
SOLUTION TO MATH 256 ASSIGNMENT 1

• Full mark: 80.
• Warning: When f is a trig function, say cos(πx), the Fourier coefficient must be dealt with separately, in this

case a1. This is a common mistake in Q7.

(1) (a) As before, y = yh + yp = C1 cos(
√

2x) + C2 sin(
√

2x) + sinx. Boundary conditions implies C1 = C2 = 0, so

y = sinx.

(b) Here yh = C1 cosx+C2 sinx. Let yp = x(A cosx+B sinx) and plugging in we have y′′p + yp = 2(−A sinx+

B cosx). So A = − 1
2 , B = 0, y = C1 cosx+ C2 sinx− 1

2x cosx. From y(0) = 0, C1 = 0. However, from y(π) = 0,

we get π
2 = 0, which is impossible. Therefore this problem has no solution.

Alternatively, you can multiply both sides of the equation by sinx and integrate from 0 to π. You will get a
contradiction because

∫ π
0

sin2 x dx 6= 0.

(c) As in (b), yh = C1 cosx+C2 sinx. Try yp = x(A cosx+B sinx) +C to get yp = − 1
2x cosx− 1

2 . Then, from

y(0) = 0, C1 = 0. But y = C2 sinx− 1
2x cosx− 1

2 is not consistent with y(π) = 0. So this problem has no solution.

(d) As in (b), yh = C1 cosx + C2 sinx and yp = x(A cosx + B sinx). This time we get A = 0 and B = 1
2 , so

y = C1 cosx+C2 sinx+ 1
2x sinx. Now y(0) = 0 implies C1 = 0 and we see that y(π) = 0 is automatically satisfied.

Therefore we have a family of solutions y = C2 sinx+ 1
2x sinx.

(2) (a) We compute a0 = 1
2π

∫ 0

−π x dx = −π4 , ak = 1
π

∫ 0

−π x cos kx dx = 1
π

[
x · sin kxk − 1 · − cos kx

k2

]0
−π = 1

π
1−(−1)k

k2 , and

bk = 1
π

∫ 0

−π x sin kx dx = (−1)k
k . So

f(x) ∼ −π
4

+

∞∑
k=1

(
1− (−1)k

kπ
cos kx+

(−1)k

k
sin kx

)
.

(b) Similarly, using a0 = 1
2

∫ 1

−1 f(x) dx and aj =
∫ 1

−1 f(x) cos(kπx) dx etc. we have

f(x) ∼ 2

3
+

∞∑
k=1

(
2(−1)k

k2π2
cos kπx+

(
1− 2(−1)k

kπ
− 1− (−1)k

k3π3

)
sin kπx

)
.

(c) We can combine the x integrals which is odd: a0 = 1
4 (
∫ 2

−2 x dx +
∫ 2

0
dx) = 1

2 , ak = 1
2

∫ 2

−2 x cos kπx2 dx +∫ 2

0
cos kπx2 dx = 0, bk is computed as usual. These yield

f(x) ∼ 1

2
+

∞∑
k=1

2(1− 9(−1)k)

kπ
sin

kπx

2
.

(3) (1)(a) a0 =
∫ 1

0
sinπx dx = 2

π , a1 = 0 by orthogonality, for k ≥ 2 using product-to-sum we have

f(x) ∼ 2

π
+

∞∑
k=2

1− (−1)k+1

π

(
1

k + 1
− 1

k − 1

)
cos kπx.

(1)(b) Since sine is odd the odd extension has Fourier series

f(x) ∼ sinπx.

(2)(a) Again cosine is even so the even extension has Fourier series

f(x) ∼ cosπx.
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(2)(b) bk is computed similarly as the ak in (1)(a). Hence

f(x) ∼
∞∑
k=2

1− (−1)k+1

π

(
1

k + 1
+

1

k − 1

)
sin kπx.

(3)(a) By direct computations

f(x) ∼ 3

2
+

∞∑
k=1

−2(1− (−1)k)

k2π2
cos kπx.

