ(blna b2nap7/8)7R1<b1nab2n7pa B)L
R

we have Jg(ul,v9) > 0. Thus, we can deduce that

n’-n

/3(\%2\2 +Von|")dz < Ro(bin, ban, p, ) < Ro(b1 + 71,02 + 72, p, B).
R

Since (ud),v9) € ARy (bin banp.5)s i (Un (s ), Vp(tn, -) exist from A sy, by p.5) there exists t, € (0, Tinax)

n»-n

such that
[ (90t ) + 1900 )P = Robras b, s B
R

however, Jg(un(tn,),vn(tn,:) > h(Ro) = 0 contract with the conservation of energy. Therefore, the
solutions starting in Agy (b, by,,p,8) are globally defined in time and satisfy

/3(’vun(tna )’2 + ’an(tn, ')’2)dx < Ro(bin, ban, p, B) < Ro(by + 71, b2 + 72, p, B)
R

for every t,, € (0,400). Then by the conservation laws of energy and mass
{(un(tn,"); vn(tn,))}
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is a minimizing sequence. Thus,{(un(tn, ), vn(tn,-))} is a minimizing sequence of mfj(b1,b2). Then
according the proof of Theorem 1.3 there exists (ug,vg) € My, p, such that (up(tn,-),vn(tn, ) —
(ug,vg) in HY(R3) x H'(R?), which contradicts to

dist g w3y x i1 (R3) (Un (Ens ) On(tns +)), My by) = €o-

6 Proof of Theorems 1.6 and 1.7
In this section, we first give some preliminaries. For N = 4, we have the Sobolev inequality
SllullFasy < IVullogs, Yu € DV(RY),

where D%2(IR?*) is the completion of C2°(R*) with respect to the norm ||u||p12 := || Vul|z. For2 < p < 4,
the Gagliardo-Nirenberg inequality (see [39]) is

1—
lullzo sy < Capll Tl o lullialtn, ¥ u e HI®Y, (6.)
where Cy,, > 0 is a constant and ~, = @. If p=4, v, =1, then S = |Cy,| 2

We have the following already known results.

Lemma 6.1. ( /28, Corollary B.1]) Suppose (u,v) € HY(RN) x HY(RYN) (N > 3) is a nonnegative
solution of (1.1)-(1.2), then (u,v) is a smooth solution.

Lemma 6.2. ( [28, Lemma 2.3]) Suppose pi1, ji2, 8 > 0 and (u,v) € HY(R?*) x HY(R*) is a nonnegative
solution of (1.1)-(1.2), then u > 0 implies Ay > 0; v > 0 implies Ay > 0.

From [12,38], we get the least energy solutions to (1.16). Note that (1.16) has semi-trivial solu-
1 1

tions (uy 2Ue,0) and (0, uy 2U,). Here, we are only interested in nontrivial solutions of (1.16), this is
(VE1 Uz, VkoU,), where Ug is defined in (1.15), k; = p2p:;712#2 and ko = p2p::11u2' The main results in
this aspect are summarized below. Next, we turn to the related limiting elliptic system (1.16).

Lemma 6.3. ([12, Theorems 1.5 and 4.1]) For p1, 2 > 0, if 0 < p < min{py, po} or p > max{pui, 2},
then any positive least energy solution (u,v) of (1.16) must be of the form

(uvv) = (\/EUE’ \/QUE)

Solutions to (1.16) correspond to critical points of the functional

1 1
I(u,v) = /]12{4 §(|Vu\2 + |VU2|)d:L‘ — Z(u1]u|4 + ,u2|v\4 + 2p|u|2|v|2)daf;,

u,v € DY2(RY). From [38, Lemma 2.1], if 0 < p < min{yuy, p2} or p > max{u1, ua}, (uo,vo) is a least
energy solution of (1.16), we can deduce that

ki + k
I(ug, vo) = 0 282 and Sy, = Vi + k2S.

o1



We first study the case § <0, u; > 0(i = 1,2) and p > 0.

Proof of Theorem 1.11. If § < 0, let (u,v) be a constraint critical point of Jz on Ty, x Ty,
and u,v > 0. Therefore, (u,v) solves (1.1)-(1.2) for some Aj, A2 € R. By the Pohozaev identity
Py, p,(u,v) =0, we have

4— N
0 ([l Taggey + p2llvl ey + 20lluo] 72 ga))
6—N
+—05 lu|?vdx
47 Jan

Mullf gy + AallvlZ2ge) =

For N = 4,5, then one of the A1, A2 is negative. With out of generality, we assume A\; < 0. It follows
from Lemma 6.1 that (u,v) is smooth, and is in L®(RN) x L>*(RYN); thus, |Aul, |Av| € L®°(RY) as
well, and stand gradient estimates for the Poisson equation (see formula (3,15) in [14]) imply that
|Vul,|Vo| € L®(RY). Combining the fact that u,v € L2(RY), we get u(z),v(z) — 0 as |z| — oo.
Thus, we have

