Review of 1st and Second Order Equations

- 1. First order equations
- 1.1) The solutions to

$$y' + p(t)y = 0,$$
 is $y = Ce^{-\int p(t)dt}$

1.2) The steps to solve

$$y' + p(t)y = q(t)$$

are

compute
$$\mu(t)=e^{\int p(t)dt}, \quad \int \mu(t)g(t)dt=$$

$$y(t)=\frac{1}{\mu(t)}(C+\int \mu(t)g(t)dt)$$

1.3) Separable equation

$$\frac{dy}{dt} = h(t)k(y),$$
 $\int \frac{dy}{k(y)} = \int h(t)dt$

1.4) Bernoulli equation

$$y' + p(t)y = q(t)y^{n}$$
, let $v = y^{1-n}$
 $v' + (1-n)p(t)v = (1-n)q(t)$

1.5) Homogeneous equation

$$\frac{dy}{dx} = \frac{ax + by}{cx + dy}$$
 let $v = \frac{y}{x}$, $x\frac{dv}{dx} = \frac{a + bv}{c + dv} - v$

- 1.6) Interval of Existence: three factors a) The solution, b) The Equation, c) the Initial Condition
- 1.7) Difference between linear and nonlinear: for linear equation, existence is global and uniqueness is guaranteed; for nonlinear equation, existence and uniqueness are nonlocal; for nonlinear nonsmooth f(t, y) nonuniqueness
- 2. Linear Second Order Equations

$$y'' + p(t)y' + q(t)y = g(t)$$

2.1. Homogeneous case

$$y'' + p(t)y' + q(t)y = 0$$

2.1.1. Wronskian $W[y_1, y_2](t) = y_1 y_2^{'} - y_1^{'} y_2$.

Abel's equation W' + pW = 0

$$W(t) = W(t_0)e^{-\int_{t_0}^t p(s)ds}$$

- 2.1.2. Set of Fundamental Solutions y_1, y_2 . All solutions are given by $y = c_1y_1 + c_2y_2$
- 2.1.3. Constant Coefficients:

$$ay^{''} + by^{'} + cy = 0$$

Characteristic equation $ar^2 + br + c = 0$

• $b^2 - 4ac > 0$, two unequal real roots $r_1 \neq r_2$.

$$y_1 = e^{r_1 t}, y_2 = e^{r_2 t}$$

• $b^2 - 4ac < 0$, two complex roots: $r_1 = \lambda + i\mu, r_2 = \lambda - i\mu$

$$y_1 = e^{\lambda t} \cos(\mu t), \quad y_2 = e^{\lambda t} \sin(\mu t)$$

• $b^2 - 4ac = 0$, two equal roots: $r_1 = r_2 = r$

$$y_1 = e^{rt}, \ y_2 = te^{rt}$$

2.1.4. Euler's type equation

$$at^2y^{''} + bty^{'} + cy = 0$$

Characteristic equation ar(r-1) + br + c = 0, $ar^2 + (b-a)r + c = 0$

• $(b-a)^2 - 4ac > 0$, two unequal real roots $r_1 \neq r_2$.

$$y_1 = t^{r_1}, y_2 = t^{r_2}$$

• $(b-a)^2 - 4ac = 0$, two equal roots: $r_1 = r_2 = r$

$$y_1 = t^r$$
, $y_2 = t^r \log t$

• $(b-a)^2 - 4ac < 0$, two complex roots: $r_1 = \lambda + i\mu, r_2 = \lambda - i\mu$

$$y_1 = t^{\lambda} \cos(\mu \log t), \quad y_2 = t^{\lambda} \sin(\mu \log t)$$

2.1.5. Reduction of Order

$$y^{"} + p(t)y^{'} + q(t)y = 0$$

If y_1 is known, we can get y_2 by letting $y_2 = v(t)y_1$. Then v satisfies

$$v'' + (\frac{2y_1'}{y_1} + p)v' = 0$$

and

$$v^{'} = \frac{W}{y_1^2}$$

where $W = e^{-\int p(t)dt}$ is the Wronskian.

2.2 Inhomogeneous equations

$$y^{''} + py^{'} + qy = h(t)$$

$$y = y_p(t) + c_1 y_1 + c_2 y_2$$

where y_p is a particular solution and y_1, y_2 —set of fundamental solutions of homogeneous problem.

2.2.1 Method One: Method of Undetermined Coefficients. Works only for

$$ay^{"} + by^{'} + cy = h(t)$$

• $h(t) = a_0 + a_1 t + ... + a_n t^n$

$$y_p = t^s (A_0 + A_1 t + \dots + A_n t^n)$$

• $h(t) = e^{\alpha t}(a_0 + a_1 t + \dots + a_n t^n)$

$$y_p = t^s e^{\alpha t} (A_0 + A_1 t + \dots + A_n t^n)$$

•
$$h(t) = e^{\alpha t}(a_0 + a_1 t + \dots + a_n t^n) \cos(\beta t)$$
 or $g(t) = e^{\alpha t}(a_0 + a_1 t + \dots + a_n t^n) \sin(\beta t)$

$$y_p = t^s e^{\alpha t} [(A_0 + A_1 t + \dots + A_n t^n) \cos(\beta t) + (B_0 + B_1 t + \dots + B_n t^n) \sin(\beta t)]$$

- s equals either 0, or 1, or 2, is the least integer such that there are no solutions of the homogeneous problem in y_p
- $h(t) = h_1 + \dots + h_m$

$$y_p = y_{p,1} + \dots y_{p,m}$$

2.2.2. Method of Variation of Parameters

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t)$$

where

$$\begin{cases} u_1^{'}y_1 + u_2^{'}y_2 = 0, \\ u_1^{'}y_1^{'} + u_2^{'}y_2 = h(t) \end{cases}$$

Formula:

$$u_1 = -\int \frac{y_2 g(t)}{W} dt$$
, $u_2 = \int \frac{y_1 g(t)}{W} dt$

$$y_p = -y_1(t) \int \frac{y_2 g(t)}{W} dt + y_2(t) \int \frac{y_1 g(t)}{W} dt$$