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140 CHAPTER 5 FOURIER SERIES

7. Let JZ (1) +1g()2] dx be finite, where g(x)= f(x)/(e'x — ).
Let ¢, be the coefficients of the full complex Fourier series of Jf(x). Show
that SN__ ¢, —0as N— o,

8. Prove that both integrals in (12) tend to zero.

9. Fill in the missing steps in the proof of uniform convergence.

10.  Prove the theorem on uniform convergence for the case of the Fourier sine
series and for the Fourier cosine series.

1. Prove that the full Fourier series of the function |x|in the interval (— T, )
converges uniformly to |x]in [— m, 7).

12, Show that if f(x) is a C! function in [— 7, m]andif [Z_f(x) dx = 0, then
JZ f2dxs<J 22112 dx. (Hint: Use Parseval’s equality.)
13. Averyslick proof of the pointwise convergence of ourier series, due to P,
Chernoff (dmerican Mathematical Monthly, May 1980), goes as follows.
(@) Letf(x)beaC! function of period 2. First show that we may as well
assume that f(0) = 0 and we need only show that the Fourier series
converges to zero at x = (), .
(b) Let g(x) = f1 (x)/(e™® —1). Show that &(x) is a continuous function,
(¢) Let C, be the (complex) Fourier coefficients of f(x) and D, the
coefficients of g(x). Show that D, — 0,
(d) Show that C, = Dy, — D, so that the series 3 C,, is telescoping,
(¢) Deduce that the Fourier series of f(x) at x = Q converges to zero.

5.6 INHOMOGENEOUS BOUNDARY CONDITIONS

In this section we consider problems with sources given at the boundary. We
shall see that naive use of the separation of variables technique will not work. .

Let’s begin with the diffusion equation with Sources at both endpoints.
W=k, 0<x<l >0
w0, 0=h(t) ul,t)=j() (1)
u(x, 0) =0,
A separated solution & = X (*) T(¢) just will not fit the boundary conditions, So
we try a slightly different approach.
EXPANSION METHOD

We already know that for the corresponding homogeneous problem the correct
expansion is the Fourier sine series. For each Z, we certainly can expand

B, 0= 3 (0 sin @
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for some coefficients u,(t), because the completeness theorems guarantee that
any function in (0, /) can be so expanded. The coefficients are necessarily given
by

)

You may object that each term in the series vanishes at both endpoints and
thereby violates the boundary conditions. The answer is that we simply do not
insist that the series converge at the endpoints but only inside the interval. In
fact, we are exactly in the situation of Theorems 3 and 4 but not of Theorem 2
of Section 5.4. ‘

Now differentiating the series (2) term by term, we get

du nn\2| . nnx

0=u~kuy,=3 [ dtn + ku,,(t) (T) ] sin —=.

So the PDE seems to require that du,/dt + kAnu, = 0, so that u,,(f) = A, ek,
There is no way for this to fit the boundary conditions. Our method fails!
What'’s the moral? It is that you can’t differentiate term by term. See Example 3

/
u(t) = % f u(x, £) sin 22X gy, 3)
0

Let’s start over again but avoid direct differentiation of the Fourier series.
The expansion (2) with the coefficients (3) must be valid, by the completeness
theorem 5.4.3, say, provided that u(x, ¢) is a continuous function. Clearly, the
initial condition requires that un(0) = 0. If the derivatives of u(x, ¢) are also

_continuous, let’s expand them, too. Thus

ou e . hmx
| a—t = nzl v,(?) sin _l—- 4)
with
_2 [You . nmx ,  du,
v,(¢) = 7 , 7 sin 7 dx = T (5)

The last equality is valid since we can differentiate under an integral sign if the
new integrand is continuous (see Section A.3). We also expand

92y o« nEx

a_xZ = ngl wn(t) sin _l_ (6)
with the coefficients
| 2 (10%u . nmx
Wn(t)—7L a—xism—l—dx. @)