—A
—Au:(—)\1+ﬁv+u1u2+pv2)u271u>0

for |z| > Ry, with Ry > 0 large enough, and then u is superharmonic at infinity. From the Hadamard
three spheres theorem [37, Chapter 2|, this implies that the function m(r) := ‘nTin u(x) satisfies

=T
m(ry) (T‘Q_N - rng) + m(re) (rf*N — rg_N)

"N _2-N
LT

VRy <ri <r<rsg.

m(r) >

Since u decays at infinity, we have that m(r2) — 0 as 12 — 400, it is not difficult to see that r —
rN=2m(r) is monotone non-decreasing for r > Rg. Moreover, m(r) > 0 for every r > 0 because u > 0
in RN. Thus,

m(r) > m(Ro)RY 2 - 72N Vr > Ry.

If N =4, it follows from u € H'(R") that u € L%(RN). We deduce that

_N +oo N +o00
™2 =C | m@)F=N e >0 | —dr = 4o,
W(RN) Ro Ro

~

with C > 0. This is a contradiction. If N = 5, the fact that v € H'(RY) does not imply that
u € L%(RN) or that u € LP(RY) for some p € (0, 2). But, imposing such condition as an
assumption, we still reach a contradiction.

If N >4, and u € H'(R") is a radial function by [4, Radial Lemma A.II], there exist C' > 0 and
R; > 0 such that

lu(z)] < C|x!7¥ for |z| > Ry.
If B <0, let (u,v) be a non-trivial radial solution of (1.1)-(1.2). Similarly, we assume A; < 0. Setting
p(x) = —pv — pu? — pv?, then
—Au+p(z)u = —A\u. (6.2)
Therefore, for N > 4,
lim |z||p(x)| < lim [CM% +Clz*N] =o0.

n—-+oo n—-+oo
By Kato’s result [24], i.e. Schrodinger operator H = —A + p(x) has no positive eigenvalue with an
L2-eigenfunction if p(x) = o(|z|~1), then (6.2) has no solution. We get (1.1)-(1.2) has no non-trivial
radial solution for 5 < 0. O
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Lemma 6.4. If 0 < by < 2|C |3 and 0 < by < |C Gl for all (u,v) € Ty, x Ty,, there exists t(y,,)

such that t(, ) * (4, v) € Ppy by tuw) 5 the unique critical point of the function ¥, , and is a strict
maximum point at positive level. Moreover:

(1) \I/ZW(O) < 0 and Pbl,bg (u,v) <0 iﬁ t(u,v) < 0.

(2) Wy s strictly increasing in (—00,t(y.))-

(3) The map (u,v) = t(,,) € R is of class C*.

Proof. We are therefore considering the defocusing nonlinearity mass-critical. We rewrite (4.2) as

625 645
Voo(9) = 5 [ (FuP o+ 9o = gluPo)da = S [ Gulul? + pololt + 20/u o) da
R4 R4
2s 3 3
€ 2 2B|Cas| 2 BIC4,
S IVl e (0 = 25220 0) + 190y (1 — =20
4s

e 4 4 2
- <u1|]uHL4(R4) + M2||UHL4(R4) + 2:0||UUHL2(R4))'

A\

s % (u,v) € Py, p, if and only if \I»'ﬁw(s) = 0, it’s easy to see that if [HVUHH R4)( - Mbl) +
HVU||L2(R4 (1— BngﬁPbg)] is positive, then W, ,(s) has a unique critical point #,, U) which is a strict
25‘0 BCaP and 0 < by <
ﬁ, we know that [p, (|Vul?> + [Vv|? — Blulv)dz > 0. If (u,v) € Py, p,, then t(,,) is a maximum
point, we have that U}  (f(,.)) < 0. We claim that W7 (¢ (n )) < 0. By contradiction, this is ¥/, (0) =

¥ ,(0) = 0, then necessarlly Jga (palul* + polv|* + 2p|u] |v| ?)dz = 0, which is not possible because
(4, v) € Ty, x Ty, Thus, ¥ (0) < 0.

As in the proof of Lemma 4.4 shows that the map (u,v) € Ty, x Ty, — tuw) € R is of class Cct.
Finally, W7, ,(s) < 0 if and only if s > ¢(, ), then Py, 4, (u,v) = ¥, (0) < 0 if and only if ¢, ) < 0. O

maximum point at positive level. Therefore, under the condition of 0 < b1 <

Lemma 6.5. If 0 < b < 2|C AC 3P and 0 < Bby < ‘C CraP’ then the set Py, p, is a Cl-submanifold of
codimension 1 in Ty, x Ty,, and it is a C*-submanifold of codimension 3 in H'(R*) x H'(R%).

