MATH 516-101-2020 Homework One

Due Date: By 6pm on September 20th, 2019

1. (10pts) Let $f \in C_{c}^{\infty}\left(R^{2}\right)$. Show that the following function

$$
v(x)=\frac{1}{2 \pi} \int_{R^{2}}(\log |x-y|) f(y) d y
$$

satisfies $\Delta v(x)=f(x), x \in R^{2}$. (Extra 5points) Show that $v(x)=\frac{1}{2 \pi}\left(\int_{R^{2}} f(x) d x\right) \log |x|+C+O\left(\frac{1}{|x|}\right)$ as $|x| \rightarrow+\infty$.
2. (20points) Let $\Omega \subset R^{n}$ be a smooth and bounded domain in $R^{n}, n \geq 3$ and

$$
v(x)=\int_{\Omega} f(y) \frac{1}{|x-y|^{n-2}} d y
$$

Show that if $f \in C^{1}(\Omega)$ and f is bounded, then $v \in C^{2}(\Omega)$ and $\Delta v(x)=-(n-2) \omega_{n} f(x), x \in \Omega$.
3. $(20 \mathrm{pts})$ This problem concerns the Newtonian potential

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}^{n}} \frac{1}{|x-y|^{n-2}} \frac{1}{\left(1+|y|^{2}\right)^{\frac{\alpha}{2}}} d y \tag{1}
\end{equation*}
$$

where $n \geq 3$.
a) Show that for $\alpha \in(2, n),|u(x)| \leq \frac{C}{\mid x x^{\alpha-2}}$ for $|x|>1$
b) Show that for $\alpha>n$, then $|u(x)| \leq \frac{C}{|x|^{n-2}}$ for $|x|>1$
c) If $f \in C_{c}^{\infty}\left(R^{n}\right), n \geq 3$ and $v=\int_{R^{n}} \frac{1}{|x-y| n-2} 2(y) d y$, show that $\lim _{|x| \rightarrow+\infty}|x|^{n-2} v(x)=C$ for some constant C.

Hint: For $|x|=R \gg 1$, divide the integral into three parts

$$
\int_{R^{n}}(\ldots) d y=\int_{|y-x|<\frac{|x|}{2}}(\ldots)+\int_{\frac{|x|}{2}<|y-x|<2|x|}(\ldots)+\int_{|y-x|>2|x|}(\ldots)
$$

and estimate each parts. For example in the region $|y-x|<\frac{|x|}{2}$ we have $|y|>|x|-|x-y|>\frac{|x|}{2}$ and

$$
\int_{|y-x|<\frac{\mid x}{2}} \frac{1}{|x-y|^{n-2}}|f(y)| d y \leq \int_{0}^{\frac{|x|}{2}} \frac{r^{n-1}}{r^{n-2}} d r \frac{C}{|x|^{\alpha}} \leq \frac{C}{|x|^{\alpha-2}}
$$

4. (10pts) The Kelvin transform is defined by

$$
v(x)=|x|^{2-n} u\left(\frac{x}{|x|^{2}}\right)
$$

Suppose u satisfies $-\Delta u(x)=u^{3}$. Find out the new equation satisfied by v.
5. (10pts) Let u be a harmonic function in $B_{1}(0) \backslash\{0\}=\{0<|x|<1\}$ be such that $\lim _{x \rightarrow 0}|x|^{n-2} u(x)=0$. Show that $u \in C^{2}\left(B_{1}(0)\right)$. Here $n \geq 3$.
6. (20pts) Let Ω be a bounded and smooth domain in R^{n} and $G(x, y)=\Phi(|x-y|)-\phi^{x}(y)$ be the Green's function in Ω. We define:

$$
v(x)=\int_{\Omega} G(x, y) f(y) d y
$$

Assume that $f \in C^{1}(\Omega) \cap C(\bar{\Omega})$. Show that v is the solution of the inhomogeneous problem

$$
-\Delta v(x)=f(x), x \in \Omega ; v=0 \text { on } \partial \Omega
$$

Hint: You can use results in Problem 2.
7. (10pts) Determine the Green's function for the annulus $\{1<|x|<2\}$ in R^{2}.

