## MATH400-101 Homework Assignment 7, 2018-2019 (Due Date: by 6pm, December 4, 2018)

Last homework. Good luck on finals
Please either hand in to my office or send it by email by 6 pm of December 4 th, 2018. The solutions will be put on my website on December 4th.

1. (10pts) Use the method of separation of variables to find solutions to

$$
\begin{gathered}
u_{t}=k\left(u_{x x}+u_{y y}\right), 0<x<\pi, 0<y<\pi \\
u(x, y, 0)=\sin (x), 0<x<\pi, 0<y<\pi \\
u(0, y, t)=u(\pi, y, t)=u(x, 0, t)=u(x, \pi, t)=0
\end{gathered}
$$

2. (10pts) Consider the following Laplace equation in an annulus

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \text { in }\left\{1<x^{2}+y^{2}<4\right\} \\
u(x, y)=x^{2}-x, \text { for } x^{2}+y^{2}=1 \\
u(x, y)=y, \text { for } x^{2}+y^{2}=4
\end{gathered}
$$

(i) Find out the maximum and minimum values of $u$ in the annulus
(ii) Use the method of separation of variables to find $u$.
3. (10pts) Solve the following exterior domain problem

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0, \text { for } x^{2}+y^{2}>1 \\
u(x, y)=2 y^{2}-3 x \text { for } x^{2}+y^{2}=1 \\
u(x, y) \text { is bounded }
\end{array}\right.
$$

4. (20pts) Use the method of separation of variables to solve the Laplace equation in the quarter plane

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \text { in }\left\{x^{2}+y^{2}>1, x>0, y>0\right\} \\
u(x, 0)=0, \text { for } x^{2}+y^{2}>1, x>0, \\
u(0, y)=0, \text { for } x^{2}+y^{2}>1, y>0, \\
\frac{\partial u}{\partial r}=1 \text { on } x^{2}+y^{2}=1, x>0, y>0
\end{gathered}
$$

$u$ is bounded
(ii) Suppose that $u$ is bounded and that $\lim _{r \rightarrow+\infty} r|\nabla u(x, y)|=0$, where $r=\sqrt{x^{2}+y^{2}}$. Show that the solution to (i) is unique.
5. (20pts) Use the method of separation of variables to solve the following PDE:

$$
\begin{gathered}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 \text { in } D=\left\{(r, \theta) \mid 1<r<2,0<\theta<\frac{\pi}{4}\right\} \\
u(1, \theta)=2 \sin ^{2}(2 \theta), u(2, \theta)=1 \\
u_{\theta}(r, 0)=0, u_{\theta}\left(r, \frac{\pi}{4}\right)=0
\end{gathered}
$$

6. (20pts) Solve the wave equation using the Bessel functions of order $n$

$$
\left\{\begin{array}{l}
u_{t t}=c^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{u_{\theta \theta}}{r^{2}}\right), 0 \leq r<1,0 \leq \theta<2 \pi, t>0 \\
u(1, \theta, t)=t^{2}, t>0,0 \leq \theta<2 \pi \\
u(r, \theta, 0)=1, \quad u_{t}(r, \theta, 0)=\sin \theta
\end{array}\right.
$$

Here the Bessel function of order $n$ of first kind, denoted by $J_{n}(z)$, is given as the solution to

$$
J^{\prime \prime}+\frac{1}{z} J^{\prime}+J-\frac{n^{2}}{z^{2}} J=0, z>0, \quad J(z) \sim z^{n}, \text { as } z \rightarrow 0
$$

7. (20pts) Solve the diffusion equation using the Bessel functions

$$
\left\{\begin{array}{l}
u_{t}=k\left(u_{r r}+\frac{1}{r} u_{r}+\frac{u_{\theta \theta}}{r^{2}}\right), 0 \leq r<a, 0 \leq \theta<2 \pi, t>0 \\
u(a, \theta, t)=0, t \geq 0,0 \leq \theta<2 \pi \\
u(r, \theta, 0)=1-2 \sin \theta
\end{array}\right.
$$

8. (20pts) Find an infinite series representation (in terms of the Bessel function) for the diffusion equation problem

$$
\left\{\begin{array}{l}
u_{t}=k\left(u_{r r}+\frac{1}{r} u_{r}+u_{z z}\right), 0 \leq r<a, 0<z<b, t>0 \\
u_{r}(a, z, t)=0, u(r, 0, t)=0, u(r, b, t)=0 \\
u(r, z, 0)=\phi(r, z)
\end{array}\right.
$$