Proof. The proof is similar to that of Lemma 4.3. O

Lemma 6.6. Assume p;,b; > 0(i = 1,2) and p,3 > 0. Let 0 < Bb; < m and 0 < Bby < ﬁ,
then 7 7
mg(bi,b2) ;== inf  Jg(u,v) > 0.

(u,v)GPbl ,bo

Proof. If (u,v) € Py, p,, then by Gagliardo-Nirenberg and the Sobolev inequalities, we have
HVUH%?(W) + HVUH%Q(W)
= sl + el ey + 20l oy + 8 [ fuPods
R4

26|Cy 33
3 3

2|C 30,5 and 0 < Bby < |3, and |[Vul|7, ®4) T HVUHL2 iy 7 0 (since (u,v) €

2
< Spy iz IVUll72 ey + VOl 2(ga)] ™ + b1l Vul| 2 gay + szV 12 Ry

Moreover, 0 < 8b; <
Ty, x Tp,), we get

inf  [|Vull2 ey + VUl 72gey = C > 0.
(um)lEnPbI,bg | UHLQ(RAL) | U”L2(R4)_
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mg(b1,b2) =  inf  Jg(u,v)

(u7v)epb1752
1
— : f - v 2 + v 2 . / 2 d
(u,v)lélpbl,b24|:H UHLz(RzL) H U||L2(R4) B - ]u| v x]

1, 2B|Cy3*b 1. B|Cu3]b

= (M)iélgbl’bz i f)HVUH%?(R‘l) +50 f)”vvﬂé(w&)
>C >0.
O
From the above lemmas, then JB‘TI)I XT4, has a mountain pass geometry. We need an estimate from
above on mg(b1,b2) =  inf  Jg(u,v).

(u,0)EPby by

Lemma 6.7. Let B, u1,u0 > 0, p € (O,min{,ul,ug}) U (max{ul,,ug},oo). If 0 < Bby < m and

0 < Bby <ﬁ, then

k1 + ko
4

0 < mg(by,b2) < S?,

where k1 = L£"22_ gnd ky = LB
pPE—p1p2 pT—H1IH2

Proof. From (1.15), U. = 22 taking a radially decreasing cut-off function ¢ € C$°(R?) such that

€2+‘$|27

¢=1in By, £ =0 in R*\ By, and let W(z) = £(z)U-(x). We have (see [23, Lemma 7.1]),

IVWellf2@y = ST+ 0@, [Wel|Jagay = 8>+ O(Y), (6.3)
and
IWell3s ey = O(),  [Well72(gey = O(*| Inel). (6.4)
Setting
— W, W,
W ,V == a 7a b
(7o Ve) = (i e e e

then (W,,V.) € Tp, x Tp,. From Lemma 6.4, there exists 7. € R such that 7. x (W, V.) € Py, p,, this
implies that, o o
mg(b1,b2) < Jg (7‘€ * (W, VE)) = max Jg (t * (W, Vs)),

teR
and Ti7 112 7 112 2 7 114 I/ 114
VW12 ) + 197 e n] = € [0 Wl baqgy + 12V
B L (6.5)
+ 2TV elagua] + [ BIWPVode
Then,

627—6 [,ul ”Wg”%zl(&zl) + ,U2HV€||%4(R4) + 2p||W€V€H%2(R4)]
= IV 2oy + IV sy ] — / BTV .de
R4
3b2

_ BlCags
3

B 26|Cy 301
3

> (1 VWl Z2 @ + (1 NVVelZ2may:

o4



Therefore, for € small enough, we have

27, 27
- e — — € T 1277
Tp(rex (We, Vo)) = = (IVWellZequsy + Vel Lae) — - /R Wel'Veda
A7c o . o
— 1 (MlHWEH%‘l(R‘l) + M2||V5||%4(R4) + 2p||W€V€”%2(R4))
2 2 4 4 2.2
81 + 85 9 (Mlsl + p28y + 2P3132) 4
< SH;{;};Q THVWEHLQ(R‘l) - 4 HWEHL‘l(R“)
627'5 o
— [W.|?V.d,
2 R4
— __¢cb — __¢ccby
where 51 = -T2, and sy = Wolpomt, Define
2 2 4 4 2.2
s{+s (18T + poss + 2psiss)
f(81,82) = %HVW&H%Q(RQ - L 42 12 ”WEH%4(R4)-

Using that, for all 0 < s1, so,

k1 + ko
< =
slrﬁg);o f(Sh 82) - 4

S%+0(?).

Finally, ) ) 2
/WEIQVadx—e 102 /\W5|3dm
2 Jre 2 HW€HL2(R4) R%

C / 3
R W_|°dx
= el Jus

> C|ln€|7%7

(&

hence, we deduce that

o kitk
max Jg(t (W, V) < 112 g2

teR 4

Now, we are ready to show that the infimum is attained by nontrivial positive radial functions.

