MATH 516-101 2019-2020 Homework THREE

Due Date: by 6 pm , October 23, 2019
10 points each.

1. Derive a solution formula for the two-dimensional wave equation with source

$$
\begin{gathered}
u_{t t}=\Delta u+f(x, t), x \in R^{2} \\
u(x, 0)=0, u_{t}(x, 0)=0
\end{gathered}
$$

2. Derive a solution formula for the three-dimensional wave equation with radial source

$$
\begin{gathered}
u_{t t}=\Delta u+f(r, t), t>0, r>0 \\
u(r, 0)=0, u_{t}(r, 0)=0
\end{gathered}
$$

3. Find the first order and second order weak derivatives for the following function $u: R \rightarrow R$, if exists:

$$
\text { (a) } \quad u(x)=\left\{\begin{array}{l}
1-|x|, \text { for }|x| \leq 1 \\
0, \text { for }|x|>1
\end{array} ; \text { (b) } u(x)=|\sin x|\right.
$$

4. Suppose $u:(a, b) \rightarrow R$ and the weak derivative exists and satisfies

$$
D u=0 \text { a.e. in }(a, b)
$$

Prove that u is constant a.e. in (a, b).
5. Let $1<p<+\infty$. Show that if $u, v \in W^{1, p}(\Omega)$ then $\max (u, v), \min (u, v) \in W^{1, p}(\Omega)$. Show that this is not true for $W^{2, p}(\Omega)$.
6. Consider the following function

$$
u(x)=\frac{1}{|x|^{\gamma}}
$$

in $\Omega=B_{1}(0)$. Show that if $\gamma+1<n$, the weak derivatives are given by

$$
\partial_{j} u=-\gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

i.e., you need to show rigorously that

$$
\int u \partial_{j} \phi=\int \phi \gamma \frac{x_{j}}{|x|^{\gamma+2}}
$$

For the condition on γ such that $u \in W^{1, p}$ or $u \in W^{2, p}$.
7. Let $\eta(t)=1$ for $t \leq 0$ and $\eta(t)=0$ for $t>1$. Let $f \in W^{k, p}\left(R^{n}\right)$ and $f_{k}=f \eta(|x|-k)$. Show that $\left\|f_{k}-f\right\|_{W^{k, p}} \rightarrow 0$ as $k \rightarrow+\infty$. As a consequence show that $W^{k, p}\left(R^{n}\right)=W_{0}^{k, p}\left(R^{n}\right)$.
8. Let $u \in C^{\infty}\left(\bar{R}_{+}^{n}\right)$. Extend u to $E u$ on R^{n} such that

$$
E u=u, x \in R_{+}^{n} ; E u \in C^{3,1}\left(R^{n}\right) \cap W^{4, p}\left(R^{n}\right) ;\|E u\|_{W^{4, p}} \leq\|u\|_{W^{4, p}}
$$

Here $R_{+}^{n}=\left\{\left(x^{\prime}, x_{n}\right) ; x_{n}>0\right\}$ and $C^{3,1}=\left\{u \in C^{3}, D^{\alpha} u\right.$ is Lipschitz, $\left.|\alpha|=3\right\}$.
9. Let $R^{+}=\{x \in R ; x>0\}$ and assume that $u \in W^{2, p}\left(R^{+}\right)$. Define the symmetric extension of u by setting $E u(x)=u(|x|)$. Prove that $E u \in W^{1, p}(R)$ but $E u \notin W^{2, p}(R)$, in general.
10. (a) If $n=1$ and $u \in W^{1,1}(\Omega)$ then $u \in L^{\infty}$ and u is continuous. (b) If $n>1$, find an example of $u \in W^{1, n}\left(B_{1}\right)$ and $u \notin L^{\infty}$.

