MATH 516-101-2020 Homework Two
Due Date: by 6pm, October 7, 2019

1. (a) Let $\xi \in \partial \Omega$ and $w(x)$ be a barrier on $\Omega_{1} \subset \subset \Omega$: (i) w is superharmonic in Ω_{1}; (ii) $w>0$ in $\bar{\Omega}_{1} \backslash\{\xi\}$; $w(\xi)=0$. Show that w can be extended to a barrier in Ω. (b) Let $\Omega=\left\{x^{2}+y^{2}<1\right\} \backslash\{-1 \leq x \leq 0, y=0\}$. Show that the function $w:=-\operatorname{Re}\left(\frac{1}{\operatorname{Ln}(z)}\right)=-\frac{\log r}{(\log r)^{2}+\theta^{2}}$ is a local barrier at $\xi=0$.
2. (a) Show that the problem of minimizing energy

$$
I[u]=\int_{J} x^{2}\left|u^{\prime}(x)\right|^{2} d x
$$

for $u \in C(\bar{J})$ with piecewise continuous derivatives in $J:=(-1,1)$, satisfying the boundary conditions $u(-1)=$ $0, u(1)=1$, is not attained. (b) Consider the problem of minimizing the energy

$$
I[u]=\int_{0}^{1}\left(1+\left|u^{\prime}(x)\right|^{2}\right)^{\frac{1}{4}} d x
$$

for all $u \in C^{1}((0,1)) \cap C([0,1])$ satisfying $u(0)=0, u(1)=1$. Show that the minimum is 1 and is not attained.
3. Discuss Dirichlet Principle for

$$
\left\{\begin{array}{l}
\Delta^{2} u=f \text { in } \Omega \\
u=\frac{\partial u}{\partial v}=0 \text { on } \partial \Omega
\end{array}\right.
$$

4. Let

$$
\Phi(x-y, t)=(4 \pi t)^{-n / 2} e^{-\frac{|x-y|^{2}}{4 t}}
$$

(a) Show that there exists a generic constant C_{n} such that

$$
\Phi(x-y, t) \leq C_{n}|x-y|^{-n}
$$

Hint: maximize the function in t.
(b) Let $n=1$ and $f(x)$ be a bounded measurbale function such that $f\left(x_{0}-\right)$ and $f\left(x_{0}+\right)$ exists. Show that

$$
\lim _{t \rightarrow 0} \int_{R} \Phi\left(x-x_{0}, t\right) f(y) d y=\frac{1}{2}\left(f\left(x_{0}-\right)+f\left(x_{0}+\right)\right)
$$

(c) Let u satisfy

$$
u_{t}=\Delta u, x \in \mathbb{R}^{n}, t>0 ; u(x, 0)=f(x)
$$

Suppose that f is continuous and has compact support. Show that $\lim _{t \rightarrow+\infty} u(x, t)=0$ for all x.
5. Derive a solution formula for

$$
u_{t}=\Delta u+c u+f(x, t), t>0 ; u(x, 0)=g(x)
$$

6. Consider the following general parabolic equation

$$
L[u]=a(x, t) u_{x x}+b(x, t) u_{x}+c(x, t) u-u_{t}
$$

where

$$
0<C_{1}<a(x, t)<C_{2},|b(x, t)| \leq C_{3}, c(x, t) \leq C_{4}
$$

(a) Show that $L[u] \geq 0$, then

$$
\max _{\Omega_{T}} u \leq e^{C_{4} T} \max _{\partial^{\prime} \Omega_{T}} u^{+}
$$

Here $\Omega_{T}=(0, L) \times(0, T), \partial \Omega_{T}=\partial \Omega_{T} \backslash((0, L) \times\{T\})$ and $u^{+}=\max (u, 0)$.
Hint: consider the function $v:=u e^{-C_{4} t}$
(b) Prove the uniqueness of the initial value problem

$$
\left\{\begin{array}{l}
L u(x, t)=f(, t), \operatorname{in} \Omega_{T} \\
u(x, 0)=\phi(x), x \in \Omega \\
u(x, t)=g(x, t), x \in \partial \Omega, t \in(0, T]
\end{array}\right.
$$

7. (a) Use d'Alembert's formula to show that Maximum Principle does not hold for wave equation, i.e.,

$$
\begin{gathered}
u_{t t}=u_{x x},-L<x<L, 0<t<T \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{gathered}
$$

$$
\max _{\bar{U}_{T}} u(x, t)>\max _{\partial^{\prime} U_{T}} u(x, t)
$$

Hint: Let $f=0$ and $g \in C_{0}^{\infty}([-1,1]), g \geq 0$ and choose T small.
(b) Let u solve the initial value problem for the wave equation in one dimension

$$
\left\{\begin{array}{l}
u_{t t}=u_{x x} \text { in } R \times(0,+\infty) \\
u(x, 0)=f(x), u_{t}(x, 0)=g(x)
\end{array}\right.
$$

where f and g have compact support in R. Let $k(t)=\frac{1}{2} \int u_{t}(x, t)^{2} d x$ be the potential energy and $p(t)=\frac{1}{2} \int u_{x}^{2}(x, t) d x$ be the potential energy. Show that
(a) $k(t)+p(t)$ is constant in t; (b) $k(t)=p(t)$ for all large enough time t.
8. Find the explicit formula for the following wave equation

$$
u_{t t}-\Delta u=0, x \in R^{3}, t>0 ; u(x, 0)=0, u_{t}(x, 0)=\left\{\begin{array}{l}
1, \text { for }|x|<1 \\
0, \text { for }|x|>1
\end{array}\right.
$$

Hint: u is radially symmetric.