Lemma 6.8. Let p;,b; > 0(i = 1,2), and p € (O,min{m,,uz}) U (max{,ul,uz},oo). If 0 < by <

3 = 0< fby <> and

2[Cy 3]3” 2> 1CasP

k1 + ko
4

where ki = pf::f - and ky = p{’:““llw , then mg(b1,ba) can be achieved by some function (up, by, Vb, by) €
Ty, x Ty, which is real valued, positive, radially symmetric and radially decreasing.

0< mg(bl,bg) < 82,

Ty
such that P(uy,,v,) — 0 and u,,,v, — 0 a.e. in R%. The rest of proof is similar to that of Lemma 5.5
in [31], and just needs a slight modification.. O

Proof. By Lemma 4.12, we can also find a radial Palais-Smale sequence for J }Tb o, atlevel mg(bi, b2)
1 2
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Lemma 6.9. Let p1;, 3 > 0(i = 1,2), and p € (0, min{s, po}) U (max{p1, po},00). If0 < by < m
and 0 < by < m, for any ground state (up, by, Vb, p,) of (1.1)-(1.2), then

k1 +k
Jﬂ(ubth,Ubth) = mﬂ(blab2) - ¥S as (b1, b2) — (0,0).
Moreover, there exists €p, p, > 0 such that

(o1t by (012), 0108, 1y (012)) —

(Vki1Ueg, VkoUs,) in DV2(RY)

x DV3(RY),
for some g9 > 0 as (b1, ba) — (0,0) up to a subsequence, where k; = pf::fm and ko = pzp—_ul?uz'
Proof. By Py, p,(us,,vp,) = 0, we have
o Z fge T3 (tpy by Vb, ) = %(HvubhbgH%Q(R‘l) + V05, 5, 12 gty — 5/R4 [ttty s |08, 1, d)
> J0-

1 Bby
‘04 3| )Hvub1,b2||%2(R4) + 4(1 T

5 |Cas ) 1V b b, |72 g
then {(up,,bys Vb, by

inequality again,

~—

} is bounded in H(R*) x H'(R?*). Using the Holder and Gagliardo-Nirenberg

4 2
8 [ 110 2 < BIC I [Vt ) 900 2 = 0
R

as (b1,b2) — (0,0). Therefore, it follows from P(up, p,, Vb, 5,) = 0 that

IVttt o | 22y + V00 0o |22y =

140 gty + 19201000 [ ety + 208,005 [ Bty + (1),
From (1.17), we have

V k1 + kQS(Nlnubhsz%ﬂRﬂ + /LQH’UbLbQH%‘l R4y T 2B||ub17bzvb1,b2”L2(R4 )

N

2 2
)7 S IV by l[12@ay + V0,0, 172 (1)
Thus, we distinguish the two cases

either (Z) Hvub1,b2||L2 R4) + ”vvbl7b2||2L2(lR4) —0 Or(ii) Hvub17b2||i2 R4y T ”vvbthHLQ R4) —1>0

We claim that (i) is impossible. Indeed, if [ = 0, by \Ifub1 by by (0) <0,

IVt o 172y + 1V 00 [ 2ty < 2L l[ubs 5 | 7ty + 1021191, 1 20 o)

+ 2p|]ubl,bgvb1,b2H%Q(Rz;)] + /R4 Bty 1| *Vb,
we obtain a contradiction

2[351 BbQ
(1 - |C4 3| )Hvubl b2||L2 (R4) + (1 - |C4 3’ )vabl,bQH%z(Rz;)
2 2
82 [Hvubhl&HL?(R‘i) + ”vvbl7b2||L2(lR‘l ]
H1,042,0

The claim is proved. Therefore, I > 0, we obtain that Jg(up, sy, Vb .by) — 24282 as (by, by) — (0,0).
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Thus, we know that

||vub1,b2”%2(R4) + vab17b2”%2(]]§4) - (kl + k2)327

1 oy | Tty + 121100 0 | T ey + 2811ty 2 01 o |72 ey — (B1 + k2)S?,

as (b1,b2) — (0,0). It follows that, up to a subsequence, {(up, by, Vb, b,)} 1S @ minimizing sequence of
the minimizing problem (1.17). From Lemma 6.8, (up, p,, Vb, b,) is radially symmetric. By [47, Theorem
1.41] or [26, Lemma 3.5], up to a subsequence, there exists o1 := o1(a1, az) such that for some gy > 0,

(o1Upy by (012), 0108, py (012)) — (\/Herv \/EUEO)

in DL2(R*) x DY2(RY), as (b1, b2) — (0,0).

Proof of Theorem 1.5. The proof is finished when we combine Lemma 6.8 and Lemma 6.9. O
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