(3)(b)

f(x) ∼
∞∑
k=1

2(1− 2(−1)k)

kπ
sin kπx.

(4) (a) Direct computations yield a0 = 1
2 , a1 = 2

π2 , b1 = 3
π .

(b) Denote the Fourier series of f(x) by Sf(x). Then we have

Sf(− 1
2 ) = − 1

2 , Sf(0) = 1
2 (0 + 1) = 1

2 , Sf( 1
2 ) = 1.

(5) Let u(x, t) = X(x)T (t). Then from X′′

X = T ′

2T = −λ2 we first have X ′′ + λ2X = 0, X(0) = X(π2 ) = 0 ⇒
X = sin 2kx, λ = 2k, as well as T ′+ 2λ2T = 0 ⇒ T = Ce−8k

2t. Now a superposition u =
∑∞
k=1 Ck sin(2kx)e−8k

2t

matches the initial condition by C1 = 1, C4 = 4, Ck = 0 otherwise. Hence

u(x, t) = sin(2x)e−8t + 4 sin(8x)e−128t.

(6) We consider a function w linear in x such that w(0) = 1 and w(π) = −1, i.e. w(x) = 1 − 2
πx. Then u = v + w,

where v satisfies vt = 2vxx, v(x, 0) = 0, v(0, t) = 0, v(π, t) = 0 for 0 < x < π and t > 0. Let v(x, t) = X(x)T (t).

Then X = sin(kx), T = Ce−2k
2t, v =

∑∞
k=1 Ck sin(kx)e−2k

2t. The initial condition implies Ck = 0 for all k, i.e.

v = 0. So u(x, t) = 1− 2
πx. As t→ +∞, u stays the same as 1− 2

πx.

(7) Put u(x, t) = X(x)T (t). Then X solves the Neumann problem on (0, π), i.e. the eigenvalues are k = 0, 1, . . . and
X = cos(kx). Then the superposition gives

u(x, t) = A0 +B0t+

∞∑
k=1

cos(kx)(Ak cos(kt) +Bk sin(kt)).

When t = 0, we have A2 = 1 and Ak = 0 for any other k. Differentiating and put t = 0 we have B0 = 1 and
Bk = 0 for other k’s. Thus

u(x, t) = t+ cos(2x) cos(2t).

(8) Put u(x, y) = X(x)Y (y). Taking into account the Dirichlet boundary conditions when x = 0 and x = 1, we have
X′′

X = −Y
′′

Y = −λ2, so λ = kπ and X = sin(kπx), k = 1, 2, . . . . The Y -equation Y ′′ − (kπ)2Y = 0 has solution

Y = A cosh(kπy) + B sinh(kπy). (Note that this is preferred over Ake
kπy + Bke

−kπy because it is simpler when
you put y = 0.) Now the superposition

u(x, y) =

∞∑
k=1

sin(kπx)(Ak cosh(kπy) +Bk sinh(kπy))

is to be matched with the boundary conditions on y. On the set y = 0, we have

∞∑
k=1

Ak sin(kπx) = x.

As coefficients of a Fourier sine series,

Ak = 2

∫ 1

0

x sin(kπx) dx = 2

[
x
− cos(kπx)

kπ
− − sin(kπx)

k2π2

]1
0

=
2(−1)k+1

kπ
.
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Finally we put y = 1 and require that Ak cosh(kπ) +Bk sinh(kπ) = 0. Our final solution is

u(x, y) =

∞∑
k=1

2(−1)k+1

kπ
sin(kπx)

(
cosh(kπy)− cosh(kπ)

sinh(kπ)
sinh(kπy)

)
.

Note: An even better way is to use the solution Y = A′ cosh(kπ(y − 1)) + B′ sinh(kπ(y − 1)) instead. When
we put y = 1 we get A′ = 0, for any k. In this way the final solution reads:

u(x, y) =

∞∑
k=1

2(−1)k

kπ sinh(kπ)
sin(kπx) sinh(kπ(y − 1)).

as seen using the corresponding “compound angle formula” for sinh.