By Green’s second identity (5.3.3) the last expression equals

=2 (! (nn\2 . nTX 2 . MmX nnm nmx:
T_L(T) u(x,t)sdex+—l-<uxsm—T TuCOST)
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Here come the boundary conditions. The sine factor vanishes at both ends. The
last term will involve the boundary conditions. Thus

W) = = Aptby(t) — 207l =2(— 1Yj(t) + 2n7l—2h(F), (8)
where 4, = (nn/1)2. Now by (5) and (7) the PDE requires

I I
V() — kw,(t) = % f (u; — ku,,) sin Ll dx = f 0=0.
0

! 0
So from (5) and (8) we deduce that u,,(f) satisfies
% =l 'q'nun(t) - 2’171'1_2[(— 17j(t) — h(l)]}. ©)

This is just an ordinary differential equation, to be solved together with the
initial condition #,(0) = 0 from (1). The solution of ) is

Uy(t) = Ce=hkt — dppi~2k f ’ emhkt=9) [(— 1yrj(5) — s ds. | (10)
0

As a second case, let’s solve the inhomogeneous wave problem
Uy — cPu,, = f(x, 1)
u@,t)=h@t) u(l, )= k(r) (11)
Ul 0)=¢x)  ulx,0)=y(x).

Again we expand everything in the eigenfunctions of the corresponding homo-
geneous problem:

s . ATX
ulx, £)= > u,(t) sin R
n=1

Uy(x, t) with coefficients v,(¢), Ue(X, 1) with coefficients w,(£), f(x, {) with
coefficients f,,(¢), ¢(x) with coefficients ¢, and y(x) with coefficients ¥,. Then
_2 (1% . nax ,  d%u,

o) =3 fo o2 N T =g
and, just as before,

_ 2 (3% ., nmx

wy(t) = 7 fo ™ sm—l—dx

= = Anttn(t) + 2n7I=2[h(t) — (— 1)%k(2)].

From the PDE we also have

2 ! :
Ou(t) — 2w, (t) = 7 j(; (4 — c2u,) sin 37126 ax = [(0).
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Therefore,

d;ﬁ” + 2y (1) = = 2nml=2[(= 1)nk(t) — h(2)] + £,(t) (12) '

with the initial conditions

u,0) =,  u0)=y,.
The solution can be written explicitly (see Exercise 1 1).

METHOD OF SHIFTING THE DATA

= By subtraction, the data can be shifted from the boundary to another spot in the
® problem. The boundary conditions can be made homogeneous by subtracting
' any known function that satisfies them. Thus for the problem (11) treated
above, the function

U(x, 1) = (1 = §>h(z) + % k(2)
obviously satisfies the BCs. If we let ; '
v(x, 1) = u(x, t) — U(x, 1),

then v(x, ¢) satisfies the same problem but with zero boundary data, with initial
data ¢(x) — U(x, 0)and w(x) — % (x, 0), and with right-hand side freplaced by
S= Uy

The boundary condition and the differential equation can simultaneously
be made homogeneous by subtracting any known Jfunction that satisfies them.
One case when this can surely be accomplished is the case of “stationary data”

when 4, k, and f(x) all are independent of time. Then it is easy to find a solution
of

—cu =fx) wO)=h wl)=*

Thenv(x, t) = u(x, £) — U(x) solves the problem with zero boundary data, zero
right-hand side, and initial data ¢(x) — %(x) and w(x).
For another example, take problem (11) for a simple periodic case:
SO, t)=F(x)cos wt  h(t) = H cos wt k(t) = K cos wt,

that is, with the same time behavior in all the data. We wish to subtract a
solution of

Uy — 2, = F(X) cos wt
U0, t)=Hcoswt U, t)=K cos wt.

A good guess is that % should have the form /(x, 1) = Uo(x) cos wt. This will
happen if % (x) satisfies

—MUy— w2 Uf =F(x) U 0)=H ay()=K. o

There is also the method of Laplace transforms, which can be found in
Section 12.5.




